Seismic fatigue life evaluation of mechanical structures using energy balance equation
International Nuclear Information System (INIS)
Minagawa, Keisuke; Fujita, Satoshi; Kitamura, Seiji; Okamura, Shigeki
2009-01-01
Evaluation of seismic resistant performance for severe earthquakes is required, because of occurrence of earthquakes which exceed the design criteria. Additionally, quantitative evaluation of cumulative damage by earthquake is also required. In this study, the energy balance equation is applied to the evaluation. The energy balance equation expresses integral information of response, so that the energy balance equation is adequate for the evaluation of the influence of cumulative load such as seismic response. At first, vibration experiment that leads experimental model to fatigue failure by continuous vibration disturbance is conducted. As a result of the experiment, relation between fatigue failure and energy balance equation is confirmed. Then the relation is proved from the viewpoint of hysteresis energy, and consistency between energy balance equation and hysteresis energy is confirmed. Finally, we adopted cumulative damage rule to energy balance equation in order to expect the fatigue life under random waves that have various input acceleration. (author)
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow
International Nuclear Information System (INIS)
Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel
2004-01-01
In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)
Constitutive equations for energy balance evaluation in metals under inelastic deformation
Kostina, A.; Plekhov, O.; Venkatraman, B.
2017-12-01
The work is devoted to the development of constitutive equations for energy balance evaluation in plastically deformed metals. The evolution of the defect system is described by a previously obtained model based on the Boltzmann-Gibbs statistics. In the framework of this model, a collective behavior of mesodefect ensembles is taken into account by the introduction of an internal variable representing additional structural strain. This parameter enables the partition of plastic work into dissipated heat and stored energy. The proposed model is applied to energy balance calculation in a Ti-1Al-1Mn specimen subjected to cyclic loading. Simulation results have shown that the model is able to describe an upward trend in the stored energy value with the increase in the load ratio.
Savoy, L. G.
1988-01-01
Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)
Solving the radiation diffusion and energy balance equations using pseudo-transient continuation
International Nuclear Information System (INIS)
Shestakov, A.I.; Greenough, J.A.; Howell, L.H.
2005-01-01
We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks
Knuiman, J.T.; Barneveld, P.A.
2012-01-01
In this paper, we elaborate on the connection between the fundamental equation of thermodynamics, which is essentially the combination of the First and Second Laws of thermodynamics, and the energy balance equation in the context of closed and open systems. We point out some misinterpretations in
Generalised and Fractional Langevin Equations-Implications for Energy Balance Models
Watkins, N. W.; Chapman, S. C.; Chechkin, A.; Ford, I.; Klages, R.; Stainforth, D. A.
2017-12-01
Energy Balance Models (EBMs) have a long heritage in climate science, including their use in modelling anomalies in global mean temperature. Many types of EBM have now been studied, and this presentation concerns the stochastic EBMs, which allow direct treatment of climate fluctuations and noise. Some recent stochastic EBMs (e.g. [1]) map on to Langevin's original form of his equation, with temperature anomaly replacing velocity, and other corresponding replacements being made. Considerable sophistication has now been reached in the application of multivariate stochastic Langevin modelling in many areas of climate. Our work is complementary in intent and investigates the Mori-Kubo "Generalised Langevin Equation" (GLE) which incorporates non-Markovian noise and response in a univariate framework, as a tool for modelling GMT [2]. We show how, if it is present, long memory simplifies the GLE to a fractional Langevin equation (FLE). Evidence for long range memory in global temperature, and the success of fractional Gaussian noise in its prediction [5] has already motivated investigation of a power law response model [3,4,5]. We go beyond this work to ask whether an EBM of FLE-type exists, and what its solutions would be. [l] Padilla et al, J. Climate (2011); [2] Watkins, GRL (2013); [3] Rypdal, JGR (2012); [4] Rypdal and Rypdal, J. Climate (2014); [5] Lovejoy et al, ESDD (2015).
Energy balance in tearing modes
International Nuclear Information System (INIS)
Wesson, J.A.
1993-01-01
The energy balance in tearing modes is described in terms of exact separate energy balance equations. Each of these equations describes identified physical processes, and their sum gives the conservation of total energy. One of the energy balance equations corresponds to Furth's description. (Author)
Coupled energy-drift and force-balance equations for high-field hot-carrier transport
International Nuclear Information System (INIS)
Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.
2005-01-01
Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation, which depends on the distribution of electrons interacting with phonons. The work done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field direction. The importance of this anisotropic distribution is demonstrated through a comparison with the isotropic energy-balance equation, from which we find that defining a state-independent electron temperature becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation and the Boltzmann scattering equation for hot phonons
Balance equations for a relativistic plasma. Pt. 1
International Nuclear Information System (INIS)
Hebenstreit, H.
1983-01-01
Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)
National Energy Balance - 1985
International Nuclear Information System (INIS)
Anon.
1985-01-01
The National Energy Balance - 1985 shows energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, since 1974 to 1984 (E.G.) [pt
National Energy Balance - 1984
International Nuclear Information System (INIS)
Anon.
1984-01-01
The National Energy Balance - 1984 shows energy fluxes of several primary and secondary energy sources, since the productions to final consumption in the main economic sectors, since 1973 to 1983. (E.G.) [pt
International Nuclear Information System (INIS)
Anon.
1987-01-01
The National Energy Balance - 1987 showns energy fluxes of several primary and secondary energy sources, since the production to final consumption in the main economic sectors, since 1971 to 1986. (E.G.) [pt
How Should Equation Balancing Be Taught?
Porter, Spencer K.
1985-01-01
Matrix methods and oxidation-number methods are currently advocated and used for balancing equations. This article shows how balancing equations can be introduced by a third method which is related to a fundamental principle, is easy to learn, and is powerful in its application. (JN)
Student Understanding of Chemical Equation Balancing.
Yarroch, W. L.
1985-01-01
Results of interviews with high school chemistry students (N=14) during equation-solving sessions indicate that those who were able to construct diagrams consistent with notation of their balanced equation possessed good concepts of subscript and the balancing rule. Implications for chemistry teaching are discussed. (DH)
International Nuclear Information System (INIS)
Hammer, R.
1982-01-01
The energy balance of the outer atmospheres of solarlike stars is discussed. The energy balance of open coronal regions is considered, discussing the construction and characteristics of models of such regions in some detail. In particular, the temperature as a function of height is considered, as are the damping length dependence of the global energy balance in the region between the base of the transition region and the critical point, and the effects of changing the amount of coronal heating, the stellar mass, and the stellar radius. Models of coronal loops are more briefly discussed. The chromosphere is then included in the discussion of the energy balance, and the connection between global energy balance and global thermal stability is addressed. The observed positive correlations between the chromospheric and coronal energy losses and the pressure of the transition region is qualitatively explained
DEFF Research Database (Denmark)
Dhurandhar, N V; Schoeller, D; Brown, A W
2015-01-01
Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self......-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance...... of energy balance....
Systematic tools for chemical equation balancing
International Nuclear Information System (INIS)
Filby, E.E.; Idaho National Engineering Lab., Idaho Falls, ID; Idaho Univ., Idaho Falls, ID
1989-01-01
One of the most important skills that chemists and chemical engineers must develop is the ability to balance chemical equations. The normal first method taught is ''balancing by inspection'', which is sometimes explained as simply ''mental algebra.'' Every textbook surveyed for this paper presents equation balancing first as a matter of trial and error; this includes four very recently published books. Very little further guidance is provided until oxidation-reduction reactions must be balanced. The most commonly taught approaches for balancing, redox equations have been the oxidation state change and ion-electron methods. Unfortunately, redox reactions are usually treated as a new topic, and what the student has teamed about ''ordinary'' equations is of little or no help. All too often, these contradictions simply confuse and frustrate students, and equation balancing is relegated to the status of a black art. This is ironic because such,confusion and frustration is not necessary: Chemical equations can, in fact, be balanced by explicitly definable mathematical methods. The purpose of this paper is to outline the algebraic methods involved
International Nuclear Information System (INIS)
Anon.
2000-01-01
The energy balances of the Danish Statistical Office are the designation of the goods balances, which are tabulated for each energy article in both physical entities (quantities) and in base rates (values). The balance concept is connected to the definition supply = use, which is the basis for the construction of the system. The supply is determined as the sum of two items: import and production while the total use is the sum of 138 items: export, waste and transmission loss, stock increase, input in lack of the 130 industries, and private consumption divided into 5 consumption groups. The statistical analysis is performed yearly in both quantities and values for 35 energy articles. Values are computed for base rates, profits, taxes, VAT and market prices (buyer's price), respectively. The energy balances from 1975 to 2000 are presented for comparison. (EHS)
National energy balance - 1978
International Nuclear Information System (INIS)
1978-01-01
The national energy balance of 1978 shows some modifications in relation to the last year. New tables were included aiming to show the brazilian energy situation, such as the hydraulic potential and the non-renewable energy resources. (E.G.) [pt
National energy balance - 1977
International Nuclear Information System (INIS)
1977-01-01
The national energy balance of the 1976 shows several modifications in relation to the last year. The historical serie is based in more confiable information, from several energy companies. The most greater modifications are on energy source of hard control, such as lignite and charcoal for non-siderurgic uses. (E.G.) [pt
National Energy Balance - 1986
International Nuclear Information System (INIS)
Anon.
1986-01-01
The National Energy Balance - 1986 shows energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, since 1970 to 1985. The incorporation of a new brazilian information is done. (E.G.) [pt
National Energy Balance - 1981
International Nuclear Information System (INIS)
Anon.
1981-01-01
The National Energy Balance - 1981, shows a new metodology and information in level of several economic sectors, as well as a separation of primary and secondary energy sources, its energy fluxes, i.e. production, imports, exports, consumption, etc...(E.G.) [pt
National energy balance - 1976
International Nuclear Information System (INIS)
1976-01-01
Based on available data from IBGE, CNP/Petrobras, Eletrobras, Nuclebras and other governmental enterprises the National Energy Balance was done. This publication covers since 1965 to 1975. In conformity to the international rules, the energy resources used for non-energy purposes were excluded. The energy production and consumption for the next ten years were forecasted, considering the actual brazilian energy policy. (E.G.) [pt
Directory of Open Access Journals (Sweden)
Demur Chomakhidze
2016-09-01
It is shown that, traditionally, the energy balance of Georgia is in deep deficit. The suggestions for its improvement are provided in the Article. The country imports almost all amount of oil and natural gas. Electricity balance is relatively stable. In the recent years, some amount of electricity is exported to the neighboring countries. Generally, the country satisfies only 30–35% of own energy consumption by local generation, and the rest amount of resources are imported from abroad. The reason of deficit to some extent is irrational and wasteful consumption of energy resources. The article examines the organizational difficulties in drawing up energy balance of Georgia and statistical problems of recording of energy production and consumption at the initial stage of market economy.
International Nuclear Information System (INIS)
Anon.
2006-01-01
Denmark's energy consumption was 800 PJ in 2005 when corrected for the fuel consumption used for producing electricity for export. The consumption is 0,5 % higher than in 2004. Since 1975, the energy consumption has been on the same level with minor fluctuations which are mainly due to the climate. The energy balances is an account of production, import and export, and consumption of energy. The consumption is accounted as physical amounts as well as gross consumption. Also, accounts are presented of the costs of energy in basis prices and in market prices, including excises on energy, CO 2 , and SO 2 . (LN)
Macroscopic balance equations for two-phase flow models
International Nuclear Information System (INIS)
Hughes, E.D.
1979-01-01
The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)
BALANCER: A Computer Program for Balancing Chemical Equations.
Jones, R. David; Schwab, A. Paul
1989-01-01
Describes the theory and operation of a computer program which was written to balance chemical equations. Software consists of a compiled file of 46K for use under MS-DOS 2.0 or later on IBM PC or compatible computers. Additional specifications of courseware and availability information are included. (Author/RT)
Analytical solution of population balance equation involving ...
Indian Academy of Sciences (India)
This paper presents an effective analytical simulation to solve population balance equation (PBE), involving particulate aggregation and breakage, by making use ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various ...
Computer Applications in Balancing Chemical Equations.
Kumar, David D.
2001-01-01
Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)
DEFF Research Database (Denmark)
Dyre, Jeppe
1995-01-01
energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk modelthe energy master equation...... (EME)is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...
Appetite and energy balancing.
Rogers, Peter J; Brunstrom, Jeffrey M
2016-10-01
pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of emptiness of the gut and food liking related to the food's sensory qualities and macronutrient value and the individual's dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Plasma balance equations based on orbit theory
International Nuclear Information System (INIS)
Lehnert, B.
1982-01-01
A set of plasma balance equations is proposed which is based on orbit theory and the particle distribution function, to provide means for theoretical analysis of a number of finite Larmor radius (FLR) phenomena without use of the Vlasov equation. Several important FLR effects originate from the inhomogeneity of an electric field in the plasma. The exact solution of a simple case shows that this inhomogeneity introduces fundamental changes in the physics of the particle motion. Thus, the periodic Larmor motion (gyration) is shifted in frequency and becomes elliptically polarized. Further, the non-periodic guiding-centre drift obtains additional components, part of which are accelerated such as to make the drift orbits intersect the equipotential surfaces of a static electric field. An attempt is finally made to classify the FLR effects, also with the purpose of identifying phenomena which have so far not been investigated. (author)
Energy in Italian regions. Energy balance
International Nuclear Information System (INIS)
Catoni, P. G.; Perrella, G.
1998-01-01
This paper reports the syntheses of regional energy balance and the elaboration of the most important energy index from 1990 to 1996 at this scope a specific methodology. Pentec (territorial energy planning ecompatible) is pointed [it
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Kim, Chang-Bae; Horton, W.
1990-05-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Changbae Kim; Horton, W.
1991-01-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)
Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation
National Research Council Canada - National Science Library
Cui, Long
1997-01-01
This research project was focused on the development of a quantum mechanical balance equation based device simulator that can model advanced, compound, submicron devices, under all transport conditions...
Coupled force-balance and particle-occupation rate equations for high-field electron transport
International Nuclear Information System (INIS)
Lei, X. L.
2008-01-01
It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field
Insights: A New Method to Balance Chemical Equations.
Garcia, Arcesio
1987-01-01
Describes a method designed to balance oxidation-reduction chemical equations. Outlines a method which is based on changes in the oxidation number that can be applied to both molecular reactions and ionic reactions. Provides examples and delineates the steps to follow for each type of equation balancing. (TW)
International Nuclear Information System (INIS)
Anon.
2000-01-01
The energy balances of the Danish Statistical Office are the designation of the goods balances, which are tabulated for each energy article in both physical entities (quantities) and in base rates (values). The balance concept is connected to the definition supply = use, which is the basis for the construction of the system. The supply is determined as the sum of two items: import and production while the total use is the sum of 138 items: export, waste and transmission loss, stock increase, input in lack of the 130 industries, and private consumption divided into 5 consumption groups. The statistical analysis is performed yearly in both quantities and values for 35 energy articles. Values are computed for base rates, profits, taxes, VAT and market prices (buyer's price), respectively. The energy balances from 1975 to 1998 are presented for comparison. (EHS)
International Nuclear Information System (INIS)
Anon.
1999-01-01
The energy balances of the Danish Statistical Office are the designation of the goods balances, which are tabulated for each energy article in both physical entities (quantities) and in base rates (values). The balance concept is connected to the definition supply = use, which is the basis for the construction of the system. The supply is determined as the sum of two items: import and production while the total use is the sum of 138 items: export, waste and transmission loss, stock increase, input in lack of the 130 industries, and private consumption divided into 5 consumption groups. The statistical analysis is performed yearly in both quantities and values for 35 energy articles. Values are computed for base rates, profits, taxes, VAT and market prices (buyer's price), respectively. The energy balances from 1975 to 1998 are presented for comparison. (EHS)
National Energy Balance - 1980
International Nuclear Information System (INIS)
Anon.
1980-01-01
The energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, are presented. The forecasting of uranium concentrate consumption and production is made for six years - 1980 to 1985. (E.G.) [pt
International Nuclear Information System (INIS)
Anon.
1983-01-01
The energy fluxes of the several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, are presented. A historical series covering ten years - 1973 to 1982, and the information retrieval related to the year of 1970 are also presented. (EG) [pt
Balancing energy and the environment
International Nuclear Information System (INIS)
Anon.
1994-01-01
This paper summarizes the energy policy statement presented by the Queensland Minister for Minerals and Energy for the 'Great Energy Debate' in Brisbane. The Queensland Government is committed to achieving a responsible balance between protecting the environment and meeting community expectations. A broad and integrated framework is under development for guiding energy policies consistent with the market enhancement approach. Some of the recent initiatives and the expected outcome are highlighted
Balancing the Energy Pendulum.
MacKinnon, Sharon
1987-01-01
The city of Kitchener, Ontario, has installed a heat recovery loop in one indoor pool, all indoor swimming pools use pool covers, and two have solar heating. Energy is saved in two ice arenas by low-emissivity ceilings, and in the largest arena by a heat recovery system. (MLF)
Dairy Proteins and Energy Balance
DEFF Research Database (Denmark)
Bendtsen, Line Quist
High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....
Automatic computation and solution of generalized harmonic balance equations
Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.
2018-02-01
Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.
Balancing energy flexibilities through aggregation
DEFF Research Database (Denmark)
Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach
2014-01-01
One of the main goals of recent developments in the Smart Grid area is to increase the use of renewable energy sources. These sources are characterized by energy fluctuations that might lead to energy imbalances and congestions in the electricity grid. Exploiting inherent flexibilities, which exist...... in both energy production and consumption, is the key to solving these problems. Flexibilities can be expressed as flex-offers, which due to their high number need to be aggregated to reduce the complexity of energy scheduling. In this paper, we discuss balance aggregation techniques that already during...... aggregation aim at balancing flexibilities in production and consumption to reduce the probability of congestions and reduce the complexity of scheduling. We present results of our extensive experiments....
Energy landscape of social balance.
Marvel, Seth A; Strogatz, Steven H; Kleinberg, Jon M
2009-11-06
We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social "balance" allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.
Energy balance for a dissipative quantum system
International Nuclear Information System (INIS)
Kumar, Jishad
2014-01-01
The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)
Balancing Energy Processes in Turbine Engines
Directory of Open Access Journals (Sweden)
Balicki Włodzimierz
2015-01-01
Full Text Available The article discusses the issue of balancing energy processes in turbine engines in operation in aeronautic and marine propulsion systems with the aim to analyse and evaluate basic operating parameters. The first part presents the problem of enormous amounts of energy needed for driving fans and compressors of the largest contemporary turbofan engines commonly used in long-distance aviation. The amounts of the transmitted power and the effect of flow parameters and constructional properties of the engines on their performance and real efficiency are evaluated. The second part of the article, devoted to marine applications of turbine engines, presents the energy balance of the kinetic system of torque transmission from main engine turbines to screw propellers in the combined system of COGAG type. The physical model of energy conversion processes executed in this system is presented, along with the physical model of gasodynamic processes taking place in a separate driving turbine of a reversing engine. These models have made the basis for formulating balance equations, which then were used for analysing static and dynamic properties of the analysed type of propulsion, in particular in the aspect of mechanical loss evaluation in its kinematic system.
Maximum Entropy Closure of Balance Equations for Miniband Semiconductor Superlattices
Directory of Open Access Journals (Sweden)
Luis L. Bonilla
2016-07-01
Full Text Available Charge transport in nanosized electronic systems is described by semiclassical or quantum kinetic equations that are often costly to solve numerically and difficult to reduce systematically to macroscopic balance equations for densities, currents, temperatures and other moments of macroscopic variables. The maximum entropy principle can be used to close the system of equations for the moments but its accuracy or range of validity are not always clear. In this paper, we compare numerical solutions of balance equations for nonlinear electron transport in semiconductor superlattices. The equations have been obtained from Boltzmann–Poisson kinetic equations very far from equilibrium for strong fields, either by the maximum entropy principle or by a systematic Chapman–Enskog perturbation procedure. Both approaches produce the same current-voltage characteristic curve for uniform fields. When the superlattices are DC voltage biased in a region where there are stable time periodic solutions corresponding to recycling and motion of electric field pulses, the differences between the numerical solutions produced by numerically solving both types of balance equations are smaller than the expansion parameter used in the perturbation procedure. These results and possible new research venues are discussed.
Top 10 Research Questions Related to Energy Balance
Shook, Robin P.; Hand, Gregory A.; Blair, Steven N.
2014-01-01
Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy…
Balance equations for a viscous fluid from a Hamilton type variational principle
International Nuclear Information System (INIS)
Fierros Palacios, A.
1992-01-01
The partial differential field equations for any viscous fluid are obtained from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. With an appropriate Lagrangian density of the T-V type, the equation of motion for any viscous fluid is reproduced. A theorem referring to the invariance of the action under time variations lead to the generalized energy balance equation for the viscous fluid and to the energy balance equation proper. The same theoretical approach can be used to solve the problem of potential flow. (Author)
Energy balance of solid biofuels
International Nuclear Information System (INIS)
Scholz, V.; Berg, W.; Kaulfuss, P.
1998-01-01
The input and output of energy are two important factors used to determine the energetic and ecological usefulness of a fuel or its production technology. In this paper, a number of different methods for the production of five biofuels which can be produced in agriculture and forestry are analysed and energetic balances are presented. The results show that the energetic input is relatively low compared to the output, especially for by-products and residual substances such as cereal straw and forest pruning timber (thinning). Whenever fuel crops are cultivated, the energetic efficiency is critically determined by the quantity of nitrogen applied. Depending on the crop and technology, each gigajoule of energy input can provide 7-30 GJ or with by-products up to 50 GJ of thermally utilizable energy without any additional CO 2 pollution. (author)
Introduction to energy balance of biomass production
International Nuclear Information System (INIS)
Manzanares, P.
1997-01-01
During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs
National energy balance - 1992 - Based on 1991
International Nuclear Information System (INIS)
1992-01-01
This National Energy Balance covers since 1976 to 1991, showing the supply and demand for each type of energy; the energy consumption by each economic sector; the external market of energy; the resources and reserves and some information about state and regional energy balance. (C.G.C.)
Energy balance in TM-1-MH Tokamak (ohmical heating)
Stoeckel, J.; Koerbel, S.; Kryska, L.; Kopecky, V.; Dadalec, V.; Datlov, J.; Jakubka, K.; Magula, P.; Zacek, F.; Pereverzev, G. V.
1981-10-01
Plasma in the TM-1-MH Tokamak was experimentally studied in the parameter range: tor. mg. field B = 1,3 T, plasma current I sub p = 14 kA, electron density N sub E 3.10 to the 19th power cubic meters. The two numerical codes are available for the comparison with experimental data. TOKATA-code solves simplified energy balance equations for electron and ion components. TOKSAS-code solves the detailed energy balance of the ion component.
Brazilian energy balance 2008 - year 2007
International Nuclear Information System (INIS)
2008-01-01
The Brazilian energy balance - BEB - is divided into eight chapters and eleven annexes, whose contents are as follow: chapter 1 - energy analysis and aggregated data; chapter 2 - energy supply and demand by source; chapter 3 - energy consumption by sector; chapter 4 - energy imports and exports; chapter 5 - balance of transformation centers; chapter 6 - energy resources and reserves; chapter 7 - energy and socioeconomics; chapter 8 - state energy data; annex I - installed capacity; annex II - self-generation of electricity; annex III - world energy data; annex IV - world energy evolution; annex V - useful energy balance; annex VI - general structure of the BEN; annex VII - treatment of information; annex VIII - units; annex IX - conversion factors; annex X - consolidated energy balances 1970/2007; annex XI - energy balance 2007. (author)
International Nuclear Information System (INIS)
Belliard, M.; Grandotto, M.
