WorldWideScience

Sample records for energy balance regulation

  1. Serotonin and the regulation of mammalian energy balance.

    Science.gov (United States)

    Donovan, Michael H; Tecott, Laurence H

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly "hypothalamocentric" focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated.

  2. Neurotrophins and the regulation of energy balance and body weight.

    Science.gov (United States)

    Rios, M

    2014-01-01

    Complex interactions between the brain and peripheral tissues mediate the effective control of energy balance and body weight. Hypothalamic and hindbrain neural circuits integrate peripheral signals informing the nutritional status of the animal and in response regulate nutrient intake and energy utilization. Obesity and its many medical complications emerge from the dysregulation of energy homeostasis. Excessive weight gain might also arise from alterations in reward systems of the brain that drive consumption of calorie dense, palatable foods in the absence of an energy requirement. Several neurotrophins, most notably brain-derived neurotrophic factor, have been implicated in the molecular and cellular processes underlying body weight regulation. Here, we review investigations interrogating their roles in energy balance and reward centers of the brain impacting feeding behavior and energy expenditure.

  3. Brain regulation of energy balance and body weight.

    Science.gov (United States)

    Rui, Liangyou

    2013-12-01

    Body weight is determined by a balance between food intake and energy expenditure. Multiple neural circuits in the brain have evolved to process information about food, food-related cues and food consumption to control feeding behavior. Numerous gastrointestinal endocrine cells produce and secrete satiety hormones in response to food consumption and digestion. These hormones suppress hunger and promote satiation and satiety mainly through hindbrain circuits, thus governing meal-by-meal eating behavior. In contrast, the hypothalamus integrates adiposity signals to regulate long-term energy balance and body weight. Distinct hypothalamic areas and various orexigenic and anorexigenic neurons have been identified to homeostatically regulate food intake. The hypothalamic circuits regulate food intake in part by modulating the sensitivity of the hindbrain to short-term satiety hormones. The hedonic and incentive properties of foods and food-related cues are processed by the corticolimbic reward circuits. The mesolimbic dopamine system encodes subjective "liking" and "wanting" of palatable foods, which is subjected to modulation by the hindbrain and the hypothalamic homeostatic circuits and by satiety and adiposity hormones. Satiety and adiposity hormones also promote energy expenditure by stimulating brown adipose tissue (BAT) activity. They stimulate BAT thermogenesis mainly by increasing the sympathetic outflow to BAT. Many defects in satiety and/or adiposity hormone signaling and in the hindbrain and the hypothalamic circuits have been described and are believed to contribute to the pathogenesis of energy imbalance and obesity.

  4. Dcf1 regulates neuropeptide expression and maintains energy balance.

    Science.gov (United States)

    Liu, Qiang; Chen, Yu; Li, Qian; Wu, Liang; Wen, Tieqiao

    2017-05-22

    Neuropeptide Y (NPY) is an important neurotransmitter in the brain that plays a pivotal role in food intake and energy storage. Although many studies have focused on these functions, the regulation of NPY expression remains unclear. Here we showed that dendritic cell factor 1 (Dcf1) regulates NPY expression and maintains energy balance. We found that NPY expression is significantly reduced in the hypothalamus of Dcf1 knockout (Dcf1-/-, KO) mice. In contrast, Dcf1 overexpression significantly increases NPY expression in the cell line. We also found that Dcf1 acts upstream of the NPY gene to regulate NPY expression and modulates the NPY-NPY receptor 1-GABA signal. Notably, we observed a significant increase in the ATP concentration in Dcf1-/- mice, suggesting a greater demand for energy in the absence of Dcf1. We studied the relationship between Dcf1 and NPY and revealed that Dcf1 plays a critical role in energy balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Brain lipoprotein lipase as a regulator of energy balance.

    Science.gov (United States)

    Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2017-07-24

    The central nervous system is an essential actor in the control of the energy balance. Indeed, many signals of nervous (vagal afferent for example) or circulating (hormone, nutrients) origin converge towards the brain to inform it permanently of the energetic status of the organism. In turn, the brain sends information to the periphery (sympathetic vagal balance, thyroid or corticotropic axis) which allows a fine regulation of the energy fluxes by acting on the hepatic glucose production, the secretion of the pancreatic hormones (glucagon, insulin) or food behavior. Among the nutrients, increasing amount of data assigns a signal molecule role to lipids such as fatty acids. These fatty acids may originate from the bloodstream but may also be the product of the hydrolysis of lipoproteins such as chylomicrons or VLDLs. Indeed, the identification of lipoprotein lipase (LPL) in the brain has led to the hypothesis that the LPL-dependent degradation of TG-enriched particles, and the addition of fatty acids, as informative molecules, to sensitive cells (neurons and/or astrocytes), plays a key role in maintaining the energy balance at equilibrium. Other lipases could also participate in these regulatory mechanisms. This review will summarize the state of the art and open up perspectives. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Hypothalamic Wnt Signalling and its Role in Energy Balance Regulation.

    Science.gov (United States)

    Helfer, G; Tups, A

    2016-03-01

    Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders. © 2016

  7. p75 neurotrophin receptor regulates energy balance in obesity

    Science.gov (United States)

    Baeza-Raja, Bernat; Sachs, Benjamin D.; Li, Pingping; Christian, Frank; Vagena, Eirini; Davalos, Dimitrios; Le Moan, Natacha; Ryu, Jae Kyu; Sikorski, Shoana L.; Chan, Justin P.; Scadeng, Miriam; Taylor, Susan S.; Houslay, Miles D.; Baillie, George S.; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2015-01-01

    Summary Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here we show that upon high-fat diet (HFD), the p75 neurotrophin receptor (p75NTR) controls energy expenditure in obese mice. Despite no changes in food intake, p75NTR-null mice were protected from HFD-induced obesity and remained lean due to increased energy expenditure, without developing insulin resistance or liver steatosis. p75NTR directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or transplantation of p75NTR-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75NTR to cAMP/PKA regulates energy balance and suggest that non-neuronal functions of neurotrophin receptor signaling could be a new target for treating obesity and the metabolic syndrome. PMID:26748707

  8. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin

    OpenAIRE

    Asakawa, A; Inui, A; Fujimiya, M; Sakamaki, R; Shinfuku, N; Ueta, Y; Meguid, M M; Kasuga, M

    2005-01-01

    Background/Aims: The gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance.

  9. Heparanase affects food intake and regulates energy balance in mice.

    Directory of Open Access Journals (Sweden)

    Linda Karlsson-Lindahl

    Full Text Available Mutation of the melanocortin-receptor 4 (MC4R is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.

  10. Compensatory Changes in Energy Balance Regulation over One Athletic Season.

    Science.gov (United States)

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; MüLLER, Manfred J; Heymsfield, Steven B; Sardinha, LUíS B

    2017-06-01

    Mechanisms in energy balance (EB) regulation may include compensatory changes in energy intake (EI) and metabolic adaption (MA), but information is unavailable in athletes who often change EB components. We aim to investigate EB regulation compensatory mechanisms over one athletic season. Fifty-seven athletes (39 males/18 females; handball, volleyball, basketball, triathlon, and swimming) were evaluated from the beginning to the competitive phase of the season. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively, and physical activity energy expenditure was determined as TEE - 0.1(TEE) - REE. Fat mass (FM) and fat-free mass (FFM) were evaluated by dual-energy x-ray absorptiometry and changed body energy stores was determined by 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). EI was derived as TEE + EB. REE was predicted from baseline FFM, FM, sex, and sports. %MA was calculated as 100(measured REE/predicted REE-1) and MA (kcal) as %MA/100 multiplied by baseline measured REE. Average EI minus average physical activity energy expenditure was computed as a proxy of average energy availability, assuming that a constant nonexercise EE occurred over the season. Body mass increased by 0.8 ± 2.5 kg (P < 0.05), but a large individual variability was found ranging from -6.1 to 5.2 kg. The TEE raise (16.8% ± 11.7%) was compensated by an increase EI change (16.3% ± 12.0%) for the whole group (P < 0.05). MA was found in triathletes, sparing 128 ± 168 kcal·d, and basketball players, dissipating 168 ± 205 kcal·d (P < 0.05). MA was associated (P < 0.05) with EB and energy availability (r = 0.356 and r = 0.0644, respectively). TEE increased over the season without relevant mean changes in weight, suggesting that EI compensation likely occurred. The thrifty or spendthrift phenotypes observed among sports and the demanding workloads these athletes are exposed to highlight the need for sport

  11. Endocrine-disrupting chemicals and the regulation of energy balance.

    Science.gov (United States)

    Nadal, Angel; Quesada, Ivan; Tudurí, Eva; Nogueiras, Rubén; Alonso-Magdalena, Paloma

    2017-09-01

    Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.

  12. Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity

    OpenAIRE

    Valentino, Michael A; Colon-Gonzalez, Francheska; Lin, Jieru E.; Waldman, Scott A.

    2010-01-01

    With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates energy balance. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term energy balance by regulating appetite and/or metabolism. These endogenous mediators of energy balance have been the focus of many anti-obesity drug-development...

  13. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure

    National Research Council Canada - National Science Library

    St-Onge, Marie-Pierre

    2013-01-01

    .... Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7-9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance...

  14. Regulation of energy balance by the hypothalamic lipoprotein lipase regulator Angptl3.

    Science.gov (United States)

    Kim, Hyun-Kyong; Shin, Mi-Seon; Youn, Byung-Soo; Kang, Gil Myoung; Gil, So Young; Lee, Chan Hee; Choi, Jong Han; Lim, Hyo Sun; Yoo, Hyun Ju; Kim, Min-Seon

    2015-04-01

    Hypothalamic lipid sensing is important for the maintenance of energy balance. Angiopoietin-like protein 3 (Angptl3) critically regulates the clearance of circulating lipids by inhibiting lipoprotein lipase (LPL). The current study demonstrated that Angptl3 is highly expressed in the neurons of the mediobasal hypothalamus, an important area in brain lipid sensing. Suppression of hypothalamic Angptl3 increased food intake but reduced energy expenditure and fat oxidation, thereby promoting weight gain. Consistently, intracerebroventricular (ICV) administration of Angptl3 caused the opposite metabolic changes, supporting an important role for hypothalamic Angptl3 in the control of energy balance. Notably, ICV Angptl3 significantly stimulated hypothalamic LPL activity. Moreover, coadministration of the LPL inhibitor apolipoprotein C3 antagonized the effects of Angptl3 on energy metabolism, indicating that LPL activation is critical for the central metabolic actions of Angptl3. Increased LPL activity is expected to promote lipid uptake by hypothalamic neurons, leading to enhanced brain lipid sensing. Indeed, ICV injection of Angptl3 increased long-chain fatty acid (LCFA) and LCFA-CoA levels in the hypothalamus. Furthermore, inhibitors of hypothalamic lipid-sensing pathways prevented Angptl3-induced anorexia and weight loss. These findings identify Angptl3 as a novel regulator of the hypothalamic lipid-sensing pathway. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Developmental programming of energy balance regulation: Is physical activity more "programmable" than food intake

    Science.gov (United States)

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mecha...

  16. Effects of continuous positive airway pressure on energy balance regulation: a systematic review

    OpenAIRE

    Shechter, Ari

    2016-01-01

    Obesity is both a cause and a possible consequence of obstructive sleep apnoea (OSA), as OSA seems to affect parameters involved in energy balance regulation, including food intake, hormonal regulation of hunger/satiety, energy metabolism and physical activity. It is known that weight loss improves OSA, yet it remains unclear why continuous positive airway pressure (CPAP) often results in weight gain.

  17. Ghrelin and the central regulation of feeding and energy balance

    Directory of Open Access Journals (Sweden)

    Alfonso Abizaid

    2012-01-01

    Full Text Available Ghrelin was discovered in 1999 as growth hormone secretagouge released from the gut. Soon after it was recognized that ghrelin is a fundamental driver of appetite in rodents and humans and that its mode of action requires alteration of hypothalamic circuit function. Here we review aspects of ghrelin′s action that revolve around the central nervous system with the goal to highlight these pathways in integrative physiology of metabolism regulation including ghrelin′s cross-talk with the action of the adipose hormone, leptin.

  18. Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity

    Science.gov (United States)

    Valentino, Michael A; Colon-Gonzalez, Francheska; Lin, Jieru E; Waldman, Scott A

    2011-01-01

    With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates energy balance. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term energy balance by regulating appetite and/or metabolism. These endogenous mediators of energy balance have been the focus of many anti-obesity drug-development programs aimed at either amplifying endogenous anorexigenic/lipolytic signaling or blocking endogenous orexigenic/lipogenic signaling. Here, we discuss the efficacy and safety of targeting these pathways for the pharmacologic treatment of obesity. PMID:21297878

  19. Neuroendocrine regulation of energy balance: Implications on the development and surgical treatment of obesity.

    Science.gov (United States)

    Farias, Gisele; Netto, Bárbara Dal Molin; Bettini, Solange Cravo; Dâmaso, Ana Raimunda; de Freitas, Alexandre Coutinho Teixeira

    2017-09-01

    Obesity, a serious public health problem, occurs mainly when food consumption exceeds energy expenditure. Therefore, energy balance depends on the regulation of the hunger-satiety mechanism, which involves interconnection of the central nervous system and peripheral signals from the adipose tissue, pancreas and gastrointestinal tract, generating responses in short-term food intake and long-term energy balance. Increased body fat alters the gut- and adipose-tissue-derived hormone signaling, which promotes modifications in appetite-regulating hormones, decreasing satiety and increasing hunger senses. With the failure of conventional weight loss interventions (dietary treatment, exercise, drugs and lifestyle modifications), bariatric surgeries are well-accepted tools for the treatment of severe obesity, with long-term and sustained weight loss. Bariatric surgeries may cause weight loss due to restriction/malabsorption of nutrients from the anatomical alteration of the gastrointestinal tract that decreases energy intake, but also by other physiological factors associated with better results of the surgical procedure. This review discusses the neuroendocrine regulation of energy balance, with description of the predominant hormones and peptides involved in the control of energy balance in obesity and all currently available bariatric surgeries. According to the findings of our review, bariatric surgeries promote effective and sustained weight loss not only by reducing calorie intake, but also by precipitating changes in appetite control, satiation and satiety, and physiological changes in gut-, neuro- and adipose-tissue-derived hormone signaling.

  20. Developmental programming of energy balance regulation: is physical activity more 'programmable' than food intake?

    Science.gov (United States)

    Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A

    2016-02-01

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life

  1. Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance.

    Science.gov (United States)

    Lage, Ricardo; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel

    2016-11-15

    Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. Effects of continuous positive airway pressure on energy balance regulation: a systematic review.

    Science.gov (United States)

    Shechter, Ari

    2016-12-01

    Obesity is both a cause and a possible consequence of obstructive sleep apnoea (OSA), as OSA seems to affect parameters involved in energy balance regulation, including food intake, hormonal regulation of hunger/satiety, energy metabolism and physical activity. It is known that weight loss improves OSA, yet it remains unclear why continuous positive airway pressure (CPAP) often results in weight gain.The goal of this systematic review is to explore if and how CPAP affects the behaviour and/or metabolism involved in regulating energy balance.CPAP appears to correct for a hormonal profile characterised by abnormally high leptin and ghrelin levels in OSA, by reducing the circulating levels of each. This is expected to reduce excess food intake. However, reliable measures of food intake are lacking, and not yet sufficient to make conclusions. Although studies are limited and inconsistent, CPAP may alter energy metabolism, with reports of reductions in resting metabolic rate or sleeping metabolic rate. CPAP appears to not have an appreciable effect on altering physical activity levels. More work is needed to characterise how CPAP affects energy balance regulation.It is clear that promoting CPAP in conjunction with other weight loss approaches should be used to encourage optimal outcomes in OSA patients. Copyright ©ERS 2016.

  3. Hypothalamic AMP-activated Protein Kinase as a Regulator of Food Intake and Energy Balance.

    Science.gov (United States)

    Oh, Tae Seok; Jeon, Yoonjeong; Kim, Seolsong; Kim, Eun-Kyoung

    2016-01-01

    The maintenance of appetite at proper levels, depending on the energy status, is important; otherwise abnormal appetite may cause a series of disorders, such as anorexia, hyperphagia, obesity, and its complications (diabetes mellitus, hypertension, cardiovascular disease, and fatty liver disease). Hypothalamic AMPactivated protein kinase (AMPK) integrates diverse hormonal and nutritional signals to regulate food intake and energy metabolism. Recent evidence suggests that different hormones, nutrients and synthetic chemicals can modulate AMPK activity in the hypothalamus, thereby regulating food intake and body weight, through neuropeptide expressions. In order to elucidate the mechanisms that control hypothalamic AMPK activity, a variety of studies have focused on finding upstream and downstream modulators of hypothalamic AMPK for the regulation of food intake and energy balance. This review highlights the current evidence for understanding how hypothalamic AMPK regulates food intake and energy balance, and will help in the development of effective interventions for the treatment of food intake-related disorders. In the future, it is hoped that new pharmaceutical developments targeting hypothalamic AMPK, in combination with careful clinical trials, will lead to improved and effective therapeutic strategies for complications caused by abnormal appetite and energy balance.

  4. [Role of the mTOR pathway in the central regulation of energy balance].

    Science.gov (United States)

    Haissaguerre, Magalie; Cota, Daniela

    2015-01-01

    The pathway of the mammalian (or mechanistic) target of rapamycin kinase (mTOR) responds to different signals such as nutrients and hormones and regulates many cellular functions as the synthesis of proteins and lipids, mitochondrial activity and the organization of the cytoskeleton. At the cellular level, mTOR forms two distinct complexes: mTORC1 and mTORC2. This review intends to summarize the various recent advances on the role of these two protein complexes in the central regulation of energy balance. mTORC1 activity modulates energy balance and metabolic responses by regulating the activity of neuronal populations, such as those located in the arcuate nucleus of the hypothalamus. Recent studies have shown that activity of the hypothalamic mTORC1 pathway varies according to cell and stimulus types, and that this signaling cascade regulates food intake and body weight in response to nutrients, such as leucine, and hormones like leptin, ghrelin and triiodothyronine. On the other hand, mTORC2 seems to be involved in the regulation of neuronal morphology and synaptic activity. However, its function in the central regulation of the energy balance is less known. Dysregulation of mTORC1 and mTORC2 is described in obesity and type 2 diabetes. Therefore, a better understanding of the molecular mechanisms involved in the regulation of energy balance by mTOR may lead to the identification of new therapeutic targets for the treatment of these metabolic pathologies. © Société de Biologie, 2016.

  5. Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers.

    Science.gov (United States)

    Waterland, Robert A

    2014-01-01

    Extensive human and animal model data show that nutrition and other environmental influences during critical periods of embryonic, fetal, and early postnatal life can affect the development of body weight regulatory pathways, with permanent consequences for risk of obesity. Epigenetic processes are widely viewed as a leading mechanism to explain the lifelong persistence of such "developmental programming" of energy balance. Despite meaningful progress in recent years, however, significant research obstacles impede our ability to test this hypothesis. Accordingly, this review attempts to summarize progress toward answering the following outstanding questions: Is epigenetic dysregulation a major cause of human obesity? In what cells/tissues is epigenetic regulation most important for energy balance? Does developmental programming of human body weight regulation occur via epigenetic mechanisms? Do epigenetic mechanisms have a greater impact on food intake or energy expenditure? Does epigenetic inheritance contribute to transgenerational patterns of obesity? In each case, significant obstacles and suggested approaches to surmounting them are elaborated.

  6. The Role of Sleep Duration in the Regulation of Energy Balance: Effects on Energy Intakes and Expenditure

    Science.gov (United States)

    St-Onge, Marie-Pierre

    2013-01-01

    Short sleep duration and obesity are common occurrence in today's society. An extensive literature from cross-sectional and longitudinal epidemiological studies shows a relationship between short sleep and prevalence of obesity and weight gain. However, causality cannot be inferred from such studies. Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7–9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance. The aim of this review is to evaluate studies that have assessed food intake, energy expenditure, and leptin and ghrelin levels after periods of restricted and normal sleep. Most studies support the notion that restricting sleep increases food intake, but the effects on energy expenditure are mixed. Differences in methodology and component of energy expenditure analyzed may account for the discrepancies. Studies examining the effects of sleep on leptin and ghrelin have provided conflicting results with increased, reduced, or unchanged leptin and ghrelin levels after restricted sleep compared to normal sleep. Energy balance of study participants and potential sex differences may account for the varied results. Studies should strive for constant energy balance and feeding schedules when assessing the role of sleep on hormonal profile. Although studies suggest that restricting sleep may lead to weight gain via increased food intake, research is needed to examine the impact on energy expenditure and endocrine controls. Also, studies have been of short duration, and there is little knowledge on the reverse question: does increasing sleep duration in short sleepers lead to negative energy balance? Citation: St-Onge MP. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med 2013;9(1):73–80. PMID:23319909

  7. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure.

    Science.gov (United States)

    St-Onge, Marie-Pierre

    2013-01-15

    Short sleep duration and obesity are common occurrence in today's society. An extensive literature from cross-sectional and longitudinal epidemiological studies shows a relationship between short sleep and prevalence of obesity and weight gain. However, causality cannot be inferred from such studies. Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7-9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance. The aim of this review is to evaluate studies that have assessed food intake, energy expenditure, and leptin and ghrelin levels after periods of restricted and normal sleep. Most studies support the notion that restricting sleep increases food intake, but the effects on energy expenditure are mixed. Differences in methodology and component of energy expenditure analyzed may account for the discrepancies. Studies examining the effects of sleep on leptin and ghrelin have provided conflicting results with increased, reduced, or unchanged leptin and ghrelin levels after restricted sleep compared to normal sleep. Energy balance of study participants and potential sex differences may account for the varied results. Studies should strive for constant energy balance and feeding schedules when assessing the role of sleep on hormonal profile. Although studies suggest that restricting sleep may lead to weight gain via increased food intake, research is needed to examine the impact on energy expenditure and endocrine controls. Also, studies have been of short duration, and there is little knowledge on the reverse question: does increasing sleep duration in short sleepers lead to negative energy balance?

  8. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance.

    Science.gov (United States)

    Bermudez-Silva, Francisco Javier; Cardinal, Pierre; Cota, Daniela

    2012-01-01

    Animal and human studies carried out so far have established a role for the endocannabinoid system (ECS) in the regulation of energy balance. Here we critically discuss the role of the endocannabinoid signalling in brain structures, such as the hypothalamus and reward-related areas, and its interaction with neurotransmitter and neuropeptide systems involved in the regulation of food intake and body weight. The ECS has been found to interact with peripheral signals, like leptin, insulin, ghrelin and satiety hormones and the resulting effects on both central and peripheral mechanisms affecting energy balance and adiposity will be described. Furthermore, ECS dysregulation has been associated with the development of dyslipidemia, glucose intolerance and obesity; phenomena that are often accompanied by a plethora of neuroendocrine alterations which might play a causal role in determining ECS dysregulation. Despite the withdrawal of the first generation of cannabinoid type 1 receptor (CB1) antagonists from the pharmaceutical market due to the occurrence of psychiatric adverse events, new evidence suggests that peripherally restricted CB1 antagonists might be efficacious for the treatment of obesity and its associated metabolic disorders. Thus, a perspective on new promising strategies to selectively target the ECS in the context of energy balance regulation is given.

  9. Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance.

    Science.gov (United States)

    Reiner, David J; Mietlicki-Baase, Elizabeth G; McGrath, Lauren E; Zimmer, Derek J; Bence, Kendra K; Sousa, Gregory L; Konanur, Vaibhav R; Krawczyk, Joanna; Burk, David H; Kanoski, Scott E; Hermann, Gerlinda E; Rogers, Richard C; Hayes, Matthew R

    2016-03-23

    Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9-39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9-39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that astrocytes within the NTS

  10. Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways.

    Science.gov (United States)

    Toorie, Anika M; Nillni, Eduardo A

    2014-09-01

    In developed nations, the prevalence of obesity and its associated comorbidities continue to prevail despite the availability of numerous treatment strategies. Accumulating evidence suggests that multiple inputs from the periphery and within the brain act in concert to maintain energy metabolism at a constant rate. At the central level, the hypothalamus is the primary component of the nervous system that interprets adiposity or nutrient-related inputs; it delivers hormonal and behavioral responses with the ultimate purpose of regulating energy intake and energy consumption. At the molecular level, enzymes called nutrient energy sensors mediate metabolic responses of those tissues involved in energy balance ( 1 ). Two key energy/nutrient sensors, mammalian target of rapamycin and AMP-activated kinase, are involved in the control of food intake in the hypothalamus as well as in peripheral tissues ( 2 , 3 ). The third more recently discovered nutrient sensor, Sirtuin1 (Sirt1), a nicotinamide adenine dinucleotide-dependent deacetylase, functions to maintain whole-body energy homeostasis. Several studies have highlighted a role for both peripheral and central Sirt1 in regulating body metabolism, but its central role is still heavily debated. Owing to the opaqueness of central Sirt1's role in energy balance are its cell-specific functions. Because of its robust central expression, targeting cell-specific downstream mediators of Sirt1 signaling may help to combat obesity. However, when placed in the context of a physiologically relevant model, there is compelling evidence that central Sirt1 inhibition in itself is sufficient to promote negative energy balance in both the lean and diet-induced obese state.

  11. C/EBPbeta regulates body composition, energy balance-related hormones and tumor growth.

    Science.gov (United States)

    Staiger, Jennifer; Lueben, Mary J; Berrigan, David; Malik, Radek; Perkins, Susan N; Hursting, Stephen D; Johnson, Peter F

    2009-05-01

    The prevalence of obesity, an established epidemiologic risk factor for many chronic diseases including cancer, has been steadily increasing in the US over several decades. The mechanisms used to regulate energy balance and adiposity and the relationship of these factors to cancer are not completely understood. Here we have used knockout mice to examine the roles of the transcription factors CCAAT/enhancer-binding protein (C/EBP) beta and C/EBPdelta in regulating body composition and systemic levels of hormones such as insulin-like growth factor-1 (IGF-1), leptin and insulin that mediate energy balance. Dual-energy X-ray absorptiometry showed that C/EBPbeta, either directly or indirectly, modulated body weight, fat content and bone density in both males and females, while the effect of C/EBPdelta was minor and only affected adiposity and body weight in female animals. Levels of IGF-1, leptin and insulin in the serum were decreased in both male and female C/EBPbeta(-/-) mice, and C/EBPbeta was associated with their promoters in vivo. Moreover, colon adenocarcinoma cells displayed reduced tumorigenic potential when transplanted into C/EBPbeta-deficient animals, especially males. Thus, C/EBPbeta contributes to endocrine expression of IGF-1, leptin and insulin, which modulate energy balance and can contribute to cancer progression by creating a favorable environment for tumor cell proliferation and survival.

  12. Cross-talk between AMPK and mTOR in regulating energy balance.

    Science.gov (United States)

    Xu, Jia; Ji, Jian; Yan, Xiang-Hua

    2012-01-01

    Energy balance is maintained by a complex homeostatic system involving some signaling pathways and "nutrient sensors" in multiple tissues and organs. Any defect associated with the pathways can lead to metabolic disorders including obesity, type 2 diabetes, and the metabolic syndrome. The 5'-adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) appear to play a significant role in the intermediary metabolism of these diseases. AMPK is involved in the fundamental regulation of energy balance at the whole body level by responding to hormonal and nutrient signals in the central nervous system and peripheral tissues that modulate food intake and energy expenditure. Mammalian target of rapamycin (mTOR),is one of the downstream targets of AMPK functions as an intracellular nutrient sensor to control protein synthesis, cell growth, and metabolism. Recent research demonstrated the possible interplay between mTOR and AMPK signaling pathways. In this review, we will present current knowledge of AMPK and mTOR pathways in regulating energy balance and demonstrate the convergence between these two pathways.

  13. Hypothalamic AMPK: a canonical regulator of whole-body energy balance.

    Science.gov (United States)

    López, Miguel; Nogueiras, Rubén; Tena-Sempere, Manuel; Diéguez, Carlos

    2016-07-01

    AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.

  14. New insights on the role of the endocannabinoid system in the regulation of energy balance.

    Science.gov (United States)

    Gatta-Cherifi, B; Cota, D

    2016-02-01

    Within the past 15 years, the endocannabinoid system (ECS) has emerged as a lipid signaling system critically involved in the regulation of energy balance, as it exerts a regulatory control on every aspect related to the search, the intake, the metabolism and the storage of calories. An overactive endocannabinoid cannabinoid type 1 (CB1) receptor signaling promotes the development of obesity, insulin resistance and dyslipidemia, representing a valuable pharmacotherapeutic target for obesity and metabolic disorders. However, because of the psychiatric side effects, the first generation of brain-penetrant CB1 receptor blockers developed as antiobesity treatment were removed from the European market in late 2008. Since then, recent studies have identified new mechanisms of action of the ECS in energy balance and metabolism, as well as novel ways of targeting the system that may be efficacious for the treatment of obesity and metabolic disorders. These aspects will be especially highlighted in this review.

  15. Hunger can be taught: Hunger Recognition regulates eating and improves energy balance

    Directory of Open Access Journals (Sweden)

    Ciampolini M

    2013-06-01

    Full Text Available Mario Ciampolini,1 David Lovell-Smith,2 Timothy Kenealy,3 Riccardo Bianchi4 1Unit of Preventive Gastroenterology, Department of Pediatrics, Università di Firenze, Florence, Italy; 2Department of General Practice, University of Otago, Christchurch, New Zealand; 3Department of General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand; 4Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA Abstract: A set of spontaneous hunger sensations, Initial Hunger (IH, has been associated with low blood glucose concentration (BG. These sensations may arise pre-meal or can be elicited by delaying a meal. With self-measurement of BG, subjects can be trained to formally identify and remember these sensations (Hunger Recognition. Subjects can then be trained to ensure that IH is present pre-meal for most meals and that their pre-meal BG is therefore low consistently (IH Meal Pattern. IH includes the epigastric Empty Hollow Sensation (the most frequent and recognizable as well as less specific sensations such as fatigue or light-headedness which is termed inanition. This report reviews the method for identifying IH and the effect of the IH Meal Pattern on energy balance. In adults, the IH Meal Pattern has been shown to significantly decrease energy intake by one-third, decrease preprandial BG, reduce glycosylated hemoglobin, and reduce insulin resistance and weight in those who are insulin resistant or overweight. Young children as well as adults can be trained in Hunger Recognition, giving them an elegant method for achieving energy balance without the stress of restraint-type dieting. The implications of improving insulin sensitivity through improved energy balance are as wide as improving immune activity. Keywords: energy intake, hunger, energy balance, food intake regulation, prevention, insulin resistance, obesity, diabetes, inflammation, risks

  16. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity.

    OpenAIRE

    Hopkins, M; Blundell, JE

    2016-01-01

    Energy balance is not a simple algebraic sum of energy expenditure and energy intake as often depicted in communications. Energy balance is a dynamic process and there exist reciprocal effects between food intake and energy expenditure. An important distinction is that of metabolic and behavioural components of energy expenditure. These components not only contribute to the energy budget directly, but also by influencing the energy intake side of the equation. It has recently been demonstrate...

  17. Regulation of energy balance by inflammation: common theme in physiology and pathology.

    Science.gov (United States)

    Wang, Hui; Ye, Jianping

    2015-03-01

    Inflammation regulates energy metabolism in both physiological and pathological conditions. Pro-inflammatory cytokines involves in energy regulation in several conditions, such as obesity, aging (calorie restriction), sports (exercise), and cancer (cachexia). Here, we introduce a view of integrative physiology to understand pro-inflammatory cytokines in the control of energy expenditure. In obesity, chronic inflammation is derived from energy surplus that induces adipose tissue expansion and adipose tissue hypoxia. In addition to the detrimental effect on insulin sensitivity, pro-inflammatory cytokines also stimulate energy expenditure and facilitate adipose tissue remodeling. In caloric restriction (CR), inflammatory status is decreased by low energy intake that results in less energy supply to immune cells to favor energy saving under caloric restriction. During physical exercise, inflammatory status is elevated due to muscle production of pro-inflammatory cytokines, which promote fatty acid mobilization from adipose tissue to meet the muscle energy demand. In cancer cachexia, chronic inflammation is elevated by the immune response in the fight against cancer. The energy expenditure from chronic inflammation contributes to weight loss. Immune tolerant cancer cells gains more nutrients during the inflammation. In these conditions, inflammation coordinates energy distribution and energy demand between tissues. If the body lacks response to the pro-inflammatory cytokines (Inflammation Resistance), the energy metabolism will be impaired leading to an increased risk for obesity. In contrast, super-induction of the inflammation activity leads to weight loss and malnutrition in cancer cachexia. In summary, inflammation is a critical component in the maintenance of energy balance in the body. Literature is reviewed in above fields to support this view.

  18. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Ryan, Karen K

    2014-06-03

    Significant comorbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward-driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the interrelationships between metabolism, stress, and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function.

    Science.gov (United States)

    Ledderose, Carola; Kreth, Simone; Beiras-Fernandez, Andres

    2011-01-01

    Ghrelin, a peptide hormone predominantly produced by the stomach, is a potent stimulator of growth hormone release, food intake and weight gain. Besides its functions in regulating energy homeostasis, ghrelin has pronounced cardioprotective effects and was shown to improve cardiac performance in chronic heart failure (CHF). The multifunctional nature of ghrelin makes it an interesting pharmacological target for various diseases. Inhibition of ghrelin could be a promising approach in obesity-related disorders, while an enhancement of the ghrelin response is considered beneficial in several pathologic conditions marked by malnutrition, wasting and cachexia, including CHF, cancer, chronic pulmonary disease or chronic infections. In particular, patients suffering from CHF could possibly benefit from ghrelin based compounds that do not only help to reverse cardiac cachexia - by inducing a positive energy balance - but also enhance the direct cardioprotective effects of ghrelin. This review highlights the role of ghrelin in the regulation of energy balance and cardiovascular function and summarizes the most recent patents, developments and strategies in ghrelin-based pharmacotherapy for the treatment of pathologic conditions associated with obesity, cachexia or cardiovascular dysfunction.

  20. Regulation of Energy Balance via BDNF Expressed in Nonparaventricular Hypothalamic Neurons.

    Science.gov (United States)

    Yang, Haili; An, Juan Ji; Sun, Chao; Xu, Baoji

    2016-05-01

    Brain-derived neurotrophic factor (BDNF) expressed in the paraventricular hypothalamus (PVH) has been shown to play a key role in regulating energy intake and energy expenditure. BDNF is also expressed in other hypothalamic nuclei; however, the role in the control of energy balance for BDNF produced in these structures remains largely unknown. We found that deleting the Bdnf gene in the ventromedial hypothalamus (VMH) during embryogenesis using the Sf1-Cre transgene had no effect on body weight in mice. In contrast, deleting the Bdnf gene in the adult VMH using Cre-expressing virus led to significant hyperphagia and obesity. These observations indicate that the lack of a hyperphagia phenotype in the Sf1-Cre/Bdnf mutant mice is likely due to developmental compensation. To investigate the role of BDNF expressed in other hypothalamic areas, we employed the hypothalamus-specific Nkx2.1-Cre transgene to delete the Bdnf gene. We found that the Nkx2.1-Cre transgene could abolish BDNF expression in many hypothalamic nuclei, but not in the PVH, and that the resulting mutant mice developed modest obesity due to reduced energy expenditure. Thus, BDNF produced in the VMH plays a role in regulating energy intake. Furthermore, BDNF expressed in hypothalamic areas other than PVH and VMH is also involved in the control of energy expenditure.

  1. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk.

    Science.gov (United States)

    Nas, Alessa; Mirza, Nora; Hägele, Franziska; Kahlhöfer, Julia; Keller, Judith; Rising, Russell; Kufer, Thomas A; Bosy-Westphal, Anja

    2017-06-01

    Background: Meal skipping has become an increasing trend of the modern lifestyle that may lead to obesity and type 2 diabetes.Objective: We investigated whether the timing of meal skipping impacts these risks by affecting circadian regulation of energy balance, glucose metabolism, and postprandial inflammatory responses.Design: In a randomized controlled crossover trial, 17 participants [body mass index (in kg/m(2)): 23.7 ± 4.6] underwent 3 isocaloric 24-h interventions (55%, 30%, and 15% carbohydrate, fat, and protein, respectively): a breakfast skipping day (BSD) and a dinner skipping day (DSD) separated by a conventional 3-meal-structure day (control). Energy and macronutrient balance was measured in a respiration chamber. Postprandial glucose, insulin, and inflammatory responses in leukocytes as well as 24-h glycemia and insulin secretion were analyzed.Results: When compared with the 3-meal control, 24-h energy expenditure was higher on both skipping days (BSD: +41 kcal/d; DSD: +91 kcal/d; both P energy expenditure. In contrast, higher postprandial insulin concentrations and increased fat oxidation with breakfast skipping suggest the development of metabolic inflexibility in response to prolonged fasting that may in the long term lead to low-grade inflammation and impaired glucose homeostasis. This trial was registered at clinicaltrials.gov as NCT02635139. © 2017 American Society for Nutrition.

  2. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance.

    Science.gov (United States)

    Caron, Alexandre; Labbé, Sébastien M; Mouchiroud, Mathilde; Huard, Renaud; Lanfray, Damien; Richard, Denis; Laplante, Mathieu

    2016-06-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. Copyright © 2016 the American Physiological Society.

  3. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    Science.gov (United States)

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.

  4. Energy Balance Regulating Neuropeptides Are Expressed through Pregnancy and Regulated by Interleukin-6 Deficiency in Mouse Placenta

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Diéguez, Carlos; García, María C.

    2014-01-01

    The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6), a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART). Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18) were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice) on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta. PMID:24744782

  5. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  6. THADA Regulates the Organismal Balance between Energy Storage and Heat Production.

    Science.gov (United States)

    Moraru, Alexandra; Cakan-Akdogan, Gulcin; Strassburger, Katrin; Males, Matilda; Mueller, Sandra; Jabs, Markus; Muelleder, Michael; Frejno, Martin; Braeckman, Bart P; Ralser, Markus; Teleman, Aurelio A

    2017-04-10

    Human susceptibility to obesity is mainly genetic, yet the underlying evolutionary drivers causing variation from person to person are not clear. One theory rationalizes that populations that have adapted to warmer climates have reduced their metabolic rates, thereby increasing their propensity to store energy. We uncover here the function of a gene that supports this theory. THADA is one of the genes most strongly selected during evolution as humans settled in different climates. We report here that THADA knockout flies are obese, hyperphagic, have reduced energy production, and are sensitive to the cold. THADA binds the sarco/ER Ca2+ ATPase (SERCA) and acts on it as an uncoupler. Reducing SERCA activity in THADA mutant flies rescues their obesity, pinpointing SERCA as a key effector of THADA function. In sum, this identifies THADA as a regulator of the balance between energy consumption and energy storage, which was selected during human evolution. Copyright © 2017 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  7. Brain insulin signalling in the regulation of energy balance and peripheral metabolism.

    Science.gov (United States)

    Diamant, Michaela

    2007-03-30

    The unparalleled global rates of obesity and type 2 diabetes, together with the associated cardiovascular morbidity and mortality, are referred to as the "diabesity pandemic". Changes in lifestyle occurring worldwide, including the increased consumption of high-caloric foods and reduced exercise, are regarded as the main causal factors. Central obesity and insulin resistance have emerged as important linking components. Understanding the aetiology of the cluster of pathologies that leads to the increased risk is instrumental in the development of preventive and therapeutic strategies. Historically, skeletal muscle, adipose tissue and liver were regarded as key insulin target organs involved in insulin-mediated regulation of peripheral carbohydrate, lipid and protein metabolism. The consequences of impaired insulin action in these organs were deemed to explain the functional and structural abnormalities associated with insulin resistance. The discovery of insulin receptors in the central nervous system, the detection of insulin in the cerebrospinal fluid after peripheral insulin administration and the well-documented effects of intracerebroventricularly injected insulin on energy homeostasis, have identified the brain as an important target for insulin action. In addition to its critical role as a peripheral signal integrating the complex network of hypothalamic neuropeptides and neurotransmitters that influence parameters of energy balance, central nervous insulin signalling is also implicated in the regulation of peripheral glucose metabolism. This review summarizes the evidence of insulin action in the brain as part of the multifaceted circuit involved in the central regulation of energy and glucose homeostasis, and discuss the role of impaired central nervous insulin signalling as a pathogenic factor in the obesity and type 2 diabetes epidemic.

  8. Insulin signals through the dorsal vagal complex to regulate energy balance.

    Science.gov (United States)

    Filippi, Beatrice M; Bassiri, Aria; Abraham, Mona A; Duca, Frank A; Yue, Jessica T Y; Lam, Tony K T

    2014-03-01

    Insulin signaling in the hypothalamus regulates food intake and hepatic glucose production in rodents. Although it is known that insulin also activates insulin receptor in the dorsal vagal complex (DVC) to lower glucose production through an extracellular signal-related kinase 1/2 (Erk1/2)-dependent and phosphatidylinositol 3-kinase (PI3K)-independent pathway, it is unknown whether DVC insulin action regulates food intake. We report here that a single acute infusion of insulin into the DVC decreased food intake in healthy male rats. Chemical and molecular inhibition of Erk1/2 signaling in the DVC negated the acute anorectic effect of insulin in healthy rats, while DVC insulin acute infusion failed to lower food intake in high fat-fed rats. Finally, molecular disruption of Erk1/2 signaling in the DVC of healthy rats per se increased food intake and induced obesity over a period of 2 weeks, whereas a daily repeated acute DVC insulin infusion for 12 days conversely decreased food intake and body weight in healthy rats. In summary, insulin activates Erk1/2 signaling in the DVC to regulate energy balance.

  9. The Importance of the Gastrointestinal Tract in Controlling Food Intake and Regulating Energy Balance.

    Science.gov (United States)

    Monteiro, Mariana P; Batterham, Rachel L

    2017-05-01

    The gastrointestinal tract, the key interface between ingested nutrients and the body, plays a critical role in regulating energy homeostasis. Gut-derived signals convey information regarding incoming nutrients to the brain, initiating changes in eating behavior and energy expenditure, to maintain energy balance. Here we review hormonal, neural, and nutrient signals emanating from the gastrointestinal tract and evidence for their role in controlling feeding behavior. Mechanistic studies that have utilized pharmacologic and/or transgenic approaches targeting an individual hormone/mediator have yielded somewhat disappointing body weight changes, often leading to the hormone/mediator in question being dismissed as a potential obesity therapy. However, the recent finding of sustained weight reduction in response to systemic administration of a long-acting analog of the gut-hormone glucagon-like peptide-1 highlights the therapeutic potential of gut-derived signals acting via nonphysiologic mechanisms. Thus, we also review therapeutics strategies being utilized or developed to leverage gastrointestinal signals in order to treat obesity. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    Science.gov (United States)

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.)

  11. Regulation of Energy Balance by Inflammation: Common Theme in Physiology and Pathology

    OpenAIRE

    Wang, Hui; Ye, Jianping

    2015-01-01

    Inflammation regulates energy metabolism in both physiological and pathological conditions. Pro-inflammatory cytokines involves in energy regulation in several conditions, such as obesity, aging (calorie restriction), sports (exercise), and cancer (cachexia). Here, we introduce a view of integrative physiology to understand pro-inflammatory cytokines in the control of energy expenditure. In obesity, chronic inflammation is derived from energy surplus that induces adipose tissue expansion and ...

  12. The effect of breakfast on appetite regulation, energy balance and exercise performance.

    Science.gov (United States)

    Clayton, David J; James, Lewis J

    2016-08-01

    The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.

  13. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity.

    Science.gov (United States)

    Hopkins, Mark; Blundell, John E

    2016-09-01

    Energy balance is not a simple algebraic sum of energy expenditure and energy intake as often depicted in communications. Energy balance is a dynamic process and there exist reciprocal effects between food intake and energy expenditure. An important distinction is that of metabolic and behavioural components of energy expenditure. These components not only contribute to the energy budget directly, but also by influencing the energy intake side of the equation. It has recently been demonstrated that resting metabolic rate (RMR) is a potential driver of energy intake, and evidence is accumulating on the influence of physical activity (behavioural energy expenditure) on mechanisms of satiety and appetite control. These effects are associated with changes in leptin and insulin sensitivity, and in the plasma levels of gastrointestinal (GI) peptides such as glucagon-like peptide-1 (GLP-1), ghrelin and cholecystokinin (CCK). The influence of fat-free mass on energy expenditure and as a driver of energy intake directs attention to molecules emanating from skeletal tissue as potential appetite signals. Sedentariness (physical inactivity) is positively associated with adiposity and is proposed to be a source of overconsumption and appetite dysregulation. The molecular signals underlying these effects are not known but represent a target for research. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Energy Balance and Obesity

    Science.gov (United States)

    Hill, James O.; Wyatt, Holly R.; Peters, John C.

