High-energy band structure of gold
DEFF Research Database (Denmark)
Christensen, N. Egede
1976-01-01
The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...
Superlattice band structure: New and simple energy quantification condition
Energy Technology Data Exchange (ETDEWEB)
Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)
2014-10-01
Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga{sub 0.5}Al{sub 0.5}As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.
Polar semiconductor heterojunction structure energy band diagram considerations
International Nuclear Information System (INIS)
Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong
2016-01-01
The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.
Polar semiconductor heterojunction structure energy band diagram considerations
Energy Technology Data Exchange (ETDEWEB)
Lin, Shuxun; Wen, Cheng P., E-mail: cpwen@ieee.org; Wang, Maojun; Hao, Yilong [Institute of Microelectronics, Peking University, Beijing (China)
2016-03-28
The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.
Energy band structure of Cr by the Slater-Koster interpolation scheme
International Nuclear Information System (INIS)
Seifu, D.; Mikusik, P.
1986-04-01
The matrix elements of the Hamiltonian between nine localized wave-functions in tight-binding formalism are derived. The symmetry adapted wave-functions and the secular equations are formed by the group theory method for high symmetry points in the Brillouin zone. A set of interaction integrals is chosen on physical ground and fitted via the Slater-Koster interpolation scheme to the abinito band structure of chromium calculated by the Green function method. Then the energy band structure of chromium is interpolated and extrapolated in the Brillouin zone. (author)
Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao
2014-12-15
This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.
Band structure of semiconductors
Tsidilkovski, I M
2013-01-01
Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio
Crystal structure and energy band and optical properties of phosphate Sr3P4O13
International Nuclear Information System (INIS)
Zhang, Y.-C.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Chen, D.-G.; Gong, Y.-J.; Kan, Z.-G.
2004-01-01
A single crystal of the compound Sr 3 P 4 O 13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group P1-bar. It builds up from SrO 7 polyhedra and P 4 O 13 -6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr 3 P 4 O 13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr 3 P 4 O 13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr 3 P 4 O 13 is a low refractive index, and it is possible that the Sr 3 P 4 O 13 is used to make transparent material between the UV and FR light zone
Directory of Open Access Journals (Sweden)
Ning Cui
2012-06-01
Full Text Available Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs. In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.
Touching points in the energy band structure of bilayer graphene superlattices
International Nuclear Information System (INIS)
Pham, C Huy; Nguyen, V Lien
2014-01-01
The energy band structure of the bilayer graphene superlattices with zero-averaged periodic δ-function potentials are studied within the four-band continuum model. Using the transfer matrix method, the study is mainly focused on examining the touching points between adjacent minibands. For the zero-energy touching points the dispersion relation derived shows a Dirac-like double-cone shape with the group velocity which is periodic in the potential strength P with the period of π and becomes anisotropic at relatively large P. From the finite-energy touching points we have identified those located at zero wave-number. It was shown that for these finite-energy touching points the dispersion is direction-dependent in the sense that it is linear or parabolic in the direction parallel or perpendicular to the superlattice direction, respectively. We have also calculated the density of states and the conductivity which demonstrates a manifestation of the touching points examined. (paper)
Maehira, T; Ueda, K; Hasegawa, A
2003-01-01
In order to investigate electronic properties of recently discovered heavy fermion superconductors CeTIn sub 5 (T=Ir and Co), we employ the relativistic linear augmented-plane-wave (RLAPW) method to clarify the energy band structures and Fermi surfaces of those materials. The obtained energy bands mainly due to the large hybridization between Ce 4 f and In 5 p states well reproduce the Fermi surfaces consistent with the de Haas-van Alphen experimental results. However, when we attempt to understand magnetism and superconductively in CeTIn sub 5 from the microscopic viewpoint, the energy bands obtained in the RLAPW method are too complicated to analyze the system by further including electron correlations. Thus, it is necessary to prepare a more simplified model, keeping correctly the essential characters of the energy bands obtained in the band-structure calculation. For the purpose, we construct a tight-binding model for CeTIn sub 5 by including f-f and p-p hoppings as well as f-p hybridization, which are ex...
International Nuclear Information System (INIS)
Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong
1987-06-01
The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs
Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong
2016-02-01
The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.
DEFF Research Database (Denmark)
Dery, H.; Tromborg, Bjarne; Eisenstein, G.
2003-01-01
We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...
Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi
2018-06-01
The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.
International Nuclear Information System (INIS)
Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.
2016-01-01
The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.
Energy Technology Data Exchange (ETDEWEB)
Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Brönnimann, M. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Cardelli, F. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Ficcadenti, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Gallo, A. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Kalt, R. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Lollo, V. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Palumbo, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Piersanti, L., E-mail: luca.piersanti@lnf.infn.it [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Schilcher, T. [Paul Scherrer Institut, 5232 Villigen (Switzerland)
2016-11-21
The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.
Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions
Chubb, Scott
2004-03-01
The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.
International Nuclear Information System (INIS)
Grosso, G.
1986-01-01
The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work
Energy Band Structure Studies Of Zinc-Blende GaAs and InAs ...
African Journals Online (AJOL)
A self-consistent calculation of the structural and electronic properties of zinc blende GaAs and InAs has been carried out. The calculations were done using the full potential-linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT). The exchange-correlation energy used is the ...
Energy Technology Data Exchange (ETDEWEB)
Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)
2017-02-28
Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS
Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali
2017-02-01
We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.
Enhanced Water Splitting by Fe2O3-TiO2-FTO Photoanode with Modified Energy Band Structure
Directory of Open Access Journals (Sweden)
Eul Noh
2013-01-01
Full Text Available The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode.
Photonic band gap structure simulator
Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.
2006-10-03
A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.
Energy Technology Data Exchange (ETDEWEB)
Manghi, F., E-mail: franca.manghi@unimore.it [Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41125 Modena (Italy); CNR – Institute of NanoSciences – S3 (Italy); Boni, V. [Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41125 Modena (Italy)
2015-04-15
Highlights: • We review many body techniques for quasiparticle calculations. • We focus on transition metals and transition metal oxides. • We discuss spin dependent energy renormalization and quasiparticle quenching. • We present a detailed comparison between two methods (DMFT and 3BS).
International Nuclear Information System (INIS)
Manghi, F.; Boni, V.
2015-01-01
Highlights: • We review many body techniques for quasiparticle calculations. • We focus on transition metals and transition metal oxides. • We discuss spin dependent energy renormalization and quasiparticle quenching. • We present a detailed comparison between two methods (DMFT and 3BS).
Institute of Scientific and Technical Information of China (English)
Tai Wang; Yong-Quan Guo; Shuai Li
2017-01-01
The Eu-doped Cu(In,Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CulnTe2.In this paper,the Eu-doped CulnTe2 (Culn1-xEuxTe2,x =0,0.1,0.2,0.3) are studied systemically based on the empirical electron theory (EET).The studies cover crystal structures,bonding regularities,cohesive energies,energy levels,and valence electron structures.The theoretical values fit the experimental results very well.The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions.The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease.The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms,which shows that the 3d electron numbers of Cu atoms change before and after Eu doping.In single phase CuIn1-xEuxTe2,the number of valence electrons changes regularly with increasing Eu content,and the calculated band gap Eg also increases,which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.
Energy bands and gaps near an impurity
Czech Academy of Sciences Publication Activity Database
Mihóková, Eva; Schulman, L. S.
2016-01-01
Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016
Exciton spectra and energy band structure of Cu{sub 2}ZnSiSe{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Guc, M., E-mail: gmax@phys.asm.md [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Levcenko, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Dermenji, L. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Gurieva, G. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Schorr, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Syrbu, N.N. [Technical University of Moldova, Chisinau MD-2004, Republic of Moldova (Moldova, Republic of); Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of)
2014-02-25
Highlights: • Reflection spectra of Cu{sub 2}ZnSiSe{sub 4} were studied for E ⊥ c and E || c light polarizations. • Four excitonic series are revealed in the reflection spectra at 10 K. • Model of exciton dispersion and the presence of a dead-layer. • Exciton Rydberg energies and free carriers effective masses were calculated. • Reflectivity for E ⊥ c and E || c were analyzed in the region 3–6 eV at 300 K. -- Abstract: Exciton spectra are studied in Cu{sub 2}ZnSiSe{sub 4} single crystals at 10 and 300 K by means of reflection spectroscopy. The exciton parameters, dielectric constant and free carriers effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The structure found in the reflectivity was analyzed and related to the theoretical electronic band structure of close related Cu{sub 2}ZnSiS{sub 4} semiconductor.
CSIR Research Space (South Africa)
Bembe, MJ
2010-11-01
Full Text Available single device. In this study the focus is on the modification of the antenna designs for dual-band functionality which is limited on the ESPAR antenna’s structural parameter. This modification should result in an antenna system which operates in both 2...
Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars
2018-01-01
The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.
Band structures in near spherical 138Ce
Bhattacharjee, T.; Chanda, S.; Bhattacharyya, S.; Basu, S. K.; Bhowmik, R. K.; Das, J. J.; Pramanik, U. Datta; Ghugre, S. S.; Madhavan, N.; Mukherjee, A.; Mukherjee, G.; Muralithar, S.; Singh, R. P.
2009-06-01
The high spin states of N=80138Ce have been populated in the fusion evaporation reaction 130Te( 12C, 4n) 138Ce at E=65 MeV. The γ transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23 ℏ and 9511.3 keV, respectively, by including 53 new transitions. The negative parity ΔI=1 band, developed on the 6536.3 keV 15 level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [πgh]⊗[. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.
Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.
2011-01-01
The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.
Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.
2017-05-01
This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.
International Nuclear Information System (INIS)
Alfianto, E; Rusydi, F; Aisyah, N D; Dipojono, H K; Martoprawiro, M A; Fadilla, R N
2017-01-01
This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso. (paper)
International Nuclear Information System (INIS)
Xu, Zhimou; Suzuki, Masato; Yokoyama, Shin
2005-01-01
The structure and optical band-gap energies of Ba 0.5 Sr 0.5 TiO 3 (BST0.5) thin films prepared on SiO 2 /Si and fused quartz substrates by RF magnetron plasma sputtering were studied in terms of deposition temperature and film thickness. Highly (100)-oriented BST0.5 thin films were successfully sputtered on a Si substrate with an approximately 1.0-μm-thick SiO 2 layer at a deposition temperature of above 450degC. The optical transmittance of BST0.5 thin films weakly depended on the magnitude of X-ray diffraction (XRD) peak intensity. This is very helpful for monolithic integration of BST0.5 films for electrooptical functions directly onto a SiO 2 /Si substrate. The band-gap energies showed a strong dependence on the deposition temperature and film thickness. It was mainly related to the quantum size effect and the influence of the crystallinity of thin films, such as grain boundaries, grain size, oriented growth, and the existence of an amorphous phase. The band-gap energy values, which were much larger than those of single crystals, decreased with the increase in the deposition temperature and the thickness of BST0.5 thin films. The band-gap energy of 311-nm-thick amorphous BST0.5 thin film was about 4.45 eV and that of (100)-oriented BST0.5 thin film with a thickness of 447 nm was about 3.89 eV. It is believed that the dependence of the band-gap energies of the thin films on the crystallinity for various values of deposition temperature and film thickness means that there could be application in integrated optical devices. (author)
Complex band structure and electronic transmission eigenchannels
DEFF Research Database (Denmark)
Jensen, Anders; Strange, Mikkel; Smidstrup, Soren
2017-01-01
and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...
Energy correlations for mixed rotational bands
International Nuclear Information System (INIS)
Doessing, T.
1985-01-01
A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)
Le Thi Ngoc, Loan; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin
2015-01-01
Two distinct single-photon plasmon-modulated photoluminescence processes are generated from nanostructured gold surfaces by tuning the spectral overlap of the incident laser source, localized surface plasmon resonance band, and the interband transitions between the d and sp bands, near the X-and
Electronic band structure of lithium, sodium and potassium fluorides
International Nuclear Information System (INIS)
Jouanin, C.; Albert, J.P.; Gout, C.
1975-01-01
A mixed tight-binding, pseudopotential method is proposed to calculate the energy band structure of large-gap crystals and is tested here on LiF, NaF and KF. Three-centre terms are included in the determination of the valence bands by the tight-binding method and for the conduction bands we use a pseudopotential model proposed by Bassani and Giuliano, modified for the positive ions. By taking into account the polarization corrections, transitions calculated from the energy band structures are compared with experimental data and the agreement is generally good
Surface band structures on Nb(001)
International Nuclear Information System (INIS)
Fang, B.; Lo, W.; Chien, T.; Leung, T.C.; Lue, C.Y.; Chan, C.T.; Ho, K.M.
1994-01-01
We report the joint studies of experimental and theoretical surface band structures of Nb(001). Angle-resolved photoelectron spectroscopy was used to determine surface-state dispersions along three high-symmetry axes bar Γ bar M, bar Γ bar X, and bar M bar X in the surface Brillouin zone. Ten surface bands have been identified. The experimental data are compared to self-consistent pseudopotential calculations for the 11-layer Nb(001) slabs that are either bulk terminated or fully relaxed (with a 12% contraction for the first interlayer spacing). The band calculations for a 12% surface-contracted slab are in better agreement with the experimental results than those for a bulk-terminated slab, except for a surface resonance near the Fermi level, which is related to the spin-orbit interaction. The charge profiles for all surface states or resonances have been calculated. Surface contraction effects on the charge-density distribution and the energy position of surface states and resonances will also be discussed
The cellular approach to band structure calculations
International Nuclear Information System (INIS)
Verwoerd, W.S.
1982-01-01
A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular
International Nuclear Information System (INIS)
Watanabe, Ken; Higo, Toshiyasu
2005-01-01
XTF (X-band Test Facility, Old name is GLCTA) is the high gradient test facility for X-band acceleration. We have installed an X-band 60cm structure (KX01) in the April 2004 and have been processing it for more than 10 months. Now it is under test on long-term operation. We report here the high gradient test result to date. (author)
Hole energy and momentum distributions in valence bands
International Nuclear Information System (INIS)
Laan, G. van der.
1982-01-01
In order to understand the electrical and magnetic properties of solids, the knowledge of the density of states and the dispersion relation of the valence bands is indispensable. This thesis offers some alternative methods to obtain information about the nature of the valence band. Part A deals with the energy distribution of the photoelectrons. A simple model, which explains the core hole satellite structure in compounds with large correlation effects between the valence band holes and the created photo-hole, is outlined. CuCl, CuX 2 (X = F Cl and Br) are studied, by photoemission and Auger electron spectroscopies in determining the valence band properties. Part B deals with the simultaneous measurement of the energy and the wave vector of the emitted electrons. A practical example is given for the determination of the dispersion relation in copper. The measurements of a surface resonance band and the distribution of the secondary electrons are also reported. (Auth.)
Band-Structure of Thallium by the LMTO Method
DEFF Research Database (Denmark)
Holtham, P. M.; Jan, J. P.; Skriver, Hans Lomholt
1977-01-01
by an energy gap. The 6d and 7s bands were found to be far above the Fermi level and the 5d states were found to be far below it. Fermi surface properties and the electronic specific heat are computed and compared with experiment. The joint density of states has also been computed and is in reasonable...... and p bands for the HCP structure. Energy bands have been evaluated both with and without spin-orbit coupling which is particularly large in thallium. Energy bands close to the Fermi level were found to be mainly 6p like in character. The 6s states lay below the 6p bands and were separated from them......The relativistic band structure of thallium has been calculated using the linear muffin-tin orbital (LMTO) method. The positions and extents of the bands were found to follow the Wigner-Seitz rule approximately, and the origin of the dispersion of the bands was established from the canonical s...
Phononic band gap structures as optimal designs
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...
Li, Haili; Jiao, Shujie; Ren, Jinxian; Li, Hongtao; Gao, Shiyong; Wang, Jinzhong; Wang, Dongbo; Yu, Qingjiang; Zhang, Yong; Li, Lin
2016-02-07
A room temperature successive ionic layer adsorption and reaction (SILAR) method is introduced for fabricating quantum dots-on-wide bandgap semiconductors. Detailed exploration of how SILAR begins and proceeds is performed by analyzing changes in the electronic structure of related elements at interfaces by X-ray photoelectric spectroscopy, together with characterization of optical properties and X-ray diffraction. The distribution of PbS QDs on ZnO, which is critical for optoelectrical applications of PbS with a large dielectric constant, shows a close relationship with the dipping order. A successively deposited PbS QDs layer is obtained when the sample is first immersed in Na2S solution. This is reasonable because the initial formation of different chemical bonds on ZnO nanorods is closely related to dangling bonds and defect states on surfaces. Most importantly, dipping order also affects their optoelectrical characteristics greatly, which can be explained by the heterojunction energy band structure related to the interface. The formation mechanism for PbS QDs on ZnO is confirmed by the fact that the photovoltaic diode device performance is closely related to the dipping order. Our atomic-scale understanding emphasises the fundamental role of surface chemistry in the structure and tuning of optoelectrical properties, and consequently in devices.
International Nuclear Information System (INIS)
Goswami, A.; Saha Sarkar, M.; Datta Pramanik, U.; Banerjee, P.; Basu, P.; Bhattacharya, P.; Bhattacharya, S.; Chatterjee, M.L.; Sen, S.; Dasmahapatra, B.
1995-01-01
The level structure of 104 Ag has been studied through the 103 Rh(α,3nγ) reaction at E α =40 and 45 MeV. The principal features of the proposed level scheme are in agreement with those obtained earlier through heavy ion reaction. A two-quasiparticle-plus-rotor model calculation has been performed, and the results are compared with experimental data. (orig.)
Band connectivity for topological quantum chemistry: Band structures as a graph theory problem
Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei
2018-01-01
The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.
Energy Technology Data Exchange (ETDEWEB)
Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com
2017-05-01
We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.
Maximizing band gaps in plate structures
DEFF Research Database (Denmark)
Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard
2006-01-01
periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated......Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... theoretically and experimentally and the issue of finite size effects is addressed....
Structure of dipole bands in 106In
International Nuclear Information System (INIS)
Deo, A. Y.; Palit, R.; Naik, Z.; Joshi, P. K.; Mazumdar, I.; Sihotra, S.; Mehta, D.; Kumar, S.; Chakrabarti, R.; Kshetri, R.; Jain, H. C.
2009-01-01
High spin states in neutron-deficient 106 In were investigated using 78 Se( 32 S,p3n) reaction at 125 MeV. The level scheme is extended up to 7 MeV of excitation energy for the negative parity states constituting four dipole bands, and the positive parity states which mainly exhibit single-particle excitations are extended up to 5 MeV. Projected deformed Hartree-Fock calculations were carried out to understand the configurations of different bands in this nucleus.
Deformed configurations, band structures and spectroscopic ...
Indian Academy of Sciences (India)
2014-03-20
Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...
Electronic band structure of magnetic bilayer graphene superlattices
International Nuclear Information System (INIS)
Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien
2014-01-01
Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.
Wakefield Band Partitioning in LINAC Structures
International Nuclear Information System (INIS)
Jones, Roger M
2003-01-01
In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures
International Nuclear Information System (INIS)
Lee, Ki-Won; Kim, Young-You
2004-01-01
In this research, we used photoluminescence (PL) and photoluminescence excitation (PLE) to visualize the electronic band structure in porous silicon (PS). From the combined results of the PLE measurements at various PL emission energies and the PL measurements under excitation at various PLE absorption energies, we infer that three different electronic band structures, originating from different luminescent origins, give rise to the PL spectrum. Through either thermal activation or diffusive transfer, excited carriers are moved to each of the electronic band structures.
BAND STRUCTURE OF NON-STEIOCHIOMETRIC LARGE-SIZED NANOCRYSTALLITES
Directory of Open Access Journals (Sweden)
I.V.Kityk
2004-01-01
Full Text Available A band structure of large-sized (from 20 to 35nm non-steichiometric nanocrystallites (NC of the Si2-xCx (1.04 < x < 1.10 has been investigated using different band energy approaches and a modified Car-Parinello molecular dynamics structure optimization of the NC interfaces. The non-steichiometric excess of carbon favors the appearance of a thin prevailingly carbon-contained layer (with thickness of about 1 nm covering the crystallites. As a consequence, one can observe a substantial structure reconstruction of boundary SiC crystalline layers. The numerical modeling has shown that these NC can be considered as SiC reconstructed crystalline films with thickness of about 2 nm covering the SiC crystallites. The observed data are considered within the different one-electron band structure methods. It was shown that the nano-sized carbon sheet plays a key role in a modified band structure. Independent manifestation of the important role played by the reconstructed confined layers is due to the experimentally discovered excitonic-like resonances. Low-temperature absorption measurements confirm the existence of sharp-like absorption resonances originating from the reconstructed layers.
Band structure of CdTe under high pressure
International Nuclear Information System (INIS)
Jayam, Sr. Gerardin; Nirmala Louis, C.; Amalraj, A.
2005-01-01
The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(E F )) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (P M = 1.935 Mbar) and the corresponding reduced volume ((V/V 0 ) M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)
Changing optical band structure with single photons
Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.
2017-11-01
Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.
The energy band structure of A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors
Energy Technology Data Exchange (ETDEWEB)
Zabidi, Noriza A. [Physics Department, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 59200 (Malaysia); Azhan, Muhd. Z. [Defence Science Department, Faculty of Defence Science and Technology, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 59200 (Malaysia); Rosli, A. N. [Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai 71800, Negeri Sembilan (Malaysia); Shrivastava, Keshav N. [School of Physics, University of Hyderabad, Hyderabad 500046 (India)
2014-03-05
We study the band structure of antiferromagnetic A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors by using first-principles electronic structure calculations which is density functional theory. In the vicinity of iron-vacancy, we identify the valence electrons of A{sub x}Fe{sub 2}Se{sub 2} will be filled up to the Fermi level and no semiconducting gap is observed. Hence, the A{sub x}Fe{sub 2}Se{sub 2} is a metallic instead of semiconducting which leads to superconductivity in the orbital-selective Mott phase. Similarly, there is non-vanishing density of states at the Fermi level.
Band structure of an electron in a kind of periodic potentials with singularities
Hai, Kuo; Yu, Ning; Jia, Jiangping
2018-06-01
Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.
Ab-initio electronic band structure calculations for beryllium chalcogenides
International Nuclear Information System (INIS)
Kalpana, G.; Pari, G.; Yousuf, Mohammad
1997-01-01
The first principle tight-binding linear muffin-tin orbital method within the local density approximation (LDA) has been used to calculate the ground state properties, structural phase transition and pressure dependence of band gap of BeS, BeSe and BeTe. We have calculated the energy-volume relations for these compounds in the B3 and B8 phases. The calculated lattice parameters, bulk modulus and the pressure-volume relation were found to be in good agreement with the recent experimental results. The calculated B3→B8 structural transition pressure for BeS, BeSe and BeTe agree well with the recent experimental results. Our calculations show that these compounds are indirect band gap (Γ-X) semiconductors at ambient conditions. The calculated band gap values are found to be underestimated by 20-30% which is due to the usage of LDA. After the structural transition to the B8 phase, BeS continues to be indirect band gap semiconductors and ultimately above 100 GPa it metallises, BeSe and BeTe are metallic at the B3→B8 structural transition. (author)
Study of band structure of some odd proton Eu isotopes
International Nuclear Information System (INIS)
Pandit, Rakesh K.; Rani Devi; Khosa, S.K.
2016-01-01
Much work has been done on the odd-Z, odd-A nuclei in the rare earth region because of occurrence of fascinating variety of structures of nuclei in this mass region. The Eu nuclei are in the transitional deformation region and it provides an opportunity to investigate theoretically the deformation changes with mass number and excitation energy besides to study the structure of their excited states. The 153 Eu nucleus has been well studied over the last two decades. The aim of the present work is to study in detail the band structure of some odd-Z nuclei
Band structure dynamics in indium wires
Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.
2018-05-01
One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.
Emission bands of phosphorus and calculation of band structure of rare earth phosphides
International Nuclear Information System (INIS)
Al'perovich, G.I.; Gusatinskij, A.N.; Geguzin, I.I.; Blokhin, M.A.; Torbov, V.I.; Chukalin, V.I.; AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem)
1977-01-01
The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band
Electronic Band Structure of Helical Polyisocyanides.
Champagne, Benoît; Liégeois, Vincent; Fripiat, Joseph G; Harris, Frank E
2017-10-19
Restricted Hartree-Fock computations are reported for a methyl isocyanide polymer (repeating unit -C═N-CH 3 ), whose most stable conformation is expected to be a helical chain. The computations used a standard contracted Gaussian orbital set at the computational levels STO-3G, 3-21G, 6-31G, and 6-31G**, and studies were made for two line-group configurations motivated by earlier work and by studies of space-filling molecular models: (1) A structure of line-group symmetry L9 5 , containing a 9-fold screw axis with atoms displaced in the axial direction by 5/9 times the lattice constant, and (2) a structure of symmetry L4 1 that had been proposed, containing a 4-fold screw axis with translation by 1/4 of the lattice constant. Full use of the line-group symmetry was employed to cause most of the computational complexity to depend only on the size of the asymmetric repeating unit. Data reported include computed bond properties, atomic charge distribution, longitudinal polarizability, band structure, and the convoluted density of states. Most features of the description were found to be insensitive to the level of computational approximation. The work also illustrates the importance of exploiting line-group symmetry to extend the range of polymer structural problems that can be treated computationally.
Conservation of topological quantum numbers in energy bands
International Nuclear Information System (INIS)
Chang, L.N.; Liang, Y.
1988-01-01
Quantum systems described by parametrized Hamiltinians are studied in a general context. Within this context, the classification scheme of Avron-Seiler-Simon for non-degenerate energy bands is extended to cover general parameter spaces, whole their sum rule is generalized to cover cases with degenerate bands as well. Additive topological quantum numbers are defined, and these are shown to be conserved in energy band ''collisions''. The conservation laws dictate that when some invariants are non-vanishing, no energy gap can develop in a set of degenerate bands. This gives rise to a series of splitting rules
From lattice Hamiltonians to tunable band structures by lithographic design
Tadjine, Athmane; Allan, Guy; Delerue, Christophe
2016-08-01
Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.
Electronic band structures of binary skutterudites
International Nuclear Information System (INIS)
Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar
2015-01-01
The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures
Electronic band structures of binary skutterudites
Energy Technology Data Exchange (ETDEWEB)
Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)
2015-10-25
The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.
Band structures in fractal grading porous phononic crystals
Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin
2018-05-01
In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.
Interpolation of band-limited discrete-time signals by minimising out-of-band energy
Janssen, A.J.E.M.; Vries, L.B.