2003-01-01
In the framework of the two-phase fluid simulations of the steam generators of pressurized water nuclear reactors, we present in this paper a geometric version of a pseudo-Full MultiGrid (pseudo- FMG) Full Approximation Storage (FAS) preconditioning of balance equations in the GENEPI code. In our application, the 3D steady state flow is reached by a transient computation using a semi-implicit fractional step algorithm for the averaged two-phase mixture balance equations (mass, momentum and energy for the secondary flow). Our application, running on workstation clusters, is based on a CEA code-linker and the PVM package. The difficulties to apply the geometric FAS multigrid method to the momentum and mass balance equations are addressed. The use of a sequential pseudo-FMG FAS twogrid method for both energy and mass/momentum balance equations, using dynamic multigrid cycles, leads to perceptibly improvements in the computation convergences. An original parallel red-black pseudo-FMG FAS three-grid algorithm is presented too. The numerical tests (steam generator mockup simulations) underline the sizable increase in speed of convergence of the computations, essentially for the ones involving a large number of freedom degrees (about 100 thousand cells). The two-phase mixture balance equation residuals are quickly reduced: the reached speed-up stands between 2 and 3 following the number of grids. The effects on the convergence behavior of the numerical parameters are investigated
France's energy balance for 2012
International Nuclear Information System (INIS)
Louati, Sami; Ouradou, Frederic; Rouquette, Celine; Cadin, Didier; Korman, Bernard; Lauverjat, Jean; Martin, Jean-Philippe; Rabai, Yacine; Reynaud, Didier; Thienard, Helene; Wong, Florine; Albertini, Jean-Paul; Bottin, Anne; Reperant, Patricia; Grosset, Catherine
2013-07-01
in the 13 of July act of Parliament outlining energy programming and policy, which aims for a 2% reduction per year in final energy intensity by 2015. The slighter drop in energy intensity is no doubt the result of the economic stagnation in 2012: in crisis periods industry does not run at full capacity, with adverse consequences for efficiency. According to SOeS' partial and provisional calculations, CO 2 emissions from combustion for energy production, after correction for climate variations, decreased by 3.1%. They have shown a clear fall over 5 years, with an average decrease of 2.2% per year since 2007. In 2012, emission levels were 8.8% lower than those of 1990. They remained stable in 2012 in real data terms. In addition to these data for the energy balance calculated in accordance with international norms, the European directive on renewable energy requires indicators specific to it, and with different calculation methods and scope. According to those indicators, in 2012 France fell slightly short of the final consumption target set by the national renewable energy action plan required by the directive. For 2012, it was 22.9 Mtoe of renewable energy, in comparison with 22.0 Mtoe actually achieved. Over the 2005-2012 period, final consumption of renewable energy grew by 6.2 Mtoe, instead of the expected 7.1 Mtoe. The shortfall observed relates to both the electrical and thermal components: it was 3 points for renewable electricity, as a result of the wind power sector where the target shortfall was 21 points. It was 4 points for thermal renewable energies, as the winter of 2012, more severe than that of 2011, mobilised more fuel-wood and heat pumps. For biofuels, consumption of bio-diesel is very close to the patterns indicated, unlike bio-ethanol where the difference is far greater
Brazilian energy balance 1999: calendar year 1998
International Nuclear Information System (INIS)
1999-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1998. It is divided into nine sections: a summary from 1983 to 1998; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances
Brazilian energy balance 1995: calendar year 1994
International Nuclear Information System (INIS)
1995-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1998. It is divided into nine sections: a summary from 1979 to 1994; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances
Brazilian energy balance 1997: calendar year 1996
International Nuclear Information System (INIS)
1997-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1998. It is divided into nine sections: a summary from 1981 to 1996; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances
Brazilian energy balance 2000: calendar year 1999
International Nuclear Information System (INIS)
2000-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 1999. It is divided into nine sections: a summary from 1984 to 1999; energy supply and demand by source; energy consumption by sector; energy foreign trading; transformation centers balances; energy resources and reserves; energy and socio-economy; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances
Brazilian energy balance 1996: calendar year 1995
International Nuclear Information System (INIS)
1996-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances
Brazilian energy balance 1998: calendar year 1997
International Nuclear Information System (INIS)
1998-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances
Energy balance in turbulent weakly ionized ionospheric plasma
International Nuclear Information System (INIS)
Dyatko, N.A.; Mishin, E.V.; Telegin, V.A.
1994-01-01
On the base of numerical solution of the Boltzmann equation are determined the electron distribution function and energy balance in the case if the longitudinal current exceeds the critical one and the resistance becames anomalously high one. In the equation are accounted for both electron scattering by plasma density fluctuations and electron elastic and inelastic collisions with atoms and molecules and electron-electron collisions
Brazilian energy balance 2002: calendar year 2001
International Nuclear Information System (INIS)
2002-12-01
The Brazilian Energy Balance 2002, based on 2001 data, contains the information related to the supply and consumption of the primary and secondary energy sources, provided by data and information of responsible sectors. This version presents important differences in relation to the previous editions, new technical concepts were introduced for the treatment of calorific powers of energy sources in the composition and consolidation of data, and also in the structure of its contents. The Balance 2002 was structured in the same way of the last edition, divided in 8 chapters, as follows: summary of the relevant indicators of 2001 and consolidated data of production, consumption and external dependence on energy, and also the sectorial composition of the consumption of the different groups of energy sources - period 1970/2001; energy supply and demand by source - 1986/2001; energy consumption by sector - 1986/2001; energy foreign trading - 1986/2001; transformation centers balances - 1986/2001; energy resources and reserves - 1973/2001; energy and socio-economy - 1986/2001; regional parameters and appendices including: installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances - 1970/2001,in the 'kcal' unit, calculated in PCI- Inferior Calorific Power. This new model has the intention to approximate the Brazilian Energy Balance to the international methodologies, mainly to the OECD balances
Energy balance in the transformation centers
International Nuclear Information System (INIS)
Alvim, Carlos Feu; Ferreira, Omar Campos; Eidelman, Frida.
2005-01-01
Carbon balance is an important instrument to identify the emission sources of greenhouse effect gases. Since energy use and transformation are fundamental for increasing these gases in the atmosphere, the carbon balance survey can be used to identify sectors and fuels to which priority should be given regarding emissions mitigation. In the case of transformation centers (installations where primary or secondary sources are converted into sub-products or other energy form) the balance indicated some problems regarding the Brazilian inventory calculation. Problems concerning the National Energy Balance data used here were also identified. (author)
Balancing energy strategies in electricity portfolio management
International Nuclear Information System (INIS)
Moeller, Christoph; Rachev, Svetlozar T.; Fabozzi, Frank J.
2011-01-01
Traditional management of electricity portfolios is focused on the day-ahead market and futures of longer maturity. Within limits, market participants can however also resort to the balancing energy market to close their positions. In this paper, we determine strategic positions in the balancing energy market and identify corresponding economic incentives in an analysis of the German balancing energy demand. We find that those strategies allow an economically optimal starting point for real-time balancing and create a marketplace for flexible capacity that is more open than alternative marketplaces. The strategies we proffer in this paper we believe will contribute to an effective functioning of the electricity market. (author)
1998 energy balance sheet of France
International Nuclear Information System (INIS)
Anon.
1999-01-01
This paper summarizes the results of the energy balance sheet of France for the year 1998 according to the data published by the energy observatory from the general direction of energy and raw materials (DGEMP) and according to the press communication given by C. Pierret, French state secretary of the industry. The following points are commented: the energy balance sheet (national production and energy independence, the energy shares in the consumption), the decay of the energy bill, and the details of the bill by energy type. (J.S.)
10. State energy balance - 1978-1991
International Nuclear Information System (INIS)
1993-12-01
The energetic matrix of Minas Gerais State (Brazil) for the year 1991 and historic review of 1978 to 1990 are shown in this 10. State Energy Balance. The global balance and the state structure of energy demand, by energy source and socio-economic sector are presented, and the relations between energy system and the Minas Gerais economic performance are analysed. The consumption evolution by sector is also cited. (C.G.C.)
Energy balances (1970 to 1990)
International Nuclear Information System (INIS)
1992-01-01
Annual statistical data on french energy economy are presented for 1990. Consumption evolution of the principal users (industry, residential, transport and agriculture) during the last 21 years is made energy by energy (coal, petroleum, gas, electricity and renewable energy)
Brazilian energy balance 2006: calendar year 2005
International Nuclear Information System (INIS)
2006-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 2006. It is divided into nine chapters: energy analysis and aggregated data; energy supply and consumption by source 1990/2005; energy consumption by sector 1990/2005; energy import and export 1990/2005; transformation center balances 1990/2005; Brazilian energy resources and reserves 1974/2005; energy and socio-economic 1990/2005; federal states data and appendices including installed capacity; world energy data; general structure of the Brazilian Energy Balance; treatment of information; conversion units and consolidated Energy Balance 1970-2005
Brazilian energy balance 2004: calendar year 2003
International Nuclear Information System (INIS)
2004-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in all the sectors of the Brazilian economy, for the calendar year 2003. It is divided into nine sections: a summary from 1970 to 2003; energy supply and demand by source, from 1988 to 2003; energy consumption by sector from 1988 to 2003; energy foreign trading also from 1988 to 2003; transformation centers balances in the same period; energy resources and reserves from 1973 to 2003; energy and socio-economy from 1988 to 2003; regional parameters, and appendices including installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances. It also presents analytical texts on the main energy numbers for 2003 and also energy evolution in Brazil and energy expansion all over the world
1998 energy balances and electricity profiles
International Nuclear Information System (INIS)
2001-01-01
This is the tenth issue of Energy Balances and Electricity Profiles published by the Statistics Division of the United Nations Secretariat. Like previous issues, this volume presents energy data for selected countries in a format which shows the overall picture of energy production, conversion and consumption for fuels utilised in the country. Such a publication is useful in assessing and analysing production and consumption patterns in detail on an internationally comparable basis. Since it began publishing energy balances, the Statistics Division has adopted the matrix type of overall energy balance that shows energy sources in the columns and energy flows in the rows. The format is described in detail in the technical report entitled Concepts and Methods in Energy Statistics, with Special Reference to Energy Accounts and Balances and is also discussed in the publication, Energy Statistics: A Manual for Developing Countries. The level of detail of this matrix structure takes into account the need for disaggregation of the energy sector and final demand, while at the same time, owing to the limitations in the quantity and quality of the currently available energy information, coverage has to be restricted to the main sectors only. Furthermore, it should be recognized that unlike national energy balances designed for individual countries' various specific needs, the energy balance format of the Statistics Division has to accommodate the whole spectrum of national energy data which it receives from national statistical offices and through official national publications. Inasmuch as information on electricity is generally available in greater detail than that for other energy forms, the Statistics Division decided to present special electricity profiles for an additional group of countries and areas, thereby covering at least part of their energy conversion and consumption activities. World energy data is published by the Statistics Division in the Energy Statistics
2000 energy balances and electricity profiles
International Nuclear Information System (INIS)
2004-01-01
This is the eleventh issue of Energy Balances and Electricity Profiles published by the Statistics Division of the United Nations Secretariat. Like previous issues, this volume presents energy data for selected countries in a format which shows the overall picture of energy production, conversion and consumption for fuels utilised in the country. Such a publication is useful in assessing and analysing production and consumption patterns in detail on an internationally comparable basis. Since it began publishing energy balances, the Statistics Division has adopted the matrix type of overall energy balance that shows energy sources in the columns and energy flows in the rows. The format is described in detail in the technical report entitled Concepts and Methods in Energy Statistics, with Special Reference to Energy Accounts and Balances and is also discussed in the publication, Energy Statistics: A Manual for Developing Countries. The level of detail of this matrix structure takes into account the need for disaggregation of the energy sector and final demand, while at the same time, owing to the limitations in the quantity and quality of the currently available energy information, coverage has to be restricted to the main sectors only. Furthermore, it should be recognized that unlike national energy balances designed for individual countries' various specific needs, the energy balance format of the Statistics Division has to accommodate the whole spectrum of national energy data which it receives from national statistical offices and through official national publications. Inasmuch as information on electricity is generally available in greater detail than that for other energy forms, the Statistics Division decided to present special electricity profiles for an additional group of countries and areas, thereby covering at least part of their energy conversion and consumption activities. World energy data is published by the Statistics Division in the Energy
2002 energy balances and electricity profiles
International Nuclear Information System (INIS)
2005-01-01
This is the twelfth issue of Energy Balances and Electricity Profiles published by the Statistics Division of the United Nations Secretariat. Like previous issues, this volume presents energy data for selected countries in a format which shows the overall picture of energy production, conversion and consumption for fuels utilised in the country. Such a publication is useful in assessing and analysing production and consumption patterns in detail on an internationally comparable basis. Since it began publishing energy balances, the Statistics Division has adopted the matrix type of overall energy balance that shows energy sources in the columns and energy flows in the rows. The format is described in detail in the technical report entitled Concepts and Methods in Energy Statistics, with Special Reference to Energy Accounts and Balances and is also discussed in the publication, Energy Statistics: A Manual for Developing Countries. The level of detail of this matrix structure takes into account the need for disaggregation of the energy sector and final demand, while at the same time, owing to the limitations in the quantity and quality of the currently available energy information, coverage has to be restricted to the main sectors only. Furthermore, it should be recognized that unlike national energy balances designed for individual countries' various specific needs, the energy balance format of the Statistics Division has to accommodate the whole spectrum of national energy data which it receives from national statistical offices and through official national publications. Inasmuch as information on electricity is generally available in greater detail than that for other energy forms, the Statistics Division decided to present special electricity profiles for an additional group of countries and areas, thereby covering at least part of their energy conversion and consumption activities. World energy data is published by the Statistics Division in the Energy
Brazilian energy balance 2010 - year 2009
International Nuclear Information System (INIS)
2010-01-01
The Brazilian energy balance - BEB - is divided into eight chapters and ten annexes, whose contents are as follow: chapter 1 - energy analysis and aggregated data - presents energy highlights per source in 2009 and analyses the evolution of the internal offer of energy and its relationship with economic growth in 2009; chapter 2 - energy supply and demand by source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; chapter 3 - energy consumption by sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy; chapter 4 - energy imports and exports - presents the evolution of the data on the import and export of energy and the dependence on external energy; chapter 5 - balance of transformation centers - presents the energy balances for the energy transformation centers including their losses; chapter 6 - energy resources and reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources, with the evolution of the data from 1974 to 2009, through graphs and tables; chapter 7 - energy and socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8 - state energy data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. (author)
Brazilian energy balance 2009 - year 2008
International Nuclear Information System (INIS)
2009-01-01
The Brazilian energy balance - BEB - is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2008 and analyses the evolution of the internal offer of energy and its relationship with economic growth in 2008; Chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses; Chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources, with the evolution of the data from 1974 to 2008, through graphs and tables; Chapter 7 - Energy and Socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. (author)
China's Energy Equation: A Strategic Opportunity
National Research Council Canada - National Science Library
Burke, James
2001-01-01
.... Continued economic growth, which is the key to China's future, is constrained by a skewed energy equation in which domestic and foreign energy supplies are far removed from China's burgeoning population...
Dynamic Response of Inextensible Beams by Improved Energy Balance Method
DEFF Research Database (Denmark)
Sfahani, M. G.; Barari, Amin; Omidvar, M.
2011-01-01
An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam...... with a rotationally flexible root and carrying a lumped mass at an intermediate position along its span. Based on the simple EBM, the variational integral of the non-linear conservative system is established, and the Fourier series expansion is employed to address the governing algebraic equations. An alternate...
Stochastic solution of population balance equations for reactor networks
International Nuclear Information System (INIS)
Menz, William J.; Akroyd, Jethro; Kraft, Markus
2014-01-01
This work presents a sequential modular approach to solve a generic network of reactors with a population balance model using a stochastic numerical method. Full-coupling to the gas-phase is achieved through operator-splitting. The convergence of the stochastic particle algorithm in test networks is evaluated as a function of network size, recycle fraction and numerical parameters. These test cases are used to identify methods through which systematic and statistical error may be reduced, including by use of stochastic weighted algorithms. The optimal algorithm was subsequently used to solve a one-dimensional example of silicon nanoparticle synthesis using a multivariate particle model. This example demonstrated the power of stochastic methods in resolving particle structure by investigating the transient and spatial evolution of primary polydispersity, degree of sintering and TEM-style images. Highlights: •An algorithm is presented to solve reactor networks with a population balance model. •A stochastic method is used to solve the population balance equations. •The convergence and efficiency of the reported algorithms are evaluated. •The algorithm is applied to simulate silicon nanoparticle synthesis in a 1D reactor. •Particle structure is reported as a function of reactor length and time
The energy balance within a bubble column evaporator
Fan, Chao; Shahid, Muhammad; Pashley, Richard M.
2018-05-01
Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air
Brazilian Energy Balance 2016 - calendar year 2015
International Nuclear Information System (INIS)
2016-01-01
The BEB is divided into eight chapters and ten annexes, whose contents are as follow. Chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2015 and analyses the evolution of the domestic energy supply and its relationship with economic growth. Chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments and total consumption disaggregated per socioeconomic sector in the country. Chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy. Chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy. Chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses. Chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources. Chapter 7 - Energy and Socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports. Chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. Relating to annexes the current structure is presented bellow: Annex I - Installed Capacity - shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining. Annex II - Self-production of Electricity - presents disaggregated data of self-production, considering sources and sectors. Annex III - World Energy Data - presents the main indicators for the production, import, export and consumption per energy source
Energy balance at the soil atmosphere interface
Sedighi, M; Hepburn, B.D.P.; Thomas, HR; Vardon, P.J.
2016-01-01
Soil atmospheric interactions play an important role within the thermal energy balance and seasonal temperature variations of the ground. This paper presents a formulation for the surface boundary conditions related to interactions between soil and atmosphere. The boundary condition formulated
France's energy balance in 2011
International Nuclear Information System (INIS)
Rouquette, Celine; Moreau, Sylvain; Bottin, Anne; Reperant, Patricia; Grosset, Catherine
2012-07-01
2011 was marked by the continued increase in energy prices, raising the country's energy bill and weighing on the activity of businesses and on household budgets. The effect on households was, however, mitigated by the exceptionally mild weather conditions in 2011, which reduced needs for heating. Corrected for climate variations, primary energy consumption increased slightly, its level remaining below pre-crisis ones. Final energy consumption was stable, resulting from contrasting changes: decrease in industry, construction and agriculture, in spite of higher output, and increase in the service, residential and transport sectors. National primary energy production increased in 2011, reaching a new record close to 139 Mtoe. It benefited from high levels of nuclear and wind generated electricity. Conversely, energy production from several key renewable sources - hydro, fuelwood and biofuels - saw a downward trend. (authors)
A performance measurement using balanced scorecard and structural equation modeling
Directory of Open Access Journals (Sweden)
Rosha Makvandi
2014-02-01
Full Text Available During the past few years, balanced scorecard (BSC has been widely used as a promising method for performance measurement. BSC studies organizations in terms of four perspectives including customer, internal processes, learning and growth and financial figures. This paper presents a hybrid of BSC and structural equation modeling (SEM to measure the performance of an Iranian university in province of Alborz, Iran. The proposed study of this paper uses this conceptual method, designs a questionnaire and distributes it among some university students and professors. Using SEM technique, the survey analyzes the data and the results indicate that the university did poorly in terms of all four perspectives. The survey extracts necessary target improvement by presenting necessary attributes for performance improvement.
Energy Landscape of Social Balance
Marvel, Seth A.; Strogatz, Steven H.; Kleinberg, Jon M.
2009-11-01
We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social “balance” allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.
France's energy balance for 2013
International Nuclear Information System (INIS)
Albertini, Jean-Paul; Dussud, Francois-Xavier; Louati, Sami; Mordant, Guillaume; Rouquette, Celine; Cadin, Didier; Collet, Isabelle; Fratacci, Lisa; Lauverjat, Jean; Martin, Jean-Philippe; Rabai, Yacine; Reynaud, Didier; Wong, Florine; Bottin, Anne; Reperant, Patricia; Grosset, Catherine
2014-07-01
As in 2012, activity in France increased slightly (+0.3%), thanks to an upturn in the second half. Fossil energy prices on the international markets took a downward turn in 2013 under the influence of the morose world economic climate, dropping sharply for oil and coal and rising, but at a slowed rate, for gas. Quoted prices nonetheless remained high: the Brent price remained well above US$100/barrel and steam coal above US$ 80/ton. Conversely, the price of natural gas took an upward path three years ago in continental Europe. Electricity prices dropped on the European markets, notably as a result of strong production of renewable energy in Germany and Spain. Energy prices in France continued to increase but at a slowed rate and more slowly than the prices for goods and services as a whole for the first time in 10 years. Prices for oil products saw a downturn, something which had not happened since 2009 but gas and electricity prices rose sharply. French households' average gasoline and diesel oil expenditure was euro 60 less in 2013 than in 2012, due almost entirely to the price drop. Spending on energy for household use increased by euro 100 under the combined effect of price increase and greater heating needs. French people's expenditure for energy represented 6.2% of their effective consumption. 2013 was characterised by a colder first half which induced an additional need for heating of 3.1 Mtoe in 2013 in relation to the previous year. The physical foreign trade gap, structurally biased towards imports, accordingly widened slightly in 2013 to 124 Mtoe, as a result of the refined oil products, and additional purchasing of coal made necessary by greater use of thermal power plants. The effect of decreasing international energy prices outweighed the physical flows: France's energy bill reduced by 4.6% in relation to the record 2012, reaching euro 66 billion. The oil bill was therefore significantly reduced as a result of the dual decrease in volume and price
Energy Balance in an Electrostatic Accelerator
Zolotorev, Max S.; McDonald, Kirk T.
2000-01-01
The principle of an electrostatic accelerator is that when a charge e escapes from a conducting plane that supports a uniform electric field of strength E_0, then the charge gains energy e E_0 d as it moves distance d from the plane. Where does this energy come from? We that the mechanical energy gain of the electron is balanced by the decrease in the electrostatic field energy of the system.
Energy balance in a coaxial plasma diode
International Nuclear Information System (INIS)
Ivanov, A.A. Jr.
1999-01-01
The energy fluxes in a coaxial system with a propagating convective magnetic-field wave are considered in an electron MHD model with inertia-free electrons. In contrast to the previous results obtained by other authors, it is shown that, with allowance for a finite electron pressure after the passage of the wave front, the energy flux at the boundary between the generator and coaxial system is continuous. The balance of energy fluxes in the system is studied. The angular anode point is shown to play an important role in this balance
Energy balance in the ohmically heated FT
International Nuclear Information System (INIS)
Bartiromo, R.; Brusati, M.; Cilloco, F.
1981-01-01
A typical discharge in the FT Tokamak at 60 kG has been studied in detail in order to derive the power balance between the ohmic input and the plasma losses. Impurity and radiation losses together with ion and electron energy balance are discussed. A power transport term for electrons is derived which is ascribed to anomalous thermal conduction. This resulting thermal transport is compared with those derived from different proposed scalings
Annual Energy Balance Sheets 2001-2002
International Nuclear Information System (INIS)
2004-01-01
During the year 2002 the primary supply of energy reached 629 TWh, which is 7.7 TWh less than 2001. The decrease originates mainly from the reduced electricity production from water power. Also the electricity production in nuclear power plants decreased by 4.5 TWh. If we were to look at the supplied energy for final consumption we will find a slightly rise by 1.8 TWh. The year 2002 was warmer than a 'normal' year and that consequently brings lower energy needs. Compared with 2001, 2002 was not warmer and a net electricity import of 5.4 TWh covered the energy needs. The energy use increased by 3.3 TWh between 2002 and 2001. The industry sector shows the largest rise by 2.9 TWh, nearly 2 per cent. Within that sector, energy from biomass fuel had a rise by 6.7 per cent. The household sector decreases its energy use by 2.7 per cent, and oil and electricity show the largest decrease. The proportionately high electricity price probably had a slowing down effect on the electricity use. The balance sheets of energy sources are showing the total supply and consumption of energy sources expressed in original units, i.e. units recorded in the primary statistics - mainly commercial units. The production of derived energy commodities is recorded on the supply - side of the balance sheets of energy sources, which is not the case in the energy balance sheets. The balance sheets of energy sources also include specifications of input--output and energy consumption in energy conversion industries. The energy balance sheets are based on primary data recorded in the balance sheets of energy sources, here expressed in a common energy unit, TJ. The production of derived energy is recorded in a second flow-step comprising energy turnover in energy conversion and is also specified in complementary input - output tables for energy conversion industries. The following items are shown in the energy balance sheets. 1.1 Inland supply of primary energy; 1.3 Import; 1.4 Export; 1.5 Changes in
An investigation of energy balances in palladium cathode electrolysis experiments
Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.