    2012-01-01

    This paper describes the interplay among energy intake, energy expenditure and body energy stores and illustrates how an understanding of energy balance can help develop strategies to reduce obesity. First, reducing obesity will require modifying both energy intake and energy expenditure and not simply focusing on either alone. Food restriction alone will not be effective in reducing obesity if human physiology is biased toward achieving energy balance at a high energy flux (i.e. at a high level of energy intake and expenditure). In previous environments a high energy flux was achieved with a high level of physical activity but in today's sedentary environment it is increasingly achieved through weight gain. Matching energy intake to a high level of energy expenditure will likely be more a more feasible strategy for most people to maintain a healthy weight than restricting food intake to meet a low level of energy expenditure. Second, from an energy balance point of view we are likely to be more successful in preventing excessive weight gain than in treating obesity. This is because the energy balance system shows much stronger opposition to weight loss than to weight gain. While large behavior changes are needed to produce and maintain reductions in body weight, small behavior changes may be sufficient to prevent excessive weight gain. In conclusion, the concept of energy balance combined with an understanding of how the body achieves balance may be a useful framework in helping develop strategies to reduce obesity rates. PMID:22753534

  15. Nutrient responsive nesfatin-1 regulates energy balance and induces glucose-stimulated insulin secretion in rats.

    Science.gov (United States)

    Gonzalez, R; Perry, R L S; Gao, X; Gaidhu, M P; Tsushima, R G; Ceddia, R B; Unniappan, S

    2011-10-01

    Nesfatin-1 is a recently discovered anorexigen, and we first reported nesfatin-like immunoreactivity in the pancreatic β-cells. The aim of this study was to characterize the effects of nesfatin-1 on whole-body energy homeostasis, insulin secretion, and glycemia. The in vivo effects of continuous peripheral delivery of nesfatin-1 using osmotic minipumps on food intake and substrate partitioning were examined in ad libitum-fed male Fischer 344 rats. The effects of nesfatin-1 on glucose-stimulated insulin secretion (GSIS) were examined in isolated pancreatic islets. L6 skeletal muscle cells and isolated rat adipocytes were used to assess the effects of nesfatin-1 on basal and insulin-mediated glucose uptake as well as on major steps of insulin signaling in these cells. Nesfatin-1 reduced cumulative food intake and increased spontaneous physical activity, whole-body fat oxidation, and carnitine palmitoyltransferase I mRNA expression in brown adipose tissue but did not affect uncoupling protein 1 mRNA in the brown adipose tissue. Nesfatin-1 significantly enhanced GSIS in vivo during an oral glucose tolerance test and improved insulin sensitivity. Although insulin-stimulated glucose uptake in L6 muscle cells was inhibited by nesfatin-1 pretreatment, basal and insulin-induced glucose uptake in adipocytes from nesfatin-1-treated rats was significantly increased. In agreement with our in vivo results, nesfatin-1 enhanced GSIS from isolated pancreatic islets at both normal (5.6 mM) and high (16.7 mM), but not at low (2 mM), glucose concentrations. Furthermore, nesfatin-1/nucleobindin 2 release from rat pancreatic islets was stimulated by glucose. Collectively, our data indicate that glucose-responsive nesfatin-1 regulates insulin secretion, glucose homeostasis, and whole-body energy balance in rats.

  16. Calcium and Vitamin D in the Regulation of Energy Balance: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Mario J. Soares

    2014-03-01

    Full Text Available There is a pandemic of obesity and associated chronic diseases. Dietary calcium and vitamin D have many extra-skeletal roles in human health. In this review we have summarized the current understanding of their influence on human energy balance by examining the epidemiological, clinical, animal, cellular and molecular evidence. We opine that while calcium and vitamin D are functional nutrients in the battle against obesity, there is a need for prospective human trials to tilt the balance of evidence in favour of these nutrients.

  17. Energy balance measurement

    DEFF Research Database (Denmark)

    Dhurandhar, N V; Schoeller, D; Brown, A W

    2015-01-01

    -reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance......Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self...... of energy balance....

  18. Hunger can be taught: Hunger Recognition regulates eating and improves energy balance.

    Science.gov (United States)

    Ciampolini, Mario; Lovell-Smith, H David; Kenealy, Timothy; Bianchi, Riccardo

    2013-01-01

    A set of spontaneous hunger sensations, Initial Hunger (IH), has been associated with low blood glucose concentration (BG). These sensations may arise pre-meal or can be elicited by delaying a meal. With self-measurement of BG, subjects can be trained to formally identify and remember these sensations (Hunger Recognition). Subjects can then be trained to ensure that IH is present pre-meal for most meals and that their pre-meal BG is therefore low consistently (IH Meal Pattern). IH includes the epigastric Empty Hollow Sensation (the most frequent and recognizable) as well as less specific sensations such as fatigue or light-headedness which is termed inanition. This report reviews the method for identifying IH and the effect of the IH Meal Pattern on energy balance. In adults, the IH Meal Pattern has been shown to significantly decrease energy intake by one-third, decrease preprandial BG, reduce glycosylated hemoglobin, and reduce insulin resistance and weight in those who are insulin resistant or overweight. Young children as well as adults can be trained in Hunger Recognition, giving them an elegant method for achieving energy balance without the stress of restraint-type dieting. The implications of improving insulin sensitivity through improved energy balance are as wide as improving immune activity.

  19. Hunger can be taught: Hunger Recognition regulates eating and improves energy balance

    Science.gov (United States)

    Ciampolini, Mario; Lovell-Smith, H David; Kenealy, Timothy; Bianchi, Riccardo

    2013-01-01

    A set of spontaneous hunger sensations, Initial Hunger (IH), has been associated with low blood glucose concentration (BG). These sensations may arise pre-meal or can be elicited by delaying a meal. With self-measurement of BG, subjects can be trained to formally identify and remember these sensations (Hunger Recognition). Subjects can then be trained to ensure that IH is present pre-meal for most meals and that their pre-meal BG is therefore low consistently (IH Meal Pattern). IH includes the epigastric Empty Hollow Sensation (the most frequent and recognizable) as well as less specific sensations such as fatigue or light-headedness which is termed inanition. This report reviews the method for identifying IH and the effect of the IH Meal Pattern on energy balance. In adults, the IH Meal Pattern has been shown to significantly decrease energy intake by one-third, decrease preprandial BG, reduce glycosylated hemoglobin, and reduce insulin resistance and weight in those who are insulin resistant or overweight. Young children as well as adults can be trained in Hunger Recognition, giving them an elegant method for achieving energy balance without the stress of restraint-type dieting. The implications of improving insulin sensitivity through improved energy balance are as wide as improving immune activity. PMID:23825928

  20. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  1. Appetite and energy balancing.

    Science.gov (United States)

    Rogers, Peter J; Brunstrom, Jeffrey M

    2016-10-01

    The idea that food intake is motivated by (or in anticipation of) 'hunger' arising from energy depletion is apparent in both public and scientific discourse on eating behaviour. In contrast, our thesis is that eating is largely unrelated to short-term energy depletion. Energy requirements meal-to-meal are trivial compared with total body energy stores, and energy supply to the body's tissues is maintained if a meal or even several meals are missed. Complex and exquisite metabolic machinery ensures that this happens, but metabolic regulation is only loosely coupled with the control of energy intake. Instead, food intake needs to be controlled because the limited capacity of the gut means that processing a meal presents a significant physiological challenge and potentially hinders other activities. We illustrate the relationship between energy (food) intake and energy expenditure with a simple analogy in which: (1) water in a bathtub represents body energy content, (2) water in a saucepan represents food in the gut, and (3) the bathtub is filled via the saucepan. Furthermore, (4) it takes hours to process and pass the full energy (macronutrient) content of the saucepan to the bathtub, and (5) both the saucepan and bathtub resist filling, representing negative feedbacks on appetite (desire to eat). This model is consistent with the observations that appetite is reduced acutely by energy intake (a meal added to the limited capacity of the saucepan/gut), but not increased by an acute increase in energy expenditure (energy removed from the large store of energy in the bathtub/body). The existence of relatively very weak but chronic negative feedback on appetite proportional to body fatness is supported by observations on the dynamics of energy intake and weight gain in rat dietary obesity. (We use the term 'appetite' here because 'hunger' implies energy depletion.) In our model, appetite is motivated by the accessibility of food and the anticipated and experienced

  2. Dairy Proteins and Energy Balance

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist

    High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....

  3. Regulation of lipid metabolism in adipose depots of fat-tailed and thin-tailed lambs during negative and positive energy balances.

    Science.gov (United States)

    Bahnamiri, Hossein Zakariapour; Zali, Abolfazl; Ganjkhanlou, Mahdi; Sadeghi, Mostafa; Shahrbabak, Hossein Moradi

    2018-01-30

    This study aimed to evaluate the effects of negative and positive energy balances on gene expression of regulators and enzymes controlling lipogenesis and lipolysis in muscle and adipose depots of fat-tailed and thin-tailed lambs. Lambs were slaughtered during neutral, negative and positive energy balances for sample collection. Real time q-PCR was conducted to measure the gene expression. Expression of PPARγ was increased in response to positive energy balance regardless of genotype and type of tissue (Pfat-tailed lambs, whereas in thin-tailed lambs, downregulated SREBF1 was restored during positive energy balance (Pfat-tailed lambs affected by interaction of genotype and energy balance (Pfat-tailed lambs, positive energy balance induced enhancement in FABP4 expression was considerably higher in fat-tail adipose depot. The results demonstrate that transcription regulation of lipogenesis and lipolysis during negative and positive energy balances occurs differently in fat-tailed and thin-tailed lambs. Thin-tailed and fat-tailed lambs are respectively more responsive to negative and positive energy balances and mesenteric and fat-tail adipose depots respectively in thin-tailed and fat-tailed lambs are the main adipose depots responsible for higher responsiveness of thin-tailed and fat-tailed lambs to negative and positive energy balances. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Regulation of average 24h human plasma leptin level; the influence of exercise and physiological changes in energy balance.

    NARCIS (Netherlands)

    Aggel-Leijssen, D.P.; van Baak, M.A.; Tenenbaum, R.; Campfield, L.A.; Saris, W.H.M.

    1999-01-01

    OBJECTIVE: The effects of short-term moderate physiological changes in energy flux and energy balance, by exercise and over- or underfeeding, on a 24h plasma leptin profile, were investigated. DESIGN: Subjects were studied over 24h in four randomized conditions: no exercise/energy balance (energy

  5. STAT3 signalling is required for leptin regulation of energy balance but not reproduction.

    Science.gov (United States)

    Bates, Sarah H; Stearns, Walter H; Dundon, Trevor A; Schubert, Markus; Tso, Annette W K; Wang, Yongping; Banks, Alexander S; Lavery, Hugh J; Haq, Asma K; Maratos-Flier, Eleftheria; Neel, Benjamin G; Schwartz, Michael W; Myers, Martin G

    2003-02-20

    Secretion of leptin from adipocytes communicates body energy status to the brain by activating the leptin receptor long form (LRb). LRb regulates energy homeostasis and neuroendocrine function; the absence of LRb in db/db mice results in obesity, impaired growth, infertility and diabetes. Tyr 1138 of LRb mediates activation of the transcription factor STAT3 during leptin action. To investigate the contribution of STAT3 signalling to leptin action in vivo, we replaced the gene encoding the leptin receptor (lepr) in mice with an allele coding for a replacement of Tyr 1138 in LRb with a serine residue (lepr(S1138)) that specifically disrupts the LRb-STAT3 signal. Here we show that, like db/db mice, lepr(S1138) homozygotes (s/s) are hyperphagic and obese. However, whereas db/db mice are infertile, short and diabetic, s/s mice are fertile, long and less hyperglycaemic. Furthermore, hypothalamic expression of neuropeptide Y (NPY) is elevated in db/db mice but not s/s mice, whereas the hypothalamic melanocortin system is suppressed in both db/db and s/s mice. LRb-STAT3 signalling thus mediates the effects of leptin on melanocortin production and body energy homeostasis, whereas distinct LRb signals regulate NPY and the control of fertility, growth and glucose homeostasis.

  6. Arcuate AgRP neurons and the regulation of energy balance

    Directory of Open Access Journals (Sweden)

    Céline eCansell

    2012-12-01

    Full Text Available The arcuate nucleus of the hypothalamus contains at least two crucial populations of neurons that continuously monitor signals reflecting energy status and promote the appropriate behavioral and metabolic responses to changes in energy demand. Neurons making pro-opiomelanocortin (POMC decrease food intake and increase energy expenditure through activation of G protein-coupled receptors melanocortin receptors (MCR via the release of a-melanocyte stimulating hormone. A prevailing idea until recently was that the neighboring neurons expressing the orexigenic neuropeptides, agouti-related protein (AgRP and neuropeptide Y (NPY (AgRP neurons increased feeding by opposing the anorexigenic actions of the POMC neurons. AgRP neurons activation but not POMC neurons inhibition was recently demonstrated to be necessary and sufficient to promote feeding. AgRP expressing axons were identified in mesolimbic, midbrain and pontine structure where they regulate feeding but also feeding-independent functions such as reward or peripheral nutrient partitioning. Post-synaptic Gamma aminobutyric acid (GABA, lasting in a timeline similar to neuromodulation, was identified as the core mechanism by which hunger-activated neurons regulate feeding and non-food related processes in a melanocortin independent manner.

  7. Ghrelin and PYY in the regulation of energy balance and metabolism: lessons from mouse mutants.

    Science.gov (United States)

    Kirchner, Henriette; Tong, Jenny; Tschöp, Matthias H; Pfluger, Paul T

    2010-05-01

    Effective control of body weight and energy homeostasis requires stringent regulation of caloric intake and energy expenditure. Gut-brain interactions comprise a central axis for the control of energy homeostasis by integrating the intake of nutrients with an effective utilization of ingested calories either by storage or by expenditure as cellular fuel. Ghrelin, a stomach-derived peptide, is the only known circulating orexigenic hormone. It is acylated with a medium-chain fatty acid by the enzyme ghrelin O-acetyltransferase (GOAT) and displays a broad range of activity, from central control of food intake to peripheral functions such as gastric emptying and insulin secretion. PYY, a peptide produced by L cells of the small intestine and rectum, has been shown to inhibit gut motility and is proposed to stimulate a powerful central satiety response. In recent years, pharmacological studies in animals and clinical studies in humans have contributed to our knowledge of principal ghrelin and PYY actions. However, valuable findings from studies using ghrelin-deficient mice, ghrelin receptor [growth hormone secretagogue receptor-1a (GHSR1a)]-deficient mice, double-knockout mice (for ghrelin and GHSR), and GOAT-deficient or -overexpressor mice, as well as mice deficient for PYY or neuropeptide Y receptors have allowed better definition of the actual physiological functions of ghrelin and PYY. This review summarizes findings from mutant mouse studies with emphasis on respective gene knockout and transgenic animals and describes how these studies contribute to the current understanding of how endogenous ghrelin and PYY as two major representatives of endocrine gut-brain communications may regulate energy and glucose homeostasis.

  8. Energy balance in JET

    Directory of Open Access Journals (Sweden)

    G.F. Matthews

    2017-08-01

    Full Text Available In this paper we discuss results from the study of the energy balance in JET based on calculated heating energies, radiated energy from bolometry and tile calorimetry. Recent data enables us to be more confident in the numbers used and to exclude certain possibilities but the overall energy imbalance which typically amounts to 25% of total input remains unexplained. This shows that caution is required in interpreting fractional radiated powers which are commonly used to measure the effectiveness of impurity seeded scenarios at reducing divertor heat load.

  9. Arcuate AgRP neurons and the regulation of energy balance.

    Science.gov (United States)

    Cansell, Céline; Denis, Raphaël G P; Joly-Amado, Aurélie; Castel, Julien; Luquet, Serge

    2012-01-01

    The arcuate nucleus of the hypothalamus contains at least two populations of neurons that continuously monitor signals reflecting energy status and promote the appropriate behavioral and metabolic responses to changes in energy demand. Activation of neurons making pro-opiomelanocortin (POMC) decreases food intake and increases energy expenditure through activation of G protein-coupled melanocortin receptors via the release of α-melanocyte-stimulating hormone. Until recently, the prevailing idea was that the neighboring neurons [agouti-related protein (AgRP) neurons] co-expressing the orexigenic neuropeptides, AgRP, and neuropeptide Y increase feeding by opposing the anorexigenic actions of the POMC neurons. However, it has now been demonstrated that only AgRP neurons activation - not POMC neurons inhibition - is necessary and sufficient to promote feeding. Projections of AgRP-expressing axons innervate mesolimbic, midbrain, and pontine structures where they regulate feeding and feeding-independent functions such as reward or peripheral nutrient partitioning. AgRP neurons also make gamma aminobutyric acid , which is now thought to mediate many of critical functions of these neurons in a melanocortin-independent manner and on a timescale compatible with neuromodulation.

  10. The emerging role of the endocannabinoid system in endocrine regulation and energy balance.

    Science.gov (United States)

    Pagotto, Uberto; Marsicano, Giovanni; Cota, Daniela; Lutz, Beat; Pasquali, Renato

    2006-02-01

    During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its activation is known to modulate all the endocrine hypothalamic-peripheral endocrine axes. An increasing amount of data highlights the role of the system in the stress response by influencing the hypothalamic-pituitary-adrenal axis and in the control of reproduction by modifying gonadotropin release, fertility, and sexual behavior. The ability of the endocannabinoid system to control appetite, food intake, and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly, skeletal muscle. The relevance of the system is further strenghtened by the notion that drugs interfering with the activity of the endocannabinoid system are considered as promising candidates for the treatment of various diseases

  11. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice.

    Directory of Open Access Journals (Sweden)

    Patricia Pazos

    Full Text Available Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6, which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18 wild-type (WT and Il6 knockout mice (Il6-KO were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy and agouti-related peptide (Agrp; and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc, corticotrophin and thyrotropin-releasing hormone (Crh and Trh mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra, Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the

  12. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F; Diéguez, Carlos; García, María C

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  13. Interleukin 6 Deficiency Modulates the Hypothalamic Expression of Energy Balance Regulating Peptides during Pregnancy in Mice

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F.; Diéguez, Carlos; García, María C.

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  14. The effect of caffeine on energy balance.

    Science.gov (United States)

    Harpaz, Eynav; Tamir, Snait; Weinstein, Ayelet; Weinstein, Yitzhak

    2017-01-01

    The global prevalence of obesity has increased considerably in the last two decades. Obesity is caused by an imbalance between energy intake (EI) and energy expenditure (EE), and thus negative energy balance is required to bring about weight loss, which can be achieved by either decreasing EI or increasing EE. Caffeine has been found to influence the energy balance by increasing EE and decreasing EI, therefore, it can potentially be useful as a body weight regulator. Caffeine improves weight maintenance through thermogenesis, fat oxidation, and EI. The sympathetic nervous system is involved in the regulation of energy balance and lipolysis (breakdown of lipids to glycerol and free fatty acids) and the sympathetic innervation of white adipose tissue may play an important role in the regulation of total body fat. This article reviews the current knowledge on the thermogenic properties of caffeine, and its effects on appetite and EI in relation to energy balance and body weight regulation.

  15. Nonhomeostatic control of human appetite and physical activity in regulation of energy balance.

    Science.gov (United States)

    Borer, Katarina T

    2010-07-01

    Ghrelin and leptin, putative controllers of human appetite, have no effect on human meal-to-meal appetite but respond to variations in energy availability. Nonhomeostatic characteristics of appetite and spontaneous activity stem from inhibition by leptin and ghrelin of brain reward circuit that is responsive to energy deficit, but refractory in obesity, and from the operation of a meal-timing circadian clock.

  16. Neuronal Rap1 Regulates Energy Balance, Glucose Homeostasis, and Leptin Actions

    Directory of Open Access Journals (Sweden)

    Kentaro Kaneko

    2016-09-01

    Full Text Available The CNS contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in high-fat diet (HFD-induced obesity. Genetic ablation of CNS Rap1 protects mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin sensitivity and increased endoplasmic reticulum (ER stress and inflammation. Furthermore, pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and hypothalamic pathology and may represent a potential therapeutic target for obesity treatment.

  17. Neuronal Rap1 Regulates Energy Balance, Glucose Homeostasis, and Leptin Actions.

    Science.gov (United States)

    Kaneko, Kentaro; Xu, Pingwen; Cordonier, Elizabeth L; Chen, Siyu S; Ng, Amy; Xu, Yong; Morozov, Alexei; Fukuda, Makoto

    2016-09-13

    The CNS contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in high-fat diet (HFD)-induced obesity. Genetic ablation of CNS Rap1 protects mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin sensitivity and increased endoplasmic reticulum (ER) stress and inflammation. Furthermore, pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and hypothalamic pathology and may represent a potential therapeutic target for obesity treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The Role of Brain in Energy Balance.

    Science.gov (United States)

    Matafome, Paulo; Seiça, Raquel

    2017-01-01

    Energy homeostasis is regulated by homeostatic and nonhomeostatic reward circuits which are closely integrated and interrelated. Before, during, and after meals, peripheral nutritional signals, through hormonal and neuronal pathways, are conveyed to selective brain areas, namely the hypothalamic nuclei and the brainstem, the main brain areas for energy balance regulation. These orexigenic and anorexigenic centers are held responsible for the integration of those signals and for an adequate output to peripheral organs involved in metabolism and energy homeostasis.Feeding includes also a hedonic behavior defined as food intake for pleasure independently of energy requirement. This nonhomeostatic regulation of energy balance is based on food reward properties, unrelated to nutritional demands, and involves areas like mesolimbic reward system, such as the ventral tegmental area and the nucleus accumbens, and also opioid, endocannabinoid, and dopamine systems.Herein, focus will be put on the brain circuits of homeostatic and nonhomeostatic regulation of food intake and energy expenditure.

  19. Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions.

    Science.gov (United States)

    Dahal, Keshav; Martyn, Greg D; Alber, Nicole A; Vanlerberghe, Greg C

    2017-01-01

    Mitochondria have a non-energy-conserving alternative oxidase (AOX) proposed to support photosynthesis, perhaps by promoting energy balance under varying growth conditions. To investigate this, wild-type (WT) Nicotiana tabacum were compared with AOX knockdown and overexpression lines. In addition, the amount of AOX protein in WT plants was compared with that of chloroplast light-harvesting complex II (LHCB2), whose amount is known to respond to chloroplast energy status. With increased growth irradiance, WT leaves maintained higher rates of respiration in the light (RL), but no differences in RL or photosynthesis were seen between the WT and transgenic lines, suggesting that, under non-stress conditions, AOX was not critical for leaf metabolism, regardless of growth irradiance. However, under drought, the AOX amount became an important determinant of RL, which in turn was an important determinant of chloroplast energy balance (measured as photosystem II excitation pressure, EP), and photosynthetic performance. In the WT, the AOX amount increased and the LHCB2 amount decreased with increased growth irradiance or drought severity. These changes in protein amounts correlated strongly, in opposing ways, with growth EP. This suggests that a signal deriving from the photosynthetic electron transport chain status coordinately controls the amounts of AOX and LHCB2, which then both contribute to maintaining chloroplast energy balance, particularly under stress conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions

    Science.gov (United States)

    Dahal, Keshav; Martyn, Greg D.; Alber, Nicole A.

    2017-01-01

    Abstract Mitochondria have a non-energy-conserving alternative oxidase (AOX) proposed to support photosynthesis, perhaps by promoting energy balance under varying growth conditions. To investigate this, wild-type (WT) Nicotiana tabacum were compared with AOX knockdown and overexpression lines. In addition, the amount of AOX protein in WT plants was compared with that of chloroplast light-harvesting complex II (LHCB2), whose amount is known to respond to chloroplast energy status. With increased growth irradiance, WT leaves maintained higher rates of respiration in the light (RL), but no differences in RL or photosynthesis were seen between the WT and transgenic lines, suggesting that, under non-stress conditions, AOX was not critical for leaf metabolism, regardless of growth irradiance. However, under drought, the AOX amount became an important determinant of RL, which in turn was an important determinant of chloroplast energy balance (measured as photosystem II excitation pressure, EP), and photosynthetic performance. In the WT, the AOX amount increased and the LHCB2 amount decreased with increased growth irradiance or drought severity. These changes in protein amounts correlated strongly, in opposing ways, with growth EP. This suggests that a signal deriving from the photosynthetic electron transport chain status coordinately controls the amounts of AOX and LHCB2, which then both contribute to maintaining chloroplast energy balance, particularly under stress conditions. PMID:28011719

  1. Kisspeptin and energy balance in reproduction.

    Science.gov (United States)

    De Bond, Julie-Ann P; Smith, Jeremy T

    2014-03-01

    Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.

  2. Early leptin intervention reverses perturbed energy balance regulating hypothalamic neuropeptides in the pre- and postnatal calorie-restricted female rat offspring.

    Science.gov (United States)

    Gibson, Leena Caroline; Shin, Bo-Chul; Dai, Yun; Freije, William; Kositamongkol, Sudatip; Cho, John; Devaskar, Sherin U

    2015-06-01

    Pre- and postnatal calorie restriction is associated with postnatal growth restriction, reduced circulating leptin concentrations, and perturbed energy balance. Hypothalamic regulation of energy balance demonstrates enhanced orexigenic (NPY, AgRP) and diminished anorexigenic (POMC, CART) neuropeptide expression (PN21), setting the stage for subsequent development of obesity in female Sprague-Dawley rats. Leptin replenishment during the early postnatal period (PN2-PN8) led to reversal of the hypothalamic orexigenic:anorexigenic neuropeptide ratio at PN21 by reducing only the orexigenic (NPY, AgRP), without affecting the anorexigenic (POMC, CART) neuropeptide expression. This hypothalamic effect was mediated via enhanced leptin receptor (ObRb) signaling that involved increased pSTAT3/STAT3 but reduced PTP1B. This was further confirmed by an increase in body weight at PN21 in response to intracerebroventricular administration of antisense ObRb oligonucleotides (PN2-PN8). The change in the hypothalamic neuropeptide balance in response to leptin administration was associated with increased oxygen consumption, carbon dioxide production, and physical activity, which resulted in increased milk intake (PN14) with no change in body weight. This is in contrast to the reduction in milk intake with no effect on energy expenditure and physical activity observed in controls. We conclude that pre- and postnatal calorie restriction perturbs hypothalamic neuropeptide regulation of energy balance, setting the stage for hyperphagia and reduced energy expenditure, hallmarks of obesity. Leptin in turn reverses this phenotype by increasing hypothalamic ObRb signaling (sensitivity) and affecting only the orexigenic arm of the neuropeptide balance. © 2015 Wiley Periodicals, Inc.

  3. Fuel sensing and the central nervous system (CNS): implications for the regulation of energy balance and the treatment for obesity.

    Science.gov (United States)

    Seeley, R J; York, D A

    2005-08-01

    This review describes the product of the 3-day International Association for the Study of Obesity (IASO) Stock Conference held in March 2004 and sponsored by Abbott Laboratories. The conference was focused on how the mechanisms by which individual cells sense their own fuel status might influence the energy balance of the entire organism. Whether you are a single-celled organism or a sophisticated mammal with a large cerebral cortex, it is critical that cellular activity be matched to the available fuel necessary for that activity. Rapid progress has been made in the last decade in our understanding of the critical metabolic events that cells monitor to accomplish this critical task. More recent developments have begun to apply this understanding to how critical populations of neurones may monitor similar events to control both food intake and energy expenditure. The picture that emerges is that numerous peripheral fuel sensors communicate to the central nervous system (CNS) via neural and humoral routes. Moreover, it has been known for decades that specific populations of neurones sense changes in ambient glucose levels and adjust their firing rate in response and changes in neuronal glucose metabolism can influence energy balance. The CNS, however, does not just sense glucose but rather appears to be sensitive to a wide range of metabolic perturbations associated with fuel availability. This information is used to adjust both caloric intake and the disposition of fuels in the periphery. Increased understanding of these CNS fuel-sensing mechanisms may lead to novel therapeutic targets for obesity.

  4. Balancing Public and Private Regulation

    Directory of Open Access Journals (Sweden)

    Martijn Scheltema

    2016-01-01

    Full Text Available Voluntary Sustainability Standards (VSS might develop into a viable alternative to public regulation. However, it turns on the (regulatory circumstances whether that holds true in practice. If public regulation on CSR topics is lacking, governments are unable to agree upon certain topics on a global level or diverging public regulation exists, VSS can be helpful to set global standards. Obviously, private standards will especially be helpful if they are commensurate with local public legislation (and e.g. treaties and/or are accepted by local governments. If one neglects this, numerous domestic structures might exist that frustrate VSS. Furthermore, governments have to remain vigilant as to whether these private regimes do not result in market disruption, consumer detriment or hamper trade. VSS might also compete with public arrangements which might limit the uptake of VSS. However, if public regulation exists VSS might be a viable alternative if compliance with not too compelling public norms by market participants is rather poor and the public policymaker is aiming to incentivize the better performing part of the market to embark on higher standards and thus only desires to regulate the less performing part of the market. However, of paramount importance is the effectiveness of VSS in order to be a viable alternative to public regulation. The effectiveness of VSS should be assessed using an integrated multi-disciplinary (comparative approach entailing legal, impact-assessment, legitimacy, governance and behavioural aspects. Only effective VSS in the aforementioned sense are a true alternative to public regulation.Beyond that, the legal perspective in connection with (the effectiveness of VSS is discussed, featuring FSC and UTZ Certified as an example. It is important from this perspective that VSS have a clear and sufficiently selective objective and sufficiently specific norms, are regularly evaluated, entail ‘conflict of law rules’ and

  5. Balancing energy flexibilities through aggregation

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2014-01-01

    in both energy production and consumption, is the key to solving these problems. Flexibilities can be expressed as flex-offers, which due to their high number need to be aggregated to reduce the complexity of energy scheduling. In this paper, we discuss balance aggregation techniques that already during......One of the main goals of recent developments in the Smart Grid area is to increase the use of renewable energy sources. These sources are characterized by energy fluctuations that might lead to energy imbalances and congestions in the electricity grid. Exploiting inherent flexibilities, which exist...

  6. A Thyroid Hormone Challenge in Hypothyroid Rats Identifies T3 Regulated Genes in the Hypothalamus and in Models with Altered Energy Balance and Glucose Homeostasis

    Science.gov (United States)

    Herwig, Annika; Campbell, Gill; Mayer, Claus-Dieter; Boelen, Anita; Anderson, Richard A.; Ross, Alexander W.; Mercer, Julian G.

    2014-01-01

    Background: The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. Methods: Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. Results: Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (±1.3-fold change, phypothalamus, a key area of the brain involved in homeostasis and neuroendocrine functions. These include genes hitherto not known to be regulated by thyroid status. PMID:25087834

  7. Energy balance in coronal funnels

    Science.gov (United States)

    Rabin, Douglas

    1991-01-01

    The energy balance in magnetic flux tubes is examined semianalytically for the case in which thermal conduction balances radiation or in which enthalpy transport occurs. Different values are considered for areal constriction, shape, length, and maximum temperature. The overall energy budget of the solar corona is not significantly affected by magnetic constriction. A bowl-shaped funnel with a constriction factor of 4 describes the empirical differential-emission measure for log-T values between approximately 5.3 and 6.0. Loop-scaling relationships are derived for the full range of models to illustrate the dependence of the constant of proportionality on the properties of the magnetic constriction. Constriction can reduce the total energy requirement of the funnel by a factor of 5 and not affect the differential emission in flow-dominated models.

  8. Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity.

    Science.gov (United States)

    Guyenet, Stephan J; Schwartz, Michael W

    2012-03-01

    Obesity has emerged as one of the leading medical challenges of the 21st century. The resistance of this disorder to effective, long-term treatment can be traced to the fact that body fat stores are subject to homeostatic regulation in obese individuals, just as in lean individuals. Because the growing obesity epidemic is linked to a substantial increase in daily energy intake, a key priority is to delineate how mechanisms governing food intake and body fat content are altered in an obesogenic environment. We considered all relevant published research and cited references that represented the highest quality evidence available. Where space permitted, primary references were cited. The increase of energy intake that has fueled the U.S. obesity epidemic is linked to greater availability of highly rewarding/palatable and energy-dense food. Obesity occurs in genetically susceptible individuals and involves the biological defense of an elevated body fat mass, which may result in part from interactions between brain reward and homeostatic circuits. Inflammatory signaling, accumulation of lipid metabolites, or other mechanisms that impair hypothalamic neurons may also contribute to the development of obesity and offer a plausible mechanism to explain the biological defense of elevated body fat mass. Despite steady research progress, mechanisms underlying the resistance to fat loss once obesity is established remain incompletely understood. Breakthroughs in this area may be required for the development of effective new obesity prevention and treatment strategies.

  9. Regulation of Food Intake, Energy Balance, and Body Fat Mass: Implications for the Pathogenesis and Treatment of Obesity

    Science.gov (United States)

    Guyenet, Stephan J.

    2012-01-01

    Context: Obesity has emerged as one of the leading medical challenges of the 21st century. The resistance of this disorder to effective, long-term treatment can be traced to the fact that body fat stores are subject to homeostatic regulation in obese individuals, just as in lean individuals. Because the growing obesity epidemic is linked to a substantial increase in daily energy intake, a key priority is to delineate how mechanisms governing food intake and body fat content are altered in an obesogenic environment. Evidence Acquisition: We considered all relevant published research and cited references that represented the highest quality evidence available. Where space permitted, primary references were cited. Evidence Synthesis: The increase of energy intake that has fueled the U.S. obesity epidemic is linked to greater availability of highly rewarding/palatable and energy-dense food. Obesity occurs in genetically susceptible individuals and involves the biological defense of an elevated body fat mass, which may result in part from interactions between brain reward and homeostatic circuits. Inflammatory signaling, accumulation of lipid metabolites, or other mechanisms that impair hypothalamic neurons may also contribute to the development of obesity and offer a plausible mechanism to explain the biological defense of elevated body fat mass. Conclusions: Despite steady research progress, mechanisms underlying the resistance to fat loss once obesity is established remain incompletely understood. Breakthroughs in this area may be required for the development of effective new obesity prevention and treatment strategies. PMID:22238401

  10. Multidisciplinary Approach to the Treatment of Obese Adolescents: Effects on Cardiovascular Risk Factors, Inflammatory Profile, and Neuroendocrine Regulation of Energy Balance

    Directory of Open Access Journals (Sweden)

    Ana Raimunda Dâmaso

    2013-01-01

    Full Text Available The prevention of obesity and health concerns related to body fat is a major challenge worldwide. The aim of this study was to investigate the role of a medically supervised, multidisciplinary approach, on reduction in the prevalence of obesity related comorbidities, inflammatory profile, and neuroendocrine regulation of energy balance in a sample of obese adolescents. A total of 97 postpuberty obese adolescents were enrolled in this study. Body composition, neuropeptides, and adipokines were analysed. The metabolic syndrome was defined by the International Diabetes Federation (IDF. The abdominal ultrasonography was performed to measure visceral, subcutaneous fat and hepatic steatosis. All measures were performed at baseline and after one year of therapy. The multidisciplinary management promoted the control of obesity reducing body fat mass. The prevalence of metabolic syndrome, asthma, nonalcoholic fatty liver disease (NAFLD, binge eating, and hyperleptinemia was reduced. An improvement in the inflammatory profile was demonstrated by an increase in anti-inflammatory adiponectin and reduction in proinflammatory adipokines, plasminogen activator inhibitor-1, interleukin-6 concentrations, and in the Lep/Adipo ratio. Moreover, a reduction in the AgRP and an increase in the alfa-MSH were noted. The multidisciplinary approach not only reduced obesity but also is efficacious in cardiovascular risk factors, inflammatory profile, and neuroendocrine regulation of energy balance.

  11. Multidisciplinary Approach to the Treatment of Obese Adolescents: Effects on Cardiovascular Risk Factors, Inflammatory Profile, and Neuroendocrine Regulation of Energy Balance

    Science.gov (United States)

    Dâmaso, Ana Raimunda; de Piano, Aline; Campos, Raquel Munhoz da Silveira; Corgosinho, Flávia Campos; Siegfried, Wolfgang; Caranti, Danielle Arisa; Masquio, Deborah Cristina Landi; Carnier, June; Sanches, Priscila de Lima; Leão da Silva, Patrícia; Nascimento, Cláudia Maria Oller; Oyama, Lila Missae; Dantas, Alexandre Dâmaso Aguilera; de Mello, Marco Túlio; Tufik, Sergio; Tock, Lian

    2013-01-01

    The prevention of obesity and health concerns related to body fat is a major challenge worldwide. The aim of this study was to investigate the role of a medically supervised, multidisciplinary approach, on reduction in the prevalence of obesity related comorbidities, inflammatory profile, and neuroendocrine regulation of energy balance in a sample of obese adolescents. A total of 97 postpuberty obese adolescents were enrolled in this study. Body composition, neuropeptides, and adipokines were analysed. The metabolic syndrome was defined by the International Diabetes Federation (IDF). The abdominal ultrasonography was performed to measure visceral, subcutaneous fat and hepatic steatosis. All measures were performed at baseline and after one year of therapy. The multidisciplinary management promoted the control of obesity reducing body fat mass. The prevalence of metabolic syndrome, asthma, nonalcoholic fatty liver disease (NAFLD), binge eating, and hyperleptinemia was reduced. An improvement in the inflammatory profile was demonstrated by an increase in anti-inflammatory adiponectin and reduction in proinflammatory adipokines, plasminogen activator inhibitor-1, interleukin-6 concentrations, and in the Lep/Adipo ratio. Moreover, a reduction in the AgRP and an increase in the alfa-MSH were noted. The multidisciplinary approach not only reduced obesity but also is efficacious in cardiovascular risk factors, inflammatory profile, and neuroendocrine regulation of energy balance. PMID:24285955

  12. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines

    OpenAIRE

    Le Thuc, Ophélia; Stobbe, Katharina; Cansell, Céline; Nahon, Jean-Louis; Blondeau, Nicolas; Rovère, Carole

    2017-01-01

    The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions....

  13. Energy Balance in Huntington's Disease.

    Science.gov (United States)

    Gil Polo, Cecilia; Cubo Delgado, Esther; Mateos Cachorro, Ana; Rivadeneyra Posadas, Jéssica; Mariscal Pérez, Natividad; Armesto Formoso, Diana

    2015-01-01

    Little is known about the energy needs in Huntington's disease (HD). The aims of this study are to analyze and compare the total energy expenditure (TEE) and energy balance (EB) in a representative sample of HD patients with healthy controls. This is an observational, case-control single-center study. Food caloric energy intake (EI) and TEE were considered for estimating EB. A dietary recall questionnaire was used to assess the EI. TEE was computed as the sum of resting energy expenditure (REE), measured by indirect calorimetry and physical activity (PA) monitored by an actigraph. A total of 22 patients were included (36% men, mean age 50.3 ± 15.6 years, motor Unified Huntington's Disease Scale 27.9 ± 23.7, total functional capacity 11.0 (7.0-13.0), EI 38.6 ± 10.0 kcal/kg, PA 5.3 (3.0-7.4) kcal/kg, REE 30.9 ± 6.4 kcal/kg, TEE 2,023.4 (1,592.0-2,226.5) kcal/day) and 18 controls (50% men, mean age 47.4 ± 13.8 years, EI 38.6 ± 10.3 kcal/kg, PA 8.4 (5.0-13.8) kcal/kg, REE 30.8 ± 6.6 kcal/kg, TEE 2,281.0 (2,057.3-2,855.3) kcal/day). TEE was significantly lower in patients compared to controls (p = 0.03). PA was lower in patients compared to controls (p = 0.02). Although patients with HD appeared to have lower energy expenditure, mainly due to decreased voluntary PA, they were still able to maintain their energy needs with an adequate food intake. © 2015 S. Karger AG, Basel.

  14. Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity

    National Research Council Canada - National Science Library

    Guyenet, Stephan J; Schwartz, Michael W

    2012-01-01

    .... Because the growing obesity epidemic is linked to a substantial increase in daily energy intake, a key priority is to delineate how mechanisms governing food intake and body fat content are altered...

  15. Regulation of Food Intake, Energy Balance, and Body Fat Mass: Implications for the Pathogenesis and Treatment of Obesity

    National Research Council Canada - National Science Library

    Guyenet, Stephan J; Schwartz, Michael W

    2012-01-01

    .... Because the growing obesity epidemic is linked to a substantial increase in daily energy intake, a key priority is to delineate how mechanisms governing food intake and body fat content are altered...

  16. The flexible clock : Predictive and reactive homeostasis, energy balance and the circadian regulation of sleep-wake timing

    NARCIS (Netherlands)

    Riede, Sjaak J.; van der Vinne, Vincent; Hut, Roelof A.

    2017-01-01

    The Darwinian fitness of mammals living in a rhythmic environment depends on endogenous daily (circadian) rhythms in behavior and physiology. Here, we discuss the mechanisms underlying the circadian regulation of physiology and behavior in mammals. We also review recent efforts to understand

  17. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2016-07-01

    Full Text Available Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve, while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve. This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium.

  18. Dairy beverages and energy balance

    DEFF Research Database (Denmark)

    Astrup, Arne; Chaput, Jean-Philippe; Gilbert, Jo-Anne

    2010-01-01

    to exist. We have found that high versus low calcium intakes from dairy products had no effect on 24-h energy expenditure or substrate oxidation rates, but fecal fat excretion increased approximately 2.5-fold on the high-calcium diets. In a meta-analysis of intervention studies we found that increasing...... dairy calcium intake by 1200mg/day resulted in increased fecal fat excretion by 5.2 (1.6-8.8) g/day. Newer research shows that humans possess taste receptors for calcium in the gastrointestinal tract and that signaling may be linked to appetite regulation. A new line of evidence suggests...... that an inadequate calcium intake during an energy restricted weight loss program may trigger hunger and impair compliance to the diet. These mechanisms may be part of the explanation for the protective effects of dairy products with regard to obesity and metabolic syndrome....

  19. A thyroid hormone challenge in hypothyroid rats identifies t3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis

    NARCIS (Netherlands)

    Herwig, Annika; Campbell, Gill; Mayer, Claus-Dieter; Boelen, Anita; Anderson, Richard A.; Ross, Alexander W.; Mercer, Julian G.; Barrett, Perry

    2014-01-01

    The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify

  20. ENERGY REGULATION IN YOUNG PEOPLE

    Directory of Open Access Journals (Sweden)

    Caroline J. Dodd

    2007-09-01

    Full Text Available Obesity in young people is now realised as a worldwide crisis of epidemic proportion. The aetiology of this disease suggests a disruption in regulation of energy at the population level, leading to a positive energy balance and excess adiposity. The relative contribution of food intake and physical inactivity remains to be elucidated. Treatment interventions have aimed to create a deficit in energy balance through manipulation of physical activity, behavioural components or, to a lesser extent, dietary modification. Whether such intervention is maintained in the long-term is as yet unclear, however it seems a combination of therapies is optimal. Mindful of a mismatch between energy intake and expenditure, recent work has begun to examine the acute relationship between physical activity and food intake in children. Initial findings suggest a short-term delay in compensation through energy intake for exercise- induced energy expenditure. The overarching study of energy regulation in children and adolescents is clearly multifaceted in nature and variables to be assessed or manipulated require careful consideration. The collection of paediatric physical activity, energy expenditure and food intake data is a time-consuming process, fraught with potential sources of error. Investigators should consider the validity and reliability of these and other issues, alongside the logistics of any proposed study. Despite these areas of concern, recent advances in the field should provide exciting opportunities for future research in paediatric energy regulation on a variety of levels

  1. Dorsomedial hypothalamic NPY and energy balance control.

    Science.gov (United States)

    Bi, Sheng; Kim, Yonwook J; Zheng, Fenping

    2012-12-01

    Neuropeptide Y (NPY) is a potent hypothalamic orexigenic peptide. Within the hypothalamus, Npy is primarily expressed in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH). While the actions of ARC NPY in energy balance control have been well studied, a role for DMH NPY is still being unraveled. In contrast to ARC NPY that serves as one of downstream mediators of actions of leptin in maintaining energy homeostasis, DMH NPY is not under the control of leptin. Npy gene expression in the DMH is regulated by brain cholecystokinin (CCK) and other yet to be identified molecules. The findings of DMH NPY overexpression or induction in animals with increased energy demands and in certain rodent models of obesity implicate a role for DMH NPY in maintaining energy homeostasis. In support of this view, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH causes increases in food intake and body weight and exacerbates high-fat diet-induced hyperphagia and obesity. Knockdown of NPY in the DMH via AAV-mediated RNAi ameliorates hyperphagia, obesity and glucose intolerance of Otsuka Long-Evans Tokushima Fatty rats in which DMH NPY overexpression has been proposed to play a causal role. NPY knockdown in the DMH also prevents high-fat diet-induced hyperphagia, obesity and impaired glucose homeostasis. A detailed examination of actions of DMH NPY reveals that DMH NPY specifically affects nocturnal meal size and produces an inhibitory action on within meal satiety signals. In addition, DMH NPY modulates energy expenditure likely through affecting brown adipocyte formation and thermogenic activity. Overall, the recent findings provide clear evidence demonstrating critical roles for DMH NPY in energy balance control, and also imply a potential role for DMH NPY in maintaining glucose homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Glial cells and energy balance.

    Science.gov (United States)

    Argente-Arizón, Pilar; Guerra-Cantera, Santiago; Garcia-Segura, Luis Miguel; Argente, Jesús; Chowen, Julie A

    2017-01-01

    The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females. © 2017 Society for Endocrinology.

  3. Primary cilia in energy balance signaling and metabolic disorder

    OpenAIRE

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organell...

  4. Neural Control of Energy Balance: Translating Circuits to Therapies

    OpenAIRE

    Gautron, Laurent; Elmquist, Joel K.; Williams, Kevin W.

    2015-01-01

    Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacother...

  5. Physical activity, energy balance and obesity.

    OpenAIRE

    Jordi Salas-Salvado; Jose Luis Griera; Jose Maria Manzanares; Montserrat Barbany; Jose Contreras; Pilar Amigo

    2007-01-01

    Physical activity, energy balance and obesity. Obesity appears when energy intake exceeds energy expenditure. The most important variable compound of energy expenditure is physical activity. The global epidemics of obesity seem closely related to reduced physical activity and sedentariness widely increasing nowadays. Once obesity has developed, caloric intake becomes similar to energy expenditure. To lose weight, besides decreasing energy intake, energy expenditure must be increased. The p...