1984-01-01
An interpolation method for restoring burst errors in discrete—time, band—limited signals is presented. The restoration is such that the restored signal has minimal out—of—band energy. The filter coefficients depend Only on the burst length and on the size of the band to which the signal is assumed
International Nuclear Information System (INIS)
Chornodolskyy, Ya; Stryganyuk, G; Syrotyuk, S; Voloshinovskii, A; Rodnyi, P
2007-01-01
From luminescence spectroscopy of CsCaCl 3 , Rb 1-x Cs x CaCl 3 and K 1-x Cs x CaCl 3 crystals, we have found evidence for intrinsic and impurity core-valence luminescence due to the radiative recombination of valence electrons with the holes of intrinsic or impurity 5p Cs + core states. The structural similarity of core-valence luminescence spectra has been revealed for the A 1-x Cs x CaCl 3 (A = K,Rb) crystals investigated. The electron energy structure of the CsCaCl 3 crystal has been calculated using the pseudopotential approach taking into account the gradient corrections for the exchange-correlation energy. The calculated density of the electronic states of CsCaCl 3 has been compared with corresponding parameters obtained from the analysis of core-valence luminescence spectra
Band structure and optical properties of diglycine nitrate crystal
International Nuclear Information System (INIS)
Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin
2005-01-01
Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal
The use of Wannier function in the calculations of band structure of covalent crystals
International Nuclear Information System (INIS)
Lu Dong; Yang Guang
1985-10-01
A variational procedure has been used to build up Wannier functions to study the energy bands of diamond, silicon and α-tin. For the case of silicon the Wannier function, density of charge and band structure are calculated self-consistently and a simple method in a non-self-consistent way has been used to compute the band structure of diamond, silicon and α-tin. The method seems to be effective to describe the electronic properties of covalent crystals. (author)
Band structural properties of MoS2 (molybdenite)
International Nuclear Information System (INIS)
Gupta, V.P.
1980-01-01
Semiconductivity and superconductivity in MoS 2 (molybdenite) can be understood in terms of the band structure of MoS 2 . The band structural properties of MoS 2 are presented here. The energy dependence of nsub(eff) and epsilon(infinity)sub(eff) is investigated. Using calculated values of nsub(eff) and epsilon(infinity)sub(eff), the Penn gap has been determined. The value thus obtained is shown to be in good agreement with the reflectivity data and also with the value obtained from the band structure. The Ravindra and Srivastava formula has been shown to give values for the isobaric temperature gradient of Esub(G)[(deltaEsub(G)/deltaT)sub(P)], which are in agreement with the experimental data, and the contribution to (deltaEsub(G)/deltaT)sub(P) due to the electron lattice interaction has been evaluated. In addition, the electronic polarizability has been calculated using a modified Lorentz-Lorenz relation. (author)
Multiple band structure in 156Er
International Nuclear Information System (INIS)
Sunyar, A.W.; Der Mateosian, E.; Kistner, O.C.; Johnson, A.; Lumpkin, A.H.; Thieberger, P.
1976-01-01
The 142 Nd( 18 O,4n) 156 Er reaction at 90-95 MeV was used to study 156 Er high-spin states to spin 24. In addition to the background ground-state band, two well developed off-spin side bands, one of each parity, were observed. (Auth.)
Guo, Yuzheng; Robertson, John
2017-09-01
We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.
CZTS stoichiometry effects on the band gap energy
International Nuclear Information System (INIS)
Malerba, Claudia; Biccari, Francesco; Azanza Ricardo, Cristy Leonor; Valentini, Matteo; Chierchia, Rosa; Müller, Melanie; Santoni, Antonino; Esposito, Emilia; Mangiapane, Pietro; Scardi, Paolo; Mittiga, Alberto
2014-01-01
Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu 2 ZnSnS 4 (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased
Band structure studies of actinide systems
International Nuclear Information System (INIS)
Koelling, D.D.
1976-01-01
The nature of the f-orbitals in an actinide system plays a crucial role in determining the electronic properties. It has long been realized that when the actinide separation is small enough for the f-orbitals to interact directly, the system will exhibit itinerant electron properties: an absence of local moment due to the f-orbitals and sometimes even superconductivity. However, a number of systems with the larger actinide separation that should imply local moment behavior also exhibit intinerant properties. Such systems (URh 3 , UIr 3 , UGe 3 , UC) were examined to learn something about the other f-interactions. A preliminary observation made is that there is apparently a very large and ansiotropic mass enhancement in these systems. There is very good reason to believe that this is not solely due to large electron--electron correlations but to a large electron--phonon interaction as well. These features of the ''non-magnetic'', large actinide separation systems are discussed in light of our results to date. Finally, the results of some recent molecular calculations on actinide hexafluorides are used to illustrate the shielding effects on the intra-atomic Coulomb term U/sub f-f/ which would appear in any attempt to study the formation of local moments. As one becomes interested in materials for which a band structure is no longer an adequate model, this screened U/sub ff/ is the significant parameter and efforts must be made to evaluate it in solid state systems
Quantitative analysis on electric dipole energy in Rashba band splitting.
Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji
2015-09-01
We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.
Quasiparticle semiconductor band structures including spin-orbit interactions.
Malone, Brad D; Cohen, Marvin L
2013-03-13
We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.
Band structure of ABC-trilayer graphene superlattice
International Nuclear Information System (INIS)
Uddin, Salah; Chan, K. S.
2014-01-01
We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k y direction for k x = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case
Magnetron based high energy S-band linac system
International Nuclear Information System (INIS)
Tiwari, T.; Krishnan, R.; Phatangare, Manoj
2012-01-01
This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system
Conduction bands and invariant energy gaps in alkali bromides
Boer, P.K. de; Groot, R.A. de
1998-01-01
Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.
Band Structure Characteristics of Nacreous Composite Materials with Various Defects
Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.
2016-06-01
Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.
Energy band dispersion in photoemission spectra of argon clusters
International Nuclear Information System (INIS)
Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.
2011-01-01
Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.
Band structure engineering for ultracold quantum gases in optical lattices
International Nuclear Information System (INIS)
Weinberg, Malte
2014-01-01
The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions
The Marvels of Electromagnetic Band Gap (EBG) Structures
2003-11-01
terminology of "Electromagnetic conference papers and journal articles dealing with Band- gaps (EBG)". Recently, many researchers the characterizations...Band Gap (EBG) Structures 9 utilized to reduce the mutual coupling between Structures: An FDTD/Prony Technique elements of antenna arrays. based on the...Band- Gap of several patents. He has had pioneering research contributions in diverse areas of electromagnetics,Snteructure", Dymposiget o l 21 IE 48
Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot
Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani
2018-04-01
We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.
Structure of the lowest excited 0/sup +/ rotational band of /sup 16/O
Energy Technology Data Exchange (ETDEWEB)
Ikebata, Yasuhiko; Suekane, Shota
1983-10-01
The structure of the lowest excited 0/sup +/ rotational band is investigated by using the extended Nilsson model wave functions with angular momentum projection and the B1 interaction, two-body LS-force of the Skyrme type and the Coulomb interaction. The results obtained show good agreement with energy interval in this band.
Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2
Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.
2018-04-01
Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.
Amniotic band-like structures | Govender | Obstetrics and ...
African Journals Online (AJOL)
Intra-amniotic band-like structures are seen fairly commonly on routine obstetric scans, especially during the first and second trimesters of pregnancy. It is important to establish the cause for such findings in order to determine their clinical significance and to assess prognosis. The vast majority of band-like structures are ...
The complex band structure for armchair graphene nanoribbons
International Nuclear Information System (INIS)
Zhang Liu-Jun; Xia Tong-Sheng
2010-01-01
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M − 1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes
Collective states in 230Th: band structure
Directory of Open Access Journals (Sweden)
A. I. Levon
2009-12-01
Full Text Available Experimental data for the excited states in the deformed nucleus 230Th studied in the (p, t reaction are analyzed. Sequences of the states are selected which can be treated as rotational bands and as multiplets of excitations. Experimental data are compared with the interacting boson model (IBM and the quasiparticle-phonon model (QPM calculations.
International Nuclear Information System (INIS)
Weissman, Y.
1975-10-01
The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)
Energies of conduction bands in dielectric liquids
International Nuclear Information System (INIS)
Holroyd, R.
1975-01-01
The properties of excess electrons in non-polar liquids depend on the relative energies of the trapped and conducting states. We have measured the energies of the conducting states, denoted V 0 , for about twenty non-polar liquids. Two methods were used: In one the work functions of metals immersed in the liquid were measured. In the other, solutes (TMPD) were photoionized in the liquid and V 0 calculated from the wavelength at which ionization onsets occur. A wide variation in conduction state energies is observed from a high of +0.21 eV for tetradecane to a low of --0.60 eV for tetramethylsilane. In general V 0 shifts to more negative values with increasing molecular symmetry, and correlates well with electron mobility. The photoionization results indicate that V 0 decreases with increasing temperature. In mixtures V 0 is linearly dependent on mole fraction. It was found empirically for n-hexane-neopentane mixtures that μ = 0.34 exp [--15.2(V 0 )]. This equation relating V 0 to the electron mobility also applies approximately to pure hydrocarbons. Thus the role of the conduction state energy in influencing electron mobilities and photoionization onsets is established and recent evidence indicates V 0 also influences the rates of electron reactions in these liquids
Band structures in the nematic elastomers phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Yang, Shuai [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); School of Civil Engineering and Architecture, Anyang Normal University, Anyang 455000 (China); Liu, Ying, E-mail: yliu5@bjtu.edu.cn [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liang, Tianshu [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)
2017-02-01
As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.
Band structures in the nematic elastomers phononic crystals
International Nuclear Information System (INIS)
Yang, Shuai; Liu, Ying; Liang, Tianshu
2017-01-01
As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.
Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model
International Nuclear Information System (INIS)
Arai, T.; Cohen, M.H.
1980-01-01
By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state
Band structures in Sierpinski triangle fractal porous phononic crystals
International Nuclear Information System (INIS)
Wang, Kai; Liu, Ying; Liang, Tianshu
2016-01-01
In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.
Band structures in Sierpinski triangle fractal porous phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu
2016-10-01
In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.
Determination of conduction and valence band electronic structure ...
Indian Academy of Sciences (India)
shifts in the rutile Ti d-band to lower energy with respect to anatase, i.e., ... requires excitation with UV light due to its wide band ... RIXS maps were compared to the theoretical results .... optical methods are insufficient, such as dark samples.
DEFF Research Database (Denmark)
Christensen, N. Egede; Feuerbacher, B.
1974-01-01
is obtained from an ad hoc potential based on a Dirac-Slater atomic calculation for the ground-state configuration and with full Slater exchange in the atomic as well as in the crystal potential. The selection of this best potential is justified by comparing the calculated band structure to Fermi...... of states. The present work includes a crude estimate of this surface density of states, which is derived from the bulk band structure by narrowing the d bands according to an effective number of neighbors per surface atom. Estimates of surface relaxation effects are also included.......The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...
Analysis on X-band structure breakdown at GLCTA
International Nuclear Information System (INIS)
Suehara, T.; Sanuki, T.; Komamiya, S.; Higo, T.; Hayano, H.; Terunuma, N.; Saeki, T.; Watanabe, K.; Hayakawa, A.; Tsukada, Y.
2004-01-01
We have built a new monitoring system for accelerator structure breakdown in the X-band high-gradient test facility at KEK (GLCTA: Global Linear Collider Test Accelerator). An X-band test structure KX01 (made by KEK) has been processed at GLCTA and we have been collecting data for about 3 months using this breakdown monitoring system. We describe overview of the monitoring system and preliminary result of breakdown analysis of the structure. (author)
International Nuclear Information System (INIS)
Tao Feng; Chen Weizhong; Pan Junting; Xu Wen; Du Sidan
2012-01-01
We study the energy flux in a nonlinear electrical transmission line consisting of two coupled segments which are identical in structure and different in parameters. The asymmetry of energy flux caused by nonlinear wave has been observed experimentally in the forbidden band of the line. The experiment shows whether the energy can flow through the transmission line depends on the amplitude of the boundary driving voltages, which can be well explained in the theoretical framework of nonlinear supratransmission. The numerical simulation based on Kirchhoff’s laws further verifies the existence of the asymmetric energy flux in the forbidden band.
Shell model description of band structure in 48Cr
International Nuclear Information System (INIS)
Vargas, Carlos E.; Velazquez, Victor M.
2007-01-01
The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements
Band structure of superlattice with δ-like potential
International Nuclear Information System (INIS)
Gashimzade, N.F.; Gashimzade, F.M.; Hajiev, A.T.
1993-08-01
Band structure of superlattice with δ-like potential has been calculated taking into account interaction of carriers of different kinds. Superlattices of semiconductors with degenerated valence band and zero-gap semiconductors have been considered. For the latter semimetal-semiconductor transition has been obtained. (author). 8 refs, 1 fig
Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning
Zhu, Jun
2014-03-01
Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.
Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)
2017-06-15
Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.
Enhancement of phononic band gaps in ternary/binary structure
International Nuclear Information System (INIS)
Aly, Arafa H.; Mehaney, Ahmed
2012-01-01
Based on the transfer matrix method (TMM) and Bloch theory, the interaction of elastic waves (normal incidence) with 1D phononic crystal had been studied. The transfer matrix method was obtained for both longitudinal and transverse waves by applying the continuity conditions between the consecutive unit cells. Dispersion relations are calculated and plotted for both binary and ternary structures. Also we have investigated the corresponding effects on the band gaps values for the two types of phononic crystals. Furthermore, it can be observed that the complete band gaps are located in the common frequency stop-band regions. Numerical simulations are performed to investigate the effect of different thickness ratios inside each unit cell on the band gap values, as well as unit cells thickness on the central band gap frequency. These phononic band gap materials can be used as a filter for elastic waves at different frequencies values.
Two-dimensional microwave band-gap structures of different ...
Indian Academy of Sciences (India)
- stant and/or magnetic permeability (or in particular impedance) are periodic and the propagation of electromagnetic waves is forbidden at certain frequencies when allowed to pass through these structures. This is similar to the electronic band.
Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.
Knutson, Jeremy L; Martin, James D; Mitzi, David B
2005-06-27
Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.
Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress
International Nuclear Information System (INIS)
Wang Yi-Ze; Li Feng-Ming
2012-01-01
The propagation of elastic waves in magnetoelectroelastic grid structures is studied. Band gap properties are presented and the effects of the magnetoelectroelastic coupling and initial stress are considered. Numerical calculations are performed using the plane-wave expansion method. The results show that the band gap width can be tuned by the initial stress. It is hoped that our results will be helpful for designing acoustic filters with magnetoelectroelastic materials and grid structures
International Nuclear Information System (INIS)
Izuani Che Rosid, N A; Ahmadi, M T; Ismail, Razali
2016-01-01
The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. (paper)
Band structure and Fermi surface of UPd2Al3 studied by angle-resolved photoemission spectroscopy
International Nuclear Information System (INIS)
Fujimori, Shin-ichi; Saitoh, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Fujimori, Atsushi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika
2007-01-01
We have observed the band structure and Fermi surfaces of the heavy Fermion superconductor UPd 2 Al 3 by angle-resolved photoemission experiments in the soft X-ray region. We observed renormalized quasi-particle bands in the vicinity of the Fermi level and strongly dispersive bands on the higher binding energy side. Our observation suggests that the structure previously assigned to contributions from localized states in the U 5f spectrum has strong energy dispersions
Rotational band structure in 132La
International Nuclear Information System (INIS)
Oliveira, J.R.B.; Emediato, L.G.R.; Rizzutto, M.A.; Ribas, R.V.; Seale, W.A.; Rao, M.N.; Medina, N.H.; Botelho, S.; Cybulska, E.W.
1989-01-01
'3'2La was studied using on-line gamma-spectroscopy through the reactions '1 24,126 Te( 11,10 B, 3, 4n) 132 La. The excitation function was obtained with 10 B(E lab =41.4; 45.4 and 48 MeV) in order to identify 132 La gamma-transitions. Gamma-gamma coincidences and angular distributions were performed for the 126 Te( 10 B, 4n) 132 La reaction. From the experimental results a rotational band with strongest M1 transitions and less intense 'cross-overs' E2 transitions was constructed. Using the methods of Bengtsson and Frauendorf the alignment (ix) and the Routhian (e') as a function of the angular velocity (ω) were also obtained from the experimental data. It was observed a constant alignment up to ω≅0.4 MeV, and a signature-splitting Δe'=25keV. Preliminary triaxial Cranking-Shell Model calculations indicate that a γ=-8deg deformation is consistent with the signature-splitting value of 25 keV experimentally observed. (Author) [es
Deformed configurations, band structures and spectroscopic ...
Indian Academy of Sciences (India)
2014-03-20
Mar 20, 2014 ... Our study gives insight into possible deformed structures at spherical shell closure. ... Considerable experimental and theoretical efforts ... True deformation effects can be seen only by considering configuration mixing.
Experimental study of energy harvesting in UHF band
International Nuclear Information System (INIS)
Bernacki, Ł; Gozdur, R; Salamon, N
2016-01-01
A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments. (paper)
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
Energy Technology Data Exchange (ETDEWEB)
Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)
2011-09-21
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
International Nuclear Information System (INIS)
Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin; Hsu, Jin-Chen
2011-01-01
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
Calculation of the band gap energy of ionic crystals
International Nuclear Information System (INIS)
Aguado, A.; Lopez, J.M.; Alonso, J.A.; Ayuela, A.; Rivas S, J.F.; Berrondo, M.
1998-01-01
The band gap of alkali halides, alkaline-earth oxides, Al 2 O 3 and SiO 2 crystals has been calculated using the perturbed-ion model supplemented with some assumptions for the treatment of excited states. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between the total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. The results compare well with experimental band gap energies and with other theoretical calculations, suggesting that the picture of bonding and excitation given by the model can be useful in ionic materials. (Author)
A new perspective of ground band energy formulae
Indian Academy of Sciences (India)
J B GUPTA
2017-08-07
Aug 7, 2017 ... Nuclear structure; ground band; moment of inertia; softness parameter. PACS Nos 21.60 ... mary data on the spectral properties of atomic nuclei. ... poorer at higher spins and for shape transitional (in ... 25 and figure 4.11 on p.
Influence of energy bands on the Hall effect in degenerate semiconductors
International Nuclear Information System (INIS)
Wu, Chhi-Chong; Tsai, Jensan
1989-01-01
The influence of energy bands on the Hall effect and transverse magnetoresistance has been investigated according to the scattering processes of carriers in degenerate semiconductors such as InSb. Results show that the Hall angle, Hall coefficient, and transverse magnetoresistance depend on the dc magnetic field for both parabolic and nonparabolic band structures of semiconductors and also depend on the scattering processes of carriers in semiconductors due to the energy-dependent relaxation time. From their numerical analysis for the Hall effect, it is shown that the conduction electrons in degenerate semiconductors play a major role for the carrier transport phenomenon. By comparing with experimental data of the transverse magnetoresistance, it shows that the nonparabolic band model is better in agreement with the experimental work than the parabolic band model of semiconductors
Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.
2018-05-01
Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.
Band structure and optical properties of opal photonic crystals
Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.
2005-01-01
A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order...
Solving complex band structure problems with the FEAST eigenvalue algorithm
Laux, S. E.
2012-08-01
With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.
Band structures and localization properties of aperiodic layered phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)
2012-03-15
The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.
Optical model with multiple band couplings using soft rotator structure
Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi
2017-09-01
A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)
2012-09-20
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.
Energy Technology Data Exchange (ETDEWEB)
Ganesh, Ibram, E-mail: ibramganesh@arci.res.in
2017-08-31
Highlights: • Reported a novel route to synthesize high specific surface area P-doped TiO{sub 2} nano-powder photocatalysts. • Established methylene blue dye-sensitization mechanism of TiO{sub 2} photocatalyst. • Established the effects of methylene blue adsorption on the surface, structural and photocatalytic activity of P-doped TiO{sub 2}. • Established true quantum efficiency determination method for TiO{sub 2} photocatalysis. - Abstract: Different amounts of phosphorus (P)-doped TiO{sub 2} (PDT) nano-powders (P = 0–10 wt.%) were synthesized by following a new emulsion-based sol-gel (EBSG) route and calcined at 400 °C–800 °C for 6 h. These calcined PDT powders were then thoroughly characterized by means of XRD, XPS, SEM, FT-IR, FT-Raman, DRS, BET surface area, zeta-potential, cyclic-voltammetry and photocatalytic evaluation using methylene blue (MB) as a model-pollutant and established the effects of phosphorous doping on structural, surface, band-gap energy, and photocatalytic characteristics of TiO{sub 2} nano-powder formed in EBSG route. The characterization results suggest that the EBSG derived TiO{sub 2} nano-powder after calcination at 400 °C for 6 h is in the form of anatase phase when it was doped with <8 wt.% P, and it is in the amorphous state when doped with >8 wt.% P. Furthermore, these EBSG derived PDT powders own high negative zeta-potentials, high specific surface areas (up to >250 m{sup 2}/g), and suitable band-gap energies (<3.34 eV). Surprisingly, these PDT powders exhibit very high MB adsorption (up to 50%) from its aqueous 0.01 mM, 0.02 mM and 0.03 mM solutions during 30 min stirring in the dark, whereas, the commercial Degussa P-25 TiO{sub 2} nano-powder shows no adsorption. Among various photocatalysts investigated in this study, the 1 wt.% P-doped TiO{sub 2} nano-powder formed in EBSG route exhibited the highest photocatalytic activity for MB degradation reaction.
Energy Technology Data Exchange (ETDEWEB)
Ji, Mengxia; Di, Jun; Ge, Yuping; Xia, Jiexiang, E-mail: xjx@ujs.edu.cn; Li, Huaming, E-mail: lhm@ujs.edu.cn
2017-08-15
Highlights: • 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} materials have been prepared. • With matched energy band structure, the effective charge separation can be achieved. • The holes and O{sub 2}{sup −} are determined to be the main active species. - Abstract: A novel visible-light-driven 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} photocatalyst was prepared via a facile solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) for the first time. FT-IR, XPS and TEM analysis results demonstrated the successful introduction of the 2D graphene-like g-C{sub 3}N{sub 4} material to the Bi{sub 4}O{sub 5}Br{sub 2} system. DRS and BET analysis results indicated the existence of the g-C{sub 3}N{sub 4} could lead to the broaden absorption edge and larger surface area of the ultrathin Bi{sub 4}O{sub 5}Br{sub 2} nanosheets. The electrochemical analysis implied a fast transfer of the interfacial electrons and low recombination rate of photogenerated charge carriers in g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2}, which could be assigned to the sufficient and tight contact between ultrathin Bi{sub 4}O{sub 5}Br{sub 2} and graphene-like g-C{sub 3}N{sub 4}. The quinolone antibiotic ciprofloxacin (CIP) was chosen as the target pollutant to evaluate the photocatalytic performance of the as-prepared samples under visible light irradiation. 1 wt% g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2} composite exhibited the highest photocatalytic degradation performance among all of the as-prepared photocatalysts. The enhancement of photocatalytic activity was attributed to the maximum contact between graphene-like g-C{sub 3}N{sub 4} and ultrathin Bi{sub 4}O{sub 5}Br{sub 2} material with matched energy band structure, which enable the efficient charge seperation. A possible photocatalytic mechanism also was proposed.
Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems
International Nuclear Information System (INIS)
Peterman, D.J.
1980-01-01
Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH 2 and YH 2 were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH 2 cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 2 lattice. These experimental results also suggest that, in contrast to recent calculations, LaH 3 is a small-band-gap semiconductor
Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.
Fujimori, Shin-ichi
2016-04-20
Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are
Self-consistent, relativistic, ferromagnetic band structure of gadolinium
International Nuclear Information System (INIS)
Harmon, B.N.; Schirber, J.; Koelling, D.D.
1977-01-01
An initial self-consistent calculation of the ground state magnetic band structure of gadolinium is described. A linearized APW method was used which included all single particle relativistic effects except spin-orbit coupling. The spin polarized potential was obtained in the muffin-tin form using the local spin density approximation for exchange and correlation. The most striking and unorthodox aspect of the results is the position of the 4f spin-down ''bands'' which are required to float just on top of the Fermi level in order to obtain convergence. If the 4f states (l = 3 resonance) are removed from the occupied region of the conduction bands the magnetic moment is approximately .75 μ/sub B//atom; however, as the 4f spin-down states are allowed to find their own position they hybridize with the conduction bands at the Fermi level and the moment becomes smaller. Means of improving the calculation are discussed
Simulation of the Band Structure of Graphene and Carbon Nanotube
International Nuclear Information System (INIS)
Mina, Aziz N; Awadallah, Attia A; Ahmed, Riham R; Phillips, Adel H
2012-01-01
Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model and LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.
Structure research of L-band travelling-wave buncher
International Nuclear Information System (INIS)
Zhou Wenzhen; Zhang Xiangyang; Ding Shuling
1996-01-01
The authors introduce design and tuning of two kinds of the buncher of the L-band high current injector of China Institute of Atomic Energy. Characteristics of the few cavities buncher is shown and the effects of the two modes of the buncher in high current injector are given
International Nuclear Information System (INIS)
Kimura, Masaaki; Horiuchi, Hisashi
2004-01-01
The relation between the superdeformed band of 32 S and 16 O+ 16 O molecular bands is studied by the deformed-basis antisymmetrized molecular dynamics with the Gogny D1S force. It is found that the obtained superdeformed band members of S have a considerable amount of the 16 O+ 16 O component. Above the superdeformed band, we have obtained two excited rotational bands which have more prominent character of the 16 O+ 16 O molecular band. These three rotational bands are regarded as a series of 16 O+ 16 O molecular bands which were predicted by using the unique 16 O- 16 O optical potential. As the excitation energy and principal quantum number of the relative motion increase, the 16 O+ 16 O cluster structure becomes more prominent but at the same time, the band members are fragmented into several states
Novel structural flexibility identification in narrow frequency bands
International Nuclear Information System (INIS)
Zhang, J; Moon, F L
2012-01-01
A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method. (paper)
Band structure analysis in SiGe nanowires
Energy Technology Data Exchange (ETDEWEB)
Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)
2012-06-05
One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.
Band structure analysis in SiGe nanowires
International Nuclear Information System (INIS)
Amato, Michele; Palummo, Maurizia; Ossicini, Stefano
2012-01-01
One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.
Optimum design of band-gap beam structures
DEFF Research Database (Denmark)
Olhoff, Niels; Niu, Bin; Cheng, Gengdong
2012-01-01
The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...... in the present paper that such an a priori assumption is not necessary since, in general, just the maximization of the gap between two consecutive natural frequencies leads to significant design periodicity. The aim of this paper is to maximize frequency gaps by shape optimization of transversely vibrating...
Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire
Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.
2015-02-01
To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.
Electron correlations in narrow energy bands: modified polar model approach
Directory of Open Access Journals (Sweden)
L. Didukh
2008-09-01
Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.
Gamma decay and band structures in 46Ti
International Nuclear Information System (INIS)
Dracoulis, G.D.; Radford, D.C.; Poletti, A.R.
1978-03-01
The states of 46 Ti have been studied using the 43 Ca(α,nγ) reaction. The level and decay scheme of 46 Ti was deduced from γ-γ coincidence, γ-ray energy and intensity measurements. Spins are suggested on the basis of the γ-ray angular distribution, supported by relative excitation functions. The ground state band has been extended to spin 10 + , and about 20 new states are observed. Some of these can be grouped into rotational-like bands based on the 3 - state at 3.059 MeV and other excited states
Theoretical studies on band structure and optical properties of 3C-SiC by FPLAPW
International Nuclear Information System (INIS)
Xu, P.; Xie, C.; Xu, F.; Pan, H.