1990-09-01
A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.
1994 energy balances and electricity profiles
International Nuclear Information System (INIS)
1996-01-01
This is the eighth issue of Energy Balances and Electricity Profiles published by the Statistics Division of the United Nations Secretariat. Like previous issues, this volume presents energy data for selected countries and areas in a format which shows the overall picture of energy production, conversion and consumption for each fuel utilized in the country. Such a publication is useful in assessing and analyzing production and consumption patterns in detail on an internationally comparable basis
1992 energy balances and electricity profiles
International Nuclear Information System (INIS)
1994-01-01
This is the seventh issue of Energy Balances and Electricity Profiles published by the Statistical Division of the United Nations Secretariat. Like previous issues, this volume presents energy data for selected developing countries and areas in a format which shows the overall picture of energy production, conversion and consumption for each fuel utilised in the country. Such a publication is useful in assessing and analyzing production and consumption patterns in detail on an internationally comparable basis
Offshore wind energy : balancing risk and reward
International Nuclear Information System (INIS)
Nerland, C.
2010-01-01
Offshore wind energy developments are expected to increase as the demand for renewable energy sources grows. This poster presentation described a method of balancing risk and reward in offshore wind energy projects. The method was based on risk assessment strategies used by the oil and gas industry. The dedicated framework considered schedules; budgets; performance; and operating and maintenance costs. A value chain assessment method was used to optimize the balance between risk and reward by evaluating uncertainties and risk related to each project element and its relationship to other elements within an integrated dynamic model designed to determine the net present value of a project. The decision-making criteria included the RISKEX risk expenditure strategy designed to consider the balance between risk exposure, capital expenditures, and operational expenditures in relation to the statistical cost of unplanned repairs, and lost production capacity. A case study of a large offshore wind farm was used to demonstrate the method. tabs., figs.
1970-1997 energy balance-sheets
International Nuclear Information System (INIS)
1998-01-01
The aim of this document is to bring together a consistent and harmonized set of statistical data on energy economics in the French territory. The information is based on the global and structural approach of the different energy balance-sheets published between 1970 and 1997. The first chapter gives a general idea of the energy situation of the passed year and outlines the evolution of the main aggregates (production, primary and final consumption etc..) comparatively to those of the general economy. The second chapter is devoted to the history of energy economics. Time series of indicators and diagrams allow to precise the structural modifications that occurred during the last decades. The main transformations in the national energy production and the development of the different energy sources in the industry, the residential and tertiary sectors and in the transportation sector are described too. The third chapter gives numerical data on energy for the last 28 years using the common Mtpe unit (million of tons of petroleum equivalent). These balance sheets are based on new energy keeping methods and use identical equivalence coefficients. The last chapter presents the energy balance sheets for the last three years, using the proper units for coal, petroleum, gas and electricity. (J.S.)
Stochastic weighted particle methods for population balance equations
International Nuclear Information System (INIS)
Patterson, Robert I.A.; Wagner, Wolfgang; Kraft, Markus
2011-01-01
Highlights: → Weight transfer functions for Monte Carlo simulation of coagulation. → Efficient support for single-particle growth processes. → Comparisons to analytic solutions and soot formation problems. → Better numerical accuracy for less common particles. - Abstract: A class of coagulation weight transfer functions is constructed, each member of which leads to a stochastic particle algorithm for the numerical treatment of population balance equations. These algorithms are based on systems of weighted computational particles and the weight transfer functions are constructed such that the number of computational particles does not change during coagulation events. The algorithms also facilitate the simulation of physical processes that change single particles, such as growth, or other surface reactions. Four members of the algorithm family have been numerically validated by comparison to analytic solutions to simple problems. Numerical experiments have been performed for complex laminar premixed flame systems in which members of the class of stochastic weighted particle methods were compared to each other and to a direct simulation algorithm. Two of the weighted algorithms have been shown to offer performance advantages over the direct simulation algorithm in situations where interest is focused on the larger particles in a system. The extent of this advantage depends on the particular system and on the quantities of interest.
Stochastic energy balancing in substation energy management
Directory of Open Access Journals (Sweden)
Hassan Shirzeh
2015-12-01
Full Text Available In the current research, a smart grid is considered as a network of distributed interacting nodes represented by renewable energy sources, storage and loads. The source nodes become active or inactive in a stochastic manner due to the intermittent nature of natural resources such as wind and solar irradiance. Prediction and stochastic modelling of electrical energy flow is a critical task in such a network in order to achieve load levelling and/or peak shaving in order to minimise the fluctuation between off-peak and peak energy demand. An effective approach is proposed to model and administer the behaviour of source nodes in this grid through a scheduling strategy control algorithm using the historical data collected from the system. The stochastic model predicts future power consumption/injection to determine the power required for storage components. The stochastic models developed based on the Box-Jenkins method predict the most efficient state of the electrical energy flow between a distribution network and nodes and minimises the peak demand and off-peak consumption of acquiring electrical energy from the main grid. The performance of the models is validated against the autoregressive moving average (ARIMA and the Markov chain models used in previous work. The results demonstrate that the proposed method outperforms both the ARIMA and the Markov chain model in terms of forecast accuracy. Results are presented, the strengths and limitations of the approach are discussed, and possible future work is described.
An energy balance concept for habitability.
Hoehler, Tori M
2007-12-01
Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.
Energy balance in processes of transition radiation
International Nuclear Information System (INIS)
Vladimirov, S.V.; Tsytovich, V.N.
1985-01-01
The authors consider the transition radiation arising when a charged particle crosses an interface between two nonabsorbing media. It is shown that energy balance is observed under these circumstances. The fulfillment of energy balance in transition radiation for nonabsorbing media is rigorously demonstrated. This allows one to find the energy of the transition radiation from the change in the energy of the intrinsic field of the charge and the work of forces for volume waves, which in a number of cases of complicated configurations may prove to be considerably simpler than a direct calculation of the radiation power. For surface waves, a calculation of the work of forces enables one to determine the radiation power directly
Derivation of integral energy balance for the manotea facility
Energy Technology Data Exchange (ETDEWEB)
Pollman, Anthony, E-mail: pollman@nps.edu [Mechanical and Aeronautical Engineering Department, United States Naval Postgraduate School, Monterey, CA 93943 (United States); Marzo, Marino di [Fire Protection Engineering Department, University of Maryland, College Park, MD 20742 (United States)
2013-12-15
Highlights: • An integral energy balance was derived for the MANOTEA facility. • A second equation was derived which frames transients in terms of inventory alone. • Both equations were implemented and showed good agreement with experimental data. • The equations capture the physical mechanisms behind MANOTEA transients. • Physical understanding is required in order to properly model these transients with TRACE. - Abstract: Rapid-condensation-induced fluid motion occurs in several nuclear reactor accident sequences, as well as during normal operation. Modeling these events is central to our ability to regulate and ensure safe reactor operations. The UMD-USNA Near One-dimensional Transient Experimental Apparatus (MANOTEA) was constructed in order to create a rapid-condensation dataset for subsequent comparison to TRACE output. This paper outlines a derivation of the energy balance for the facility. A path integral based on mass and energy, rather than fluid mechanical, considerations is derived in order to characterize the physical mechanisms governing MANOTEA transients. This equation is further simplified to obtain an expression that frames transients in term of liquid inventory alone. Using data obtained from an actual transient, the path integral is implemented using three variables (change in liquid inventory, liquid inventory as a function of time, and change in metal temperature) to predict the outcome of a fourth independently measured variable (condenser pressure as a function of time). The implementation yields a very good approximation of the actual data. The inventory equation is also implemented and shows reasonable agreement. These equations, and the physical intuition that they yield, are key to properly characterizing MANOTEA transients and any subsequent modeling efforts.
International Nuclear Information System (INIS)
MacFarlane, R.E.
1994-01-01
ENDF/B-VI through Release 2 has been tested for neutron-photon energy balance using the Heater module of the NJOY nuclear data procesing system. The situation is much improved over ENDF/B-V, but there are still a number of maerials that show problems
Kisspeptin and energy balance in reproduction.
De Bond, Julie-Ann P; Smith, Jeremy T
2014-03-01
Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.
Balancing the Energy-Water Nexus
Energy Technology Data Exchange (ETDEWEB)
Dell, Jan
2010-09-15
Optimizing the complex tradeoffs in the Energy-Water Nexus requires quantification of energy use, carbon emitted and water consumed. Water is consumed in energy production and is often a constraint to operations. More global attention and investment has been made on reducing carbon emissions than on water management. Review of public reporting by the largest 107 global power producers and 50 companies in the oil/gas industry shows broad accounting on carbon emissions but only partial reporting on water consumption metrics. If the Energy-Water Nexus is to be balanced, then water must also be measured to be optimally managed with carbon emissions.
2004 energy balances and electricity profiles
International Nuclear Information System (INIS)
2007-02-01
The Energy Balances and Electricity Profiles 2004 is the thirteenth issue in an internationally series of comparable energy data for selected developing countries. The data are arranged to show energy production, trade, conversion and consumption for each fuel used in the country. This publication is a source of overall consumption statistics of energy commodities in all sectors. Special electricity profiles for an additional group of countries are published to cover, exclusively, detailed information on production, trade and consumption of electricity, net installed capacity and thermal power plant input for selected developing countries
Nexus of Poverty, Energy Balance and Health
Mishra, C. P.
2012-01-01
Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification
Nexus of poverty, energy balance and health
Directory of Open Access Journals (Sweden)
C P Mishra
2012-01-01
Full Text Available Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years, 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%, having main occupation of family as business (55.3%, and highest per capita income group (57.1% with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0% in SC/ST category and least (65.7% in upper caste group. In case of geriatric group, higher adjusted Odd′s Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56, not kept money (AOR 5.27, CI 1.58-17.56, belonging to lower and upper middle SES by Udai Pareekh
Balancing Chemical Equations: The Role of Developmental Level and Mental Capacity.
Niaz, Mansoor; Lawson, Anton E.
1985-01-01
Tested two hypotheses: (1) formal reasoning is required to balance simple one-step equations; and (2) formal reasoning plus sufficient mental capacity are required to balance many-step equations. Independent variables included intellectual development, mental capacity, and degree of field dependence/independence. With 25 subjects, significance was…
Annual Energy Balance Sheets 2003-2004
International Nuclear Information System (INIS)
2005-01-01
During the year 2004 the supply of primary energy reached 657.6 TWh. That is an increased supply by 16 TWh compared with 2003, The electricity production in hydropower and wind power stations increased by 7 TWh, to 61 TWh during the year 2004. The electricity generated in nuclear power plants was 77.5 TWh, an increase by 10 TWh. During the year 2004 Sweden net exported 2.1 TWh electricity. But in year 2003 we net imported 12.8 TWh electricity. The energy use increased from 406 TWh to 409 TWh between year 2003 and year 2004. The use of coal and coke in manufacturing increased by 22 per cent, and the use of oil products in transport sector increased by 4 per cent. The energy balance sheets are based on data primary recorded in the balance sheets of energy sources, here expressed in a common energy unit, TJ. The production of derived energy is here recorded in a second flow-step comprising energy turnover in energy conversion and is also specified in complementary input-output tables for energy conversion industries
Solar energy resources not accounted in Brazilian National Energy Balance
Energy Technology Data Exchange (ETDEWEB)
Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br
2009-07-01
The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)
Neuropeptides controlling energy balance: orexins and neuromedins
Nixon, Joshua P.; Kotz, Catherine M.; Novak, Colleen M.; Billington, Charles J.; Teske, Jennifer A.
2016-01-01
In this section we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus–perifornical area, and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways, but is nonetheless a separate neural process that depends on interactions with other feeding related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite related neuromedin producing neurons are in hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the various other neuro-peptides, -transmitters, -modulators and –hormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight. PMID:22249811
Energy Balances of OECD Countries 2013 Edition
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-08-01
This volume contains data on the supply and consumption of coal, oil, gas, electricity, heat, renewables and waste presented as comprehensive energy balances expressed in million tonnes of oil equivalent. Complete data are available for 2010 and 2011 and supply estimates are available for the most recent year (i.e.2012). Historical tables summarise production, trade and final consumption data as well as key energy and economic indicators. The book also includes definitions of products and flows, explanatory notes on the individual country data and conversion factors from original units to energy units.
Importance of energy balance in agriculture.
Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.
2012-04-01
Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of
Evaluation of Two Energy Balance Closure Parametrizations
Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias
2014-05-01
A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.
A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability
International Nuclear Information System (INIS)
Risteski, Ice B.
2008-01-01
In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices
Sustainable Urban Regeneration Based on Energy Balance
Directory of Open Access Journals (Sweden)
Sacha Silvester
2012-07-01
Full Text Available In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming economical and environmental interests on infrastructure, in relation to the sustainable urban development and regeneration from the perspective of the tripod people, technology and design is elaborated. However, this is at different scales, starting mainly from the perspective of the urban dynamics. This approach includes a renewed look at the ‘urban metabolism’ and the role of environmental technology, urban ecology and environment behavior focus. Second, the potential benefits of strategic and balanced introduction and use of decentralized devices and electric vehicles (EVs, and attached generation based on renewables are investigated in more detail in the case study of the ‘Merwe-Vierhaven’ area (MW4 in the Rotterdam city port in the Netherlands. In order to optimize the energy balance of this urban renewal area, it is found to be impossible to do this by tuning the energy consumption. It is more effective to change the energy mix and related infrastructures. However, the problem in existing urban areas is that often these areas are restricted to a few energy sources due to lack of available space for integration. Besides this, energy consumption in most cases is relatively concentrated in (existing urban areas. This limits the potential of sustainable urban regeneration based on decentralized systems, because there is no balanced choice regarding the energy mix based on renewables and system optimization. Possible solutions to obtain a balanced energy profile can come from either the choice to not provide all energy locally, or by adding different types of storage devices to the systems. The use of energy balance based on renewables as a
Energy-balanced algorithm for RFID estimation
Zhao, Jumin; Wang, Fangyuan; Li, Dengao; Yan, Lijuan
2016-10-01
RFID has been widely used in various commercial applications, ranging from inventory control, supply chain management to object tracking. It is necessary for us to estimate the number of RFID tags deployed in a large area periodically and automatically. Most of the prior works use passive tags to estimate and focus on designing time-efficient algorithms that can estimate tens of thousands of tags in seconds. But for a RFID reader to access tags in a large area, active tags are likely to be used due to their longer operational ranges. But these tags use their own battery as energy supplier. Hence, conserving energy for active tags becomes critical. Some prior works have studied how to reduce energy expenditure of a RFID reader when it reads tags IDs. In this paper, we study how to reduce the amount of energy consumed by active tags during the process of estimating the number of tags in a system and make the energy every tag consumed balanced approximately. We design energy-balanced estimation algorithm that can achieve our goal we mentioned above.
Energy balance of controlled thermonuclear fusion
International Nuclear Information System (INIS)
Hashmi, M.; Staudenmaier, G.
2000-01-01
It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor-an energy producing device-seems to be beyond the realms of realization. (orig.)
The Approach to Equilibrium: Detailed Balance and the Master Equation
Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.
2011-01-01
The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…
Power and energy balances. Forecast 2008
International Nuclear Information System (INIS)
2005-01-01
Both the energy and power balance in 2008 is slightly better than the former Nordel estimate for 2007. This is due to additional investments in new generation capacity, new interconnections of total 1 000 MW to outside Nordel and reduced demand forecast in Sweden. The Nordic electricity system is able to meet the estimated consumption and the corresponding typical power demand pattern in average conditions. In long term the market is expected to maintain a reasonable balance between supply, imports and demand. Lower precipitation or colder temperature result in higher market prices that give incentives for increased imports, demand response and investments. This is expected to maintain the balance between supply and demand in the short and long term even in extreme situations. Allocation between imports and demand response in reality depends on the prevailing market prices and available generation resources outside Nordel. The interconnection capacities are expected to enable import volumes that can meet the increased peak demand. Some Nordic areas can be exposed to a risk for rationing or other measures because of extremely low precipitation. Nordic transmission capacities may prevent full utilization of Nordic thermal power in certain areas. The planned reinforcements in the 'five prioritised cross-sections' will improve the situation. The power balance and the internal bottlenecks in the continental Europe can have an effect on the import possibilities to the Nordic countries. The annual energy consumption in the Nordic market is estimated to grow by 20 TWh by year 2008 (1.2%la) from 395 TWh in 2004 (temperature corrected). In the three year period investments in power generation is expected to increase the available generation capacity and capability by 1500 MW and 10 TWhla in average conditions. Iceland is not included in the figures. The annual energy consumption in Iceland is estimated to grow by about 6.8 TWh by year 2008 (15 %la) due to two new aluminium
Yearly energy balance sheets 1998-1999
International Nuclear Information System (INIS)
2001-01-01
The objective of the presented statistics is to give a total picture of the Swedish energy supply and consumption 1998-1999. Compared to the regularly published energy balance sheets based on short periodic statistics, this publication is more disaggregated in the field of final energy consumption. The data are mainly based on yearly statistics on energy consumption in different sectors. The broad statistical base has made it possible to compile data for consumer categories on a fairly detailed level. In cases where direct statistical information is lacking or is insufficient, indirect calculation methods have been used for estimations or recalculations of basic statistics. Revisions and improvements of statistical sources as well as calculation methods will be performed successively. As a consequence of this, the statistics presented here could be revised in future publications
Energy Balances of OECD Countries 2012 Edition
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-07-01
This volume contains data on the supply and consumption of coal, oil, natural gas, electricity, heat, renewables and waste presented as comprehensive energy balances expressed in million tonnes of oil equivalent. Complete data are available for 2009 and 2010 and supply estimates are available for the most recent year (i.e.2011). Historical tables summarise production, trade and final consumption data as well as key energy and economic indicators. The book also includes definitions of products and flows, explanatory notes on the individual country data and conversion factors from original units to energy units. More detailed data in original units are published in the 2012 edition of Energy Statistics of OECD Countries, the sister volume of this publication.
Yearly energy balance sheets 1996-1998
International Nuclear Information System (INIS)
2000-01-01
The objective of the presented statistics is to give a total picture of the Swedish energy supply and consumption 1996-1998. Compared to the regularly published energy balance sheets based on short periodic statistics, this publication is more disaggregated in the field of final energy consumption. The data are mainly based on yearly statistics on energy consumption in different sectors. The broad statistical base has made it possible to compile data for consumer categories on a fairly detailed level. In cases where direct statistical information is lacking or is insufficient, indirect calculation methods have been used for estimations or recalculations of basic statistics. Revisions and improvements of statistical sources as well as calculation methods will be performed successively. As a consequence of this, the statistics presented here could be revised in future publications
The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance
Hand, Gregory A.; Shook, Robin P.; Paluch, Amanda E.; Baruth, Meghan; Crowley, E. Patrick; Jaggers, Jason R.; Prasad, Vivek K.; Hurley, Thomas G.; Hebert, James R.; O'Connor, Daniel P.; Archer, Edward; Burgess, Stephanie; Blair, Steven N.
2013-01-01
Purpose: The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. Method: EBS recruited men and women aged 21 to 35 years with a body mass index between 20…
Modified harmonic balance method for the solution of nonlinear jerk equations
Rahman, M. Saifur; Hasan, A. S. M. Z.
2018-03-01
In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.
Energy Balance Bowen Ratio (EBBR) Handbook
Energy Technology Data Exchange (ETDEWEB)
Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-01-01
The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.
Energy Balance over One Athletic Season.
Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; Müller, Manfred J; Heymsfield, Steven B; Sardinha, Luís B
2017-08-01
Magnitude and variation in energy balance (EB) components over an athletic season are largely unknown. We investigated the longitudinal changes in EB over one season and explored the association between EB variation and change in the main fat-free mass (FFM) components in highly trained athletes. Eighty athletes (54 males; handball, volleyball, basketball, triathlete, and swimming) were evaluated from the beginning of the season to the main competition stage. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively. Physical activity energy expenditure was calculated as TEE - 0.1 TEE - REE. Fat mass (FM), FFM, and bone mineral were evaluated with dual-energy x-ray absorptiometry; changed body energy stores were calculated as 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). Total-body water (TBW) and its compartments were assessed through dilution techniques, and total-body protein was calculated from a four-compartment model, with body volume assessed by air displacement plethysmography. Although a negative EB of -17.4 ± 72.7 kcal·d was observed (P sports and across sex groups resulting in a net weight increase (0.7 ± 2.3 kg) that is attributable to significant changes in FFM (1.2 ± 1.6 kg) and FM (-0.7 ± 1.5 kg) (P sports, and age. The mean negative EB observed over the season resulted from the rate of FM use and FFM accretion, but with a large variation by sex and sports. TBW, but not total-body protein or mineral balance, explained the magnitude of EB, which means that athletes under a positive or a negative EB showed a TBW expansion or shrinkage, respectively, specifically within the cells, over one athletic season.
Balancing the Readiness Equation in Early Childhood Education Reform
Brown, Christopher P.
2010-01-01
As policy-makers continue to implement early childhood education reforms that frame the field as a mechanism that is to ready children for elementary school success, questions arise as to how the multiple variables in the readiness equation, such as the child, family, and program, are affected by these policies. The instrumental case study…
Implementation of multi-regional energy balances for Slovenia
International Nuclear Information System (INIS)
Suvorov, B.; Schechtner, O.; Zelle, K.; Andjelic, M.W.
1994-01-01
The system used for preparing energy balances for Styria and 17 Styrian districts, which was developed by ADIP-GRAZ in accordance with the federal energy balance of Austria, is being applied to Slovenia. Energy balances are a necessary tool for monitoring the impact of measures initiated by the energy policy. Therefore balances are of a basic mutual interest, also in connection with balances of air pollutants that can be calculated from energy balances. The official Slovenian energy balance for the year 1990 is the basis for implementation of regional balances for five chosen regions (Maribor region, Celje region, Ljubljana region, Littoral region, and Upper-Slovenia region). Results are presented according to defined concepts and structures which are closely related to the MEDEE-RS methodology. (Author)
Legged locomotion : Balance, control and tools - from equation to action
Ridderström, Christian
2003-01-01
This thesis is about control and balance stability of leggedlocomotion. It also presents a combination of tools that makesit easier to design controllers for large and complicated robotsystems. The thesis is divided into four parts. The first part studies and analyzes how walking machines arecontrolled, examining the literature of over twenty machinesbriefly, and six machines in detail. The goal is to understandhow the controllers work on a level below task and pathplanning, but above actuato...
Detailed balance principle and finite-difference stochastic equation in a field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation
Principle of detailed balance and the finite-difference stochastic equation in field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation
A well-balanced scheme for Ten-Moment Gaussian closure equations with source term
Meena, Asha Kumari; Kumar, Harish
2018-02-01
In this article, we consider the Ten-Moment equations with source term, which occurs in many applications related to plasma flows. We present a well-balanced second-order finite volume scheme. The scheme is well-balanced for general equation of state, provided we can write the hydrostatic solution as a function of the space variables. This is achieved by combining hydrostatic reconstruction with contact preserving, consistent numerical flux, and appropriate source discretization. Several numerical experiments are presented to demonstrate the well-balanced property and resulting accuracy of the proposed scheme.
On the balance equations for a dilute binary mixture in special relativity
International Nuclear Information System (INIS)
Moratto, Valdemar; Garcia-Perciante, A. L.; Garcia-Colin, L. S.