  6. High-Intensity Sweeteners and Energy Balance

    Science.gov (United States)

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  7. Comprehensive Energy Balance Measurements in Mice.

    Science.gov (United States)

    Moir, Lee; Bentley, Liz; Cox, Roger D

    2016-09-01

    In mice with altered body composition, establishing whether it is food intake or energy expenditure, or both, that is the major determinant resulting in changed energy balance is important. In order to ascertain where the imbalance is, the acquisition of reproducible data is critical. Therefore, here we provide detailed descriptions of how to determine energy balance in mice. This encompasses protocols for establishing energy intake from home cage measurement of food intake, determining energy lost in feces using bomb calorimetry, and using equations to calculate parameters such as energy intake (EI), digested energy intake (DEI), and metabolisable energy intake (MEI) to determine overall energy balance. We also discuss considerations that should be taken into account when planning these experiments, including diet and sample sizes. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  8. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance.

    Science.gov (United States)

    Schneeberger, Marc; Gomis, Ramon; Claret, Marc

    2014-02-01

    Alterations in adequate energy balance maintenance result in serious metabolic disturbances such as obesity. In mammals, this complex process is orchestrated by multiple and distributed neuronal circuits. Hypothalamic and brainstem neuronal circuits are critically involved in the sensing of circulating and local factors conveying information about the energy status of the organism. The integration of these signals culminates in the generation of specific and coordinated physiological responses aimed at regulating energy balance through the modulation of appetite and energy expenditure. In this article, we review current knowledge on the homeostatic regulation of energy balance, emphasizing recent advances in mouse genetics, electrophysiology, and optogenetic techniques that have greatly contributed to improving our understanding of this central process.

  9. Leptin signaling, adiposity, and energy balance.

    Science.gov (United States)

    Jéquier, Eric

    2002-06-01

    A chronic minor imbalance between energy intake and energy expenditure may lead to obesity. Both lean and obese subjects eventually reach energy balance and their body weight regulation implies that the adipose tissue mass is "sensed", leading to appropriate responses of energy intake and energy expenditure. The cloning of the ob gene and the identification of its encoded protein, leptin, have provided a system signaling the amount of adipose energy stores to the brain. Leptin, a hormone secreted by fat cells, acts in rodents via hypothalamic receptors to inhibit feeding and increase thermogenesis. A feedback regulatory loop with three distinct steps has been identified: (1) a sensor (leptin production by adipose cells) monitors the size of the adipose tissue mass; (2) hypothalamic centers receive and integrate the intensity of the leptin signal through leptin receptors (LRb); (3) effector systems, including the sympathetic nervous system, control the two main determinants of energy balance-energy intake and energy expenditure. While this feedback regulatory loop is well established in rodents, there are many unsolved questions about its applicability to body weight regulation in humans. The rate of leptin production is related to adiposity, but a large portion of the interindividual variability in plasma leptin concentration is independent of body fatness. Gender is an important factor determining plasma leptin, with women having markedly higher leptin concentrations than men for any given degree of fat mass. The ob mRNA expression is also upregulated by glucocorticoids, whereas stimulation of the sympathetic nervous system results in its inhibition. Furthermore, leptin is not a satiety factor in humans because changes in food intake do not induce short-term increases in plasma leptin levels. After its binding to LRb in the hypothalamus, leptin stimulates a specific signaling cascade that results in the inhibition of several orexigenic neuropeptides, while

  10. Melanocortin Control of Energy Balance: Evidence from Rodent Models

    Science.gov (United States)

    De Jonghe, Bart C.; Hayes, Matthew R.; Bence, Kendra K.

    2011-01-01

    Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of long term energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed. PMID:21553232

  11. Energy balance in solid state fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L.J.A.; Torres, A.; Echevarria, J.; Saura, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba))

    1991-01-01

    It was applied a macroscopic energy balance to a solid state fermentation process and an electron balance in order to estimate the temperature and the heat evolved in the process. There were employed several equations that describe the development of the system and offer the possibility to design or control such fermentations. (orig.).

  12. Energy balance of biodiesel production from canola

    OpenAIRE

    Silva,Luis Felipe Lima e; Gonçalves,Wilson Magela; Maluf,Wilson Roberto; Resende,Luciane Vilela; Sarmiento,Christiany Mattioli; Licursi,Vicente; Moretto,Paulo

    2017-01-01

    ABSTRACT: The aim of the present study was to estimate the energy balance (output/input ratio) of the canola crop for biodiesel production, under Brazilian conditions. Fossil energy expended in the production of 600kg of oil per hectare was 7,146,537kcal. The estimated energy yield per hectare was 9,930,000kcal from the production of 1,500kg ha-1 of seeds (40% oil and 60% oil cake), which resulted in an energy balance of 1.39. Results indicated the viability of biofuel production from canola,...

  13. [Energy balance among female athletes].

    Science.gov (United States)

    Arieli, Rakefet; Constantini, Naama

    2012-02-01

    Athletes need to consume sufficient energy to meet their training demands, maintain their health, and if young, to ensure their growth and development. Athletes are often preoccupied by their body weight and shape, and in some sports might be subjected to pressure to lose weight by coaches, peers or themselves. Eating disorders and poor eating habits are prevalent among female athletes, especially in sport disciplines where low body weight is required to improve performance or for "aesthetic" appearance or in weight category sports. Low energy intake has deleterious effects on many systems, including the cardiovascular system, several hormonal pathways, musculoskeletal system, fluids and electrolytes, thermoregulation, growth and development. Various fitness components and overall performance are also negatively affected. All these, together with poor nutritional status that causes vitamin and mineral deficiencies, poor concentration and depression, put the athlete at an increased injury risk. Energy availability is now recognized as the primary factor initiating these health problems. Energy availability is defined as dietary energy intake minus exercise energy expenditure. If below 30 kcal/kg fat free mass per day, reproductive system functions, as well as other metabolic systems, might be suppressed. The case presented is of a young female Judoka, who complained of fatigue and weakness. Medical and nutritional assessment revealed that she suffered from low energy availability, which slowed her growth and development, and negatively affected her health and athletic performance. This case study emphasizes the importance of adequate energy availability in young female athletes in order to ensure their health.

  14. Energy balance of biodiesel production from canola

    Directory of Open Access Journals (Sweden)

    Luis Felipe Lima e Silva

    Full Text Available ABSTRACT: The aim of the present study was to estimate the energy balance (output/input ratio of the canola crop for biodiesel production, under Brazilian conditions. Fossil energy expended in the production of 600kg of oil per hectare was 7,146,537kcal. The estimated energy yield per hectare was 9,930,000kcal from the production of 1,500kg ha-1 of seeds (40% oil and 60% oil cake, which resulted in an energy balance of 1.39. Results indicated the viability of biofuel production from canola, but also showed the need to improve the technology used to increase the energy and economic balance ratios.

  15. Energy Landscape of Social Balance

    Science.gov (United States)

    Marvel, Seth A.; Strogatz, Steven H.; Kleinberg, Jon M.

    2009-11-01

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social “balance” allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  16. Neural control of energy balance: translating circuits to therapies.

    Science.gov (United States)

    Gautron, Laurent; Elmquist, Joel K; Williams, Kevin W

    2015-03-26

    Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacotherapeutic and surgical interventions for the treatment of obesity and diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Influence of Hot and Cold Environments on the Regulation of Energy Balance Following a Single Exercise Session: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Keyne Charlot

    2017-06-01

    Full Text Available Understanding the regulation of human food intake in response to an acute exercise session is of importance for interventions with athletes and soldiers, as well as overweight individuals. However, the influence of hot and cold environments on this crucial function for the regulation of body mass and motor performance has not been summarized. The purpose of this review was to exhaustively search the literature on the effect of ambient temperature during an exercise session on the subsequent subjective feeling of appetite, energy intake (EI and its regulation. In the absence of stress due to environmental temperature, exercise-induced energy expenditure is not compensated by EI during an ad libitum meal following the session, probably due to decreased acylated ghrelin and increased peptide tyrosine tyrosine (PYY, glucagon-like peptide 1 (GLP-1, and pancreatic polypeptide (PP levels. No systematic analysis has been yet made for major alterations of relative EI in cold and hot environments. However, observed eating behaviors are altered (proportion of solid/liquid food, carbohydrate/fat and physiological regulation appears also to be altered. Anorexigenic signals, particularly PYY, appear to further increase in hot environments than in those that are thermoneutral. Ghrelin and leptin may be involved in the observed increase in EI after exercise in the cold, in parallel with increased energy expenditure. The potential influence of ambient thermal environment on eating behaviors after an exercise session should not be neglected.

  18. Influence of Hot and Cold Environments on the Regulation of Energy Balance Following a Single Exercise Session: A Mini-Review

    Science.gov (United States)

    Charlot, Keyne; Faure, Cécile; Antoine-Jonville, Sophie

    2017-01-01

    Understanding the regulation of human food intake in response to an acute exercise session is of importance for interventions with athletes and soldiers, as well as overweight individuals. However, the influence of hot and cold environments on this crucial function for the regulation of body mass and motor performance has not been summarized. The purpose of this review was to exhaustively search the literature on the effect of ambient temperature during an exercise session on the subsequent subjective feeling of appetite, energy intake (EI) and its regulation. In the absence of stress due to environmental temperature, exercise-induced energy expenditure is not compensated by EI during an ad libitum meal following the session, probably due to decreased acylated ghrelin and increased peptide tyrosine tyrosine (PYY), glucagon-like peptide 1 (GLP-1), and pancreatic polypeptide (PP) levels. No systematic analysis has been yet made for major alterations of relative EI in cold and hot environments. However, observed eating behaviors are altered (proportion of solid/liquid food, carbohydrate/fat) and physiological regulation appears also to be altered. Anorexigenic signals, particularly PYY, appear to further increase in hot environments than in those that are thermoneutral. Ghrelin and leptin may be involved in the observed increase in EI after exercise in the cold, in parallel with increased energy expenditure. The potential influence of ambient thermal environment on eating behaviors after an exercise session should not be neglected. PMID:28604591

  19. Balancing the Energy-Water Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Jan

    2010-09-15

    Optimizing the complex tradeoffs in the Energy-Water Nexus requires quantification of energy use, carbon emitted and water consumed. Water is consumed in energy production and is often a constraint to operations. More global attention and investment has been made on reducing carbon emissions than on water management. Review of public reporting by the largest 107 global power producers and 50 companies in the oil/gas industry shows broad accounting on carbon emissions but only partial reporting on water consumption metrics. If the Energy-Water Nexus is to be balanced, then water must also be measured to be optimally managed with carbon emissions.

  20. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  1. Nexus of poverty, energy balance and health.

    Science.gov (United States)

    Mishra, C P

    2012-04-01

    Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification

  2. Nexus of poverty, energy balance and health

    Directory of Open Access Journals (Sweden)

    C P Mishra

    2012-01-01

    Full Text Available Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years, 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%, having main occupation of family as business (55.3%, and highest per capita income group (57.1% with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0% in SC/ST category and least (65.7% in upper caste group. In case of geriatric group, higher adjusted Odd′s Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56, not kept money (AOR 5.27, CI 1.58-17.56, belonging to lower and upper middle SES by Udai Pareekh

  3. Nexus of Poverty, Energy Balance and Health

    Science.gov (United States)

    Mishra, C. P.

    2012-01-01

    Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification

  4. Gut Hormones and Energy Balance, The Future for Obesity Therapy?

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: The prevalence of obesity is increasing in both developed and developing countries along with associated diseases such as type 2 diabetes and coronary heart disease. The recent discovery of a number of gut hormones that play a role in appetite regulation and are released or suppressed in response to a meal may offer new targets for the treatments of obesity. CONTENT: In addition to the obvious role of the gut in the digestion and absorption of nutrient, the intestine and associated visceral organs, including the pancreas, liver, and visceral adipose depots, have important sensing and signaling roles in the regulation of energy homeostatis. Signals reflecting energy stores, recent nutritional state, and other parameters are integrated in the central nervous system, particularly in the hypotalamus, to coordinate energy intake and expenditure. SUMMARY: Our understanding of the role of the gut in energy balance and insights into gut-derived signals will stimulate previously unexplored therapeutics for obesity and other disorders of energy balance. KEYWORDS: obesity, energy, balance, gut hormones, satiation, satiety.

  5. Importance of energy balance in agriculture.

    Science.gov (United States)

    Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.

    2012-04-01

    Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of

  6. Brain Ceramide Metabolism in the Control of Energy Balance

    Directory of Open Access Journals (Sweden)

    Céline Cruciani-Guglielmacci

    2017-10-01

    Full Text Available The regulation of energy balance by the central nervous system (CNS is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D. Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate, the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.

  7. Balancing Energy Processes in Turbine Engines

    Directory of Open Access Journals (Sweden)

    Balicki Włodzimierz

    2015-01-01

    Full Text Available The article discusses the issue of balancing energy processes in turbine engines in operation in aeronautic and marine propulsion systems with the aim to analyse and evaluate basic operating parameters. The first part presents the problem of enormous amounts of energy needed for driving fans and compressors of the largest contemporary turbofan engines commonly used in long-distance aviation. The amounts of the transmitted power and the effect of flow parameters and constructional properties of the engines on their performance and real efficiency are evaluated. The second part of the article, devoted to marine applications of turbine engines, presents the energy balance of the kinetic system of torque transmission from main engine turbines to screw propellers in the combined system of COGAG type. The physical model of energy conversion processes executed in this system is presented, along with the physical model of gasodynamic processes taking place in a separate driving turbine of a reversing engine. These models have made the basis for formulating balance equations, which then were used for analysing static and dynamic properties of the analysed type of propulsion, in particular in the aspect of mechanical loss evaluation in its kinematic system.

  8. Energy balance at a crossroads: translating the science into action.

    Science.gov (United States)

    Manore, Melinda M; Brown, Katie; Houtkooper, Linda; Jakicic, John; Peters, John C; Smith Edge, Marianne; Steiber, Alison; Going, Scott; Gable, Lisa Guillermin; Krautheim, Ann Marie

    2014-07-01

    One of the major challenges facing the United States is the high number of overweight and obese adults and the growing number of overweight and unfit children and youth. To improve the nation's health, young people must move into adulthood without the burden of obesity and its associated chronic diseases. To address these issues, the American College of Sports Medicine, the Academy of Nutrition and Dietetics, and the US Department of Agriculture/Agriculture Research Service convened an expert panel meeting in October 2012 titled "Energy Balance at a Crossroads: Translating the Science into Action." Experts in the fields of nutrition and exercise science came together to identify the biological, lifestyle, and environmental changes that will most successfully help children and families attain and manage energy balance and tip the scale toward healthier weights. Two goals were addressed: 1) professional training and 2) consumer/community education. The training goal focused on developing a comprehensive strategy to facilitate the integration of nutrition and physical activity (PA) using a dynamic energy balance approach for regulating weight into the training of undergraduate and graduate students in dietetics/nutrition science, exercise science/PA, and pre-K-12 teacher preparation programs and in training existing cooperative extension faculty. The education goal focused on developing strategies for integrating dynamic energy balance into nutrition and PA educational programs for the public, especially programs funded by federal/state agencies. The meeting expert presenters and participants addressed three key areas: 1) biological and lifestyle factors that affect energy balance, 2) undergraduate/graduate educational and training issues, and 3) best practices associated with educating the public about dynamic energy balance. Specific consensus recommendations were developed for each goal.

  9. Sustainable Urban Regeneration Based on Energy Balance

    Directory of Open Access Journals (Sweden)

    Sacha Silvester

    2012-07-01

    Full Text Available In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming economical and environmental interests on infrastructure, in relation to the sustainable urban development and regeneration from the perspective of the tripod people, technology and design is elaborated. However, this is at different scales, starting mainly from the perspective of the urban dynamics. This approach includes a renewed look at the ‘urban metabolism’ and the role of environmental technology, urban ecology and environment behavior focus. Second, the potential benefits of strategic and balanced introduction and use of decentralized devices and electric vehicles (EVs, and attached generation based on renewables are investigated in more detail in the case study of the ‘Merwe-Vierhaven’ area (MW4 in the Rotterdam city port in the Netherlands. In order to optimize the energy balance of this urban renewal area, it is found to be impossible to do this by tuning the energy consumption. It is more effective to change the energy mix and related infrastructures. However, the problem in existing urban areas is that often these areas are restricted to a few energy sources due to lack of available space for integration. Besides this, energy consumption in most cases is relatively concentrated in (existing urban areas. This limits the potential of sustainable urban regeneration based on decentralized systems, because there is no balanced choice regarding the energy mix based on renewables and system optimization. Possible solutions to obtain a balanced energy profile can come from either the choice to not provide all energy locally, or by adding different types of storage devices to the systems. The use of energy balance based on renewables as a

  10. Energy-balanced algorithm for RFID estimation

    Science.gov (United States)

    Zhao, Jumin; Wang, Fangyuan; Li, Dengao; Yan, Lijuan

    2016-10-01

    RFID has been widely used in various commercial applications, ranging from inventory control, supply chain management to object tracking. It is necessary for us to estimate the number of RFID tags deployed in a large area periodically and automatically. Most of the prior works use passive tags to estimate and focus on designing time-efficient algorithms that can estimate tens of thousands of tags in seconds. But for a RFID reader to access tags in a large area, active tags are likely to be used due to their longer operational ranges. But these tags use their own battery as energy supplier. Hence, conserving energy for active tags becomes critical. Some prior works have studied how to reduce energy expenditure of a RFID reader when it reads tags IDs. In this paper, we study how to reduce the amount of energy consumed by active tags during the process of estimating the number of tags in a system and make the energy every tag consumed balanced approximately. We design energy-balanced estimation algorithm that can achieve our goal we mentioned above.

  11. Surface Energy Balance System (SEBS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  12. Obesity and Energy Balance in GI Cancer.

    Science.gov (United States)

    Brown, Justin C; Meyerhardt, Jeffrey A

    2016-12-10

    The prevalence of overweight (body mass index [BMI], 25 to 29.9 kg/m(2)) and obesity (BMI ≥ 30 kg/m(2)) have increased dramatically in the United States. Because increasing BMI is associated with the development of multiple different cancer types, including most GI cancers, providers will frequently encounter patients with GI cancer who are overweight or obese. Mounting evidence associates overweight and/or obesity with worsened prognosis in multiple GI cancers, including esophageal, gastric, hepatocellular, pancreatic, and colorectal. However, these data are observational and may be subject to bias and/or confounding. Furthermore, in some cancer types, the associations between BMI and outcomes is not linear, where overweight and class I obese patients may have an improvement in outcome. This report provides a brief highlight of existing studies that have linked overweight and/or obesity to prognosis in GI cancer; provides recommendations on best management practices; and discusses limitations, controversies, and future directions in this rapidly evolving area. There are multiple areas of promise that warrant continued investigation: What are the comparative contributions of energy balance, including weight, dietary patterns, and physical activity on cancer prognosis? What are the specific physiologic pathways that mediate the relationship between energy balance and prognosis? What is the relationship between low muscle mass (sarcopenia) or sarcopenic obesity and cancer prognosis? Are there subsets of patients for whom purposefully altering energy balance would be deleterious to prognosis? This area is rich with opportunities to understand how states of energy (im)balance can be favorably altered to promote healthy survivorship.

  13. Obesity and Energy Balance in GI Cancer

    Science.gov (United States)

    Meyerhardt, Jeffrey A.

    2016-01-01

    The prevalence of overweight (body mass index [BMI], 25 to 29.9 kg/m2) and obesity (BMI ≥ 30 kg/m2) have increased dramatically in the United States. Because increasing BMI is associated with the development of multiple different cancer types, including most GI cancers, providers will frequently encounter patients with GI cancer who are overweight or obese. Mounting evidence associates overweight and/or obesity with worsened prognosis in multiple GI cancers, including esophageal, gastric, hepatocellular, pancreatic, and colorectal. However, these data are observational and may be subject to bias and/or confounding. Furthermore, in some cancer types, the associations between BMI and outcomes is not linear, where overweight and class I obese patients may have an improvement in outcome. This report provides a brief highlight of existing studies that have linked overweight and/or obesity to prognosis in GI cancer; provides recommendations on best management practices; and discusses limitations, controversies, and future directions in this rapidly evolving area. There are multiple areas of promise that warrant continued investigation: What are the comparative contributions of energy balance, including weight, dietary patterns, and physical activity on cancer prognosis? What are the specific physiologic pathways that mediate the relationship between energy balance and prognosis? What is the relationship between low muscle mass (sarcopenia) or sarcopenic obesity and cancer prognosis? Are there subsets of patients for whom purposefully altering energy balance would be deleterious to prognosis? This area is rich with opportunities to understand how states of energy (im)balance can be favorably altered to promote healthy survivorship. PMID:27903148

  14. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  15. Regulation of cation balance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cyert, Martha S; Philpott, Caroline C

    2013-03-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.

  16. Energy Balance, Climate, and Life - Work of M. Budyko

    Science.gov (United States)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  17. BASIC program calculates flue gas energy balance

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1993-10-01

    Engineers always seek cost-cutting, energy-efficient ways to operate boilers and waste-heat recovery systems. The starting point in the design or performance evaluation of any heat transfer equipment is an energy balance calculation. This easy-to-use BASIC program tackles this problem. Using the gas stream analysis as percent weight or volume, the program calculates inlet and exit temperatures, heat duty, the gas stream's molecular weight, etc. This program is a definite must for the plant engineering notebook.

  18. The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance

    Science.gov (United States)

    Hand, Gregory A.; Shook, Robin P.; Paluch, Amanda E.; Baruth, Meghan; Crowley, E. Patrick; Jaggers, Jason R.; Prasad, Vivek K.; Hurley, Thomas G.; Hebert, James R.; O'Connor, Daniel P.; Archer, Edward; Burgess, Stephanie; Blair, Steven N.

    2013-01-01

    Purpose: The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. Method: EBS recruited men and women aged 21 to 35 years with a body mass index between 20…

  19. Hypothalamic miRNAs: emerging roles in energy balance control.

    Science.gov (United States)

    Schneeberger, Marc; Gomez-Valadés, Alicia G; Ramirez, Sara; Gomis, Ramon; Claret, Marc

    2015-01-01

    The hypothalamus is a crucial central nervous system area controlling appetite, body weight and metabolism. It consists in multiple neuronal types that sense, integrate and generate appropriate responses to hormonal and nutritional signals partly by fine-tuning the expression of specific batteries of genes. However, the mechanisms regulating these neuronal gene programmes in physiology and pathophysiology are not completely understood. MicroRNAs (miRNAs) are key regulators of gene expression that recently emerged as pivotal modulators of systemic metabolism. In this article we will review current evidence indicating that miRNAs in hypothalamic neurons are also implicated in appetite and whole-body energy balance control.

  20. Hypothalamic miRNAs: emerging roles in energy balance control

    Directory of Open Access Journals (Sweden)

    Marc eSchneeberger

    2015-02-01

    Full Text Available The hypothalamus is a crucial central nervous system area controlling appetite, body weight and metabolism. It consists in multiple neuronal types that sense, integrate and generate appropriate responses to hormonal and nutritional signals partly by fine-tuning the expression of specific batteries of genes. However, the mechanisms regulating these neuronal gene programmes in physiology and pathophysiology are not completely understood. MicroRNAs (miRNAs are key regulators of gene expression that recently emerged as pivotal modulators of systemic metabolism. In this article we will review current evidence indicating that miRNAs in hypothalamic neurons are also implicated in appetite and whole-body energy balance control.

  1. Reproduction and energy balance: the integrative role of prolactin

    Directory of Open Access Journals (Sweden)

    T I Romantsova

    2014-03-01

    Full Text Available The physiological mechanisms controlling reproduction are closely linked to energy balance. In the recent years, accumulating evidence suggests that prolactin regulates metabolic functions, besides regulating breast development and stimulating milk formation. Hyperprolactinemia is associated with obesity and treatment with dopamine agonists results in weight loss. We discuss the integrated effects of prolactin in the metabolic control and reproductive function, the role of prolactin in the pathogenesis of obesity. The present review also describes the effects of treatment with cabergoline on body weight and cardiovascular risk markers.

  2. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines

    Directory of Open Access Journals (Sweden)

    Ophélia Le Thuc

    2017-08-01

    Full Text Available The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  3. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines.

    Science.gov (United States)

    Le Thuc, Ophélia; Stobbe, Katharina; Cansell, Céline; Nahon, Jean-Louis; Blondeau, Nicolas; Rovère, Carole

    2017-01-01

    The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  4. Comprehensive Assessments of Energy Balance in Mice.

    Science.gov (United States)

    Grobe, Justin L

    2017-01-01

    Increasing evidence supports a major role for the renin-angiotensin system (RAS) in energy balance physiology. The RAS exists as a circulating system but also as a local paracrine/autocrine signaling mechanism in target tissues including the gastrointestinal tract, the brain, the kidney, and distinct adipose beds. Through activation of various receptors in these target tissues, the RAS contributes to the control of food intake behavior, digestive efficiency, spontaneous physical activity, and aerobic and anaerobic resting metabolism. Although the assortment of methodologies available to assess the various aspects of energy balance can be daunting for an investigator new to this area, a relatively straightforward array of entry-level and advanced methodologies can be employed to comprehensively and quantitatively dissect the effects of experimental manipulations on energy homeostasis. Such methodologies and a simple initial workflow for the use of these methods are described in this chapter, including the use of metabolic caging systems, bomb calorimetry, body composition analyzers, respirometry systems, and direct calorimetry systems. Finally, a brief discussion of the statistical analyses of metabolic data is included.

  5. Energy Balance Bowen Ratio (EBBR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  6. Energy Balance Bowen Ratio Station (EBBR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-02-23

    The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  7. Mechanisms linking energy balance and reproduction: impact of prenatal environment.

    Science.gov (United States)

    Rhinehart, Erin M

    2016-01-01

    The burgeoning field of metabolic reproduction regulation has been gaining momentum due to highly frequent discoveries of new neuroendocrine factors regulating both energy balance and reproduction. Universally throughout the animal kingdom, energy deficits inhibit the reproductive axis, which demonstrates that reproduction is acutely sensitive to fuel availability. Entrainment of reproductive efforts with energy availability is especially critical for females because they expend large amounts of energy on gestation and lactation. Research has identified an assortment of both central and peripheral factors involved in the metabolic regulation of reproduction. From an evolutionary perspective, these mechanisms likely evolved to optimize reproductive fitness in an environment with an unpredictable food supply and regular bouts of famine. To be effective, however, the mechanisms responsible for the metabolic regulation of reproduction must also retain developmental plasticity to allow organisms to adapt their reproductive strategies to their particular niche. In particular, the prenatal environment has emerged as a critical developmental window for programming the mechanisms responsible for the metabolic control of reproduction. This review will discuss the current knowledge about hormonal and molecular mechanisms that entrain reproduction with prevailing energy availability. In addition, it will provide an evolutionary, human life-history framework to assist in the interpretation of findings on gestational programming of the female reproductive function, with a focus on pubertal timing as an example. Future research should aim to shed light on mechanisms underlying the prenatal modulation of the adaptation to an environment with unstable resources in a way that optimizes reproductive fitness.

  8. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  9. Brazilian energy balance 1999: 1983 to 1998 period

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1983 to 1998 period. It is divided into nine chapters, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy import and export; transformation centers balances; energy resources and reserves; energy and socio economy; energy data relating to brazilian states; and appendices - installed capacity, world data, general structure of the balance, information processing, conversion units and consolidated energy balance.

  10. Role of the microbiome in energy regulation and metabolism

    NARCIS (Netherlands)

    Nieuwdorp, Max; Gilijamse, Pim W.; Pai, Nikhil; Kaplan, Lee M.

    2014-01-01

    Intestinal microbes regulate metabolic function and energy balance; an altered microbial ecology is believed to contribute to the development of several metabolic diseases. Relative species abundance and metabolic characteristics of the intestinal microbiota change substantially in those who are

  11. Dietary energy balance modulates ovarian cancer progression and metastasis

    Science.gov (United States)

    Al-Wahab, Zaid; Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A.; Morris, Robert T.; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R.; Rattan, Ramandeep

    2014-01-01

    A high energy balance, or caloric excess, accounts as a tumor promoting factor, while a negative energy balance via caloric restriction, has been shown to delay cancer progression. The effect of energy balance on ovarian cancer progression was investigated in an isogeneic immunocompetent mouse model of epithelial ovarian cancer kept on a regimen of regular diet, high energy diet (HED) and calorie restricted diet (CRD), prior to inoculating the animals intraperitoneally with the mouse ovarian surface epithelial ID8 cancer cells. Tumor evaluation revealed that mice group on HED displayed the most extensive tumor formation with the highest tumor score at all organ sites (diaphragm, peritoneum, bowel, liver, kidney, spleen), accompanied with increased levels of insulin, leptin, insulin growth factor-1 (IGF-1), monocyte chemoattractant protein-1 (MCP-1), VEGF and interleukin 6 (IL-6). On the other hand, the mice group on CRD exhibited the least tumor burden associated with a significant reduction in levels of insulin, IGF-1, leptin, MCP-1, VEGF and IL-6. Immunohistochemistry analysis of tumors from HED mice showed higher activation of Akt and mTOR with decreased adenosine monophosphate activated kinase (AMPK) and SIRT1 activation, while tumors from the CRD group exhibited the reverse profile. In conclusion, ovarian cancer growth and metastasis occurred more aggressively under HED conditions and was significantly curtailed under CRD. The suggested mechanism involves modulated secretion of growth factors, cytokines and altered regulation of AMPK and SIRT1 that converges on mTOR inhibition. While the role of a high energy state in ovarian cancer has not been confirnmed in the literature, the current findings support investigating the potential impact of diet modulation as adjunct to other anticancer therapies and as possible individualized treatment strategy of epithelial ovarian cancer. PMID:25026276

  12. Amylin-mediated control of glycemia, energy balance, and cognition.

    Science.gov (United States)

    Mietlicki-Baase, Elizabeth G

    2016-08-01

    Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance.

    Science.gov (United States)

    Brown, Juliette A; Woodworth, Hillary L; Leinninger, Gina M

    2015-01-01

    Survival depends on an organism's ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.

  14. To Ingest or Rest? Specialized Roles of Lateral Hypothalamic Area Neurons in Coordinating Energy Balance

    Directory of Open Access Journals (Sweden)

    Juliette A. Brown

    2015-02-01

    Full Text Available Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH or orexins/hypocretins (OX are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.

  15. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance.

    Science.gov (United States)

    Drenowatz, Clemens

    2015-09-01

    An imbalance between energy intake and energy expenditure is the primary etiology for excess weight gain. Increased energy expenditure via exercise and energy restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to energy balance. Current research points to a loose coupling between energy intake and energy expenditure on a daily basis, and evidence for long-term adaptations has been inconsistent. The lack of conclusive evidence on compensatory adaptations in response to alterations in energy balance can be attributed to differences in intervention type and study population. Physical activity (PA) levels may be reduced in response to aerobic exercise but not in response to resistance exercise. Furthermore, athletic and lean adults have been shown to increase their energy intake in response to exercise, whereas no such response was observed in obese adults. There is also evidence that caloric restriction is associated with a decline in PA. Generally, humans seem to be better equipped to defend against weight loss than avoid weight gain, but results also show a large individual variability. Therefore, individual differences rather than group means should be explored to identify specific characteristics of "compensators" and "noncompensators." This review emphasizes the need for more research with simultaneous measurements of all major components contributing to energy balance to enhance the understanding of the regulation of energy balance, which is crucial to address the current obesity epidemic. © 2015 American Society for Nutrition.

  16. Brazilian energy balance 1996: 1980 to 1995 period

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1980 to 1995 period. It`s divided into nine chapters, as follows: summary; energy supply and consumption by source; energy import and export; transformation centers balances; energy sources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances 1 fig., 68 graphs., 145 tabs.

  17. Effects of neonatal programming on hypothalamic mechanisms controlling energy balance.

    Science.gov (United States)

    Contreras, C; Novelle, M G; Leis, R; Diéguez, C; Skrede, S; López, M

    2013-12-01

    The prevalence of overweight and obesity in most developed countries has markedly increased during the last decades. In addition to genetic, hormonal, and metabolic influences, environmental factors like fetal and neonatal nutrition play key roles in the development of obesity. Interestingly, overweight during critical developmental periods of fetal and/or neonatal life has been demonstrated to increase the risk of obesity throughout juvenile life into adulthood. In spite of this evidence, the specific mechanisms underlying this fetal/neonatal programming are not perfectly understood. However, it is clear that circulating hormones such as insulin and leptin play a critical role in the development and programming of hypothalamic circuits regulating energy balance. Here, we review what is currently known about the impact of perinatal malnutrition on the mechanisms regulating body weight homeostasis. Understanding these molecular mechanisms may provide new targets for the treatment of obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Primary cilia in energy balance signaling and metabolic disorder.

    Science.gov (United States)

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-12-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.

  19. Cognitive determinants of energy balance-related behaviours : measurement issues

    NARCIS (Netherlands)

    Kremers, Stef P J; Visscher, Tommy L S; Seidell, Jacob C; van Mechelen, Willem; Brug, Johannes

    2005-01-01

    The burden of disease as a result of overweight and obesity calls for in-depth examination of the main causes of behavioural actions responsible for weight gain. Since weight gain is the result of a positive energy balance, these behavioural actions are referred to as 'energy balance-related

  20. Energy Balance: An Overview With Emphasis on Children

    OpenAIRE

    Tam, Charmaine S; Ravussin, Eric

    2011-01-01

    Childhood obesity is a significant public health problem, affecting one in five children in the United States. At the crux of this issue is a dysregulation of energy intake and energy expenditure. This review will provide an overview on energy and nutrient balance. We discuss energy balance studies in children using indirect and direct measures, and focus particularly on obesity as a deleterious consequence in childhood survivors of cancer. Obesity affects 11–57% of children with acute lympho...

  1. Sugars: hedonic aspects, neuroregulation, and energy balance.

    Science.gov (United States)

    Levine, Allen S; Kotz, Catherine M; Gosnell, Blake A

    2003-10-01

    The prevalence of obesity has increased dramatically in recent years in the United States, with similar patterns seen in several other countries. Although there are several potential explanations for this dramatic increase in obesity, dietary influences are a contributing factor. An inverse correlation between dietary sugar intake and body mass index has been reported, suggesting beneficial effects of carbohydrate intake on body mass index. In this review we discuss how sugars interact with regulatory neurochemicals in the brain to affect both energy intake and energy expenditure. These neurochemicals appear to be involved in dietary selection, and sugars and palatable substances affect neurochemical changes in the brain. For example, rats that drink sucrose solutions for 3 wk have major changes in neuronal activity in the limbic area of the brain, a region involved in pleasure and other emotions. We also investigate the relations between sucrose (and other sweet substances), drugs of abuse, and the mesolimbic dopaminergic system. The presence of sucrose in an animal's cage can affect the animals desire to self-administer drugs of abuse. Also, an animal's level of sucrose preference can predict its desire to self-administer cocaine. Such data suggest a relation between sweet taste and drug reward, although the relevance to humans is unclear. Finally, we address the influence of sugar on body weight control. For example, sucrose feeding for 2 wk decreases the efficiency of energy utilization and increases gene expression of uncoupling protein 3 in muscle, suggesting that sucrose may influence uncoupling protein 3 activity and contribute to changes in metabolic efficiency and thus regulation of body weight.

  2. Dietary energy density, inflammation and energy balance in palliative care cancer patients.

    Science.gov (United States)

    Wallengren, Ola; Bosaeus, Ingvar; Lundholm, Kent

    2013-02-01

    Diet energy density is correlated with energy intake in patients with advanced cancer. Little information is available about the effects of energy density on energy balance, nor about the influence of other factors, such as systemic inflammation and disease stage. We assessed whether dietary energy density or energy intake predict energy balance over 4 months in patients with advanced cancer. We examined also the influence of systemic inflammation and survival time. Energy balance was calculated from the change in body energy content by repeated dual-energy X-ray scans in 107 patients for a total of 164 4-month measurement periods. A linear mixed model was used to investigate relationships between diet energy density (kcal/g), energy intake (kcal/day) and energy balance with systemic inflammation and survival as covariates. In an unadjusted model, the energy density of solid food and energy intake were positive predictors of energy balance (P energy density and energy intake increased energy balance by 38 and 41 kcal/day, respectively. The total diet energy density did not predict energy balance (P > 0.05). Survival was positively (P energy balance. Only energy intake remained a significant predictor of energy balance after adjustment for survival and inflammatory status. Dietary energy density is positively associated with energy balance in patients with advanced cancer. Relations between energy intake, energy density and energy balance are affected by systemic inflammation. Thus, targeting systemic inflammation may be important in nutritional interventions in this patient group. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. The Role of PVH Circuits in Leptin Action and Energy Balance.

    Science.gov (United States)

    Sutton, Amy K; Myers, Martin G; Olson, David P

    2016-01-01

    Although it has been known for more than a century that the brain controls overall energy balance and adiposity by regulating feeding behavior and energy expenditure, the roles for individual brain regions and neuronal subtypes were not fully understood until recently. This area of research is active, and as such our understanding of the central regulation of energy balance is continually being refined as new details emerge. Much of what we now know stems from the discoveries of leptin and the hypothalamic melanocortin system. Hypothalamic circuits play a crucial role in the control of feeding and energy expenditure, and within the hypothalamus, the arcuate nucleus (ARC) functions as a gateway for hormonal signals of energy balance, such as leptin. It is also well established that the ARC is a primary residence for hypothalamic melanocortinergic neurons. The paraventricular hypothalamic nucleus (PVH) receives direct melanocortin input, along with other integrated signals that affect energy balance, and mediates the majority of hypothalamic output to control both feeding and energy expenditure. Herein, we review in detail the structure and function of the ARC-PVH circuit in mediating leptin signaling and in regulating energy balance.

  4. [Obesity based on mutation of genes involved in energy balance].

    Science.gov (United States)

    Hainerová, I

    2007-01-01

    Within the last decade an intensive research led to an identification of several genes which are involved in a regulation of energy balance. In most cases, carriers of these gene mutations do not exhibit further characteristic phenotypic features except for a severe obesity. Obesity based on mutation of one gene product is called monogenic obesity. Mutations in genes for leptin, leptin receptor, proopiomelanocortin, prohormone convertase 1, melanocortin 4 and 3 receptor disrupt the physiological humoral signalization between peripheral signals and the hypothalamic centres of satiety and hunger. Defects of all above mentioned genes lead to phenotype of abnormal eating behaviour followed by a development of severe early-onset obesity. Mutations of melanocortin 4 receptor gene represent the most common cause of monogenic obesity because they are detected in almost 6 % children with early-onset severe obesity. Mutations of the other genes involved in energy homeostasis are very rare. Although these mutations are sporadic we assume that further research of monogenic forms of obesity might lead to our understanding of physiology and pathophysiology of regulation of the energy homeostasis and eating behaviour. Additionally, they may open new approach to the management of eating behaviour and to the treatment of obesity.

  5. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    Science.gov (United States)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  6. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.

    Science.gov (United States)

    Le Thuc, Ophélia; Rovère, Carole

    2016-01-01

    The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from

  7. Urinary C-peptide is not an accurate bioindicator of energy balance in humans.

    Science.gov (United States)

    Bergouignan, Audrey; Habold, Caroline; Rudwill, Floriane; Gauquelin-Koch, Guillemette; Normand, Sylvie; Simon, Chantal; Blanc, Stéphane

    2012-03-01

    The apprehension of the factors that affect long term regulation of energy balance is indispensable to understand the rise in obesity prevalence as well as to delineate levers to prevent it. Accurate measurements of energy balance are however challenging during free-living conditions. Recent studies proposed urinary C-peptide, a metabolic byproduct of insulin synthesis, as reliable noninvasive assessment of energy balance. These studies were in fact essentially based on correlations between urinary C-peptide and energy intake and only focused on nonhuman primates. During a bed-rest study conducted in 16 healthy women in a controlled environment, we tested the existence of a relationship between 24 h-urinary C-peptide and energy balance in humans. Daily energy intake and body mass, body composition (dual-energy X-ray absorptiometry (DXA)) and total energy expenditure (doubly labeled water (DLW) method) was measured and energy balance was calculated as the difference between energy intake and expenditure. Urinary C-peptide was positively correlated with bed-rest-induced changes in fat mass (r(2) = 0.285; P = 0.03) and energy balance assessed at the end of the bed-rest (r(2) = 0.302; P = 0.027). However, in this tightly controlled environment, urinary C-peptide only accounted for 30% of variations in energy balance. No relationship was noted between urinary C-peptide and body or fat mass both at baseline and at the end of the bed-rest. These results indicate that urinary C-peptide cannot be used as an accurate biomarker of energy balance in the general human population in free-living conditions.

  8. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales

    Science.gov (United States)

    Boker, Steven M.

    2015-01-01

    An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197

  9. Energy balance of the lavender oil production

    Directory of Open Access Journals (Sweden)

    Osman GÖKDOĞAN

    2016-06-01

    Full Text Available This research was carried out to determine the energy input-output analysis of lavender oil production. Data from agricultural farms in Isparta province was used. Energy input was calculated as 1993.89 MJ and energy output was calculated as 2925.51 MJ. Wood energy, fresh stalked lavender flower energy, equipment energy, human labour energy, electricity energy, and water energy inputs were 54.22 %, 41.86 %, 3.40 %, 0.23 %, 0.18 %, and 0.10 % of energy inputs, respectively. In this production, it is noteworthy that wood was used as fuel in the lavender oil production distillation process as the highest input. In the energy outputs, an average of 3.10 kg lavender oil and 130 kg lavender water were extracted by processing 234 kg fresh stalked lavender flower. Energy use efficiency, specific energy, energy productivity, and net energy for lavender oil production were calculated as 1.47, 643.19 MJ kg-1, 0.002 kg MJ-1 and 931.62 MJ, respectively.

  10. Neuropeptide Exocytosis Involving Synaptotagmin-4 and Oxytocin in Hypothalamic Programming of Body Weight and Energy Balance

    Science.gov (United States)

    Zhang, Guo; Bai, Hua; Zhang, Hai; Dean, Camin; Wu, Qiang; Li, Juxue; Guariglia, Sara; Meng, Qingyuan; Cai, Dongsheng

    2015-01-01

    Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases. PMID:21315262

  11. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  12. Top 10 Research Questions Related to Energy Balance

    Science.gov (United States)

    Shook, Robin P.; Hand, Gregory A.; Blair, Steven N.

    2014-01-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy…

  13. Investigations of a Cost-Optimal Zero Energy Balance

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per

    2012-01-01

    The Net Zero Energy Building (Net ZEB) concept is worldwide recognised as a promising solution for decreasing buildings’ energy use. Nevertheless, a consistent definition of the Net ZEB concept is constantly under discussion. One of the points on the Net ZEB agenda is the zero energy balance...

  14. Teaching a Model-based Climatology Using Energy Balance Simulation.

    Science.gov (United States)

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  15. Windows with an improved energy balance of 30%

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    carried out in the project. The large glass distance helps to reduce the traditional thermal bridge effect of the spacer and the integrated frame leads to an increase in transmitted solar energy. Furthermore, a controlled air exchange in case of pressure differences between the enclosures in the glazing......The aim of the project has been to investigate and to develop thermally improved windows based on an evaluation of the energy balance of the window, i.e. the total influence of the window on the energy consumption for space heating. The energy balance is the net heat flow per window area which...... been developed, which combines the results from several different building types and building orientations. The energy balance of the reference window has been calculated to -50 kWh/m2 window area, i.e. the refence window accounts for a net energy consumption for space heating of 50 kWh/m2 window area...

  16. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  17. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  18. Energy saving statutes and regulations

    Energy Technology Data Exchange (ETDEWEB)

    Rado, L.

    1981-11-01

    The West German Federal government and the state governments are endeavouring to introduce energy saving measures with the aid of statutes, regulations, and ordinances. In his introductory remarks, the author briefly refers to the various activities since 1974 and on the basis of a 1976 report subjects the present status of statutes and ordinances on energy saving measures to a critical analysis. Special emphasis is placed on the interest of the gas supply industry.

  19. Physical activity, energy balance and obesity.

    Science.gov (United States)

    Luís Griera, José; María Manzanares, José; Barbany, Montserrat; Contreras, José; Amigó, Pilar; Salas-Salvadó, Jordi

    2007-10-01

    Obesity appears when energy intake exceeds energy expenditure. The most important variable compound of energy expenditure is physical activity. The global epidemics of obesity seem closely related to reduced physical activity and sedentariness widely increasing nowadays. Once obesity has developed, caloric intake becomes similar to energy expenditure. To lose weight, besides decreasing energy intake, energy expenditure must be increased. The promotion of physical activity is difficult and so the results of treatment of obesity are discouraging for doctors, other health professionals and patients. Proactive efforts from patients and health providers with an intensive feedback between them may be extremely helpful. Nevertheless, more studies are needed to provide better approaches on the role of physical activity for the prevention and treatment of obesity and for long-term weight-loss maintenance.