2004-01-01
Full text: SiC has attracted more interests because of its great technological importance in microelectronic and photoelectronic devices. We have studied the band structure and optical properties of 3C-SiC by using a Full Potential Linearized Augmented Plane Waves (FPLAPW) method. The partial density of states (DOS) of Si and C atoms as well as the band structure of 3C-SiC are presented. The calculated band gap is 1.30eV, which is much less than the experimental value. It is attributed to a deficiency of the local density theory. The imaginary part of the dielectric function has been obtained directly from the band structure calculation. With the band gap correction, the real part of the dielectric function has been derived from the imaginary part by Kramers Kronig (K-K) dispersion relationship. The calculated results are in good agreement with the results measured by Petalas et al. by using ultraviolet spectroscopic ellipsometry in the photon energy range of 5eV-10eV. The band-to-band transition can be identified from the critical points exhibited in the calculated dielectric function, which is consistent with the experimental results of Petalas et al. The refractive index, extinction coefficient and reflectivity have also been calculated from obtained dielectric function, which are in agreement with the experimental results of Logothetidis and Lambrecht
International Nuclear Information System (INIS)
Yang, M.; Sturm, J.C.; Prevost, J.
1997-01-01
The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudomorphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been studied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that in the conventional two-dimensional (2D) pseudomorphic growth case. The models are first applied to an ideal spherical and cylindrical Si 1-x Ge x particle in a large Si matrix. In contrast to the 2D case, the band alignments for both structures are predicted to be strongly type II, where the conduction-band edge and the valence-band edge of the Si matrix are both significantly lower than those in the Si 1-x Ge x inclusion, respectively. Band lineups and the lowest electron endash heavy-hole transition energies of a pseudomorphic V-groove Si 1-x Ge x quantum wire inside a large Si matrix have been calculated numerically for different size structures. The photoluminescence energies of a large Si 1-x Ge x V-groove structure on Si will be lower than those of conventional 2D strained Si 1-x Ge x for similar Ge contents. copyright 1997 The American Physical Society
The structure of collective bands in 72Ge
International Nuclear Information System (INIS)
Tripathy, K.C.; Sahu, R.
1999-01-01
In recent years, extensive experimental studies of nuclei in the mass region A=80 have led to exciting discoveries of large ground state deformations, coexistence of shapes, band crossings, rapid variations of structure with changing nucleon numbers etc. A theoretical study of 72 Ge is presented
DEFF Research Database (Denmark)
Michiardi, Matteo; Aguilera, Irene; Bianchi, Marco
2014-01-01
-electron full-potential linearized augmented-plane-wave (FLAPW) formalism, fully taking into account spin-orbit coupling. Quasiparticle effects produce significant changes in the band structure of Bi2Te3 when compared to LDA. Experimental and calculated results are compared in the spectral regions where...
Doping-dependent quasiparticle band structure in cuprate superconductors
Eder, R; Ohta, Y.; Sawatzky, G.A
1997-01-01
We present an exact diagonalization study of the single-particle spectral function in the so-called t-t'-t ''-J model in two dimensions. As a key result, we find that hole doping leads to a major reconstruction of the quasiparticle band structure near (pi,0): whereas for the undoped system the
Design for maximum band-gaps in beam structures
DEFF Research Database (Denmark)
Olhoff, Niels; Niu, Bin; Cheng, Gengdong
2012-01-01
This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lower...
Effect of pressure on the structural properties and electronic band structure of GaSe
Energy Technology Data Exchange (ETDEWEB)
Schwarz, U.; Olguin, D.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Cantarero, A. [Department of Materials Sciences, University of Valencia, 46000 Burjasot (Spain); Hanfland, M. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)
2007-01-15
The structural properties of GaSe have been investigated up to 38 GPa by monochromatic X-ray diffraction. The onset of the phase transition from the {epsilon}-GaSe to a disordered NaCl-type structural motif is observed near 21 GPa. Using the experimentally determined lattice parameters of the layered {epsilon}-phase as input, constrained ab-initio total energy calculations were performed in order to optimize the internal structural parameters at different pressures. The results obtained for the nearest-neighbor Ga-Se distance agree with those derived from recent EXAFS measurements. In addition, information is obtained on the changes of Ga-Ga and Se-Se bond lengths which were not accessible to a direct experimental determination yet. Based on the optimized structural parameters, we report calculations of band gap changes of {epsilon}-GaSe under pressure. The optical response and electronic band structure of the metallic high-pressure phase of GaSe are discussed briefly. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Topological Classification of Crystalline Insulators through Band Structure Combinatorics
Kruthoff, Jorrit; de Boer, Jan; van Wezel, Jasper; Kane, Charles L.; Slager, Robert-Jan
2017-10-01
We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to crystals without time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries. The results presented match the mathematical structure underlying the topological classification of these crystals in terms of K -theory and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify all allowed topological phases of spinless particles in crystals in class A . Employing this classification, we study transitions between topological phases within class A that are driven by band inversions at high-symmetry points in the first Brillouin zone. This enables us to list all possible types of phase transitions within a given crystal structure and to identify whether or not they give rise to intermediate Weyl semimetallic phases.
Quasiparticle band structure for the Hubbard systems: Application to α-CeAl2
International Nuclear Information System (INIS)
Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.
1990-01-01
A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy U. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of α-CeAl 2 because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method
Relativistic band-structure calculations for electronic properties of actinide dioxides
International Nuclear Information System (INIS)
Maehira, Takahiro; Hotta, Takashi
2007-01-01
Energy band structures of actinide dioxides AnO 2 (An=Th, U, Np, and Pu) are investigated by a relativistic linear augmented-plane-wave method with the exchange-correlation potential in a local density approximation (LDA). It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between actinide 5f and oxygen 2p electrons. By focusing on the crystalline electric field states, we point out the problem in the application of the LDA to AnO 2
Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor
Nakayama, K.; Miyata, Y.; Phan, G. N.; Sato, T.; Tanabe, Y.; Urata, T.; Tanigaki, K.; Takahashi, T.
2014-12-01
We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor (Tc˜8 K ), which exhibits a tetragonal-to-orthorhombic structural transition at Ts˜90 K . At low temperature, we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ˜110 K , slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.
QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS
Directory of Open Access Journals (Sweden)
Benoit Krebs
2011-05-01
Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.
Photo field emission spectroscopy of the tantalum band structure
International Nuclear Information System (INIS)
Kleint, Ch.; Radon, T.
1978-01-01
Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)
Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying
DEFF Research Database (Denmark)
Canulescu, Stela; Rechendorff, K.; Borca, C. N.
2014-01-01
The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...
Magnon band structure and magnon density in one-dimensional magnonic crystals
International Nuclear Information System (INIS)
Qiu, Rong-ke; Huang, Te; Zhang, Zhi-dong
2014-01-01
By using Callen's Green's function method and the Tyablikov and Anderson–Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the superlattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic field on the magnon-energy band and magnon density in the K x -direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters. - Highlights: • A quantum approach has been developed to study the magnon band of magnonic crystals. • The separate and overlapping magnon bands of magnetic superlattices are investigated. • The results are beneficial for the design of gigahertz-range spin-wave filters
Magnon band structure and magnon density in one-dimensional magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Qiu, Rong-ke, E-mail: rkqiu@163.com [Shenyang University of Technology, Shenyang 110870 (China); Huang, Te [Shenyang University of Technology, Shenyang 110870 (China); Zhang, Zhi-dong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2014-11-15
By using Callen's Green's function method and the Tyablikov and Anderson–Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the superlattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic field on the magnon-energy band and magnon density in the K{sub x}-direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters. - Highlights: • A quantum approach has been developed to study the magnon band of magnonic crystals. • The separate and overlapping magnon bands of magnetic superlattices are investigated. • The results are beneficial for the design of gigahertz-range spin-wave filters.
Measurement of valence band structure in arbitrary dielectric films
International Nuclear Information System (INIS)
Uhm, Han S.; Choi, Eun H.
2012-01-01
A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.
Polarimetric and Structural Properties of a Boreal Forest at P-Band and L-Band
Tebaldini, S.; Rocca, F.
2010-12-01
With this paper we investigate the structural and polarimetric of the boreal forest within the Krycklan river catchment, Northern Sweden, basing on multi-polarimetric and multi-baseline SAR surveys at P-Band and L-Band collected in the framework of the ESA campaign BioSAR 2008. The analysis has been carried out by applying the Algebraic Synthesis (AS) technique, recently introduced in literature, which provides a theoretical framework for the decomposition of the backscattered signal into ground-only and volume-only contributions, basing on both baseline and polarization diversity. The availability of multiple baselines allows the formation of a synthetic aperture not only along the azimuth direction but also in elevation. Accordingly, the backscattered echoes can be focused not only in the slant range, azimuth plane, but in the whole 3D space. This is the rationale of the SAR Tomography (T-SAR) concept, which has been widely considered in the literature of the last years. It follows that, as long as the penetration in the scattering volume is guaranteed, the vertical profile of the vegetation layer is retrieved by separating backscatter contributions along the vertical direction, which is the main reason for the exploitation of Tomographic techniques at longer wavelengths. Still, the capabilities of T-SAR are limited to imaging the global vertical structure of the electromagnetic scattering in a certain polarization. It then becomes important to develop methodologies for the investigation of the vertical structure of different Scattering Mechanisms (SMs), such as ground and volume scattering, in such a way as to derive information that can be delivered also outside the field of Radar processing. This is an issue that may become relevant at longer wavelengths, such as P-Band, where the presence of multiple scattering arising from the interaction with terrain could hinder the correct reconstruction of the forest structure. The availability of multiple polarizations
Mid-frequency Band Dynamics of Large Space Structures
Coppolino, Robert N.; Adams, Douglas S.
2004-01-01
High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.
Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model
Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad
2018-02-01
In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.
Band structure in 83Rb from lifetime measurements
International Nuclear Information System (INIS)
Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Bhattacharya, S.; Saha-Sarkar, M.; Goswami, A.; Muralithar, S.; Singh, R.P.; Kumar, R.; Bhowmik, R.K.
2006-01-01
Excited states of 83 Rb, populated in the 76 Ge( 11 B,-bar 4nγ) reaction at a beam energy of 50 MeV, have been studied. The unfavoured signature partner (α=-1/2) of the πg 9/2 yrast band is proposed up to an excitation energy of 6669.4 keV and spin (31/2 + ). Lifetimes have been estimated for three states belonging to the favoured α=+1/2 band. The B(E2) values deduced from these lifetimes indicate a moderate quadrupole deformation of β 2 =0.20. Theoretical calculations within the framework of the particle-rotor-model suggest that low energy states before the onset of the νg 9/2 alignment at a rotational frequency of ∼0.5 MeV are prolate while those above this frequency have an oblate shape. The excited ΔI=1 band has been extended up to 5422.7 keV and spin 25/2 - . The B(M1) rates derived from the measured lifetimes decrease with spin. The results are in general agreement with an earlier TAC calculation, suggesting the interpretation of these states as arising from magnetic rotation
Band structure in {sup 83}Rb from lifetime measurements
Energy Technology Data Exchange (ETDEWEB)
Ganguly, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, Kolkata 700064 (India)]. E-mail: polash.banerjee@saha.ac.in; Ray, I. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, R. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Saha-Sarkar, M. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Muralithar, S. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Singh, R.P. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Kumar, R. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Bhowmik, R.K. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India)
2006-03-20
Excited states of {sup 83}Rb, populated in the {sup 76}Ge({sup 11}B,-bar 4n{gamma}) reaction at a beam energy of 50 MeV, have been studied. The unfavoured signature partner ({alpha}=-1/2) of the {pi}g{sub 9/2} yrast band is proposed up to an excitation energy of 6669.4 keV and spin (31/2{sup +}). Lifetimes have been estimated for three states belonging to the favoured {alpha}=+1/2 band. The B(E2) values deduced from these lifetimes indicate a moderate quadrupole deformation of {beta}{sub 2}=0.20. Theoretical calculations within the framework of the particle-rotor-model suggest that low energy states before the onset of the {nu}g{sub 9/2} alignment at a rotational frequency of {approx}0.5 MeV are prolate while those above this frequency have an oblate shape. The excited {delta}I=1 band has been extended up to 5422.7 keV and spin 25/2{sup -}. The B(M1) rates derived from the measured lifetimes decrease with spin. The results are in general agreement with an earlier TAC calculation, suggesting the interpretation of these states as arising from magnetic rotation.
Valley-dependent band structure and valley polarization in periodically modulated graphene
Lu, Wei-Tao
2016-08-01
The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.
Electronic band structure of TiFese2 in ferromagnetic phase
International Nuclear Information System (INIS)
Jahangirli, Z.A.; Mimura, K.; Shim, Y.; Mamedov, N.T.; Wakita, K.; Orudzhev, G.S.; Jahangirli, Z.A.
2011-01-01
Electronic band structure of crystalline TiFeSe 2 has been calculated using full-potential method of Linear Augmented Plane Wave (LAPW) in density-functional approach with exchange-correlation potential taken in Generalized Gradient Approximation (GGA). The chemical bond in TiFeSe 2 is shown to be metallic because energies of 3d-electrons localized at iron atoms are close to Fermi energy level
Hubbard-U band-structure methods
DEFF Research Database (Denmark)
Albers, R.C.; Christensen, Niels Egede; Svane, Axel
2009-01-01
The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...
Structural, photoconductive, thermoelectric and activation energy ...
Indian Academy of Sciences (India)
2016-07-21
Jul 21, 2016 ... This report investigated the structural, optical and electrical properties of V-doped SnO2 thin films deposited using spray .... SnO2 films were deposited on rotating hot substrates under the ... cal band gap energy (Eg) for V-doped SnO2 thin films ..... by Sn4+, resulting in the generation of free electron,.
Mahatha, S K; Patel, K D; Menon, Krishnakumar S R
2012-11-28
Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).
Evolution of energy structures
International Nuclear Information System (INIS)
Nifenecker, H.
2005-01-01
Because of the big inertia and long time constants of energy systems, their long-time behaviour is mainly determined by their present day state and by the trends of their recent evolution. For this reason, it is of prime importance to foresee the evolution of the different energy production sources which may play an important role in the future. A status of the world energy consumption and production is made first using the energy statistics of the IEA. Then, using the trends observed since 1973, the consequences of a simple extrapolation of these trends is examined. Finally, the scenarios of forecasting of energy structures, like those supplied by the International institute for applied systems analysis (IIASA) are discussed. (J.S.)
Band structure and optical properties of opal photonic crystals
Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.
2005-07-01
A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.
Cherenkov oscillator operating at the second band gap of leakage waveguide structures
Directory of Open Access Journals (Sweden)
Kyu-Ha Jang
2016-10-01
Full Text Available An electromagnetic wave source operating around second band gaps of metallic grating structures is presented. The considered metallic grating structures are not perfect periodic but inhomogeneously structured within a period to have a second band gap where the wavelength is equal to the period of the structures. The radiation mechanism by an electron beam in the structures is different from the well-known Smith-Purcell radiation occurring in perfect periodic grating structures. That is, the radiating wave has a single frequency and the radiation is unidirectional. When the energy of the electron beam is synchronized at the standing wave point in the dispersion curves, strong interaction happens and coherent radiation perpendicular to the grating surface is generated with relatively lower starting oscillation current.
Optical properties and electronic band structure of AgInSe2
International Nuclear Information System (INIS)
Ozaki, Shunji; Adachi, Sadao
2006-01-01
Optical properties of a chalcopyrite semiconductor AgInSe 2 have been studied by optical absorption, spectroscopic ellipsometry (SE), and thermoreflectance (TR) measurements. The measurements reveal distinct structures at energies of the critical points in the Brillouin zone. By performing the band-structure calculation, these critical points have been successfully assigned to specific points in the Brillouin zone. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)
The structure of rotational bands in alpha-cluster nuclei
Directory of Open Access Journals (Sweden)
Bijker Roelof
2015-01-01
Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.
Imaging the Nanoscale Band Structure of Topological Sb
Soumyanarayanan, Anjan; Yee, Michael M.; He, Yang; Lin, Hsin; Gardner, Dillon R.; Bansil, Arun; Lee, Young S.; Hoffman, Jennifer E.
2013-01-01
Many promising building blocks of future electronic technology - including non-stoichiometric compounds, strongly correlated oxides, and strained or patterned films - are inhomogeneous on the nanometer length scale. Exploiting the inhomogeneity of such materials to design next-generation nanodevices requires a band structure probe with nanoscale spatial resolution. To address this demand, we report the first simultaneous observation and quantitative reconciliation of two candidate probes - La...
Importance of complex band structure and resonant states for tunneling
Czech Academy of Sciences Publication Activity Database
Dederichs, P. H.; Mavropoulos, Ph.; Wunnicke, O.; Papanikolaou, N.; Bellini, V.; Zeller, R.; Drchal, Václav; Kudrnovský, Josef
2002-01-01
Roč. 240, - (2002), s. 108-113 ISSN 0304-8853 R&D Projects: GA AV ČR IAA1010829; GA ČR GA202/00/0122; GA MŠk OC P5.30 Grant - others:TSR(XX) 01398 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * tunneling * band structure * interface effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002
Khoroshko, V A; Zykova, T Yu; Popova, O O; Zhimulev, I F
2018-03-01
The precise genomic localization of the borders of 62 intercalary heterochromatin bands in Drosophila polytene chromosomes was determined. A new type of bands containing chromatin of different states was identified. This type is a combination of the gray band and the intercalary heterochromatin band, creating a genetic structure that with a light microscope is identified as a continuous band. The border structure of such bands includes the coding regions of genes with ubiquitous activity.
Band structure and unconventional electronic topology of CoSi
Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.
2018-04-01
Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \
Validity of single term energy expression for ground state rotational band of even-even nuclei
International Nuclear Information System (INIS)
Sharma, S.; Kumar, R.; Gupta, J.B.
2005-01-01
Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei
Band structure of hydrogenated Si nanosheets and nanotubes
International Nuclear Information System (INIS)
Guzman-Verri, G G; Lew Yan Voon, L C
2011-01-01
The band structures of fully hydrogenated Si nanosheets and nanotubes are elucidated by the use of an empirical tight-binding model. The hydrogenated Si sheet is a semiconductor with an indirect band gap of about 2.2 eV. The symmetries of the wavefunctions allow us to explain the origin of the gap. We predict that, for certain chiralities, hydrogenated Si nanotubes represent a new type of semiconductor, one with coexisting direct and indirect gaps of exactly the same magnitude. This behavior is different from that governed by the Hamada rule established for non-hydrogenated carbon and silicon nanotubes. A comparison to the results of an ab initio calculation is made.
Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds
International Nuclear Information System (INIS)
Dorenbos, Pieter
2013-01-01
Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated
Valence band electronic structure of Pd based ternary chalcogenide superconductors
Energy Technology Data Exchange (ETDEWEB)
Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)
2016-12-15
Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.
Results from the CLIC X-Band Structure Test Program at NLCTA
International Nuclear Information System (INIS)
Adolphsen, C.
2009-01-01
As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their fabrication (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure, which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives that could increase efficiency. This paper summarizes the high gradient test results from NLCTA in support of this effort.
North Atlantic Energy Structures
Energy Technology Data Exchange (ETDEWEB)
Campbell, S. [North Atlantic Energy Structures Inc., St. John' s, NL (Canada); Derradji, A. [National Research Council of Canada, St. John' s, NL (Canada). Inst. for Ocean Technology
2005-07-01
North Atlantic Energy Structures Inc. is in the process of designing a tidal fence for a site near the Straits of Belle Isle. This presentation provided details of both the design and the location in which the wave energy plant will be installed. Design constraints included a short seasonal work window, and a harsh but pristine environment. Design specifications of the paddlewheels and caissons were presented. The paddlewheel is iceberg and slab ice resistant, and has portals below the wheel axis, a water-free upper chamber, and bi-directional power generation. The planned installation sequence was presented, as well as details of a hydrodynamic simulation examining torque on the turbines in the tidal energy chamber. Results of the study indicated that 20 paddlewheels per caisson provided the equivalent of 12 MW of energy. A tidal fence of 70 to 80 caissons provided the equivalent of 1.2 GW of energy. A slab ice simulation study was outlined, and details of the pumping station, inlet and hydro-generation station were provided. A map of the proposed siting of the tidal fence was presented. It was concluded that financing for the pilot project has been granted. However, further financing for research and development is required. refs., tabs., figs.
High-spin structure of 121Xe: triaxiality, band termination and signature inversion
International Nuclear Information System (INIS)
Timar, J.; Paul, E.S.; Beausang, C.W.; Joyce, M.J.; Sharpey-Schafer, J.F.
1995-01-01
High-spin states of the odd-neutron 121 Xe nucleus have been studied with Eurogam using the 96 Zr( 30 Si, 5n) 121 Xe fusion-evaporation reaction. The level scheme has been extended up to a tentative spin of 67/2h at an excitation energy of ∼ 14 MeV. Several new rotational bands have been observed and the previously known bands extended. Two of them lose their regular character at high spins, which may be interpreted as transition from collective behaviour to a regime of noncollective oblate states. The deduced high-spin structure is compared to Woods-Saxon TRS cranking and CSM calculations. Configurations of the bands have been suggested. The νh 1 1/2 band is interpreted as having a triaxial shape. Signature inversion and an unexpectedly large staggering of the B(M1)/B(E2) ratios has been found for one of the bands. Enhanced E1 transitions have been observed between the νd 5/2 and the νh 1 1/2 bands. (orig.)
Valence band structures of InAs/GaAs quantum rings using the Fourier transform method
International Nuclear Information System (INIS)
Jia Boyong; Yu Zhongyuan; Liu Yumin
2009-01-01
The valence band structures of strained InAs/GaAs quantum rings are calculated, with the four-band k · p model, in the framework of effective-mass envelope function theory. When determining the Hamiltonian matrix elements, we develop the Fourier transform method instead of the widely used analytical integral method. Using Fourier transform, we have investigated the energy levels as functions of the geometrical parameters of the rings and compared our results with those obtained by the analytical integral method. The results show that the energy levels in the quantum rings change dramatically with the inner radius, outer radius, average radius, width, height of the ring and the distance between two adjacent rings. Our method can be adopted in low-dimensional structures with arbitrary shape. Our results are consistent with those in the literature and should be helpful for studying and fabricating optoelectronic devices
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle
Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.
2016-01-01
Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances
Ab initio electronic band structure study of III-VI layered semiconductors
Olguín, Daniel; Rubio-Ponce, Alberto; Cantarero, Andrés
2013-08-01
We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ɛ-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.
The quasiparticle band structure of zincblende and rocksalt ZnO.
Dixit, H; Saniz, R; Lamoen, D; Partoens, B
2010-03-31
We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.
Band structure in Platinum nuclei (A ∼ 182)
International Nuclear Information System (INIS)
Popescu, D.G.
1991-01-01
In this thesis, the author studies the band structure in Platinum nuclei and has divided his work in 5 parts: in the first, the author makes a general presentation of nucleus physics with a high angular momentum and introduces to the deformed nucleus notion -axial, triaxial or mixing of different deformations. The notion of form co-existence will be used to interpret the experimental results. In the second part, the author describes the detection means which have been used to make measurements. An abstract of theoretical notions, usefull for the understanding of fusion-evaporation reaction is presented. The author explains the details, performances and different modes of using of 'Chateau de cristal' and others used spectrometers. In the third part, the author presents all experimental data. He has effected γ coincidence measurements for Pt, Au and Ir nuclei. In the fourth part, for a classical analysis or an interpretation in the frame of cranking model the author presents theoretical models which are adapted at the study of high spin states and band structures
Photonic band structure calculations using nonlinear eigenvalue techniques
International Nuclear Information System (INIS)
Spence, Alastair; Poulton, Chris
2005-01-01
This paper considers the numerical computation of the photonic band structure of periodic materials such as photonic crystals. This calculation involves the solution of a Hermitian nonlinear eigenvalue problem. Numerical methods for nonlinear eigenvalue problems are usually based on Newton's method or are extensions of techniques for the standard eigenvalue problem. We present a new variation on existing methods which has its derivation in methods for bifurcation problems, where bordered matrices are used to compute critical points in singular systems. This new approach has several advantages over the current methods. First, in our numerical calculations the new variation is more robust than existing techniques, having a larger domain of convergence. Second, the linear systems remain Hermitian and are nonsingular as the method converges. Third, the approach provides an elegant and efficient way of both thinking about the problem and organising the computer solution so that only one linear system needs to be factorised at each stage in the solution process. Finally, first- and higher-order derivatives are calculated as a natural extension of the basic method, and this has advantages in the electromagnetic problem discussed here, where the band structure is plotted as a set of paths in the (ω,k) plane
Analysis of photonic band-gap structures in stratified medium
DEFF Research Database (Denmark)
Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong
2005-01-01
in electromagnetic and microwave applications once the Maxwell's equations are appropriately modeled. Originality/value - The method validates its values and properties through extensive studies on regular and defective 1D PBG structures in stratified medium, and it can be further extended to solving more......Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...... in solving the Maxwell's equations numerically. It expands the temporal derivatives using the finite differences, while it adopts the Fourier transform (FT) properties to expand the spatial derivatives in Maxwell's equations. In addition, the method makes use of the chain-rule property in calculus together...
Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming
2017-07-15
We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.
Study of band structure in 78,80Sr using Triaxial Projected Shell Model
International Nuclear Information System (INIS)
Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.
2017-01-01
The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally
Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron
Directory of Open Access Journals (Sweden)
Hong-Sub Lee
2015-01-01
Full Text Available Oxide semiconductors and their application in next-generation devices have received a great deal of attention due to their various optical, electric, and magnetic properties. For various applications, an understanding of these properties and their mechanisms is also very important. Various characteristics of these oxides originate from the band structure. In this study, we introduce a band structure analysis technique using a soft X-ray energy source to study a La0.7Sr0.3MnO3 (LSMO oxide semiconductor. The band structure is formed by a valence band, conduction band, band gap, work function, and electron affinity. These can be determined from secondary electron cut-off, valence band spectrum, O 1s core electron, and O K-edge measurements using synchrotron radiation. A detailed analysis of the band structure of the LSMO perovskite manganite oxide semiconductor thin film was established using these techniques.
Magnetic oscillations and quasiparticle band structure in the mixed state of type-II superconductors
International Nuclear Information System (INIS)
Norman, M.R.; MacDonald, A.H.; Akera, H.