2010-01-01
In this work we study the properties of a relativistic mixture of two non-reacting species in thermal local equilibrium. We use the full Boltzmann equation (BE) to find the general balance equations. Following conventional ideas in kinetic theory, we use the concept of chaotic velocity. This is a novel approach to the problem. The resulting equations will be the starting point of the calculation exhibiting the correct thermodynamic forces and the corresponding fluxes; these results will be published elsewhere.
A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes
DEFF Research Database (Denmark)
Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva
2014-01-01
The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...
Appetite control and energy balance: impact of exercise.
Blundell, J E; Gibbons, C; Caudwell, P; Finlayson, G; Hopkins, M
2015-02-01
Exercise is widely regarded as one of the most valuable components of behaviour that can influence body weight and therefore help in the prevention and management of obesity. Indeed, long-term controlled trials show a clear dose-related effect of exercise on body weight. However, there is a suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up food intake thereby nullifying the energy expended through activity. Not everyone performing regular exercise will lose weight and several investigations have demonstrated a huge individual variability in the response to exercise regimes. What accounts for this heterogeneous response? First, exercise (or physical activity) through the expenditure of energy will influence the energy balance equation with the potential to generate an energy deficit. However, energy expenditure also influences the control of appetite (i.e. the physiological and psychological regulatory processes underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a resultant shift in energy balance, and therefore weight change, will be complicated. In changing energy intake, exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized that the major influences on the expression of appetite arise from fat-free mass and fat mass, resting metabolic rate, gastric adjustment to ingested food, changes in episodic peptides including insulin, ghrelin, cholecystokinin, glucagon-like peptide-1 and tyrosine-tyrosine, as well as tonic peptides such as leptin. Moreover, there is evidence that exercise will influence all of these components that, in turn, will influence the drive to eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and adjustments in postprandial satiety via an interaction with food composition. The specific actions of exercise on each physiological component will vary in strength from
Energy Balance of the Santa Catarina State - Series 1980 -1996
International Nuclear Information System (INIS)
1997-01-01
This energy balance of the Santa Catarina State presents the following main topics that can be outstanding: economic aspects; supply and demand of energy by source 1980-1996; energy consumption by sector 1980/1996; energy interchange; and balance of the transformation centers 1980/1996
Energy Balance Models and Planetary Dynamics
Domagal-Goldman, Shawn
2012-01-01
We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.
Energy balance of a pine forest
International Nuclear Information System (INIS)
Murphy, C.E.; Dexter, A.H.
1978-01-01
Studies of the energy balance of a pine forest were initiated at the Savannah River Laboratory (SRL) to gain information on the exchange of gaseous materials between the atmosphere and the forest ecosystem. This information allows better estimates of the deposition velocities of gaseous pollutants necessary for plume calculations and ecosystem modeling studies. Studies to date show that the exchange of water vapor is influenced most by diffusion resistances associated with the vegetative canopy. Vegetative and atmospheric diffusion resistance vary diurnally, with high values occurring at night and low values observed during the day. Thus, water vapor exchange is greatest during the daylight hours. Future plans include measurements of exchange of other gases such as carbon dioxide and sulfur dioxide
Dependence of balance energy on isospin degrees of freedom
International Nuclear Information System (INIS)
Gautam, S.; Sood, Aman D.; Puri, Rajeev K.; Hartnack, Ch.; Aichelin, J.
2009-01-01
Collective transverse in-plane flow in heavy ion collisions has been a subject of intensive theoretical and experimental studies, as it can provide information about the nuclear matter equation of state (EOS) as well as in medium nucleon-nucleon (nn) cross section. The study of dependence of collective transverse flow on various entrance channel parameters as beam energy and impact parameter has revealed much interesting physics about the origin and properties of the collective flow. From these studies, it has been found that the transverse in plane flow disappears at an incident energy termed as balance energy (E bal ), where attractive part of the nuclear interactions balances the repulsive part. Presently, due to availability of the radioactive beams, role of isospin degrees of freedom in EOS can be studied. The collective transverse in-plane flow has been found to depend on isospin of the colliding system. Here, we aim to study the dependence of E bal on N/Z ratio of the colliding system using IQMD model
Balance: Hydroelectricity impacts on energy systems
International Nuclear Information System (INIS)
Baptista, V.; Baia, L.; Azevedo, H.
1997-01-01
The VALORAGUA (Value of Water in Portuguese) computer model was developed by Electricidade de Portugal (EDP) in order to determine the optimal operation strategy of a mixed hydro-thermal power system with an important share of hydroelectricity generation such as the one of Portugal. The model has become the main tool used by EDP for planning the development and operation of its power system. In recent years, EDP has acquired the ENPEP package and has become acquainted with its use for integrated energy and electricity planning. The main goal of this effort has been to incorporate in EDP's planning procedure an integrated approach for determining the possible role of electricity in meeting the overall requirements for energy of the country, with due account to the impacts (resource requirements and environmental emissions) of alternative energy and electricity systems. This paper concentrates on a comparison of the results of the BALANCE module of ENPEP for the electricity sector against the simulation results provided by VALORAGUA. Suggested improvements to the methodologies in order to overcome the divergences in results from these two models are also advanced in the paper. (author). 15 figs
Balance Function in High-Energy Collisions
International Nuclear Information System (INIS)
Tawfik, A.; Shalaby, Asmaa G.
2015-01-01
Aspects and implications of the balance functions (BF) in high-energy physics are reviewed. The various calculations and measurements depending on different quantities, for example, system size, collisions centrality, and beam energy, are discussed. First, the different definitions including advantages and even short-comings are highlighted. It is found that BF, which are mainly presented in terms of relative rapidity, and relative azimuthal and invariant relative momentum, are sensitive to the interaction centrality but not to the beam energy and can be used in estimating the hadronization time and the hadron-quark phase transition. Furthermore, the quark chemistry can be determined. The chemical evolution of the new-state-of-matter, the quark-gluon plasma, and its temporal-spatial evolution, femtoscopy of two-particle correlations, are accessible. The production time of positive-negative pair of charges can be determined from the widths of BF. Due to the reduction in the diffusion time, narrowed widths refer to delayed hadronization. It is concluded that BF are powerful tools characterizing hadron-quark phase transition and estimating some essential properties
Balance: Hydroelectricity impacts on energy systems
Energy Technology Data Exchange (ETDEWEB)
Baptista, V; Baia, L; Azevedo, H [Electricidade de Portugal, Porto (Portugal)
1997-09-01
The VALORAGUA (Value of Water in Portuguese) computer model was developed by Electricidade de Portugal (EDP) in order to determine the optimal operation strategy of a mixed hydro-thermal power system with an important share of hydroelectricity generation such as the one of Portugal. The model has become the main tool used by EDP for planning the development and operation of its power system. In recent years, EDP has acquired the ENPEP package and has become acquainted with its use for integrated energy and electricity planning. The main goal of this effort has been to incorporate in EDP`s planning procedure an integrated approach for determining the possible role of electricity in meeting the overall requirements for energy of the country, with due account to the impacts (resource requirements and environmental emissions) of alternative energy and electricity systems. This paper concentrates on a comparison of the results of the BALANCE module of ENPEP for the electricity sector against the simulation results provided by VALORAGUA. Suggested improvements to the methodologies in order to overcome the divergences in results from these two models are also advanced in the paper. (author). 15 figs.
Power balance equation in electron beam evaporation process
International Nuclear Information System (INIS)
Blumenfeld, L.; Soubbaramayer.
1994-01-01
The aim of the paper is to solve the equation giving the total power of the gun, used in the electron beam evaporation process, in terms of the power used to generated the vapor stream and the three main power losses due to three parasite phenomena: turbulent thermal convection in the molten pool, electron back scattering and heat radiation from the vapor emitting surface. Scaling laws are first reviewed and results are given with the example of the evaporation of aluminium with a 5 kW axisymmetric gun working in steady state mode. The influence of an applied magnetic field on the evaporation rate is also examined. 5 refs., 3 figs., 1 tab
Brazilian energy balance 1999: 1983 to 1998 period
International Nuclear Information System (INIS)
1999-01-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1983 to 1998 period. It is divided into nine chapters, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy import and export; transformation centers balances; energy resources and reserves; energy and socio economy; energy data relating to brazilian states; and appendices - installed capacity, world data, general structure of the balance, information processing, conversion units and consolidated energy balance
Brazilian energy balance 1999: 1983 to 1998 period
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-07-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1983 to 1998 period. It is divided into nine chapters, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy import and export; transformation centers balances; energy resources and reserves; energy and socio economy; energy data relating to brazilian states; and appendices - installed capacity, world data, general structure of the balance, information processing, conversion units and consolidated energy balance.
Ibragimov, Ranis N.
2018-03-01
The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.
6. State energy balance - 1978/1987 - Minas Gerais, Brazil
International Nuclear Information System (INIS)
1989-05-01
The energetic plan of Minas Gerais state and the steps such as energy balance, state potential energy identification, social and economic analysis, energetic flux, energy consumption is presented. (L.J.C.)
International Nuclear Information System (INIS)
Hsiang, J.-T.; Hu, B.L.
2015-01-01
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the
Investigations of a Cost-Optimal Zero Energy Balance
DEFF Research Database (Denmark)
Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per
2012-01-01
The Net Zero Energy Building (Net ZEB) concept is worldwide recognised as a promising solution for decreasing buildings’ energy use. Nevertheless, a consistent definition of the Net ZEB concept is constantly under discussion. One of the points on the Net ZEB agenda is the zero energy balance...... and taken a view point of private building owner to investigate what types of energy uses should be included in the cost-optimal zero energy balance. The analysis is conducted for five renewable energy supply systems and five user profiles with a study case of a multi-storey residential Net ZEB. The results...... have indicated that with current energy prices and technology, a cost-optimal Net ZEB zero energy balance accounts for only the building related energy use. Moreover, with high user related energy use is even more in favour of excluding appliances from the zero energy balance....
Weekly patterns, diet quality and energy balance.
McCarthy, Sinéad
2014-07-01
Human behaviour is made up of many repeated patterns and habitual behaviours. Our day to day lives are punctuated by work, education, domestic chores, sleep and food. Changes in daily patterns such as not working in paid employment or attending school on the weekend contribute significantly to changes in dietary patterns of food consumption, patterns of physical activity and ultimately energy balance. The aim of this paper is to adopt a life-course perspective and explore the changes in dietary quality and physical activity patterns across the week from young children to elderly adults with a focus on Western cultures. Research literature indicates that the dietary quality is somewhat poorer on the weekends, characterised by higher fat intakes, higher alcohol intakes and consequently higher energy intakes. This increase in energy intake is not necessarily offset by an increase in activity, rather an increase in sedentary behaviours. Some research has observed an increase of more than 100 cal per day over the weekend in American adults. Over the course of one year, this can result in a significant increase in body mass. Some of the interventions in tackling obesity and diet related behaviours must focus on the changes in the weekend behaviour of consumers in terms of both food and activity. These efforts should also focus on increasing consumer awareness of the long term consequences of the short lived weekend excess as well as putting in place practical measures and interventions that are evidence based and targeted to consumer needs. Copyright © 2014 Elsevier Inc. All rights reserved.
Chertock, Alina; Cui, Shumo; Kurganov, Alexander; Özcan, Şeyma Nur; Tadmor, Eitan
2018-04-01
We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.
Surface energy balance measurements in the Mexico City: a review
Energy Technology Data Exchange (ETDEWEB)
Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)
2005-01-01
During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision
A STRUCTURAL EQUATION MODEL-II FOR WORK-LIFE BALANCE OF IT PROFESSIONALS IN CHENNAI
Rashida A. Banu
2016-01-01
The study developed and tested a model of work life balance of IT professionals employing structural equation modeling (SEM) to analyze the relationship between work place support (WPS) and work interference with personal life (WIPL), personal life interference with work (PLIW), satisfaction with work-life balance (SWLB) and improved effectiveness at work (IEW). The model fit the data well and hypotheses are generally supported. WPS and SWLB are negatively related to WIPL and P...
Directory of Open Access Journals (Sweden)
Xiaolin Zhu
2014-01-01
Full Text Available This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations (SDDEs. Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the theoretical results proposed.
Improved harmonic balance approach to periodic solutions of non-linear jerk equations
International Nuclear Information System (INIS)
Wu, B.S.; Lim, C.W.; Sun, W.P.
2006-01-01
An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach
Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations
Directory of Open Access Journals (Sweden)
Farahnaz Soleimani
2015-11-01
Full Text Available An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the effectiveness of our approach is confirmed on the basis of the theoretical point of view, some numerical comparisons in balancing chemical equations, as well as on randomly-generated matrices are furnished.
International Nuclear Information System (INIS)
Penuela, G; Ordonez R, A; Bejarano, A
1998-01-01
A generalized material balance equation was presented at the Escuela de Petroleos de la Universidad Industrial de Santander for coal seam gas reservoirs based on Walsh's method, who worked in an analogous approach for oil and gas conventional reservoirs (Walsh, 1995). Our equation was based on twelve similar assumptions itemized by Walsh for his generalized expression for conventional reservoirs it was started from the same volume balance consideration and was finally reorganized like Walsh (1994) did. Because it is not expressed in terms of traditional (P/Z) plots, as proposed by King (1990), it allows to perform a lot of quantitative and qualitative analyses. It was also demonstrated that the existent equations are only particular cases of the generalized expression evaluated under certain restrictions. This equation is applicable to coal seam gas reservoirs in saturated, equilibrium and under saturated conditions, and to any type of coal beds without restriction on especial values of the constant diffusion
Brazilian energy balance 1996: 1980 to 1995 period
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-12-31
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the 1980 to 1995 period. It`s divided into nine chapters, as follows: summary; energy supply and consumption by source; energy import and export; transformation centers balances; energy sources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances 1 fig., 68 graphs., 145 tabs.
Energy balance of forage consumption by phyllophagous insects: optimization model
Directory of Open Access Journals (Sweden)
O. V. Tarasova
2015-06-01
Full Text Available The model of optimal food consumption by phytophagous insects proposed, in which the metabolic costs are presented in the form of two components – the cost of food utilization and costs for proper metabolism of the individuals. Two measures were introduced – the «price» of food conversion and the «price» of biomass synthesis of individuals to assess the effectiveness of food consumption by caterpillars. The proposed approach to the description of food consumption by insects provides the exact solutions of the equation of energy balance of food consumption and determining the effectiveness of consumption and the risk of death of the individual. Experiments on larvae’s feeding in laboratory conditions were carried out to verify the model. Caterpillars of Aporia crataegi L. (Lepidoptera, Pieridae were the research subjects. Supplydemand balance, calculated value of the environmental price of consumption and efficiency of food consumption for each individual were determined from experimental data. It was found that the fertility of the female does not depend on the weight of food consumed by it, but is linearly dependent on the food consumption efficiency index. The greater the efficiency of food consumption by an individual, the higher its fertility. The data obtained in the course of experiments on the feeding caterpillars Aporia crataegi were compared with the data presented in the works of other authors and counted in the proposed model of consumption. Calculations allowed estimation of the critical value of food conversion price below which the energy balance is negative and the existence of an individual is not possible.
A comparative study of energy balance among housewives of Ludhiana city.
Kaur, N; Mann, S K; Sidhu, P; Sangha, J K
1997-01-01
Energy gap is the main nutritional factor which affects work efficiency in all age groups. The low intake of food results in impaired working efficiency and a low level of vitality. Energy balance was evaluated among 30 healthy, nonpregnant, nonlactating housewives aged 29-40 years drawn from the campus of Punjab Agricultural University and its surrounding areas. The women's mean overall energy intake was 1777 +or- 31 kcal/day, 87% of the ICMR (1990) recommended allowances. Total energy expenditure was measured using a computer-based Nutriguide program of Song et al., Caltrac, FAO/WHO/UNU (1985) equations based upon body weight, and an ICMR (1990) prediction equation also based upon body weight. Statistical analysis identified a significant difference in the energy expenditure measured by all 4 methods except between the FAO/WHO/UNU and ICMR prediction equations. The overall energy balance was maximum and positive according to Caltrac at 4.5 kcal/day. The energy expenditure measured by the Nutriguide, FAO/WHO/UNU, and ICMR methods was significantly correlated to weight. Energy intake was significantly and highly correlated to energy balance in all of the 4 methods. While the subjects were overweight when compared with Life Insurance Corporation of India (1965) Standards, the women's body mass index of 23.11 kg/sq.m was within the normal range.
International Nuclear Information System (INIS)
Minagawa, Keisuke; Fujita, Satoshi; Endo, Rokuro; Amemiya, Mitsuhiko
2009-01-01
In this study, vibration characteristics of mechanical structure having high natural frequency are investigated from the viewpoint of energy balance. Mechanical structures having high natural frequency in a nuclear power plant are generally designed statically and elastically. However it has been reported that fracture of ordinary piping is produced not by momentary large load but by cumulative fatigue damage. Therefore it is very important to grasp seismic performance dynamically by considering cyclic load. This paper deals with an investigation regarding seismic performance evaluation of high natural frequency mechanical structure. The energy balance equation that is one of valid methods for structural calculation is applied through the investigation. The main feature of the energy balance equation is that it explains accumulated information of motion. Therefore the energy balance equation is adequate for the investigation of the influence of cumulative load such as seismic response. In this paper, vibration experiment and simulation using sinusoidal waves and artificial seismic waves were examined in order to investigate relationship between natural frequency of structure and energy. As a result, we found that input energy decreases with an increase in the natural frequency. (author)
7. State energy balance - 1978/1988 - Minas Gerais, Brazil
International Nuclear Information System (INIS)
1990-05-01
The Minas Gerais energetic system is presented, including the energy sources by economic social aspects as well as statistical data. This balance is a data base for prospective studies of consumption and energy availability. (L.J.C.)
Energy balance of the Sao Paulo State - 1990
International Nuclear Information System (INIS)
1992-01-01
This document informs the energetic balance for Sao Paulo State - 1990, with information referring to the year 1989, containing the energy fluxes from primary and secondary energy sources in the main sectors of Sao Paulo economy. 32 figs., 99 tabs
Kawano, Yu; Cao, Ming
2017-01-01
We define and then study the structural observability for a class of complex networks whose dynamics are governed by the nonlinear balance equations. Although related notions of observability of such complex networks have been studied before and in particular, necessary conditions have been reported
An improved particle population balance equation in the continuum-slip regime
Directory of Open Access Journals (Sweden)
Xie Mingliang
2016-01-01
Full Text Available An improved moment model is proposed to solve the population balance equation for Brownian coagulation in the continuum-slip regime, and it reduces to a known one in open literature when the non-linear terms in the slip correction factor are ignored. The present model shows same asymptotic behavior as that in the continuum regime.
The use of material balanced equation to determine the oil water ...
African Journals Online (AJOL)
The oil water contact of an oil reservoir can be determined using some geophysical well logs. However, some of the methods might not be accurate. Therefore the material balanced equation which is an accurate means of formation evaluation is critically analysed in this study and then used to determine the oil water contact ...
Agung, Salamah; Schwartz, Marc S.
2007-01-01
This study examines Indonesian students' understanding of conservation of matter, balancing of equations and stoichiometry. Eight hundred and sixty-seven Grade 12 students from 22 schools across four different cities in two developed provinces in Indonesia participated in the study. Nineteen teachers also participated in order to validate the…
The energy cost for balance control during upright standing
Houdijk, J.H.P.; Fickert, R.; van Velzen, J.; van Bennekom, C.A.M.
2009-01-01
The aim of this study was to investigate whether balance control during a static upright standing task with and without balance perturbations elicits a significant and meaningful metabolic energy demand and to test whether this energy demand correlates with conventional posturography measures for
Cognitive determinants of energy balance-related behaviours : measurement issues
Kremers, Stef P J; Visscher, Tommy L S; Seidell, Jacob C; van Mechelen, Willem; Brug, Johannes
2005-01-01
The burden of disease as a result of overweight and obesity calls for in-depth examination of the main causes of behavioural actions responsible for weight gain. Since weight gain is the result of a positive energy balance, these behavioural actions are referred to as 'energy balance-related
Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin
Asakawa, A; Inui, A; Fujimiya, M; Sakamaki, R; Shinfuku, N; Ueta, Y; Meguid, M M; Kasuga, M
2005-01-01
Background/Aims: The gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance.
Provisional energy balance of France for 2002
International Nuclear Information System (INIS)
2003-01-01
A provisional energy accounting in France for 2002 is presented. Statistical data and diagrams are provided to detail and discuss the economical and energy context, the primary energy consumption, the national production and the energy dependence, the primary energy consumption for each energy source, the sectorial analysis of the energy consumption and the carbon dioxide emissions. (A.L.B.)
QCD evolution equations for high energy partons in nuclear matter
Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt
1994-01-01
We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.
A linear multiple balance method for discrete ordinates neutron transport equations
International Nuclear Information System (INIS)
Park, Chang Je; Cho, Nam Zin
2000-01-01
A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient
Energy preserving integration of bi-Hamiltonian partial differential equations
Karasozen, B.; Simsek, G.
2013-01-01
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the
Preliminary approach of the MELiSSA loop energy balance
Poulet, Lucie; Lamaze, Brigitte; Lebrun, Jean
Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require a huge amount of life support consumables (e.g. food, water and oxygen). Current rockets are at the moment unable to launch such a mass from Earth. Consequently Regenerative Life Support Systems are necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. Thus the European and Canadian research has been concentrating on the MELiSSA (Micro-Ecological Life Support System Alternative) project over the last 20 years. MELiSSA is an Environmental Controlled Life Support System (ECLSS), i.e. a closed regenerative loop inspired of a lake ecosystem. Using light as a source of energy, MELiSSA's goal is the recovery of food, water and oxygen from CO2 and organic wastes, using microorganisms and higher plants. The architecture of a ECLSS depends widely on the mission scenario. To compare several ECLSS architectures and in order to be able to evaluate them, ESA is developing a multi criteria evaluation tool: ALISSE (Advanced LIfe Support System Evaluator). One of these criteria is the energy needed to operate the ECLSS. Unlike other criteria like the physical mass, the energy criterion has not been investigated yet and needs hence a detailed analysis. It will consequently be the focus of this study. The main objective of the work presented here is to develop a dynamic tool able to estimate the energy balance for several configurations of the MELiSSA loop. The first step consists in establishing the energy balance using concrete figures from the MELiSSA Pilot Plant (MPP). This facility located at the Universitat Autonoma de Barcelona (UAB) is aimed at the ground demonstration of the MELiSSA loop. The MELiSSA loop is structured on several subsystems; each of them is characterized by supplies, exhausts and process reactions. For the purpose of this study (i.e. a generic tool) the solver EES (Engineering
Nutrient balances in the forest energy cycle
International Nuclear Information System (INIS)
Olsson, Bengt
2006-02-01
In Sweden, recycling of stabilised wood-ashes to forests is considered to compensate for nutrient removals from whole-tree harvesting (i.e. use of harvest residues - slash - for energy purposes). This study has analysed nutrient fluxes through the complete forest energy cycle and estimated mass balances of nutrients in harvested biomass with those in ashes, to investigate the realism in large-scale nutrient compensation with wood-ash. Expected nutrient fluxes from forests through energy plants were calculated based on nutrient and biomass data of forest stands in the Nordic countries, and from data on nutrient fluxes through CFB-plants. The expected stoichiometric composition of wood-ashes was compared with the composition of CFB-fly ashes from various Swedish energy plants. Nutrient contents for different tree fractions were calculated to express the average nutrient concentrations in slash and stems with bark, respectively. A nutrient budget synthesis of the effects of whole-tree harvesting on base cation turnover in the following stand was presented for two experimental sites. Major conclusions from the study are: In the CFB-scenario, where the bottom ash is deposited and only the fly ash can be applied to forests, the fly ash from the slash do not meet the demands for nutrient compensation for slash harvesting. Stem material (50% wood, 50% bark) must be added at equivalent amounts, as the slash to produce the amounts of fly ash needed for compensation of slash harvesting. In the scenario where more stem material was added (75% of total fuel load), the amounts of fly ashes produced hardly compensated for nutrient removals with both stem and slash harvesting. The level of nutrient compensation was lowest for potassium. The stoichiometric nutrient composition of CFB-fly ashes from Swedish energy plants is not similar with the nutrient composition of tree biomass. The higher Ca/P ratio in ashes is only partly explained by the mixture of fuels (e.g. increasing bark
Energy balance in MeV neutron induced fission
International Nuclear Information System (INIS)
Ruben, A.; Maerten, H.; Deeliger, D.