  20. Effects of ghrelin in energy balance and body weight homeostasis.

    Science.gov (United States)

    Mihalache, Laura; Gherasim, Andreea; Niță, Otilia; Ungureanu, Maria Christina; Pădureanu, Sergiu Serghei; Gavril, Radu Sebastian; Arhire, Lidia Iuliana

    2016-02-01

    Ghrelin is a gut peptide composed of 28 amino acids mostly secreted in the gastric fundus mucosa. It was isolated and described in 1999 by Kojima et al. and only three years later its specific receptor, GHSR1a, was also identified. Ghrelin, the endogenous ligand for the GH secretagogue receptor, is the only peripheral orexigenic hormone that activates the receptors to be found especially in the appetite center (hypothalamus and pituitary gland). Ghrelin is present in human plasma in two forms: an inactive form known as deacylated ghrelin, and an active form called acylated ghrelin synthesized under the action of ghrelin O-acyltransferase enzyme (GOAT). The literature even mentions an extremely complex ghrelin/GOAT/GHSR system involved in the regulation of human energy, metabolism and adaptation of energy homeostasis to environmental changes. In humans, there is a preprandial rise and a postprandial fall in plasma ghrelin levels, which strongly suggest that the peptide plays a physiological role in meal initiation and may be employed in determining the amount and quality of ingested food. Besides the stimulation of food intake, ghrelin determines a decrease in energy expenditure and promotes the storage of fatty acids in adipocytes. Thus, in the human body ghrelin induces a positive energy balance, an increased adiposity gain, as well as an increase in caloric storage, seen as an adaptive mechanism to caloric restriction conditions. In the current world context, when we are witnessing an increasing availability of food and a reduction of energy expenditure to a minimum level, these mechanisms have become pathogenic. As a consequence, the hypothesis that ghrelin is involved in the current obesity epidemic has been embraced by many scholars and researchers.

  1. Energy balance measurement: when something is not better than nothing.

    Science.gov (United States)

    Dhurandhar, N V; Schoeller, D; Brown, A W; Heymsfield, S B; Thomas, D; Sørensen, T I A; Speakman, J R; Jeansonne, M; Allison, D B

    2015-07-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their infancy, it is unacceptable to use decidedly inaccurate instruments, which may misguide health-care policies, future research and clinical judgment. The scientific and medical communities should discontinue reliance on self-reported EI and PAEE. Researchers and sponsors should develop objective measures of energy balance.

  2. The Global Energy Balance of Titan

    Science.gov (United States)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; hide

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  3. Energy balance and metabolism after cancer treatment.

    Science.gov (United States)

    Tonorezos, Emily S; Jones, Lee W

    2013-12-01

    Unfavorable physiological, biological, and behavioral alterations during and following treatment for cancer may lead to chronic energy imbalance predisposing to a myriad of deleterious health conditions including obesity, dyslipidemia, and the metabolic syndrome. In addition to the cardiovascular and musculoskeletal effects of these conditions, energy imbalance and metabolic changes after cancer treatment can also affect cancer-related morbidity and mortality. To this end, lifestyle interventions such as diet and physical activity are especially relevant to mitigate the deleterious impact of chronic energy imbalance in cancer survivors. © 2013 Elsevier Inc. All rights reserved.

  4. Introduction to energy balance of biomass production; Introduccion al calculo del balance energetico de la produccion de Biomasa

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P.

    1997-11-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs.

  5. Balancing of Network Energy using Observer Approach

    OpenAIRE

    Patharlapati, Sai Ram Charan

    2016-01-01

    Efficient energy use is primarily for any sensor networks to function for a longer time period. There have been many efficient schemes with various progress levels proposed by many researchers. Yet, there still more improvements are needed. This thesis is an attempt to make wireless sensor networks with further efficient on energy usage in the network with respect to rate of delivery of the messages. In sensor network architecture radio, sensing and actuators have influence over the power ...

  6. Energy Balance and Metabolism after Cancer Treatment

    OpenAIRE

    Tonorezos, Emily S.; Jones, Lee W.

    2013-01-01

    Unfavorable physiological, biological, and behavioral alterations during and following treatment for cancer may lead to chronic energy imbalance predisposing to a myriad of deleterious health conditions including obesity, dyslipidemia, and the metabolic syndrome. In addition to the cardiovascular and musculoskeletal effects of these conditions, energy imbalance and metabolic changes after cancer treatment can also affect cancer-related morbidity and mortality. To this end, lifestyle intervent...

  7. Energy balance in female distance runners.

    Science.gov (United States)

    Beidleman, B A; Puhl, J L; De Souza, M J

    1995-02-01

    Metabolic efficiency was assessed in ovulatory eumenorrheic female distance runners and untrained control subjects of similar age, body weight, and fat-free mass (FFM). Energy intake (EI) was estimated from 3-d dietary records. Energy expenditure (EE) was determined during the same 3-d period from individual heart rate oxygen uptake (HR/VO2) curves during rest and exercise, 24-h HR records, and the thermic effect of meals. The runners and control subjects did not differ in resting metabolic rate statistically adjusted for FFM (kJ/min), the thermic effect of a test meal (kJ/3 h), the energy cost of submaximal physical activity, or EI. EE was higher (P = 0.01) in the runners. Reported EI was lower than EE in both the runners (P = 0.007) and control subjects, (P = 0.006), resulting in energy deficits of -4131 +/- 1185 kJ/d and -1652 +/- 456 kJ/d, respectively. These female runners did not exhibit an enhanced metabolic efficiency compared with the control subjects. It is possible that the energy deficit for both the runners and control subjects was due to both restricted eating and underreporting during the measurement period. Additional studies using longer measurement periods, more sophisticated technology (ie, doubly labeled water, more subjects, and subjects of varying menstrual and energy intake status) are needed to truly answer this question.

  8. Organization of primary care practice for providing energy balance care.

    Science.gov (United States)

    Klabunde, Carrie N; Clauser, Steven B; Liu, Benmei; Pronk, Nicolaas P; Ballard-Barbash, Rachel; Huang, Terry T-K; Smith, Ashley Wilder

    2014-01-01

    Primary care physicians (PCPs) may not adequately counsel or monitor patients regarding diet, physical activity, and weight control (i.e., provide energy balance care). We assessed the organization of PCPs' practices for providing this care. The study design was a nationally representative survey conducted in 2008. The study setting was U.S. primary care practices. A total of 1740 PCPs completed two sequential questionnaires (response rate, 55.5%). The study measured PCPs' reports of practice resources, and the frequency of body mass index assessment, counseling, referral for further evaluation/management, and monitoring of patients for energy balance care. Descriptive statistics and logistic regression modeling were used. More than 80% of PCPs reported having information resources on diet, physical activity, or weight control available in waiting/exam rooms, but fewer billed (45%), used reminder systems (energy balance care. A total of 26% reported regularly assessing body mass index and always/often providing counseling as well as tracking patients for progress related to energy balance. In multivariate analyses, PCPs in practices with full electronic health records or those that bill for energy balance care provided this care more often and more comprehensively. There were strong specialty differences, with pediatricians more likely (odds ratio, 1.78; 95% confidence interval, 1.26-2.51) and obstetrician/gynecologists less likely (odds ratio, 0.28; 95% confidence interval, 0.17-0.44) than others to provide energy balance care. PCPs' practices are not well organized for providing energy balance care. Further research is needed to understand PCP care-related specialty differences.

  9. Natriuretic peptide control of energy balance and glucose homeostasis.

    Science.gov (United States)

    Coué, Marine; Moro, Cedric

    2016-05-01

    Cardiac natriuretic peptides (NP) have recently emerged as metabolic hormones. Physiological stimulation of cardiac NP release as during exercise may contribute to increase fatty acid mobilization from adipose tissue and their oxidation by skeletal muscles. Clinical studies have shown that although very high plasma NP level characterizes cardiac dysfunction and heart failure, a consistently reduced plasma NP level is observed in metabolic diseases such as obesity and type 2 diabetes. A low circulating NP level also predicts the risk of new onset type 2 diabetes. It is unclear at this stage if the "natriuretic handicap" observed in obesity is causally associated with the incidence of type 2 diabetes. Recent work indicates that NP can activate a thermogenic program in brown and white fat, increase energy expenditure and inhibit food intake. Mouse studies also argue for a key role of NP in the regulation of energy balance and glucose homeostasis. This review will focus on recent human and mouse studies to highlight the metabolic roles of NP and their potential relevance in the context of obesity and type 2 diabetes. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Energy balance in coherent electromagnetic radiation

    CERN Document Server

    Coisson, R

    1994-01-01

    Bunched charges, as in the 'free electron laser', radiate more energy than unbunched ones. For a better understanding of how the forces between particles determine the conservation of energy, we take the simple model of two charges within a wavelength of a sinusodoidal wave, and show that the relative phase of the particle's motion with respect to the wave is modified by the force between the two particles, and this explains the extra work done by the wave. The phase shift is proportional to the emitted field and depends on the retardation (particle distance divided by speed of light), and turns out to be independent of distance. (author)

  11. Cognitive determinants of energy balance-related behaviours: Measurement issues

    NARCIS (Netherlands)

    S.P.J. Kremers (Stef); T.L.S. Visscher (Tommy); J.C. Seidell (Jaap); W. van Mechelen (Willem); J. Brug (Hans)

    2005-01-01

    textabstractThe burden of disease as a result of overweight and obesity calls for in-depth examination of the main causes of behavioural actions responsible for weight gain. Since weight gain is the result of a positive energy balance, these behavioural actions are referred to as 'energy

  12. Net Balanced Floorplanning Based on Elastic Energy Model

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    with balanced net delays to increase the safety margins of the design. In this paper, we investigate the properties of floorplanning based on the elastic energy model. The B*-tree, which is based on an ordered binary tree, is used for circuit representation and the elastic energy is used as the cost function...

  13. Teaching Mass and Energy Balances by Experiment

    Science.gov (United States)

    Orbey, Nese; De Jesús Vega, Marisel; Zalluhoglu, Fulya Sudur

    2017-01-01

    A general tank-draining problem was used as an experimental project in two undergraduate-level chemical engineering courses. The project aimed to illustrate the critical nature of experimentation in addition to use of mass and energy conservation principles in developing mathematical models that correctly describes a system. The students designed…

  14. Sustainable urban regeneration based on energy balance

    NARCIS (Netherlands)

    Van Timmeren, A.; Zwetsloot, J.; Brezet, H.; Silvester, S.

    2012-01-01

    In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming

  15. Development of Energy Balances for the State of California

    Energy Technology Data Exchange (ETDEWEB)

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-12-01

    Analysts assessing energy policies and energy modelers forecasting future trends need to have access to reliable and concise energy statistics. Lawrence Berkeley National Laboratory evaluated several sources of California energy data, primarily from the California Energy Commission and the U.S. Energy Information Administration, to develop the California Energy Balance Database (CALEB). This database manages highly disaggregated data on energy supply, transformation, and end-use consumption for each type of energy commodity from 1990 to the most recent year available (generally 2001) in the form of an energy balance, following the methodology used by the International Energy Agency. This report presents the data used for CALEB and provides information on how the various data sources were reconciled. CALEB offers the possibility of displaying all energy flows in numerous ways (e.g.,physical units, Btus, petajoules, different levels of aggregation), facilitating comparisons among the different types of energy commodities and different end-use sectors. In addition to displaying energy data, CALEB can also be used to calculate state-level energy-related carbon dioxide emissions using the methodology of the Intergovernmental Panel on Climate Change.

  16. Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance.

    Science.gov (United States)

    Burdge, Graham C; Lillycrop, Karen A

    2014-07-01

    Diseases caused by impaired regulation of energy balance, in particular obesity, represent a major global health burden. Although polymorphisms, lifestyle and dietary choices have been associated with differential risk of obesity and related conditions, a substantial proportion of the variation in disease risk remains unexplained. Evidence from epidemiological studies, natural experiments and from studies in animal models has shown that a poor intra-uterine environment is associated causally with increased risk of obesity and metabolic disease in adulthood. Induction of phenotypes that increase disease risk involves the fetus receiving cues from the mother about the environment which, via developmental plasticity, modify the phenotype of the offspring to match her environment. However, inaccurate information may induce an offspring phenotype that is mismatched to the future environment. Such mismatch has been suggested to underlie increased risk of metabolic disease associated with a poor early life environment. Recent studies have shown that induction of modified phenotypes in the offspring involves altered epigenetic regulation of specific genes. Identification of a central role of epigenetics in the aetiology of obesity and metabolic disease may facilitate the development of novel therapeutic interventions and of biomarkers of disease risk. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. National energy balance - 1995 of Brazil. Based on 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Consolidated data of production, consumption and external dependence of energy are presented, as also the sectorial composition of the consumption of the different groups of energy sources. For each primary and secondary source the production, import, export, variations in inventories, losses, adjustments and total consumption are analyzed. Balances of transformation centers, characterizing the energy the energy processed, the energy produced and the respective losses in transformation are shown. Finally energy resources and reserves of primary sources are described with respective methodologies for estimating them. 60 figs., 107 tabs.

  18. Energy and heat balance in wet DCT

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Viren; Moser, Alexander; Schaefer, Michael; Ritschel, Michael [BorgWarner Drivetrain Engineering GmbH, Ketsch (Germany)

    2012-11-01

    Wet clutch systems are well known for their thermal robustness and versatility in a wide range of automotive applications. Conventional automatics have used them for a long time as torque converter lock-up clutches, shift elements and launch clutches. With the development of DCTs, wet clutch technology has evolved in terms of launch and shift performance, controllability, robustness and efficiency. This paper discusses improvements in the wet clutch and their impact on today's vehicle applications in terms of heat and energy management. Thermal robustness is a crucial aspect for an automatic transmission. In addition to the clutch thermal performance, the influence of transmission oil cooler and oil sump warm-up behavior are discussed. Based on our latest development activities, test results and simulations, we shall discuss the latest friction material enhancement and its impact on DCTs in terms of efficiency and performance. Drag loss is a much-discussed topic during the development of wet clutch systems. This paper discusses in detail the cause and break-up of various energy losses in a wet DCT. Efficient energy management strategies for actuation systems, cooling, and lubrication, clutch apply, and pre-selection in modern power trains with engine start / stop are evaluated based on the latest test and simulation results. Finally, the paper summarizes the performance and efficiency optimized moist clutch system. (orig.)

  19. Energy Balance: An Overview With Emphasis on Children

    Science.gov (United States)

    Tam, Charmaine S.; Ravussin, Eric

    2014-01-01

    Childhood obesity is a significant public health problem, affecting one in five children in the United States. At the crux of this issue is a dysregulation of energy intake and energy expenditure. This review will provide an overview on energy and nutrient balance. We discuss energy balance studies in children using indirect and direct measures, and focus particularly on obesity as a deleterious consequence in childhood survivors of cancer. Obesity affects 11–57% of children with acute lymphoblastic leukemia, probably due to increased energy intake and reduced energy expenditure secondary to reduced habitual activity caused by fatigue. However, most of the studies in children with leukemia are retrospective, use BMI as a measure of obesity, and are inconclusive about the impact of the type of treatment on the development of obesity later in life. To better understand the etiology of obesity in both healthy and sick children, we need to undertake nutrient balance studies with appropriate measures of fat mass and fat distribution while keeping in mind the influence of normal tissue growth and puberty on energy balance. PMID:22021150

  20. Energy balance: an overview with emphasis on children.

    Science.gov (United States)

    Tam, Charmaine S; Ravussin, Eric

    2012-01-01

    Childhood obesity is a significant public health problem, affecting one in five children in the United States. At the crux of this issue is a dysregulation of energy intake and energy expenditure. This review will provide an overview on energy and nutrient balance. We discuss energy balance studies in children using indirect and direct measures, and focus particularly on obesity as a deleterious consequence in childhood survivors of cancer. Obesity affects 11-57% of children with acute lymphoblastic leukemia, probably due to increased energy intake and reduced energy expenditure secondary to reduced habitual activity caused by fatigue. However, most of the studies in children with leukemia are retrospective, use BMI as a measure of obesity, and are inconclusive about the impact of the type of treatment on the development of obesity later in life. To better understand the etiology of obesity in both healthy and sick children, we need to undertake nutrient balance studies with appropriate measures of fat mass and fat distribution while keeping in mind the influence of normal tissue growth and puberty on energy balance. Copyright © 2011 Wiley Periodicals, Inc.

  1. The energy balance within a bubble column evaporator

    Science.gov (United States)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2017-11-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (ΔH vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and ΔH vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining ΔH vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine ΔH vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  2. District heating biofuel burner efficiency and energy balance

    OpenAIRE

    Okoro, Oluwashola Aderemi

    2015-01-01

    District heating is an optimal system of distributing heat to residential building in a centralized location through pipeline networks. The district heating of woodchip is cost effective, improve energy efficiency, reduce gas emissions and improve energy security. The thermal efficiency and energy balance in a boiler is obtained by combustion analysis of the wood (fuel). In this report, the district heating bio fuel burner in Skien Fjernvarme is considered. The capacity of the boiler is 6MW a...

  3. Energy balance Flanders 1997: disparity method; Energiebalans Vlaanderen 1997: Verschilmethode

    Energy Technology Data Exchange (ETDEWEB)

    Aernouts, K.; Moorkens, I.

    1999-10-01

    In this report, the energy balance of Flanders for 1997 is presented, together with an estimation of the CO2-emissions. Apart from data about 1997, comparable data about the 1990-1996 period are presented in order to give a picture of the evolution of both energy consumption and the CO2-emissions in Flanders. The energy balance is calculated by subtracting the energy bal lances of the Walloon and Brussels region from the Belgian energy balance. Afterwards, these results were corrected as far as specific Flemish energy data are available. The method is described in detail in a separate report. For the calculation of the CO2-emissions, the revised 1996 IPPC guidelines for national greenhouse gas inventories are used. In 1997, the primary energy consumption in Flanders was 1,722.0 PJ, the gross inland consumption was 1,442.4 PJ. The final energy consumption amounted to 1,057.0 PJ. The total CO2-emissions were 76,764 kton (emissions from international aviation and marine bunkering excluded). Compared to 1990, the gros inland consumption has increased with 25.8 per cent by 1997, the final energy consumption with 31.3 per cent and the CO2-consumption with 12.0 per cent.

  4. Energy balance analysis in non linear dynamic equivalent systems.

    Directory of Open Access Journals (Sweden)

    Carlos Iturregui Arranz

    2018-01-01

    The powers, energies and works developed are analyzed, creating a precise balance since energy enters selectively. Hence, an equivalent damping containing a viscous and hysteretic part is predictable, accordingly to the variation of the building’s nonlinear properties. Evaluation of the adequateness and safety level are also obtainable. The controlled parameters contrasted with the balance predicts the structure’s MDOF situation, at any moment related with seismic events. This methodology can be used to stablish a systematic control of nonlinearities for other structural schemes.

  5. METHODS FOR OPTIMIZING ENERGY BALANCE IN OVERWEIGHT PEOPLE

    Directory of Open Access Journals (Sweden)

    Malakhova Tatyana Vladimirovna

    2013-06-01

    Full Text Available The article proposes a new approach to solving the problem of overweight and obesity based on the optimization of the energy balance in the body, using the technologies applied in industrial heat power devices. The main task during the formation of the diet is to ensure a steady, moderate and long-term supply of glucose into the blood stream, avoiding one-time drastic jumps in blood sugar levels. The proposed method of weight loss was tested among 46-52 years old women with the excess weight, prone to obesity. The control weighing was performed every 7 days. The study period was 60 weeks. Proper regulation of food composition and “fuel injection” rhythm, optimum from the point of view of thermal technology, allows using “negative calorie effect” against the background of the overall revitalization of metabolic processes. From the first weeks of the application of the proposed method of weight loss a significant reduction in body weight was mathematically observed. An important prerequisite for the success of the method is the correct order of food intake.

  6. Effects of Genotype by Environment Interactions on Milk Yield, Energy Balance, and Protein Balance

    NARCIS (Netherlands)

    Beerda, B.; Ouweltjes, W.; Sebek, L.B.J.; Windig, J.J.; Veerkamp, R.F.

    2007-01-01

    Increases in genetic merit for milk yield are associated with increases in mobilization of body reserves. This study assessed the effects of genotype by environment (GxE) interactions on milk yield and energy and protein balances. Heifers (n = 100) with high or low genetic merit for milk yield were

  7. The Spanish Wind Energy Market. Balance and Outlooks; El Mercado Eolico Espanol. Balance y Perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    Varela, M. [CIEMAT. Madrid (Spain)

    1999-06-01

    The present work accomplishes a revision to the situation of the wind market in Spain, its recent evolution, its regional distribution, the principal actors of the market (manufacturers, promoters). The balance includes a review of the programs of institutional support to wind energy, an analysis of the current installation costs and electricity production costs. Finally, other variables related the integration of wind energy are analysed, as the potential of employment generation or the associated environmental factors. (Author) 5 refs.

  8. Exercise and the regulation of energy intake

    NARCIS (Netherlands)

    Scheurink, AJW; Ammar, AA; Benthem, B; van Dijk, G; Sodersten, PAT; Södersten, Per A.T.

    Energy balance is the resultant of ingested calories and energy expenditure and is generally maintained within narrow limits over prolonged periods. Exercise leads to an increase in energy expenditure which is, in the long-term, counteracted by increased energy intake. Evidence for this comes from a

  9. The Regulation of Energy Medicine

    Science.gov (United States)

    Kosovich, Judy; Esq

    This paper describes the laws and regulations that affect the practice of energy medicine. State law often has more impact on a health care practice than federal law, but federal law provides a common denominator among states. Device law is emphasized here because practitioners of energy medicine are more likely to use devices than drugs. For purposes of this paper, energy medicine is defined as practices that measure or benefit energy flow and overall energy in the body. This broad definition encompasses things as diverse as certain forms of exercise, measurement of meridian resistance, the use of electrical current or magnetic pulses to relieve pain, and the use of light, sound, scent, touch, position, or movement to stimulate the body's own electrical systems. What is of greatest importance in determining legal implications of a practice is whether there are any health-related claims. Two federal entities are pivotal. The Food and Drug Administration ("FDA") is authorized to protect health and safety and the Federal Trade Commission ("FTC") is authorized to protect consumers from false or misleading advertising. There are 5 things that FDA looks at: 1) intended use, 2) claims made in advertising and in labeling, 3) substantial equivalence to a predicate, 4) safety, and 5) effectiveness. A concern regarding any one of these can be the basis for denying clearance to market a device. The FTC looks at whether statements are true and substantiated and whether they might be misleading. The FTC often consults with the FDA on the interpretation of technical information.

  10. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems

    OpenAIRE

    Fumin Ma; Gregory M. P. O’Hare; Tengfei Zhang; Michael J. O’Grady

    2015-01-01

    Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry en...

  11. Skeletal Muscle Responses to Negative Energy Balance: Effects of Dietary Protein12

    Science.gov (United States)

    Carbone, John W.; McClung, James P.; Pasiakos, Stefan M.

    2012-01-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the underlying physiological mechanisms contributing to the loss of skeletal muscle during energy deprivation are not well described. Recent studies have demonstrated that consuming dietary protein at levels above the current recommended dietary allowance (0.8 g·kg−1·d−1) may attenuate the loss of skeletal muscle mass by affecting the intracellular regulation of muscle anabolism and proteolysis. However, the specific mechanism by which increased dietary protein spares skeletal muscle through enhanced molecular control of muscle protein metabolism has not been elucidated. This article reviews the available literature related to the effects of negative energy balance on skeletal muscle mass, highlighting investigations that assessed the influence of varying levels of dietary protein on skeletal muscle protein metabolism. Further, the molecular mechanisms that may contribute to the regulation of skeletal muscle mass in response to negative energy balance and alterations in dietary protein level are described. PMID:22516719

  12. Mass and energy balance of the cold Io torus

    Science.gov (United States)

    Moreno, M. A.; Barbosa, D. D.

    1986-01-01

    A new model of the cold Io torus is described. Ions and energy are injected into the system by independent processes so that the mass balance is isolated from the energy balance. The primary source of energy is local ionization and acceleration of hot pickup ions resulting from charge exchange between thermal ions and an extended cloud of Iogenic sulfur and oxygen atoms. The primary energy loss mechanism of the plasma is collisionally excited line emission at optical wavelengths. The primary ion source is radial diffusion inward from the hot torus on a time scale of 140-710 days. The primary ion loss mechanism is a novel two-step enhanced recombination mechanism involving charge exchange between thermal ions and an extended cloud of neutral SO2 molecules, followed by rapid dissociative recombination of the resultant molecular ion. The model provides a self-consistent solution which reconciles a number of diverse observations with known physical processes.

  13. Relationships between energy balance knowledge and the home environment.

    Science.gov (United States)

    Slater, Megan E; Sirard, John R; Laska, Melissa N; Pereira, Mark A; Lytle, Leslie A

    2011-04-01

    Certain aspects of the home environment as well as individuals' knowledge of energy balance are believed to be important correlates of various dietary and physical activity behaviors, but no known studies have examined potential relationships between these correlates. This study evaluated cross-sectional associations between characteristics of the home environment and energy balance knowledge among 349 youth/parent pairs recruited from the Minneapolis/St Paul, MN, metropolitan area from September 2006 to June 2007. Linear regression models adjusted for student grade and highest level of parental education were used to compare data from home food, physical activity, and media inventories (parent-reported) with energy balance knowledge scores from youth and parent questionnaires. Paired energy balance knowledge (average of youth and parent knowledge scores) was associated with all home food availability variables. Paired knowledge was also significantly associated with a media equipment availability and accessibility summary score (β=-1.40, P=0.005), as well as an activity-to-media ratio score (β=0.72, P=0.003). Youth and/or parent knowledge alone was not significantly associated with most characteristics of the home environment, supporting the importance of developing intervention strategies that target the family as a whole. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  14. Intergenerational Energy Balance Interventions: A Systematic Literature Review

    Science.gov (United States)

    Swanson, Mark; Studts, Christina R.; Bardach, Shoshana H.; Bersamin, Andrea; Schoenberg, Nancy E.

    2011-01-01

    Many nations have witnessed a dramatic increase in the prevalence of obesity and overweight across their population. Recognizing the influence of the household environment on energy balance has led many researchers to suggest that intergenerational interventions hold promise for addressing this epidemic. Yet few comprehensive reviews of…

  15. Montium - Balancing between Energy-Efficiency, Flexibility and Performance

    NARCIS (Netherlands)

    Heysters, P.M.; Smit, Gerardus Johannes Maria; Molenkamp, Egbert; Plaks, Toomas P.

    Architectures for mobile multimedia devices need to find a balance between energy-efficiency, flexibility and performance. In this paper it is reasoned that this can be accomplished by way of a System-on-Chip (SoC) that comprises heterogeneous processing tiles. This heterogeneous SoC calls for

  16. Seasonal changes in energy balance of rural Beninese women

    NARCIS (Netherlands)

    Schultink, J.W.

    1991-01-01

    This thesis reports on human energy balance in relation to seasonal changes in food availability of rural populations in developing countries.

    Body weight measurements were carried out every two weeks among Beninese subsistence farmers who live in two different climatological zones (one and

  17. Energy Balance Education in Schools: The Role of Student Knowledge

    Science.gov (United States)

    Chen, Senlin; Nam, Yoon Ho

    2017-01-01

    Obesity prevention and control have been identified as top public health priorities in modern societies. Sport and exercise science researchers from multiple perspectives (e.g. behavioral, pedagogical, psychological, and physiological) have been active contributors addressing this topic. This paper examines the importance of energy balance (EB)…

  18. Forecasting of renewable energy balance on Medium Term.

    OpenAIRE

    Dragomir, Otilia,; Dragomir, Florin; GOURIVEAU, Rafael; Minca, Eugénia

    2010-01-01

    International audience; The general purpose of the paper is to explore the way of performing renewable energy balance predictions prognostics so that energy market actors can act consequently. Different aspects of forecasting are discussed to point out pragmatic challenges of this approach. An illustration, with real monitored data, based on a neuro-fuzzy predictor is given. The architecture of the artificial intelligence technique used for forecasting is modified in order to obtain accurate ...

  19. Energy balance of Lower Saxony 1994; Niedersaechsische Energiebilanz 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The energy balance of Lower Saxony is presented in physical units, in terrajoule and in coal equivalent to show supply, conversion, and consumption of primary and secondary energy sources in the year under report. (orig.) [Deutsch] Die Energiebilanz des Landes Niedersachsen in physikalischen Einheiten, in Terrajoule und in Steinkohleeinheiten stellt das Energieaufkommen, die Energieumwandlung und den Energieverbrauch fuer Primaer- und Sekundaerenergietraeger im Berichtsjahr dar. (orig.)

  20. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    Science.gov (United States)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  1. Energy balance and obesity: what are the main drivers?

    Science.gov (United States)

    Romieu, Isabelle; Dossus, Laure; Barquera, Simón; Blottière, Hervé M; Franks, Paul W; Gunter, Marc; Hwalla, Nahla; Hursting, Stephen D; Leitzmann, Michael; Margetts, Barrie; Nishida, Chizuru; Potischman, Nancy; Seidell, Jacob; Stepien, Magdalena; Wang, Youfa; Westerterp, Klaas; Winichagoon, Pattanee; Wiseman, Martin; Willett, Walter C

    2017-03-01

    The aim of this paper is to review the evidence of the association between energy balance and obesity. In December 2015, the International Agency for Research on Cancer (IARC), Lyon, France convened a Working Group of international experts to review the evidence regarding energy balance and obesity, with a focus on Low and Middle Income Countries (LMIC). The global epidemic of obesity and the double burden, in LMICs, of malnutrition (coexistence of undernutrition and overnutrition) are both related to poor quality diet and unbalanced energy intake. Dietary patterns consistent with a traditional Mediterranean diet and other measures of diet quality can contribute to long-term weight control. Limiting consumption of sugar-sweetened beverages has a particularly important role in weight control. Genetic factors alone cannot explain the global epidemic of obesity. However, genetic, epigenetic factors and the microbiota could influence individual responses to diet and physical activity. Energy intake that exceeds energy expenditure is the main driver of weight gain. The quality of the diet may exert its effect on energy balance through complex hormonal and neurological pathways that influence satiety and possibly through other mechanisms. The food environment, marketing of unhealthy foods and urbanization, and reduction in sedentary behaviors and physical activity play important roles. Most of the evidence comes from High Income Countries and more research is needed in LMICs.

  2. Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance.

    Science.gov (United States)

    Shen, Run; Wang, Biao; Giribaldi, Maria G; Ayres, Janelle; Thomas, John B; Montminy, Marc

    2016-06-07

    The starvation-inducible coactivator cAMP response element binding protein (CREB)-cAMP-regulated transcription coactivator (Crtc) has been shown to promote starvation resistance in Drosophila by up-regulating CREB target gene expression in neurons, although the underlying mechanism is unclear. We found that Crtc and its binding partner CREB enhance energy homeostasis by stimulating the expression of short neuropeptide F (sNPF), an ortholog of mammalian neuropeptide Y, which we show here is a direct target of CREB and Crtc. Neuronal sNPF was found to promote energy homeostasis via gut enterocyte sNPF receptors, which appear to maintain gut epithelial integrity. Loss of Crtc-sNPF signaling disrupted epithelial tight junctions, allowing resident gut flora to promote chronic increases in antimicrobial peptide (AMP) gene expression that compromised energy balance. Growth on germ-free food reduced AMP gene expression and rescued starvation sensitivity in Crtc mutant flies. Overexpression of Crtc or sNPF in neurons of wild-type flies dampens the gut immune response and enhances starvation resistance. Our results reveal a previously unidentified tolerance defense strategy involving a brain-gut pathway that maintains homeostasis through its effects on epithelial integrity.

  3. Greenhouse gas emissions and energy balance of palm oil biofuel

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

    2010-11-15

    The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis

  4. Energy balance framework for Net Zero Energy buildings

    Science.gov (United States)

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  5. Energy Balance of Friction and Friction Coefficient in Energetical Interpretation

    Directory of Open Access Journals (Sweden)

    S.V. Fedorov

    2015-09-01

    Full Text Available Sliding friction energy model is proposed. In this model, generalized mechanism of transformation and dissipation of energy under friction the model of elastic-plastic deformation and fracture contact volumes is considered. Energy model of the process of plastic deformation and destruction of solid bodies is based on the concept of ergodynamic of deformable bodies. Equations of energy balance of friction within the structural and energetic interpretation of deformation are proposed. The energy interpretation of the coefficient of friction is showed. From this position the friction coefficient is the most informative characteristic of the process. Experimental friction curves have been generalized. As a result of the energy analysis of friction, the energy diagram of the structural evolution of the friction surfaces is suggested.

  6. Obesity, Energy Balance and Cancer: New Opportunities for Prevention

    Science.gov (United States)

    Hursting, Stephen D.; DiGiovanni, John; Dannenberg, Andrew J.; Azrad, Maria; LeRoith, Derek; Demark-Wahnefried, Wendy; Kakarala, Madhuri; Brodie, Angela; Berger, Nathan A.

    2012-01-01

    Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. These host factors include insulin, insulin-like growth factor-1, leptin, adiponectin, steroid hormones, cytokines, and inflammation-related molecules. Each of these host factors is considered in the context of energy balance and as potential targets for cancer prevention. The possibility of prevention at the systems level, including energy restriction, dietary composition and exercise is considered as is the importance of the newly-emerging field of stem cell research as a model for studying energy balance and cancer prevention. PMID:23034147

  7. Obesity, energy balance, and cancer: new opportunities for prevention.

    Science.gov (United States)

    Hursting, Stephen D; Digiovanni, John; Dannenberg, Andrew J; Azrad, Maria; Leroith, Derek; Demark-Wahnefried, Wendy; Kakarala, Madhuri; Brodie, Angela; Berger, Nathan A

    2012-11-01

    Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. These host factors include insulin, insulin-like growth factor-I, leptin, adiponectin, steroid hormones, cytokines, and inflammation-related molecules. Each of these host factors is considered in the context of energy balance and as potential targets for cancer prevention. The possibility of prevention at the systems level, including energy restriction, dietary composition, and exercise is considered as is the importance of the newly emerging field of stem cell research as a model for studying energy balance and cancer prevention.

  8. Low protein diets produce divergent effects on energy balance

    Science.gov (United States)

    Pezeshki, Adel; Zapata, Rizaldy C.; Singh, Arashdeep; Yee, Nicholas J.; Chelikani, Prasanth K.

    2016-01-01

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance. PMID:27122299

  9. Low protein diets produce divergent effects on energy balance.

    Science.gov (United States)

    Pezeshki, Adel; Zapata, Rizaldy C; Singh, Arashdeep; Yee, Nicholas J; Chelikani, Prasanth K

    2016-04-28

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance.

  10. Daily energy balance in children and adolescents. Does energy expenditure predict subsequent energy intake?

    Science.gov (United States)

    Thivel, David; Aucouturier, Julien; Doucet, Éric; Saunders, Travis J; Chaput, Jean-Philippe

    2013-01-01

    Both physical and sedentary activities primarily impact energy balance through energy expenditure, but they also have important implications in term of ingestive behavior. The literature provides scarce evidence on the relationship between daily activities and subsequent nutritional adaptations in children and adolescents. Sedentary activities and physical exercise are generally considered distinctly despite the fact that they represent the whole continuum of daily activity-induced energy expenditure. This brief review paper examines the impact of daily activities (from vigorous physical activity to imposed sedentary behaviors) on acute energy intake control of lean and obese children and adolescents, and whether energy expenditure is the main predictor of subsequent energy intake in this population. After an overview of the available literature, we conclude that both acute physical activity and sedentary behaviors induce food consumption modifications in children and adolescents but also that the important discrepancy between the methodologies used does not allow any clear conclusion so far. When considering energy intake responses according to the level of energy expenditure generated by those activities, it is clear that energy expenditure is not the main predictor of food consumption in both lean and obese children and adolescents. This suggests that other characteristics of those activities may have a greater impact on calorie intake (such as intensity, duration or induced mental stress) and that energy intake may be mainly determined by non-homeostatic pathways that could override the energetic and hormonal signals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    Science.gov (United States)

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. Copyright © 2014. Published by Elsevier Ltd.

  12. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance123

    Science.gov (United States)

    Drenowatz, Clemens

    2015-01-01

    An imbalance between energy intake and energy expenditure is the primary etiology for excess weight gain. Increased energy expenditure via exercise and energy restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to energy balance. Current research points to a loose coupling between energy intake and energy expenditure on a daily basis, and evidence for long-term adaptations has been inconsistent. The lack of conclusive evidence on compensatory adaptations in response to alterations in energy balance can be attributed to differences in intervention type and study population. Physical activity (PA) levels may be reduced in response to aerobic exercise but not in response to resistance exercise. Furthermore, athletic and lean adults have been shown to increase their energy intake in response to exercise, whereas no such response was observed in obese adults. There is also evidence that caloric restriction is associated with a decline in PA. Generally, humans seem to be better equipped to defend against weight loss than avoid weight gain, but results also show a large individual variability. Therefore, individual differences rather than group means should be explored to identify specific characteristics of “compensators” and “noncompensators.” This review emphasizes the need for more research with simultaneous measurements of all major components contributing to energy balance to enhance the understanding of the regulation of energy balance, which is crucial to address the current obesity epidemic. PMID:26374181

  13. The effect of energy performance regulations on energy consumption

    NARCIS (Netherlands)

    Guerra-Santin, O.; Itard, L.

    2012-01-01

    Governments have developed energy performance regulations in order to lower energy consumption in the housing stock. Most of these regulations are based on the thermal quality of the buildings. In the Netherlands, the energy efficiency for new buildings is expressed as the EPC (energy performance

  14. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  15. Evaluating load balancing policies for performance and energy-efficiency

    Directory of Open Access Journals (Sweden)

    Freek van den Berg

    2016-10-01

    Full Text Available Nowadays, more and more increasingly hard computations are performed in challenging fields like weather forecasting, oil and gas exploration, and cryptanalysis. Many of such computations can be implemented using a computer cluster with a large number of servers. Incoming computation requests are then, via a so-called load balancing policy, distributed over the servers to ensure optimal performance. Additionally, being able to switch-off some servers during low period of workload, gives potential to reduced energy consumption. Therefore, load balancing forms, albeit indirectly, a trade-off between performance and energy consumption. In this paper, we introduce a syntax for load-balancing policies to dynamically select a server for each request based on relevant criteria, including the number of jobs queued in servers, power states of servers, and transition delays between power states of servers. To evaluate many policies, we implement two load balancers in: (i iDSL, a language and tool-chain for evaluating service-oriented systems, and (ii a simulation framework in AnyLogic. Both implementations are successfully validated by comparison of the results.

  16. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    Science.gov (United States)

    Wohlfahrt, Georg; Widmoser, Peter

    2013-01-01

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements. PMID:24465072

  17. Smart Grid Constraint Violation Management for Balancing and Regulating Purposes

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Kouzelis, Konstantinos; Mendaza, Iker Diaz de Cerio

    2017-01-01

    The gradual active load penetration in low voltage distribution grids is expected to challenge their network capacity in the near future. Distribution system operators should for this reason resort to either costly grid reinforcements, use of low voltage boosters, or demand response mechanisms....... Since demand response implementation is usually more cost effective, it is the favorable solution to avoid or delay the need for grid reinforcement. To this end, this paper presents a framework for handling grid limit violations, both voltage and current, to ensure a secure and qualitative operation...... of the distribution grid. This framework consists of two steps, namely a proactive centralized and subsequently a reactive decentralized control scheme. The former is employed to balance the one hour ahead load while the latter aims at regulating the consumption in real-time. In both schemes, fairness in terms...

  18. Resiliency and medicine: how to create a positive energy balance.

    Science.gov (United States)

    Kelly, John D

    2011-01-01

    A career in orthopaedics is a race-a marathon. Many outside forces converge to increase stressors to high levels. Resiliency, or the ability to bounce back from difficulty, can be learned and nurtured. The management of energy, rather than time, holds the key to avoiding burnout. Orthopaedic surgeons must minimize "energy drain" by first recognizing their ability to become proactive and control their lives. Surgeons must learn how to say "no" and delegate work and responsibilities. A positive energy balance can be attained when relationships, not things, are given priority. A focus on passions and inspiration helps to maintain energy, while a connection to a "source" and living a morally just, service-oriented life will yield endless energy.

  19. Dynamic energy-balance model predicting gestational weight gain123

    Science.gov (United States)

    Thomas, Diana M; Navarro-Barrientos, Jesus E; Rivera, Daniel E; Heymsfield, Steven B; Bredlau, Carl; Redman, Leanne M; Martin, Corby K; Lederman, Sally A; M Collins, Linda; Butte, Nancy F

    2012-01-01

    Background: Gestational weight gains (GWGs) that exceed the 2009 Institute of Medicine recommended ranges increase risk of long-term postpartum weight retention; conversely, GWGs within the recommended ranges are more likely to result in positive maternal and fetal outcomes. Despite this evidence, recent epidemiologic studies have shown that the majority of pregnant women gain outside the target GWG ranges. A mathematical model that predicts GWG and energy intake could provide a clinical tool for setting precise goals during early pregnancy and continuous objective feedback throughout pregnancy. Objective: The purpose of this study was to develop and validate a differential equation model for energy balance during pregnancy that predicts GWG that results from changes in energy intakes. Design: A set of prepregnancy BMI–dependent mathematical models that predict GWG were developed by using data from a longitudinal study that measured gestational-changes in fat-free mass, fat mass, total body water, and total energy expenditure in 63 subjects. Results: Mathematical models developed for women with low, normal, and high prepregnancy BMI were shown to fit the original data. In 2 independent studies used for validation, model predictions of fat-free mass, fat mass, and total body water matched actual measurements within 1 kg. Conclusions: Our energy-balance model provides plausible predictions of GWG that results from changes in energy intakes. Because the model was implemented as a Web-based applet, it can be widely used by pregnant women and their health care providers. PMID:22170365

  20. Partial sleep deprivation and energy balance in adults: an emerging issue for consideration by dietetics practitioners.

    Science.gov (United States)

    Shlisky, Julie D; Hartman, Terryl J; Kris-Etherton, Penny M; Rogers, Connie J; Sharkey, Neil A; Nickols-Richardson, Sharon M

    2012-11-01

    During the past 30 years, rates of partial sleep deprivation and obesity have increased in the United States. Evidence linking partial sleep deprivation, defined as sleeping sleep deprivation on energy balance and weight regulation. An inverse relationship between obesity and sleep duration has been demonstrated in cross-sectional and prospective studies. Several intervention studies have tested mechanisms by which partial sleep deprivation affects energy balance. Reduced sleep may disrupt appetitive hormone regulation, specifically increasing ghrelin and decreasing leptin and, thereby, influence energy intake. Increased wakefulness also may promote food intake episodes and energy imbalance. Energy expenditure may not be greatly affected by partial sleep deprivation, although additional and more accurate methods of measurements may be necessary to detect subtle changes in energy expenditure. Body weight loss achieved by reduced energy intake and/or increased energy expenditure combined with partial sleep deprivation may contribute to undesirable body composition change with proportionately more fat-free soft tissue mass lost compared with fat mass. Evaluating sleep patterns and recommending regular, sufficient sleep for individuals striving to manage weight may be prudent. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  1. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  2. Individual variation in the (patho)physiology of energy balance

    OpenAIRE

    Boersma, Gretha J.; Benthem, Lambertus; van Dijk, Gertjan; Scheurink, Anton J. W.

    2011-01-01

    There are large individual differences in the susceptibility for metabolic disorders such as obesity, the metabolic syndrome and type 2 diabetes. Unfortunately, most animal studies in this field ignore the importance of individual variation which limits the face validity of these studies for translation to the human situation. We have performed a series of studies that were particularly focused on the individual differences in the (patho)physiology of energy balance. The studies were performe...

  3. Energy saving in greenhouses can be obtained by energy balance-controlled screens

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, N. E. (Univ. of Aarhus, Faculty of Agricultural Sciences, Dept. of Horticulture, Aarslev (Denmark)), e-mail: niels.andersson@agrsci.dk

    2011-03-15

    The energy screens in two greenhouses, one clad with double acrylic and one with single glass, were controlled by an energy balance model. The parameters in the model were heat transmission coefficients, air temperature in the greenhouse and outdoors, irradiance and a single constant for the solar energy efficiency. The energy consumption, screen movements and daily light integral were compared with a glass greenhouse in which the energy screens were controlled by irradiance. In the greenhouse with light-controlled screens the set point for opening and closing of the screens was 5 Wm-2. The energy-saving screens controlled by the energy balance model opened later and closed earlier than in the greenhouse with light-controlled screens. When using the energy balance model the energy saving was 14% for the glass greenhouse and 41% for the double acrylic greenhouse compared with the glass greenhouse with light-controlled screens. The air temperature was on average similar in the three greenhouses, but when the screens were controlled by energy balance the daily light integral was approximately 10% lower and the number of hours the screens were closed was prolonged with 35% for the glass-covered greenhouse and 25% for the double acrylic-covered greenhouse compared with the greenhouse with light-controlled screens. Energy peaks in connection with operation of the screens were not reduced. During the experiment Begonia elatior, Dendranthema grandiflora (Chrysanthemum), Hedera helix, Helianthus annuus, Gerbera jamesonii and Kalanchoe blossfeldiana were grown in the greenhouses. There was a trend in prolongation of the production time when the plants were grown in the glass greenhouse with energy balance control of the screens. A lower number of flowers or inflorescences were observed for some of the plant species produced in the greenhouses with energy balance-controlled screens

  4. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  5. N/Z dependence of balance energy throughout the colliding geometries

    OpenAIRE

    Gautam, Sakshi; Puri, Rajeev K.

    2011-01-01

    We study the N/Z dependence of balance energy throughout the mass range for colliding geometry varying from central to peripheral ones. Our results indicate that balance energy decreases linearly with increase in N/Z ratio for all the masses throughout the colliding geometry range. Also, the N/Z dependence of balance energy is sensitive to symmetry energy.