1995-01-01
We consider magnetic oscillations due to Landau quantization in the mixed state of type-II superconductors. Our work is based on a previously developed formalism which allows the mean-field gap equations of the Abrikosov state to be conveniently solved in a Landau-level representation. We find that the quasiparticle band structure changes qualitatively when the pairing self-energy becomes comparable to the Landau-level separation. For small pairing self-energies, Landau-level mixing due to the superconducting order is weak and magnetic oscillations survive in the superconducting state although they are damped. We find that the width of the quasiparticle Landau levels in this regime varies approximately as Δ 0 n μ -1/4 where Δ 0 is proportional to the magnitude of the order parameter and n μ is the Landau-level index at the Fermi energy. For larger pairing self-energies, the lowest energy quasiparticle bands occur in pairs which are nearly equally spaced from each other and evolve with weakening magnetic field toward the bound states of an isolated vortex core. These bands have a weak magnetic field dependence and magnetic oscillations vanish rapidly in this regime. We discuss recent observations of the de Haas--van Alphen effect in the mixed state of several type-II superconductors in light of our results
Measurement of the band gap by reflection electron energy loss spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Vos, Maarten, E-mail: maarten.vos@anu.edu.au [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, AZ 85248 (United States)
2016-10-15
Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.
Measurement of the band gap by reflection electron energy loss spectroscopy
International Nuclear Information System (INIS)
Vos, Maarten; King, Sean W.; French, Benjamin L.
2016-01-01
Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.
Structural Evolution of a Warm Frontal Precipitation Band During GCPEx
Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen
2015-01-01
A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).
Junquera, Javier; Aguado-Puente, Pablo
2013-03-01
At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.
International Nuclear Information System (INIS)
Hsueh, W J; Chen, R F; Tang, K Y
2008-01-01
We present a divergence-free method to determine the characteristics of band structures and projected band structures of transverse acoustic phonons in Fibonacci superlattices. A set of bandedge equations is formulated to solve the band structures for the phonon instead of using the traditional dispersion relation. Numerical calculations show band structures calculated by the present method for the Fibonacci superlattice without numerical instability, which may occur in traditional methods. Based on the present formalism, the band structure for the acoustic phonons has been characterized by closure points and the projected bandgaps of the forbidden bands. The projected bandgaps are determined by the projected band structure, which is characterized by the cross points of the projected bandedges. We observed that the band structure and projected band structure and their characteristics were quite different for different generation orders and the basic layers for the Fibonacci superlattice. In this study, concise rules to determine these characteristics of the band structure and the projected band structure, including the number and the location of closure points of forbidden bands and those of projected bandgaps, in Fibonacci superlattices with arbitrary generation order and basic layers are proposed.
Adsorbate-induced modification of electronic band structure of epitaxial Bi(111) films
Energy Technology Data Exchange (ETDEWEB)
Matetskiy, A.V., E-mail: mateckij@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Bondarenko, L.V.; Tupchaya, A.Y.; Gruznev, D.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Eremeev, S.V. [Institute of Strength Physics and Materials Science, 634021 Tomsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)
2017-06-01
Highlights: • Modification of electronic properties of ultrathin Bi films by adsorbates is demonstrated. • Due to electron doping from Cs adatoms, surface-state bands shift to higher binding energies. • As a result, only electron pockets are left in the Fermi map. • Tin acts as an acceptor dopant for Bi, shifting Fermi level upward. • As a result, only hole pockets are left in the Fermi map. - Abstract: Changes of the electronic band structure of Bi(111) films on Si(111) induced by Cs and Sn adsorption have been studied using angle-resolved photoemission spectroscopy and density functional theory calculations. It has been found that small amounts of Cs when it presents at the surface in a form of the adatom gas leads to shifting of the surface and quantum well states to the higher binding energies due to the electron donation from adsorbate to the Bi film. In contrast, adsorbed Sn dissolves into the Bi film bulk upon heating and acts as an acceptor dopant, that results in shifting of the surface and quantum well states upward to the lower binding energies. These results pave the way to manipulate with the Bi thin film electron band structure allowing to achieve a certain type of conductivity (electron or hole) with a single spin channel at the Fermi level making the adsorbate-modified Bi a reliable base for prospective spintronics applications.
Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells
Energy Technology Data Exchange (ETDEWEB)
Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi' an 710300 (China); Wang, Ye Feng [School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Wei, Dong; Chen, Yu; Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Cui, Bin [School of Chemistry and Materials Science, Northwestern University, Xi' an 710620 (China)
2016-06-20
A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn{sup 2+} is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the “loss-in-potential,” inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.
DEFF Research Database (Denmark)
Shen, Ming; Ren, Jian; Mikkelsen, Jan Hvolgaard
2016-01-01
structures into the ring resonator. This is different from conventional designs using cascaded bandstop/low-pass filters for stop-band response suppression, which usually leads to big circuit sizes. And hence the proposed approach can reduce the circuit size significantly. A prototype filter with a compact...... size (13.6 mm×6.75 mm) has been implemented for experimental validation. The measured results show a −3 dB frequency band from 3.4 GHz to 11.7 GHz and > 20 dB upper stop-band suppression from 12.5 GHz to 20GHz....
Intrinsic properties of high-spin band structures in triaxial nuclei
Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.
2017-12-01
The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.
Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge
Snyman, Izak; Florens, Serge
2017-11-01
Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.
First-principles study on band structures and electrical transports of doped-SnTe
Directory of Open Access Journals (Sweden)
Xiao Dong
2016-06-01
Full Text Available Tin telluride is a thermoelectric material that enables the conversion of thermal energy to electricity. SnTe demonstrates a great potential for large-scale applications due to its lead-free nature and the similar crystal structure to PbTe. In this paper, the effect of dopants (i.e., Mg, Ca, Sr, Ba, Eu, Yb, Zn, Cd, Hg, and In on the band structures and electrical transport properties of SnTe was investigated based on the first-principles density functional theory including spin–orbit coupling. The results show that Zn and Cd have a dominant effect of band convergence, leading to power factor enhancement. Indium induces obvious resonant states, while Hg-doped SnTe exhibits a different behavior with defect states locating slightly above the Fermi level.
Energy Technology Data Exchange (ETDEWEB)
Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
2015-09-14
Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.
International Nuclear Information System (INIS)
Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.
2015-01-01
Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate
Calculation of Energy Band Diagram of a Photoelectrochemical Water Splitting Cell
Cendula, P.; Tilley, S. D.; Gimenez, S.; Schmid, M.; Bisquert, J.; Graetzel, M.; Schumacher, J. O.
2014-01-01
A physical model is presented for a semiconductor electrode of a photoelectrochemical (PEC) cell, accounting for the potential drop in the Helmholtz layer. Hence both band edge pinning and unpinning are naturally included in our description. The model is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semic...
International Nuclear Information System (INIS)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-01-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2 , where M = Mo, W; X = S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. (paper)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-09-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M = Mo, W; X = S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.
Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash
2018-04-01
Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.
Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.
Warmuth, Franziska; Körner, Carolin
2015-12-02
The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.
Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion
International Nuclear Information System (INIS)
Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I; Su, Yu-Chuan
2014-01-01
We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300∼600 kPa and extreme piezoelectricity of d 33 >2000 pC/N and d 31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d 31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ∼200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices
Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion
Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I.; Su, Yu-Chuan
2014-11-01
We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300~600 kPa and extreme piezoelectricity of d33 >2000 pC/N and d31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ~200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices.
A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting
Directory of Open Access Journals (Sweden)
Sika Shrestha
2014-01-01
Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.
Structural mechanisms of formation of adiabatic shear bands
Directory of Open Access Journals (Sweden)
Mikhail Sokovikov
2016-10-01
Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the
Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.
2018-06-01
All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.
True photonic band-gap mode-control in VCSEL structures
DEFF Research Database (Denmark)
Romstad, F.; Madsen, M.; Birkedal, Dan
2003-01-01
Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....
Zhang, Chendong; Johnson, Amber; Hsu, Chang-Lung; Li, Lain-Jong; Shih, Chih-Kang
2014-05-14
Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.
Experimental Studies of W-Band Accelerator Structures at High Field
Energy Technology Data Exchange (ETDEWEB)
Hill, Marc E
2001-02-09
A high-gradient electron accelerator is desired for high-energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, a higher gradient than any collider. Planar accelerator devices naturally have an rf quadrupole component of the accelerating field. Presented for the first time are the measurements of this effect.
Design of an X-band accelerating structure using a newly developed structural optimization procedure
Energy Technology Data Exchange (ETDEWEB)
Huang, Xiaoxia [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fang, Wencheng; Gu, Qiang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)
2017-05-11
An X-band high gradient accelerating structure is a challenging technology for implementation in advanced electron linear accelerator facilities. The present work discusses the design of an X-band accelerating structure for dedicated application to a compact hard X-ray free electron laser facility at the Shanghai Institute of Applied Physics, and numerous design optimizations are conducted with consideration for radio frequency (RF) breakdown, RF efficiency, short-range wakefields, and dipole/quadrupole field modes, to ensure good beam quality and a high accelerating gradient. The designed X-band accelerating structure is a constant gradient structure with a 4π/5 operating mode and input and output dual-feed couplers in a racetrack shape. The design process employs a newly developed effective optimization procedure for optimization of the X-band accelerating structure. In addition, the specific design of couplers providing high beam quality by eliminating dipole field components and reducing quadrupole field components is discussed in detail.
Band-structure-based collisional model for electronic excitations in ion-surface collisions
International Nuclear Information System (INIS)
Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.
2005-01-01
Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed
On the structure of collective bands in 78Kr
International Nuclear Information System (INIS)
Hellmeister, H.P.
1980-01-01
Using 16 O, 19 F, and 12 C induced reactions high spin states in 78 Kr were excited. The targets consisted of 65 Cu, 69 Ni, and 68 Zn. On the base of gamma spectroscopic methods as γγ-coincidences, angular distributions and excitation functions a level scheme of 78 Kr is proposed. Four bands could be identified, which decay mostly by stretched E2-transitions. From recoil distance Doppler shift as well as Doppler shift attenuation measurements lifetimes of about 20 states were measured. The β-decay of the 103 keV isomeric state and the ground state in 78 Rb was observed and the half-lifes determined. Altogether a very good agreement of the level scheme and the E2- and E1-transition strength with predictions of the interacting boson model were found. Using a Monte Carlo code the γ-decay of the continuum of highly excited nuclei is described. Entry states, mean γ-energies, γ-spectra, mean multiplicities, multipolarities, and mean feeding times as well as e.g. their second moments were calculated for the reactions 58 Ni( 16 O,2p) 72 Se and 68 Zn( 12 C,2n) 78 Kr. The results are discussed and compared with experimental data. (HSI) [de
Yang, Shuai; Liu, Ying
2018-08-01
Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M
2016-01-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.
2015-04-01
High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.
Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers
Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.
2018-04-01
In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.
Rietveld analysis and electronic bands structure on Tc superconductors systems
International Nuclear Information System (INIS)
Aldea, N.; Tiusan, C. V.; Sandu, V.
1999-01-01
A procedure for simultaneous refinement of structural and micro-structural disorder parameters for polycrystalline YBa 2 Cu 3 O 7-x system is proposed. It is based on Rietveld method combined with Fourier analysis for broadened peaks Another purpose of this paper consists in electronic structure determination studied by using the self-consistent Tight Binding Linear Muffin-Tin Orbital Atomic Spheres Approximation TB-LMTO-ASA methods. The Rietveld method uses an analytical function that describes the profiles, usually pseudo-Voigt (pV) or Pearson VII (PVII). The parameters of the analytical profiles describe its amplitude, position and peak shape. The full width at half maximum (FWHM) is supposed to vary with the diffraction angle in agreement with the Caglioti, Paoletti and Ricci's relationship. The best structural parameters are determined in the least squares sense by the minimisation a classical residual using the Marquardt method. In this case, the peak profiles were modelled by the pseudo-Voigt function corrected by the instrumental asymmetry. The physical information obtained are: scale factor, lattice parameters, atomic position and displacements, atomic occupation numbers, temperature factor (isotropy or anisotropy), preferred orientation parameter, crystalline size and micro-strain along different crystallographic directions, distributions of crystallite size and micro-strain functions. This procedure was implemented on computer code and it has a friendly graphical interface based on pull down menus technique. From the experimental point of view the X-ray diffraction data were collected using a horizontal powder diffractometer in the Bragg-Brentano (BB) geometry with a Ni filtered CuKα, λ = 1.54178 A, at room temperature using a DRON 2 set-up. The diffraction profiles were measured with a proportional gas detector, a single channel pulse-height discrimination and a standard associated counting circuit. The electronic band calculations are based on the TB
Tunable band structures in digital oxides with layered crystal habits
Shin, Yongjin; Rondinelli, James M.
2017-11-01
We use density functional calculations to show that heterovalent cation-order sequences enable control over band-gap variations up to several eV and band-gap closure in the bulk band insulator LaSrAlO4. The band-gap control originates from the internal electric fields induced by the digital chemical order, which induces picoscale band bending; the electric-field magnitude is mainly governed by the inequivalent charged monoxide layers afforded by the layered crystal habit. Charge transfer and ionic relaxations across these layers play secondary roles. This understanding is used to construct and validate a descriptor that captures the layer-charge variation and to predict changes in the electronic gap in layered oxides exhibiting antisite defects and in other chemistries.
Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations
Ettema, A.R.H.F.; Groot, R.A. de; Haas, C.; Turner, T.S.
1992-01-01
SnS is a layer compound with a phase transition from a high-temperature β phase to a low-temperature α phase with a lower symmetry. Ab initio band-structure calculations are presented for both phases. The calculations show that the charge distributions in the two phases are very similar. However,
Development of small C-band standing-wave accelerator structure
International Nuclear Information System (INIS)
Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.
2000-01-01
We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)
Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC
International Nuclear Information System (INIS)
Pérez-Tomás, A; Fontserè, A; Placidi, M; Jennings, M R; Gammon, P M
2013-01-01
Here we present a method to model the metal–semiconductor (M–S) band structure to an implanted ohmic contact to a wide band gap semiconductor (WBG) such as GaN and SiC. The performance and understanding of the M–S contact to a WBG semiconductor is of great importance as it influences the overall performance of a semiconductor device. In this work we explore in a numerical fashion the ohmic contact properties to a WBG semiconductor taking into account the partial ionization of impurities and analysing its dependence on the temperature, the barrier height, the impurity level band energy and carrier concentration. The effect of the M–S Schottky barrier lowering and the Schottky barrier inhomogeneities are discussed. The model is applied to a fabricated ohmic contact to GaN where the M–S band structure can be completely determined. (paper)
Gadret, E. G.; Dias, G. O.; Dacal, L. C. O.; de Lima, M. M., Jr.; Ruffo, C. V. R. S.; Iikawa, F.; Brasil, M. J. S. P.; Chiaramonte, T.; Cotta, M. A.; Tizei, L. H. G.; Ugarte, D.; Cantarero, A.
2010-09-01
We investigated experimentally and theoretically the valence-band structure of wurtzite InP nanowires. The wurtzite phase, which usually is not stable for III-V phosphide compounds, has been observed in InP nanowires. We present results on the electronic properties of these nanowires using the photoluminescence excitation technique. Spectra from an ensemble of nanowires show three clear absorption edges separated by 44 meV and 143 meV, respectively. The band edges are attributed to excitonic absorptions involving three distinct valence-bands labeled: A, B, and C. Theoretical results based on “ab initio” calculation gives corresponding valence-band energy separations of 50 meV and 200 meV, respectively, which are in good agreement with the experimental results.
Calculation of the band structure of 2d conducting polymers using the network model
International Nuclear Information System (INIS)
Sabra, M. K.; Suman, H.
2007-01-01
the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)
QUANTUM-MECHANICAL MODELING OF SPATIAL AND BAND STRUCTURE OF Y3AL5O12 SCINTILLATION CRYSTAL
Directory of Open Access Journals (Sweden)
I. I. Vrubel
2016-05-01
Full Text Available Spatial and electronic structures of a unit cell of yttrium-aluminum garnet have been studied. Quantum-mechanical model have been presented. Semi-empirical methods PM6 and PM7 have been used for geometry optimization of the crystal unit cell. Band structure has been calculated within density functional theory with the use of PBE exchange-correlation functional. Histograms of metal-oxygen distances for equilibrium geometry have been constructed. Comparison of the used methods has been carried out and recommendation about their applicability for such problems was given. The single-particle wave functions and energies have been calculated. The bandgap was estimated. The band structure was plotted. It was shown that the method gives reliable results for spatial and band structure of Y3Al5O12 scintillation crystal. The results of this work can be used for improvement of characteristics of garnet scintillation crystals.
Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.
Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P
2017-12-01
The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.
Energy Technology Data Exchange (ETDEWEB)
Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)
2015-08-07
The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.
Li, Yan; Xu, Xiaoming; Li, Yanzhang; Ding, Cong; Wu, Jing; Lu, Anhuai; Ding, Hongrui; Qin, Shan; Wang, Changqiu
2018-05-01
Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pHPZC were determined to be -0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d
Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.
2016-09-01
Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.
Energy Technology Data Exchange (ETDEWEB)
Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)
2012-07-01
Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.
Systematic design of phononic band-gap materials and structures by topology optimization
DEFF Research Database (Denmark)
Sigmund, Ole; Jensen, Jakob Søndergaard
2003-01-01
Phononic band-gap materials prevent elastic waves in certain frequency ranges from propagating, and they may therefore be used to generate frequency filters, as beam splitters, as sound or vibration protection devices, or as waveguides. In this work we show how topology optimization can be used...... to design and optimize periodic materials and structures exhibiting phononic band gaps. Firstly, we optimize infinitely periodic band-gap materials by maximizing the relative size of the band gaps. Then, finite structures subjected to periodic loading are optimized in order to either minimize the structural...
Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors
International Nuclear Information System (INIS)
Grigorishin, Konstantin V.
2016-01-01
Highlights: • The intergradient coupling of order parameters in a two-band superconductor plays important role and cannot be neglected. • A two-band superconductor must be characterized with a single coherence length and a single Ginzburg–Landau parameter. • Type-1.5 superconductors are impossible. • The free energy functional for a multi-band superconductor can be reduced to the effective single-band Ginzburg–Landau functional. - Abstract: It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role – such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg–Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.
The band gap variation of a two dimensional binary locally resonant structure in thermal environment
Directory of Open Access Journals (Sweden)
Zhen Li
2017-01-01
Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.
Energy Technology Data Exchange (ETDEWEB)
Zamanian, Amir Hosein [Southern Methodist University, Dallas (United States); Ohadi, Abdolreza [Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)
2017-06-15
Low-dimensional relevant feature sets are ideal to avoid extra data mining for classification. The current work investigates the feasibility of utilizing energies of vibration signals in optimal frequency bands as features for machine fault diagnosis application. Energies in different frequency bands were derived based on Parseval's theorem. The optimal feature sets were extracted by optimization of the related frequency bands using genetic algorithm and a Modified distance function (MDF). The frequency bands and the number of bands were optimized based on the MDF. The MDF is designed to a) maximize the distance between centers of classes, b) minimize the dispersion of features in each class separately, and c) minimize dimension of extracted feature sets. The experimental signals in two different gearboxes were used to demonstrate the efficiency of the presented technique. The results show the effectiveness of the presented technique in gear fault diagnosis application.
Synthesis, band structure, and optical properties of Ba2ZnV2O8
International Nuclear Information System (INIS)
Chen, D.-G.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Zhang, Y.-C.; Gong, Y.-J.; Kan, Z.-G.
2004-01-01
A novel compound Ba 2 ZnV 2 O 8 has been synthesized in high temperature solution reaction and its crystal structure has been characterized by means of single crystal X-ray diffraction analysis. It crystallizes in monoclinic system and belongs to space group P2 1 /c with a=7.9050(16), b=16.149(3), c=6.1580(12)A, β=90.49(3). It builds up from 1-D branchy chains of [ZnV 2 O 8 4- ] ∞ , and the Ba 2+ cations are located in the space among these chains. The IR spectrum, ultraviolet-visible diffuse reflection integral spectrum and fluorescent spectra of this compound have been investigated. The calculated results of energy band structure by the density functional theory method show that the solid-state compound of Ba 2 ZnV 2 O 8 is an insulator with direct band gap of 3.48eV. The calculated total and partial density of states indicate that the top valence bands are contributions from the mixings of O-2p, V-3d, and Zn-3d states and low conduction bands mostly originate from unoccupied antibonding states between the V-3d and O-2p states. The V-O bonds are mostly covalence characters and Zn-O bonds are mostly ionic interactions, and the ionic interaction strength is stronger between the Ba-O than between the Zn-O. The refractive index of n x , n y , and n z is estimated to be 1.7453, 1.7469, and 1.7126, respectively, at wavelength of 1060nm for Ba 2 ZnV 2 O 8 crystal
Probing the graphite band structure with resonant soft-x-ray fluorescence
Energy Technology Data Exchange (ETDEWEB)
Carlisle, J.A.; Shirley, E.L.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.
Stephenson, Anna; Gomes, Kenjiro K.; Ko, Wonhee; Mar, Warren; Manoharan, Hari C.
2014-03-01
Molecular graphene is a nanoscale artificial lattice composed of carbon monoxide molecules arranged one by one, realizing a dream of exploring exotic quantum materials by design. This assembly is done by atomic manipulation with a scanning tunneling microscope (STM) on a Cu(111) surface. To directly probe the transformation of normal surface state electrons into massless Dirac fermions, we map the momentum space dispersion through the Fourier analysis of quasiparticle scattering maps acquired at different energies with the STM. The Fourier analysis not only bridges the real-space and momentum-space data but also reveals the chiral nature of those quasiparticles, through a set of selection rules of allowed scattering involving the pseudospin and valley degrees of freedom. The graphene-like band structure can be reshaped with simple alterations to the lattice, such as the addition of a strain. We analyze the effect on the momentum space band structure of multiple types of strain on our system. Supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515.
Handbook of the band structure of elemental solids from Z = 1 to Z = 112
Papaconstantopoulos, Dimitris A
2015-01-01
This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states, and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gas...
Photonic band structures in one-dimensional photonic crystals containing Dirac materials
International Nuclear Information System (INIS)
Wang, Lin; Wang, Li-Gang
2015-01-01
We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions
Study of multi-quasiparticle band structures in 197Tl using α beam
International Nuclear Information System (INIS)
Mukherjee, G.; Nandi, S.; Pai, H.
2016-01-01
Study of the multi-quasiparticle (qp) states and the band structures built on them in the neutron deficient Tl nuclei in A ∼ 190 mass region provides useful information on particle-hole interaction in the heavy nuclei. In order to investigate the multi-qp band structures we have studied the excited states in 197 Tl by gamma ray spectroscopy
Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K
2008-12-01
Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.
Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method
Directory of Open Access Journals (Sweden)
GAO Honglin
2017-08-01
Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.
Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell
International Nuclear Information System (INIS)
Marti, A.; Lopez, N.; Antolin, E.; Canovas, E.; Stanley, C.; Farmer, C.; Cuadra, L.; Luque, A.
2006-01-01
The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation
Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell
Energy Technology Data Exchange (ETDEWEB)
Marti, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)]. E-mail: amarti@etsit.upm.es; Lopez, N. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Antolin, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Canovas, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Stanley, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Farmer, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cuadra, L. [Departamento de Teoria de la Senal y Comunicaciones- Escuela Politecnica Superior, Universidad de Alcala, Ctra. Madrid-Barcelona, km. 33600, 28805-Alcala de Henares (Madrid) (Spain); Luque, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)
2006-07-26
The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation.
Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Man, Isabela-Costinela; Soriga, Stefan-Gabriel
2017-01-01
on semiconductors. We propose here a correlation between the cooperative interaction energy, i.e., the energy difference between the adsorption energies of coadsorbed electron donor–acceptor pair and isolated fragments and the band gap of the clean oxide surface. We demonstrate this effect for a number of oxides...... and donor–acceptor pairs and explain it with the shift in the Fermi level before and after the adsorption. The conclusion is that the adsorption of acceptor–donor pairs is considerably more favorable compared to unpaired fragments,and this energy difference is approximately equal to the value of the band...
Optical verification of the valence band structure of cadmium arsenide
Gelten, M.J.; Es, van C.M.; Blom, F.A.P.; Jongeneelen, J.W.F.
1980-01-01
Optical absorption measurements were performed on thin single crystalline samples of Cd3As2 at temperatures of 300 K and 10 K. At low temperature the interband absorption coefficient shows clearly two steps due to direct transitions from the heavy hole and light hole valence bands to the conduction
Collective motions and band structures in A = 60 to 80, even--even nuclei
International Nuclear Information System (INIS)
Hamilton, J.H.; Robinson, R.L.; Ramayya, A.V.
1978-01-01
Evidence for and the theoretical understanding of the richness of the collective band structures as illustrated by at least seven bands seen in levels of 68 Ge, 74 Se are reviewed. The experimental data on even-even nuclei in the A = 60 to 80 region have now revealed a wide variety of collective bands with different structures. The even parity yrast cascades alone are seen to involve multiple collective structures. In addition to the ground-state bands, strong evidence is presented for both neutron and proton rotation-aligned bands built on the same orbital, (g 9 / 2 ) 2 , in one nucleus. Several other nuclei also show the crossing of RAL bands around the 8 + level in this region. Evidence continues to be strong experimentally and supported theoretically that there is some type of shape transition and shape coexistence occurring now both in the Ge and Se isotopes around N = 40. Negative parity bands with odd and even spins with very collective nature are seen in several nuclei to high spin. These bands seem best understood in the RAL model. Very collective bands with ΔI = 1, extending from 2 + to 9 + are seen with no rotation-alignment. The purity of these bands and their persistence to such high spin establish them as an independent collective mode which is best described as a gamma-type vibration band in a deformed nucleus. In addition to all of the above bands, new bands are seen in 76 Kr and 74 Se. The nature of these bands is not presently known. 56 references
Improved cache performance in Monte Carlo transport calculations using energy banding
Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.
2014-04-01
We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.
Directory of Open Access Journals (Sweden)
F. L. Freitas
2016-08-01
Full Text Available We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1–x–yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.
Energy Technology Data Exchange (ETDEWEB)
Freitas, F. L., E-mail: felipelopesfreitas@gmail.com; Marques, M.; Teles, L. K. [Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP (Brazil)
2016-08-15
We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal Al{sub x}Ga{sub y}In{sub 1–x–y}N semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.
Wu, Z.; Zheng, Y.; Wang, K. W.
2018-02-01
We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.
Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy
Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S
2003-01-01
The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)
Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Arbelo Jorge, Elena
2011-07-01
Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co
Band structure of germanium carbides for direct bandgap silicon photonics
Energy Technology Data Exchange (ETDEWEB)
Stephenson, C. A., E-mail: cstephe3@nd.edu; Stillwell, R. A.; Wistey, M. A. [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); O' Brien, W. A. [Rigetti Quantum Computing, 775 Heinz Avenue, Berkeley, California 94710 (United States); Penninger, M. W. [Honeywell UOP, Des Plaines, Illinois 60016 (United States); Schneider, W. F. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Gillett-Kunnath, M. [Department of Chemistry, Syracuse University, Syracuse, New York 13244 (United States); Zajicek, J. [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Yu, K. M. [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Kudrawiec, R. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)
2016-08-07
Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge{sub 1−x}C{sub x} (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge{sub 0.998}C{sub 0.002} shows a bandgap reduction supporting these results. Growth of Ge{sub 0.998}C{sub 0.002} using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III–V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.
Fine structure of the amide i band in acetanilide
Careri, G.; Gratton, E.; Shyamsunder, E.