1992-01-01
In this paper, general trends of energy balance changes with increasing incidence energy are described in the framework of a simple scission point model including semi-empirical temperature-dependent shell correction energies. In particular, the different behavior of the total kinetic energy (TKE) dependence for several fissioning nuclei (Th, U, Pu) is explained
Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
International Nuclear Information System (INIS)
Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D.
2016-01-01
A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.
Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance
Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas
2017-04-01
Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions
Intelligent Cooperative MAC Protocol for Balancing Energy Consumption
Wu, S.; Liu, K.; Huang, B.; Liu, F.
To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.
Brazilian energy balance 2013 - calendar year 2012: final report
International Nuclear Information System (INIS)
2013-01-01
The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- Energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2012; Chapter 2- Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3- Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4- Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5- Balance of transformation centers- presents the energy balances for the energy transformation centers including their losses; Chapter 6- Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics- contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4- Useful
Brazilian energy balance 2012 - calendar year 2011: final report
International Nuclear Information System (INIS)
2012-01-01
The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2011; Chapter 2 - Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3 - Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4 - Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5 - Balance of transformation centers - presents the energy balances for the energy transformation centers including their losses; Chapter 6 - Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining.; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4
Brazilian energy balance 2014 - calendar year 2013: final report
International Nuclear Information System (INIS)
2014-01-01
The BEB is divided into eight chapters and ten annexes, whose contents are as follow: Chapter 1- Energy analysis and aggregated data- presents energy highlights per source in 2012 and analyses the evolution of the domestic energy supply and its relationship with economic growth in 2013; Chapter 2- Energy supply and demand by source- has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country; Chapter 3- Energy consumption by sector- presents the final energy consumption classified by primary and secondary source for each sector of the economy; Chapter 4- Energy imports and exports- presents the evolution of the data on the import and export of energy and the dependence on external energy; Chapter 5- Balance of transformation centers- presents the energy balances for the energy transformation centers including their losses; Chapter 6- Energy resources and reserves- has the basic concepts use in the survey of resources and reserves of primary energy sources; Chapter 7- Energy and socioeconomics- contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports; Chapter 8- State energy data- presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential; Relating to annexes the current structure is presented bellow: Annex 1- Installed capacity- shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining.; Annex 2- Self-production of electricity- presents disaggregated data of self-production, considering sources and sectors. Annex 3- World energy data- presents the main indicators for the production, import, export and consumption per energy source and region; Annex 4- Useful
A STRUCTURAL EQUATION MODEL-II FOR WORK-LIFE BALANCE OF IT PROFESSIONALS IN CHENNAI
Directory of Open Access Journals (Sweden)
Rashida A. Banu
2016-05-01
Full Text Available The study developed and tested a model of work life balance of IT professionals employing structural equation modeling (SEM to analyze the relationship between work place support (WPS and work interference with personal life (WIPL, personal life interference with work (PLIW, satisfaction with work-life balance (SWLB and improved effectiveness at work (IEW. The model fit the data well and hypotheses are generally supported. WPS and SWLB are negatively related to WIPL and PLIW. However, there is a positive relationship between SWLB and IEW.
Can we close the long term mass balance equation for pollutants in highway ponds?
DEFF Research Database (Denmark)
Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.
2007-01-01
The paper discusses the prospects of finding the long term mass balance on basis of short term simulations. A step in this process is to see to which degree the mass balance equation can be closed by measurements. Accordingly the total accumulation of heavy metals and PAH's in 8 Danish detention...... ponds only receiving runoff from highways have been measured. The result shows that the incoming mass of heavy metals from short term runoff events is accumulated. This is not observable in the same magnitude for the toxic organic compounds. The results also show that the accumulation rates...
Balancing redox equations: reaction of Cr(III) and chlorate in basic solution.
Milla González, Miguel
2011-01-01
This file is an interactive exercise on balancing of redox reactions. The redox system consists of the Cr(III) oxidation by means of the action of chlorate anion in basic solution. In these circumstances, Cr(III) exists as the Cr(OH)3 green precipitate. After finding out the oxidation states of the species involved, the user must write the equations of the half-reactions for both processes. A counter of atoms and charges makes this task easy and four possible ways of balancing are possible...
Ipata, Piero L; Pesi, Rossana
2017-06-01
It is well known that a strong metabolic interrelationship exists between ureagenesis and gluconeogenesis. In this paper, we present a detailed, overall equation, describing a possible metabolic link between ureagenesis and gluconeogenesis. We adopted a guided approach in which we strongly suggest that students, when faced with the problem of obtaining the overall equation of a metabolic pathway, carefully account for all atoms and charges of the single reactions, as well as the cellular localizations of the substrates, and the related transport systems. If this suggestion is always taken into account, a balanced, overall equation of a metabolic pathway will be obtained, which strongly facilitates the discussion of its physiological role. Unfortunately, textbooks often report unbalanced overall equations of metabolic pathways, including ureagenesis and gluconeogenesis. Most likely the reason is that metabolism and enzymology have been neglected for about three decades, owing to the remarkable advances of molecular biology and molecular genetics. In this paper, we strongly suggest that students, when faced with the problem of obtaining the overall reaction of a metabolic pathway, carefully control if the single reactions are properly balanced for atoms and charges. Following this suggestion, we were able to obtain an overall equation describing the metabolic interrelationship between ureagenesis and gluconeogenesis, in which urea and glucose are the final products. The aim is to better rationalize this topic and to convince students and teachers that metabolism is an important and rewarding chapter of human physiology. Copyright © 2017 the American Physiological Society.
Energy balance of the lavender oil production
Directory of Open Access Journals (Sweden)
Osman GÖKDOĞAN
2016-06-01
Full Text Available This research was carried out to determine the energy input-output analysis of lavender oil production. Data from agricultural farms in Isparta province was used. Energy input was calculated as 1993.89 MJ and energy output was calculated as 2925.51 MJ. Wood energy, fresh stalked lavender flower energy, equipment energy, human labour energy, electricity energy, and water energy inputs were 54.22 %, 41.86 %, 3.40 %, 0.23 %, 0.18 %, and 0.10 % of energy inputs, respectively. In this production, it is noteworthy that wood was used as fuel in the lavender oil production distillation process as the highest input. In the energy outputs, an average of 3.10 kg lavender oil and 130 kg lavender water were extracted by processing 234 kg fresh stalked lavender flower. Energy use efficiency, specific energy, energy productivity, and net energy for lavender oil production were calculated as 1.47, 643.19 MJ kg-1, 0.002 kg MJ-1 and 931.62 MJ, respectively.
An energy balance model for the Greenland ice sheet
Wal, R.S.W. van de; Oerlemans, J.
1994-01-01
The sensitivity of the mass balance of the Greenland Ice Sheet is studied by means of an energy balance model. The model calculates the shortwave and longwave radiation and the turbulent fluxes on a grid with a grid point spacing of 20 km. Special attention is given to the parameterization of the
Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids
Bryson, Steve; Levy, Doron
2004-01-01
We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.
Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations
Soleimani, Farahnaz; Stanimirovi´c, Predrag; Soleymani, Fazlollah
2015-01-01
An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the ...
Energy and carbon balances of wood cascade chains
Energy Technology Data Exchange (ETDEWEB)
Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)
2006-07-15
In this study we analyze the energy and carbon balances of various cascade chains for recovered wood lumber. Post-recovery options include reuse as lumber, reprocessing as particleboard, pulping to form paper products, and burning for energy recovery. We compare energy and carbon balances of chains of cascaded products to the balances of products obtained from virgin wood fiber or from non-wood material. We describe and quantify several mechanisms through which cascading can affect the energy and carbon balances: direct cascade effects due to different properties and logistics of virgin and recovered materials, substitution effects due to the reduced demand for non-wood materials when wood is cascaded, and land use effects due to alternative possible land uses when less timber harvest is needed because of wood cascading. In some analyses we assume the forest is a limiting resource, and in others we include a fixed amount of forest land from which biomass can be harvested for use as material or biofuel. Energy and carbon balances take into account manufacturing processes, recovery and transportation energy, material recovery losses, and forest processes. We find that land use effects have the greatest impact on energy and carbon balances, followed by substitution effects, while direct cascade effects are relatively minor. (author)
International Nuclear Information System (INIS)
Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang; Kraft, Markus
2015-01-01
Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. The weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.
Energy Technology Data Exchange (ETDEWEB)
Lee, Kok Foong [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Patterson, Robert I.A.; Wagner, Wolfgang [Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin (Germany); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 (Singapore)
2015-12-15
Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. The weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.
Particular cases of materials balance equation generalized for gas deposits associated to the coal
International Nuclear Information System (INIS)
Penuela, G; Ordonez, A; Bejarano, A
1997-01-01
One of the fundamental principles used in the work, developed in engineering is the law of the matter conservation. The application of this principle to the hydrocarbons fields, with the purpose of to quantify and to be predicted expresses by means of materials balance method. While the equation construction of conventional materials balance and the calculations that come with their application are not a difficult task, the approach of selection of the solution that better it represents the deposit it is one of the problems that the petroleum engineer should face. The materials balance is a useful analysis method of the deposit operation, reserves estimate of raw and gas, and prediction of the future behavior of the deposit. The coal, beds, devonian shales and geo pressurized-aquifer are some examples of natural gas sources and to possess production mechanisms and behaviors significantly different to the traditional than have been considered as non conventional deposits
International Nuclear Information System (INIS)
Olsson, Magnus; Perninge, Magnus; Soeder, Lennart
2010-01-01
The inclusion of wind power into power systems has a significant impact on the demand for real-time balancing power due to the stochastic nature of wind power production. The overall aim of this paper is to present probabilistic models of the impact of large-scale integration of wind power on the continuous demand in MW for real-time balancing power. This is important not only for system operators, but also for producers and consumers since they in most systems through various market solutions provide balancing power. Since there can occur situations where the wind power variations cancel out other types of deviations in the system, models on an hourly basis are not sufficient. Therefore the developed model is in continuous time and is based on stochastic differential equations (SDE). The model can be used within an analytical framework or in Monte Carlo simulations. (author)
Energy balance of the Parana State - 1980-1994
International Nuclear Information System (INIS)
1995-01-01
This document presents the energetic balance of Parana State - 1980/1994, including the energy fluxes from primary and secondary energy sources in the main sectors of Parana economy. It informs consumption, production and energy external dependence. 26 figs., 88 tabs
The energy balance of the earth's surface : a practical approach
Bruin, de H.A.R.
1982-01-01
This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This
Windows with an improved energy balance of 30%
DEFF Research Database (Denmark)
Schultz, Jørgen Munthe
means that both energy losses and transmittance of solar radiation is considered.The final goal of the project was to improve the energy balance of a window with at least 30%. As reference is chosen a common low energy glazing mounted in a wooden frame construction measuring 1188 × 1188 mm2...... the main emphasis has been put on improvement of the frame construction and the interaction between frame and glazing. Several theoretical analyses have been carried out and a prototype construction has been made, that meets the goal of a 30% improvement of the energy balance.The prototype has been tested....... A 30% improvement of the energy balance then corresponds to an reduction in net energy loss of 17 kWh/m2 window area.The frame costruction and the joint between glazing and frame is the thermally weak part of modern windows compared to centre values of the new super insulating glazings. As a result...
Local energy decay for linear wave equations with variable coefficients
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Lin, Fubiao; Meleshko, Sergey V.; Flood, Adrian E.
2018-06-01
The population balance equation (PBE) has received an unprecedented amount of attention in recent years from both academics and industrial practitioners because of its long history, widespread use in engineering, and applicability to a wide variety of particulate and discrete-phase processes. However it is typically impossible to obtain analytical solutions, although in almost every case a numerical solution of the PBEs can be obtained. In this article, the symmetries of PBEs with homogeneous coagulation kernels involving aggregation, breakage and growth processes and particle transport in one dimension are found by direct solving the determining equations. Using the optimal system of one and two-dimensional subalgebras, all invariant solutions and reduced equations are obtained. In particular, an explicit analytical physical solution is also presented.
Energy balance from Bahia state 2011 - series: 1994-2010
International Nuclear Information System (INIS)
2011-01-01
The present Energy Balance is constituted of six chapters, as follows: the chapter 1 approaches the profile of the energy system, showing the structure of the Bahia state energy matrix i n the year of 2010, and the modifications occurred during the period of 1994-2010; the chapter 2 analyses the evolution during the period of 1994-2010 of the energy offer with aspects of production, exports, imports and consumption; the chapter 3 comprised the evolution of energy consumption by sources and social-economic sectors; chapter 4 focus the evolution of state energy self-sufficiency, confronting the primary energy production with the energy total demand; the chapter 5 contains the balance of the energy transformation centers of the Bahia state; and the chapter 6 contains the consolidated matrixes expressed in the period of 1980, 1985 and 1990-2010
Toward buildings with a positive energy balance
International Nuclear Information System (INIS)
Visier, Jean-Christophe
2008-01-01
As the results of the recent 'Grenelle of the Environment', which assembled French officials and organizations for a wide-ranging discussion of ecological issues, enter into application, buildings should gradually switch from being the foremost consumers of energy to becoming producers of energy. The stakes, technically, economically and socially, are enormous
Energy balances of OECD countries 1970/1982
International Nuclear Information System (INIS)
Anon.
1984-01-01
The present volume provides standardized energy balance sheets expressed in a common unit of tons of oil equivalent for all OECD Countries. It covers the years 1970 to 1982 year by year and includes many revisions and additions to data previously published. The balances in the present volume are based on data published in OECD Energy Statistics 1971-1981 and OECD Energy Statistics 1981-1982. Tables for each OECD Country include production, import, export, consumption by the different industries, transportation, agriculture, residential sector of the different energies: solid fuels, petroleum, gas, nuclear power and hydroelectricity [fr
Energy balance for uranium recovery from seawater
Energy Technology Data Exchange (ETDEWEB)
Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)
2013-07-01
The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)
International Nuclear Information System (INIS)
Cadin, Didier; Collet, Isabelle; Delamare, Karine; Dussud, Francois-Xavier; Gong, Zheng; Hagege, Claire; Lauverjat, Jean; Lepoittevin, Daniel; Louati, Sami; Martin, Jean-Philippe; Misak, Evelyne; Reynaud, Didier; Rouquette, Celine; Wong, Florine; Monnoyer-Smith, Laurence; Mordant, Guillaume; Bottin, Anne; Reperant, Patricia; Grosset, Catherine
2015-07-01
2014 was the warmest year since 1900 in France and in the rest of the world. In particular, the mild winter led to heating needs 7 million tonnes of oil equivalent (Mtoe) lower than the needs in an average year. Real primary energy consumption fell below the symbolic 250 Mtoe level, a low it had not reached since 1995. Although energy demand decreased, national primary energy production increased for the second year running, reaching 139 Mtoe, a little over 1 Mtoe higher than in 2013. This rise in production is explained by nuclear generated electricity. The 2014 physical trade deficit for energy therefore decreased significantly, by 10 Mtoe, to below 114 Mtoe. Such a low level had not been observed since 1988. The level of energy self-sufficiency rose sharply in 2014, to 55.8%, a level not hitherto reached. The decrease in net energy imports was accompanied by a drop in quoted prices for energy products on the European and international markets. As a result, France's energy bill was 17% lower than in 2013. At around euro 55 billion, it fell to a level close to that of the early 1980s. Even excluding the effects of the higher temperatures in 2014, thereby adjusting for climate variations, primary energy went from 275 Mtoe - its maximum, reached in 2005 - to 257 Mtoe, with an average annual decrease of -2 Mtoe, confirming the downward trend initiated in the mid-2000's. Final energy consumption was 150 Mtoe in 2014, the lowest level since 1996. It decreased by a little more than 1% in relation to 2013, with reductions in all sectors except for transport, where consumption remained stable
On the Effective Equation of State of Dark Energy
DEFF Research Database (Denmark)
Sloth, Martin Snoager
2010-01-01
In an effective field theory model with an ultraviolet momentum cutoff, there is a relation between the effective equation of state of dark energy and the ultraviolet cutoff scale. It implies that a measure of the equation of state of dark energy different from minus one, does not rule out vacuum...... energy as dark energy. It also indicates an interesting possibility that precise measurements of the infrared properties of dark energy can be used to probe the ultraviolet cutoff scale of effective quantum field theory coupled to gravity. In a toy model with a vacuum energy dominated universe...... with a Planck scale cutoff, the dark energy effective equation of state is -0.96....
AN ENERGY FUNCTION APPROACH FOR FINDING ROOTS OF CHARACTERISTIC EQUATION
Deepak Mishra; Prem K. Kalra
2011-01-01
In this paper, an energy function approach for finding roots of a characteristic equation has been proposed. Finding the roots of a characteristics equation is considered as an optimization problem. We demonstrated that this problem can be solved with the application of feedback type neural network. The proposed approach is fast and robust against variation of parameter.
Turbulent kinetic energy equation and free mixing
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
Zero Point Energy and the Dirac Equation
Forouzbakhsh, Farshid
2007-01-01
Zero Point Energy (ZPE) describes the random electromagnetic oscillations that are left in the vacuum after all other energy has been removed. One way to explain this is by means of the uncertainty principle of quantum physics, which implies that it is impossible to have a zero energy condition.I this article, the ZPE is explained by using a novel description of the graviton. This is based on the behavior of photons in gravitational field, leading to a new definition of the graviton. In effec...
Biomass energy and the global carbon balance
International Nuclear Information System (INIS)
Hall, D.O.; House, J.I.
1994-01-01
Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)
National energy balance - 1977-1996 - Chile
International Nuclear Information System (INIS)
1997-01-01
The present document summarizes the historic document related to energy production, transformation and consumption in the country between 1977 and 1996. The manner the figures are presented allows their usage for diverse analyses. Certain modifications have been added to this introduction according to the suggestions received due to the publication of the 1975-1994 statement. This work will be periodically updated, including possible new energy sources as well as new consumption sectors. (author)
National energy balance 1979-1998 Chile
International Nuclear Information System (INIS)
1998-01-01
The present document summarizes the historic document related to energy production, transformation and consumption in the country between 1979 and 1998. The manner the figures are presented allows their usage for diverse analyses. Certain modifications have been added to this introduction according to the suggestions received due to the publication of the 1977-1996 statement. This work will be periodically updated, including possible new energy sources as well as new consumption sectors
National energy balance - 1977-1996 - Chile
International Nuclear Information System (INIS)
1997-01-01
The present document summarizes the historic document related to energy production, transformation and consumption in the country between 1977 and 1996. The manner the figures are presented allows their usage for diverse analyses. Certain modifications have been added to this introduction according to the suggestions received due to the publication of the 1975-1994 statement. This work will be periodically updated, including possible new energy sources as well as new consumption sectors
Energy Technology Data Exchange (ETDEWEB)
Manzanares, P.
1997-11-01
During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs.
International Nuclear Information System (INIS)
Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.
2004-01-01
The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization
Lombardy (Italy) regional energy balance: 1984-1990 statistical data
International Nuclear Information System (INIS)
Berra, P.; Di Marzio, T.
1992-01-01
After a brief explanation of the scope and key econometric elements of the energy balance analysis, this paper tables energy supply and demand data for Italy's Lombardy Region. The primary and secondary energy data are expressed in metric quantities and in equivalent calorific values and are sub-divided according to type of energy source and consuming sector. Assessments are made of the degree of reliability of the information and sources of information
Greenhouse gas balances of biomass energy systems
International Nuclear Information System (INIS)
Marland, G.; Schlamadinger, B.
1996-01-01
A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs
Greenhouse gas balances of biomass energy systems
International Nuclear Information System (INIS)
Marland, G.; Schlamadinger, B.
1994-01-01
A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues
Brazilian energy balance 2015: year 2014 - final report
International Nuclear Information System (INIS)
2015-01-01
The Balance (BEB) contains the accounting relative to energy supply and consumption, as well the conversion processes and foreign trade. It presents in a single document the historical series of these operations and information about reserves, installed capacities and Federal States data. The BEB is divided into eight chapters and ten annexes, whose contents are as follow. Chapters' content can be described as follows: Chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2014 and analyses the evolution of the domestic energy supply and its relationship with economic growth. Chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments, disaggregated total per socioeconomic sector in the country. Chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy. Chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy. Chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses. Chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources. Chapter 7 - Energy and Socio economics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports. Chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. Relating to annexes the current structure is presented bellow: Annex I - Installed Capacity - shows the installed capacity of electricity generation, the installed
Nuclear energy: A balance of power
International Nuclear Information System (INIS)
1992-01-01
The Forum was attended by public information officers of the Member States' atomic energy commissions and agencies; public relations and information representatives of the international nuclear industry, including vendors, utilities and information dispersal groups; scientific societies; and trade associations. The Forum provided an international opportunity for those working in nuclear energy public information programmes to learn from one another, and to exchange ideas and methods on how best to demystify this form of energy and reach the public for better general understanding of the issues involved. The described report of the Forum consists of two parts. One is designed to represent the conclusions, recommendations and specific activities from the strategy sessions. It is followed by examples provided by the participants. An individual section is intended as a ready resources for up-to-date information on non-proliferation and radiation and health. A separate abstract was prepared for each of the presentations
Energy for our future: Balancing regional interests
International Nuclear Information System (INIS)
Brand, S.
1993-01-01
An emerging global governance is suggested in which the environment is the central organizing principle of civilization. A shift is noted in which transnational, regional, nation-state, local, and tribal structures exist and compete. Nations with strong environmental regulations are more able to meet international competition in such a scenario. It has also been observed in many instances that for managing common resources such as forests and fish stocks, there have been traditional institutions resembling neither state or market but based on such principles as clearly defined boundaries, monitoring of compliance, graduated sanctions, and collective choice arrangements. Examples of a certain kind of well-managed common resource are provided by certain energy utilities which make profits from energy conservation. One such example is the Tennessee Valley Authority, which helps customers install and finance energy-efficient windows for mutual benefit of both parties
Bringing developing countries into the energy equation
International Nuclear Information System (INIS)
Colombier, M.; Loup, J.; Laponche, Bernard; Martin-Amouroux, Jean-Marie; Chateau, Bertrand; Heller, Thomas C.; Kieken, Hubert; Kleiche, Mustapha; Mathy, Sandrine; Hourcade, Jean-Charles; Goldemberg, Jose; Pizer, William A.