  6. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Fumin Ma

    2015-10-01

    Full Text Available Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses.

  7. The consequences of negative energy balance in anorexia syndrome.

    Science.gov (United States)

    Håglin, Lena

    2005-10-01

    Using four cases, this study describes common etiological factors and clinical sequelae in anorexia nervosa and athletic anorexia to present a biological explanation for interactions. Four anorectic girls were interviewed regarding their training programs and dietary intake. Bone mineral content, hormonal status, and energy intake were assessed during follow-ups. All the girls began training before puberty and had a low energy intake for age and height. Amenorrhea, low bone mineral content with stress fractures in three cases, and growth retardation in one case, were present at the follow-up after 6 years. Low amount of body fat and high serum cortisol is indicated and included in the discussion. The etiology is presented in an integrated model in addition to a biological explanation based on a negative energy balance, an acidic condition. Energy deficits during puberty can result in the clinical sequela of the anorexia syndrome.

  8. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons that Coordinates Energy Balance

    Directory of Open Access Journals (Sweden)

    Hillary L. Woodworth

    2017-08-01

    Full Text Available Dopamine (DA neurons in the ventral tegmental area (VTA are heterogeneous and differentially regulate ingestive and locomotor behaviors that affect energy balance. Identification of which VTA DA neurons mediate behaviors that limit weight gain has been hindered, however, by the lack of molecular markers to distinguish VTA DA populations. Here, we identified a specific subset of VTA DA neurons that express neurotensin receptor-1 (NtsR1 and preferentially comprise mesolimbic, but not mesocortical, DA neurons. Genetically targeted ablation of VTA NtsR1 neurons uncouples motivated feeding and physical activity, biasing behavior toward energy expenditure and protecting mice from age-related and diet-induced weight gain. VTA NtsR1 neurons thus represent a molecularly defined subset of DA neurons that are essential for the coordination of energy balance. Modulation of VTA NtsR1 neurons may therefore be useful to promote behaviors that prevent the development of obesity.

  9. Appetite control and energy balance: impact of exercise.

    Science.gov (United States)

    Blundell, J E; Gibbons, C; Caudwell, P; Finlayson, G; Hopkins, M

    2015-02-01

    Exercise is widely regarded as one of the most valuable components of behaviour that can influence body weight and therefore help in the prevention and management of obesity. Indeed, long-term controlled trials show a clear dose-related effect of exercise on body weight. However, there is a suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up food intake thereby nullifying the energy expended through activity. Not everyone performing regular exercise will lose weight and several investigations have demonstrated a huge individual variability in the response to exercise regimes. What accounts for this heterogeneous response? First, exercise (or physical activity) through the expenditure of energy will influence the energy balance equation with the potential to generate an energy deficit. However, energy expenditure also influences the control of appetite (i.e. the physiological and psychological regulatory processes underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a resultant shift in energy balance, and therefore weight change, will be complicated. In changing energy intake, exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized that the major influences on the expression of appetite arise from fat-free mass and fat mass, resting metabolic rate, gastric adjustment to ingested food, changes in episodic peptides including insulin, ghrelin, cholecystokinin, glucagon-like peptide-1 and tyrosine-tyrosine, as well as tonic peptides such as leptin. Moreover, there is evidence that exercise will influence all of these components that, in turn, will influence the drive to eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and adjustments in postprandial satiety via an interaction with food composition. The specific actions of exercise on each physiological component will vary in strength from

  10. Carbon and energy balances for a range of biofuels options

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.A.; Matthews, R.; Mortimer, N.D.

    2003-03-01

    This is the final report of a project to produce a set of baseline energy and carbon balances for a range of electricity, heat and transport fuel production systems based on biomass feedstocks. A list of 18 important biofuel technologies in the UK was selected for study of their energy and carbon balances in a consistent approach. Existing studies on these biofuel options were reviewed and their main features identified in terms of energy input, greenhouse gas emissions (carbon dioxide, methane, nitrous oxide and total), transparency and relevance. Flow charts were produced to represent the key stages of the production of biomass and its conversion to biofuels. Outputs from the study included primary energy input per delivered energy output, carbon dioxide outputs per delivered energy output, methane output per delivered energy output, nitrous oxide output per delivered energy output and total greenhouse gas requirements. The net calorific value of the biofuel is given where relevant. Biofuels studied included: biodiesel from oilseed rape and recycled vegetable oil; combined heat and power (CHP) by combustion of wood chip from forestry residues; CHP by gasification of wood chip from short rotation coppice; electricity from the combustion of miscanthus, straw, wood chip from forestry residues and wood chip from short rotation coppice; electricity from gasification of wood chip from forestry residues and wood chip from short rotation coppice; electricity by pyrolysis of wood chip from forestry residues and wood chip from short rotation coppice; ethanol from lignocellulosics, sugar beet and wheat; heat (small scale) from combustion of wood chip from forestry residues and wood chip from short rotation coppice; and rapeseed oil from oilseed rape.

  11. Adipose tissue angiopoietin-like protein 4 messenger RNA changes with altered energy balance in lactating Holstein cows.

    Science.gov (United States)

    Koltes, D A; Spurlock, D M

    2012-11-01

    Negative energy balance at the onset of lactation is unfavorably associated with fitness traits in high-producing dairy cows. Angiopoietin-like protein 4 (ANGPTL4) is an adipokine that has been associated with the regulation of lipid metabolism through the inhibition of lipoprotein lipase activity and regulation of lipolysis. Expression of ANGPTL4 messenger RNA (mRNA) increases during early lactation, but its regulation with changing energy status is currently unknown. Accordingly, the objective of this study was to determine whether ANGPTL4 mRNA abundance is responsive to declining energy balance induced by the transition from pregnancy to lactation, feed restriction, and GH administration in lactating dairy cows. The mRNA abundance of leptin, adiponectin, and adiponectin receptor 2 were also measured to compare adipokine mRNA profiles during changes in energy metabolism. Repeated adipose tissue biopsies were taken from different cows during transition from late pregnancy to lactation (n = 26), feed restriction (n = 19), and GH administration (n = 20). As expected, milk yield increased with the onset of lactation and GH administration (P Energy balance declined in each experiment, resulting in negative energy balance at the onset of lactation and after feed restriction. Abundance of ANGPTL4 mRNA expression increased 2- to 6-fold with declining energy balance in each experiment. Leptin mRNA declined with feed restriction, and adiponectin mRNA decreased with the onset of lactation. The consistency and magnitude of the increase in ANGPTL4 mRNA across multiple models of altered energy balance identifies it as an adipokine that is uniquely responsive to changes in energy balance in the lactating dairy cow. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Regulation of Acid-Base Balance in Chronic Kidney Disease.

    Science.gov (United States)

    Nagami, Glenn T; Hamm, L Lee

    2017-09-01

    The kidneys play a major role in the regulation of acid-base balance by reabsorbing bicarbonate filtered by the glomeruli and excreting titratable acids and ammonia into the urine. In CKD, with declining kidney function, acid retention and metabolic acidosis occur, but the extent of acid retention depends not only on the degree of kidney impairment but also on the dietary acid load. Acid retention can occur even when the serum bicarbonate level is apparently normal. With reduced kidney function, acid transport processes in the surviving nephrons are augmented but as disease progresses ammonia excretion and, in some individuals, the ability to reabsorb bicarbonate falls, whereas titratable acid excretion is preserved until kidney function is severely impaired. Urinary ammonia levels are used to gauge the renal response to acid loads and are best assessed by direct measurement of urinary ammonia levels rather than by indirect assessments. In individuals with acidosis from CKD, an inappropriately low degree of ammonia excretion points to the pathogenic role of impaired urinary acid excretion. The presence of a normal bicarbonate level in CKD complicates the interpretation of the urinary ammonia excretion as such individuals could be in acid-base balance or could be retaining acid without manifesting a low bicarbonate level. At this time, the decision to give bicarbonate supplementation in CKD is reserved for those with a bicarbonate level of 22 mEq/L, but because of potential harm of overtreatment, supplementation should be adjusted to maintain a bicarbonate level of <26 mEq/L. Published by Elsevier Inc.

  13. Prediction Based Energy Balancing Forwarding in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yang Jian-Jun

    2017-01-01

    Full Text Available In the recent cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. Energy is a very important factor in the forwarding of cellular network since mobile users(cell phones in hot cells often suffer from low throughput due to energy lack problems. In many situations, the energy lack problems take place because the energy loading is not balanced. In this paper, we present a prediction based forwarding algorithm to let a mobile node dynamically select the next relay station with highest potential energy capacity to resume communication. Key to this strategy is that a relay station only maintains three past status, and then it is able to predict the potential energy capacity. Then, the node selects the next hop with potential maximal energy. Moreover, a location based algorithm is developed to let the mobile node figure out the target region in order to avoid flooding. Simulations demonstrate that our approach significantly increase the aggregate throughput and decrease the delay in cellular network environment.

  14. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    2016-04-01

    Conclusions: We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents.

  15. Regulation of energy homeostasis by the NPY system.

    Science.gov (United States)

    Loh, Kim; Herzog, Herbert; Shi, Yan-Chuan

    2015-03-01

    Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Energy Balance of a Typical U.S. Diet.

    Science.gov (United States)

    Alexandrou, Athanasios; Tenbergen, Klaus; Adhikari, Diganta

    2013-03-28

    Today's agriculture provides an ever increasing population with sufficient quantities of food. During food production, processing, handling and transportation, an amount of energy is invested into the various products. An energy analysis of a typical American diet provides policy makers, farmers and the public with the necessary information to evaluate and make informed decisions as to how to improve the efficient use of energy. At the same time, an informed consumer may become energy conscious and be able to make dietary choices based on food energy balance. This paper studies the energy sequestered in a typical American diet as defined in Food and Agriculture Organization of the United Nations, Statistics Division (FAOSTAT). The amount of energy incorporated in this diet of 3628 kcal (15.18 MJ) per person and day to produce, transport, handle and process the foods is calculated and found to have approximately 39.92 GJ (9.54 Gcal) sequestered per person and year. It is shown that a diet in line with the United States Department of Agriculture (USDA) recommendation of around 2100 kcal (8.79 MJ) per day person will result in a reduction of energy inputs by 42% on an annual basis. This reduction for the whole population of the United States of America (USA), corresponds to approximately 879 million barrels of oil equivalent (boe) savings. Energy efficiency for the food categories studied varies from 3.4% to 56.5% with an average of 21.7%. Food energy efficiency can be further improved in some food categories through either a reduction of energy inputs or yield increase.

  17. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States

    OpenAIRE

    Singh, Ramesh K.; Senay, Gabriel B.

    2015-01-01

    The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface Energy Balance Algorithm for Land (SEBAL) model, Surface Energy Balance System (SEBS) model, and the Operational Simplified Surface Energy Balance (SSEBop) model—using Landsat images to estimate evapotranspiration (ET) in the Midweste...

  18. Application of He’s Energy Balance Method to Duffing-Harmonic Oscillators

    DEFF Research Database (Denmark)

    Momeni, M.; Jamshidi, j.; Barari, Amin

    2011-01-01

    In this article, He's energy balance method is applied for calculating angular frequencies of nonlinear Duffing oscillators. This method offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. We illustrate that the energy balance is very effective and convenient...... and does not require linearization or small perturbation. Contrary to the conventional methods, in energy balance, only one iteration leads to high accuracy of the solutions. It is predicted that the energy balance method finds wide applications in engineering problems....

  19. Surface energy balance measurements in the Mexico City: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-01-01

    During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision

  20. Pollution Under Environmental Regulation in Energy Markets

    CERN Document Server

    Gullì, Francesco

    2013-01-01

    Pollution Under Environmental Regulation in Energy Markets provides a study of environmental regulation when energy markets are imperfectly competitive. This theoretical treatment focuses on three relevant cases of energy markets. First, the residential space heating sector where hybrid regulation such as taxation and emissions trading together are possible. Second, the electricity market where transactions are organized in the form of multi-period auctions. Third, namely natural gas (input) and electricity (output) markets where there is combined imperfect competition in vertical related energy markets.   The development of free or low carbon technologies supported by energy policies, aiming at increasing security of supply, is also explored whilst considering competition policies that reduce market power in energy markets thus improving market efficiency. Pollution Under Environmental Regulation in Energy Markets discusses the key issues of whether imperfect competition can lessen the ability of environmen...

  1. Daily physical activity as determined by age, body mass and energy balance

    OpenAIRE

    Westerterp, Klaas R

    2015-01-01

    Aim Insight into the determinants of physical activity, including age, body mass and energy balance, facilitates the design of intervention studies with body mass and energy balance as determinants of health and optimal performance. Methods An analysis of physical activity energy expenditure in relation to age and body mass and in relation to energy balance, where activity energy expenditure is derived from daily energy expenditure as measured with doubly labelled water and body movement is m...

  2. Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav

    2015-01-01

    system, in order to smooth the variations at the prime energy generator. In this paper, a decentralized strategy based on fuzzy logic is proposed in order to balance the state of charge of distributed energy storage systems in lowvoltage three phase AC microgrid. The proposed method weights the action...

  3. Dietary carbohydrates, components of energy balance, and associated health outcomes.

    Science.gov (United States)

    Smith, Harry A; Gonzalez, Javier T; Thompson, Dylan; Betts, James A

    2017-10-01

    The role of dietary carbohydrates in the development of obesity and associated metabolic dysfunction has recently been questioned. Within the last decade, the Scientific Advisory Committee on Nutrition carried out a comprehensive evaluation of the role of dietary carbohydrates in human health. The current review aims to complement and extend this report by providing specific consideration of the effects of the component parts of energy balance, their interactions, and their culmination on energy storage and health. PubMed was searched for all published trials that had a minimum follow-up period of 3 months and were designed to manipulate dietary carbohydrate intake, irrespective of resultant differences in absolute carbohydrate dose (grams per day). Dietary carbohydrate manipulation has little effect on the individual components of energy balance that have been assessed. However, the role of dietary carbohydrates in influencing physical activity has yet to be assessed using gold-standard measurement tools. Moreover, adherence to a diet of modified carbohydrate content has not been found to result in a consistent pattern of changes in weight or indirect measures of metabolic health. However, certain markers of cardiovascular disease risk (ie, blood triglycerides and high-density lipoprotein cholesterol) may respond positively to a reduction in dietary carbohydrates. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Three new players in energy regulation: preptin, adropin and irisin.

    Science.gov (United States)

    Aydin, Suleyman

    2014-06-01

    Homeostasis of energy is regulated by genetic factors, food intake, and energy expenditure. When energy input is greater than expenditure, the balance is positive, which can lead to weight gain and obesity. When the balance is negative, weight is lost. Regulation of this homeostasis is multi-factorial, involving many orexigenic (appetite-stimulating) and anorexigenic (appetite-suppressing) peptide hormones. Peripheral tissues are now known to be involved in weight regulation and research on its endocrine characteristics proceeds apace. Preptin with 34 amino acids (MW 3948 Da), adropin with 43 amino acids and a molecular weight of (4999 Da), and irisin with 112 amino acids (12587 Da), are three newly discovered peptides critical for regulating energy metabolism. Preptin is synthesized primarily in pancreatic beta cells, and adropin mainly in the liver and brain, and many peripheral tissues. Irisin, however, is synthesized principally in the heart muscle, along with peripheral tissues, including salivary glands, kidney and liver. The prime functions of preptin and adropin include regulating carbohydrate, lipid and protein metabolisms by moderating glucose-mediated insulin release. Irisin is an anti-obesitic and anti-diabetic hormone regulating adipose tissue metabolism and glucose homeostasis by converting white to brown adipose tissue. This review offers a historical account of these discovery and function of these peptides, including their structure, and physiological and biochemical properties. Their roles in energy regulation will be discussed. Their measurement in biological fluids will be considered, which will lead to further discussion of their possible clinical value. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. THERMAL COMFORT ZONES FORSTEADY-STATE ENERGY BALANCE MODEL

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2003-01-01

    Full Text Available In this study, the various thermal comfort parameters including temperature, relative humidity, air velocity, metabolic activity and clothing resistance and their effect to each other are examined. The heat transfer equations given for steady state energy balance between body and environment and the empirical equations which give thermal comfort and physiological control mechanisms of body are used. According to the ASHRAE Standard 55-1992, an environment can be assumed comfortable while Predicted Percentage of Dissatisfied (PPD is less than % 10. Considering this, thermal comfort zones in various conditions are studied and results are presented and discussed

  6. Arctic melt ponds and energy balance in the climate system

    Science.gov (United States)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  7. Mass and energy balance in the 1973 August 9 flare

    Science.gov (United States)

    Dere, K. P.; Cook, J. W.

    1983-01-01

    The mass and energy balance of the thermal plasma during the decay phase of the solar flare of August 9, 1973, are studied. The analysis is based on observationally determined values for the differential emission measure, density, turbulent and bulk velocities, and physical dimensions. The total particle content and total thermal energy content of the flare plasmas with temperatures above 100,000 K and their variation with time are calculated. The particle loss and the energy losses through radiation, conduction, and convection are evaluated. The decrease in total particle content can be accounted for by the convective losses through the loop footprints at 100,000 K. Radiation is the dominant energy loss mechanism although convective losses at 100,000 K can be important. Conductive losses at 100,000 K into cooler chromospheric material appear to be negligible. The decrease in the total energy content during the decay phase is equal to the sum of the energy losses over the period of observation. No requirement is found for continued heating during the decay phase.

  8. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.

    Science.gov (United States)

    Janssens, Pilou L H R; Hursel, Rick; Martens, Eveline A P; Westerterp-Plantenga, Margriet S

    2013-01-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Nederlands Trial Register; registration number NTR2944.

  9. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.

    Directory of Open Access Journals (Sweden)

    Pilou L H R Janssens

    Full Text Available BACKGROUND: Addition of capsaicin (CAPS to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. AIM: We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. METHODS: Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU with every meal. RESULTS: An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT and resting energy expenditure (REE at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively. Sleeping metabolic rate (SMR at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04. Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03, while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ was more decreased at 75%CAPS (p = 0.04 than at 75%Control (p = 0.05 when compared with 100%Control. Blood pressure did not differ between the four conditions. CONCLUSION: In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. TRIAL REGISTRATION

  10. Interlaced Energy Linac with Smooth Energy Regulation

    CERN Document Server

    Wronka, Sławomir

    2016-01-01

    2 A bstract Radiation is commonly used in many branches of every d ay life. Applications of ionization radiation sources in wide range of energy as well as precise detectors cover a number of areas, from basic research, medical treatment, industrial processing, environmental protection, non - destructive testing to safety a nd security. Accelerator and X - ray tube based techniques are increasingly used in luggage and cargo inspection, smuggling detection of explosives and of nuclear materials. The development of new technologies and new features of “classical” machines can be observed recently with the same, well known physics inside. This report is intended to provide the readers with newly developed at NCBJ experimental stand for cargo screening tests, equipped with linear interlaced - energy accelerator.

  11. Climatological evaluation of some fluxes of the surface energy and soil water balances over France

    Directory of Open Access Journals (Sweden)

    E. M. Choisnel

    Full Text Available This paper presents some statistical evaluations of the surface energy and soil water balance fluxes, for a prairie-type canopy, using the Earth model with a double-reservoir system for the management of the soil water reserve and the regulation of actual evapotranspiration. The mean values of these fluxes are estimated from energy and water balance simulations done on a 30-year climatic reference period (1951–1980. From values of these fluxes calculated for each meteorological synoptic station, mappings of net radiation, actual evapotranspiration, drainage and conduction fluxes have been made over French territory. Lastly, a few conclusions pertaining to the spatial variability of fluxes and to the partition of rainfall between run-off and drainage on the one hand and replenishment of the soil water reserve on the other hand are drawn from these preliminary results.

  12. Energy Storage System Based on Cascaded Multilevel Inverter with Decoupled Energy Balancing Control

    Directory of Open Access Journals (Sweden)

    Cao Yuanzhi

    2015-01-01

    Full Text Available This paper presents a three phase cascaded multilevel inverter based supercapacitor (SC energy storage system with novel structure and control strategy to maintain the energy balance of between phases. Every two phases are coupled with a series LC filter. With the filter, SC cells in different phases could exchange energy with an auxiliary power flow at high frequency. The auxiliary power flow is orthogonal to the primary power flow. The phase difference between high frequency voltage and current components of each phase determines whether the energy is absorbed into or released from its SC cells. Unlike traditional energy balancing strategies, the proposed method is independent to the fundamental real power drawn by the energy storage system. Simulation results confirmed the effects of proposed theories.

  13. Appetite regulation in response to sitting and energy imbalance.

    Science.gov (United States)

    Granados, Kirsten; Stephens, Brooke R; Malin, Steven K; Zderic, Theodore W; Hamilton, Marc T; Braun, Barry

    2012-04-01

    The impact of sitting and energy imbalance on appetite and appetite-regulating hormones (acylated ghrelin and leptin) was assessed in response to 1 day of sitting, with and without changes in energy intake. Fourteen men and women completed each of three 24-h conditions: high energy expenditure (standing) with energy balance (STAND), low energy expenditure (sitting) with energy surplus (SIT), and sitting with energy balance (SIT-BAL). Ghrelin, leptin, and appetite were measured in the fasted state and following a standardized meal. In the fasted state, there were no differences among conditions. Following the meal, ghrelin was lower in SIT than in STAND, with no change in appetite. When intake was reduced (SIT-BAL), the decrease in ghrelin when sitting was attenuated, hunger increased, and fullness decreased. SIT led to lower ghrelin concentrations in the men, whereas in the women, leptin increased. SIT-BAL led to an increase in ghrelin in the men but attenuated the leptin response, reduced ghrelin, increased hunger, and decreased fullness in the women. Because a dramatic reduction in energy expenditure was not accompanied by reduced appetite, prolonged sitting may promote excess energy intake, leading to weight gain in both men and women.

  14. Water-Energy balance in pressure irrigation systems

    Science.gov (United States)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  15. Energy balance of forage consumption by phyllophagous insects: optimization model

    Directory of Open Access Journals (Sweden)

    O. V. Tarasova

    2015-06-01

    Full Text Available The model of optimal food consumption by phytophagous insects proposed, in which the metabolic costs are presented in the form of two components – the cost of food utilization and costs for proper metabolism of the individuals. Two measures were introduced – the «price» of food conversion and the «price» of biomass synthesis of individuals to assess the effectiveness of food consumption by caterpillars. The proposed approach to the description of food consumption by insects provides the exact solutions of the equation of energy balance of food consumption and determining the effectiveness of consumption and the risk of death of the individual. Experiments on larvae’s feeding in laboratory conditions were carried out to verify the model. Caterpillars of Aporia crataegi L. (Lepidoptera, Pieridae were the research subjects. Supply­demand balance, calculated value of the environmental price of consumption and efficiency of food consumption for each individual were determined from experimental data. It was found that the fertility of the female does not depend on the weight of food consumed by it, but is linearly dependent on the food consumption efficiency index. The greater the efficiency of food consumption by an individual, the higher its fertility. The data obtained in the course of experiments on the feeding caterpillars Aporia crataegi were compared with the data presented in the works of other authors and counted in the proposed model of consumption. Calculations allowed estimation of the critical value of food conversion price below which the energy balance is negative and the existence of an individual is not possible.

  16. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1991-01-01

    The sensitivity of the mass balance of the Greenland ice sheet to climate change is studied with an energy-balance model of the ice/snow surface, applied at 200 m elevation intervals for four characteristic regions of the ice sheet. Solar radiation, longwave radiation, turbulent heat fluxes

  17. Carbon balance and energy fluxes of a Mediterranean crop

    Directory of Open Access Journals (Sweden)

    Simona Consoli

    2013-09-01

    Full Text Available This paper is based on the analysis of a long-term mass (carbon dioxide, water vapour and energy (solar radiation balance monitoring programme carried out during years 2010 and 2012 in an irrigated orange orchard in Sicily, using the Eddy Covariance (EC method. Orange (Citrus sinensis L. is one of the main fruit crops worldwide and its evergreen orchard may have a great potential for carbon sequestration, but few data are currently available. In the study, the role of the orchard system in sequestering atmospheric CO2 was analyzed, thus contributing to assess the carbon balance of the specie in the specific environment.Vertical energy fluxes of net radiation, soil heat, sensible heat and latent heat fluxes were measured at orchard scale by EC. Evapotranspiration (ET values were compared with upscaled transpiration data determined by the sap flow heat pulse technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level.

  18. CHAMP gravity field recovery using the energy balance approach

    Directory of Open Access Journals (Sweden)

    Ch. Gerlach

    2003-01-01

    Full Text Available Since the early days of satellite geodesy energy balance based methods for gravity field determination have been considered. If non-conservative forces are known the Hamiltonian along the orbit is a constant of the motion. Thus the gravity field can be determined if position and velocity of the satellite are known and accelerometer measurements are available to model the non-conservative part. CHAMP is the first satellite that provides the user with those three kinds of data nearly continuously. Numerical investigations using real CHAMP data are presented to show the feasibility of the method. Using a semi-analytical approach the gravity field can be determined efficiently by a 2D-Fourier method. Those fast computations also give way to application of the method not only to a full gravity field recovery but also, e.g. for quick-look and validation of SST observations for satellite missions like CHAMP, GRACE or GOCE. The method can also be used for estimation of accelerometer calibration parameters.Key words. gravity field, energy balance, Jacobi-integral, non-conservative forces, accelerometer calibration, CHAMP

  19. Obesity and energy balance: is the tail wagging the dog?

    Science.gov (United States)

    Wells, J C K; Siervo, M

    2011-11-01

    The scientific study of obesity has been dominated throughout the twentieth century by the concept of energy balance. This conceptual approach, based on fundamental thermodynamic principles, states that energy cannot be destroyed, and can only be gained, lost or stored by an organism. Its application in obesity research has emphasised excessive appetite (gluttony), or insufficient physical activity (sloth), as the primary determinants of excess weight gain, reflected in current guidelines for obesity prevention and treatment. This model cannot explain why weight accumulates persistently rather than reaching a plateau, and underplays the effect of variability in dietary constituents on energy and intermediary metabolism. An alternative model emphasises the capacity of fructose and fructose-derived sweeteners (sucrose, high-fructose corn syrup) to perturb cellular metabolism via modification of the adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio, activation of AMP kinase and compensatory mechanisms, which favour adipose tissue accretion and increased appetite while depressing physical activity. This conceptual model implicates chronic hyperinsulinaemia in the presence of a paradoxical state of 'cellular starvation' as a key driver of the metabolic modifications inducing chronic weight gain. We combine evidence from in vitro and in vivo experiments to formulate a perspective on obesity aetiology that emphasises metabolic flexibility and dietary composition rather than energy balance. Using this model, we question the direction of causation of reported associations between obesity and sleep duration or childhood growth. Our perspective generates new hypotheses, which can be tested to improve our understanding of the current obesity epidemic, and to identify novel strategies for prevention or treatment.

  20. Exercise, energy expenditure and energy balance, as measured with doubly labelled water.

    Science.gov (United States)

    Westerterp, Klaas R

    2018-02-01

    The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1-3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H2 18O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00-2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00-2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.

  1. Reynolds number effects on scale energy balance in wall turbulence

    Science.gov (United States)

    Saikrishnan, Neelakantan; De Angelis, Elisabetta; Longmire, Ellen K.; Marusic, Ivan; Casciola, Carlo M.; Piva, Renzo

    2012-01-01

    The scale energy budget utilizes a modified version of the classical Kolmogorov equation of wall turbulence to develop an evolution equation for the second order structure function [R. J. Hill, "Exact second-order structure-function relationships," J. Fluid Mech. 468, 317 (2002)]. This methodology allows for the simultaneous characterization of the energy cascade and spatial fluxes in turbulent shear flows across the entire physical domain as well as the range of scales. The present study utilizes this methodology to characterize the effects of Reynolds number on the balance of energy fluxes in turbulent channel flows. Direct numerical simulation data in the range Reτ = 300-934 are compared to previously published results at Reτ = 180 [N. Marati, C. M. Casciola, and R. Piva, "Energy cascade and spatial fluxes in wall turbulence," J. Fluid Mech. 521, 191 (2004)]. The present results show no Reynolds number effects in the terms of the scale energy budget in either the viscous sublayer or buffer regions of the channel. In the logarithmic layer, the transfer of energy across scales clearly varies with Reynolds number, while the production of turbulent kinetic energy is not dependent on Reynolds number. An envelope of inverse energy cascade is quantified in the buffer region within which energy is transferred from small to larger scales. This envelope is observed in the range 6 < y+ < 37, where all scales except the smallest scales display characteristics of an inverse energy cascade. The cross-over scale lc+, which indicates the transition between production dominated and scale transfer dominated regimes, increases with Reynolds number, implying a larger range of transfer dominated scales, before the dominant mechanism switches to production. At higher Reynolds numbers, two distinct regimes of lc+ as a function of wall-normal location are observed, which was not captured at Reτ = 180. The variations of lc+ match the trends of the shear scale, which is a

  2. [Strategies for successful weight reduction - focus on energy balance].

    Science.gov (United States)

    Weck, M; Bornstein, S R; Barthel, A; Blüher, M

    2012-10-01

    The prevalence of obesity and related health problems is increasing worldwide and also in Germany. It is well known that substantial and sustained weight loss is difficult to accomplish. Therefore, a variety of studies has been performed in order to specify causes for weight gain and create hypotheses for better treatment options. Key factors of this problem are an adaptation of energy metabolism, especially resting metabolic rate (RMR), non-exercise thermogenesis and diet induced thermogenesis. The extremely high failure rate (> 80%) to keep the reduced weight after successful weight loss is due to adaptation processes of the body to maintain body energy stores. This so called "adaptive thermogenesis" is defined as a smaller than predicted change of energy expenditure in response to changes in energy balance. Adaptive thermogenesis appears to be a major reason for weight regain. The foremost objective of weight-loss programs is the reduction in body fat. However, a concomitant decline in lean tissue can frequently be observed. Since lean body mass (LBM) represents a key determinant of RMR it follows that a decrease in lean tissue could counteract the progress of weight loss. Therefore, with respect to long-term effectiveness of weight reduction programs, the loss of fat mass while maintaining LBM and RMR seems desirable. In this paper we will discuss the mechanisms of adaptive thermogenesis and develop therapeutic strategies with respect to avoiding weight regain successful weight reduction. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    Science.gov (United States)

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.

  4. Load Balancing Metric with Diversity for Energy Efficient Routing in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, Raja

    2011-01-01

    The expected number of transmission (ETX) represents a routing metric that considers the highly variable link qualities for a specific radio in Wireless Sensor Networks (WSNs). To adapt to these differences, radio diversity is a recently explored solution for WSNs. In this paper, we propose...... an energy balancing metric which explores the diversity in link qualities present at different radios. The goal is to effectively use the energy of the network and therefore extend the network lifetime. The proposed metric takes into account the transmission and reception costs for a specific radio in order...... to choose an energy efficient radio. In addition, the metric uses the remaining energy of nodes in order to regulate the traffic so that critical nodes are avoided. We show by simulations that our metric can improve the network lifetime up to 20%....

  5. Energy Balance of Triathletes during an Ultra-Endurance Event

    Directory of Open Access Journals (Sweden)

    Anna Barrero

    2014-12-01

    Full Text Available The nutritional strategy during an ultra-endurance triathlon (UET is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE and the fluid balance through the race. Methods: Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI during the race. The EE was estimated from heart rate (HR recordings during the race, using the individual HR-oxygen uptake (Vo2 regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM, total body water (TBW and intracellular (ICW and extracellular water (ECW were assessed before and after the race using a multifrequency bioimpedance device (BIA. Results: Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%. BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Conclusions: Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit.

  6. The global land and ocean mean energy balance

    Science.gov (United States)

    Wild, Martin; Folini, Doris

    2016-04-01

    The energy balance over land and oceans governs a diversity of terrestrial and maritime processes and is the key determinant of climatic conditions in these areas. Despite its crucial role, climate models show significant differences in the individual components of the energy balance over both land and oceans, particularly at the surface. Here we combine a comprehensive set of radiation observations from GEBA and BSRN with 43 state-of-the-art climate models to infer best estimates for present day annual mean downward solar and thermal radiation averaged over land and ocean surfaces, together with their uncertainty ranges. Over land (including the polar ice sheets), where most direct observations are available to constrain the surface fluxes, we obtain 184 and 306 Wm-2 for solar and thermal downward radiation, respectively. Over oceans, with weaker observational constraints, corresponding estimates are around 185 and 356 Wm-2. These values closely agree, mostly within 3 Wm-2, with the respective quantities independently derived by a state-of-the-art reanalysis (ERA-Interim) and satellite-derived product (surface CERES EBAF). This remarkable consistency enhances confidence in the determined flux magnitudes, which so far stated large uncertainty sources in the energy budgets. The estimated downward solar radiation averaged over land and ocean surfaces is almost identical despite differences in the incoming solar flux at the Top-of-Atmosphere (TOA) around 20 Wm-2, indicative of an overall less transparent atmosphere over oceans than land. Considering additionally surface albedo and emissivity, we infer a surface absorbed solar and net thermal radiation of 136 and -66 Wm-2 over land, and 170 and -53 Wm-2 over oceans, respectively. The surface net radiation is thus estimated at 70 Wm-2 over land and 117 Wm-2 over oceans, which may impose additional constraints on the poorly known sensible and latent heat flux magnitudes. These are estimated here near 32 and 38 Wm-2 over

  7. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation.

    Science.gov (United States)

    Jastroch, M; Giroud, S; Barrett, P; Geiser, F; Heldmaier, G; Herwig, A

    2016-11-01

    Endothermic mammals and birds require intensive energy turnover to sustain high body temperatures and metabolic rates. To cope with the energetic bottlenecks associated with the change of seasons, and to minimise energy expenditure, complex mechanisms and strategies are used, such as daily torpor and hibernation. During torpor, metabolic depression and low body temperatures save energy. However, these bouts of torpor, lasting for hours to weeks, are interrupted by active 'euthermic' phases with high body temperatures. These dynamic transitions require precise communication between the brain and peripheral tissues to defend rheostasis in energetics, body mass and body temperature. The hypothalamus appears to be the major control centre in the brain, coordinating energy metabolism and body temperature. The sympathetic nervous system controls body temperature by adjustments of shivering and nonshivering thermogenesis, with the latter being primarily executed by brown adipose tissue. Over the last decade, comparative physiologists have put forward integrative studies on the ecophysiology, biochemistry and molecular regulation of energy balance in response to seasonal challenges, food availability and ambient temperature. Mammals coping with such environments comprise excellent model organisms for studying the dynamic regulation of energy metabolism. Beyond the understanding of how animals survive in nature, these studies also uncover general mechanisms of mammalian energy homeostasis. This research will benefit efforts of translational medicine aiming to combat emerging human metabolic disorders. The present review focuses on recent advances in the understanding of energy balance and its neuronal and endocrine control during the most extreme metabolic fluctuations in nature: daily torpor and hibernation. © 2016 British Society for Neuroendocrinology.

  8. Fuel Cells for Balancing Fluctuation Renewable Energy Sources

    OpenAIRE

    Mathiesen, Brian Vad

    2007-01-01

    In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage of fast regulation abilities combined with excellent part-load efficiencies. Additionally scaling the cells from W to kW to MW is possible and does not influence the efficiencies of the cells. The feasi...

  9. Multiagent-Based Distributed State of Charge Balancing Control for Distributed Energy Storage Units in AC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Coelho, Ernane Antônio Alves; Dragicevic, Tomislav

    2017-01-01

    In this paper, a multiagent-based distributed control algorithm has been proposed to achieve state of charge (SoC) balance of distributed energy storage (DES) units in an ac microgrid. The proposal uses frequency scheduling instead of adaptive droop gain to regulate the active power. Each DES uni...

  10. Re-Establishment of Energy Balance in a Male Mouse Model with POMC Neuron Deletion of BMPR1A.

    Science.gov (United States)

    Townsend, Kristy L; Madden, Christopher; Blaszkiewicz, Magdalena; McDougall, Lindsay; Tupone, Domenico; Lynes, Matthew D; Mishina, Yuji; Yu, Paul; Morrison, Shaun; Tseng, Yu-Hua

    2017-10-09

    The regulation of energy balance involves complex processes in the brain, including coordination by hypothalamic neurons that contain pro-opiomelanocortin (POMC). We previously demonstrated that central bone morphogenetic protein 7 (BMP7) reduces appetite. Now we show that a type 1 BMP receptor, BMPR1A, is co-localized with POMC neurons and POMC-BMPR1A-KO mice are hyperphagic, revealing physiological involvement of BMP signaling in anorectic POMC neurons in the regulation of appetite. Surprisingly, the hyperphagic POMC-BMPR1A-KO mice exhibit a lack of obesity, even on a 45% high-fat diet. This is because brown adipose tissue (BAT) of KO animals exhibited increased sympathetic activation and greater thermogenic capacity, due to a re-establishment of energy balance likely stemming from a compensatory increase of BMPR1A in the whole hypothalamus of KO mice. Indeed, control animals given central BMP7 displayed increased energy expenditure and a specific increase of sympathetic nerve activity (SNA) in BAT. In these animals, pharmacological blockade of BMPR1A-SMAD signaling blunted the ability of BMP7 to increase energy expenditure or BAT SNA. Together, we demonstrate an important role for hypothalamic BMP signaling in the regulation of energy balance, including BMPR1A-mediated appetite regulation in POMC neurons as well as hypothalamic BMP-SMAD regulation of sympathetic drive to BAT for thermogenesis. Copyright © 2017 Endocrine Society.

  11. Global energy balance of COSIPA in 1990; Balanco energetico global da COSIPA em 1990

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Nicola Roberto de; Silva, Clovis Aprigio da; Veiga, Wagner [Companhia Siderurgica Paulista (Brazil)

    1991-12-31

    This report shows relevant aspects about energy account in a Brazilian metal industry, COSIPA - Companhia Siderurgica Paulista. The energy balances from each unit of this steel making are carried out, and data on energy consumption in blast furnaces, fuel balances and its supply of energy are presented. 24 figs., 31 tabs

  12. Energy and Greenhouse gas balances of the utilisation of biogas for energy

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Karlsson, Kenneth Bernard; Holm-Nielsen, Jens Bo

    1998-01-01

    The utilisation of biogas for energy is an important part of the Danish energy plan for reducing Danish emissions of greenhouse gases. Implementation programmes for new biogas plants have been in operation since 1990, promoted by the Ministry of Environment and Energy. The focus of the implementa......The utilisation of biogas for energy is an important part of the Danish energy plan for reducing Danish emissions of greenhouse gases. Implementation programmes for new biogas plants have been in operation since 1990, promoted by the Ministry of Environment and Energy. The focus...... biogas for energy. Two different Danish joint biogas plants are evaluated with the aim of determining the role of transportation and co-fermentation on the energy and the balance of greenhouse gases from the biogas fuel cycle....

  13. Autophagy: Regulation by Energy Sensing

    NARCIS (Netherlands)

    Meijer, Alfred J.; Codogno, Patrice

    2011-01-01

    Autophagy is inhibited by the mTOR signaling pathway, which is stimulated by increased amino acid levels. When cellular energy production is compromised, AMP-activated protein kinase is activated, mTOR is inhibited and autophagy is stimulated. Two recent studies have shed light on the molecular

  14. Regulation of geothermal energy development in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  15. The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance

    OpenAIRE

    Collet Tinh-Hai; van, der Klaauw Agatha A; Henning Elana; Keogh Julia M.; Suddaby Diane; Dachi Sekesai V; Dunbar Síle; Kelway Sarah; Dickson Suzanne L; Farooqi I. Sadaf; Schmid Sebastian M

    2016-01-01

    The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However the potential mechanisms linking energy balance and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating energy balance on the sleep/wake cycle. Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline after energy balance was disrupted by 2 days of caloric restriction to 10 of energy ...

  16. Geospatial and Contextual Approaches to Energy Balance and Health.

    Science.gov (United States)

    Berrigan, David; Hipp, J Aaron; Hurvitz, Philip M; James, Peter; Jankowska, Marta M; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A; Powell-Wiley, Tiffany M; Tarlov, Elizabeth; Zenk, Shannon N

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities.

  17. Geospatial and Contextual Approaches to Energy Balance and Health

    Science.gov (United States)

    Berrigan, David; Hipp, J. Aaron; Hurvitz, Philip M.; James, Peter; Jankowska, Marta M.; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A.; Powell-Wiley, Tiffany M.; Tarlov, Elizabeth; Zenk, Shannon N.

    2016-01-01

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities. PMID:27076868

  18. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.

    Science.gov (United States)

    Lübken, Manfred; Wichern, Marc; Schlattmann, Markus; Gronauer, Andreas; Horn, Harald

    2007-10-01

    Knowledge of the net energy production of anaerobic fermenters is important for reliable modelling of the efficiency of anaerobic digestion processes. By using the Anaerobic Digestion Model No. 1 (ADM1) the simulation of biogas production and composition is possible. This paper shows the application and modification of ADM1 to simulate energy production of the digestion of cattle manure and renewable energy crops. The paper additionally presents an energy balance model, which enables the dynamic calculation of the net energy production. The model was applied to a pilot-scale biogas reactor. It was found in a simulation study that a continuous feeding and splitting of the reactor feed into smaller heaps do not generally have a positive effect on the net energy yield. The simulation study showed that the ratio of co-substrate to liquid manure in the inflow determines the net energy production when the inflow load is split into smaller heaps. Mathematical equations are presented to calculate the increase of biogas and methane yield for the digestion of liquid manure and lipids for different feeding intervals. Calculations of different kinds of energy losses for the pilot-scale digester showed high dynamic variations, demonstrating the significance of using a dynamic energy balance model.

  19. Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

    1980-04-01

    The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

  20. Daily physical activity as determined by age, body mass and energy balance.

    Science.gov (United States)

    Westerterp, Klaas R

    2015-06-01

    Insight into the determinants of physical activity, including age, body mass and energy balance, facilitates the design of intervention studies with body mass and energy balance as determinants of health and optimal performance. An analysis of physical activity energy expenditure in relation to age and body mass and in relation to energy balance, where activity energy expenditure is derived from daily energy expenditure as measured with doubly labelled water and body movement is measured with accelerometers, was conducted in healthy subjects under daily living conditions over intervals of one or more weeks. Activity energy expenditure as a fraction of daily energy expenditure is highest in adults at the reproductive age. Then, activity energy expenditure is a function of fat-free mass. Excess body mass as fat does not affect daily activity energy expenditure, but body movement decreases with increasing fatness. Overweight and obesity possibly affect daily physical activity energy expenditure through endurance. Physical activity is affected by energy availability; a negative energy balance induces a reduction of activity expenditure. Optimal performance and health require prevention of excess body fat and maintenance of energy balance, where energy balance determines physical activity rather than physical activity affecting energy balance.

  1. Regulation of energy homeostasis by GPR41

    Directory of Open Access Journals (Sweden)

    Daisuke eInoue

    2014-05-01

    Full Text Available Imbalances in energy regulation lead to metabolic disorders such as obesity and diabetes. Diet plays an essential role in the maintenance of body energy homeostasis by acting not only as energy source but also as a signaling modality. Excess energy increases energy expenditure, leading to a consumption of them. In addition to glucose, mammals utilize short-chain fatty acids (SCFAs, which are produced by colonic bacterial fermentation of dietary fiber, as a metabolic fuel. The roles of SCFAs in energy regulation have remained unclear, although the roles of glucose are well studied. Recently, a G protein-coupled receptor (GPCR deorphanizing strategy successfully identified GPR41 (also called free fatty acid receptor 3 or FFAR3 as a receptor for SCFAs. GPR41 is expressed in adipose tissue, gut, and the peripheral nervous system, and it is involved in SCFA-dependent energy regulation. In this mini-review, we focus on the role of GPR41 in host energy regulation.

  2. Energy balance in high-power CO2 laser welding

    Science.gov (United States)

    Del Bello, Umberto; Rivela, Cristina; Cantello, Maichi; Penasa, Mauro

    1991-10-01

    The laser energy impinging on a metal workpiece is partially absorbed and partially reflected by the material surface. This work is aimed at gaining a better insight into the energy balance of the process, and it can also provide the correct input for process modeling and the optimum choice of parameters for increasing welding efficiency. Measurements of the absorption coefficient were made using platinum-platinum rhodium thermocouples which monitored the temperature rise. The radiation backscattered by the workpiece or plasma plume was also recorded, and tests were performed to measure the total amount of material lost by evaporation during laser welding. All the tests were performed on austenitic stainless steel. The resulting absorption curves show different behavior at low or high speed and this can be explained only by taking into account the influence on the process of both the size and inclination of the keyhole. To conserve the keyhole, the interaction process must be rapidly interrupted so as to freeze the molten material and preserve the cavity in the form assumed during the process. A fast mechanical switch has been devised and tests seem to confirm the assumption made.

  3. Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation

    Directory of Open Access Journals (Sweden)

    Hengrui Ma

    2018-01-01

    Full Text Available Ancillary services are critical to maintaining the safe and stable operation of power systems that contain a high penetration level of renewable energy resources. As a high-quality regulation resource, the regional integrated energy system (RIES with energy storage system (ESS can effectively adjust the non-negligible frequency offset caused by the renewable energy integration into the power system, and help solve the problem of power system frequency stability. In this paper, the optimization model aiming at regional integrated energy system as a participant in the regulation market based on pay-for-performance is established. Meanwhile YALMIP + CPLEX is used to simulate and analyze the total operating cost under different dispatch modes. This paper uses the actual operation model of the PJM regulation market to guide the optimal allocation of regulation resource in the regional integrated energy system, and provides a balance between the power trading revenue and regulation market revenue in order to achieve the maximum profit.