1988-05-01
Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.
Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.
Cheung, W M; Chan, K S
2017-06-01
We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index = -1 and the valence band with Floquet index = +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.
Dark Energy and Structure Formation
International Nuclear Information System (INIS)
Singh, Anupam
2010-01-01
We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.
Observations of Multi-band Structures in Double Star TC-1 PEACE Electron and HIA Ion Data
Mohan Narasimhan, K.; Fazakerley, A. N.; Grimald, S.; Dandouras, I. S.; Mihaljcic, B.; Kistler, L. M.; Owen, C. J.
2015-12-01
Several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range 1 - 25 keV (Smith and Hoffman (1974), etc). These structures have been described as "nose structures", with reference to their appearance in energy-time spectrograms and are also known as "bands" if they occur for extended periods of time. Multi-nose structures have been observed if 2 or more noses appear at the same time (Vallat et al., 2007). Gaps between "noses" (or "bands") have been explained in terms of the competing corotation, convection and magnetic gradient drifts. Charge exchange losses in slow drift paths for steady state scenarios and the role of substorm injections have also been considered (Li et al., 2000; Ebihara et al., 2004). We analyse observations of electron and ion multi-band structures frequently seen in Double-Star TC1 PEACE and HIA data. We present results from statistical surveys conducted using data from the duration of the mission. Furthermore, using a combination of both statistics and simulations, we test previous theories as to possible formation mechanisms and explore other possible explanations.
Inoue, Jun-ichi
2013-09-09
We theoretically explore the electromagnetic modes specific to a topological insulator superlattice in which topological and conventional insulator thin films are stacked periodically. In particular, we obtain analytic formulas for low energy mode that corresponds to a helicon wave, as well as those for photonic bands. We illustrate that the system can be modeled as a stack of quantum Hall layers whose conductivity tensors alternately change signs, and then we analyze the photonic band structures. This subject is a natural extension of a previous study by Tselis et al., which took into consideration a stack of identical quantum Hall layers but their discussion was limited into a low energy mode. Thus we provide analytic formulas for photonic bands and compare their features between the two systems. Our central findings in the topological insulator superlattice are that a low energy mode corresponding to a helicon wave has linear dispersion instead of the conventional quadratic form, and that a robust gapless photonic band appears although the system considered has spacial periodicity. In addition, we demonstrate that the photonic bands agree with the numerically calculated transmission spectra.
GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures
Zhou, Liqin; Guo, Yu; Zhao, Jijun
2018-01-01
Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.
Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/
International Nuclear Information System (INIS)
Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.
1988-01-01
The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals
Fully inkjet printed wide band cantor fractal antenna for RF energy harvesting application
Bakytbekov, Azamat
2017-06-07
Energy harvesting from ambient RF signals is feasible, particularly from the GSM bands such as 900MHz, 1800MHz and the 3G band at 2.1GHz. This requires a wideband receive antenna which can cover all these bands with decent gain performance and an omnidirectional radiation pattern. In this work, a novel Cantor fractal antenna has been designed which fulfills the above mentioned performance requirements. Antenna has been realized through a combination of 3D inkjet printing of plastic substrate and 2D inkjet printing of metallic nanoparticles based ink. The stable impedance and radiation performance of the antenna over a bandwidth of 0.8GHz to 2.2GHz (93 %) shows the feasibility of its employment in wide band energy harvesting applications.
International Nuclear Information System (INIS)
Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.
1988-01-01
The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available
Band energy control of molybdenum oxide by surface hydration
Energy Technology Data Exchange (ETDEWEB)
Butler, Keith T., E-mail: k.t.butler@bath.ac.uk; Walsh, Aron [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Crespo-Otero, Rachel [School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS (United Kingdom); Buckeridge, John; Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Bovill, Edward; Lidzey, David [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2015-12-07
The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.
Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS
International Nuclear Information System (INIS)
Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.
2011-01-01
High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.
Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS
Energy Technology Data Exchange (ETDEWEB)
Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)
2011-04-15
High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.
Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.
Rotaru, Mihai; Sykulski, Jan
2010-01-01
This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.
High gradient test of X-band accelerating structure at GLCTA
International Nuclear Information System (INIS)
Watanabe, K.; Higo, T.; Hayano, H.; Terunuma, N.; Saeki, T.; Kudo, N.; Sanuki, T.; Seuhara, T.
2004-01-01
GLCTA (Global Linear Collider Test Accelerator) is the high power test facility for X-band acceleration. We have installed an X-band 60cm structure in April 2004 and have been processing it for more than 3 months. Now it is under test on long-term operation. We report here the installation process and high power test result to date. (author)
Urban structure, energy and planning
DEFF Research Database (Denmark)
Große, Juliane; Fertner, Christian; Groth, Niels Boje
2016-01-01
Transforming energy use in cities to address the threats of climate change and resource scarcity is a major challenge in urban development. This study takes stock of the state of energy in urban policy and planning and reveals potentials of and constraints to energy-efficient urban development....... The relationship between energy and urban structure provides a framework for discussing the role of urban planning to increase energy efficiency in cities by means of three in-depth case studies of medium-sized cities in Northern Europe: Eskilstuna in Sweden, Turku in Finland and Tartu in Estonia. In some ways...... these cities go ahead when it comes to their national climate and energy policies and aim to establish urban planning as an instrument to regulate and influence the city’s transition in a sustainable way. At the same time, the cities are constantly facing goal conflicts and limitations to their scope of action...
Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7
Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.
1997-02-01
The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.
Three band crossings in the yrast structure of 162Hf
International Nuclear Information System (INIS)
Bingham, C.R.; Riedinger, L.L.; Courtney, L.H.
1988-01-01
The yrast sequence of 162 Hf has been observed up to a level tentatively assigned as 38 + and reveals a continuing rotational character up to that spin. Sharp backbends at rotational frequencies of 0.27 and 0.42 MeV/ℎ are attributed to isub(13/2) neutron and hsub(11/2) proton alignments, respectively. A gradual increase in the aligned angular momentum of the yrast levels between these two sharp backbends is attributed to the rotational alignment of a pair of negative parity quasineutrons (mostly hsub(9/2) in character). The interpretation of this effect is supported by the failure of the negative parity bands, which already contain this aligned hsub(9/2) neutron, to gain alignment in the same rotational frequency range. While the alignment of the hsub(9/2) quasineutrons has been predicted in the cranked shell model to occur in the rare-earth region with a large interaction strength, this represents the first clear observation of such a band crossing. (author)
Cell and band structures in cold rolled polycrystalline copper
DEFF Research Database (Denmark)
Ananthan, V.S.; Leffers, Torben; Hansen, Niels
1991-01-01
dislocation walls (DDWs) and cells develop during the initial stages of cold rolling. Grains having a high density of DDWs are described as high wall density (HWD) structures, and grains having a low density of DDWs are described as low wall density (LWD) structures. These structures are characterised by cell...
Meng, Fanke
Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence
Shih, Ko-Han; Chang, Yin-Jung
2018-01-01
Solar energy conversion via internal photoemission (IPE) across a planar p-type Schottky junction is quantified for aluminum (Al) and copper (Cu) in the framework of direct transitions with non-constant matrix elements. Transition probabilities and k-resolved group velocities are obtained based on pseudo-wavefunction expansions and realistic band structures using the pseudopotential method. The k-resolved number of direct transitions, hole photocurrent density, quantum yield (QY), and the power conversion efficiency (PCE) under AM1.5G solar irradiance are subsequently calculated and analyzed. For Al, the parabolic and "parallel-band" effect along the U-W-K path significantly enhances the transition rate with final energies of holes mainly within 1.41 eV below the Fermi energy. For Cu, d-state hot holes mostly generated near the upper edge of 3d bands dominate the hole photocurrent and are weekly (strongly) dependent on the barrier height (metal film thickness). Hot holes produced in the 4s band behave just oppositely to their d-state counterparts. Non-constant matrix elements are shown to be necessary for calculations of transitions due to time-harmonic perturbation in Cu. Compared with Cu, Al-based IPE in p-type Schottky shows the highest PCE (QY) up to about 0.2673% (5.2410%) at ΦB = 0.95 eV (0.5 eV) and a film thickness of 11 nm (20 nm). It is predicted that metals with relatively dispersionless d bands (such as Cu) in most cases do not outperform metals with photon-accessible parallel bands (such as Al) in photon energy conversion using a planar p-type Schottky junction.
Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.
Dixit, H; Lamoen, D; Partoens, B
2013-01-23
CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices
DEFF Research Database (Denmark)
Gorczyca, I.; Suski, T.; Christensen, Niels Egede
2012-01-01
InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite InN/G...... wells and barriers one may tune band gaps over a wide spectral range, which provides flexibility in band gap engineering.......InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite In......N/GaN(0001) superlattices are investigated, and the variation of the band gap with the thicknesses of the well and the barrier is discussed. Superlattices of the form mInN/nGaN with n ≥ m are simulated using band structure calculations in the Local Density Approximation with a semiempirical correction...
Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo
2018-05-01
As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.
Energetic band structure of Zn3P2 crystals
Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.
2013-01-01
Optical functions n, k, ε1, ε2 and d2ε2/dE2 have been determined from experimental reflection spectra in the region of 1-10 eV. The revealed electronic transitions are localized in the Brillouin zone. The magnitude of valence band splitting caused by the spin-orbital interaction ΔSO is lower than the splitting caused by the crystal field ΔCR in the center of Brillouin zone and L and X points. The switching effects are investigated in Zn3P2 crystals. The characteristics of experimental samples with electric switching, adjustable resistors, and time relays based on Zn3P2 are presented.
Jiang, Tao; Wang, Yanyan; Li, Yingsong
2017-07-01
In this paper, a triple stop-band filter with a ratioed periodical defected microstrip structure is proposed for wireless communication applications. The proposed ratioed periodical defected microstrip structures are spiral slots, which are embedded into a 50 Ω microstrip line to obtain multiple stop-bands. The performance of the proposed triple stop-band filter is investigated numerically and experimentally. Moreover, the equivalent circuit model of the proposed filter is also established and discussed. The results are given to verify that the proposed triple stop-band filter has three stop bands at 3.3 GHz, 5.2 GHz, 6.8 GHz to reject the unwanted signals, which is promising for integrating into UWB communication systems to efficiently prevent the potential interferences from unexpected narrowband signals such as WiMAX, WLAN and RFID communication systems.
Measuring the band structures of periodic beams using the wave superposition method
Junyi, L.; Ruffini, V.; Balint, D.
2016-11-01
Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in
Tailoring band structure and band filling in a simple cubic (IV, III)-VI superconductor
Kriener, M.; Kamitani, M.; Koretsune, T.; Arita, R.; Taguchi, Y.; Tokura, Y.
2018-04-01
Superconductivity and its underlying mechanisms are one of the most active research fields in condensed-matter physics. An important question is how to enhance the transition temperature Tc of a superconductor. In this respect, the possibly positive role of valence-skipping elements in the pairing mechanism has been attracting considerable interest. Here we follow this pathway and successfully enhance Tc up to almost 6 K in the simple chalcogenide SnTe known as a topological crystalline insulator by doping the valence-skipping element In substitutionally for the Sn site and codoping Se for the Te site. A high-pressure synthesis method enabled us to form single-phase solid solutions Sn1 -xInxTe1 -ySey over a wide composition range while keeping the cubic structure necessary for the superconductivity. Our experimental results are supported by density-functional theory calculations which suggest that even higher Tc values would be possible if the required doping range was experimentally accessible.
High Power Test of an X-Band Slotted-IRIS Accelerator Structure at NLCTA
International Nuclear Information System (INIS)
Doebert, S.; Fandos, R.; Grudiev, A.; Heikkinen, S.; Rodriquez, J.A.; Taborelli, M.; Wuensch, W.; Adolphsen, Chris E.; Laurent, L.
2007-01-01
The CLIC study group at CERN has built two X-band HDS (hybrid damped structure) accelerating structures for high-power testing in NLCTA at SLAC. These accelerating structures are novel with respect to their rf- design and their fabrication technique. The eleven-cell constant impedance structures, one made out of copper and one out of molybdenum, are assembled from clamped high-speed milled quadrants. They feature the same heavy higher-order-mode damping as nominal CLIC structures achieved by slotted irises and radial damping waveguides for each cell. The X-band accelerators are exactly scaled versions of structures tested at 30 GHz in the CLIC test facility, CTF3. The results of the X-band tests are presented and compared to those at 30 GHz to determine frequency scaling, and are compared to the extensive copper data from the NLC structure development program to determine material dependence and make a basic validation of the HDS design
International Nuclear Information System (INIS)
Gürkan, Gül; Langestraat, Romeo
2014-01-01
In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO 2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy. - Highlights: • We model and analyze three renewable obligation policies in a mathematical framework. • We provide revenue adequate pricing schemes for the three policies. • We carry out a simulation study via sampling. • The UK policy cannot guarantee that the original obligation target is met. • Cost reductions can lead to more pollution or higher prices under banding policies
Theoretical study of band structure of odd-mass {sup 115,117}I isotopes
Energy Technology Data Exchange (ETDEWEB)
Singh, Dhanvir, E-mail: singh1472phy@gmail.com; Kumar, Amit, E-mail: akbcw2@gmail.com; Sharma, Chetan, E-mail: chetan24101985@gmail.com [Research Scholar, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India); Singh, Suram, E-mail: suramsingh@gmail.com [Assistant Professor, Department of Physics, Govt. Degree College, Kathua-184101 (India); Bharti, Arun, E-mail: arunbharti-2003@yahoo.co.in [Professor, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)
2016-05-06
By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich {sup 115,117}I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.
Band structure of Mgsub(x)Znsub(1-x)Te alloys
International Nuclear Information System (INIS)
Laugier, A.; Montegu, B.; Barbier, D.; Chevallier, J.; Guillaume, J.C.; Somogyi, K.
1980-01-01
The band structure of Mgsub(x)Znsub(1-x)Te alloys is studied using a double beam wavelength modulated system in first derivative mode. Modulated reflectivity measurements are made from 82 to 300 K within spectral range 2500 to 5400 A. Structures corresponding to the E 0 , E 0 + Δ 0 , E 1 , E 1 + Δ 1 , e 1 and e 1 + Δ 1 critical points are indexed on the basis of existing band calculations for ZnTe. (author)
Complete flexural vibration band gaps in membrane-like lattice structures
International Nuclear Information System (INIS)
Yu Dianlong; Liu Yaozong; Qiu Jing; Wang Gang; Zhao Honggang
2006-01-01
The propagation of flexural vibration in the periodical membrane-like lattice structure is studied. The band structure calculated with the plane wave expansion method indicates the existence of complete gaps. The frequency response function of a finite periodic structure is simulated with finite element method. Frequency ranges with vibration attenuation are in good agreement with the gaps found in the band structure. Much larger attenuations are found in the complete gaps comparing to those directional ones. The existence of complete flexural vibration gaps in such a lattice structure provides a new idea for vibration control of thin plates
Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians
Energy Technology Data Exchange (ETDEWEB)
Davenport, Lars [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Smythe, Louisa [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Sarquilla, Lindsey [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Ferguson, Kelly [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States)
2015-03-27
This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for
Multi-cavity locally resonant structure with the low frequency and broad band-gaps
Directory of Open Access Journals (Sweden)
Jiulong Jiang
2016-11-01
Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.
High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure
Directory of Open Access Journals (Sweden)
Xiaowei Wu
2017-05-01
Full Text Available A Compact Linear Collider prototype traveling-wave accelerator structure fabricated at Tsinghua University was recently high-gradient tested at the High Energy Accelerator Research Organization (KEK. This X-band structure showed good high-gradient performance of up to 100 MV/m and obtained a breakdown rate of 1.27×10^{−8} per pulse per meter at a pulse length of 250 ns. This performance was similar to that of previous structures tested at KEK and the test facility at the European Organization for Nuclear Research (CERN, thereby validating the assembly and bonding of the fabricated structure. Phenomena related to vacuum breakdown were investigated and are discussed in the present study. Evaluation of the breakdown timing revealed a special type of breakdown occurring in the immediately succeeding pulse after a usual breakdown. These breakdowns tended to occur at the beginning of the rf pulse, whereas usual breakdowns were uniformly distributed in the rf pulse. The high-gradient test was conducted under the international collaboration research program among Tsinghua University, CERN, and KEK.
High-spin structure of yrast-band in Kr
Indian Academy of Sciences (India)
320(70) fs was obtained from the present data at 75. ° for the 24. + level. Zeigler's stopping powers have been used for the calculation of the energy loss parameters of the recoiling nuclei. The experimental data along with the theoretical fits for the lifetimes measured can be seen in figure 1. The present lifetime values up to ...
Temperature Dependence of the Energy Band Diagram of AlGaN/GaN Heterostructure
Directory of Open Access Journals (Sweden)
Yanli Liu
2018-01-01
Full Text Available Temperature dependence of the energy band diagram of AlGaN/GaN heterostructure was investigated by theoretical calculation and experiment. Through solving Schrodinger and Poisson equations self-consistently by using the Silvaco Atlas software, the energy band diagram with varying temperature was calculated. The results indicate that the conduction band offset of AlGaN/GaN heterostructure decreases with increasing temperature in the range of 7 K to 200 K, which means that the depth of quantum well at AlGaN/GaN interface becomes shallower and the confinement of that on two-dimensional electron gas reduces. The theoretical calculation results are verified by the investigation of temperature dependent photoluminescence of AlGaN/GaN heterostructure. This work provides important theoretical and experimental basis for the performance degradation of AlGaN/GaN HEMT with increasing temperature.
Effect of correlation on the band structure of α-cerium
International Nuclear Information System (INIS)
Rao, R.S.; Singh, R.P.
1975-01-01
The electronic band structure of f.c.c. phase of the rare earth metal cerium (α-cerium) has been calculated using a formulation of the crystal potential where correlation also has been included in addition to exchange. The Green's function method of Korringa-Kohn and Rostoker has been used due to obvious advantages in calculation. The calculations indicate that the s-d bands are hybridized with the f-levels but the f-bands are fairly narrow and lie slightly above the Fermi level. The structure of the bands is qualitatively similar to those of calculations by others except for a general shift of the entire set of bands by about 0.1 Ryd. Thd density of states has also been calculated from the bands obtained. The spin susceptibility of α-cerium has also been calculated using the Kohn-Sham method. However, the calculated additional contributions to the band structure values cannot still explain the large experimental values reported in the literature. (author)
Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan
2015-01-01
The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.
Energy Technology Data Exchange (ETDEWEB)
Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2015-01-21
The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.
International Nuclear Information System (INIS)
Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan
2015-01-01
The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO 2 ), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO 2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance
Influence of strain on band structure of semiconductor nanostructures
Directory of Open Access Journals (Sweden)
Raičević Nevena
2009-01-01
Full Text Available The influence of the mechanical strain on the electronic structure of the asymmetric (In,GaAs/GaAs quantum well is considered. Both the direct influence of strain on the orbital part of the electronic structure and an indirect influence through the strain dependent Rashba and Dresselhaus Hamiltonians are taken into account. The analyzed quantum well is taken to have a triangular shape, and is oriented along the direction. For this direction, there exists both the intrinsic and strain-induced spin-orbit interaction. For all analyzed types of spin-orbit interaction, subband splittings depend linearly on the in-plane wave vector. On the other hand, the electronic structure for the Rashba type of the strain-induced spin-orbit interaction shows isotropic dependence in the k-space, while the electronic structure due to the Dresselhaus type shows anisotropy. Furthermore, the Rashba strain-induced spin-orbit interaction increases subband splitting, while the effect of the Dresselhaus Hamiltonian on the electronic structure is opposite to the intrinsic spin-orbit interaction for certain polar angles.
Study of III-V semiconductor band structure by synchrotron photoemission
International Nuclear Information System (INIS)
Williams, G.P.; Cerrina, F.; Anderson, J.; Lapeyre, G.J.; Smith, R.J.; Hermanson, J.; Knapp, J.A.
1982-01-01
Angle-resolved synchrotron photoemission studies of six III-V semiconductors have been carried out. For emission normal to the (110) plane of these materials, peaks in the experimental spectra were identified with the bands involved in the transitions, and the critical point energies X 3 , X 5 , and Σ 1 /sup min/, were determined. The data indicate that k perpendicular is conserved in the transitions. Comparison of the data with theoretical bands permits an evaluation of k perpendicular associated with the experimentally observed transition, and from this information the bands were plotted out
Conflicting Coupling of Unpaired Nucleons and the Structure of Collective Bands in Odd-Odd Nuclei
International Nuclear Information System (INIS)
Levon, A.I.; Pasternak, A.A.
2011-01-01
The conflicting coupling of unpaired nucleons in odd-odd nuclei is discussed. A very simple explanation is suggested for the damping of the energy spacing of the lowest levels in the rotational bands in odd-odd nuclei with the 'conflicting' coupling of an odd proton and an odd neutron comparative to those of the bands based on the state of a strongly coupled particle in the neighboring odd nucleus entering the 'conflicting' configuration.
An open-structure sound insulator against low-frequency and wide-band acoustic waves
Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin
2015-10-01
To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.
Precise fabrication of X-band accelerating structure
International Nuclear Information System (INIS)
Higo, T.; Sakai, H.; Higashi, Y.; Koike, S.; Takatomi, T.
1994-01-01
An accelerating structure with a/λ=0.16 is being fabricated to study a precise fabrication method. A frequency control of each cell better than 10 -4 level is required to realize a detuned structure. The present machining level is nearly 1 MHz/11.4 GHz in relative frequency error, which just satisfies the above requirement. To keep this machining precision, the diffusion bonding technique is found preferable to join the cells. Various diffusion conditions were tried. The frequency change can be less than 1 MHz/11.4 GHz and it can be controlled well better than that. (author)
Electrical properties and band structures of Pb1-x Snx Te alloys
International Nuclear Information System (INIS)
Ocio, Miguel
1972-01-01
Both p type alloys Pb 0.72 Sn 0.28 Te and Pb 0.53 Sn 0.47 Te have been studied in the present work. The main obtained results are the following: the materials have a two-valence band structure, the first band following non-parabolic Cohen's dispersion law; at low temperatures, carriers are scattered by ionized impurities; the Coulomb potentials being screened almost completely, impurities act like neutral centers. At room temperature, scattering by acoustic modes can explain lattice mobility behavior; reversing of the thermo-power, for samples with carrier densities of about 10 20 cm -3 , is possibly due to inter-band scattering between both valence bands; a very simple picture of the band parameters variations as a function of alloy fraction is suggested. (author) [fr
Gurkan, G.; Langestraat, R.
In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of
Band structure features of nonlinear optical yttrium aluminium borate crystal
Czech Academy of Sciences Publication Activity Database
Reshak, Ali H; Auluck, S.; Majchrowski, A.; Kityk, I. V.
2008-01-01
Roč. 10, č. 10 (2008), s. 1445-1448 ISSN 1293-2558 Institutional research plan: CEZ:AV0Z60870520 Keywords : Electronic structure * DFF * FPLAPW * LDA Subject RIV: BO - Biophysics Impact factor: 1.742, year: 2008
International Nuclear Information System (INIS)
Takahashi, Kazuo; Uno, Masayoshi; Okui, Mihoko; Yamanaka, Shinsuke
2006-01-01
The microalloying effects of 4d and 5d transition metals, M (M: Nb, Mo, Ta, W) on the photoelectrochemical properties, the flat band potential (U fb ) and the band gap energy (E g ), for zirconium oxide films were investigated by photoelectrochemical measurements and band calculation. Button ingots of zirconium-5 mol% M (M: Nb, Mo, Ta, W) were made from high-purity metals (99.9% purity) by arc melting in a purified argon atmosphere. These plate specimens were sealed into silica tubes in vacuum, and then homogenized at 1273 K for 24 h. Subsequently, these specimens were oxidized up to 1173 K. The photocurrent of each specimen was evaluated at room temperature under the irradiation of Xe lamp (500 W) through grating monochrometer and cut-off filter. 0.1 M Na 2 SO 4 solution was used as the electrolyte. The value of the flat band potential was higher and the value of the band gap energy was smaller than that of pure zirconium oxide film in all sample. It was found from the calculation by CASTEP code that the decreases in band gap energy of these oxide films was due to formation of 4d or 5d orbital of transition metals
Ozkaya, Efe; Yilmaz, Cetin
2017-02-01
The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.
International Nuclear Information System (INIS)
Taniguchi, Yasutaka
2015-01-01
The structures of superdeformed (SD) states in 34 S have been investigated using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16 O + 16 O + two valence neutrons in molecular orbitals around the two 16 O cores in a cluster picture. The configurations of the two valence neutrons are δ 2 and π 2 for the positive-parity SD bands and π 1 δ 1 for the negative-parity SD band. (author)
International Nuclear Information System (INIS)
Taniguchi, Yasutaka
2014-01-01
The structures of superdeformed (SD) states in 34 S are investigated using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16 O + 16 O + two valence neutrons in molecular orbitals around the two 16 O cores in a cluster picture. The configurations of the two valence neutrons are δ 2 and π 2 for the positive-parity SD bands and π 1 δ 1 for the negative-parity SD band
Tunable band structures of polycrystalline graphene by external and mismatch strains
Institute of Scientific and Technical Information of China (English)
Jiang-Tao Wu; Xing-Hua Shi; Yu-Jie Wei
2012-01-01
Lacking a band gap largely limits the application of graphene in electronic devices.Previous study shows that grain boundaries (GBs) in polycrystalline graphene can dramatically alter the electrical properties of graphene.Here,we investigate the band structure of polycrystalline graphene tuned by externally imposed strains and intrinsic mismatch strains at the GB by density functional theory (DFT) calculations.We found that graphene with symmetrical GBs typically has zero band gap even with large uniaxial and biaxial strain.However,some particular asymmetrical GBs can open a band gap in graphene and their band structures can be substantially tuned by external strains.A maximum band gap about 0.19 eV was observed in matched-armchair GB (5,5) | (3,7) with a misorientation of θ =13° when the applied uniaxial strain increases to 9％.Although mismatch strain is inevitable in asymmetrical GBs,it has a small influence on the band gap of polycrystalline graphene.
Vibrational dynamics and band structure of methyl-terminated Ge(111)
International Nuclear Information System (INIS)
th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Hund, Zachary M.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Nihill, Kevin J.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.
2015-01-01
A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD 3 -Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH 3 -Ge(111) and CH 3 -Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers
Vibrational dynamics and band structure of methyl-terminated Ge(111)
Energy Technology Data Exchange (ETDEWEB)
Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57" t" h Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Wong, Keith T.; Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia/San Sebastian (Spain)
2015-09-28
A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.
International Nuclear Information System (INIS)
Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui
2011-01-01
We study a cold atomic sample coherently driven into the five-level triple-Λ configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-Λ system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.
Xu, Ziqiang
2013-01-01
A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984
Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon
Energy Technology Data Exchange (ETDEWEB)
Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)
2013-12-04
We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.