2006-01-01
This compilation of articles on energy and climate change is a selection of contributions to the first edition of Regards sur la Terre, an annual reference in French on the international dimension of sustainable development, launched on the initiative of the French development agency, AFD (Agence francaise de developpement) and the institute for sustainable development and international relations, IDDRI (Institut du developpement durable et des relations internationales), and published by Presses de Sciences Po (Paris) in November 2006. Regards sur la terre includes an analysis of the most important international meetings and events of the last 12 months in the field of sustainable development, along with a thematic report, which focuses this year on energy and climate change. For almost two hundred years, the economic development of industrialized countries has gone hand in hand with growing consumption of fossil fuels, first coal, then oil and gas. The oil shocks of the 1970's had already revealed the fragility of this model, without however generating any major changes. The disconnection observed in the 1980's between a rapid return to economic growth and stagnating energy consumption was only provisional, and energy demand in the richest countries has again been rising since the 1990's; the development of alternative energy sources (nuclear power and renewables) has remained marginal and has failed to dethrone fossil fuels on which, paradoxically, the economies of industrialized countries are even more dependent today than they were 20 years ago. But with the turn of the century came major developments in the global energy landscape following the emergence of new and hitherto marginal actors: the rapid economic development of emerging countries is also dependent on an increasing supply of energy. Today this growing demand adds to tension on the oil and gas market, where the poorest countries are also the first victims. It could give new impetus to the
The energy equation with three unknowns
International Nuclear Information System (INIS)
Schifano, Fabio; Moriconi, Daniele
2008-01-01
This article discusses the alarming situation of energy in Italy as this country depends at 82 per cent on its imports (oil, natural gas and electricity), a dependence which could even increase. The authors first propose overviews of the situation regarding oil, natural gas and electric power (origins of imports, role of Italian companies, status of infrastructures), and also briefly of renewable energies. They recall the history of the use of nuclear energy: Italy has been one of the first country to use nuclear energy to produce electric power, but a referendum organised after Chernobyl resulted in phasing out nuclear. Then, the authors discuss perspectives associated with three main strategic unknowns: an increase of energy dependence with respect to hydrocarbons and to foreign nuclear power, a supply insecurity due to a dependence concentrated on a small number of countries (notably as far as natural gas is concerned), and an increasing interdependence between economic growth and sustainable development (the reduction of greenhouse emissions is a prevailing parameter for future energetic choices)
Ground temperature estimation through an energy balance method
Energy Technology Data Exchange (ETDEWEB)
Duan, X. [Manitoba Univ., Winnipeg, MB (Canada); Naterer, G.F. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada)
2007-07-01
A joint research project by the University of Manitoba and the University of Ontario Institute of Technology (UOIT) is currently examining ground thermal responses to heat conduction within power transmission line towers. The aim of the study is to develop thermal protection alternatives for the freezing and thawing conditions that typically lead to the tilting and heaving of tower foundations. The analysis presented in this paper focused on the temperatures of areas undisturbed by tower foundations. The ground was approximated as a semi-infinite homogenous system with a sinusoidal variation of ground temperature and constant thermophysical properties. Solar radiation and air temperature data were used to develop the sinusoidal profiles. The far-field temperature was modeled using a 1-D transient heat conduction equation. Geothermal gradients were neglected. The energy balance method was used for boundary conditions at the ground surface. Energy components included heat conduction through the ground; heat convection due to wind; net radiative heat transfer; and latent heat transfer due to evaporation. Newton's law of cooling was used to model the convective heat transfer. The model was used to predict ground temperature under varying conditions. Monthly variations of temperature at 2 meters depth were calculated using different evaporation fractions. The model was also used to estimate summer ground temperature at a site in Manitoba. Air temperature, wind velocity and solar radiation data were used. It was suggested that further research is needed to consider the effects of freezing, thawing, and winter snow cover. 2 refs., 1 tab., 2 figs.
Sustainable urban regeneration based on energy balance
Van Timmeren, A.; Zwetsloot, J.; Brezet, H.; Silvester, S.
2012-01-01
In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming
Energy balance of the Norrbotten county; Energilaeget i Norrbotten
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Maria [NENET, Boden (Sweden)
2003-03-01
The energy balance of Norrbotten county, in the extreme North of Sweden, is reviewed, both on the county level and for each local community. A broad estimate of the environmental effects of the energy use is given. Population statistics and industrial activities are also described.
Energy balance of the Sao Paulo State - 1995
International Nuclear Information System (INIS)
1996-01-01
This work informs the energetic balance of Sao Paulo State - 1995, with information referring to the year 1994, containing the energy fluxes from primary and secondary energy sources in the main sectors of Sao Paulo economy. An electronic version for windows environment is also available. 81 figs., 179 tabs
Soil heat flux and day time surface energy balance closure
Indian Academy of Sciences (India)
Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...
Yearly energy balance sheets 2000-2001
International Nuclear Information System (INIS)
2003-01-01
The total supply of energy during the year 2001 rose by 7 per cent compared with the year 2000, from 588 TWh to 630 TWh. The supply of nuclear power increased by 27 per cent, whereas electricity from waterpower has remained still at approximately 80 TWh. During the year 2001 Sweden exported 18,5 TWh electricity and the import was 11,1 TWh. The use of petroleum products for electricity production was nearly the same, 3,5 TWh during 2001 compared with 3,6 TWh during 2000. The production of heat from petroleum products increased from 3,2 TWh 2000 to 4,3 TWh 2001. The explanation to that is mainly the large increasing of heavy fuel oil in district heating plants. The use of energy during the year 2001 increased by nearly 1 per cent compared with the year 2000, from 391 TWh to 394 TWh. The use of coal, coke, biomass fuels and petroleum products decreased a little between the years, whereas the use of gases, district heating and electricity rises. The industrial sectors energy use decreases a bit from 156 TWh for the year 2000 to 152 TWh the year 2001. An increasing use of gases and district heating can nevertheless be seen. The energy use within transport sector rises from 87 TWh to 88 TWh. Within the household sector there is an increasing use of energy between the years with a total of 3 TWh, from 91 TWh to 94 TWh. The households continue to reduce their use of petroleum products. The use of electricity and district heating increases, by 6 per cent and 15 per cent respectively, between year 2000 and 2001
Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method
Directory of Open Access Journals (Sweden)
A. M. El-Naggar
2015-11-01
Full Text Available Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF and numerical solutions using Runge-Kutta method. The results show the presented method is potentially to solve high nonlinear oscillator equations.
Energy and heat balance in wet DCT
Energy Technology Data Exchange (ETDEWEB)
Saxena, Viren; Moser, Alexander; Schaefer, Michael; Ritschel, Michael [BorgWarner Drivetrain Engineering GmbH, Ketsch (Germany)
2012-11-01
Wet clutch systems are well known for their thermal robustness and versatility in a wide range of automotive applications. Conventional automatics have used them for a long time as torque converter lock-up clutches, shift elements and launch clutches. With the development of DCTs, wet clutch technology has evolved in terms of launch and shift performance, controllability, robustness and efficiency. This paper discusses improvements in the wet clutch and their impact on today's vehicle applications in terms of heat and energy management. Thermal robustness is a crucial aspect for an automatic transmission. In addition to the clutch thermal performance, the influence of transmission oil cooler and oil sump warm-up behavior are discussed. Based on our latest development activities, test results and simulations, we shall discuss the latest friction material enhancement and its impact on DCTs in terms of efficiency and performance. Drag loss is a much-discussed topic during the development of wet clutch systems. This paper discusses in detail the cause and break-up of various energy losses in a wet DCT. Efficient energy management strategies for actuation systems, cooling, and lubrication, clutch apply, and pre-selection in modern power trains with engine start / stop are evaluated based on the latest test and simulation results. Finally, the paper summarizes the performance and efficiency optimized moist clutch system. (orig.)
National energy balance - 1995 of Brazil. Based on 1994
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
Consolidated data of production, consumption and external dependence of energy are presented, as also the sectorial composition of the consumption of the different groups of energy sources. For each primary and secondary source the production, import, export, variations in inventories, losses, adjustments and total consumption are analyzed. Balances of transformation centers, characterizing the energy the energy processed, the energy produced and the respective losses in transformation are shown. Finally energy resources and reserves of primary sources are described with respective methodologies for estimating them. 60 figs., 107 tabs.
National energy balance - 1995 of Brazil. Based on 1994
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-12-31
Consolidated data of production, consumption and external dependence of energy are presented, as also the sectorial composition of the consumption of the different groups of energy sources. For each primary and secondary source the production, import, export, variations in inventories, losses, adjustments and total consumption are analyzed. Balances of transformation centers, characterizing the energy the energy processed, the energy produced and the respective losses in transformation are shown. Finally energy resources and reserves of primary sources are described with respective methodologies for estimating them. 60 figs., 107 tabs.
National energy balance - 1995 of Brazil. Based on 1994
International Nuclear Information System (INIS)
1995-01-01
Consolidated data of production, consumption and external dependence of energy are presented, as also the sectorial composition of the consumption of the different groups of energy sources. For each primary and secondary source the production, import, export, variations in inventories, losses, adjustments and total consumption are analyzed. Balances of transformation centers, characterizing the energy the energy processed, the energy produced and the respective losses in transformation are shown. Finally energy resources and reserves of primary sources are described with respective methodologies for estimating them. 60 figs., 107 tabs
Correlation of energy balance method to dynamic pipe rupture analysis
International Nuclear Information System (INIS)
Kuo, H.H.; Durkee, M.
1983-01-01
When using an energy balance approach in the design of pipe rupture restraints for nuclear power plants, the NRC specifies in its Standard Review Plan 3.6.2 that the input energy to the system must be multiplied by a factor of 1.1 unless a lower value can be justified. Since the energy balance method is already quite conservative, an across-the-board use of 1.1 to amplify the energy input appears unneccessary. The paper's purpose is to show that this 'correlation factor' could be substantially less than unity if certain design parameters are met. In this paper, result of nonlinear dynamic analyses were compared to the results of the corresponding analyses based on the energy balance method which assumes constant blowdown forces and rigid plastic material properties. The appropriate correlation factors required to match the energy balance results with the dynamic analyses results were correlated to design parameters such as restraint location from the break, yield strength of the energy absorbing component, and the restraint gap. It is shown that the correlation factor is related to a single nondimensional design parameter and can be limited to a value below unity if appropriate design parameters are chosen. It is also shown that the deformation of the restraints can be related to dimensionless system parameters. This, therefore, allows the maximum restraint deformation to be evaluated directly for design purposes. (orig.)
International bioenergy transport costs and energy balance
International Nuclear Information System (INIS)
Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.
2005-01-01
To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss
International Nuclear Information System (INIS)
Wareing, T.A.
1993-01-01
New methods are presented for diffusion-synthetic accelerating the S N equations in slab and x-y geometries with the corner balance spatial differencing scheme. With the standard diffusion-synthetic acceleration method, the discretized diffusion problem is derived from the discretized S N problem to insure stability through consistent differencing. The major difference between our new methods and standard diffusion-synthetic acceleration is that the discretized diffusion problem is derived from a discretization of the P 1 equations, independently of the discretized S N problem. We present theoretical and numerical results to show that these new methods are unconditionally efficient in slab and x-y geometries with rectangular spatial meshes and isotropic scattering. (orig.)
Measurement of the energy balance in ATC Tokamak
International Nuclear Information System (INIS)
Hsuan, H.; Bol, K.; Ellis, R.A.
1975-01-01
Gross properties of the energy balance in the ATC tokamak have been investigated. During the quasi-steady state phase of a normal discharge, the major part of the energy loss was found to be the limiters. Radiation and charge-exchange play minor roles during this quasi-steady state phase, but are nevertheless the dominant loss mechanisms at the termination of a discharge; and account for a substantial portion of the stored poloidal magnetic energy associated with the plasma current. (auth)
The Energy Balance of Plasma in a Coaxial Plasma Opening Switch
International Nuclear Information System (INIS)
Xu Xiang; Wang Younian
2006-01-01
The two-dimensional energy balance in a coaxial plasma opening switch (POS) is studied based on the single-fluid magnetohydrodynamic (MHD) equations coupled with the generalized Ohm's law. The energy transfers between the plasma and the magnetic field are considered during the penetration of the magnetic field as the Ohmic heating is included in the energy-balance equation. The focus is on the energy partition between the magnetic-field energy and the dissipated magnetic-field energy in a high-density POS with different rise-in-time electric currents at the generator boundary. The simulation code is tested in two cases: the constant-in-time current case and the linear rise-in-time current case. For the sinusoidally rise-in-time current similar to that of the experiments, it is shown that at the end of the conduction phase the dissipated magnetic-field energy is 36.5% of the input electromagnetic energy, which is consistent with the experimental results
Energy balance in solar and stellar chromospheres
Avrett, E. H.
1981-01-01
Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.
Energy balance at a crossroads: translating the science into action.
Manore, Melinda M; Brown, Katie; Houtkooper, Linda; Jakicic, John; Peters, John C; Smith Edge, Marianne; Steiber, Alison; Going, Scott; Gable, Lisa Guillermin; Krautheim, Ann Marie
2014-07-01
One of the major challenges facing the United States is the high number of overweight and obese adults and the growing number of overweight and unfit children and youth. To improve the nation's health, young people must move into adulthood without the burden of obesity and its associated chronic diseases. To address these issues, the American College of Sports Medicine, the Academy of Nutrition and Dietetics, and the US Department of Agriculture/Agriculture Research Service convened an expert panel meeting in October 2012 titled "Energy Balance at a Crossroads: Translating the Science into Action." Experts in the fields of nutrition and exercise science came together to identify the biological, lifestyle, and environmental changes that will most successfully help children and families attain and manage energy balance and tip the scale toward healthier weights. Two goals were addressed: 1) professional training and 2) consumer/community education. The training goal focused on developing a comprehensive strategy to facilitate the integration of nutrition and physical activity (PA) using a dynamic energy balance approach for regulating weight into the training of undergraduate and graduate students in dietetics/nutrition science, exercise science/PA, and pre-K-12 teacher preparation programs and in training existing cooperative extension faculty. The education goal focused on developing strategies for integrating dynamic energy balance into nutrition and PA educational programs for the public, especially programs funded by federal/state agencies. The meeting expert presenters and participants addressed three key areas: 1) biological and lifestyle factors that affect energy balance, 2) undergraduate/graduate educational and training issues, and 3) best practices associated with educating the public about dynamic energy balance. Specific consensus recommendations were developed for each goal.
Energy balances for Europe and North America 1970-2000
International Nuclear Information System (INIS)
1989-01-01
This publication is based on the ECE Energy Data Bank collected by the Senior Advisers to ECE Governments on Energy, supplemented by other official data available to the secretariat. The Energy Data Base contains energy balances from 1960 to 1985 for the market economy countries of western Europe and North America and from 1965 to 1985 for the centrally planned economy countries of eastern Europe. During the first session of the Senior Advisers to ECE Governments on Energy held in 1979, countries decided to circulate a questionnaire on Selected Energy Issues covering the years 1973, 1978, 1980, 1985, 1990 and 2000 (ECE/ENERGY/2, para. 29). While the methodology for establishing the balances has been mutually agreed, the assumptions underlying each country's forecast are not necessarily comparable. At their fifth session held from 23 to 27 September 1985, the Senior Advisers to ECE Governments on Energy agreed to issue a second questionnaire to collect revised projections for the years 1990 and 2000 (ECE/ENERGY/11, para. 50(b)). Information received served as benchmarks to construct a time series from 1970 to 1985. Commodities listed include solid fossil fuels, petroleum fuels, gaseous fuels both natural and derived, nuclear energy, hydro- and geothermal energy, electricity, steam and hot water, energy derived from non-conventional energy sources (solar, wind, wave, tidal, etc.)
Dark energy cosmology with generalized linear equation of state
International Nuclear Information System (INIS)
Babichev, E; Dokuchaev, V; Eroshenko, Yu
2005-01-01
Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip
Effects of Genotype by Environment Interactions on Milk Yield, Energy Balance, and Protein Balance
Beerda, B.; Ouweltjes, W.; Sebek, L.B.J.; Windig, J.J.; Veerkamp, R.F.
2007-01-01
Increases in genetic merit for milk yield are associated with increases in mobilization of body reserves. This study assessed the effects of genotype by environment (GxE) interactions on milk yield and energy and protein balances. Heifers (n = 100) with high or low genetic merit for milk yield were
Fat intake and energy-balance effects.
Westerterp-Plantenga, M S
2004-12-30
This paper focuses on the effects of dietary fats or fatty acids on key targets of metabolic intermediates for body-weight control, i.e. satiety, thermogenesis, fat oxidation and body composition. With respect to sensory satiety, it appeared, e.g. that linoleic acid tasters showed a different mechanism for meal termination than non-tasters did. They stopped eating linoleic acid containing food based upon satiety, whereas the non-tasters stopped eating based upon the change in pleasantness of taste. Moreover, in the normal range of body mass index, an inverse relationship was shown between % 'tasters' and BMI. In a high fat diet vs. a low fat high protein high carbohydrate diet, metabolic satiety appeared to be continuously lower and correlated positively to diet-induced energy expenditure. However, with respect to the intermeal interval, satiety appeared to be more sustained following a high fat vs. a high CHO preload, resulting in a lower meal frequency. Covert fat replacement during breakfast by sucrose polyester was successful in combination with dietary restraint, yet overt fat replacement in snacks was successful in the dietary-unrestrained subjects, i.e. those who habitually ate snacks. With respect to fat oxidation, from a respiration-chamber experiment on the effects of diacylglycerol compared (DG) to triacylglycerol (TG) intake, it was concluded that consumption of DG increased fat oxidation and beta-hydroxy-butyrate levels, but did not affect energy metabolism or triacylglycerol level. Parameters of appetite were all lowered by DG compared to TG. With respect to body composition, the effects of 13 weeks CLA supplementation in overweight subjects during weight regain were assessed. Although CLA did not affect %body-weight regain, the regain of fat-free mass was increased by CLA, independently of %body-weight regain and physical activity, and as a consequence resting metabolic rate was increased. At the same time, appetite was reduced and satiety and
Energy Technology Data Exchange (ETDEWEB)
Varela, M [CIEMAT. Madrid (Spain)
1999-06-01
The present work accomplishes a revision to the situation of the wind market in Spain, its recent evolution, its regional distribution, the principal actors of the market (manufacturers, promoters). The balance includes a review of the programs of institutional support to wind energy, an analysis of the current installation costs and electricity production costs. Finally, other variables related the integration of wind energy are analysed, as the potential of employment generation or the associated environmental factors. (Author) 5 refs.
Energy balance and deformation mechanisms of duplexes
Mitra, Gautam; Boyer, Steven E.
A duplex consists of a series of imbricate faults that are asymptotic to a roof thrust and a floor thrust. Depending on the final orientations of the imbricate faults and the final position of the branch lines, a duplex may be hinterland-dipping, foreland-dipping, or an antiformal stack. The exact geometry depends on various factors such as the initial dimensions of the individual slices (horses), their lithology, the amount of displacement (normalized to size of horse) on each fault, and the mechanics of movement along each fault. The energy required in duplex formation can be determined by calculating the total work involved in emplacing each horse: this is given by where W t=W p+W b+W g+W iWp is the work involved in initiating and propagating a fracture. Wb is the work involved in basal sliding, which may be frictional or some form of ductile flow, Wg is the work done against gravity during the emplacement of the horse, and Wi is the work involved in the internal deformation of the horse. By calculating and comparing these work terms it is possible to predict the conditions under which the different types of duplexes will form. Normally, the development of a hinterland-dipping duplex is most likely. However, if deformation conditions are favorable, displacements on individual imbricate faults may be very large compared to the size of the horses, leading to the formation of either antiformal stacks or foreland-dipping duplexes.
Reassessing the effect of cloud type on Earth's energy balance
Hang, A.; L'Ecuyer, T.
2017-12-01
Cloud feedbacks depend critically on the characteristics of the clouds that change, their location and their environment. As a result, accurately predicting the impact of clouds on future climate requires a better understanding of individual cloud types and their spatial and temporal variability. This work revisits the problem of documenting the effects of distinct cloud regimes on Earth's radiation budget distinguishing cloud types according to their signatures in spaceborne active observations. Using CloudSat's multi-sensor radiative fluxes product that leverages high-resolution vertical cloud information from CloudSat, CALIPSO, and MODIS observations to provide the most accurate estimates of vertically-resolved radiative fluxes available to date, we estimate the global annual mean net cloud radiative effect at the top of the atmosphere to be -17.1 W m-2 (-44.2 W m-2 in the shortwave and 27.1 W m-2 in the longwave), slightly weaker than previous estimates from passive sensor observations. Multi-layered cloud systems, that are often misclassified using passive techniques but are ubiquitous in both hemispheres, contribute about -6.2 W m-2 of the net cooling effect, particularly at ITCZ and higher latitudes. Another unique aspect of this work is the ability of CloudSat and CALIPSO to detect cloud boundary information providing an improved capability to accurately discern the impact of cloud-type variations on surface radiation balance, a critical factor in modulating the disposition of excess energy in the climate system. The global annual net cloud radiative effect at the surface is estimated to be -24.8 W m-2 (-51.1 W m-2 in the shortwave and 26.3 W m-2 in the longwave), dominated by shortwave heating in multi-layered and stratocumulus clouds. Corresponding estimates of the effects of clouds on atmospheric heating suggest that clouds redistribute heat from poles to equator enhancing the general circulation.
Energy balance Flanders 1994: disparity method; Energiebalans Vlaanderen 1994: verschilmethode
Energy Technology Data Exchange (ETDEWEB)
Smekens, K.; Vanhoof, B.
1997-07-01
In this report the energy balance of Flanders for 1994 is presented, together with an estimate of the CO2-emissions. Apart from data about 1994, comparable data about the 1990-1994 period are presented in order to give a picture of the evolution of both the energy consumption and the CO2-emissions in Flanders. The energy balance was calculated by subtracting the energy balances of the Walloon and Brussels region from the Belgian one. Afterwards, these results were corrected as far as specific Flemish energy data were available. For the calculation of the CO2-emissions the IPCC guidelines for greenhouse inventories were used. In 1991, the primary energy consumption in Flanders was 1489.9 PJ, the gross inland consumption was 1309.8 PJ. The final energy consumption amounted 971.7 PJ. The total CO2-emission was 73,086 kton (excluding emissions from international aviation and marine bunkering). Compared to 1990, the gross inland consumption had increased some 7.3 per cent by 1994, the final energy consumption 12.3 per cent and the CO2-emissions 8.3 per cent. In view of the planned CO2-emission reduction of 10 per cent by the year 2010, the figures quoted above show that there is still a long way to go to reach this objective.
Balancing the supply mix to meet tomorrow's energy needs
International Nuclear Information System (INIS)
Wiggin, M.
2004-01-01
This presentation emphasized the need to balance the power supply mix to ensure future energy needs. A balanced supply includes generation supply options that include renewable energy sources, natural gas, oil or coal. The role of combined heat and power (CHP) and district energy in this supply mix is considered to be a potential generation solution. The challenge facing Ontario's Independent Electricity Market Operator (IMO) is to balance supply and demand, phase out coal, promote renewables, diminish demand and determine the new role for natural gas. A graph by the National Energy Board depicting Canada's energy future and scenarios for supply and demand to 2025 indicates that gas yields from the Western Canada Sedimentary Basin are declining. It is expected that with growing demands for natural gas, prices will remain high and there will be a need for new generation capacity. The viable options for energy supply include a re-examination of the district energy advantage through industrial waste heat, biomass and other renewables, and the integration of industrial and community energy systems. Other options include the continued recognition of distributed generation in the form of combined heat and power. 4 figs
Power and energy balances, today and three years ahead
International Nuclear Information System (INIS)
Borg, Trygve; Maula, H.; Pedersen, Jens; Soendergren, C.; Waegelund, G.; Granlund, K.
2003-06-01
Energy scenario 2006: In normal conditions the Nordel system is balancing well. It is expected that the Nordel system will cope with a single dry year situation. if a year with extreme low hydropower production or a combination of two dry years in succession occurs, the result may be a very serious balance deficit. For part of the Nordel system it is possible that market cannot solve the problem and the situation will demand various forms of rationing or other measures. Power balance winter peak demand 2006/07: During a normal winter, peak demand will be handled without difficulties. If a ten years winter occurs the power balance is expected to come under strain and the Nordic power system is dependent on import from Europe via strong interconnections. The forecast shows that there probably is enough production capacity and import possibilities from countries outside Nordel. (BA)
Solar energy and global heat balance of a city
Energy Technology Data Exchange (ETDEWEB)
Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)
2001-07-01
The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)
Energy balance of hydro-aggregate with Pelton water turbine
International Nuclear Information System (INIS)
Obretenov, V.