  4. Brazilian energy balance 1998: calendar year 1997; Balanco energetico nacional 1998: ano base 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances.

  5. Brazilian energy balance 1996: calendar year 1995; Balanco energetico nacional 1996: ano base 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances.

  6. A balanced filterless K-edge energy window multilayer detector for dual energy computed tomography

    Science.gov (United States)

    Allec, Nicholas; Karim, Karim S.

    2010-04-01

    Ross (or balanced) filter-based systems have been studied extensively in the past, however they have only recently been studied for medical applications such as computed tomography and contrast-enhanced mammography. Balanced filters are filters composed of different materials which have thicknesses designed to match the attenuation for all radiation energies except those within a certain energy window (between the K-edges of the filter materials). Images obtained using different filters to attenuate the incident x-rays can be subtracted to obtain an image which contains information solely within the energy window. The disadvantage of this image acquisition method is the requirement of a separate exposure for each filter. This can lead to motion artifacts in the resulting image for example due to cardiac, respiratory, or patient movement. In this paper we investigate a filterless, multilayer detector design using the general concept of balanced filters. In the proposed detector, energy discrimination is achieved using stacked layers of different conversion materials. Similar to how the thicknesses of balanced filters are chosen, the thicknesses of the conversion layers are designed to match the attenuation of x-rays except between the K-edges of the conversion materials. Motion artifacts are suppressed in the final image due to the simultaneous acquisition of images on all layers during a single exposure. The proposed multilayer design can be used for a number of applications depending on the energy range of interest. To study the proposed design, we consider dual energy computed tomography (CT) using a gadolinium-based contrast agent.

  7. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice.

    Science.gov (United States)

    Foglesong, Grant D; Huang, Wei; Liu, Xianglan; Slater, Andrew M; Siu, Jason; Yildiz, Vedat; Salton, Stephen R J; Cao, Lei

    2016-03-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF.

  8. Energy balance for Sachsen-Anhalt 2010; Energiebilanz Sachsen-Anhalt 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    The energy balance of Saxony-Anhalt is presented in physical units, in terrajoule and in coal equivalent to show supply, conversion, and consumption of primary and secondary energy sources in the year under report 2010 Energy balance for Sachsen-Anhalt.

  9. A distributed energy-balance melt model of an alpine debris-covered glacier

    OpenAIRE

    Fyffe, Catriona; Reid, Tim; Brock, Benjamin; Kirkbride, Martin; Diolaiuti, Guglielmina; Smiraglia, Claudio; Diotri, Fabrizio

    2014-01-01

    Distributed energy-balance melt models have rarely been applied to glaciers with extensive supraglacial debris cover. This paper describes the development of a distributed melt model and its application to the debris-covered Miage glacier, western Italian Alps, over two summer seasons. Sub-debris melt rates are calculated using an existing debris energy-balance model (DEB-Model), and melt rates for clean ice, snow and partially debris-covered ice are calculated using standard energy-balance e...

  10. Hormonal regulation of energy partitioning.

    Science.gov (United States)

    Rohner-Jeanrenaud, F

    2000-06-01

    A loop system exists between hypothalamic neuropeptide Y (NPY) and peripheral adipose tissue leptin to maintain normal body homeostasis. When hypothalamic NPY levels are increased by fasting or by intracerebroventricular (i.c.v.) infusion, food intake and body weight increase. NPY has genuine hormono-metabolic effects. It increases insulin and corticosterone secretion relative to controls. These hormonal changes, acting singly or combined, favor adipose tissue lipogenic activity, while producing muscle insulin resistance. They also promote leptin release from adipose tissue. When infused i.c.v. to normal rats to mimic its central effects, leptin decreases NPY levels, thus food intake and body weight. Leptin i.c.v. has also genuine hormono-metabolic effects. It decreases insulinemia and adipose tissue storage ability, enhancing glucose disposal. Leptin increases the expression of uncoupling proteins (UCP-1, -2, -3) and thus energy dissipation. Leptin-induced changes favor oxidation at the expense of storage. Circadian fluctuations of NPY and leptin levels maintain normal body homeostasis. In animal obesity, defective hypothalamic leptin receptor activation prevent leptin from acting, with resulting obesity, insulin and leptin resistance.

  11. Scheduling algorithms for saving energy and balancing load

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Antonios

    2012-08-03

    In this thesis we study problems of scheduling tasks in computing environments. We consider both the modern objective function of minimizing energy consumption, and the classical objective of balancing load across machines. We first investigate offline deadline-based scheduling in the setting of a single variable-speed processor that is equipped with a sleep state. The objective is that of minimizing the total energy consumption. Apart from settling the complexity of the problem by showing its NP-hardness, we provide a lower bound of 2 for general convex power functions, and a particular natural class of schedules called s{sub crit}-schedules. We also present an algorithmic framework for designing good approximation algorithms. For general convex power functions our framework improves the best known approximation-factor from 2 to 4/3. This factor can be reduced even further to 137/117 for a specific well-motivated class of power functions. Furthermore, we give tight bounds to show that our framework returns optimal s{sub crit}-schedules for the two aforementioned power-function classes. We then focus on the multiprocessor setting where each processor has the ability to vary its speed. Job migration is allowed, and we again consider classical deadline-based scheduling with the objective of energy minimization. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time for any convex and non-decreasing power function. Our algorithm relies on repeated maximum flow computations. Regarding the online problem and power functions P(s) = s{sup {alpha}}, where s is the processor speed and {alpha} > 1 a constant, we extend the two well-known single-processor algorithms Optimal Available and Average Rate. We prove that Optimal Available is {alpha}{sup {alpha}}-competitive as in the single-processor case. For Average Rate we show a competitive factor of (2{alpha}){sup {alpha}}/2 + 1, i.e., compared to the single

  12. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  13. Energy partitioning in dairy cows : effects of lipogenic and glucogenic diets on energy balance, metabolites and reproduction variables in early lactation

    NARCIS (Netherlands)

    Knegsel, van A.T.M.

    2007-01-01

    Keywords: dairy cows; dietary energy source; glucogenic nutrients; lipogenic nutrients; negative energy balance; metabolic disorders; reproduction, immune system   Dairy cows experience a negative energy balance (NEB) in early lactation which results from high energy requirements for milk production

  14. Ion-kinetic-energy measurements and energy balance in a Z-pinch plasma at stagnation.

    Science.gov (United States)

    Kroupp, E; Osin, D; Starobinets, A; Fisher, V; Bernshtam, V; Maron, Y; Uschmann, I; Förster, E; Fisher, A; Deeney, C

    2007-03-16

    The ion-kinetic energy throughout K emission in a stagnating plasma was determined from the Doppler contribution to the shapes of optically thin lines. X-ray spectroscopy with a remarkably high spectral resolution, together with simultaneous imaging along the pinch, was employed. Over the emission period, a drop of the ion-kinetic energy down to the electron thermal energy was seen. Axially resolved time-dependent electron-density measurements and absolute intensities of line and continuum allowed for investigating, for the first time, each segment of the pinch, the balance between the ion-kinetic energy at the stagnating plasma, and the total radiation emitted. Within the experimental uncertainties, the ion-kinetic energy is shown to account for the total radiation.

  15. Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women.

    Science.gov (United States)

    Bosy-Westphal, Anja; Hinrichs, Silvia; Jauch-Chara, Kamila; Hitze, Britta; Later, Wiebke; Wilms, Britta; Settler, Uta; Peters, Achim; Kiosz, Dieter; Muller, Manfred James

    2008-01-01

    Voluntary sleep restriction is a lifestyle feature of modern societies that may contribute to obesity and diabetes. The aim of the study was to investigate the impact of partial sleep deprivation on the regulation of energy balance and insulin sensitivity. In a controlled intervention, 14 healthy women (age 23-38 years, BMI 20.0-36.6 kg/m(2)) were investigated after 2 nights of >8 h sleep/night (T0), after 4 nights of consecutively increasing sleep curtailment (7 h sleep/night, 6 h sleep/night, 6 h sleep/night and 4 h sleep/night; T1) and after 2 nights of sleep recovery (>8 h sleep/night; T2). Resting and total energy expenditure (REE, TEE), glucose-induced thermogenesis (GIT), physical activity, energy intake, glucose tolerance and endocrine parameters were assessed. After a decrease in sleep du-ration, energy intake (+20%), body weight (+0.4 kg), leptin/fat mass (+29%), free triiodothyronine (+19%), free thyroxine (+10%) and GIT (+34%) significantly increased (all p ghrelin levels remained unchanged at T1. The effect of sleep loss on GIT, fT3 and fT4 levels was inversely related to fat mass. Short-term sleep deprivation increased energy intake and led to a net weight gain in women. The effect of sleep restriction on energy expenditure needs to be specifically addressed in future studies using reference methods for total energy expenditure.

  16. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance.

    Science.gov (United States)

    True, Cadence; Grove, Kevin L; Smith, M Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.

  17. Energy-conserving development regulations: current practice

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Almost every aspect of land development has an effect on energy use, from minute architectural details to broad considerations of urban density. Energy-efficiency depends in part on how development is planned and carried out. Conventional development regulations, such as zoning ordinances and subdivision regulations, can be adapted in many ways to promote energy conservation at the community level. This report is about energy-efficient site and neighborhood design. It examines recent experiences of local governments that have adopted new development regulations or amended existing ones to promote energy conservation, more efficient generation and distribution, or a switch to alternative, renewable sources. Although much has been written in recent years about saving energy through community design, actual experience in applying these new ideas is still limited. To date, most communities have focused their efforts on studying the problem, documenting consumption patterns, and writing reports and plans. Only a handful have amended their land-use controls for the express purpose of saving energy. This study identifies 13 of these pioneering communities, after undertaking a survey of over 1400 local, regional, and state planning agencies. It takes a look at their experiences, to learn what has been done, how well it has worked, and what problems have been encountered.

  18. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    Science.gov (United States)

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  19. The Obese Brain--Effects of Bariatric Surgery on Energy Balance Neurocircuitry.

    Science.gov (United States)

    de Lima-Júnior, José Carlos; Velloso, Lício A; Geloneze, Bruno

    2015-10-01

    Obesity is a highly prevalent disease in the world and with a major impact on global health. While genetic components are also involved in its pathogenesis, in recent years, it has shown a critical role of the innate and adaptive immune cell response in many tissues triggered by excess of nutrients such as lipids and glucose. Free fatty acids and other nutrient-related signals induce damage such as insulin resistance in the peripheral tissues but also in the brain. Specifically in the hypothalamus, these metabolic signals can trigger significant changes in the control of energy balance. Recent studies have shown that saturated fat disrupts melanocortin signaling of hypothalamic neuronal subgroups pivotal to energy control. Bariatric surgery is a treatment option for obesity when other tools have failed, because it is more effective than pharmacotherapy concerning of weight loss itself and in improvement of obesity-related comorbidities. Here, we review the mechanisms by which Roux-en Y gastric bypass (RYGB) can change peripheral signals that modulate melanocortin circuits involved in the regulation of energy balance.

  20. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  1. Fuel Cells for Balancing Fluctuation Renewable Energy Sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2007-01-01

    In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage...... of fast regulation abilities combined with excellent part-load efficiencies. Additionally scaling the cells from W to kW to MW is possible and does not influence the efficiencies of the cells. The feasibility of the scaling however depends on the market at hand and the fuel cells characteristics. Wind...... integration can also be preformed with other types of fuel cells than the SOFCs such as PEMFC in micro-CHP. These however have the disadvantage that the efficiency is lower and require pure hydrogen. PEMFCs have advantages for mobile applications replacing internal combustion engines and batteries were...

  2. Brown adipose tissue: research milestones of a potential player in human energy balance and obesity.

    Science.gov (United States)

    Zafrir, B

    2013-10-01

    Obesity and diabetes mellitus are worldwide epidemics driven by the disruption in energy balance. In recent years, it was discovered that functional brown adipose tissue (BAT), once thought to exist mainly in infants, is present in adults, and can be detected during cold stimulation, and is associated with decreased adiposity. Brown fat pads were shown to be highly vascularized and metabolically active and on stimulation, they caused enhanced energy expenditure and increased glucose and fatty acid uptake. These observations drew attention to the possibility that nonshivering thermogenesis mediated by activation of BAT might be important in human energy balance and a potential tool to counter obesity. Recent investigations have revealed significant advances in the understanding of the role of BAT-mediated thermogenesis, uncovering essential knowledge on the origin, differentiation, activation, and regulation of BAT in both murine models and humans. In addition to classic BAT depots, transformation of white adipocytes into brown-like adipocytes, and the development of "beige" cells from distinct precursors, were demonstrated in different animal models and resulted in increased thermogenic activity. Several transcription factors, activating proteins, and hormones are increasingly identified as regulating the development and function of both brown-like adipocytes and classic brown fat pads. This review will summarize the evolution of research on BAT in humans, in light of the renewed scientific interest and growing body of evidence showing that recruitment and activation of BAT and browning of white adipose tissue can affect energy expenditure and may be a future feasible target in the treatment of metabolic diseases. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Enhancing the calculation accuracy of performance characteristics of power-generating units by correcting general measurands based on matching energy balances

    Science.gov (United States)

    Shchinnikov, P. A.; Safronov, A. V.

    2014-12-01

    General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.

  4. Proposal for a refinement of the National Energy Balance (BEN) and Useful Energy Balance (BEU); Proposta de refinamento do Balanco Energetico Nacional e do Balanco de Energia Util

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Alvaro Afonso Furtado [Universidade Estadual de Santa Cruz (DCET/UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas], email: aafleite@uesc.br; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico], email: bajay@fem.unicamp.br

    2010-07-01

    The need to discuss the reformulation of two important tools for the Brazilian energy planning - the National Energy Balance (BEN) and the Useful Energy Balance (BEU) - was the motivation to carry out the study reported in this paper. The concepts embodied in the BEN were set out in the seventies, while those structuring the BEU were defined in the eighties. Since then, the ways to produce, trade and consume energy underwent important changes in Brazil and the expansion planning of the national energy system requires, nowadays, more detailed information and, in some cases, more reliable data than those currently provided by the two balances. They need, thus, to be refined, and this paper aims to contribute towards this goal. (author)

  5. HAMBURG ENERGIE makes biogas plants fit for the balancing energy market; HAMBURG ENERGIE macht Biogasanlagen fit fuer den Regelenergiemarkt

    Energy Technology Data Exchange (ETDEWEB)

    Timmann, Bernd [HAMBURG ENERGIE, Hamburg (Germany). Direktvermarktung und Regelenergie; Bettinger, Carola [HAMBURG ENERGIE, Hamburg (Germany). Forschungsprojekt SMART POWER HAMBURG

    2013-04-15

    HAMBURG ENERGIE GmbH (Hamburg, Federal Republic of Germany) bundles 40 biogas plants with a total capacity of 15 megawatts to a virtual power plant. Thus, also small, decentralized plants may offer negative balancing power and achieve additional profits that were previously available only to large producers. In the medium term, HAMBURG ENERGIE wants to place a performance of 150 MW on the market.

  6. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  7. Energy balances for power plants; Energiebilanzen fuer Kraftwerke. Aus Energie wird Elektrizitaet

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, W.; Muggli, Ch

    1997-07-01

    An important aspect of a power plant is its energy balance, i.e. the electrical energy produced by the plant over its overall operation period, compared to the amount of non-renewable energy used to create and build the plant. Tense discussions took place in the past between criticizers and promotors of a given technology, some technologies even being accused of having a negative energy balance. Mostly based on built examples the present study aims at giving objective data for the represented technologies, as follows: a 64 MW hydro power plant in the Alps, with seasonal water storage in a lake; a 60 MW run-of-river high-head hydro power plant in the Alps; two run-of-river low-head hydro power plants in the Swiss Midlands (14 MW and 25 MW respectively); a small 30 kW wind power generator located near the Simplon Pass at 2000 m over sea level, in the Alps; a 3 kW photovoltaic generator in the roof of a single-family house; a 500 kW photovoltaic power plant in the Jura, at 1000 m over sea level; a 0.9 MW{sub el}/8.8 MW{sub therm} fossil-fuel co-generation plant near Zuerich; a 200 MW natural-gas-fired gas/vapour turbine power plant; a 300 MW heavy-fuel-fired power plant; a 500 MW coal-fired power plant; and the Leibstadt 990 MW nuclear power plant. The best energy balances are obtained for the hydro power plants, the worst for the Leibstadt nuclear power plant. In between the photovoltaic plants and the fossil-fuel-fired plants are found. The figures differ by more than two orders of magnitude.

  8. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  9. Socioecological correlates of energy balance using urinary C-peptide measurements in wild female mountain gorillas.

    Science.gov (United States)

    Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M

    2014-03-29

    Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Surface energy balance closure in an arid region: role of soil and heat flux

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.; Berkowicz, S.M.

    2004-01-01

    The large soil heat fluxes in hot desert regions are very important in energy balance studies. Surface energy balance (SEB) observations, however, reveal that there is an imbalance in Surface flux measurements and that it is difficult to isolate those flux measurements causing the imbalance errors.

  11. Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal

    NARCIS (Netherlands)

    Miles, Evan S.; Pellicciotti, Francesca; Willis, Ian C.; Steiner, Jakob F.|info:eu-repo/dai/nl/119338653; Buri, Pascal; Arnold, Neil S.

    2016-01-01

    Supraglacial ponds on debris-covered glaciers present a mechanism of atmosphere/glacier energy transfer that is poorly studied, and only conceptually included in mass-balance studies of debris-covered glaciers. This research advances previous efforts to develop a model of mass and energy balance for

  12. Modelling evapotranspiration using the surface energy balance systems (sebs) and landsat tm data (rabat region, morocco)

    NARCIS (Netherlands)

    Kwast, J. van der; Jong, S.M. de

    2004-01-01

    Modelling and understanding the surface energy balance is important for assessing the re-distribution of moisture and heat in soil and atmosphere. The Surface Energy Balance System (SEBS) estimates turbulent heat fluxes using satellite earth observation data in the visible, near infrared, and

  13. Municipalities as facilitators, regulators and energy consumers

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Kjær, Tyge

    2015-01-01

    Biogas provides many potential benefits as far as renewable energy production, environmental protection and job creation etc. Insufficient initiatives from government/municipalities however hamper more biogas plants to be established, and hence that the large manure potential, and other types...... of digestible organic waste materials, are being utilized for energy purposes. By looking at municipalities as energy consumer’s, that constitutes a local market for biogas, as regulator’s, enforcing new requirements and regulations on the biogas sector, and finally as facilitator’s, assisting and helping...

  14. Nutrition in ultra-endurance racing - aspects of energy balance, fluid balance and exercise-associated hyponatremia

    OpenAIRE

    Knechtle, B

    2013-01-01

    Ultra-endurance athletes try to extend their limits in performance. In ultra-endurance races, athletes face limits in nutrition regarding both energy intake and fluid metabolism. The purpose of this review is to focus on the decrease in body mass, aspects of energy and fluid balance, and exercise-associated hyponatremia in ultra-endurance performance. An ultra-endurance performance lasting 24 hours or longer may lead to an energy deficit of approximately 7,000 kcal per day. This energy defici...

  15. Obesity as malnutrition: the dimensions beyond energy balance.

    Science.gov (United States)

    Wells, J C K

    2013-05-01

    The aetiology of obesity is seemingly simple to understand: individuals consume more energy than they expend, with the excess energy being stored in adipose tissue. Public health campaigns therefore promote dietary restraint and physical exercise, and emphasize individual responsibility for these behaviours. Increasingly, however, researchers are switching from thermodynamic to metabolic models of obesity, thereby clarifying how specific environmental factors promote lipogenesis. Obesity can best be explained not by counting 'calories in and out', but by understanding how specific dietary products and activity behaviours perturb cellular metabolism and promote net lipogenesis. This metabolic approach can furthermore be integrated with more sophisticated models of how commercial practices drive the consumer trends that promote obesogenic behaviours. Notably, obesity treatment has proven more effective if it bypasses individual responsibility, suggesting that a similar approach placing less emphasis on individual responsibility would improve the efficacy of obesity prevention. Successful obesity prevention campaigns are likely to emerge only when the public receive better 'protection' from the commercial practices that are driving the global obesity epidemic. Rather than populations failing to heed governments' public health advice, governments are currently failing the public by abandoning their responsibility for regulating commercial activities.

  16. Biotic Processes Regulating the Carbon Balance of Desert Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    R. S. Nowak; J. Arnone; L. Fenstermaker; and S. D. Smith

    2005-07-26

    This project provided the funding to operate and maintain the Nevada Desert FACE Facility. This support funds the CO{sub 2}, system repairs and maintenance, basic physical and biological site information, and personnel that are essential for the experiment to continue. They have continued to assess the effects of elevated CO{sub 2} on three key processes: (1) leaf- to plant-level responses of desert vegetation to elevated atmospheric CO{sub 2}; (2) ecosystem-level responses; and (3) integration of plant and ecosystem processes to understand carbon balance of deserts. The focus is the seminal interactions among atmospheric CO{sub 2}, water, and nitrogen that drive desert responses to elevated CO{sub 2} and explicitly address processes that occur across scales (biological, spatial, and temporal).

  17. Successful learning: balancing self-regulation with instructional planning

    NARCIS (Netherlands)

    Vrieling, Emmy; Stijnen, Sjef; Bastiaens, Theo

    2017-01-01

    Many recent studies have stressed the importance of teacher candidates’ (TCs) self-regulated learning (SRL) skills for successful learning. Because of the promising consequences of SRL for academic performance, teacher educators (TEs) are encouraged to increase TCs’ SRL opportunities in

  18. The National Energy Strategy: A balanced program?. Proceedings of the nineteenth annual Illinois energy conference

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The Nineteenth Annual Illinois Energy Conference was held in Chicago, Illinois November 1991. It was organized by the Energy Resources Center, University of Illinois at Chicago with major support provided by the US Environmental Protection Agency, the US Department of Energy, the Illinois Commerce Commission, the Illinois Department of Energy and Natural Resources, and the Citizens Council on Energy Resources. The conference program was developed by a planning committee who drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The members of the planning committee were brought together for a full-day session where they were asked to assess the political, economic, and social impacts of the proposed National Energy Strategy as it relates to Illinois and the Midwest region. Within this context, the planning committee identified several major issues including: (1) Is the proposed plan a balanced strategy; (2) What are the NES impacts on the transportation sector; (3) What are the opportunities for improved efficiency in the Electric Utility Sector; and (4) What is the role of advanced research and development.

  19. Architecture of energy balance traits in emerging lines of the Collaborative Cross.

    Science.gov (United States)

    Mathes, Wendy Foulds; Aylor, David L; Miller, Darla R; Churchill, Gary A; Chesler, Elissa J; de Villena, Fernando Pardo-Manuel; Threadgill, David W; Pomp, Daniel

    2011-06-01

    The potential utility of the Collaborative Cross (CC) mouse resource was evaluated to better understand complex traits related to energy balance. A primary focus was to examine if genetic diversity in emerging CC lines (pre-CC) would translate into equivalent phenotypic diversity. Second, we mapped quantitative trait loci (QTL) for 15 metabolism- and exercise-related phenotypes in this population. We evaluated metabolic and voluntary exercise traits in 176 pre-CC lines, revealing phenotypic variation often exceeding that seen across the eight founder strains from which the pre-CC was derived. Many phenotypic correlations existing within the founder strains were no longer significant in the pre-CC population, potentially representing reduced linkage disequilibrium (LD) of regions harboring multiple genes with effects on energy balance or disruption of genetic structure of extant inbred strains with substantial shared ancestry. QTL mapping revealed five significant and eight suggestive QTL for body weight (Chr 4, 7.54 Mb; CI 3.32-10.34 Mb; Bwq14), body composition, wheel running (Chr 16, 33.2 Mb; CI 32.5-38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; CI 72.2-83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4-48.1 Mb), and food intake during exercise (Chr 12, 85.1 Mb; CI 82.9-89.0 Mb). Some QTL overlapped with previously mapped QTL for similar traits, whereas other QTL appear to represent novel loci. These results suggest that the CC will be a powerful, high-precision tool for examining the genetic architecture of complex traits such as those involved in regulation of energy balance.

  20. Understanding the Relationship Between Food Variety, Food Intake, and Energy Balance.

    Science.gov (United States)

    Raynor, Hollie A; Vadiveloo, Maya

    2018-03-01

    In accordance with US dietary guidance, incorporating variety into the diet can align with energy balance, though greater food variety in some categories may make energy balance more challenging. Thus, experimental and epidemiologic evidence is summarized on the relationship between food variety, food and energy intake, and energy balance. Lab-based, experimental research consistently demonstrates that greater variety within foods or sensory characteristics of food increases food and energy intake within an eating occasion. Epidemiologic evidence is less consistent, potentially driven by differing methodologies, particularly in defining and measuring food variety. Moreover, the effect of variety on energy balance appears to be moderated by food energy density. Integrating insights from experimental and epidemiologic research are essential for strengthening food variety guidance including developing evidence-based definitions of food variety, understanding moderators of the relationship, and developing practical guidance interpretable to consumers.

  1. Trends in research on energy balance supported by the National Cancer Institute.

    Science.gov (United States)

    Ballard-Barbash, Rachel; Siddiqi, Sameer M; Berrigan, David A; Ross, Sharon A; Nebeling, Linda C; Dowling, Emily C

    2013-04-01

    Over the past decade, the body of research linking energy balance to the incidence, development, progression, and treatment of cancer has grown substantially. No prior NIH portfolio analyses have focused on energy balance within one institute. This portfolio analysis describes the growth of National Cancer Institute (NCI) grant research on energy balance-related conditions and behaviors from 2004 to 2010 following the release of an NCI research priority statement in 2003 on energy balance and cancer-related research. Energy balance grants from fiscal years (FY) 2004 to 2010 were identified using multiple search terms and analyzed between calendar years 2008 and 2010. Study characteristics related to cancer site, design, population, and energy balance area (physical activity, diet, and weight) were abstracted. From FY2004 to FY2010, the NCI awarded 269 energy balance-relevant grants totaling $518 million. In FY2010, 4.2% of NCI's total research project grants budget was allocated to energy balance research, compared to 2.1% in FY2004. The NCI more than doubled support for investigator-initiated research project grants (R01) and increased support for cooperative agreement (U01, U54) and exploratory research (R21) grants. In the portfolio, research examining energy balance areas in combination accounted for 41.6%, and observational and interventional studies were equally represented (38.3% and 37.2%, respectively). Breast cancer was the most commonly studied cancer. Inclusion of minorities rose, and funding specific to cancer survivors more than doubled. From FY2004 to FY2010, NCI's investment in energy balance and related health behavior research showed growth in funding and diversity of mechanisms, topics, and disciplines-growth that reflects new directions in this field. Published by Elsevier Inc.

  2. Keep-ING balance: tumor suppression by epigenetic regulation.

    Science.gov (United States)

    Tallen, Gesche; Riabowol, Karl

    2014-08-19

    Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Comparative balance of border regulations in four neighboring Caribbean countries

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Mantilla Valbuena

    2016-07-01

    Full Text Available This article seeks to investigate whether there is a potential for border integration among four adjoining Caribbean countries: Colombia, Nicaragua, Panama and Costa Rica. The discussion is part of the “cross-border” concept and the integration of subnational entities in two or more nation states, with particular emphasis on the role played by the societies that inhabit border regions. A comparative analysis model is used to assess border regulations in each country’s various territorial levels based on relevant legal elements, autonomous processes and decentralization. The article concludes that the more modern each country’s border regulations and constitutional, political and administrative reforms are, the greater the likelihood of cross-border integration. Colombia and Nicaragua have the highest potential for integrating their borders, whereas Panama and Costa Rica have the lowest potential.

  4. System analysis of a bio-energy plantation: full greenhouse gas balance and energy accounting (POPFULL)

    Science.gov (United States)

    Ceulemans, R.; Janssens, I.; Berhongaray, G.; Broeckx, L.; De Groote, T.; ElKasmioui, O.; Fichot, R.; Njakou Djomo, S.; Verlinden, M.; Zona, D.

    2011-12-01

    In recent year the environmental impact of fossil fuels and their reduced availability are leading to an increasing interest in renewable energy sources, among them bio-energy. However, the cost/benefit in establishing, managing, and using these plantations for energy production should be quantified together with their environmental impact. In this project we are performing a full life cycle analysis (LCA) balance of the most important greenhouse gases (CO2, CH4, N2O, H2O and O3), together with full energy accounting of a short-rotation coppice (SRC) plantation with fast-growing trees. We established the plantation two years ago and we have been monitoring net fluxes of CO2, N2O, CH4, and O3, in combination with biomass pools (incl. soil) and fluxes, and volatile organic carbon (VOCs). This poplar plantation will be monitored for another two years then harvested and transformed into bio-energy. For the energy accounting we are performing a life cycle analysis and energy efficiency assessments over the entire cycle of the plantation until the production of electricity and heat. Here we present an overview of the results from the first two years from the plantation establishment, and some of the projections based on these first results.

  5. Balancing

    Science.gov (United States)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  6. Role of the microbiome in energy regulation and metabolism.

    Science.gov (United States)

    Nieuwdorp, Max; Gilijamse, Pim W; Pai, Nikhil; Kaplan, Lee M

    2014-05-01

    Intestinal microbes regulate metabolic function and energy balance; an altered microbial ecology is believed to contribute to the development of several metabolic diseases. Relative species abundance and metabolic characteristics of the intestinal microbiota change substantially in those who are obese or have other metabolic disorders and in response to ingested nutrients or therapeutic agents. The mechanisms through which the intestinal microbiota and its metabolites affect host homeostasis are just beginning to be understood. We review the relationships between the intestinal microbiota and host metabolism, including energy intake, use, and expenditure, in relation to glucose and lipid metabolism. These associations, along with interactions among the intestinal microbiota, mucus layer, bile acids, and mucosal immune responses, reveal potential mechanisms by which the microbiota affect metabolism. We discuss how controlled studies involving direct perturbations of microbial communities in human and animal models are required to identify effective therapeutic targets in the microbiota. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-04-07

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes.

  8. Central (mainly) actions of GPCRs in energy homeostasis/balance: view from the Chair.

    Science.gov (United States)

    Gallo-Payet, N

    2014-07-01

    To maintain a constant body weight, energy intake must equal energy expenditure; otherwise, there is a risk of overweight and obesity. The hypothalamus is one of the primary brain regions where multiple nutrient-related signals from peripheral and central sources converge and become integrated to regulate both short- and long-term nutritional states. The aim of the afternoon session of the 15th Annual International Symposium of the Laval University Obesity Research Chair held in Quebec City on 9 November 2012 was to present the most recent insights into the complex molecular mechanisms regulating food intake. The aims were to emphasize on the interaction between central and peripheral actions of some of the key players acting not only at the hypothalamic level but also at the periphery. Presentations were focused on melanocortin-3 receptor (MC3R) and melanin-concentrating hormone (MCH) as anorexigenic and orexigenic components of the hypothalamus, on endocannabinoid receptors, initially as a central neuromodulatory signal, and on glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) as peripheral signals. What becomes clear from these four presentations is that the regulation of food intake and energy homeostasis involves several overlapping pathways, and that we have only touched the tip of the iceberg. From the examples presented in this symposium, it could be expected that in the near future, in addition to a low-fat diet and exercise, a combination of appropriate peptides and small molecules is likely to become available to improve/facilitate the objectives of long-term maintenance of energy balance and body weight.

  9. Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training.

    Science.gov (United States)

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Gundersen, Yngvar; Castellani, John W; Karl, J Philip; Carrigan, Christopher T; Teien, Hilde-Kristin; Madslien, Elisabeth-Henie; Montain, Scott J; Pasiakos, Stefan M

    2016-08-01

    Soldiers often experience negative energy balance during military operations that diminish whole-body protein retention, even when dietary protein is consumed within recommended levels (1.5-2.0 g·kg·d). The objective of this study is to determine whether providing supplemental nutrition spares whole-body protein by attenuating the level of negative energy balance induced by military training and to assess whether protein balance is differentially influenced by the macronutrient source. Soldiers participating in 4-d arctic military training (AMT) (51-km ski march) were randomized to receive three combat rations (CON) (n = 18), three combat rations plus four 250-kcal protein-based bars (PRO, 20 g protein) (n = 28), or three combat rations plus four 250-kcal carbohydrate-based bars daily (CHO, 48 g carbohydrate) (n = 27). Energy expenditure (D2O) and energy intake were measured daily. Nitrogen balance (NBAL) and protein turnover were determined at baseline (BL) and day 3 of AMT using 24-h urine and [N]-glycine. Protein and carbohydrate intakes were highest (P energy intake above CON. Energy expenditure (6155 ± 515 kcal·d), energy balance (-3313 ± 776 kcal·d), net protein balance (NET) (-0.24 ± 0.60 g·d), and NBAL (-68.5 ± 94.6 mg·kg·d) during AMT were similar between groups. In the combined cohort, energy intake was associated (P energy intake (3723 ± 359 kcal·d, 2.11 ± 0.45 g protein·kg·d, 6.654 ± 1.16 g carbohydrate·kg·d) achieved net protein balance and NBAL during AMT. These data reinforce the importance of consuming sufficient energy during periods of high energy expenditure to mitigate the consequences of negative energy balance and attenuate whole-body protein loss.

  10. An energy balance perspective on regional CO2-induced temperature changes in CMIP5 models

    OpenAIRE

    Räisänen, Jouni

    2017-01-01

    An energy balance decomposition of temperature changes is conducted for idealized transient CO2-only simulations in the fifth phase of the Coupled Model Intercomparison Project. The multimodel global mean warming is dominated by enhanced clear-sky greenhouse effect due to increased CO2 and water vapour, but other components of the energy balance substantially modify the geographical and seasonal patterns of the change. Changes in the net surface energy flux are important over the oceans, bein...

  11. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    Science.gov (United States)

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  12. Complete energy balance relation in relativistic magnetic reconnection and its application for guide-field reconnection

    Science.gov (United States)

    Yang, Shu-Di

    2017-01-01

    Energy balance equation for steady state Sweet-Parker reconnection in a relativistic regime is reanalyzed, employing a complete electromagnetic energy equation. A correction related to Vin is added with electric energy taken into account. The validity and meaning of the correction are demonstrated with the energy-momentum tensor. Predictions of the new scaling are compared with the previous ones. Energy calculation is also used in the cases with guide field, with a view to the role of the guide field for energy balance. And the relativistic tearing mode growth rate with guide field is discussed using the fluid model.

  13. Energy Deregulation Precedes Alteration in Heart Energy Balance in Young Spontaneously Hypertensive Rats: A Non Invasive In Vivo31P-MR Spectroscopy Follow-Up Study.

    Science.gov (United States)

    Deschodt-Arsac, Veronique; Arsac, Laurent; Magat, Julie; Naulin, Jerome; Quesson, Bruno; Dos Santos, Pierre

    2016-01-01

    Gradual alterations in cardiac energy balance, as assessed by the myocardial PCr/ATP-ratio, are frequently associated with the development of cardiac disease. Despite great interest for the follow-up of myocardial PCr and ATP content, cardiac MR-spectroscopy in rat models in vivo is challenged by sensitivity issues and cross-contamination from other organs. Here we combined MR-Imaging and MR-Spectroscopy (Bruker BioSpec 9.4T) to follow-up for the first time in vivo the cardiac energy balance in the SHR, a genetic rat model of cardiac hypertrophy known to develop early disturbances in cytosolic calcium dynamics. We obtained consistent 31P-spectra with high signal/noise ratio from the left ventricle in vivo by using a double-tuned (31P/1H) surface coil. Reasonable acquisition time (energy regulation possibly due to calcium-mediated abnormalities in the SHR heart. Of note, defects in energy regulation were present before detectable abnormalities in cardiac energy balance at rest.

  14. Energy Metabolism Regulates Retinoic Acid Synthesis and Homeostasis in Physiological Contexts

    OpenAIRE

    Obrochta, Kristin Marie

    2014-01-01

    Mounting evidence supports a regulated and reciprocal relationship between retinoid homeostasis and energy metabolism, with a physiologically relevant consequence of disrupted energy balance. This research was motivated by an observation that all-trans-retinoic acid (atRA), and biosynthetic precursors, were responsive to acute shifts in energy status, in wild type animals with normal body weight and glucose tolerance, i.e. not consequent to metabolic syndrome. My dissertation was designed to ...

  15. The global mean energy balance under cloud-free conditions

    Science.gov (United States)

    Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles

    2017-04-01

    är, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.

  16. Coordinated Secondary Control for Balanced Discharge Rate of Energy Storage System in Islanded AC Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2016-01-01

    A coordinated secondary control approach based on an autonomous current-sharing control strategy for balancing the discharge rates of energy storage systems (ESSs) in islanded AC microgrids is proposed in this paper. The coordinated secondary controller can regulate the power outputs of distributed...... generation (DG) units according to their states-of-charge (SoCs) and ESS capacities by adjusting the virtual resistances of the paralleled voltage-controlled inverters. Compared with existing controllers, the proposed control strategy not only effectively prevents operation failure caused by overcurrent...... incidents and unintentional outages in DG units, but also aims to provide a fast transient response and an accurate output-current-sharing performance. A complete root locus analysis is given in order to achieve system stability and parameter sensitivity. Experimental results are presented to show...

  17. Coordinated Secondary Control for Balanced Discharge Rate of Energy Storage System in Islanded Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2015-01-01

    current and unintentional outage of DGs. Thus, the stability and reliability of islanded MG can be improved. The eigenvalues and root locus with the proposed controller are presented to design the parameters as well as analyzing the system stability. Simulation results based on Matlab......A coordinated secondary control based on a novel autonomous currents sharing control strategy for balanced discharge rate of energy storage systems in islanded microgrid (MG) is proposed in this paper. The coordinated secondary controller is able to regulate the output power of distributed...... generating (DG) systems according to their state-of-charge by adjusting the virtual resistances of their voltage controlled inverters. This controller can not only provide the faster response and accurate output current sharing control, but also avoid the potential operation failure resulting from the over...

  18. Alterations in energy balance from an exercise intervention with ad libitum food intake.

    Science.gov (United States)

    Melzer, Katarina; Renaud, Anne; Zurbuchen, Stefanie; Tschopp, Céline; Lehmann, Jan; Malatesta, Davide; Ruch, Nicole; Schutz, Yves; Kayser, Bengt; Mäder, Urs

    2016-01-01

    Better understanding is needed regarding the effects of exercise alone, without any imposed dietary regimens, as a single tool for body-weight regulation. Thus, we evaluated the effects of an 8-week increase in activity energy expenditure (AEE) on ad libitum energy intake (EI), body mass and composition in healthy participants with baseline physical activity levels (PAL) in line with international recommendations. Forty-six male adults (BMI = 19·7-29·3 kg/m(2)) participated in an intervention group, and ten (BMI = 21·0-28·4 kg/m(2)) in a control group. Anthropometric measures, cardiorespiratory fitness, EI, AEE and exercise intensity were recorded at baseline and during the 1st, 5th and 8th intervention weeks, and movement was recorded throughout. Body composition was measured at the beginning and at the end of the study, and resting energy expenditure was measured after the study. The intervention group increased PAL from 1·74 (se 0·03) to 1·93 (se 0·03) (P energy balance. Replication using a longer period (and/or more intense increase in PAL) is needed to investigate if and at what body composition the increase in AEE is met by an equivalent increase in EI.

  19. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  20. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Dijkstra, J.; Tamminga, S.; Kemp, B.

    2005-01-01

    The pathway for oxidation of energy involves a balanced oxidation of C2 and C3 compounds. During early lactation in dairy cattle this C2/C3 ratio is out of balance, due to a high availability of lipogenic (C2) products and a low availability of glycogenic (C3) products relative of the C2 and C3

  1. Regulation of bacterial conjugation: balancing opportunity with adversity.

    Science.gov (United States)

    Frost, Laura S; Koraimann, Günther

    2010-07-01

    Conjugative plasmids are involved in the dissemination of important traits such as antibiotic resistance, virulence determinants and metabolic pathways involved in adapting to environmental niches, a process termed horizontal or lateral gene transfer. Conjugation is the process of transferring DNA from a donor to a recipient cell with the establishment of the incoming DNA and its cargo of genetic traits within the transconjugant. Conjugation is mediated by self-transmissible plasmids as well as phage-like sequences that have been integrated into the bacterial chromosome, such as integrative and conjugative elements (ICEs) that now include conjugative transposons. Both conjugative plasmids and ICEs can mediate the transfer of mobilizable elements by sharing their conjugative machinery. Conjugation can either be induced, usually by small molecules or peptides or by excision of the ICE from the host chromosome, or it can be tightly regulated by plasmid- and host-encoded factors. The transfer potential of these transfer regions depends on the integration of many signals in response to environmental and physiological cues. This review will focus on the mechanisms that influence transfer potential in these systems, particularly those of the IncF incompatibility group.

  2. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    Directory of Open Access Journals (Sweden)

    Guoli Ren

    2017-01-01

    Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.

  3. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...... for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly...

  4. The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance.

    OpenAIRE

    Collet Tinh-Hai; van, der Klaauw Agatha A; Henning Elana; Keogh Julia M.; Suddaby Diane; Dachi Sekesai V; Dunbar Síle; Kelway Sarah; Dickson Suzanne L; Farooqi I. Sadaf; Schmid Sebastian M

    2016-01-01

    STUDY OBJECTIVES:The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However the potential mechanisms linking energy balance and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating energy balance on the sleep/wake cycle. METHODS:Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline after energy balance was disrupted by 2 days of caloric re...

  5. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression

    KAUST Repository

    Rossetti, Clara

    2017-12-06

    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1\\'s role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males\\' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.

  6. Energy balance of dark anaerobic fermentation as a tool for sustainability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruggeri, Bernardo; Tommasi, Tonia; Sassi, Guido [Dept. of Material Science and Chemical Engineering, Politecnico di Torino Corso Duca Degli Abruzzi 24, 10129 Turin (Italy)

    2010-10-15

    A process aimed at producing energy needs to produce more energy than the energy necessary to run the process itself in order to be energetically sustainable. In this paper, an energy balance of a batch anaerobic bioreactor has been defined and calculated, both for different operative conditions and for different reactor scales, in order to analyze the sustainability of hydrogen production through dark anaerobic fermentation. Energy production in the form of hydrogen and methane, energy to warm up the fermentation broth, energy loss during fermentation and energy for mixing and pumping have been considered in the energy balance. Experimental data and literature data for mesophilic microorganism consortia have been used to calculate the energy balance. The energy production of a mesophilic microorganism consortium in a batch reactor has been studied in the 16-50 C temperature range. The hydrogen batch dark fermentation resulted to only have a positive net production of energy over a minimal reactor dimension in summer conditions with an energy recovery strategy. The best working temperature resulted to be 20 C with 20% of available energy. Hydrogen batch dark fermentation may be coupled with other processes to obtain a positive net energy by recovering energy from the end products of hydrogen dark fermentation. As an example, methane fermentation has been considered to energetically valorize the end products of hydrogen fermentation. The combined process resulted in a positive net energy over the whole range of tested reactor dimension with 45-90% of available energy. (author)

  7. Brazilian Energy Balance 2016 - calendar year 2015; Balanco energetico nacional 2016 - ano base 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The BEB is divided into eight chapters and ten annexes, whose contents are as follow. Chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2015 and analyses the evolution of the domestic energy supply and its relationship with economic growth. Chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments and total consumption disaggregated per socioeconomic sector in the country. Chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy. Chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy. Chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses. Chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources. Chapter 7 - Energy and Socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports. Chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. Relating to annexes the current structure is presented bellow: Annex I - Installed Capacity - shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining. Annex II - Self-production of Electricity - presents disaggregated data of self-production, considering sources and sectors. Annex III - World Energy Data - presents the main indicators for the production, import, export and consumption per energy source

  8. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance123

    OpenAIRE

    Drenowatz, Clemens

    2015-01-01

    An imbalance between energy intake and energy expenditure is the primary etiology for excess weight gain. Increased energy expenditure via exercise and energy restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to energy balance. Current research points to a loose coupling bet...

  9. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Ogundile, Olayinka O; Alfa, Attahiru S

    2017-05-10

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  10. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Ogundile, Olayinka O.; Alfa, Attahiru S.

    2017-01-01

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  11. Mass balance, energy and exergy analysis of bio-oil production by fast pyrolysis

    Science.gov (United States)

    Mass, energy and exergy balances are analyzed for bio-oil production in a bench scale fast pyrolysis system developed by the USDA’s Agricultural Research Service (ARS) for the processing of commodity crops to fuel intermediates. Because mass balance closure is difficult to achieve due, in part, to ...