Electronic structure of the copper oxides: Band picture versus correlated behavior
Energy Technology Data Exchange (ETDEWEB)
Pickett, W E; Cohen, R E; Singh, D [Naval Research Lab., Washington, DC (USA); Krakauer, H [Coll. of William and Mary, Williamsburg, VA (USA)
1989-12-01
In the 2 1/2 years since the discovery of the high temperature superconducting copper oxides, a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper we discuss briefly these complementary viewpoints in relation to certain of the experimental data. Due to our background in the band structure area, we approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation. (orig.).
Terahertz emission from CdHgTe/HgTe quantum wells with an inverted band structure
Energy Technology Data Exchange (ETDEWEB)
Vasilyev, Yu. B., E-mail: Yu.Vasilyev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Vasilyeva, G. Yu.; Ivánov, Yu. L.; Zakhar’in, A. O.; Andrianov, A. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Vorobiev, L. E.; Firsov, D. A. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation); Grigoriev, M. N. [Ustinov Baltic State Technical University “VOENMEKh” (Russian Federation); Antonov, A. V.; Ikonnikov, A. V.; Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2016-07-15
The terahertz electroluminescence from Cd{sub 0.7}Hg{sub 0.3}Te/HgTe quantum wells with an inverted band structure in lateral electric fields is experimentally detected and studied. The emission-spectrum maximum for wells 6.5 and 7 nm wide is near 6 meV which corresponds to interband optical transitions. The emission is explained by state depletion in the valence band and conduction band filling due to Zener tunneling, which is confirmed by power-law current–voltage characteristics.
Energy Technology Data Exchange (ETDEWEB)
Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)
2017-10-15
The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)
Directory of Open Access Journals (Sweden)
Diana E. Proffit
2010-11-01
Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.
Crystal structure, electrical properties and electronic band structure of tantalum ditelluride
Vernes, A; Bensch, W; Heid, W; Naether, C
1998-01-01
Motivated by the unexpectedly strong influence of the Te atoms on the structural and bonding properties of the transition metal tellurides, we have performed a detailed study of TaTe sub 2. Experimentally, this comprises a crystal structure determination as well as electrical resistivity measurements. The former analysis leads to an accurate update of the structural data reported in the 1960s, while the latter provides evidence for the mainly electronic character of scattering processes leading to the electrical conductivity. In addition, the electronic properties of TaTe sub 2 have been calculated using the TB-LMTO method. The partial density of states reflects the close connection of the Ta zigzag chains and the Te-Te network. This finding explains the charge transfer in the system in a rather simple way. The orthogonal-orbital character of the bands proved the existence of pi-bonds. The Fermi-surface study supports the interpretation of the experimental resistivity measurements. (author)
Band structure and phonon properties of lithium fluoride at high pressure
Energy Technology Data Exchange (ETDEWEB)
Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar 382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)
2016-05-23
High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.
Analysis of photonic band-gap (PBG) structures using the FDTD method
DEFF Research Database (Denmark)
Tong, M.S.; Cheng, M.; Lu, Y.L.
2004-01-01
In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...... behavior of these structures, and the computed results generally match well with ones published in the literature. It is also found that the FDTD method is a robust, versatile, and powerful numerical technique to perform such numerical studies. The proposed PBG filter structures may be applied in microwave...
Band structure and phonon properties of lithium fluoride at high pressure
International Nuclear Information System (INIS)
Panchal, J. M.; Joshi, Mitesh; Gajjar, P. N.
2016-01-01
High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.
X-BAND LINEAR COLLIDER R and D IN ACCELERATING STRUCTURES THROUGH ADVANCED COMPUTING
International Nuclear Information System (INIS)
Li, Z
2004-01-01
This paper describes a major computational effort that addresses key design issues in the high gradient accelerating structures for the proposed X-band linear collider, GLC/NLC. Supported by the US DOE's Accelerator Simulation Project, SLAC is developing a suite of parallel electromagnetic codes based on unstructured grids for modeling RF structures with higher accuracy and on a scale previously not possible. The new simulation tools have played an important role in the R and D of X-Band accelerating structures, in cell design, wakefield analysis and dark current studies
Polarization-dependent diffraction in all-dielectric, twisted-band structures
Energy Technology Data Exchange (ETDEWEB)
Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)
2015-11-23
We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.
Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures
International Nuclear Information System (INIS)
Aly, Arafa H; Mehaney, Ahmed
2016-01-01
This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification. (paper)
Czech Academy of Sciences Publication Activity Database
Markoš, P.; Kuzmiak, Vladimír
2016-01-01
Roč. 94, č. 3 (2016), č. článku 033845. ISSN 2469-9926 R&D Projects: GA MŠk(CZ) LD14028 Institutional support: RVO:67985882 Keywords : Crystal structure * Photonic crystals * Two-dimensional arrays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016
Dass, Devi
2018-03-01
Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.
Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2003-01-01
The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous dampin...
An Optimized, Grid Independent, Narrow Band Data Structure for High Resolution Level Sets
DEFF Research Database (Denmark)
Nielsen, Michael Bang; Museth, Ken
2004-01-01
enforced by the convex boundaries of an underlying cartesian computational grid. Here we present a novel very memory efficient narrow band data structure, dubbed the Sparse Grid, that enables the representation of grid independent high resolution level sets. The key features our new data structure are...
Theoretical band structure of the superconducting antiperovskite oxide Sr3-xSnO
Ikeda, Atsutoshi; Fukumoto, Toshiyuki; Oudah, Mohamed; Hausmann, Jan Niklas; Yonezawa, Shingo; Kobayashi, Shingo; Sato, Masatoshi; Tassel, Cédric; Takeiri, Fumitaka; Takatsu, Hiroshi; Kageyama, Hiroshi; Maeno, Yoshiteru
2018-05-01
In order to investigate the position of the strontium deficiency in superconductive Sr3-xSnO, we synthesized and measured X-ray-diffraction patterns of Sr3-xSnO (x ∼ 0.5). Because no clear peaks originating from superstructures were observed, strontium deficiency is most likely to be randomly distributed. We also performed first-principles band-structure calculations on Sr3-xSnO (x = 0, 0.5) using two methods: full-potential linearized-augmented plane-wave plus local orbitals method and the Korringa-Kohn-Rostoker Green function method combined with the coherent potential approximation. We revealed that the Fermi energy of Sr3-xSnO in case of x ∼ 0.5 is about 0.8 eV below the original Fermi energy of the stoichiometric Sr3SnO, where the mixing of the valence p and conduction d orbitals are considered to be small.
Directory of Open Access Journals (Sweden)
Mao Liu
2015-01-01
Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.
Search for two-{gamma} sum-energy peaks in the decay out of superdeformed bands
Energy Technology Data Exchange (ETDEWEB)
Blumenthal, D.; Khoo, T.L.; Lauritsen, T. [and others
1995-08-01
The spectrum of {gamma}rays decaying out of the superdeformed (SD) band in {sup 192}Hg has a quasicontinuous distribution. Whereas methods to construct level schemes from discrete lines in coincidence spectra are well established, new techniques must still be developed to extract information from coincidences involving quasicontinuous {gamma}rays. From an experiment using Eurogam, we obtained impressively clean 1- and 2-dimensional {gamma} spectra from pairwise or single gates, respectively, on the transitions of the SD band in {sup 192}Hg. We investigated methods to exploit the 2-dimensional quasicontinuum spectra coincident with the SD band to determine the excitation energy of the SD band above the normal yrast line. No strong peaks were observed in the 2-{gamma} sum spectra; only candidates of peaks at a 2-3 {sigma} level were found. This suggests that 2-{gamma} decay is not the dominant decay branch out of SD bands, consistent with the observed multiplicity of 3.2. We shall next search for peaks in sum-spectra of 3 {gamma}s.
Strain distribution and band structure of InAs/GaAs quantum ring superlattice
Mughnetsyan, Vram; Kirakosyan, Albert
2017-12-01
The elastic strain distribution and the band structure of InAs/GaAs one-layer quantum ring superlattice with square symmetry has been considered in this work. The Green's function formalism based on the method of inclusions has been implied to calculate the components of the strain tensor, while the combination of Green's function method with the Fourier transformation to momentum space in Pikus-Bir Hamiltonian has been used for obtaining the miniband energy dispersion surfaces via the exact diagonalization procedure. The dependencies of the strain tensor components on spatial coordinates are compared with ones for single quantum ring and are in good agreement with previously obtained results for cylindrical quantum disks. It is shown that strain significantly affects the miniband structure of the superlattice and has contribution to the degeneracy lifting effect due to heavy hole-light hole coupling. The demonstrated method is simple and provides reasonable results for comparatively small Hamiltonian matrix. The obtained results may be useful for further investigation and construction of novel devices based on quantum ring superlattices.
Energy Technology Data Exchange (ETDEWEB)
Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)
2015-09-14
By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.
Infrared absorption, multiphonon processes and time reversal effect on Si and Ge band structure
International Nuclear Information System (INIS)
Kunert, H.W.; Machatine, A.G.J.; Malherbe, J.B.; Barnas, J.; Hoffmann, A.; Wagner, M.R.
2008-01-01
We have examined the effect of Time Reversal Symmetry (TRS) on vibrational modes and on the electronic band structure of Si and Ge. Most of the primary non-interacting modes are not affected by TRS. Only phonons originating from high symmetry lines S and A of the Brillouin Zone (BZ) indicate extra degeneracy. Selection rules for some two and three phonons originating from high symmetry lines are determined. The states of electrons and holes described by electronic band structure due to spin-inclusion are assigned by spinor representations of the double space group. Inclusion of the TRS into the band structure results in extra degeneracy of electrons and holes, and therefore optical selection rules suppose to be modified
Exotic superconductivity with enhanced energy scales in materials with three band crossings
Lin, Yu-Ping; Nandkishore, Rahul M.
2018-04-01
Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.
Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot
Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang
2015-01-01
In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.
Energy Technology Data Exchange (ETDEWEB)
Gabel, J.; Scheiderer, P.; Zapf, M.; Schuetz, P.; Sing, M.; Claessen, R. [Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), Universitaet Wuerzburg (Germany); Schlueter, C.; Lee, T.L. [Diamond Light Source, Didcot (United Kingdom)
2015-07-01
As in the famous LaAlO{sub 3}(LAO)/SrTiO{sub 3}(STO) (001) a two-dimensional electron system (2DES) also forms at the interface between LAO and STO in (111) orientation. A distinct feature of the (111) interface is its peculiar real space topology. Each bilayer represents a buckled honeycomb lattice similar to graphene which is known theoretically to host various topologically non-trivial states. Bilayer STO in proximity to the interface can be regarded as a three-orbital generalization of graphene with enhanced electron correlations making it a promising candidate for the realization of strongly correlated topological phases. We have investigated the electronic structure of the LAO/STO (111) heterostructure in relation to the oxygen vacancy concentration which we can control by synchrotron light irradiation and oxygen dosing. With hard X-ray photoemission we study the core levels, whereas resonant soft X-ray photoemission is used to probe the interfacial valence band (VB) states. Two VB features are found: a peak at the Fermi level associated with the 2DES and in-gap states at higher binding energies attributed to oxygen vacancies. By varying the oxygen vacancy contribution we can tune the emergence of the VB states and engineer the interfacial band alignment.
Quantitative operando visualization of the energy band depth profile in solar cells.
Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei
2015-07-13
The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.
Vibrational effects on surface energies and band gaps in hexagonal and cubic ice
International Nuclear Information System (INIS)
Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu
2016-01-01
Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.
Energy of the 4(+) isomer and new bands in the odd-odd nucleus 74Br
International Nuclear Information System (INIS)
Doering, J.; Holcomb, J.W.; Johnson, T.D.; Riley, M.A.; Tabor, S.L.; Womble, P.C.; Winter, G.
1993-01-01
High-spin states of the odd-odd nucleus 74 Br were investigated via the reactions 58 Ni ( 19 F,2pn) 74 Br and 65 Cu( 12 C,3n) 74 Br at beam energies of 62 and 50 MeV, respectively. On the basis of coincidence data new levels have been introduced and partly grouped into rotational bands. Some of these new states decay to known levels of negative-parity bands built on both the ground state and the long-lived 4 (+) isomer. Thus, an excitation energy of 13.8 keV has been deduced for the long-lived isomer in 74 Br. The level sequences observed are interpreted in terms of Nilsson configurations in conjunction with collective excitations
Crystal structure and band gap determination of HfO2 thin films
Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvière, J.L.
2007-01-01
Valence electron energy loss spectroscopy (VEELS) and high resolution transmission electron microscopy (HRTEM) are performed on three different HfO2 thin films grown on Si (001) by chemical vapor deposition (CVD) or atomic layer deposition (ALD). For each sample the band gap (Eg) is determined by
International Nuclear Information System (INIS)
Piil, Rune; Moelmer, Klaus
2007-01-01
By adjusting the tunneling couplings over longer than nearest-neighbor distances, it is possible in discrete lattice models to reproduce the properties of the lowest energy band of a real, continuous periodic potential. We propose to include such terms in problems with interacting particles, and we show that they have significant consequences for scattering and bound states of atom pairs in periodic potentials
International Nuclear Information System (INIS)
Kuang Qian-Wei; Liu Hong-Xia; Wang Shu-Long; Qin Shan-Shan; Wang Zhi-Lin
2011-01-01
After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k · p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal—oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Directory of Open Access Journals (Sweden)
D. P. Samajdar
2014-01-01
Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.
Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method
Kunz, A. B.; Waber, J. T.
1981-08-01
Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.
Band structure and optical properties of sinusoidal superlattices: ZnSe1-xTex
International Nuclear Information System (INIS)
Yang, G.; Lee, S.; Furdyna, J. K.
2000-01-01
This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe 1-x Te x superlattices in which the composition x varies sinusoidally along the growth direction. Although the band alignment in the ZnSe 1-x Te x sinusoidal superlattices is staggered (type II), they exhibit unexpectedly strong photoluminescence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is formulated in terms of the nearly-free-electron (NFE) approximation, in which the superlattice potential is treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in these superlattices because of the large width of the respective subbands. The results of the NFE approximation are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the superlattice is short. (c) 2000 The American Physical Society
Augustine Band of Cahuilla Indians Energy Conservation and Options Analysis - Final Report
Energy Technology Data Exchange (ETDEWEB)
Paul Turner
2008-07-11
The Augustine Band of Cahuilla Indians was awarded a grant through the Department of Energy First Steps program in June of 2006. The primary purpose of the grant was to enable the Tribe to develop energy conservation policies and a strategy for alternative energy resource development. All of the work contemplated by the grant agreement has been completed and the Tribe has begun implementing the resource development strategy through the construction of a 1.0 MW grid-connected photovoltaic system designed to offset a portion of the energy demand generated by current and projected land uses on the Tribe’s Reservation. Implementation of proposed energy conservation policies will proceed more deliberately as the Tribe acquires economic development experience sufficient to evaluate more systematically the interrelationships between conservation and its economic development goals.
International Nuclear Information System (INIS)
Feng, Shidong; Qi, Li; Wang, Limin; Pan, Shaopeng; Ma, Mingzhen; Zhang, Xinyu; Li, Gong; Liu, Riping
2015-01-01
Graphical abstract: Figure shows that atoms in the shear band (SB) moved desultorily compared with those in the matrix. These atoms seriously interacted with each other similar to the grain boundary in crystalline materials. Figuratively, if these atoms wanted to “pass” the shear band, they should arrange their irritations. However, stress concentrations and high energy were observed in SB, which resulted in instability in the deformation process and finally led to a disastrously brittle fracture. - Abstract: Molecular dynamics simulations on the atomic structure of shear bands (SBs) in Cu 64 Zr 36 metallic glasses are presented. Results show that the atoms in the SB move desultorily, in contrast to those in the matrix. The saturated degree of bonded pairs considering the “liquid-like” character of SB quantitatively provides important details in extending earlier studies on SBs. Zr-centered 〈0, 2, 8, 5〉 clusters exhibit strong spatial correlations and tendency to connect with each other in short-range order. The 〈0, 2, 8, 5〉 cluster-type medium-range order is the main feature inside the SB relative to the matrix. The fractal results demonstrate the planar-like fashion of the 〈0, 2, 8, 5〉 network in SB, forming an interpenetrating solid-like backbone. Such heterogeneous structure provides a fundamental structural perspective of mechanical instability in SB
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
International Nuclear Information System (INIS)
Kevin Jerome Sutherland
2001-01-01
Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ((mu)TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
Energy Technology Data Exchange (ETDEWEB)
Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)
2001-01-01
Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.
Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
2015-01-01
of these for nonlinear problems is impossible or cumbersome, since Floquet theory is applicable for linear systems only. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applica-tions may demand effects of nonlinearity on structural response to be accounted for....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed......The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate...
Estimation of photonic band gap in the hollow core cylindrical multilayer structure
Chourasia, Ritesh Kumar; Singh, Vivek
2018-04-01
The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.
Triaxial energy relation to describe rotational band in 98-112Ru nuclei
International Nuclear Information System (INIS)
Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Varshney, Mani; Singh, M.; Gupta, D.K.
2010-01-01
In a broader perspective rotation vibration coupling parameter (b) is considered changing with the change in excitation energy (ε 1 ) and is evaluated on fitting experimental energy for 98-112 Ru isotopes in the frame work of general asymmetric rotor model. The moment of inertia parameter (a), common to yrast and quasi-γ band, is calculated from deformation parameter (β) using general empirical relation. The present work is undertaken to suggest some suitable equation for the trajectories which are similar in shape in 98-112 Ru nuclei
Tan, Chih-Shan; Huang, Michael H
2017-09-04
Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid functional band gap calculation of SnO6 containing perovskites and their derived structures
International Nuclear Information System (INIS)
Lee, Hyewon; Cheong, S.W.; Kim, Bog G.
2015-01-01
We have studied the properties of SnO 6 octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO 6 containing perovskites. We also have expended the hybrid density functional calculation to the ASnO 3 /A'SnO 3 system with different cation orderings. We propose an empirical relationship between the tolerance factor and the band gap of SnO 6 containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO 3 for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO 6 octahedrons are plotted as polyhedron. (b) Band gap of ASnO 3 as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO 3 /A'SnO 3 superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO 3 , [001] ordered superlattices, and [111] ordered superlattices of ASnO 3 /A'SnO 3 as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO 3 and ASnO 3 /A'SnO 3 . • The band gap of ASnO 3 using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap
Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.
Opalka, Daniel; Pham, Tuan Anh; Sprik, Michiel; Galli, Giulia
2015-07-30
Electronic energy levels in phenol and phenolate solutions have been computed using density functional theory and many-body perturbation theory. The valence and conduction bands of the solvent and the ionization energies of the solutes have been aligned with respect to the vacuum level based on the concept of a computational standard hydrogen electrode. We have found significant quantitative differences between the generalized-gradient approximation, calculations with the HSE hybrid functional, and many-body perturbation theory in the G0W0 approximation. For phenol, two ionization energies below the photoionization threshold of bulk water have been assigned in the spectrum of Kohn-Sham eigenvalues of the solution. Deprotonation to phenolate was found to lift a third occupied energy level above the valence band maximum of the solvent which is characterized by an electronic lone pair at the hydroxyl group. The second and third ionization energies of phenolate were found to be very similar and explain the intensity pattern observed in recent experiments using liquid-microjet photoemission spectroscopy.
Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study
Directory of Open Access Journals (Sweden)
Bi-Ru Wu
2014-08-01
Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.
Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z
2016-05-11
By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.
High-order harmonic generation from a two-dimensional band structure
Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You
2018-04-01
In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.
Directory of Open Access Journals (Sweden)
Hao Liu
2013-01-01
Full Text Available A modified electromagnetic-bandgap (M-EBG structure and its application to planar monopole ultra-wideband (UWB antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX and the wireless local area network (WLAN at 3.5 GHz and 5.5 GHz, respectively.
Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem
Raman, Aaswath; Fan, Shanhui
2010-01-01
We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.
Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem
Raman, Aaswath
2010-02-26
We formulate the photonic band structure calculation of any lossless dispersive photonic crystal and optical metamaterial as a Hermitian eigenvalue problem. We further show that the eigenmodes of such lossless systems provide an orthonormal basis, which can be used to rigorously describe the behavior of lossy dispersive systems in general. © 2010 The American Physical Society.
Monolithic dual-band HgCdTe infrared detector structure
CSIR Research Space (South Africa)
Parish, G
1997-07-01
Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...
Two-band tariff for domestic use: Italian Electricity Board rate structure
International Nuclear Information System (INIS)
Barteselli, R.
1992-01-01
ENEL (the Italian National Electricity Board) has begun to introduce a new rate structure for households: the 'two-band tariff'. This article is an effort to examine in principle how the new tariff could optimize load management when applied to the whole household sector
The transfer to technology to manufacture the disk of X-band accelerator structure
International Nuclear Information System (INIS)
Ueno, Kenji; Kawamata, Hiroshi; Takatomi, Toshikazu; Kume, Tatsuya; Funahashi, Yoshisato
2005-01-01
We research the transfer of manufacturing technology on X-band structure disks. From this issue we confirm that the venders will be able to manufacture disks when they get the process sheet method and drawings. More it is clear that we have to consider the automation process in order to get the repeatability of the disks. (author)
The Electronic Band Structure of Platinum Oxide (PtO) | Omehe ...
African Journals Online (AJOL)
We have performed the electronic band structure of the bulk and monolayer of PtO using the full potential linear muffin-tin orbital and the projector augmented wave method with the density functional theory. We applied the LDA and LDA+U scheme to both methods. It was found out that the LDA calculation of bulk PtO ...
Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas
DEFF Research Database (Denmark)
Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.
2013-01-01
We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there...
Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band
Institute of Scientific and Technical Information of China (English)
Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko
2007-01-01
Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.
Band structure engineering and vacancy induced metallicity at the GaAs-AlAs interface
Upadhyay Kahaly, M.
2011-09-20
We study the epitaxial GaAs-AlAs interface of wide gap materials by full-potential density functional theory. AlAsthin films on a GaAs substrate and GaAsthin films on an AlAs substrate show different trends for the electronic band gap with increasing film thickness. In both cases, we find an insulating state at the interface and a negligible charge transfer even after relaxation. Differences in the valence and conduction band edges suggest that the energy band discontinuities depend on the growth sequence. Introduction of As vacancies near the interface induces metallicity, which opens great potential for GaAs-AlAs heterostructures in modern electronics.
Directory of Open Access Journals (Sweden)
Demyanova A.S.
2014-03-01
Full Text Available The differential cross sections of the 9Be + α inelastic scattering at 30 MeV were measured at the tandem of Tsukuba University. All the known states of 9Be up to energies ~ 12 MeV were observed and decomposed into three rotational bands, each of them having a cluster structure consisting of a 8Be core plus a valence neutron in one of the sub-shells: p3/2−, s1/2+ and p1/2−. Existence of a neutron halo in the positive parity states was confirmed.
Observation of dark-current signals from the S-band structures of the SLAC linac
International Nuclear Information System (INIS)
Assmann, R.; Decker, F.J.; Seidel, M.; Siemann, R.H.; Whittum, D.
1997-07-01
It is well known that the electro-magnetic fields in high-gradient RF structures can cause electron emission from the metallic structure walls. If the emitted electrons are captured and accelerated by the accelerating fields so-called dark-current is induced. Dark-currents have been measured and studied for various RF-structures. In this paper the authors present measurements of RF induced signals for the SLC S-band structures. For nominal gradients of 17 MV/m it is shown that the dark-current can be strong enough to significantly reduce the signal-to-noise ratio of the SLC beam wire scanners. They also show results from RF measurements in the dipole band. The measurements are compared to more direct observations of dark-current and it is tried to connect the results to possible effects on the accelerated particle beam
Pajic-Lijakovic, Ivana
2015-12-01
An attempt was made to discuss and connect various modeling approaches on various time and space scales which have been proposed in the literature in order to shed further light on the erythrocyte membrane rearrangement caused by the cortex-lipid bilayer coupling under thermal fluctuations. Roles of the main membrane constituents: (1) the actin-spectrin cortex, (2) the lipid bilayer, and (3) the trans membrane protein band 3 and their course-consequence relations were considered in the context of the cortex non linear stiffening and corresponding anomalous nature of energy dissipation. The fluctuations induce alternating expansion and compression of the membrane parts in order to ensure surface and volume conservation. The membrane structural changes were considered within two time regimes. The results indicate that the cortex non linear stiffening and corresponding anomalous nature of energy dissipation are related to the spectrin flexibility distribution and the rate of its changes. The spectrin flexibility varies from purely flexible to semi flexible. It is influenced by: (1) the number of band 3 molecules attached to single spectrin filaments, and (2) phosphorylation of the actin-junctions. The rate of spectrin flexibility changes depends on the band 3 molecules rearrangement.
Band structure and optical properties of highly anisotropic LiBa2[B10O16(OH)3] decaborate crystal
International Nuclear Information System (INIS)
Smok, P.; Kityk, I.V.; Berdowski, J.
2003-01-01
The band structure (BS), charge density distribution and linear-optical properties of the anisotropic crystal LiBa 2 [B 10 O 16 (OH) 3 ] (LBBOH) are calculated using a self-consistent norm-conserving pseudopotential method within the framework of the local-density approximation theory. A high anisotropy of the band energy gap (4.22 eV for the E parallel b, 4.46 eV for the E parallel c) and giant birefringence (up to 0.20) are found. Comparison of the theoretically calculated and the experimentally measured polarised spectra of the imaginary part of the dielectric susceptibility ε 2 shows a good agreement. The anisotropy of the charge density distribution, BS dispersion and of the optical spectra originate from anisotropy between the 2p z B-2p z O and 2p y,x B-2p y,y O bonding orbitals. The observed anisotropy in the LBBOH is principally different from that of β-BaB 2 O 4 (BBO) single crystals. In the LBBOH single crystals the anisotropy of optical and charge density distribution is caused by different projection of the orbitals originating from particular borate clusters on the particular crystallographic axes, contrary to the BBO, where the anisotropy is caused prevailingly by a different local site symmetry of oxygen within the borate planes. The observed anisotropy is analysed in terms of the band energy dispersion and space charge density distribution
Optical band gap energy and ur bach tail of CdS:Pb2+ thin films
Energy Technology Data Exchange (ETDEWEB)
Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)
2016-11-01
Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)
Joint density of states of wide-band-gap materials by electron energy loss spectroscopy
International Nuclear Information System (INIS)
Fan, X.D.; Peng, J.L.; Bursill, L.A.
1998-01-01
Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)
Voltage tunable two-band MIR detection based on Si/SiGe quantum cascade injector structures
International Nuclear Information System (INIS)
Grydlik, M.; Rauter, P.; Meduna, M.; Fromherz, T.; Bauer, G.; Falub, C.; Dehlinger, G.; Sigg, H.; Gruetzmacher, D.