2005-01-01
One of the major tasks in the field of hydraulic power engineering refers to machines and equipment modernization in the hydropower plants and pumped storage power plants commissioned more than 20 years ago. The increase of hydraulic units operation efficiency will allow in a number of cases to substantially reduce the specific water consumption and to drive the output of electric energy up. In these cases it is crucial to find out the operational efficiency of individual system elements and to precisely focus the modernization endeavours on such elements where the energy losses go beyond all admissible limits. Besides, the determination of the energy losses in the hydro energy turbo system will allow valid defining of hydraulic units operational scope. This work treats the methods of balance study of a hydraulic unit with Peiton water turbine. The experimental results of the balance study of Belmeken pumped storage power plant hydraulic unit No 5 under turbine operational mode are presented
Equation of material balance for systems of double porosity with layer of initial gas
International Nuclear Information System (INIS)
Niz, Eider; Hidrobo, Eduardo A; Penuela, Gherson; Ordonez, Anibal; Calderon, Zuly H
2004-01-01
The physical complexity associated to naturally fractured reservoirs calls for the use of more robust formulations of the Material-Balance Equation (MBE) for determining the initial hydrocarbon in place and predicting reservoir performance. In this paper, we present an improved version of the dual-porosity MBE for naturally fractured reservoirs, published by Penuela et al. (2001), including the existence of an initial gas phase in the reservoir. Considering that a fractured reservoir may be modeled either using different properties for each porous medium or with average values for the total system, two solution techniques based on each of these assumptions are proposed. Convenient arrangements of the equation allow us to estimate not only the original oil and gas volumes but also the relative storage capacity of the porous media (fractures and matrix) and the compressibility for the fractured and total systems. The new equation can be applied to a broader range of reservoirs due to its more general character. The consistency of the expression proposed has been tested with a set of synthetic models exhibiting different storage capacity in the fractures
Energy Balance Education in Schools: The Role of Student Knowledge
Chen, Senlin; Nam, Yoon Ho
2017-01-01
Obesity prevention and control have been identified as top public health priorities in modern societies. Sport and exercise science researchers from multiple perspectives (e.g. behavioral, pedagogical, psychological, and physiological) have been active contributors addressing this topic. This paper examines the importance of energy balance (EB)…
Energy balance from Bahia state 2013 - series 1996-2012
International Nuclear Information System (INIS)
2013-01-01
This Energy Balance from Bahia, Brazil, presents six chapters, as follows: the chapter 1 approaches the profile of the energy system, showing the structure of the Bahia state energy matrix in the year of 2012, and the modifications occurred during the period of 1996-2012. Then the consolidated information are presented, from production to final consumption, for the set of primary and secondary sources, as well as comparative tables of states x national production of major energy production; the chapter 2 analyses the development, during the period of 1996-2012, in energy supply according to the Primary and Secondary sources; the chapter 3 comprised the evolution of energy consumption by sources and according the social-economic sectors; chapter 4 focus, within a broader view, the evolution of self-sufficiency energy state, confronting the production of primary energy to the total energy demand; in chapter 5 is given the status of the Energy Transformation Centers of the state, highlighting the balances of the Refinery Landulpho Alves (RLAM) and the Power Plants of Public Service and Self-Producer and the chapter 6 contains the consolidated matrixes expressed in the years of 1980, 1985 and 1990-2012
Energy and entropy balance for a black piecewise homogeneous planet
International Nuclear Information System (INIS)
Pollarolo, G.; Sertorio, L.
1979-01-01
In this paper a crude model for a planet interacting with the solar radiation is presented, the aim being the discussion of the global energy balance and corresponding entropy production. It is found that the power of the surface energy circulation and the temperature excursion have a peculiar nonlinear behaviour as a function of the parameters representing the specific heat of each piece and the thermal conductivity of their boundaries. (author)
The energy and pressure balance in the corona
International Nuclear Information System (INIS)
McWhirter, R.W.P.; Wilson, R.
1976-01-01
This paper reviews theoretical models for the solar corona based on energy and pressure calculations. Processes included in these calculations are: (a) heating of the outer corona by mechanical waves; (b) convective out-flow of gas giving rise to the solar wind; (c) thermal conductions; (d) radiated power loss. Possible observations to help answer some of the outstanding questions about the energy balance are suggested. (author)
Energy balance of Lower Saxony 1994; Niedersaechsische Energiebilanz 1994
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-10-01
The energy balance of Lower Saxony is presented in physical units, in terrajoule and in coal equivalent to show supply, conversion, and consumption of primary and secondary energy sources in the year under report. (orig.) [Deutsch] Die Energiebilanz des Landes Niedersachsen in physikalischen Einheiten, in Terrajoule und in Steinkohleeinheiten stellt das Energieaufkommen, die Energieumwandlung und den Energieverbrauch fuer Primaer- und Sekundaerenergietraeger im Berichtsjahr dar. (orig.)
The Spanish Wind Energy Market. Balance and Outlooks
International Nuclear Information System (INIS)
Varela, M.
1999-01-01
The present work accomplishes a revision to the situation of the wind market in Spain, its recent evolution, its regional distribution, the principal actors of the market (manufacturers, promoters). The balance includes a review of the programs of institutional support to wind energy, an analysis of the current installation costs and electricity production costs. Finally, other variables related the integration of wind energy are analysed, as the potential of employment generation or the associated environmental factors. (Author) 5 refs
Directory of Open Access Journals (Sweden)
Ramesh K. Singh
2015-12-01
Full Text Available The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC model, Surface Energy Balance Algorithm for Land (SEBAL model, Surface Energy Balance System (SEBS model, and the Operational Simplified Surface Energy Balance (SSEBop model—using Landsat images to estimate evapotranspiration (ET in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1 and a high Nash–Sutcliffe coefficient of efficiency (>0.80, whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.
Greenhouse gas emissions and energy balance of palm oil biofuel
Energy Technology Data Exchange (ETDEWEB)
de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)
2010-11-15
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis
Energy balance framework for Net Zero Energy buildings
Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...
Net energy balance of tokamak fusion power plants
International Nuclear Information System (INIS)
Buende, R.
1981-10-01
The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)
Infrared radiation in the energy balance of the upper atmosphere
International Nuclear Information System (INIS)
Gordiets, B.F.; Markov, M.N.
1977-01-01
The contribution of the infrared radiation to the energy balance of the Earth's upper atmosphere is discussed. The theoretical analysis has been carried out of the mechanisms of the transformation of the energy of outgoing particles and the ultraviolet-radiation of the Sun absorbed at the heights of Z >= 90 km into the infrared radiation. It is found out the the infrared radiation within the wave length range of 1.2-20 μ is more intensive that the 63 μ radiation of atomic oxygen and plays an important role in the general energy balance and the thermal regime of the thermosphere. It has been found out too that in the area of Z >= 120 km heights the radiation in the 5.3 μ NO band is the most intensive. This radiation is to be considered for the more accurate description of parameters of the atmosphere (temperature, density) conditioning the nature of the translocation of ionospheric sounds (ISS)
The role of energy conservation in the BFKL equation
International Nuclear Information System (INIS)
Forshaw, J.R.; Harriman, P.N.; Sutton, P.J.
1993-01-01
We study a modification to the BFKL equation at zero momentum transfer due to the imposition of energy conservation. The significance of our modification, which enters in the form of an ultraviolet cutoff, is illustrated directly and is discussed within the context of the gluon diffusion in k T . (Author)
Energy equation for the analysis of magnetization relaxation to equilibrium
Energy Technology Data Exchange (ETDEWEB)
Bertotti, G. [IEN Galileo Ferraris, Materials Department, Strada delle Cacce, 91, I-10135 Torino (Italy)]. E-mail: bertotti@ien.it; Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, I-10129 Torino (Italy); Magni, A. [IEN Galileo Ferraris, Materials Department, Strada delle Cacce, 91, I-10135 Torino (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, 20742 (United States); Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , I-80125 Naples (Italy)
2005-02-01
Magnetization relaxation starting from a generic non-equilibrium state is analytically described. An equation for the energy decay is obtained. On this basis, an approximate expression for the magnetization motion during the ringing process is obtained in terms of Jacobi elliptic functions with time-dependent parameters.
Energy equation for the analysis of magnetization relaxation to equilibrium
International Nuclear Information System (INIS)
Bertotti, G.; Bonin, R.; Magni, A.; Mayergoyz, I.D.; Serpico, C.
2005-01-01
Magnetization relaxation starting from a generic non-equilibrium state is analytically described. An equation for the energy decay is obtained. On this basis, an approximate expression for the magnetization motion during the ringing process is obtained in terms of Jacobi elliptic functions with time-dependent parameters
Heat fluxes and energy balance in the FTU machine
International Nuclear Information System (INIS)
Ciotti, M.; Ferro, C.; Franzoni, G.; Maddaluno, G.
1993-01-01
Thermal loads on the FTU limiter are routinely measured and energy losses via conduction/convection are inferred. A quite small fraction of the input power (4 to 8%) has been measured from mushrooms temperature increase. Numerical evaluation and comparison with thermocouples located at different radial positions in the S.O.L. suggest a long energy decay length λ e . The power loads inferred from the estimated λE in the actual geometry of the limiter and first wall lead to a global energy balance close to be satisfied. (author)
Energy Balance in DC Arc Plasma Melting Furnace
International Nuclear Information System (INIS)
Zhao Peng; Meng Yuedong; Yu Xinyao; Chen Longwei; Jiang Yiman; Nie Guohua; Chen Mingzhou
2009-01-01
In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency. (plasma technology)
Particle and energy balance in the SOL generated by a limiter in a RFP plasma
International Nuclear Information System (INIS)
Antoni, V.; Bagatin, M.; Desideri, D.; Serianni, G.
1992-01-01
The plasma outer region of the RFP experiment ETA BETA II has been extensively investigated. In particular by an insertable graphite limiter, instrumented with thermocouples and Langmuir probes, the energy and particle fluxes in the shadow of the limiter have been measured at different insertions. The results are compared with those obtained by small-sized calorimeter/Langmuir probes inserted to investigate, with fine space resolution, the outer region without limiter. Almost 80% of the power to the limiter is estimated to be carried by fast suprathermal electrons flowing along the magnetic field line direction. From an energy balance equation, applied in the SOL locally generated, the connection length of the limiter has been derived. Thus a particle balance has been applied to determine the particle diffusion coefficient at the plasma edge. (orig.)
Dissipation and energy balance in electronic dynamics of Na clusters
Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard
2017-06-01
We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Insulin controls food intake and energy balance via NPY neurons
Directory of Open Access Journals (Sweden)
Kim Loh
2017-06-01
Full Text Available Objectives: Insulin signaling in the brain has been implicated in the control of satiety, glucose homeostasis and energy balance. However, insulin signaling is dispensable in energy homeostasis controlling AgRP or POMC neurons and it is unclear which other neurons regulate these effects. Here we describe an ancient insulin/NPY neuronal network that governs energy homeostasis across phyla. Methods: To address the role of insulin action specifically in NPY neurons, we generated a variety of models by selectively removing insulin signaling in NPY neurons in flies and mice and testing the consequences on energy homeostasis. Results: By specifically targeting the insulin receptor in both fly and mouse NPY expressing neurons, we found NPY-specific insulin signaling controls food intake and energy expenditure, and lack of insulin signaling in NPY neurons leads to increased energy stores and an obese phenotype. Additionally, the lack of insulin signaling in NPY neurons leads to a dysregulation of GH/IGF-1 axis and to altered insulin sensitivity. Conclusions: Taken together, these results suggest that insulin actions in NPY neurons is critical for maintaining energy balance and an impairment of this pathway may be causally linked to the development of metabolic diseases. Keywords: Hypothalamus, NPY, Insulin, Obesity
Brain Ceramide Metabolism in the Control of Energy Balance
Directory of Open Access Journals (Sweden)
Céline Cruciani-Guglielmacci
2017-10-01
Full Text Available The regulation of energy balance by the central nervous system (CNS is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D. Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate, the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.
Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.
Byham-Gray, Laura D; Parrott, J Scott; Peters, Emily N; Fogerite, Susan Gould; Hand, Rosa K; Ahrens, Sean; Marcus, Andrea Fleisch; Fiutem, Justin J
2017-03-01
Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ≥65 years old. After screening for multicollinearity, the best predictive model of mREE ( R 2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability ( R 2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.
DEFF Research Database (Denmark)
Strathe, Anders Bjerring; Jørgensen, Henry; Kebreab, E
2012-01-01
ABSTRACT SUMMARY The objective of the current study was to develop Bayesian simultaneous equation models for modelling energy intake and partitioning in growing pigs. A key feature of the Bayesian approach is that parameters are assigned prior distributions, which may reflect the current state...... of nature. In the models, rates of metabolizable energy (ME) intake, protein deposition (PD) and lipid deposition (LD) were treated as dependent variables accounting for residuals being correlated. Two complementary equation systems were used to model ME intake (MEI), PD and LD. Informative priors were...... developed, reflecting current knowledge about metabolic scaling and partial efficiencies of PD and LD rates, whereas flat non-informative priors were used for the reminder of the parameters. The experimental data analysed originate from a balance and respiration trial with 17 cross-bred pigs of three...
Surface energy and radiation balance systems - General description and improvements
Fritschen, Leo J.; Simpson, James R.
1989-01-01
Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.
Resiliency and medicine: how to create a positive energy balance.
Kelly, John D
2011-01-01
A career in orthopaedics is a race-a marathon. Many outside forces converge to increase stressors to high levels. Resiliency, or the ability to bounce back from difficulty, can be learned and nurtured. The management of energy, rather than time, holds the key to avoiding burnout. Orthopaedic surgeons must minimize "energy drain" by first recognizing their ability to become proactive and control their lives. Surgeons must learn how to say "no" and delegate work and responsibilities. A positive energy balance can be attained when relationships, not things, are given priority. A focus on passions and inspiration helps to maintain energy, while a connection to a "source" and living a morally just, service-oriented life will yield endless energy.
International Nuclear Information System (INIS)
Hizanidis, K.
1984-04-01
The relativistic collisional Fokker-Planck equation combined with an externally imposed unidirectional quasilinear (rf) diffusion is solved for arbitrary values of rf diffusion coefficient under conditions of detailed balance of the staionary joint distribution involved. The detailed balance condition imposes a restriction on the functional form of the quasilinear diffusion coefficient which might be associated with the existence of a saturated spectrum of fluctuation in a quasilinearly rf-driven plasma
Battery model for electrical power system energy balance
Hafen, D. P.
1983-01-01
A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.
Energy Balance, Climate, and Life \\-- Work of M. Budyko
Cahalan, R. F.
2003-12-01
This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at the age of 81 in St. Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth's biosphere.
Energy Balance, Climate, and Life - Work of M. Budyko
Cahalan, Robert F.
2004-01-01
This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.
Impact of the daily meal pattern on energy balance
Bellisle, France
2008-01-01
The daily distribution of food intake can influence the regulation of energy balance and, in consequence, the control of body weight. Two aspects of this question must be considered: the daily number of eating occasions and their temporal distribution. Since the 1960s, epidemiological studies have reported an inverse relationship between frequency of eating and body weight, suggesting that a ‘‘nibbling’’ pattern could help to prevent obesity. This notion has later been...
International Nuclear Information System (INIS)
Cho, Nam Zin; Park, Chang Je
2001-01-01
An additive angular-dependent re-balance (AADR) factor acceleration method is described to accelerate the source iteration of discrete ordinates transport calculation. The formulation of the AADR method follows that of the angular-dependent re-balance (ADR) method in that the re-balance factor is defined only on the cell interface and in that the low-order equation is derived by integrating the transport equation (high-order equation) over angular subspaces. But, the re-balance factor is applied additively. While the AADR method is similar to the boundary projection acceleration and the alpha-weighted linear acceleration, it is more general and does have distinct features. The method is easily extendible to DP N and low-order S N re-balancing, and it does not require consistent discretizations between the high- and low-order equations as in diffusion synthetic acceleration. We find by Fourier analysis and numerical results that the AADR method with a chosen form of weighting functions is unconditionally stable and very effective. There also exists an optimal weighting parameter that leads to the smallest spectral radius. The AADR acceleration method described in this paper is simple to implement, unconditionally stable, and very effective. It uses a physically based weighting function with an optimal parameter, leading to the best spectral radius of ρ<0.1865, compared to ρ<0.2247 of DSA. The application of the AADR acceleration method with the LMB scheme on a test problem shows encouraging results
International Nuclear Information System (INIS)
Ehsani, Amir
2015-01-01
Algebras with a pair of non-associative binary operations (f, g) which are satisfy in the balanced quadratic functional equations with four object variables considered. First, we obtain a linear representation for the operations, of this kind of binary algebras (A,f,g), over an abelian group (A, +) and then we generalize the linear representation of operations, to an algebra (A,F) with non-associative binary operations which are satisfy in the balanced quadratic functional equations with four object variables. (paper)
Energy balances of OECD countries 1993-1994
International Nuclear Information System (INIS)
1996-01-01
This work contains a compilation of data on the supply and consumption of coal, oil, gas, electricity, heat, renewable combustible and waste presented in energy balances. The figures are expressed in million tonnes of oil equivalent. Historical tables summarize key energy and economic indicators as well as production, trade and final consumption data. Each issue includes definitions of products and flows and explanatory notes on the individual country data as well as conversion factors from original units to tonnes of oil equivalent. (authors). figs., tabs
The Generalized Conversion Factor in Einstein's Mass-Energy Equation
Directory of Open Access Journals (Sweden)
Ajay Sharma
2008-07-01
Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.
Japanese energy balances after the Great East Japan Earthquake
International Nuclear Information System (INIS)
Tsuzuki, Kazuhiro; Moriyama, Ryo; Ishimoto, Yuki; Tomikatsu, Koji; Hagiwara, Naoto
2012-01-01
After the Great East Japan Earthquake, disaster response and risk of nuclear accident became a new issue and the public against nuclear power was increasing with knowing a long-term period required for restoration from Fukushima accident. This article described effects of 'de-nuclear power' policy with no additional plants on energy balances in 2030 and 2050 with simulated energy model based on government's long-term energy supply-demand outlook issued in 2009. Main assumed conditions were as follows; (1) nuclear power of case B) 40 years operation and C) 60 years operation, (2) share of photovoltaic and wind power was assumed to be 9% of total power generation and the same as planned before the earthquake disaster, which could not replace nuclear power and (3) final consumption of case 2) 8% saving and 3) 20% saving. Effects of 'de-nuclear power' in 2030 were (1) CO 2 emission difference between B) and C) was 50 Mt and (2) estimated cost increase between B) and C) was 0.1 T yen/year for CO 2 emission, 1 T yen/year for LNG procurement and 2.4 T yen for thermal power construction. Energy balances in 2050 were much influenced by trend of renewable energy technology development and fossil energy procurement and use. Sophisticated power change measures using storage battery for renewable energy should be developed, otherwise if power change were dealt with thermal power, share would be limited to 15-20% of total power generation. If CO 2 emission in 2050 was limited to 50% instead of formally announced 80% of CO 2 emission in 1990, share of non-fossil power (nuclear power + renewable energy) became almost 100% for case 3). Base technology of nuclear power should remain as option for the case where fossil energy procurement and CO 2 emission limit became restrictive in 2050. (T. Tanaka)
Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest
Directory of Open Access Journals (Sweden)
J. G. Barr
2013-01-01
Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem
Energy saving in greenhouses can be obtained by energy balance-controlled screens
Energy Technology Data Exchange (ETDEWEB)
Andersson, N. E. (Univ. of Aarhus, Faculty of Agricultural Sciences, Dept. of Horticulture, Aarslev (Denmark)), e-mail: niels.andersson@agrsci.dk
2011-03-15
The energy screens in two greenhouses, one clad with double acrylic and one with single glass, were controlled by an energy balance model. The parameters in the model were heat transmission coefficients, air temperature in the greenhouse and outdoors, irradiance and a single constant for the solar energy efficiency. The energy consumption, screen movements and daily light integral were compared with a glass greenhouse in which the energy screens were controlled by irradiance. In the greenhouse with light-controlled screens the set point for opening and closing of the screens was 5 Wm-2. The energy-saving screens controlled by the energy balance model opened later and closed earlier than in the greenhouse with light-controlled screens. When using the energy balance model the energy saving was 14% for the glass greenhouse and 41% for the double acrylic greenhouse compared with the glass greenhouse with light-controlled screens. The air temperature was on average similar in the three greenhouses, but when the screens were controlled by energy balance the daily light integral was approximately 10% lower and the number of hours the screens were closed was prolonged with 35% for the glass-covered greenhouse and 25% for the double acrylic-covered greenhouse compared with the greenhouse with light-controlled screens. Energy peaks in connection with operation of the screens were not reduced. During the experiment Begonia elatior, Dendranthema grandiflora (Chrysanthemum), Hedera helix, Helianthus annuus, Gerbera jamesonii and Kalanchoe blossfeldiana were grown in the greenhouses. There was a trend in prolongation of the production time when the plants were grown in the glass greenhouse with energy balance control of the screens. A lower number of flowers or inflorescences were observed for some of the plant species produced in the greenhouses with energy balance-controlled screens
Decomposing energy balance contributions for quenched jets with CMS
Energy Technology Data Exchange (ETDEWEB)
Evdokimov, Olga
2016-12-15
Modification of energy balance in dijet events from heavy ion collisions, measured by CMS, was among the first jet quenching observations in the LHC energy domain. Here we further study the spatial extent of medium-induced modifications for such dijets, as well as potential medium response to propagating partons, using two-dimensional angular correlations of charged hadrons measured with respect to jets. New differential measurements of charged particle energy flow about the jet direction as a function of relative azimuth and relative pseudorapidity from 2.76 TeV PbPb collisions are compared with the reference pp data recorded by the CMS at the same energy. Modifications of correlated charged hadron distributions for both the leading and the subleading sides of the dijet are reported, together with comparisons of the long-range asymmetry of the underlying event in PbPb vs pp collisions.
Forecast of wind energy production and ensuring required balancing power
International Nuclear Information System (INIS)
Merkulov, M.
2010-01-01
The wind energy is gaining larger part of the energy mix around the world as well as in Bulgaria. Having in mind the irregularity of the wind, we are in front of a challenge for management of the power grid in new unknown conditions. The world's experience has proven that there could be no effective management of the grid without forecasting tools, even with small scale of wind power penetration. Application of such tools promotes simple management of large wind energy production and reduction of the quantities of required balancing powers. The share of the expenses and efforts for forecasting of the wind energy is incomparably small in comparison with expenses for keeping additional powers in readiness. The recent computers potential allow simple and rapid processing of large quantities of data from different sources, which provides required conditions for modeling the world's climate and producing sophisticated forecast. (author)
Energy Efficient Routing in Wireless Sensor Networks Through Balanced Clustering
Directory of Open Access Journals (Sweden)
Christos Douligeris
2013-01-01
Full Text Available The wide utilization of Wireless Sensor Networks (WSNs is obstructed by the severely limited energy constraints of the individual sensor nodes. This is the reason why a large part of the research in WSNs focuses on the development of energy efficient routing protocols. In this paper, a new protocol called Equalized Cluster Head Election Routing Protocol (ECHERP, which pursues energy conservation through balanced clustering, is proposed. ECHERP models the network as a linear system and, using the Gaussian elimination algorithm, calculates the combinations of nodes that can be chosen as cluster heads in order to extend the network lifetime. The performance evaluation of ECHERP is carried out through simulation tests, which evince the effectiveness of this protocol in terms of network energy efficiency when compared against other well-known protocols.
Carbon and energy balances for a range of biofuels options
Energy Technology Data Exchange (ETDEWEB)
Elsayed, M.A.; Matthews, R.; Mortimer, N.D.
2003-03-01
This is the final report of a project to produce a set of baseline energy and carbon balances for a range of electricity, heat and transport fuel production systems based on biomass feedstocks. A list of 18 important biofuel technologies in the UK was selected for study of their energy and carbon balances in a consistent approach. Existing studies on these biofuel options were reviewed and their main features identified in terms of energy input, greenhouse gas emissions (carbon dioxide, methane, nitrous oxide and total), transparency and relevance. Flow charts were produced to represent the key stages of the production of biomass and its conversion to biofuels. Outputs from the study included primary energy input per delivered energy output, carbon dioxide outputs per delivered energy output, methane output per delivered energy output, nitrous oxide output per delivered energy output and total greenhouse gas requirements. The net calorific value of the biofuel is given where relevant. Biofuels studied included: biodiesel from oilseed rape and recycled vegetable oil; combined heat and power (CHP) by combustion of wood chip from forestry residues; CHP by gasification of wood chip from short rotation coppice; electricity from the combustion of miscanthus, straw, wood chip from forestry residues and wood chip from short rotation coppice; electricity from gasification of wood chip from forestry residues and wood chip from short rotation coppice; electricity by pyrolysis of wood chip from forestry residues and wood chip from short rotation coppice; ethanol from lignocellulosics, sugar beet and wheat; heat (small scale) from combustion of wood chip from forestry residues and wood chip from short rotation coppice; and rapeseed oil from oilseed rape.