  12. Innovation, Diffusion, and Regulation in Energy Technologies

    Science.gov (United States)

    Fetter, Theodore Robert

    The innovation and diffusion of new technologies is one of the central concerns of economics. New inventions or technological combinations do not spring fully formed into the world; as firms encounter and learn about new technologies they experiment, refine, and learn about them, improving productivity (and sometimes earning economic rents). Understanding the processes by which firms learn, and how these processes interact with regulations, is fundamental to understanding the emergence of new technologies, their contribution to growth, and the interaction of innovation and regulation. This dissertation addresses how firms learn and respond to regulations in the context of emerging technologies. Within this framework, I address several questions. When production inputs are socially controversial, do firms respond to disclosure laws by voluntarily constraining their inputs? Do these public disclosure laws facilitate knowledge transmission across firms, and if so, what are the implications for public welfare - for instance, do the gains from trade outweigh any effects of reduced incentives for innovation? I study these questions in the context of hydraulic fracturing, though the results offer insight for more general settings. Panning out to a much broader view, I also explore how energy-related technologies - in both generation and consumption - diffuse across national boundaries over time, and whether innovation and diffusion of energy-efficient technologies has led to more or less energy-efficient economic growth. In my first paper, I contribute to improved understanding of the conditions in which information-based regulations, which are increasingly common in multiple policy domains, decrease externalities such as environmental pollution. Specifically, I test whether information disclosure regulations applied to hydraulic fracturing chemicals caused firms to decrease their use of toxic inputs. Prior to these mandatory disclosure laws, some operators voluntarily

  13. The protein kinase IKKepsilon regulates energy balance in obese mice

    NARCIS (Netherlands)

    Chiang, Shian-Huey; Bazuine, Merlijn; Lumeng, Carey N.; Geletka, Lynn M.; Mowers, Jonathan; White, Nicole M.; Ma, Jing-Tyan; Zhou, Jie; Qi, Nathan; Westcott, Dan; Delproposto, Jennifer B.; Blackwell, Timothy S.; Yull, Fiona E.; Saltiel, Alan R.

    2009-01-01

    Obesity is associated with chronic low-grade inflammation that negatively impacts insulin sensitivity. Here, we show that high-fat diet can increase NF-kappaB activation in mice, which leads to a sustained elevation in level of IkappaB kinase epsilon (IKKepsilon) in liver, adipocytes, and adipose

  14. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance

    Science.gov (United States)

    Alvarez-Crespo, Mayte; Csikasz, Robert I.; Martínez-Sánchez, Noelia; Diéguez, Carlos; Cannon, Barbara; Nedergaard, Jan; López, Miguel

    2016-01-01

    Objective Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 °C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (“browning”) of inguinal white adipose tissue (iWAT). Conclusions We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents. PMID:27069867

  15. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.

    1997-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  16. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy.

    Science.gov (United States)

    Ayoub, Ahmed Taha; Staelens, Michael; Prunotto, Alessio; Deriu, Marco A; Danani, Andrea; Klobukowski, Mariusz; Tuszynski, Jack Adam

    2017-09-22

    Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs)-tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole-dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by - 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  17. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  18. Energy balance in laser-irradiated vaporizing droplets.

    Science.gov (United States)

    Zardecki, A; Armstrong, R L

    1988-09-01

    The interactions of vaporizing aerosols with a high energy laser beam are analyzed in the diffusive vaporization regime. This is the regime in which diffusive mass transport and conductive energy transport dominate the aerosol-beam interactions. A numerical analysis of the coupled aerosol-beam equations allows us to compute the energy conversion of the incident laser pulse. The plots showing the functional form of the pulse shape and the fractional energy conversion are given to illustrate the interactions for a wide range of pulse energies. A new term describing the droplet radius shrinking in time, similar in form to that recently analyzed by Davies and Brock, is included.

  19. The first model of keeping energy balance and optimal psycho affective development: Breastfed infants.

    Science.gov (United States)

    Agostoni, Carlo; Mazzocchi, Alessandra; Leone, Ludovica; Ciappolino, Valentina; Delvecchio, Giuseppe; Altamura, Carlo A; Brambilla, Paolo

    2017-12-15

    Breastfed infants follow a peculiar growth fashion characterized by a rapid weight gain in the first weeks of life, then followed by a fast decrease in growth rates, a capacity to self-regulate the sense of hungry and satiety, and a minor propensity towards overweight and obesity later on, in parallel with a better neurodevelopmental performance. We searched studies investigating the relationship between the feeding mode in infancy and the energy balance, so the possible associations with total energy expenditure and intake regulation. We focused the research on the interaction with the neuropsychological development and the possible role of microbiome in determinating the normal generation and regular functioning of the brain through the so named "gut-brain axis". Total energy expenditure (TEE) is different for breast-fed and formula-fed infants, in particular the feeding mode seems to affect the sleep organisation. Long-term breastfeeding, is one of the most studied factors of neurodevelopment, several studies reporting beneficial effects on child neuropsychological development. Probably this effect is modulated by genetic variations in fatty acid metabolism. Increasing data also showed that the intestinal microbiome exerts several functions which are able to influence neurodevelopment. There is considerable controversy over whether nutrition in early life has a long-term influence on neurodevelopment. Other studies are needed to confirm the association between breastfeeding and brain development. The key points of energy disposal, the role and effects of the instestinal flora represent promising fields of investigation possibly leading to indications for the wide area of preventive medicine. Copyright © 2017. Published by Elsevier B.V.

  20. Effects of AgRP inhibition on energy balance and metabolism in rodent models.

    Directory of Open Access Journals (Sweden)

    Roxanne Dutia

    Full Text Available Activation of brain melanocortin-4 receptors (MC4-R by α-melanocyte-stimulating hormone (MSH or inhibition by agouti-related protein (AgRP regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.

  1. Effects of AgRP inhibition on energy balance and metabolism in rodent models.

    Science.gov (United States)

    Dutia, Roxanne; Kim, Andrea J; Modes, Matthew; Rothlein, Robert; Shen, Jane M; Tian, Ye Edward; Ihbais, Jumana; Victory, Sam F; Valcarce, Carmen; Wardlaw, Sharon L

    2013-01-01

    Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.

  2. Forest Surface Energy Balance and Evapotranspiration Estimated From Four Eddy Covariance Towers

    Science.gov (United States)

    Rabbani, G. A.; Adam, J. C.; Elliot, W. J.; Liu, H.

    2016-12-01

    Evapotranspiration (ET), which refers to the combined effect of surface water evaporation and plant transpiration, is one of the vital elements of the global water balance. It is also an important process for plants, providing water, nutrient, and cooling needs, and helping to regulate carbon dioxide entry through open/closure of the plant's stomata. Quantifying ET in forested environments is an ongoing research area. Complex physiological responses with climatic variation, combined with difficulty in making wide-spread measurements, makes ET one of the least understood components of a forest water balance. The objective of this study is to estimate ET and energy balance closure by using flux net data from eddy covariance towers. ET is estimated for different forest types with multiple age classes during the years of 2011, 2012 and 2013. We studied two coniferous forests (F1, F2), one deciduous forest (F3) and one mixed forest (F4) in Washington, Wyoming, Wisconsin and New Jersey, respectively. Label 2 (Data checked and formatted by Carbon Dioxide Information Analysis Center) gap filled flux data were collected from the AmeriFlux database (ameriflux.ornl.gov). Discrepancies between turbulent fluxes and available energy are investigated. Among the studied forests, the highest and lowest average monthly ET are exhibited by the mixed forest (F4) and coniferous forest (F1) in 2012 which are 2,692 and 633 mm/month, respectively. Difference in average monthly ET can be an implication of substantial age difference between these two types of forest. The regression analysis showed significant correlation between turbulent fluxes and available energy (R2=0.91) for mixed forest where the discrepancy varied from 5-11%. Conversely, for coniferous and deciduous forests, the discrepancy varied from 46-49% and 28%, respectively, with almost similar correlation between the fluxes (0.86 and 0.84, respectively). This study will facilitate an improved understanding of how forest type

  3. The Gut and Energy Balance: Visceral Allies in the Obesity Wars

    National Research Council Canada - National Science Library

    Michael K. Badman; Jeffrey S. Flier

    2005-01-01

    .... The gut, the pancreatic islets of Langerhans, elements in the portal vasculature, and even visceral adipose tissue communicate with the controllers of energy balance in the brain by means of neural...

  4. Multiple behavior interventions to prevent substance abuse and increase energy balance behaviors in middle school students

    National Research Council Canada - National Science Library

    Velicer, Wayne F; Redding, Colleen A; Paiva, Andrea L; Mauriello, Leanne M; Blissmer, Bryan; Oatley, Karin; Meier, Kathryn S; Babbin, Steven F; McGee, Heather; Prochaska, James O; Burditt, Caitlin; Fernandez, Anne C

    2013-01-01

    This study examined the effectiveness of two transtheoretical model-tailored, computer-delivered interventions designed to impact multiple substance use or energy balance behaviors in a middle school...

  5. Sleep restriction is not associated with a positive energy balance in adolescent boys

    DEFF Research Database (Denmark)

    Klingenberg, Lars; Chaput, Jean-Philippe; Holmbäck, Ulf

    2012-01-01

    A short sleep (SS) duration has been linked to obesity in observational studies. However, experimental evidence of the potential mechanisms of sleep restriction on energy balance is conflicting and, to our knowledge, nonexistent in adolescents....

  6. The Regulation of Acid-Base Balance--A Microprocessor Simulation.

    Science.gov (United States)

    Rasch, Robert W.

    1983-01-01

    Describes a computer program designed to simulate the regulation of acid-base balance, emphasizing regulatory compensations involved in the total process. Includes discussion of equations involved, a sample run of the program, and program listing (MicroSoft Basic). (JN)

  7. Multiple behavior interventions to prevent substance abuse and increase energy balance behaviors in middle school students

    OpenAIRE

    Velicer, Wayne F.; Redding, Colleen A.; Paiva, Andrea L.; Mauriello, Leanne M.; Blissmer, Bryan; Oatley, Karin; Meier, Kathryn S.; Babbin, Steven F.; McGee, Heather; Prochaska, James O.; Burditt, Caitlin; Fernandez, Anne C.

    2013-01-01

    This study examined the effectiveness of two transtheoretical model-tailored, computer-delivered interventions designed to impact multiple substance use or energy balance behaviors in a middle school population recruited in schools. Twenty middle schools in Rhode Island including sixth grade students (N = 4,158) were stratified and randomly assigned by school to either a substance use prevention (decreasing smoking and alcohol) or an energy balance (increasing physical activity, fruit and veg...

  8. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    OpenAIRE

    Ren, Guoli; Liu, Jie; Huo, Wenyi; Lan, Ke

    2017-01-01

    The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG) series laser facilities and the National Ignition Facility (NIF) experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NI...

  9. Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo

    2008-07-01

    Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)

  10. Knowledge of Energy Balance Guidelines and Associated Clinical Care Practices: The U.S. National Survey of Energy Balance Related Care among Primary Care Physicians

    Science.gov (United States)

    Pronk, Nicolaas P.; Krebs-Smith, Susan M.; Galuska, Deborah A.; Liu, Benmei; Kushner, Robert F.; Troiano, Richard P.; Clauser, Steven B.; Ballard-Barbash, Rachel; Smith, Ashley Wilder

    2012-01-01

    Objective To assess primary care physicians’ (PCPs) knowledge of energy balance related guidelines and the association with sociodemographic characteristics and clinical care practices. Method As part of the 2008 U.S. nationally representative National Survey of Energy Balance Related Care among Primary Care Physicians (EB-PCP), 1,776 PCPs from four specialties who treated adults (n=1,060) or children and adolescents (n=716) completed surveys on sociodemographic information, knowledge of energy balance guidelines, and clinical care practices. Results EB-PCP response rate was 64.5%. For PCPs treating children, knowledge of guidelines for healthy BMI percentile, physical activity, and fruit and vegetables intake was 36.5%, 27.0%, and 62.9%, respectively. For PCPs treating adults, knowledge of guidelines for overweight, obesity, physical activity, and fruit and vegetables intake was 81.4%, 81.3%, 70.9%, and 63.5%, respectively. Generally, younger, female physicians were more likely to exhibit correct knowledge. Knowledge of weight-related guidelines was associated with assessment of body mass index (BMI) and use of BMI-for-age growth charts. Conclusion Knowledge of energy balance guidelines among PCPs treating children is low, among PCPs treating adults it appeared high for overweight and obesity-related clinical guidelines and moderate for physical activity and diet, and was mostly unrelated to clinical practices among all PCPs. PMID:22609144

  11. Energy metabolism and hindbrain AMPK: regulation by estradiol.

    Science.gov (United States)

    Briski, Karen P; Ibrahim, Baher A; Tamrakar, Pratistha

    2014-03-01

    Nerve cell energy status is screened within multiple classically defined hypothalamic and hindbrain components of the energy balance control network, including the hindbrain dorsal vagal complex (DVC). Signals of caudal DVC origin have a physiological role in glucostasis, e.g., maintenance of optimal supply of the critical substrate fuel, glucose, through control of motor functions such as fuel consumption and gluco-counterregulatory hormone secretion. A2 noradrenergic neurons are a likely source of these signals as combinatory laser microdissection/high-sensitivity Western blotting reveals expression of multiple biomarkers for metabolic sensing, including adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypoglycemia elicits estradiol-dependent sex differences in A2 AMPK activation as phospho-AMPK (pAMPK) expression is augmented in male and ovariectomized (OVX) female, but not estrogen-replaced, OVX rats. This dichotomy may reflect, in part, estradiol-mediated up-regulation of glycolytic and tricarboxylic acid cycle enzyme expression during hypoglycemia. Our new model for short-term feeding abstinence has physiological relevance to planned (dieting) or unplanned (meal delay) interruption of consumption in modern life, which is negatively correlated with appetite control and obesity, and is useful for investigating how estrogen may mitigate the effects of disrupted fuel acquisition on energy balance via actions within the DVC. Estradiol reduces DVC AMPK activity after local delivery of the AMP mimic, 5-aminoimidazole-4-carboxamide-riboside, or cessation of feeding for 12 h but elevates pAMPK expression when these treatments are combined. These data suggest that estrogen maintains cellular energy stability over periods of suspended fuel acquisition and yet optimizes, by DVC AMPK-dependent mechanisms, counter-regulatory responses to metabolic challenges that occur during short-span feeding abstinence.

  12. Multiple behavior interventions to prevent substance abuse and increase energy balance behaviors in middle school students.

    Science.gov (United States)

    Velicer, Wayne F; Redding, Colleen A; Paiva, Andrea L; Mauriello, Leanne M; Blissmer, Bryan; Oatley, Karin; Meier, Kathryn S; Babbin, Steven F; McGee, Heather; Prochaska, James O; Burditt, Caitlin; Fernandez, Anne C

    2013-03-01

    This study examined the effectiveness of two transtheoretical model-tailored, computer-delivered interventions designed to impact multiple substance use or energy balance behaviors in a middle school population recruited in schools. Twenty middle schools in Rhode Island including sixth grade students (N=4,158) were stratified and randomly assigned by school to either a substance use prevention (decreasing smoking and alcohol) or an energy balance (increasing physical activity, fruit and vegetable consumption, and limiting TV time) intervention group in 2007. Each intervention involved five in-class contacts over a 3-year period with assessments at 12, 24, and 36 months. Main outcomes were analyzed using random effects modeling. In the full energy balance group and in subsamples at risk and not at risk at baseline, strong effects were found for physical activity, healthy diet, and reducing TV time, for both categorical and continuous outcomes. Despite no direct treatment, the energy balance group also showed significantly lower smoking and alcohol use over time than the substance use prevention group. The energy balance intervention demonstrated strong effects across all behaviors over 3 years among middle school students. The substance use prevention intervention was less effective than the energy balance intervention in preventing both smoking and alcohol use over 3 years in middle school students. The lack of a true control group and unrepresented secular trends suggest the need for further study.

  13. On the Linearly-Balanced Kinetic Energy Spectrum

    Science.gov (United States)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  14. Energy markets - investment, competition, and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Franz, W.; Winkelmann, R.; Zimmermann, K.F. (eds.)

    2007-07-01

    Within the scope of the 70th Annual Meeting of the Association of German Economic Research Institutes with the topic ''Energy markets - investment, competition, and regulation'' in Berlin (Federal Republic of Germany) on 19th April, 2007, the following lectures were held: (a) Alternative strategies for promoting renewable energy in EU electricity markets (Christoph Boehringer, Tim Hoffmann, Thomas F. Rutherford); (b) Biofuels and climate policy (Gernot Klepper); (c) Investments of the German electricity-supply industry (Hans-Dieter Karl); (d) Asymmetric strategic investment behaviour in network industries: the case of natural gas distribution in Norway (Till Requate); (e) How dominant is Russia on the European natural gas market? Results from modelling exercises (Franziska Holz).

  15. Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity.

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Lee

    Full Text Available Signal transducers and activators of transcription (STATs are critical components of cytokine signaling pathways. STAT5A and STAT5B (STAT5, the most promiscuous members of this family, are highly expressed in specific populations of hypothalamic neurons in regions known to mediate the actions of cytokines in the regulation of energy balance. To test the hypothesis that STAT5 signaling is essential to energy homeostasis, we used Cre-mediated recombination to delete the Stat5 locus in the CNS. Mutant males and females developed severe obesity with hyperphagia, impaired thermal regulation in response to cold, hyperleptinemia and insulin resistance. Furthermore, central administration of GM-CSF mediated the nuclear accumulation of STAT5 in hypothalamic neurons and reduced food intake in control but not in mutant mice. These results demonstrate that STAT5 mediates energy homeostasis in response to endogenous cytokines such as GM-CSF.

  16. A novel load balanced energy conservation approach in WSN using biogeography based optimization

    Science.gov (United States)

    Kaushik, Ajay; Indu, S.; Gupta, Daya

    2017-09-01

    Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN

  17. Quantifying the impacts of snow on surface energy balance through assimilating snow cover fraction and snow depth

    Science.gov (United States)

    Meng, Chunlei

    2017-10-01

    Seasonal snow plays an important part in Earth's climate system. Snow cover regulates the land surface energy balance through altering the albedo of the land surface. To utilize the satellite-retrieved snow cover fraction (SCF) and snow depth (SD) data sufficiently and avoid inconsistency, this paper developed a very simple but robust quality control method to assimilate Fengyun satellite-retrieved SCF and SD simultaneously. The results show that the assimilation method which this paper implemented can not only utilize the satellite-retrieved SCF and SD data sufficiently but also avoid the inconsistency of them. Two experiments were designed and performed to quantify the impacts of snow on land surface energy balance using the integrated urban land model. With the increase of the SCF and SD, the net radiation decreased significantly during the day and increased a little at night; the sensible heat flux decreased significantly during the day; the evapotranspiration and ground heat flux decreased during the day too.

  18. Arc tracking energy balance for copper and aluminum aeronautic cables

    Science.gov (United States)

    André, T.; Valensi, F.; Teulet, P.; Cressault, Y.; Zink, T.; Caussé, R.

    2017-04-01

    Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted.

  19. Balancing Bio-energy Cropping Benefits and Water Quality Impacts

    NARCIS (Netherlands)

    Eiswerth, M.E.; Kooten, van G.C.

    2010-01-01

    The relationship between bio-energy feedstock production and water quality has received little attention from economists. Here, an optimal control model is used to determine the optimal amount of land to convert to the production of energy feedstocks, specifically ethanol corn, taking into account

  20. Brazilian national energy balance 2007. Calendar year 2006[Includes executive summary 2007]; Balanco energetico nacional 2007. Ano base 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document reports the activities of the Ministry of Mine and Energy, during the calendar year 2006 as follows: energy analysis and aggregated data; supply and demand of energy according to source; energy consumption according to sector; energy external trading; transformation center balance; energy resources and reserves; energy and social economics; state energy data; installed capacity; energy world data.

  1. Energy and mass balance observations on La Mare Glacier (Ortles-Cevedale, European Alps)

    Science.gov (United States)

    Carturan, L.; Cazorzi, F.; Dalla Fontana, G.

    2009-04-01

    An experimental site was setup in 2005 on the ablation area of La Mare Glacier, at 2990 m a.s.l., to study the energy and mass balance exchanges between the glacier surface and the atmosphere and to investigate the climatic sensitivity of this particular glacier. An Automatic Weather Station was operated, in the framework of a monitoring network which has been implemented in the Upper Val de La Mare experimental watershed (Trentino, Italy). This basin was selected for a study of climate change effects on cryosphere and hydrology at high-altitude catchments. The 36.2 km2 wide basin has an average altitude of 2906 m a.s.l. and at present the 25% of its surface is glacierized; the annual runoff regime is dominated by snow and ice melt. Direct mass balance measurements have been performed since 1967 on Careser glacier (2.83 km2) and since 2003 on La Mare glacier (3.97 km2). The AWS is mounted on a tripod which stands freely on the glacier surface and is solar-powered. The variables measured are: air temperature and relative humidity, wind speed and direction, shortwave and longwave incoming and outgoing radiation, precipitation and surface height. All the data are sampled at five-minute intervals as average values, with the exception of surface height which is sampled at hourly intervals, as instantaneous values. The collected data were used to calculate the point energy and mass balance and to compare the results with similar investigations carried out on glaciers and available in literature. In particular, our attention has been focussed on some processes which regulate the response to climate changes. The relative importance of the energy balance components was examined and a clear predominance of shortwave radiation inputs was found to exist during melt conditions. Given the relevance of the shortwave net balance, the ice albedo temporal variability (values ranging from 0.1 to 0.5) has been investigated and correlated with meteorological variables. Furthermore, a

  2. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  3. Solar energy research and development: program balance. Annex, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    Each of the seven solar energy technologies that have been assessed in the study are treated: photovoltaic devices, solar thermal power systems, wind energy systems, solar heating and cooling systems, agricultural and industrial heat processes, biomass conversion technologies, and ocean thermal energy conversion systems. A brief technical overview of storage for solar electric technologies is presented and some principles concerning how different levels of success on electrical storage can affect the commercial viability of solar electric options are discussed. A description is given of the solar penetration model that was developed and applied as an analytical tool in the study. This computer model has served the primary purpose of evaluating the competiveness of the solar energy systems in the markets in which they are expected to compete relative to that of the alternative energy sources. This is done under a variety of energy supply, demand, and price conditions. The seven sections treating the solar energy technologies contain discussions on each of six subject areas: description of the technology; economic projections; the potential contribution of the technology in different marketplaces; environmental considerations; international potential; and the present and possible future emphases within the RD and D program. The priority item for each of the technology sections has been the documentation of the economic projections.

  4. Importance of Soil Moisture and Vegetation Cover for Energy Balance partition in Burkina Faso

    Science.gov (United States)

    Ceperley, N. C.; Mande, T.; Tyler, S. W.; Bou-Zeid, E.; Van De Giesen, N.; Parlange, M. B.

    2015-12-01

    Land surface characteristics are the main control on hydrologic processes, the driver of most livelihoods, in semi arid West Africa. We use the energy and water balance measured with two eddy-covariance towers, coupled with a dense network of small, wireless meteorological stations in a small (3.5 km2) catchment to understand these relationships. Time series of monthly averages of soil moisture, rainfall, air temperature, cloud cover, components of net radiation, wind speed, and NDVI are presented in relation to the evaporative fraction and energy balance. We found that both latent and sensible heat fluxes are greater over mixed forest and savanna areas compared agricultural land. Sensible heat is found to be most different between the two land-covers at the end of the year, when the grass and vegetation is dry, and latent heat is found to be most different at the beginning of the year, when bare ground dominates. Further examination shows that soil moisture and vegetation indexes provide the main controls on evaporative fraction. These findings have implications for modeling the evaporation over large regions based on remotely sensed land surface temperature. The site is characteristic of the contrasts in vegetation and moisture availability present in the rocky escarpments found in Northern Benin and Southeastern Burkina Faso. Historically these sites are important in location for village choice and land use designation. These findings reinforce local cultural beliefs of the importance of vegetation for climate regulation and may provide support to local farmers for improving the resilience of natural resources and livelihood security.

  5. Balancing Renewable Electricity Energy Storage, Demand Side Management, and Network Extension from an Interdisciplinary Perspective

    CERN Document Server

    Droste-Franke, Bert; Rehtanz, Christian; Sauer, Dirk Uwe; Schneider, Jens-Peter; Schreurs, Miranda; Ziesemer, Thomas

    2012-01-01

    A significant problem of integrating renewable energies into the electricity system is the temporally fluctuating energy production by wind and solar power plants. Thus, in order to meet the ambitious long-term targets on CO2 emission reduction, long-term viable low-carbon options for balancing electricity will be needed. This interdisciplinary study analyses published future energy scenarios in order to get an impression of the required balancing capacities and shows which framework conditions should be modified to support their realisation. The authors combine their perspectives from energy engineering, technology assessment, political science, economical science and jurisprudence and address science, politics, actors in the energy sector and the interested public. Respectively, requirements for the balancing systems are analysed, considering the case of Germany as a large country with high ambitions to reduce greenhouse gas emissions. Additionally, an approach to investigate the optimal design of the techn...

  6. Electrochemical energy storage for renewable sources and grid balancing

    CERN Document Server

    Moseley, Patrick T

    2015-01-01

    Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen

  7. Voltage regulation of a matrix converter with balanced and unbalanced three-phase loads

    Directory of Open Access Journals (Sweden)

    E. López-Robles

    2015-10-01

    Full Text Available This paper addresses the design, simulation and experimental validation of a voltage control for a three-phase to three-phase Matrix Converter working under balanced and unbalanced resistive loads. The converter is based on bidirectional switches and space vector pulse width modulation is used to control their turn-on and turn-off times. Tracking and repetitive controls are designed and implemented; having this last one a major impact on the performance of the output voltage regulation for balanced or unbalanced loads. The experimental control setup is comprised of a field programmable gate array board, a digital signal processor and a graphics interface board.

  8. Balancing act: Government roles in an energy conservation network

    NARCIS (Netherlands)

    Peterman, A.; Kourula, A.; Levitt, R.

    2014-01-01

    Government-led interorganizational alliance networks present a sensible opportunity to overcome many societal challenges through collaborative governance. In particular, few researchers have studied alliance networks in the field of energy conservation in commercial buildings—a sector with unique

  9. The ANIBES Study on Energy Balance in Spain: Design, Protocol and Methodology

    OpenAIRE

    Emma Ruiz; José Manuel Ávila; Adrián Castillo; Teresa Valero; Susana del Pozo; Paula Rodriguez; Javier Aranceta Bartrina; Ángel Gil; Marcela González-Gross; Rosa M. Ortega; Lluis Serra-Majem; Gregorio Varela-Moreiras

    2015-01-01

    Energy Balance (EB) is an important topic to understand how an imbalance in its main determinants (energy intake and consumption) may lead to inappropriate weight gain, considered to be “dynamic” and not “static”. There are no studies to evaluate EB in Spain, and new technologies reveal themselves as key tools to solve common problems to precisely quantify energy consumption and expenditure at population level. The overall purpose of the ANIBES (“Anthropometry, Intake and Energy Balance”) Stu...

  10. Effects of dietary energy source on energy balance, metabolites and reproduction variables in dairy cows in early lactation

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Dijkstra, J.; Kemp, B.

    2007-01-01

    This paper summarizes three recent studies by the same authors with the objective to study the effect of dietary energy source on the energy balance (EB) and risk for metabolic and reproductive disorders in dairy cows in early lactation. The first study, a literature survey, illustrated that feeding

  11. Effect of dry period length and dietary energy source on energy balance, milk yield, and milk composition of dairy cows

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Remmelink, G.J.; Jorjong, S.; Fievez, V.; Kemp, B.

    2014-01-01

    The objective of this study was to evaluate the effects of dry period length and dietary energy source in early lactation on milk production, feed intake, and energy balance (EB) of dairy cows. Holstein-Friesian dairy cows (60 primiparous and 108 multiparous) were randomly assigned to dry period

  12. Energy balance of biofuel production from biological conversion of crude glycerol.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance. Copyright © 2016. Published by Elsevier Ltd.

  13. Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations

    Science.gov (United States)

    Sangeeta; Kaur, Varinderjit

    2017-10-01

    The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.

  14. Analysis of the Energy Balance of Shale Gas Development

    Directory of Open Access Journals (Sweden)

    Hiroaki Yaritani

    2014-04-01

    Full Text Available Interest has rapidly grown in the use of unconventional resources to compensate for depletion of conventional hydrocarbon resources (“easy hydrocarbon” that are produced at relatively low cost from oil and gas fields with large proven reserves. When one wants to ensure the prospects for development of unconventional resources that are potentially vast in terms of their energy potential, it is essential to determine the quality of that energy. Here we consider the development of shale gas, an unconventional energy resource of particularly strong interest of late, through analysis of its energy return on investment (EROI, a key indicator for qualitative assessment of energy resources. We used a Monte Carlo approach for the carbon footprint of U.S. operations in shale gas development to estimate expected ranges of EROI values by incorporating parameter variability. We obtained an EROI of between 13 and 23, with a mean of approximately 17 at the start of the pipeline. When we incorporated all the costs required to bring shale gas to the consumer, the mean value of EROI drops from about 17 at the start of the pipeline to 12 when delivered to the consumer. The shale gas EROI values estimated in the present study are in the initial stage of shale gas exploitation where the quality of that resource may be considerably higher than the mean and thus the careful and continuous investigation of change in EROI is needed, especially as production moves off the initial “sweet spots”.

  15. Impact of yogurt on appetite control, energy balance, and body composition.

    Science.gov (United States)

    Tremblay, Angelo; Doyon, Caroline; Sanchez, Marina

    2015-08-01

    Recent data support the idea that regular yogurt consumption promotes body weight stability. The simplest explanation is that regular consumption of healthful foods such as yogurt results in decreased intake of less healthful foods containing high amounts of fat and/or sugar. There is also evidence to suggest that the high calcium and protein contents of yogurt and other dairy foods influence appetite and energy intake. The existence of a calcium-specific appetite control mechanism has been proposed. Milk proteins differ in terms of absorption rate and post-absorptive responses, which can influence their satiating properties. Studies in humans have shown that consumption of milk and yogurt increases the circulating concentration of the anorectic peptides glucagon-like peptide (GLP)-1 and peptide YY (PYY). The food matrix can also affect appetite and satiety. Yogurt is a fermented milk that contains bacteria that enrich the microbiota of the host. It appears that lean vs obese humans differ in the composition of their gut microbiota. The available relevant literature suggests that yogurt is a food that facilitates the regulation of energy balance. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Exercise and negative energy balance in males who perform mental work.

    Science.gov (United States)

    Lemay, V; Drapeau, V; Tremblay, A; Mathieu, M-E

    2014-08-01

    Although energy expenditure during mental work is not higher than energy expenditure at rest, a stressful mental task is related to an increase in energy intake. It is suggested that mental work produces physiological changes, thereby influencing food intake. Because physical activity can influence hunger, the aim of the study was to determine if the introduction of an active pause could counteract the negative effects of mental work on energy intake and energy balance. Twelve male students, of normal weight, between 15 and 20 years old were evaluated. All subjects participated in three different sessions realized in a randomized order: (i) without pause = relaxation/mental work/meal; (ii) relaxation pause = mental work/relaxation/meal; and (iii) exercise pause = mental work/exercise/meal. Energy expenditure was measured with indirect calorimetry, energy intake was measured with a cold buffet-type meal of 40 items, and appetite-related sensations were measured with visual analogue scales. The effect of introducing an active pause in energy intake and energy balance was studied. The introduction of an active pause did not influence energy intake; although, higher appetite-related sensations were observed (16-26 mm on a 150-mm scale; P energy expenditure related to physical activity, a lower energy balance was measured for the exercise pause visit compared with the visit without a pause (-1137 kJ; P energy balance following mental work via an increased energy expenditure and a maintenance of energy intake. Globally, these results could help individuals attain and/or maintain a healthy body weight in a context where mental work is omnipresent. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  17. Dike propagation energy balance from deformation modeling and seismic release

    Science.gov (United States)

    Bonaccorso, Alessandro; Aoki, Yosuke; Rivalta, Eleonora

    2017-06-01

    Magma is transported in the crust mainly by dike intrusions. In volcanic areas, dikes can ascend toward the free surface and also move by lateral propagation, eventually feeding flank eruptions. Understanding dike mechanics is a key to forecasting the expected propagation and associated hazard. Several studies have been conducted on dike mechanisms and propagation; however, a less in-depth investigated aspect is the relation between measured dike-induced deformation and the seismicity released during its propagation. We individuated a simple x that can be used as a proxy of the expected mechanical energy released by a propagating dike and is related to its average thickness. For several intrusions around the world (Afar, Japan, and Mount Etna), we correlate such mechanical energy to the seismic moment released by the induced earthquakes. We obtain an empirical law that quantifies the expected seismic energy released before arrest. The proposed approach may be helpful to predict the total seismic moment that will be released by an intrusion and thus to control the energy status during its propagation and the time of dike arrest.Plain Language SummaryDike propagation is a dominant mechanism for magma ascent, transport, and eruptions. Besides being an intriguing physical process, it has critical hazard implications. After the magma intrusion starts, it is difficult to predict when and where a specific horizontal dike is going to halt and what its final length will be. In our study, we singled an equation that can be used as a proxy of the expected mechanical energy to be released by the opening dike. We related this expected energy to the seismic moment of several eruptive intrusions around the world (Afar region, Japanese volcanoes, and Mount Etna). The proposed novel approach is helpful to estimate the total seismic moment to be released, therefore allowing potentially predicting when the dike will end its propagation. The approach helps answer one of the

  18. Capacitor voltage ripple reduction and arm energy balancing in MMC-HVDC

    DEFF Research Database (Denmark)

    Parikh, Harsh; Martin-Loeches, Ruben Sánches; Tsolaridis, Georgios

    2016-01-01

    Modular Multilevel Converters are emerging and widely used in HVDC applications. However, the submodule capacitors are still large and the energy balancing under unbalanced conditions is a challenge. In this paper, an analytical model focusing on the energy stored in the capacitors and voltage va...

  19. Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan R.; Heussen, Kai; Østergaard, Poul Alberg

    2011-01-01

    Energy system analyses on the basis of fast and simple tools have proven particularly useful for interdisciplinary planning projects with frequent iterations and re-evaluation of alternative scenarios. As such, the tool “EnergyPLAN” is used for hourly balanced and spatially aggregate annual...

  20. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z.

    2009-01-01

    This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 µm) as observed above the canopy to the fluxes of

  1. Two source energy balance model:Refinements and lysimeter tests in the Southern High Plains

    Science.gov (United States)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  2. Two source energy balance model-refinements and lysimeter tests in the Southern High Plains

    Science.gov (United States)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  3. Manipulating early lactation energy and protein balances using canola meal as a protein source

    Science.gov (United States)

    Negative energy and protein balances during the immediate postpartum period in a dairy cow pose opportunities to improve the cow’s health and production. The inability of the cow to consume an adequate supply of nutrients mobilizes its body reserves to serve as energy and protein required for milk p...

  4. Natural Antibodies Related to Energy Balance in Early Lactation Dairy Cows

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Vries Reilingh, de G.; Meulenberg, S.; Brand, van den H.; Dijkstra, J.; Kemp, B.; Parmentier, H.K.

    2007-01-01

    The objectives of this study were to determine the presence of natural antibodies (NAb) in plasma and milk of individual dairy cows and to study the relation between NAb concentrations and energy balance (EB) and dietary energy source. Cows (n = 76) were fed a mainly glucogenic, lipogenic, or a

  5. Eawag Forum Chriesbach - Detailed energy balance - Final report; Energie-Detailbilanz des Eawag Forum Chriesbach - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Guettinger, H.; Lichtensteiger, T.; Mauz, M. [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz, EAWAG, Duebendorf (Switzerland); Velsen, S. van [3-Plan Haustechnik AG, Winterthur (Switzerland); Lehmann, B.; Frank, T.; Dorer, V.; Beerle, D. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, EMPA, Duebendorf (Switzerland)

    2009-06-15

    In June 2006 Eawag moved into its new headquarters, Forum Chriesbach. The building's external appearance is striking owing to the 1232 blue glass panels which clad the compact 6-storey rectangular structure. Eawag Forum Chriesbach houses 150 workplaces, a staff cafeteria, meeting and seminar rooms as well as the library of Eawag and Empa. It is an exemplary illustration of 'sustainable' construction design and is one of the best known buildings in Switzerland. It has been awarded several prizes and described in numerous national and international publications. The building is modern, functional, aesthetic, and uses a unique array of sources for heating, including the sun as well as waste heat from light sources, electric appliances and people. Cooling requirements are very low. Only electricity requirements and the embedded energy of construction materials are of significance. Approximately one third of the electricity required, namely 70 MWh/a, is produced by photovoltaic panels on the roof, and the rest is purchased as renewable electricity from the utilities under the label 'nature-made star'. During a two-year optimization period the building's control system was adjusted and know-how was transferred from planners and builders to owners and facility managers. From autumn 2007 Eawag, Empa and 3-Plan Haustechnik AG carried out temperature and energy measurements to determine the extent to which original planning assumptions and simulation forecasts corresponded to actual experience. Computer simulations with TRNSYS have revealed the relative contribution of individual building components to the overall energy balance and their sensitivity to external parameters. Temperatures during hot summer days have remained in comfortable ranges below 26 {sup o}C and have usually ranged between 20 and 23 {sup o}C in winter. Although heating and electricity requirements have exceeded predicted levels, at 5.7 kWh/m{sup 2} weighted energy reference

  6. The contribution of hypothalamic macroglia to the regulation of energy homeostasis.

    Science.gov (United States)

    Buckman, Laura B; Ellacott, Kate L J

    2014-01-01

    The hypothalamus is critical for the regulation of energy homeostasis. Genetic and pharmacologic studies have identified a number of key hypothalamic neuronal circuits that integrate signals controlling food intake and energy expenditure. Recently, studies have begun to emerge demonstrating a role for non-neuronal cell types in the regulation of energy homeostasis. In particular the potential importance of different glial cell types is increasingly being recognized. A number of studies have described changes in the activity of hypothalamic macroglia (principally astrocytes and tanycytes) in response to states of positive and negative energy balance, such as obesity and fasting. This article will review these studies and discuss how these findings are changing our understanding of the cellular mechanisms by which energy homeostasis is regulated.

  7. The contribution of hypothalamic macroglia to the regulation of energy homeostasis

    Directory of Open Access Journals (Sweden)

    Laura B Buckman

    2014-10-01

    Full Text Available The hypothalamus is critical for the regulation of energy homeostasis. Genetic and pharmacologic studies have identified a number of key hypothalamic neuronal circuits that integrate signals controlling food intake and energy expenditure. Recently studies have begun to emerge demonstrating a role for non-neuronal cell types in the regulation of energy homeostasis. In particular the potential importance of different glial cell types is increasingly being recognized. A number of studies have described changes in the activity of hypothalamic macroglia (principally astrocytes and tanycytes in response to states of positive and negative energy balance, such as obesity and fasting. This article will review these studies and discuss how these findings are changing our understanding of the cellular mechanisms by which energy homeostasis is regulated.

  8. Effect of row orientation on energy balance components

    Science.gov (United States)

    Solar irradiance is the primary source of energy that is converted into sensible and latent heat fluxes in the soil-plant-atmosphere continuum. The orientation of agricultural crop rows relative to the sun’s zenith angle determines the amount of solar irradiance reaching the plant and soil surfaces...

  9. Balancing energy and the environment: the case of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Brewer, S.

    1978-06-01

    The results of part of a Rand study on the federal role in resolving environmental issues arising out of the implementation of energy projects are reported. The projects discussed are two geothermal programs in California: the steam resource development at The Geysers (Lake and Sonoma counties) in northern California, and the wet brine development in the Imperial Valley in southern California.

  10. The Energy Balance of Corn Ethanol: An Update

    Energy Technology Data Exchange (ETDEWEB)

    Shapouri, Hosein [United States Dept. of Agriculture (USDA), Washington DC (United States); Duffield, James A. [United States Dept. of Agriculture (USDA), Washington DC (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2002-07-01

    Studies conducted since the late 1970s have estimated the net energy value (NEV) of corn ethanol. However, variations in data and assumptions used among the studies have resulted in a wide range of estimates. This study identifies the factors causing this wide variation and develops a more consistent estimate.

  11. Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression.

    Science.gov (United States)

    Nilaweera, Kanishka N; Cabrera-Rubio, Raul; Speakman, John R; O'Connor, Paula M; McAuliffe, AnneMarie; Guinane, Caitriona M; Lawton, Elaine M; Crispie, Fiona; Aguilera, Mònica; Stanley, Maurice; Boscaini, Serena; Joyce, Susan; Melgar, Silvia; Cryan, John F; Cotter, Paul D

    2017-07-01

    We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway. Copyright © 2017 the American Physiological Society.

  12. Meals and snacking, diet quality and energy balance.

    Science.gov (United States)

    Bellisle, France

    2014-07-01

    The present obesity "epidemic" has been attributed to a growing trend for snacking. Snacking may contribute to excess energy intake and weight gain through different ways, for example: context/environment of eating, frequency of consumption and quality of food choices. The present article reviews data and hypotheses about the role of snacks in diet quality and body weight control. One obvious difficulty in this field is the diversity of definitions and approaches used in cross-sectional, longitudinal, and intervention studies. A brief paragraph reviews the prevalence of snacking in various countries and its recent evolution. The literature addressing the contribution of snacks to daily energy and nutrient intake presents two contrasting pictures. In many reports, snacking appears to facilitate the adjustment of energy intake to needs, and to contribute carbohydrates, rather than fats, to the diet, in addition to valuable micronutrients. Such results are usually reported in healthy, normal-weight children and adults. By contrast, snacking often appears to contribute much energy but little nutrition in the diet of other consumers, particularly obese children and adults. In addition to selecting energy-dense foods, eating in the absence of hunger in response to external non-physiological cues, in an irregular fashion, in contexts (e.g. while watching television) that do not favor attention to the act of eating, might be crucial factors determining the nutritional effects of snacking. While efforts should be continued to harmonize definitions and minimize the influence of under-reporting, interventions aimed at decreasing detrimental snacking should address both food-related aspects and behavioral components. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Reciprocal regulation of bone and energy metabolism.

    Science.gov (United States)

    Baldock, Paul

    2011-01-01

    The primary relationship affecting skeletal tissue involves the association between fat mass and bone mass. However, there is some complexity in this relationship that may be explained by endocrine and neural pathways representing direct, reciprocal signalling between fat and bone tissue. For example, leptin signalling can directly stimulate osteoblastic differentiation and osteoblast proliferation and mineralization, but it also has central signalling actions in that it decreases cancellous bone volume. A novel regulatory loop between bone and adipose tissue suggests that uncarboxylated osteocalcin may affect energy homeostasis and afford a pathway by which fat mass can be regulated by bone mass. The multilayered and complex signals between fat and bone tissue involve both direct and indirect pathways. The endocrinologic nature of these signals highlights an emerging trend in medicine: identification of organ-based endocrine signals. Copyright © 2011 S. Karger AG, Basel.

  14. Energy balances of OECD countries 2003-2004. 2006 ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The volume contains data on the supply and consumption of coal, oil, gas, electricity, heat, renewables and waste. Figures are expressed in million tonnes of oil equivalent. Historical tables summarise key energy and economic indicators as well as production, trade, and final consumption data. The book also includes definitions of products and flows, explanatory notes on individual country data and conversion factors from original units to tonnes of oil equivalent. More detailed data in original units are published in 'Energy statistics of OECD countries 2003-2004'. Multilingual glossaries are included. Data from 1960 to 2004 are available on CD-ROM or as a PDF and a data service is available on the internet at www.iea.org

  15. Energy balances of non-OECD countries 2003-2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This volume contains data on energy supply and consumption in original units for coal, oil, gas, electricity, heat, renewables and waste for over 100 non-OECD countries. Historical tables summarise data on production, trade and final consumption. The book includes definitions of products and flows and explanatory notes on the individual country data and conversion factors from original units to tonnes of oil equivalent. More detailed data in original units are published in Energy Statistics of Non-OECD Countries 2003-2004. Multilingual glossaries are included. An online data service is available, from http://data.iea.org, for most OECD countries. In general the CD-ROM and online service contain detailed time series back to 1971.

  16. The surface energy balance of a polygonal tundra site in northern Siberia – Part 2: Winter

    Directory of Open Access Journals (Sweden)

    J. Boike

    2011-06-01

    Full Text Available In this study, we present the winter time surface energy balance at a polygonal tundra site in northern Siberia based on independent measurements of the net radiation, the sensible heat flux and the ground heat flux from two winter seasons. The latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The long-wave radiation is found to be the dominant factor in the surface energy balance. The radiative losses are balanced to about 60 % by the ground heat flux and almost 40 % by the sensible heat fluxes, whereas the contribution of the latent heat flux is small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Large spatial differences in the surface energy balance are observed between tundra soils and a small pond. The ground heat flux released at a freezing pond is by a factor of two higher compared to the freezing soil, whereas large differences in net radiation between the pond and soil are only observed at the end of the winter period. Differences in the surface energy balance between the two winter seasons are found to be related to differences in snow depth and cloud cover which strongly affect the temperature evolution and the freeze-up at the investigated pond.

  17. Energy Balance, Host-Related Factors, and Cancer Progression

    OpenAIRE

    Hursting, Stephen D.; Berger, Nathan A.

    2010-01-01

    Obesity is associated with an increased risk and worsened prognosis for many types of cancer, but the mechanisms underlying the obesity–cancer progression link are poorly understood. Several energy balance–related host factors are known to influence tumor progression and/or treatment responsiveness after cancer develops, and these have been implicated as key contributors to the complex effects of obesity on cancer outcome. These host factors include leptin, adiponectin, steroid hormones, reac...

  18. Productive level and energy balance in buffalo cow

    Directory of Open Access Journals (Sweden)

    G. Campanile

    2011-03-01

    Full Text Available Buffalo cow, at the beginning of lactation, shows a decrease in DM intake which determines a condition of physiologic hyponutrition (Campanile et al., 1997. In order to ensure physiologic haematic levels of glucose, the organism mobilizes the fat deposits and muscle proteins. Aim of present study was to evaluate the loss of body weight during the first months of lactation and the energy required for standard milk production in buffalo cow........