2004-01-01
We report the results of photocurrent spectroscopy in the mid-infrared (MIR) spectral region performed on p-type Si/SiGe cascade structures. The samples were grown by MBE and consist of a series of five SiGe quantum wells with ground states that can be coupled through thin Si barriers by aligning them in energy with an externally applied electric field E bi . Quantum wells and barriers are Boron doped to a level of 2.5 10 17 cm -3 . Our samples contain 10 sequences of the 5 quantum wells separated by 500 nm thick, undoped Si barriers. Vertical photocurrent spectroscopy has been performed for various electric fields applied perpendicular to the quantum wells at temperatures between 10 K and 100 K. Depending on the direction of the externally applied electric field relative to E bi , the photoresponse of our samples can be switched between two MIR detection bands with maxima at 230 meV and 400 meV. Due to the inversion asymmetry of the samples, at 0 V external voltage the samples deliver a short circuit current in the high-energy spectral band. Since the quantum cascades are formed in the valence band of the Si/SiGe structures, the quantum well transitions responsible for the observed photocurrents are allowed for radiation polarized parallel to the quantum wells. Therefore, these structures appear to be suitable for voltage tuneable MIR detection under normal incident radiation. By comparing the experimental results to model calculations, design strategies to optimize the responsivity of the Si/SiGe cascade structures are discussed. (author)
Knauf, Philip A; Law, Foon-Yee; Leung, Tze-Wah Vivian; Atherton, Stephen J
2004-09-28
Previous fluorescence resonance energy transfer (FRET) measurements, using BIDS (4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate) as a label for the disulfonic stilbene site and FM (fluorescein-5-maleimide) as a label for the cytoplasmic SH groups on band 3 (AE1), combined with data showing that the cytoplasmic SH groups lie about 40 A from the cytoplasmic surface of the lipid bilayer, would place the BIDS sites very near the membrane's inner surface, a location that seems to be inconsistent with current models of AE1 structure and mechanism. We reinvestigated the BIDS-FM distance, using laser single photon counting techniques as well as steady-state fluorescence of AE1, in its native membrane environment. Both techniques agree that there is very little energy transfer from BIDS to FM. The mean energy transfer (E), based on three-exponential fits to the fluorescence decay data, is 2.5 +/- 0.7% (SEM, N = 12). Steady-state fluorescence measurements also indicate BIDS to FM. These data indicate that the BIDS sites are probably over 63 A from the cytoplasmic SH groups, placing them near the middle or the external half of the lipid bilayer. This relocation of the BIDS sites fits with other evidence that the disulfonic stilbene sites are located farther toward the external membrane surface than Glu-681, a residue near the inner membrane surface whose modification affects the pH dependence and anion selectivity of band 3. The involvement of two relatively distant parts of the AE1 protein in transport function suggests that the transport mechanism requires coordinated large-scale conformational changes in the band 3 protein.
Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning
Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios
2017-12-01
We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.
Bose-Einstein condensates in optical lattices: Band-gap structure and solitons
International Nuclear Information System (INIS)
Louis, Pearl J. Y.; Kivshar, Yuri S.; Ostrovskaya, Elena A.; Savage, Craig M.
2003-01-01
We analyze the existence and stability of spatially extended (Bloch-type) and localized states of a Bose-Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and nonlinear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and analyze their stability in different band gaps, for both repulsive and attractive atomic interactions
Investigation of band structure of {sup 103,105}Rh using microscopic computational technique
Energy Technology Data Exchange (ETDEWEB)
Kumar, Amit, E-mail: akbcw2@gmail.com [Research Scholar, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India); Singh, Suram, E-mail: suramsingh@gmail.com [Assistant Professor, Department of Physics Govt. Degree College, Kathua-184142 (India); Bharti, Arun, E-mail: arunbharti-2003@yahoo.co.in [Professor, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)
2015-08-28
The high-spin structure in {sup 61}Cu nucleus is studied in terms of effective two body interaction. In order to take into account the deformed BCS basis, the basis states are expanded in terms of the core eigenfunctions. Yrast band with some other bands havew been obtained and back-bending in moment of inertia has also been calculated and compared with the available experimental data for {sup 61}Cu nucleus. On comparing the available experimental as well as other theoretical data, it is found that the treatment with PSM provides a satisfactory explanation of the available data.
A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments
Energy Technology Data Exchange (ETDEWEB)
Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: whwangnk@nankai.edu.cn [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)
2016-03-28
With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.
Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien
2012-01-30
The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.
Electronic structures and valence band splittings of transition metals doped GaNs
International Nuclear Information System (INIS)
Lee, Seung-Cheol; Lee, Kwang-Ryeol; Lee, Kyu-Hwan
2007-01-01
For a practical viewpoint, presence of spin splitting of valence band in host semiconductors by the doping of transition metal (TM) ions is an essential property when designing a diluted magnetic semiconductors (DMS) material. The first principle calculations were performed on the electronic and magnetic structure of 3d transition metal doped GaN. V, Cr, and Mn doped GaNs could not be candidates for DMS materials since most of their magnetic moments is concentrated on the TM ions and the splittings of valence band were negligible. In the cases of Fe, Co, Ni, and Cu doped GaNs, on the contrary, long-ranged spin splitting of valence band was found, which could be candidates for DMS materials
Band structures of two dimensional solid/air hierarchical phononic crystals
International Nuclear Information System (INIS)
Xu, Y.L.; Tian, X.G.; Chen, C.Q.
2012-01-01
The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.
Band structures of two dimensional solid/air hierarchical phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)
2012-06-15
The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.
International Nuclear Information System (INIS)
Brandow, B.H.
1985-01-01
Evidence is now quite strong that the elementary hybridization model is the correct way to understand the lattice-coherent Fermi liquid regime at very low temperatures. Many-body theory leads to significant renormalizations of the input parameters, and many of the band-theoretic channels for hybridization are suppressed by the combined effects of Hund's-rule coupling, crystal-field splitting, and the f-f Coulomb repulsion U. Some exploratory calculations based on this picture are described, and some inferences are drawn about the band structures of several heavy-fermion materials. These inferences can and should be tested by suitably modified band-theoretic calculations. We find evidence for a significant Baber-scattering contribution in the very-low-temperature resistivity. A new mechanism is proposed for crossover from the coherent Fermi-liquid regime to the incoherent dense-Kondo regime. 28 refs
Yang, Jingxiu; Zhang, Peng; Wei, Su-Huai
2018-01-04
Cs 2 AgBiBr 6 was proposed as one of the inorganic, stable, and nontoxic replacements of the methylammonium lead halides (CH 3 NH 3 PbI 3 , which is currently considered as one of the most promising light-harvesting material for solar cells). However, the wide indirect band gap of Cs 2 AgBiBr 6 suggests that its application in photovoltaics is limited. Using the first-principle calculation, we show that by controlling the ordering parameter at the mixed sublattice, the band gap of Cs 2 AgBiBr 6 can vary continuously from a wide indirect band gap of 1.93 eV for the fully ordered double-perovskite structure to a small pseudodirect band gap of 0.44 eV for the fully random alloy. Therefore, one can achieve better light absorption simply by controlling the growth temperature and thus the ordering parameters and band gaps. We also show that controlled doping in Cs 2 AgBiBr 6 can change the energy difference between ordered and disordered Cs 2 AgBiBr 6 , thus providing further control of the ordering parameters and the band gaps. Our study, therefore, provides a novel approach to carry out band structure engineering in the mixed perovskites for optoelectronic applications.
Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra
2018-04-01
We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra
2018-03-01
We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.
Effect of initial structure on strengthening and properties of the 35NKhTYu alloy bands
International Nuclear Information System (INIS)
Vorontsov, N.M.; Shugaenko, V.K.; Drapiko, P.E.; Chernyakova, L.E.; Patseka, R.F.
1978-01-01
Variation in the structure, mechanical strength, plasticity, and elasticity of thin (about 0.15 mm thick) bands of 36NKhTYu alloy after their cold rolling to the reduction degree up to 70% was examined. The influence of the cold plastic deformation on the dislocation structure of the alloy has been determined. By resorting to the method of transmission electron microscopy, the distribution of dislocations depending on the reduction degree has been shown. The character of the influence of the initial structure of bands after their plastic deformation on the process of decomposition of the solid solution and the formation of γ 1 -phase in tempering and a variation in the mechanical properties of 36NKhTYu alloy have been established
Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals
International Nuclear Information System (INIS)
Xu, Zhenlong; Wu, Fugen; Guo, Zhongning
2012-01-01
The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.
Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice
Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro
2018-02-01
The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.
Energy Technology Data Exchange (ETDEWEB)
Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com
2015-10-05
Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser
Pseudo-spin flip in doubly decoupled structures and identical bands
International Nuclear Information System (INIS)
Kreiner, A.J.; Cardona, M.A.; Somacal, H.; Debray, M.E.; Hojman, D.; Davidson, J.; Davidson, M.; De Acuna, D.; Napoli, D.R.; Rico, J.; Bazzacco, D.; Burch, R.; Lenzi, S.M.; Rossi Alvarez, C.; Blasi, N.; Lo Bianco, G.
1995-01-01
Unfavored components of doubly decoupled bands are reported for the first time. They can be interpreted as having the pseudo-spin flipped relative to the orientation in the favored components, i.e. antialigned with respect to the rotation axis. In addition, the differences in consecutive transition energies along the favored and unfavored sequences are strikingly similar among them up to I π =15 + and 14 + respectively. This feature arises from a cancellation of differences in alignments and moments of inertia. ((orig.))
Electronic structures and band gaps of chains and sheets based on phenylacetylene units
International Nuclear Information System (INIS)
Kondo, Masakazu; Nozaki, Daijiro; Tachibana, Masamitsu; Yumura, Takashi; Yoshizawa, Kazunari
2005-01-01
We investigate the electronic structures of polymers composed of π-conjugated phenylacetylene (PA) units, m-PA-based and p-PA-based wires, at the extended Hueckel level of theory. It is demonstrated that these conjugated systems should have a variety of electric conductance. All of the one-dimensional (1D) chains and the two-dimensional (2D) sheet based on the m-PA unit are insulators with large band gaps of 2.56 eV because there is no effective orbital interaction with neighboring chains. On the other hand, p-PA-based 1D chains have relatively small band gaps that decrease with an increase in chain width (1.17-1.74 eV) and are semiconductive. The p-PA-based sheet called 'graphyne', a 2D-limit of the p-PA-based 1D chains, shows a small band gap of 0.89 eV. The variety of band electronic structures is discussed in terms of frontier crystal orbitals
Structure of collective bands and deformations in 74,76Kr
International Nuclear Information System (INIS)
Tripathy, K.C.; Sahu, R.
2000-01-01
The structure of collective bands in 74,76 Kr is studied within the framework of the deformed configuration mixing shell model based on Hartree-Fock states. The active single-particle orbits are 1p 3/2 , 0f 5/2 , 1p 1/2 and 0g 9/2 with 56 Ni as the inert core. A modified Kuo interaction has been used for the above configuration space. The 74 Kr nucleus is found to be the most deformed nucleus among the krypton isotopes which is in agreement with experiment. The deformation is found to decrease for the 76 Kr isotope. The calculated positive- and negative-parity bands agree quite well with the experiment for both the nuclei. A number of excited bands is also predicted. We have also calculated B(E2) values and compared them with available experimental data. The structure of the strongly coupled band built on K = 4 (+) in 76 Kr is also studied. (author)
Band structures of phononic crystal composed of lattices with different periodic constants
International Nuclear Information System (INIS)
Hu, Jia-Guang; Xu, Wen
2014-01-01
With a square lattice mercury and water system being as the model, the band structures of nesting and compound phononic crystals with two different lattice constants were investigated using the method of the supercell plane wave expansion. It was observed that large band gaps can be achieved in low frequency regions by adjusting one of the lattice constants. Meanwhile, effects similar to interstitial impurity defects can be achieved with the increase of lattice constant of the phononic crystal. The corresponding defect modes can be stimulated in band gaps. The larger the lattice constant, the stronger the localization effect of defect modes on the wave. In addition, the change of the filling fraction of impurity exerts great influence on the frequency and localization of defect modes. Furthermore, the change of the position of impurity has notable influence on the frequency of defect modes and their localization. However, the geometry structure and orientation of impurity have little effect on the frequency of defect modes and their localization in the band gap.
A novel approach for characterizing broad-band radio spectral energy distributions
Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.
2018-05-01
We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.
Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.
2013-01-01
The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.
Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds
International Nuclear Information System (INIS)
Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.
2011-01-01
Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.
Autopsy on an RF-Processed X-band Travelling Wave Structure
International Nuclear Information System (INIS)
Le Pimpec, Frederic
2002-01-01
In an effort to locate the cause(s) of high electric-field breakdown in x-band accelerating structures, we have cleanly-autopsied (no debris added by post-operation structure disassembly) an RF-processed structure. Macroscopic localization provided operationally by RF reflected wave analysis and acoustic sensor pickup was used to connect breakdowns to autopsied crater damage areas. Surprisingly, the microscopic analyses showed breakdown craters in areas of low electric field. High currents induced by the magnetic field on sharp corners of the input coupler appears responsible for the extreme breakdown damage observed
SLAC High Gradient Testing of a KEK X-Band Accelerator Structure
International Nuclear Information System (INIS)
Loewen, Rod
2000-01-01
The high accelerating gradients required for future linear colliders demands a better study of field emission and RF breakdown in accelerator structures. Changes in structure geometry, vacuum pumping, fabrication methods, and surface finish can all potentially impact the conditioning process, dark current emission, and peak RF power handling capability. Recent tests at SLAC of KEK's ''M2'' travelling wave x-band accelerator section provides an opportunity to investigate some of these effects by comparing its performance to previously high power tested structures at SLAC. In addition to studying ultimate power limitations, this test also demonstrates the use of computer automated conditioning to reach practical, achievable gradients
Yang, Chen; Zhao, Zong-Yan
2017-11-08
In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information
Empirical optimization of DFT + U and HSE for the band structure of ZnO
Bashyal, Keshab; Pyles, Christopher K.; Afroosheh, Sajjad; Lamichhane, Aneer; Zayak, Alexey T.
2018-02-01
ZnO is a well-known wide band gap semiconductor with promising potential for applications in optoelectronics, transparent electronics, and spintronics. Computational simulations based on the density functional theory (DFT) play an important role in the research of ZnO, but the standard functionals, like Perdew-Burke-Erzenhof, result in largely underestimated values of the band gap and the binding energies of the Zn3d electrons. Methods like DFT + U and hybrid functionals are meant to remedy the weaknesses of plain DFT. However, both methods are not parameter-free. Direct comparison with experimental data is the best way to optimize the computational parameters. X-ray photoemission spectroscopy (XPS) is commonly considered as a benchmark for the computed electronic densities of states. In this work, both DFT + U and HSE methods were parametrized to fit almost exactly the binding energies of electrons in ZnO obtained by XPS. The optimized parameterizations of DFT + U and HSE lead to significantly worse results in reproducing the ion-clamped static dielectric tensor, compared to standard high-level calculations, including GW, which in turn yield a perfect match for the dielectric tensor. The failure of our XPS-based optimization reveals the fact that XPS does not report the ground state electronic structure for ZnO and should not be used for benchmarking ground state electronic structure calculations.
Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Wu, Zhenkun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2015-12-15
In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.
International Nuclear Information System (INIS)
Zhai, Hua-jin; Wang, Lai S.
2007-01-01
TiO2 is a wide-band gap semiconductor and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties
Energy Technology Data Exchange (ETDEWEB)
Kang, San; Sharma, Rahul; Sim, Jae-Kwan [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Deokjin-dong 664-14, Jeonju 561-756 (Korea, Republic of)
2013-06-25
Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se{sub 2} absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se{sub 2} (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10{sup 5} cm{sup −1} for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS
International Nuclear Information System (INIS)
Kang, San; Sharma, Rahul; Sim, Jae-Kwan; Lee, Cheul-Ro
2013-01-01
Highlights: ► Systematic band gap engineering to fabricate tandem Cu(In,Ga)Se 2 absorption layers. ► XRD shows prominent (1 1 2) reflection shift for attributed CIS, CIGS, and CGS phases. ► Optical transmittance and reflectance spectrum are improved towards infrared region. ► The Cu/In + Ga and Ga/In + Ga effect is matched with highest efficient solar cell. ► Tandem CIS/CIGS/CGS layer, the band gap is increased from 1.15 to 2.06 eV. -- Abstract: Band gap engineering was executed to fabricate a multi-junction stacked i.e. tandem Cu(In,Ga)Se 2 (CIGS) absorption layer. The CIGS absorption layers consist of multi-junction stacked CIS/CIGS/CGS thin films from bottom to top with increasing band gap. Tandem CIGS layers were fabricated by using three precursor of CuIn, In/CuGa/In, and CuGa onto the Mo coated soda-lime glass (SLG) by the sequential sputtering of CuIn, CuGa, and In targets. The CIG precursors were converted into CIGS absorption thin film by selenization process. From the X-ray diffraction (XRD) pattern of CIS/CIGS/CGS tandem layer, with the prominent peak shift for (1 1 2) reflections was attributed to the individual CIS, CIGS, and CGS phases at 26.76°, 27.15°, and 27.65° diffraction angles, respectively. The morphologies and atomic (at%) composition uniformity onto the surface and along the depth were extensively analyzed with field effect scanning electron microscope (FESEM) attached energy dispersive spectroscopy (EDS) and secondary ion mass spectroscopy (SIMS). The optical properties such as transmittance, reflectance and absorbance were found to improve in the infrared region for all the tandem CIGS layers. Near the fundamental absorption edge, the absorption coefficient was approached to 10 5 cm −1 for CIS/CIGS/CGS tandem layer. The straight-line behavior indicates that the films have a direct band gap. The band gap was found to increase from 1.15 to 1.74 eV with the Ga-grading along the depth of individual CIS, CIGS, and CGS thin films
Zero-phonon line and fine structure of the yellow luminescence band in GaN
Reshchikov, M. A.; McNamara, J. D.; Zhang, F.; Monavarian, M.; Usikov, A.; Helava, H.; Makarov, Yu.; Morkoç, H.
2016-07-01
The yellow luminescence band was studied in undoped and Si-doped GaN samples by steady-state and time-resolved photoluminescence. At low temperature (18 K), the zero-phonon line (ZPL) for the yellow band is observed at 2.57 eV and attributed to electron transitions from a shallow donor to a deep-level defect. At higher temperatures, the ZPL at 2.59 eV emerges, which is attributed to electron transitions from the conduction band to the same defect. In addition to the ZPL, a set of phonon replicas is observed, which is caused by the emission of phonons with energies of 39.5 meV and 91.5 meV. The defect is called the YL1 center. The possible identity of the YL1 center is discussed. The results indicate that the same defect is responsible for the strong YL1 band in undoped and Si-doped GaN samples.
Optical properties of Nb and Mo calculated from augmented-plane-wave band structures
International Nuclear Information System (INIS)
Pickett, W.E.; Allen, P.B.
1975-01-01
Nonrelativistic band calculations of Mattheiss for Nb and Petroff and Viswanathan for Mo are used to calculate the imaginary part epsilon 2 of the dielectric function for these metals. The structure resulting from interband transitions in the frequency range 0.1--0.5 Ry is found to give fairly good agreement with experiment. The calculation indicates that structure in epsilon 2 can arise from transitions away from symmetry points and lines in the Brillouin zone. The difficulty in distinguishing between the direct and indirect transition models for epsilon 2 is shown to arise from a lack of strong optical critical points. Predictions of the rigid-band model for the optical properties of Nb-Mo alloys are presented
A first principle study of band structure of III-nitride compounds
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Rashid [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)]. E-mail: rasofi@hotmail.com; Akbarzadeh, H. [Department of Physics, Isfahan University of Technology, 841546 Isfahan (Iran, Islamic Republic of); Fazal-e-Aleem [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)
2005-12-15
The band structure of both phases, zinc-blende and wurtzite, of aluminum nitride, indium nitride and gallium nitride has been studied using computational methods. The study has been done using first principle full-potential linearized augmented plane wave (FP-LAPW) method, within the framework of density functional theory (DFT). For the exchange correlation potential, generalized gradient approximation (GGA) and an alternative form of GGA proposed by Engel and Vosko (GGA-EV) have been used. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show a significant improvement over other theoretical work and are closer to the experimental data.
Photonic band structures solved by a plane-wave-based transfer-matrix method.
Li, Zhi-Yuan; Lin, Lan-Lan
2003-04-01
Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.
Photonic band structures solved by a plane-wave-based transfer-matrix method
International Nuclear Information System (INIS)
Li Zhiyuan; Lin Lanlan
2003-01-01
Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method
Harnessing the bistable composite shells to design a tunable phononic band gap structure
Li, Yi; Xu, Yanlong
2018-02-01
By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.
Measurements of higher order modes in a 30 cm long X-band structure
International Nuclear Information System (INIS)
Xiao, L.; Liang, Y.; Tong, D.; Zhang, H.
2001-01-01
The use of a cage of metallic wires as a bead is proposed to measure the higher order modes (HOMs) in an X-band accelerating structure. These long thin wires can isolate the longitudinal electric field component from other field components and produce sufficient frequency shift in bead-pull measurements. In the setup described in this paper, the bead is made by sputtering silver film onto a thin nylon line through a specially designed fixture. The cage has a size of approximately 0.5 mm in diameter, 2 mm in length and more than six metallic wires of less than 0.1 mm in width. The fabrication and calibration of the cage are described. The longitudinal electric fields of the lowest passband dipole mode TM 110 in a 30 cm long X-band structure are measured by bead-pull measurements. Results are compared with the calculated ones obtained from URMELT-code
Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes
International Nuclear Information System (INIS)
Saxena, Prapti; Sanyal, Sankar P
2006-01-01
In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)
Effect of Pd ion doping in the band gap of SnO{sub 2} nanoparticles: structural and optical studies
Energy Technology Data Exchange (ETDEWEB)
Nandan, Brajesh; Venugopal, B. [Pondicherry University, Centre for Nanoscience and Technology (India); Amirthapandian, S.; Panigrahi, B. K. [Indira Gandhi Centre for Atomic Research, Ion Beam and Computer Simulation Section, Materials Science Group (India); Thangadurai, P., E-mail: thangadurai.p@gmail.com [Pondicherry University, Centre for Nanoscience and Technology (India)
2013-10-15
Pd ion doping has influenced the band gap of SnO{sub 2} nanoparticles. Undoped and Pd ion-doped SnO{sub 2} nanoparticles were synthesized by chemical co-precipitation method. A tetragonal phase of SnO{sub 2} with a grain size range of 7-13 nm was obtained (studied by X-ray diffraction and transmission electron microscopy). A decreasing trend in the particle size with increasing doping concentration was observed. The presence of Pd in doped SnO{sub 2} was confirmed by chemical analysis carried out by energy-dispersive spectroscopy in the transmission electron microscope. Diffuse reflectance spectra showed a blue shift in absorption with increasing palladium concentration. Band gap of SnO{sub 2} nanoparticles was estimated from the diffuse reflectance spectra using Kubelka-Munk function and it was increasing with the increase of Pd ion concentration from 3.73 to 4.21 eV. The variation in band gap is attributed predominantly to the lattice strain and particle size. All the samples showed a broad photoluminescence emission centered at 375 nm when excited at 270 nm. A systematic study on the structural and optical properties of SnO{sub 2} nanoparticles is presented.
Electronic band structure and optical properties of antimony selenide under pressure
Energy Technology Data Exchange (ETDEWEB)
Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, 515 134 (India)
2016-05-23
In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.
Miskevich, Alexander A.; Loiko, Valery A.
2015-01-01
A method to retrieve characteristics of ordered particulate structures, such as photonic crystals, is proposed. It is based on the solution of the inverse problem using data on the photonic band gap (PBG). The quasicrystalline approximation (QCA) of the theory of multiple scattering of waves and the transfer matrix method (TMM) are used. Retrieval of the refractive index of particles is demonstrated. Refractive indices of the artificial opal particles are estimated using the published experimental data.
International Nuclear Information System (INIS)
Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.
1988-01-01
The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt
Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue
2016-02-01
Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.
Fang, CM; deGroot, RA; Wiegers, GA; Haas, C
1996-01-01
In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar
Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.
1996-01-01
In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar
Energy-expending behaviour in frightened caribou when dispersed singly or in small bands
Directory of Open Access Journals (Sweden)
Otto Blehr
1997-04-01
Full Text Available The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus. When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This behaviour is inconsistent with the one ascribed to caribou by zoologists when the intruder is a wolf instead of a human. In their view, the caribou stop their flight soon after the wolf gives up the chase, and accordingly save energy owing to their ability to distinguish between hunting and non-hunting wolves. However, small bands of caribou, as well as single animals, have never been observed to behave in this manner. On the contrary, the behaviour of caribou in such encounters is known to follow the same pattern as in their encounters with humans. Energy—saving behaviour is, however, sometimes observed when caribou become inquisitive about something in their surroundings. They will then readily approach as well as try to get down-wind of the object. When the object does not induce fear, it may simply be ignored, or charged before the caribou calm down. The effect of this "confirming behaviour" is that energy which would otherwise have been spent in needless flights from non-predators is saved.
Receiver function structure beneath a broad-band seismic station in south Sumatra
MacPherson, K. A.; Hidayat, D.; Goh, S.
2010-12-01
We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver
Efficient evaluation of epitaxial MoS2 on sapphire by direct band structure imaging
Kim, Hokwon; Dumcenco, Dumitru; Fregnaux, Mathieu; Benayad, Anass; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier; Lanes Group, Epfl Team; Leti, Cea Team
The electronic band structure evaluation of two-dimensional metal dichalcogenides is critical as the band structure can be greatly influenced by the film thickness, strain, and substrate. Here, we performed a direct measurement of the band structure of as-grown monolayer MoS2 on single crystalline sapphire by reciprocal-space photoelectron emission microscopy with a conventional laboratory ultra-violet He I light source. Arrays of gold electrodes were deposited onto the sample in order to avoid charging effects due to the insulating substrate. This allowed the high resolution mapping (ΔE = 0.2 eV Δk = 0.05 Å-1) of the valence states in momentum space down to 7 eV below the Fermi level. The high degree of the epitaxial alignment of the single crystalline MoS2 nuclei was verified by the direct momentum space imaging over a large area containing multiple nuclei. The derived values of the hole effective mass were 2.41 +/-0.05 m0 and 0.81 +/-0.05 m0, respectively at Γ and K points, consistent with the theoretical values of the freestanding monolayer MoS2 reported in the literature. HK acknowledges the french CEA Basic Technological Research program (RTB) for funding.
Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S
2015-06-18
We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.
A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure
Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu
2016-12-01
In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).
Ilton, Mark; Cox, Suzanne; Egelmeers, Thijs; Patek, S. N.; Crosby, Alfred J.
Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps - can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.
Malaysia commercial energy flow: status and structure
International Nuclear Information System (INIS)
Ridzuan Abdul Mutalib; Maragatham Kumar; Nik Arlina Nik Ali; Abi Muttaqin Jalal Bayar; Aisya Raihan Abdul Kadir; Muhammed Zulfakar Zolkaffly; Azlinda Aziz; Jamal Khaer Ibrahim
2008-08-01
With further growth of Malaysia economy, future development of the energy sector in Malaysia is vital to ensure targeted growth. Commercial Energy continues to play a major role in ensuring a balanced energy mix for power generation due to a potential increase in energy demand from various sectors, especially the industrial sector. This paper presents the status and structure of Malaysia Commercial Energy Flow, which gives an overview of the flow of all types of energy sources from primary energy supply to final energy use, and also the potential for nuclear power in electricity generation in Malaysia. (Author)
Band alignment in ZnSe/Zn1-x-yCdxMnySe quantum-well structures
International Nuclear Information System (INIS)
Yu, W.Y.; Salib, M.S.; Petrou, A.; Jonker, B.T.; Warnock, J.
1997-01-01
We present a magneto-optical study of ZnSe/Zn 1-x-y Cd x Mn y Se quantum-well structures in which a suitable choice of the Cd composition leads to a system that is type I at zero magnetic field. When a magnetic field is applied perpendicular to the layers of the structure, the band edges split in such a way as to make the upper σ - (1/2, t 3/2) exciton transition type II, while the ground state σ + (-1/2, -3/2) exciton component remains type I at all field values. This alignment reduces the probability for carrier relaxation from the higher-energy exciton component and opens the possibility of hole-spin population inversion via optical pumping. copyright 1997 The American Physical Society
Mosallaei, Hossein
The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are
Zahedifar, Maedeh; Kratzer, Peter
2018-01-01
Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0
Weakly nonlinear dispersion and stop-band effects for periodic structures
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
of frequency band-gaps, i.e. frequency ranges in which elastic waves cannot propagate. Most existing analytical methods in the field are based on Floquet theory [1]; e.g. this holds for the classical Hill’s method of infinite determinants [1,2], and themethod of space-harmonics [3]. However, application...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...... to be accounted for.The paper deals with analytically predicting dynamic response for nonlinear elastic structures with a continuous periodic variation in structural properties. Specifically, for a Bernoulli-Euler beam with aspatially continuous modulation of structural properties in the axial direction...
A wave-bending structure at Ka-band using 3D-printed metamaterial
Wu, Junqiang; Liang, Min; Xin, Hao
2018-03-01
Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.
Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method
International Nuclear Information System (INIS)
Osadchy, A V; Obraztsova, E D; Volotovskiy, S G; Golovashkin, D L; Savin, V V
2016-01-01
In this paper we present the results of band structure computer simulation of GaSe- based nanostructures using the empirical pseudopotential method. Calculations were performed using a specially developed software that allows performing simulations using cluster computing. Application of this method significantly reduces the demands on computing resources compared to traditional approaches based on ab-initio techniques and provides receiving the adequate comparable results. The use of cluster computing allows to obtain information for structures that require an explicit account of a significant number of atoms, such as quantum dots and quantum pillars. (paper)
Helical quantum states in HgTe quantum dots with inverted band structures.
Chang, Kai; Lou, Wen-Kai
2011-05-20
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.
Structure design for a 500 GeV S-band linear collider
International Nuclear Information System (INIS)
Hahne, P.; Holtkamp, N.; Klatt, R.; Weiland, T.
1991-01-01
Constant gradient structures with an accelerating gradient of 20 MeV per meter are commonly used with S-band frequency. The well known features of these travelling wave tubes provide a dedicated design for their use in the next generation linear collider. Some of the required design parameters for this tubes are presented within the whole concept of this collider with an active length of about 30 km. The choice of these parameters is explained and calculations concerning the structure are presented
Babinet's principle and the band structure of surface waves on patterned metal arrays
Edmunds, J. D.; Taylor, M. C.; Hibbins, A. P.; Sambles, J. R.; Youngs, I. J.
2010-05-01
The microwave response of an array of square metal patches and its complementary structure, an array of square holes, has been experimentally studied. The resonant phenomena, which yield either enhanced transmission or reflection, are attributed to the excitation of diffractively coupled surface waves. The band structure of these surface modes has been quantified for both p-(transverse magnetic) and s-(transverse electric) polarized radiation and is found to be dependent on the periodicity of the electric and magnetic fields on resonance. The results are in excellent accord with predictions from finite element method modeling and the electromagnetic form of Babinet's principle [Babinet, C. R. Acad. Sci. 4, 638 (1837)].
Babinet's principle and the band structure of surface waves on patterned metal arrays
International Nuclear Information System (INIS)
Edmunds, J. D.; Taylor, M. C.; Hibbins, A. P.; Sambles, J. R.; Youngs, I. J.
2010-01-01
The microwave response of an array of square metal patches and its complementary structure, an array of square holes, has been experimentally studied. The resonant phenomena, which yield either enhanced transmission or reflection, are attributed to the excitation of diffractively coupled surface waves. The band structure of these surface modes has been quantified for both p-(transverse magnetic) and s-(transverse electric) polarized radiation and is found to be dependent on the periodicity of the electric and magnetic fields on resonance. The results are in excellent accord with predictions from finite element method modeling and the electromagnetic form of Babinet's principle [Babinet, C. R. Acad. Sci. 4, 638 (1837)].
Energy Technology Data Exchange (ETDEWEB)
Saha, Sanjit; Jana, Milan; Samanta, Pranab; Murmu, Naresh C. [Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-CMERI Campus, Durgapur, 713209 (India); Kim, Nam H. [Advanced Materials Institute of BIN Convergence Technology (BK21 Plus Global), Dept. of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896 (Korea, Republic of); Kuila, Tapas, E-mail: tkuila@gmail.com [Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-CMERI Campus, Durgapur, 713209 (India); Lee, Joong H., E-mail: jhl@jbnu.ac.kr [Advanced Materials Institute of BIN Convergence Technology (BK21 Plus Global), Dept. of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896 (Korea, Republic of); Carbon Composite Research Centre, Department of Polymer & Nanoscience and Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896 (Korea, Republic of)
2017-04-01
The effect of different content of graphene oxide (GO) on the electrical and electrochemical property of h-BN/reduced GO (rGO) hetero-structure is investigated elaborately. The increasing amount of rGO within the h-BN moiety plays fascinating role by reducing the electronic work function while increasing the density of state of the electrode. Furthermore, different h-BN/rGO architecture shows different potential window and the transition from pseudocapacitance to electrochemical double layer capacitance (EDLC) is observed with increasing π-conjugation of C atoms. The rod like h-BN is aligned as sheet while forming super-lattice with rGO. Transmission electron microscopy images show crystalline morphology of the hetero-structure super-lattice. The valance band and Mott-Shotky relationship determined from Mott-Shotky X-ray photoelectron spectroscopy shows that the electronic band structure of super-lattice is improved as compared to the insulating h-BN. The h-BN/rGO super-lattice provides high specific capacitance of ∼960 F g{sup −1}. An asymmetric device configured with h-BN/rGO super-lattice and B, N doped rGO shows very high energy and power density of 73 W h kg{sup −1} and 14,000 W kg{sup −1}, respectively. Furthermore, very low relaxation time constant of ∼1.6 ms and high stability (∼80%) after 10,000 charge-discharge cycles ensure the h-BN/rGO super-lattice as potential materials for the next generation energy storage applications. - Highlights: • Band gap energy of boron nitride decreased with increasing graphene oxide content. • Graphene oxide effectively affected the charge storage mechanism of the composite. • Morphology of boron nitride changed from rod to sheet while forming superlattice. • Highly conducting superlattice showed excellent supercapacitor performance. • Asymmetric device exhibited long stability with high energy and power density.
Ab initio electronic band structure calculation of InP in the wurtzite phase
Dacal, Luis C. O.; Cantarero, Andrés
2011-05-01
We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives a=0.4150 nm, c=0.6912 nm, and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (-1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.
Structure of collective bands and deformations in {sup 74,76}Kr
Energy Technology Data Exchange (ETDEWEB)
Tripathy, K.C. [Physics Department, F M College, Balasore, 756 001 (India); Sahu, R. [Physics Department, Berhampur University, Berhampur, 760 007 (India)
2000-08-01
The structure of collective bands in {sup 74,76}Kr is studied within the framework of the deformed configuration mixing shell model based on Hartree-Fock states. The active single-particle orbits are 1p{sub 3/2}, 0f{sub 5/2}, 1p{sub 1/2} and 0g{sub 9/2} with {sup 56}Ni as the inert core. A modified Kuo interaction has been used for the above configuration space. The {sup 74}Kr nucleus is found to be the most deformed nucleus among the krypton isotopes which is in agreement with experiment. The deformation is found to decrease for the {sup 76}Kr isotope. The calculated positive- and negative-parity bandsagree quite well with the experiment for both the nuclei. A number of excited bands is also predicted. We have also calculated B(E2) values and compared them with available experimental data. The structure of the strongly coupled band built on K = 4{sup (+)} in {sup 76}Kr is also studied. (author)
Gui, Gui; Li, Jin; Zhong, Jianxin
2009-10-01
We reply to the Comment by Farjam and Rafii-Tabar [Phys. Rev. B 80, 167401 (2009)] on our paper [Phys. Rev. B 78, 075435 (2008)]. We show that the gap opening found in our paper is due to the use of a small number of k points in the calculation which prevents revealing the sharp contact of the two bands near K or R . Once a large number of k points is used, the density-functional theory (DFT) VASP codes give the same conclusion as obtained by Farjam and Rafii-Tabar by using the QUANTUM-ESPRESSO codes, namely, there is no gap opening in the band structure of graphene under small planar strain. We also point out that all other results in our paper remain correct, except for the conclusion of the gap opening. The results demonstrate the importance of using a large number of k points for determining the gap width of the band structure of graphene under strain as well as the validity of the DFT VASP codes for the system.
Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films
Directory of Open Access Journals (Sweden)
Fabi Zhang
2018-04-01
Full Text Available The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.
Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films
Zhang, Fabi; Li, Haiou; Cui, Yi-Tao; Li, Guo-Ling; Guo, Qixin
2018-04-01
The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.
Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.
Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen
2018-01-31
Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.
Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei
2018-05-01
C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.
Tan, Chih-Shan; Huang, Michael Hsuan-Yi
2018-05-21
To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods
Directory of Open Access Journals (Sweden)
Brian J. Munroe
2013-01-01
Full Text Available An improved single-cell photonic band-gap (PBG structure with an inner row of elliptical rods (PBG-E was tested with high power at a 60 Hz repetition rate at X-band (11.424 GHz, achieving a gradient of 128 MV/m at a breakdown probability of 3.6×10^{-3} per pulse per meter at a pulse length of 150 ns. The tested standing-wave structure was a single high-gradient cell with an inner row of elliptical rods and an outer row of round rods; the elliptical rods reduce the peak surface magnetic field by 20% and reduce the temperature rise of the rods during the pulse by several tens of degrees, while maintaining good damping and suppression of high order modes. When compared with a single-cell standing-wave undamped disk-loaded waveguide structure with the same iris geometry under test at the same conditions, the PBG-E structure yielded the same breakdown rate within measurement error. The PBG-E structure showed a greatly reduced breakdown rate compared with earlier tests of a PBG structure with round rods, presumably due to the reduced magnetic fields at the elliptical rods vs the fields at the round rods, as well as use of an improved testing methodology. A post-testing autopsy of the PBG-E structure showed some damage on the surfaces exposed to the highest surface magnetic and electric fields. Despite these changes in surface appearance, no significant change in the breakdown rate was observed in testing. These results demonstrate that PBG structures, when designed with reduced surface magnetic fields and operated to avoid extremely high pulsed heating, can operate at breakdown probabilities comparable to undamped disk-loaded waveguide structures and are thus viable for high-gradient accelerator applications.
International Nuclear Information System (INIS)
Miskevich, Alexander A.; Loiko, Valery A.
2015-01-01
A method to retrieve characteristics of ordered particulate structures, such as photonic crystals, is proposed. It is based on the solution of the inverse problem using data on the photonic band gap (PBG). The quasicrystalline approximation (QCA) of the theory of multiple scattering of waves and the transfer matrix method (TMM) are used. Retrieval of the refractive index of particles is demonstrated. Refractive indices of the artificial opal particles are estimated using the published experimental data. - Highlights: • A method to retrieve characteristics of photonic crystals is proposed. • The method is based on the inverse problem solution using the photonic band gap data. • Retrieval of the refractive index of photonic crystal particles is demonstrated. • Retrieval results show inhomogeneous distribution of synthetic opal particle pores
The effect of spin-orbit coupling in band structure of few-layer graphene
Energy Technology Data Exchange (ETDEWEB)
Sahdan, Muhammad Fauzi, E-mail: sahdan89@yahoo.co.id; Darma, Yudi, E-mail: sahdan89@yahoo.co.id [Department of Physics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)
2014-03-24
Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.
Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.
Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing
2016-09-09
In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.
International Nuclear Information System (INIS)
Vukovic, N; Radovanovic, J; Milanovic, V
2014-01-01
We analyze the influence of conduction-band nonparabolicity on bound electronic states in the active region of a quantum cascade laser (QCL). Our model assumes expansion of the conduction-band dispersion relation up to a fourth order in wavevector and use of a suitable second boundary condition at the interface of two III-V semiconductor layers. Numerical results, obtained by the transfer matrix method, are presented for two mid-infrared GaAs/Al 0.33 Ga 0.67 As QCL active regions, and they are in very good agreement with experimental data found in the literature. Comparison with a different nonparabolicity model is presented for the example of a GaAs/Al 0.38 Ga 0.62 As-based mid-IR QCL. Calculations have also been carried out for one THz QCL structure to illustrate the possible application of the model in the terahertz part of the spectrum. (paper)
The band structure of carbonmonoxide on 2-D Au islands on graphene
Katsiev, Khabiboulakh
2014-06-01
The dispersion of the occupied molecular orbitals of carbon monoxide adsorbed on Au 2D islands, vapor-deposited on graphene/Ru(0 0 0 1), is seen to be wave vector dependent, as revealed by angle-resolved photoemission. The band dispersion is similar to CO monolayers adsorbed on many single crystal metal surfaces. Thus not only are the adsorbed gold islands on graphene flat and crystalline, as evident in the dispersion of the Au d-states, but the CO molecular adlayer is both molecular and ordered as well. The experimental angle-resolved photoemission combined with model calculations of the occupied CO band structure, suggest that, in spite of being a very weakly bound adsorbate, the CO adlayer on Au 2D islands on graphene is strongly hybridized to the Au layer. . © 2014 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)
2011-08-17
Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.
Band structure of comb-like photonic crystals containing meta-materials
Weng, Yi; Wang, Zhi-Guo; Chen, Hong
2007-09-01
We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.
Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.
2017-04-01
In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.
Song, Yun; Cao, Yu; Wang, Jing; Zhou, Yong-Ning; Fang, Fang; Li, Yuesheng; Gao, Shang-Peng; Gu, Qin-Fen; Hu, Linfeng; Sun, Dalin
2016-08-24
As a novel class of soft matter, two-dimensional (2D) atomic nanosheet-like crystals have attracted much attention for energy storage devices due to the fact that nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. Herein, atomically thin γ-FeOOH nanosheets with a thickness of ∼1.5 nm are synthesized in a high yield, and the band and electronic structures of the γ-FeOOH nanosheet are revealed using density-functional theory calculations for the first time. The rationally designed γ-FeOOH@rGO composites with a heterostacking structure are used as an anode material for lithium-ion batteries (LIBs). A high reversible capacity over 850 mAh g(-1) after 100 cycles at 200 mA g(-1) is obtained with excellent rate capability. The remarkable performance is attributed to the ultrathin nature of γ-FeOOH nanosheets and 2D heterostacking structure, which provide the minimized Li(+) diffusion length and buffer zone for volume change. Further investigation on the Li storage electrochemical mechanism of γ-FeOOH@rGO indicates that the charge-discharge processes include both conversion reaction and capacitive behavior. This synergistic effect of conversion reaction and capacitive behavior originating from 2D heterostacking structure casts new light on the development of high-energy anode materials.
Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam
Energy Technology Data Exchange (ETDEWEB)
Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)
2016-03-15
We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.
Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.
Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace
2015-09-09
van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.
Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin
2018-06-15
We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.
Development of Electromagnetic Band Gap Structures in the Perspective of Microstrip Antenna Design
Directory of Open Access Journals (Sweden)
Md. Shahidul Alam
2013-01-01
Full Text Available Electromagnetic band gap (EBG technology has become a significant breakthrough in the radio frequency (RF and microwave applications due to their unique band gap characteristics at certain frequency ranges. Since 1999, the EBG structures have been investigated for improving performances of numerous RF and microwave devices utilizing the surface wave suppression and the artificial magnetic conductor (AMC properties of these special type metamaterial. Issues such as compactness, wide bandwidth with low attenuation level, tunability, and suitability with planar circuitry all play an important role in the design of EBG structures. Remarkable efforts have been undertaken for the development of EBG structures to be compatible with a wide range of wireless communication systems. This paper provides a comprehensive review on various EBG structures such as three-, two-, and one-dimensional (3D, 2D, and 1D EBG, mushroom and uniplanar EBG, and their successive advancement. Considering the related fabrication complexities, implementation of vialess EBG is an attractive topic for microwave engineers. For microstrip antennas, EBG structures are used in diversified ways, which of course found to be effective except in some cases. The EBG structures are also successfully utilized in antenna arrays for reducing the mutual coupling between elements of the array. Current challenges and limitations of the typical microstrip antennas and different EBG structures are discussed in details with some possible suggestions. Hopefully, this survey will guide to increasing efforts towards the development of more compact, wideband, and high-efficient uniplanar EBG structures for performance enhancement of antenna and other microwave devices.
Marine Structures: consuming and producing energy
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Jensen, Jørgen Juncher
2009-01-01
and hydrocarbons. • The oceans receive 70 % of our primary sustainable energy source, i.e. the radiation from the sun; this thermal energy can be harvested in the form of thermal, wind, current or wave energy, salt gradients etc. To exploit these possibilities marine structures are required....
de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia
2016-07-01
The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.
A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz
Directory of Open Access Journals (Sweden)
Dinh Khanh Ho
2017-06-01
Full Text Available This paper presents a novel dual-band rectenna for RF energy harvesting system. This rectenna is created from a dual-band antenna and a dual-band rectifier which operates at GSM bands (900 MHz and 1800 MHz. The printed monopole antenna is miniaturized by two meander-lines. The received signal from the receiving antenna is rectified by a voltage double using Schottky diode SMS-7630. The rectifier is optimized for low input power level of -20dBm using harmonic balance. Prototype is designed and fabricated. The simulation is validated by measurement with power conversion efficiency of 20% and 40.8% (in measurement at the input power level of -20dBm. The proposed rectenna has output voltage from 183-415 mV. From the measured results, this rectenna provides the possibility to harvest the ambient electromagnetic energy for powering low-power electronic devices.
Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors
Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui
2017-06-01
Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.
Broad band energy distribution of UV-bright BL Lac objects
International Nuclear Information System (INIS)
Maraschi, L.; Tanzi, E.G.; Treves, A.
1984-01-01
IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references
Broad band energy distribution of UV-bright BL Lac objects
Energy Technology Data Exchange (ETDEWEB)
Maraschi, L.; Tanzi, E.G.; Treves, A.
1984-01-01
IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references.
International Nuclear Information System (INIS)
Ghatak, S.K.; Khanra, B.C.; Ray, D.K.
1978-01-01
The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)
International Nuclear Information System (INIS)
Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; El-Awady, J.; Woodward, C.; Uchic, M.D.
2011-01-01
The nudged elastic band (NEB) method is used to evaluate activation energies for dislocation intersection cross-slip in face-centered cubic (fcc) nickel and copper, to extend our prior work which used an approximate method. In this work we also extend the study by including Hirth locks (HL) in addition to Lomer-Cottrell locks and glide locks (GL). Using atomistic (molecular statics) simulations with embedded atom potentials we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on the cross-slip plane when intersecting a 120 o forest dislocation in both Ni and Cu. The initial separation between the screw and the intersecting dislocation on the (1 1 1) glide plane is varied to find a minimum in the activation energy. The NEB method gives energies that are ∼10% lower than those reported in our prior work. It is estimated that the activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 o intersection forming GL in Ni and Cu are ∼0.47 and ∼0.65 eV, respectively, and from the fully cross-slip plane state to the partially cross-slipped state forming LC are ∼0.68 and ∼0.67 eV. The activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 o intersection forming HL in Ni and Cu are estimated to be ∼0.09 and ∼0.31 eV, respectively. These values are a factor of 3-20 lower than the activation energy for bulk cross-slip in Ni and, a factor of 2-6 lower than the activation energy for cross-slip in Cu estimated by Friedel-Escaig analysis. These results suggest that cross-slip should nucleate preferentially at selected screw dislocation intersections in fcc materials and the activation energies for such mechanisms are also a function of stacking fault energy.
High power experimental studies of hybrid photonic band gap accelerator structures
Directory of Open Access Journals (Sweden)
JieXi Zhang
2016-08-01
Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19 MV/m, corresponding to a surface electric field of 78 MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20 MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.
Energy Technology Data Exchange (ETDEWEB)
Brik, M.G., E-mail: brik@fi.tartu.ee [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Parasyuk, O.V. [Department of Chemistry, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Myronchuk, G.L. [Department of Physics, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Kityk, I.V. [Institute of Materials Science and Engineering, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)
2014-09-15
Complex theoretical and experimental studies of the band structure and optical functions of a new Cu{sub 2}CdGeSe{sub 4} quaternary crystal are reported. The benchmark band structure calculations were performed using the first-principles methods. As a result, the structural, electronic, optical and elastic properties of Cu{sub 2}CdGeSe{sub 4} were calculated in the general gradient approximation (GGA) and local density approximation (LDA). The calculated dielectric function and optical absorption spectra exhibit some anisotropic behavior. Detailed analysis of the band energy dispersion and effective space charge density helped in establishing the origin of the band structure anisotropy. All calculated properties are compared with the experimental data. An additional comparison with a similar crystal of Cu{sub 2}CdGeSe{sub 4} allowed to reveal the role played by the anions (S or Se) in formation of the optical properties of these two materials. - Highlights: • The structural, electronic, optical properties of Cu{sub 2}CdGeSe{sub 4} were calculated. • Pressure effects on these properties were modeled. • Comparison with a similar compound of Cu{sub 2}CdGeS{sub 4} was performed.
Forbidden energy band gap in diluted a-Ge1−xSix:N films
International Nuclear Information System (INIS)
Guarneros, C.; Rebollo-Plata, B.; Lozada-Morales, R.; Espinosa-Rosales, J.E.; Portillo-Moreno, J.; Zelaya-Angel, O.
2012-01-01
By means of electron gun evaporation Ge 1−x Si x :N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10 −4 Pa, then a pressure of 2.7 × 10 −2 Pa of high purity N 2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge 1−x Si x :N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E g ) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E g ) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E g (x). In this case E g (x) versus x is different to the variation of E g in a-Ge 1−x Si x and a-Ge 1−x Si x :H. This fact can be related to the formation of Ge 3 N 4 and GeSi 2 N 4 when x ≤ 0.67, and to the formation of Si 3 N 4 and GeSi 2 N 4 for 0.67 ≤ x. - Highlights: ► Nitrogen doped amorphous Ge 1-x Si x thin films are grown by electron gun technique. ► Nitrogen atoms on E g of the a-Ge 1-x Si x films in the 0 £ x £ 1 range are analyzed. ► Variation in 0 £ x £ 1 range shows a warped change of E g in 1.0 – 3.6 eV range. ► The change in E g (x) behavior when x ∼ 0.67 was associated with Ge 2 SiN 4 presence.
Arantes, J T; Lima, M P; Fazzio, A; Xiang, H; Wei, Su-Huai; Dalpian, G M
2009-04-23
The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.
Electronic band structure of Two-Dimensional WS2/Graphene van der Waals Heterostructures
Henck, Hugo; Ben Aziza, Zeineb; Pierucci, Debora; Laourine, Feriel; Reale, Francesco; Palczynski, Pawel; Chaste, Julien; Silly, Mathieu G.; Bertran, François; Le Fèvre, Patrick; Lhuillier, Emmanuel; Wakamura, Taro; Mattevi, Cecilia; Rault, Julien E.; Calandra, Matteo; Ouerghi, Abdelkarim
2018-04-01
Combining single-layer two-dimensional semiconducting transition-metal dichalcogenides (TMDs) with a graphene layer in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these heterostructures. Here, we report the electronic and structural properties of transferred single-layer W S2 on epitaxial graphene using micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements, and density functional theory (DFT) calculations. The results show good electronic properties as well as a well-defined band arising from the strong splitting of the single-layer W S2 valence band at the K points, with a maximum splitting of 0.44 eV. By comparing our DFT results with local and hybrid functionals, we find the top valence band of the experimental heterostructure is close to the calculations for suspended single-layer W S2 . Our results provide an important reference for future studies of electronic properties of W S2 and its applications in valleytronic devices.
Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes
Chaudhary, Ritu; Devi, Rani; Khosa, S. K.
2018-02-01
The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of E(2+1) and E(4+1)/E({2}+1) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B( E2) transition probabilities and g-factors in these nuclei. The observed systematics of E(2+1) values and R_{42} ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B( E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B( E2)s and g-factors in some of the isotopes need to be confirmed experimentally.
Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.
Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin
2016-07-26
Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.
Directory of Open Access Journals (Sweden)
Sung Heo
2015-07-01
Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.
International Nuclear Information System (INIS)
Malek, M.F.; Mamat, M.H.; Musa, M.Z.; Soga, T.; Rahman, S.A.; Alrokayan, Salman A.H.; Khan, Haseeb A.; Rusop, M.
2015-01-01
We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T a ) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T a was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T a . All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T a temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T a temperature
Energy Technology Data Exchange (ETDEWEB)
Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)
2015-04-15
We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.
Thiel, Charles Warren
There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence
Wire measurement of impedance of an X-band accelerating structure
Baboi, N; Dolgashev, V A; Jones, R M; Lewandowski, J R; Tantawi, S G; Wang, J W
2004-01-01
Several tens of thousands of accelerator structures will be needed for the next generation of linear collders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break Up) mode or at the very least, the emittance being signifcantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measurable and compared with predictions. We develop a circuit model of wire-loaded X-band accelerator structures. This enables the wakefield (the inverse transform of the beam impedance) to be readily computed and compared with the wire measurement. We apply this circuit model to the latest series of accelerating for the GLC/NLC. This circuit model is based upon the single-cell model developed in [1] extended here to complete, multi-cell structures.
The Low Energy Level Structure of {sup 191}lr
Energy Technology Data Exchange (ETDEWEB)
Malmskog, S G; Berg, V [AB Atomenergi, Nykoeping (Sweden); [Inst. of Physics, U niv. of Stockholm (Sweden); Baecklin, A; Hedin, G [Inst. of Physics, Univ. of Upp sala (Sweden)
1970-02-15
The decay of {sup 191}Pt to {sup 191}Ir has been investigated using Ge(Li)-detectors and a double focusing beta spectrometer. 35 transitions were observed and most of them were placed in a level scheme. Special attention was given to the low energy level band structure. Several multipolarity mixing ratios were determined from L-subshell ratio measurements. Using the delayed coincidence technique the half-life of the 179.05 keV level was measured to 40 {+-} 12 psec. The low level decay properties are discussed in terms of the Nilsson model with the inclusion of Coriolis coupling.