  19. Peripheral and Central Glucocorticoid Signaling Contributes to Positive Energy Balance in Rats.

    Science.gov (United States)

    Borba, Tássia Karin; Galindo, Lígia Cristina Monteiro; Ferraz-Pereira, Kelli Nogueira; da Silva Aragão, Raquel; Toscano, Ana Elisa; Guzmán-Quevedo, Omar; Manhães-de-Castro, Raul

    2017-06-01

    The obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of energy balance. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of energy balance. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative energy balance. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and energy expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine energy expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased energy expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive energy balance and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  20. The Role of Energy Balance in Successful Aging Among Elderly Individuals: The Multinational MEDIS Study.

    Science.gov (United States)

    Tyrovolas, Stefanos; Haro, Josep Maria; Mariolis, Anargiros; Piscopo, Suzanne; Valacchi, Giuseppe; Makri, Kornilia; Zeimbekis, Akis; Tyrovola, Dimitra; Bountziouka, Vassiliki; Gotsis, Efthimios; Metallinos, George; Tur, Josep-Antoni; Matalas, Antonia; Lionis, Christos; Polychronopoulos, Evangelos; Panagiotakos, Demosthenes

    2015-12-01

    The determinants that promote living beyond life expectancy and successful aging still remain unknown. The aim of the present work was to evaluate the role of energy balance in successful aging, in a random sample of older adults living in the Mediterranean basin. During 2005 to 2011, 2,663 older (aged 65-100 years) adults from 21 Mediterranean islands and the rural Mani region (Peloponnesus) of Greece were voluntarily enrolled in the study. Dietary habits, energy intake, expenditure, and energy balance were derived throughout standard procedures. A successful aging index (range = 0-10) was used. After adjusting for several confounders, high energy intake (i.e., >1,700 kcal/day), b-coefficient [95% CI] = -0.21[-0.37, -0.05], as well as positive energy balance, b-coefficient [95% CI] = -0.21 [-0.37, -0.05], were inversely associated with successful aging. A diet with excessive energy intake and a positive energy balance seems to be associated with lower quality of life, as measured through successful aging. © The Author(s) 2015.

  1. Energy balanced strategies for maximizing the lifetime of sparsely deployed underwater acoustic sensor networks.

    Science.gov (United States)

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime.

  2. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance.

    Science.gov (United States)

    Leshan, Rebecca L; Greenwald-Yarnell, Megan; Patterson, Christa M; Gonzalez, Ian E; Myers, Martin G

    2012-05-01

    Few effective measures exist to combat the worldwide obesity epidemic(1), and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control energy balance. Leptin, an adipocyte-derived hormone that signals the long-term status of bodily energy stores, acts through multiple types of leptin receptor long isoform (LepRb)-expressing neurons (called here LepRb neurons) in the brain to control feeding, energy expenditure and endocrine function(2-4). The modest contributions to energy balance that are attributable to leptin action in many LepRb populations(5-9) suggest that other previously unidentified hypothalamic LepRb neurons have key roles in energy balance. Here we examine the role of LepRb in neuronal nitric oxide synthase (NOS1)-expressing LebRb (LepRb(NOS1)) neurons that comprise approximately 20% of the total hypothalamic LepRb neurons. Nos1(cre)-mediated genetic ablation of LepRb (Lepr(Nos1KO)) in mice produces hyperphagic obesity, decreased energy expenditure and hyperglycemia approaching that seen in whole-body LepRb-null mice. In contrast, the endocrine functions in Lepr(Nos1KO) mice are only modestly affected by the genetic ablation of LepRb in these neurons. Thus, hypothalamic LepRb(NOS1) neurons are a key site of action of the leptin-mediated control of systemic energy balance.

  3. Canada's patented medicine notice of compliance regulations: balancing the scales or tipping them?

    Science.gov (United States)

    Lexchin, Joel

    2011-03-24

    In order to comply with the provisions of the North American Free Trade Agreement, in 1993 the Canadian federal government introduced the Patented Medicine Notice of Compliance Linkage Regulations. These regulations were meant to achieve a balance between the timely entry of generic medicines and the rights of patent holders. The regulations tied the regulatory approval of generic medicines to the patent status of the original brand-name product. Since their introduction the regulations have been a source of contention between the generic and the brand-name industry. While the regulations have generated a considerable amount of work for the Federal Court of Canada both sides dispute the interpretation of the "win rate" in the court cases. Similarly, there is no agreement on whether multiple patents on single drugs represent a legitimate activity by the brand-name industry or an "evergreening" tactic. The generic industry's position is that the regulations are being abused leading to the delay in the introduction of lower cost generic products by as much as 8 years. The brand-name companies counter that the regulations are necessary because injunctions against the introduction of generic products are frequently unavailable to them. The regulations were amended in 2006 and again in 2008 but both sides continue to claim that the regulations favour the other party. The battle around the regulations also has an international dimension with interventions by PhRMA, the trade association representing the United States based multinational companies, arguing that the regulations are not stringent enough and that Canada needs to be placed on the U.S. Priority Watch List of countries. Finally, there are multiple costs to Canadian society as a result of the NOC regulations. Despite the rhetoric there has been almost no empiric academic research done into the effect of the regulations. In order to develop rational policy in this area a number of key research questions have been

  4. Canada's Patented Medicine Notice of Compliance regulations: balancing the scales or tipping them?

    Directory of Open Access Journals (Sweden)

    Lexchin Joel

    2011-03-01

    Full Text Available Abstract Background In order to comply with the provisions of the North American Free Trade Agreement, in 1993 the Canadian federal government introduced the Patented Medicine Notice of Compliance Linkage Regulations. These regulations were meant to achieve a balance between the timely entry of generic medicines and the rights of patent holders. The regulations tied the regulatory approval of generic medicines to the patent status of the original brand-name product. Discussion Since their introduction the regulations have been a source of contention between the generic and the brand-name industry. While the regulations have generated a considerable amount of work for the Federal Court of Canada both sides dispute the interpretation of the "win rate" in the court cases. Similarly, there is no agreement on whether multiple patents on single drugs represent a legitimate activity by the brand-name industry or an "evergreening" tactic. The generic industry's position is that the regulations are being abused leading to the delay in the introduction of lower cost generic products by as much as 8 years. The brand-name companies counter that the regulations are necessary because injunctions against the introduction of generic products are frequently unavailable to them. The regulations were amended in 2006 and again in 2008 but both sides continue to claim that the regulations favour the other party. The battle around the regulations also has an international dimension with interventions by PhRMA, the trade association representing the United States based multinational companies, arguing that the regulations are not stringent enough and that Canada needs to be placed on the U.S. Priority Watch List of countries. Finally, there are multiple costs to Canadian society as a result of the NOC regulations. Summary Despite the rhetoric there has been almost no empiric academic research done into the effect of the regulations. In order to develop rational policy

  5. The energy balance equation: looking back and looking forward are two very different views.

    Science.gov (United States)

    Schoeller, Dale A

    2009-05-01

    The energy balance equation has served as an important tool for the study of bioenergetics. It is based on one of the most fundamental properties of thermodynamics and has been invaluable in understanding the interactions of energy intake, energy expenditure, and body composition. Recently, however, the obesity epidemic has extended the use of the equation to the creation of public health messages for preventing or even reversing secular trends in body mass index. This usage often fails to consider how changes in any one term of the equation can lead to accommodations in one or both of the other two terms. It is concluded that research and public health messages should not simply consider how interventions affect just energy expenditure or energy intake, but rather how they affect the balance or gap between energy intake and expenditure.

  6. Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2015-01-01

    Full Text Available The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.

  7. Balance of Yin and Yang: Ubiquitylation-Mediated Regulation of p53 and c-Myc

    Directory of Open Access Journals (Sweden)

    Mu-Shui Dai

    2006-08-01

    Full Text Available Protein ubiquitylation has been demonstrated to play a vital role not only in mediating protein turnover but also in modulating protein activity. The stability and activity of the tumor suppressor p53 and of the oncoprotein c-Myc are no exception. Both are regulated through independent ubiquitylation by several E3 ubiquitin ligases. Interestingly, p53 and c-Myc are functionally connected by some of these E3 enzymes and their regulator ARF, although these proteins play opposite roles in controlling cell growth and proliferation. The balance of this complex ubiquitylation network and its disruption during oncogenesis will be the topics of this review.

  8. Generating a positive energy balance from using rice straw for anaerobic digestion

    Directory of Open Access Journals (Sweden)

    V.H. Nguyen

    2016-11-01

    The net energy of the rice straw supply chain for biogas generation through AD is 3,500 MJ per ton of straw. This rice straw management option can provide a 70% net output energy benefit. The research highlighted the potential of rice straw as a clean fuel source with a positive energy balance, helping to reduce greenhouse gas emissions compared with the existing practice of burning it in the field.

  9. Numerical modeling of sandwich panel response to ballistic loading - energy balance for varying impactor geometries

    DEFF Research Database (Denmark)

    Kepler, Jørgen Asbøl; Hansen, Michael Rygaard

    2007-01-01

    thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance....

  10. CCK, PYY and PP: the control of energy balance.

    Science.gov (United States)

    Simpson, K; Parker, J; Plumer, J; Bloom, S

    2012-01-01

    The control of food intake consists of neural and hormonal signals between the gut and central nervous system (CNS). Gut hormones such as CCK, PYY and PP signal to important areas in the CNS involved in appetite regulation to terminate a meal. These hormones can act directly via the circulation and activate their respective receptors in the hypothalamus and brainstem. In addition, gut vagal afferents also exist, providing an alternative pathway through which gut hormones can communicate with higher centres through the brainstem. Animal and human studies have demonstrated that peripheral administration of certain gut hormones reduces food intake and leads to weight loss. Gut hormones are therefore potential targets in the development of novel treatments for obesity and analogue therapies are currently under investigation.

  11. An energy balance model of carbon's effect on climate change

    CERN Document Server

    Benney, Lucas

    2015-01-01

    Due to climate change, the interest of studying our climatic system using mathematical modeling has become tremendous in recent years. One well-known model is Budyko's system, which represents the coupled evolution of two variables, the ice-line and the average earth surface temperature. The system depends on natural parameters, such as the earth albedo, and the amount A of carbon in the atmosphere. We introduce a 3-dimensional extension of this model in which we regard A as the third coupled variable of the system. We analyze the phase space and dependence on parameters, looking for Hopf bifurcations and the birth of cycling behavior. We interpret the cycles as climatic oscillations triggered by the sensitivity in our regulation of carbon emissions at extreme temperatures.

  12. Intraseasonal Variations in Tropical Energy Balance: Relevance to Climate Sensitivity?

    Science.gov (United States)

    Robertson, Franklin R.; Ramey, Holly S.; Roberts, Jason B.

    2011-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of organization for tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, here we examine the projection of ISOs on the tropically-averaged heat and moisture budget. One unresolved question concerns the degree to which observable variations in the "fast" processes (e.g. convection, radiative / turbulent fluxes) can inform our understanding of feedback mechanisms operable in the context of climate change. Our analysis use daily data from satellite observations, the Modern Era analysis for Research and Applications (MERRA), and other model integrations to address these questions: (i) How are tropospheric temperature variations related to that tropical deep convection and the associated ice cloud fractional amount (ICF), ice water path (IWP), and properties of warmer liquid clouds? (ii) What role does moisture transport play vis-a-vis ocean latent heat flux in enabling the evolution of deep convection to mediate PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007 GRL ) whereby a composite time series of various quantities over 60+ ISO events is built using tropical mean tropospheric temperature signal as a reference to which the variables are related at various lag times (from -30 to +30 days). The area of interest encompasses the global oceans between 20oN/S. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. The decrease in net TOA radiation that develops after the peak in deep convective rainfall, is part of the response that constitutes a "discharge" / "recharge" mechanism that facilitates tropical heat balance

  13. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity

    DEFF Research Database (Denmark)

    Stoy, Paul C.; Mauder, Matthias; Foken, Thomas

    2013-01-01

    . We analyzed energy balance closure across 173 ecosystems in the FLUXNET database and explored the relationship between energy balance closure and landscape heterogeneity using MODIS products and GLOBEstat elevation data. Energy balance closure per research site (CEB,s) averaged 0.84±0.20, with best......The energy balance at most surface-atmosphere flux research sites remains unclosed. The mechanisms underlying the discrepancy between measured energy inputs and outputs across the global FLUXNET tower network are still under debate. Recent reviews have identified exchange processes and turbulent...... motions at large spatial and temporal scales in heterogeneous landscapes as the primary cause of the lack of energy balance closure at some intensively-researched sites, while unmeasured storage terms cannot be ruled out as a dominant contributor to the lack of energy balance closure at many other sites...

  14. Relative merits of phononics vs. plasmonics: the energy balance approach

    Science.gov (United States)

    Khurgin, Jacob B.

    2018-01-01

    The common feature of various plasmonic schemes is their ability to confine optical fields of surface plasmon polaritons (SPPs) into subwavelength volumes and thus achieve a large enhancement of linear and nonlinear optical properties. This ability, however, is severely limited by the large ohmic loss inherent to even the best of metals. However, in the mid- and far-infrared ranges of the spectrum, there exists a viable alternative to metals - polar dielectrics and semiconductors, in which dielectric permittivity (the real part) turns negative in the Reststrahlen region. This feature engenders the so-called surface phonon polaritons, capable of confining the field in a way akin to their plasmonic analogs, the SPPs. Since the damping rate of polar phonons is substantially less than that of free electrons, it is not unreasonable to expect that phononic devices may outperform their plasmonic counterparts. Yet a more rigorous analysis of the comparative merits of phononics and plasmonics reveals a more nuanced answer, namely, that while phononic schemes do exhibit narrower resonances and can achieve a very high degree of energy concentration, most of the energy is contained in the form of lattice vibrations so that enhancement of the electric field and, hence, the Purcell factor is rather small compared to what can be achieved with metal nanoantennas. Still, the sheer narrowness of phononic resonances is expected to make phononics viable in applications where frequency selectivity is important.

  15. Energy Balance of Bio-ethanol - A Review; Energibalans foer bioetanol - en kunskapsoeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2006-03-15

    This review presents a synthesis of various Swedish and international studies on the bio-ethanol energy balance, and an analysis of how and why their results differ. Other methods, such as exergy- and emergy analysis, are discussed and compared with the energy analysis method. Finally, potential improvements of the energy efficiency in bio-ethanol production are discussed. The energy balance is here expressed as the ratio of the energy content of the fuel to the primary energy input for the entire production cycle of the fuel. The energy balance of ethanol from cereals is, on average, 1.6, and varies between 0.7 and 2.8. Corresponding average figures for ethanol from corn, sugar beets and lignocellulosic biomass (e.g. energy forest) are 1.4, 1.8 and 3.2, respectively. There are several reasons why the energy balances differ between the different studies, even where the feedstock is identical. The sources of differences can be divided between those related to differences in local and geographical conditions, and those related to differences in the methodological approach applied. Depending on the definition of the system that is studied (systems boundaries), and how the energy input is divided between the ethanol and the by-products generated in the process (allocation methods), the energy balance may differ by a factor of 5. Thus, it is impossible to make reliable and fair comparisons between different studies unless all assumptions are clearly presented and defined. Results from exergy- and emergy analysis of bio-ethanol often show significantly different results from those presented in energy analyses. It is, however, not useful to compare these different results since the various methods have different focuses and are answering different questions. The energy balance of cereal-based ethanol can be improved by more efficient cultivation methods, but mainly by improved conversion processes. One possibility is by using bio-refineries where not only ethanol but also

  16. The 'Fat Mass and Obesity Related' (FTO) gene: Mechanisms of Impact on Obesity and Energy Balance.

    Science.gov (United States)

    Speakman, John R

    2015-03-01

    A cluster of single nucleotide polymorphisms (SNPs) in the first intron of the fat mass and obesity related (FTO) gene were the first common variants discovered to be associated with body mass index and body fatness. This review summarises what has been later discovered about the biology of FTO drawing together information from both human and animal studies. Subsequent work showed that the 'at risk' alleles of these SNPs are associated with greater food intake and increased hunger/lowered satiety, but are not associated with altered resting energy expenditure or low physical activity in humans. FTO is an FE (II) and 2-oxoglutarate dependent DNA/RNA methylase. Contrasting the impact of the SNPs on energy balance in humans, knocking out or reducing activity of the Fto gene in the mouse resulted in lowered adiposity, elevated energy expenditure with no impact on food intake (but the impact on expenditure is disputed). In contrast, overexpression of the gene in mice led to elevated food intake and adiposity, with no impact on expenditure. In rodents, the Fto gene is widely expressed in the brain including hypothalamic nuclei linked to food intake regulation. Since its activity is 2-oxoglutarate dependent it could potentially act as a sensor of citrate acid cycle flux, but this function has been dismissed, and instead it has been suggested to be much more likely to act as an amino acid sensor, linking circulating AAs to the mammalian target of rapamycin complex 1. This may be fundamental to its role in development but the link to obesity is less clear. It has been recently suggested that although the obesity related SNPs reside in the first intron of FTO, they may not only impact FTO but mediate their obesity effects via nearby genes (notably RPGRIP1L and IRX3).

  17. Food and physical activity environments: an energy balance approach for research and practice.

    Science.gov (United States)

    Economos, Christina D; Hatfield, Daniel P; King, Abby C; Ayala, Guadalupe X; Pentz, Mary Ann

    2015-05-01

    Increases in the prevalence of overweight and obesity are a function of chronic, population-level energy imbalance, whereby energy intakes exceed energy expenditures. Although sometimes viewed in isolation, energy intakes and expenditures in fact exist in a dynamic interplay: energy intakes may influence energy expenditures and vice versa. Obesogenic environments that promote positive energy balance play a central role in the obesity epidemic, and reducing obesity prevalence will require re-engineering environments to promote both healthy eating and physical activity. There may be untapped synergies in addressing both sides of the energy balance equation in environmentally focused obesity interventions, yet food/beverage and physical activity environments are often addressed separately. The field needs design, evaluation, and analytic methods that support this approach. This paper provides a rationale for an energy balance approach and reviews and describes research and practitioner work that has taken this approach to obesity prevention at the environmental and policy levels. Future directions in research, practice, and policy include moving obesity prevention toward a systems approach that brings both nutrition and physical activity into interdisciplinary training, funding mechanisms, and clinical and policy recommendations/guidelines. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  18. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  19. The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance.

    Science.gov (United States)

    Collet, Tinh-Hai; van der Klaauw, Agatha A; Henning, Elana; Keogh, Julia M; Suddaby, Diane; Dachi, Sekesai V; Dunbar, Síle; Kelway, Sarah; Dickson, Suzanne L; Farooqi, I Sadaf; Schmid, Sebastian M

    2016-09-01

    The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However, the potential mechanisms linking energy balance and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating energy balance on the sleep/wake cycle. Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline, after energy balance was disrupted by 2 days of caloric restriction to 10% of energy requirements, and after energy balance was restored by 2 days of ad libitum/free feeding. Sleep architecture, duration of sleep stages, and sleep-associated respiratory parameters were measured by polysomnography. Two days of caloric restriction significantly increased the duration of deep (stage 4) sleep (16.8% to 21.7% of total sleep time; P = 0.03); an effect which was entirely reversed upon free feeding (P = 0.01). Although the apnea-hypopnea index stayed within the reference range (sleep (Spearman rho = 0.83, P = 0.01) and negatively with the number of awakenings in caloric restriction (Spearman rho = -0.79, P = 0.01). We demonstrate that changes in energy homeostasis directly and reversibly impact on the sleep/wake cycle. These findings provide a mechanistic framework for investigating the association between sleep duration and obesity risk. © 2016 Associated Professional Sleep Societies, LLC.

  20. Prediction of energy balance and utilization for solar electric cars

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  1. Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals

    Science.gov (United States)

    Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.

    2014-01-01

    Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365

  2. Global Energy and Climate Outlook 2017: Greenhouse gas emissions and energy balances: Supplementary material to "Global Energy and Climate Outlook 2017: How climate policies improve air quality"

    OpenAIRE

    KITOUS ALBAN GABRIEL; KERAMIDAS KIMON

    2017-01-01

    This document complements the Global Energy and Climate Outlook 2017 Report. It provides the detailed GHG and energy balances for the Reference, INDC and B2C scenarios described in the main report. The results displayed in this report have been produced with the global energy & GHG model POLES-JRC.

  3. Consequences of dietary energy source and energy level on energy balance, lactogenic hormones, and lactation curve characteristics of cows after a short or omitted dry period

    NARCIS (Netherlands)

    Hoeij, van R.J.; Dijkstra, J.; Bruckmaier, R.M.; Gross, J.J.; Lam, Theo J.G.M.; Remmelink, G.J.; Kemp, B.; Knegsel, van A.T.M.

    2017-01-01

    Omitting the dry period (DP) generally reduces milk production in the subsequent lactation. The aim of this study was to evaluate the effect of dietary energy source—glucogenic (G) or lipogenic (L)—and energy level—standard (std) or low—on milk production; energy balance (EB); lactogenic hormones

  4. Commission for Energy regulation (CRE) - Activity report june 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    imports in gas supply in Europe, 50% increase in gas prices in 2005, Predominance of large-scale operators on the European market); The opening of the gas markets (The opening of the markets in European Union countries, The opening of the French gas market); CRE: regulator of the French gas market (Changes in natural gas regulated retail tariffs, Tariffs and terms for using regulated infrastructures); C - Regulation of the electricity market: Electricity players and markets (European players on the French market, Wholesale electricity market, Retail market); Access to public electricity grids (CRE's action concerning access to interconnections with neighbouring countries, Application of a new tariff for use of public electricity grids as from 1 January 2006, Electricity metering systems, CRE's monitoring of the quality of service of public electricity grids, Approval of RTE's investment programme, Improvement in terms for access to public electricity grids, Standard specifications for the public electricity transmission grid, Balancing mechanism); Public electricity service (Support systems for cogeneration and renewable energies, Public electricity service charges, Recovery of CSPE); D - The working of CRE: How CRE exercises its jurisdiction (CRE's activity in figures, Dispute settlements: a means of specifying the terms and conditions of access and use of systems) Resources (CRE staff, Changes in departmental organisation); European and international activity (Relations with other regulators, Relations with European Union institutions, Relations outside the European Union); E - Appendices: Glossary, Abbreviations, Units and conversions, Index of insets, tables and figures, Council of European Energy Regulators (CEER)

  5. Effects of buffer size and shape on associations between the built environment and energy balance.

    Science.gov (United States)

    James, Peter; Berrigan, David; Hart, Jaime E; Hipp, J Aaron; Hoehner, Christine M; Kerr, Jacqueline; Major, Jacqueline M; Oka, Masayoshi; Laden, Francine

    2014-05-01

    Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management.

    Science.gov (United States)

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-02-25

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  7. Bacterial proteostasis balances energy and chaperone utilization efficiently

    Science.gov (United States)

    Santra, Mantu; Farrell, Daniel W.; Dill, Ken A.

    2017-01-01

    Chaperones are protein complexes that help to fold and disaggregate a cell’s proteins. It is not understood how four major chaperone systems of Escherichia coli work together in proteostasis: the recognition, sorting, folding, and disaggregating of the cell’s many different proteins. Here, we model this machine. We combine extensive data on chaperoning, folding, and aggregation rates with expression levels of proteins and chaperones measured at different growth rates. We find that the proteostasis machine recognizes and sorts a client protein based on two biophysical properties of the client’s misfolded state (M state): its stability and its kinetic accessibility from its unfolded state (U state). The machine is energy-efficient (the sickest proteins use the most ATP-expensive chaperones), comprehensive (it can handle any type of protein), and economical (the chaperone concentrations are just high enough to keep the whole proteome folded and disaggregated but no higher). The cell needs higher chaperone levels in two situations: fast growth (when protein production rates are high) and very slow growth (to mitigate the effects of protein degradation). This type of model complements experimental knowledge by showing how the various chaperones work together to achieve the broad folding and disaggregation needs of the cell. PMID:28292901

  8. Energy balance of locomotion with pedal-driven watercraft.

    Science.gov (United States)

    Zamparo, Paola; Carignani, Giuseppe; Plaino, Luca; Sgalmuzzo, Barbara; Capelli, Carlo

    2008-01-01

    In this study, we examined the mechanics and energetics of locomotion with a paddle-wheel boat and a water bike. Power output (Wtot) was measured directly on the water bike by means of an instrumented chain-ring. The simultaneous assessment of oxygen uptake (VO2) allowed the computation of the "overall" efficiency of locomotion (etao = Wtot/VO2). Mean etao was 0.27 (s = 0.02), which was unaffected by the speed, and was assumed to be the same for the two boats as both are semi-recumbent bicycles. For the paddle-wheel boat, Wtot was then obtained from etao and measures of VO2. The power to overcome (passive) drag was calculated as Wd = D x v (where D is the force measured by means of a load cell when towing the boats at given speeds). Propelling efficiency was calculated as etap = Wd/Wtot, which was lower with the paddle-wheel boat (mean 0.35, s = 0.01) than with the water bike (mean 0.57, s = 0.01). The observed differences in etap and Wd explain why at the highest speed tested (approximately 3 m s(-1), the energy required to cover a unit distance with the water bike is similar to that required to move the paddle-wheel boat at 1.3 m s-1).

  9. Early Life Nutrition and Energy Balance Disorders in Offspring in Later Life

    Directory of Open Access Journals (Sweden)

    Clare M. Reynolds

    2015-09-01

    Full Text Available The global pandemic of obesity and type 2 diabetes is often causally linked to changes in diet and lifestyle; namely increased intake of calorically dense foods and concomitant reductions in physical activity. Epidemiological studies in humans and controlled animal intervention studies have now shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. The mechanisms by which early environmental insults can have long-term effects on offspring remain poorly defined. However there is evidence from intervention studies which indicate altered wiring of the hypothalamic circuits that regulate energy balance and epigenetic effects including altered DNA methylation of key adipokines including leptin. Studies that elucidate the mechanisms behind these associations will have a positive impact on the health of future populations and adopting a life course perspective will allow identification of phenotype and markers of risk earlier, with the possibility of nutritional and other lifestyle interventions that have obvious implications for prevention of non-communicable diseases.

  10. Direct energy balance based active disturbance rejection control for coal-fired power plant.

    Science.gov (United States)

    Sun, Li; Hua, Qingsong; Li, Donghai; Pan, Lei; Xue, Yali; Lee, Kwang Y

    2017-09-01

    The conventional direct energy balance (DEB) based PI control can fulfill the fundamental tracking requirements of the coal-fired power plant. However, it is challenging to deal with the cases when the coal quality variation is present. To this end, this paper introduces the active disturbance rejection control (ADRC) to the DEB structure, where the coal quality variation is deemed as a kind of unknown disturbance that can be estimated and mitigated promptly. Firstly, the nonlinearity of a recent power plant model is analyzed based on the gap metric, which provides guidance on how to set the pressure set-point in line with the power demand. Secondly, the approximate decoupling effect of the DEB structure is analyzed based on the relative gain analysis in frequency domain. Finally, the synthesis of the DEB based ADRC control system is carried out based on multi-objective optimization. The optimized ADRC results show that the integrated absolute error (IAE) indices of the tracking performances in both loops can be simultaneously improved, in comparison with the DEB based PI control and H∞ control system. The regulation performance in the presence of the coal quality variation is significantly improved under the ADRC control scheme. Moreover, the robustness of the proposed strategy is shown comparable with the H∞ control. Copyright © 2017. Published by Elsevier Ltd.

  11. Shp2 controls female body weight and energy balance by integrating leptin and estrogen signals.

    Science.gov (United States)

    He, Zhao; Zhang, Sharon S; Meng, Qingyuan; Li, Shuangwei; Zhu, Helen H; Raquil, Marie-Astrid; Alderson, Nazilla; Zhang, Hai; Wu, Jiarui; Rui, Liangyou; Cai, Dongsheng; Feng, Gen-Sheng

    2012-05-01

    In mammals, leptin regulates food intake and energy balance mainly through the activation of LepRb in the hypothalamus, and estrogen has a leptin-like effect in the hypothalamic control of metabolism. However, it remains to be elucidated how estrogen signaling is intertwined with the leptin pathway. We show here that Shp2, a nonreceptor tyrosine phosphatase, acts to integrate leptin and estrogen signals. The expression of a dominant-active mutant (Shp2(D61A)) in forebrain neurons conferred female, but not male, transgenic mice resistance to high-fat diet (HFD)-induced obesity and liver steatosis, accompanied by improved insulin sensitivity and glucose homeostasis. Fed with either HFD or regular chow food, Shp2(D61A) female mice showed dramatically enhanced leptin sensitivity. Microinjection of Shp2(D61A)-expressing adeno-associated virus into mediobasal hypothalamus elicited a similar antiobese effect in female mice. Biochemical analyses showed a physical association of Shp2 with estrogen receptor alpha, which is necessary for the synergistic and persistent activation of Erk by leptin and estrogen. Together, these results elucidate a mechanism for the direct cross talk of leptin and estrogen signaling and offer one explanation for the propensity of postmenopausal women to develop obesity.

  12. The quality of school wellness policies and energy-balance behaviors of adolescent mothers.

    Science.gov (United States)

    Haire-Joshu, Debra; Yount, Byron W; Budd, Elizabeth L; Schwarz, Cynthia; Schermbeck, Rebecca; Green, Scoie; Elliott, Michael

    2011-03-01

    In this study, we 1) compared the quality of school wellness policies among schools participating in Moms for a Healthy Balance (BALANCE), a school- and home-based weight loss study conducted with postpartum adolescents in 27 states; and 2) assessed the relationship between policy quality with energy-balance behaviors and body mass index z scores of postpartum adolescents. As a part of BALANCE, we collected data on high-calorie food and beverage consumption, minutes spent walking, and height and weight for 647 participants. The School Wellness Policy Coding Tool was used to assess the strength and comprehensiveness of school district wellness policies from 251 schools attended by participating adolescent mothers. Schools averaged low scores for wellness policy comprehensiveness and strength. When compared with participants in schools with the lowest policy comprehensiveness scores, adolescent mothers in schools with the highest scores reported consuming significantly fewer daily calories from sweetened beverages while reporting higher consumption of water (P = .04 and P = .01, respectively). School wellness policy strength was associated with lower BMI z scores among adolescent mothers (P = .01). School wellness policies associated with BALANCE may be limited in their ability to promote a healthy school environment. Future studies are needed to evaluate the effect of the strength and comprehensiveness of policy language on energy balance in high-risk postpartum adolescents. Evidence from this work can provide additional guidance to federal or state government in mandating not only policy content, but also systematic evaluation.

  13. Dry period plane of energy: Effects on feed intake, energy balance, milk production, and composition in transition dairy cows.

    Science.gov (United States)

    Mann, S; Yepes, F A Leal; Overton, T R; Wakshlag, J J; Lock, A L; Ryan, C M; Nydam, D V

    2015-05-01

    The objective was to investigate the effect of different dry cow feeding strategies on the degree of ketonemia postpartum. Epidemiologic studies provide evidence of an association between elevated β-hydroxybutyrate (BHBA) concentrations in postpartum dairy cows and a decreased risk for reproductive success as well as increased risk for several diseases in early lactation, such as displacement of the abomasum and metritis. The plane of energy fed to cows in the prepartum period has been shown to influence ketogenesis and the degree of negative energy balance postpartum. Our hypothesis was that a high-fiber, controlled-energy diet (C) fed during the dry period would lead to a lower degree of hyperketonemia in the first weeks postpartum compared with either a high-energy diet (H), or a diet where an intermediate level of energy would only be fed in the close-up period (starting at 28d before expected parturition), following the same controlled-energy diet in the far-off period. Hyperketonemia in this study was defined as a blood BHBA concentration of ≥1.2mmol/L. Holstein cows (n=84) entering parity 2 or greater were enrolled using a randomized block design and housed in individual tiestalls. All treatment diets were fed for ad libitum intake and contained monensin. Cows received the same fresh cow ration after calving. Blood samples were obtained 3 times weekly before and after calving and analyzed for BHBA and nonesterified fatty acids (NEFA). Milk components, production, and dry matter intake were recorded and energy balance was calculated. Repeated measures ANOVA was conducted for the outcomes dry matter intake, energy balance, BHBA and NEFA concentrations, milk and energy-corrected milk yield, as well as milk composition. Predicted energy balance tended to be less negative postpartum in group C and cows in this group had fewer episodes of hyperketonemia compared with both the intermediate group and group H in the first 3 wk after calving. Postpartum BHBA and

  14. Dynamic Energy Balance: An Integrated Framework for Discussing Diet and Physical Activity in Obesity Prevention—Is it More than Eating Less and Exercising More?

    Science.gov (United States)

    Manore, Melinda M.; Larson-Meyer, D. Enette; Lindsay, Anne R.; Hongu, Nobuko; Houtkooper, Linda

    2017-01-01

    Understanding the dynamic nature of energy balance, and the interrelated and synergistic roles of diet and physical activity (PA) on body weight, will enable nutrition educators to be more effective in implementing obesity prevention education. Although most educators recognize that diet and PA are important for weight management, they may not fully understand their impact on energy flux and how diet alters energy expenditure and energy expenditure alters diet. Many nutrition educators have little training in exercise science; thus, they may not have the knowledge essential to understanding the benefits of PA for health or weight management beyond burning calories. This paper highlights the importance of advancing nutrition educators’ understanding about PA, and its synergistic role with diet, and the value of incorporating a dynamic energy balance approach into obesity-prevention programs. Five key points are highlighted: (1) the concept of dynamic vs. static energy balance; (2) the role of PA in weight management; (3) the role of PA in appetite regulation; (4) the concept of energy flux; and (5) the integration of dynamic energy balance into obesity prevention programs. The rationale for the importance of understanding the physiological relationship between PA and diet for effective obesity prevention programming is also reviewed. PMID:28825615

  15. Dynamic Energy Balance: An Integrated Framework for Discussing Diet and Physical Activity in Obesity Prevention-Is it More than Eating Less and Exercising More?

    Science.gov (United States)

    Manore, Melinda M; Larson-Meyer, D Enette; Lindsay, Anne R; Hongu, Nobuko; Houtkooper, Linda

    2017-08-19

    Understanding the dynamic nature of energy balance, and the interrelated and synergistic roles of diet and physical activity (PA) on body weight, will enable nutrition educators to be more effective in implementing obesity prevention education. Although most educators recognize that diet and PA are important for weight management, they may not fully understand their impact on energy flux and how diet alters energy expenditure and energy expenditure alters diet. Many nutrition educators have little training in exercise science; thus, they may not have the knowledge essential to understanding the benefits of PA for health or weight management beyond burning calories. This paper highlights the importance of advancing nutrition educators' understanding about PA, and its synergistic role with diet, and the value of incorporating a dynamic energy balance approach into obesity-prevention programs. Five key points are highlighted: (1) the concept of dynamic vs. static energy balance; (2) the role of PA in weight management; (3) the role of PA in appetite regulation; (4) the concept of energy flux; and (5) the integration of dynamic energy balance into obesity prevention programs. The rationale for the importance of understanding the physiological relationship between PA and diet for effective obesity prevention programming is also reviewed.

  16. REBAL '92-A Cooperative Radiation and Energy Balance Field Study for Imagery and Electromagnetic Propagation.

    Science.gov (United States)

    Tunick, Arnold; Rachele, Henry; Hansen, Frank V.; Howell, Terry A.; Steiner, Jean L.; Schneider, Ariand D.; Evett, Steve R.

    1994-03-01

    The surface energy balance directly affects vertical gradients in temperature and specific humidity within the atmospheric surface layer, and these gradients influence optical turbulence. This study was conducted to improve current understanding of the partitioning of energy at the ground surface of a bare soil field and its influence on the character and intensity of optical turbulence as represented by the refractive index structure parameter, Cn2 and to improve micrometeorological models of the surface energy balance. The field study entitled "Radiation Energy Balance Experiment for Imagery and Electromagnetic Propagation" was conducted by the United States Army Atmospheric Sciences Laboratory and the United States Department of Agriculture Agricultural Research Service, at Bushland, Texas, during May and July 1992. The following were collected: diurnal radiation: evaporation (directly measured by large weighing lysimeters); five-level micrormeteorological profiles of windspeed, air temperature, and relative humility; soil temperature and volumetric water content; soil heat flux; optical turbulence (scintillometer); and near-and far-field infrared imager data over wet and dry bare soil for clear and cloudy sky conditions. Initial results from the modeling efforts indicate excellent agreement between measured and modeled values of radiation energy balance fluxes and Cn2 for one day. Future model evaluation will extend over the wide range of conditions encountered during the field study.

  17. The mass and energy balance of ice within the Eisriesenwelt cave, Austria

    Directory of Open Access Journals (Sweden)

    F. Obleitner

    2011-03-01

    Full Text Available Meteorological measurements were performed in a prominent ice cave (Eisriesenwelt, Austria during a full annual cycle. The data show the basic features of a dynamically ventilated cave system with a well distinguished winter and summer regime.

    The calculated energy balance of the cave ice is largely determined by the input of long-wave radiation originating at the host rock surface. On average the turbulent fluxes withdraw energy from the surface. This is more pronounced during winter due to enhanced circulation and lower humidity. During summer the driving gradients reverse sign and the associated fluxes provide energy for melt.

    About 4 cm of ice were lost at the measurement site during a reference year. This was due to some sublimation during winter, while the major loss resulted from melt during summer. Small amounts of accumulation occurred during spring due to refreezing of seepage water.

    These results are largely based on employing a numerical mass and energy balance model. Sensitivity studies prove reliability of the calculated energy balance regarding diverse measurement uncertainties and show that the annual mass balance of the ice strongly depends on cave air temperature during summer and the availability of seepage water in spring.

  18. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  19. Parental education associations with children's body composition: mediation effects of energy balance-related behaviors within the ENERGY-project

    NARCIS (Netherlands)

    Fernandez Alvira, J.M.; te Velde, S.J.; de Bourdeaudhuij, I.; Bere, E.; Manios, Y.; Kovacs, E.; Jan, N.; Brug, J.; Moreno, L.A.

    2013-01-01

    Background: It is well known that the prevalence of overweight and obesity is considerably higher among youth from lower socio-economic families, but there is little information about the role of some energy balance-related behaviors in the association between socio-economic status and childhood

  20. Clustering of energy balance-related behaviors and parental education in European children: the ENERGY-project

    NARCIS (Netherlands)

    Fernandez Alvira, J.M.; de Bourdeaudhuij, I.; Singh, A.S.; Vik, F.N.; Manios, Y.; Kovacs, E.; Jan, N.; Brug, J.; Moreno, L.A.

    2013-01-01

    Background: Recent research and literature reviews show that, among schoolchildren, some specific energy balance-related behaviors (EBRBs) are relevant for overweight and obesity prevention. It is also well known that the prevalence of overweight and obesity is considerably higher among

  1. The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface

    NARCIS (Netherlands)

    Kollet, S.J.; Cvijanovic, I.; Schüttemeyer, D.; Maxwell, R.M.; Moene, A.F.; Bayer, P.

    2009-01-01

    In land surface models, which account for the energy balance at the land surface, subsurface heat transport is an important component that reciprocally influences ground, sensible, and latent heat fluxes and net radiation. In most models, subsurface heat transport parameterizations are commonly

  2. Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance.

    Science.gov (United States)

    Ainslie, Philip N; Ogoh, Shigehiko

    2010-02-01

    Respiratory-induced changes in the partial pressures of arterial carbon dioxide (PaCO2) and oxygen (PaO2) play a major role in cerebral blood flow (CBF) regulation. Elevations in PaCO2 (hypercapnia) lead to vasodilatation and increases in CBF, whereas reductions in PaCO2 (hypocapnia) lead to vasoconstriction and decreases in CBF. A fall in PaO2 (hypoxia) below a certain threshold (balance between the myriad of vasodilators and constrictors derived from the endothelium, neuronal innervations and perfusion pressure. This review examines the extent and mechanisms by which hypoxia regulates CBF. Particular focus will be given to the marked influence of hypoxia associated with exposure to high altitude and chronic lung disease. The associated implications of these hypoxia-induced integrative alterations for the regulation of CBF are discussed, and future avenues for research are proposed.

  3. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    Science.gov (United States)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  4. Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach

    Science.gov (United States)

    Bauer, Eva; Ganopolski, Andrey

    2017-07-01

    Glacial cycles of the late Quaternary are controlled by the asymmetrically varying mass balance of continental ice sheets in the Northern Hemisphere. Surface mass balance is governed by processes of ablation and accumulation. Here two ablation schemes, the positive-degree-day (PDD) method and the surface energy balance (SEB) approach, are compared in transient simulations of the last glacial cycle with the Earth system model of intermediate complexity CLIMBER-2. The standard version of the CLIMBER-2 model incorporates the SEB approach and simulates ice volume variations in reasonable agreement with paleoclimate reconstructions during the entire last glacial cycle. Using results from the standard CLIMBER-2 model version, we simulated ablation with the PDD method in offline mode by applying different combinations of three empirical parameters of the PDD scheme. We found that none of the parameter combinations allow us to simulate a surface mass balance of the American and European ice sheets that is similar to that obtained with the standard SEB method. The use of constant values for the empirical PDD parameters led either to too much ablation during the first phase of the last glacial cycle or too little ablation during the final phase. We then substituted the standard SEB scheme in CLIMBER-2 with the PDD scheme and performed a suite of fully interactive (online) simulations of the last glacial cycle with different combinations of PDD parameters. The results of these simulations confirmed the results of the offline simulations: no combination of PDD parameters realistically simulates the evolution of the ice sheets during the entire glacial cycle. The use of constant parameter values in the online simulations leads either to a buildup of too much ice volume at the end of glacial cycle or too little ice volume at the beginning. Even when the model correctly simulates global ice volume at the last glacial maximum (21 ka), it is unable to simulate complete deglaciation

  5. Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach

    Directory of Open Access Journals (Sweden)

    E. Bauer

    2017-07-01

    Full Text Available Glacial cycles of the late Quaternary are controlled by the asymmetrically varying mass balance of continental ice sheets in the Northern Hemisphere. Surface mass balance is governed by processes of ablation and accumulation. Here two ablation schemes, the positive-degree-day (PDD method and the surface energy balance (SEB approach, are compared in transient simulations of the last glacial cycle with the Earth system model of intermediate complexity CLIMBER-2. The standard version of the CLIMBER-2 model incorporates the SEB approach and simulates ice volume variations in reasonable agreement with paleoclimate reconstructions during the entire last glacial cycle. Using results from the standard CLIMBER-2 model version, we simulated ablation with the PDD method in offline mode by applying different combinations of three empirical parameters of the PDD scheme. We found that none of the parameter combinations allow us to simulate a surface mass balance of the American and European ice sheets that is similar to that obtained with the standard SEB method. The use of constant values for the empirical PDD parameters led either to too much ablation during the first phase of the last glacial cycle or too little ablation during the final phase. We then substituted the standard SEB scheme in CLIMBER-2 with the PDD scheme and performed a suite of fully interactive (online simulations of the last glacial cycle with different combinations of PDD parameters. The results of these simulations confirmed the results of the offline simulations: no combination of PDD parameters realistically simulates the evolution of the ice sheets during the entire glacial cycle. The use of constant parameter values in the online simulations leads either to a buildup of too much ice volume at the end of glacial cycle or too little ice volume at the beginning. Even when the model correctly simulates global ice volume at the last glacial maximum (21 ka, it is unable to simulate

  6. The influence of the menstrual cycle on energy balance and taste preference in Asian Chinese women.

    Science.gov (United States)

    Elliott, Sarah A; Ng, Janet; Leow, Melvin Khee-Shing; Henry, Christiani J K

    2015-12-01

    In Caucasian women, research has shown that energy balance and taste preference change throughout the menstrual cycle. However, the contributory role of the menstrual cycle to obesity and insulin resistance among Asian women remains unclear. We investigate the impact of the menstrual cycle on energy balance and taste preference in Singaporean Chinese females. Thirty-one healthy young Chinese female subjects with regular menstrual cycles were recruited. Anthropometrics, body composition, energy intake, resting metabolic rate, premenstrual syndrome (PMS) severity and taste preference to sucrose were assessed during three phases (menses, follicular and luteal), over one (N = 18) to two (N = 13) menstrual cycles. For all subjects (N = 31), we found significant reductions in energy, fat intake (p energy and macronutrient intake throughout Cycle 2. RMR was similar across the three phases. However, non-significant cyclic variations were noted within and between the cycles. Cyclic variations in energy intake and expenditure contributed by sensory and behavioural changes occur during the menstrual cycle. Whether this contributes to cyclic weight gain is speculative and remains to be proven. Further research in non-Caucasians spanning more than one menstrual cycle is needed to establish the impact of the menstrual cycle on taste preference and energy balance.

  7. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    Science.gov (United States)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  8. Steady-state energy balance in animal models of obesity and weight loss.

    Science.gov (United States)

    Olsen, Magnus Kringstad; Johannessen, Helene; Cassie, Nikki; Barrett, Perry; Takeuchi, Koji; Kulseng, Bård; Chen, Duan; Zhao, Chun-Mei

    2017-04-01

    We wanted to exam the steady-state energy balance by using high-fat diet-induced obese (DIO) rats and mice as models for positive energy balance, and gastric bypassed (GB) rats and gene knockout of muscarinic acetylcholine M3 receptor (M3KO) mice as models for negative energy balance. One hundred and thirty-two rats and mice were used. Energy balance was measured by a comprehensive laboratory animal monitoring system. Gene expression was analysed by in situ hybridisation in M3KO mice. DIO rats reached the plateau of body weight 28 weeks after starting high-fat diet (25% heavier than controls), whereas DIO mice reached the plateau after 6 weeks (23% heavier than controls). At the plateau, DIO rats had higher calorie intake during the light phase but not during th