Alternative energy balances for Bulgaria to mitigate climate change
Christov, Christo
1996-01-01
Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.
Prediction Based Energy Balancing Forwarding in Cellular Networks
Directory of Open Access Journals (Sweden)
Yang Jian-Jun
2017-01-01
Full Text Available In the recent cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. Energy is a very important factor in the forwarding of cellular network since mobile users(cell phones in hot cells often suffer from low throughput due to energy lack problems. In many situations, the energy lack problems take place because the energy loading is not balanced. In this paper, we present a prediction based forwarding algorithm to let a mobile node dynamically select the next relay station with highest potential energy capacity to resume communication. Key to this strategy is that a relay station only maintains three past status, and then it is able to predict the potential energy capacity. Then, the node selects the next hop with potential maximal energy. Moreover, a location based algorithm is developed to let the mobile node figure out the target region in order to avoid flooding. Simulations demonstrate that our approach significantly increase the aggregate throughput and decrease the delay in cellular network environment.
Nonparametric reconstruction of the dark energy equation of state
Energy Technology Data Exchange (ETDEWEB)
Heitmann, Katrin [Los Alamos National Laboratory; Holsclaw, Tracy [Los Alamos National Laboratory; Alam, Ujjaini [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Sanso, Bruno [UC SANTA CRUZ; Lee, Herbie [UC SANTA CRUZ
2009-01-01
The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark energy. In the absence of a compelling theory to test, a natural approach is to first attempt to characterize the nature of dark energy in detail, the hope being that this will lead to clues about the underlying fundamental theory. A major target in this characterization is the determination of the dynamical properties of the dark energy equation of state w. The discovery of a time variation in w(z) could then lead to insights about the dynamical origin of dark energy. This approach requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new non parametric reconstruction method for the dark energy equation of state based on Gaussian Process models. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demollstrate the power of the method on different sets of simulated supernova data. The GP model approach is very easily extended to include diverse cosmological probes.
Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S
2014-06-01
Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. Copyright © 2014. Published by Elsevier Ltd.
On the Riemann solutions of the balance equations for steam and water flow in a porous medium
Lambert, W.; Marchesin, D.; Bruining, J.
2005-01-01
Conservation laws have been used to model a variety of physical phenomena and therefore the theory for this class of equations is well developed. However, in many problems, such as transport of hot fluids and gases undergoing mass transfer, balance laws are required to describe the flow. As an
Energy and Mass Balance At Gran Campo Nevado, Patagonia, Chile
Schneider, C.; Kilian, R.; Casassa, G.
The Gran Campo Nevado (GCN) Ice Cap on Peninsula Muñoz Gamero, Chile, is lo- cated in the southernmost part of the Patagonian Andes at 53S. It comprises an ice cap and numerous outlet glaciers which mostly end in proglacial lakes at sea level. The total ice covered area sums up to approximately 250 km2. GCN forms the only major ice body between the Southern Patagonian Icefield and the Street of Magallan. Its almost unique location in the zone of the all-year westerlies makes it a region of key interest in terms of glacier and climate change studies of the westwind zone of the Southern Hemisphere. Mean annual temperature of approximately +5C at sea level and high precipitation of about 8.000 mm per year lead to an extreme turn-over of ice mass from the accumulation area of the GCN Ice Cap to the ablation areas of the outlet glaciers. Since October 1999 an automated weather station (AWS) is run continuously in the area at Bahia Bahamondes for monitoring climate parameters. From February to April 2000 an additional AWS was operated on Glaciar Lengua a small outlet glacier of GCN to the north-west. Ablation has been measured at stakes during the same pe- riod. The aim of this study, was to obtain point energy and mass balance on Glaciar Lengua. The work was conducted as part of the international and interdisciplinary working group SGran Campo NevadoT and supported by the German Research Foun- & cedil;dation (DFG). Energy balance was calculated using the bulk approach formulas and calibrated to the measured ablation. It turns out, that sensible heat transfer is the major contribution to the energy balance. Since high cloud cover rates prevail, air tempera- ture is the key factor for the energy balance of the glacier. Despite high rain fall rates, energy input from rain fall is of only minor importance to the overall energy balance. From the energy balance computed, it was possible to derive summer-time degree-day factors for Glaciar Lengua. With data from the nearby
On the balance energy and nuclear dynamics in peripheral heavy-ion collisions
International Nuclear Information System (INIS)
Chugh, Rajiv; Puri, Rajeev K.
2010-01-01
We present here the system size dependence of balance energy for semi-central and peripheral collisions using quantum molecular dynamics model. For this study, the reactions of Ne 20 +Ne 20 , Ca 40 +Ca 40 , Ni 58 + Ni 58 , Nb 93 +Nb 93 , Xe 131 +Xe 131 , and Au 197 +Au 197 are simulated at different incident energies and impact parameters. A hard equation of state along with nucleon–nucleon cross-sections between 40 and 55 mb explains the data nicely. Interestingly, balance energy follows a power law ∝A τ for the mass dependence at all colliding geometries. The power factor τ is close to –1/3 in central collisions, whereas it is –2/3 for peripheral collisions suggesting stronger system size dependence at peripheral geometries. This also suggests that in the absence of momentum dependent interactions, Coulomb's interaction plays an exceedingly significant role. These results are further analyzed for nuclear dynamics at the balance point. (author)
A population balance equation model of aggregation dynamics in Taxus suspension cell cultures.
Kolewe, Martin E; Roberts, Susan C; Henson, Michael A
2012-02-01
The nature of plant cells to grow as multicellular aggregates in suspension culture has profound effects on bioprocess performance. Recent advances in the measurement of plant cell aggregate size allow for routine process monitoring of this property. We have exploited this capability to develop a conceptual model to describe changes in the aggregate size distribution that are observed over the course of a Taxus cell suspension batch culture. We utilized the population balance equation framework to describe plant cell aggregates as a particulate system, accounting for the relevant phenomenological processes underlying aggregation, such as growth and breakage. We compared model predictions to experimental data to select appropriate kernel functions, and found that larger aggregates had a higher breakage rate, biomass was partitioned asymmetrically following a breakage event, and aggregates grew exponentially. Our model was then validated against several datasets with different initial aggregate size distributions and was able to quantitatively predict changes in total biomass and mean aggregate size, as well as actual size distributions. We proposed a breakage mechanism where a fraction of biomass was lost upon each breakage event, and demonstrated that even though smaller aggregates have been shown to produce more paclitaxel, an optimum breakage rate was predicted for maximum paclitaxel accumulation. We believe this is the first model to use a segregated, corpuscular approach to describe changes in the size distribution of plant cell aggregates, and represents an important first step in the design of rational strategies to control aggregation and optimize process performance. Copyright © 2011 Wiley Periodicals, Inc.
A sensitivity analysis of the mass balance equation terms in subcooled flow boiling
International Nuclear Information System (INIS)
Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.
2013-01-01
In a heated vertical channel, the subcooled flow boiling occurs when the fluid temperature reaches the saturation point, actually a small overheating, near the channel wall while the bulk fluid temperature is below this point. In this case, vapor bubbles are generated along the channel resulting in a significant increase in the heat flux between the wall and the fluid. This study is particularly important to the thermal-hydraulics analysis of Pressurized Water Reactors (PWRs). The computational fluid dynamics software FLUENT uses the Eulerian multiphase model to analyze the subcooled flow boiling. In a previous paper, the comparison of the FLUENT results with experimental data for the void fraction presented a good agreement, both at the beginning of boiling as in nucleate boiling at the end of the channel. In the region between these two points the comparison with experimental data was not so good. Thus, a sensitivity analysis of the mass balance equation terms, steam production and condensation, was performed. Factors applied to the terms mentioned above can improve the agreement of the FLUENT results to the experimental data. Void fraction calculations show satisfactory results in relation to the experimental data in pressures values of 15, 30 and 45 bars. (author)
Spindler, A
2014-06-15
Although data reconciliation is intensely applied in process engineering, almost none of its powerful methods are employed for validation of operational data from wastewater treatment plants. This is partly due to some prerequisites that are difficult to meet including steady state, known variances of process variables and absence of gross errors. However, an algorithm can be derived from the classical approaches to data reconciliation that allows to find a comprehensive set of equations describing redundancy in the data when measured and unmeasured variables (flows and concentrations) are defined. This is a precondition for methods of data validation based on individual mass balances such as CUSUM charts. The procedure can also be applied to verify the necessity of existing or additional measurements with respect to the improvement of the data's redundancy. Results are given for a large wastewater treatment plant. The introduction aims at establishing a link between methods known from data reconciliation in process engineering and their application in wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Net energy balance of tokamak fusion power plants
International Nuclear Information System (INIS)
Buende, R.
1983-01-01
The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)
Energy Balance of the Netherlands. CBS versus IEA, Eurostat and UNFCCC
International Nuclear Information System (INIS)
Segers, R.
2010-03-01
The physical energy system of the Netherlands is described in the so-called Energy balance of CBS (Statistics Netherlands). The statistical office of Europe (Eurostat) and the International Energy Agency (IEA) also publish an energy balance of the Netherlands. They use data provided to these organizations by CBS. The main lines of these balances are the same as the CBS balance. Nevertheless, there are quite a number of differences, despite the use of the same basic data. [nl
Application of He’s Energy Balance Method to Duffing-Harmonic Oscillators
DEFF Research Database (Denmark)
Momeni, M.; Jamshidi, j.; Barari, Amin
2011-01-01
In this article, He's energy balance method is applied for calculating angular frequencies of nonlinear Duffing oscillators. This method offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. We illustrate that the energy balance is very effective and convenient...... and does not require linearization or small perturbation. Contrary to the conventional methods, in energy balance, only one iteration leads to high accuracy of the solutions. It is predicted that the energy balance method finds wide applications in engineering problems....
Energy balance and dietary habits of America's Cup sailors.
Bernardi, Elisabetta; Delussu, Sofia A; Quattrini, Filippo M; Rodio, Angelo; Bernardi, Marco
2007-08-01
This research, which was conducted with crew members of an America's Cup team, had the following objectives: (a) to assess energy expenditure and intake during training; (b) to evaluate the sailors' diet, and (c) to identify any dietary flaws to determine the appropriate intake of nutrients, correct possible dietary mistakes, and improve their food habits. Energy expenditure was estimated on 15 sailors using direct measurements (oxygen consumption) and a 3-day activity questionnaire. Oxygen consumption was measured on sailors during both on-water America's Cup sailing training and dry-land fitness training. Composition of the diet was estimated using a 3-day food record. Average daily energy expenditure of the sailors ranged from 14.95 to 24.4 MJ, depending on body mass and boat role, with the highest values found in grinders and mastmen. Daily energy intake ranged from 15.7 to 23.3 MJ (from +6% to -18% of energy expenditure). The contributions of carbohydrate, protein, and fat to total energy intake were 43%, 18%, and 39% respectively, values that are not in accord with the recommended guidelines for athletes. Our results show the importance of assessing energy balance and food habits for America's Cup sailors performing different roles. The practical outcome of this study was that the sailors were given dietary advice and prescribed a Mediterranean diet, explained in specific nutrition lectures.
Carmichael, H.
1953-01-01
A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.
Compensatory Changes in Energy Balance Regulation over One Athletic Season.
Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; MüLLER, Manfred J; Heymsfield, Steven B; Sardinha, LUíS B
2017-06-01
Mechanisms in energy balance (EB) regulation may include compensatory changes in energy intake (EI) and metabolic adaption (MA), but information is unavailable in athletes who often change EB components. We aim to investigate EB regulation compensatory mechanisms over one athletic season. Fifty-seven athletes (39 males/18 females; handball, volleyball, basketball, triathlon, and swimming) were evaluated from the beginning to the competitive phase of the season. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively, and physical activity energy expenditure was determined as TEE - 0.1(TEE) - REE. Fat mass (FM) and fat-free mass (FFM) were evaluated by dual-energy x-ray absorptiometry and changed body energy stores was determined by 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). EI was derived as TEE + EB. REE was predicted from baseline FFM, FM, sex, and sports. %MA was calculated as 100(measured REE/predicted REE-1) and MA (kcal) as %MA/100 multiplied by baseline measured REE. Average EI minus average physical activity energy expenditure was computed as a proxy of average energy availability, assuming that a constant nonexercise EE occurred over the season. Body mass increased by 0.8 ± 2.5 kg (P energy availability (r = 0.356 and r = 0.0644, respectively). TEE increased over the season without relevant mean changes in weight, suggesting that EI compensation likely occurred. The thrifty or spendthrift phenotypes observed among sports and the demanding workloads these athletes are exposed to highlight the need for sport-specific energy requirements.
Arctic melt ponds and energy balance in the climate system
Sudakov, Ivan
2017-02-01
Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.
The Precession Index and a Nonlinear Energy Balance Climate Model
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold
Energy balance of a wood biomass combustion process
International Nuclear Information System (INIS)
Baggio, P.; Cemin, A.; Grigiante, M.; Ragazzi, M.
2001-01-01
This article reports the results of a project developed at the University of Trent dealing with some wood biomass combustion processes. The project has been particularly dedicated to the study of the energetic analysis of the combustion processes that occur on a gasified wood stove of advanced combustion technologies. A considerable number of experimental tests has been carried out making use of different type of wood widely in use in Trentino region. The wood stove is a part of a pilot plant providing an hydraulic circuit equipped with a specific apparatus to measure all the necessary data to determine the energy balance required and specifically the thermal efficiency of the plant [it
Energy balance of Sao Paulo state, Brazil 2007. Calendar year 2006
International Nuclear Information System (INIS)
2007-01-01
This document presents an abstract of the analyzed period as follows: supply and demand of the energy by source; energy consumption by sector; external commerce of energy; balances of the transformation centers; energy and social economy; energy resources and reserves. The annexes show the regional and historical aspects, the installed capacity, the CO 2 emissions, the general structure of the balance, the information treatment, the conversion factors and the consolidated energy balance
Energy balance of Sao Paulo state, Brazil 2005. Calendar year 2004
International Nuclear Information System (INIS)
2005-01-01
This document presents an abstract of the analyzed period as follows: supply and demand of the energy by source; energy consumption by sector; external commerce of energy; the balances of the transformation centers; energy and social economy; energy resources and reserves. The annexes show the regional and historical aspects; the installed capacity; de CO 2 emissions; the general structure of the balance; the information treatment; conversion factors and the consolidated energy balances
Energy balance of Sao Paulo state, Brazil 2006. Calendar year 2005
International Nuclear Information System (INIS)
2006-01-01
This document presents an abstract of the analyzed period as follows: supply and demand of the energy by source; energy consumption by sector; external commerce of energy; the balances of the transformation centers; energy and social economy; energy resources and reserves. The annexes show the regional and historical aspects; the installed capacity; the CO 2 emissions; the general structure of the balance; the information treatment; conversion factors and the consolidated energy balance
Energy and greenhouse gas balances of cassava-based ethanol
International Nuclear Information System (INIS)
Le, Loan T.; Ierland, Ekko C. van; Zhu, Xueqin; Wesseler, Justus
2013-01-01
Biofuel production has been promoted to save fossil fuels and reduce greenhouse gas (GHG) emissions. However, there have been concerns about the potential of biofuel to improve energy efficiency and mitigate climate change. This paper investigates energy efficiency and GHG emission saving of cassava-based ethanol as energy for transportation. Energy and GHG balances are calculated for a functional unit of 1 km of road transportation using life-cycle assessment and considering effects of land use change (LUC). Based on a case study in Vietnam, the results show that the energy input for and GHG emissions from ethanol production are 0.93 MJ and 34.95 g carbon dioxide equivalent per megajoule of ethanol respectively. The use of E5 and E10 as a substitute for gasoline results in energy savings, provided that their fuel consumption in terms of liter per kilometer of transportation is not exceeding the consumption of gasoline per kilometer by more than 2.4% and 4.5% respectively. It will reduce GHG emissions, provided that the fuel consumption of E5 and E10 is not exceeding the consumption of gasoline per kilometer by more than 3.8% and 7.8% respectively. The quantitative effects depend on the efficiency in production and on the fuel efficiency of E5 and E10. The variations in results of energy input and GHG emissions in the ethanol production among studies are due to differences in coverage of effects of LUC, CO 2 photosynthesis of cassava, yields of cassava, energy efficiency in farming, and by-product analyses. -- Highlights: ► Cassava-based ethanol substitution for gasoline in form of E5 could save 1.4 MJ km −1 ► Ethanol substitution for gasoline in form of E5 reduces a CO 2 e emission of 156 g km −1 ► We examined changes in fuel efficiency of blends affecting energy and GHG balances. ► LUC and change in soil management lead to a CO 2 e emission of 942 g L −1 of ethanol. ► LUC effects, energy inputs, yields, and by-products explain results among
International Nuclear Information System (INIS)
Alagoz, B. Baykant; Kaygusuz, Asim; Akcin, Murat; Alagoz, Serkan
2013-01-01
Future smart grids will require a flexible, observable, and controllable network for reliable and efficient energy delivery under uncertain generation and demand conditions. One of the mechanisms for efficient and reliable energy generation is dynamic demand-responsive generation management based on energy price adjustments that creates a balance in energy markets. This study presents a closed-loop PID (proportional–integral–derivative) controller-based price control method for autonomous and real-time balancing of energy demand and generation in smart grid electricity markets. The PID control system can regulate energy prices online to respond dynamically and instantaneously to the varying energy demands of grid consumers. Independent energy suppliers in the smart grid decide whether to sell their energy to the grid according to the energy prices declared by the closed-loop PID controller system. Energy market simulations demonstrate that PID-controlled energy price regulation can effectively maintain an energy balance for hourly demand fluctuations of consumers. - Highlights: • This study presents a control theoretic approach for management of energy balance. • A closed-loop PID controller-based price controlling method is used in smart grid. • The simulation results demonstrate advantages of PID-based energy price control. • This method is appropriate for demand responsive management of smart grid markets
Energy balance of lactating primiparous sows as affected by feeding level and dietary energy source
Brand, van den H.; Heetkamp, M.J.W.; Soede, N.M.; Schrama, J.W.; Kemp, B.
2000-01-01
The effects of feeding level and major dietary energy source used during lactation on sow milk composition, piglet body composition, and energy balance of sows were determined. During a 21-d lactation, 48 primiparous sows were fed either a Fat-rich (134.9 g/kg fat; 196.8 g/kg carbohydrate) or a
Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system
DEFF Research Database (Denmark)
Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav
2015-01-01
system, in order to smooth the variations at the prime energy generator. In this paper, a decentralized strategy based on fuzzy logic is proposed in order to balance the state of charge of distributed energy storage systems in lowvoltage three phase AC microgrid. The proposed method weights the action...
Energy balance, carbon emissions, and costs of sortyard debris disposal
International Nuclear Information System (INIS)
MacDonald, A.J.
2001-01-01
The Forest Engineering Research Institute of Canada (FERIC), with funding from Natural Resources Canada, conducted this study to determine the main environmental and energy use issues regarding the landfilling, burning or processing of dryland sortyard debris accumulated in the wood products industry. The wood residues that are generated when logs are processed, sorted and remanufactured, have traditionally been burned or landfilled. This is no longer appropriate. Converting the large woody debris into usable products such as hog fuel or compost requires grinding, smashing or chipping into small pieces to facilitate transportation. In order to make smart decisions about alternative methods of handling sortyard debris, information is needed about the comparative amount of fuel used and carbon dioxide produced. This study compared the treatment alternatives with respect to fuel consumption, net energy balance, carbon dioxide emissions and environmental impact. Recommendations were then presented for the treatment of debris from the point of view of net energy balance and environmental impact. Life cycle techniques were used to determine the environmental impact of alternatives for managing sortyard debris. It was determined that wood wastes are valuable as hog fuel for power generation. Burning hog fuel to recover its energy offsets the need to supply energy from other sources such as natural gas. This reduces the total carbon emissions by the amount of debris that would have been burned as waste. Annual carbon emissions can be reduced by nearly half by switching from a maximize burn strategy to a maximize hog strategy that combines composting of fine materials. 2 refs., 1 tab., 1 fig
Seasonal contrast in the surface energy balance of the Sahel
Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.
2009-07-01
Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing
Spinless Salpeter equation: Laguerre bounds on energy levels
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1996-08-01
The spinless Salpeter equation may be considered either as a standard approximation to the Bethe-Salpeter formalism, designed for the description of bound states within a relativistic quantum field theory, or as the most simple, to a certain extent relativistic generalization of the customary non relativistic Schroedinger formalism. Because of the presence of the rather difficult-to-handle square-root operator of the relativistic kinetic energy in the corresponding Hamiltonian, very frequently the corresponding (discrete) spectrum of energy eigenvalues cannot be determined analytically. Therefore, we show how to calculate, by some clever choice of basis vectors in the Hilbert space of solutions, for the rather large class of power-law potentials, at least (sometimes excellent) upper bounds on these energy eigenvalues, for the lowest-lying levels this even analytically. (author)
Energy Balance of the Sao Paulo State -1997. Base year 1996
International Nuclear Information System (INIS)
1997-01-01
This energy balance of the Santa Catarina State presents the following main topics that can be outstanding: panorama of the energy matrix; supply and demand of energy by source 1983-1996; energy consumption by sector 1983/1996; socio-economic aspects; resources and reserves energy; and balance of the transformation centers 1984/1996
Energy Balance of the Sao Paulo State -1998 Base year 1997
International Nuclear Information System (INIS)
1998-01-01
This energy balance of the Sao Paulo State presents the following main topics that can be outstanding: panorama of the energy matrix; supply and demand of energy by source 1983-1997; energy consumption by sector 1983/1997; economic aspects; resources and reserves energy; and balance of the transformation centers 1983/1997
Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.
Directory of Open Access Journals (Sweden)
Pilou L H R Janssens
Full Text Available BACKGROUND: Addition of capsaicin (CAPS to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. AIM: We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. METHODS: Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU with every meal. RESULTS: An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT and resting energy expenditure (REE at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively. Sleeping metabolic rate (SMR at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04. Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03, while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ was more decreased at 75%CAPS (p = 0.04 than at 75%Control (p = 0.05 when compared with 100%Control. Blood pressure did not differ between the four conditions. CONCLUSION: In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. TRIAL REGISTRATION
Energy balance and photochemical processes in the inner coma
International Nuclear Information System (INIS)
Huebner, W.F.; Keady, J.J.
1982-01-01
Energy balance and multifluid flow in the coma are described. Expansion cooling, radiative cooling, photodissociative heating, chemical heating, and relative multifluid flow are the processes determining the energy budget. In the fluid dynamics, fast atomic and molecular hydrogen are considered as separate fluids with larger collision mean free paths than the cold bulk fluid that has a larger mean molecular weight. The transition from fluid flow to free molecular flow is approximated. The model predicts hydrogen and bulk fluid flow velocities in general agreement with observations. The effects of the temperature profile and the fast hydrogen flow on the chemistry in the inner coma are investigated. Results from a model approximating conditions in Halley's comet are presented
Comparison between two models of energy balance in coronal loops
Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.
2017-10-01
In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.
International Nuclear Information System (INIS)
Chakraborty, Shantanu; Okabe, Toshiya
2016-01-01
Imbalance (on-line energy gap between contracted supply and actual demand, and associated cost) reduction is going to be a crucial service for a Power Producer and Supplier (PPS) in the deregulated energy market. PPS requires forward market interactions to procure energy as precisely as possible in order to reduce imbalance energy. This paper presents, 1) (off-line) an effective demand aggregation based strategy for creating a number of balancing groups that leads to higher predictability of group-wise aggregated demand, 2) (on-line) a robust energy storage scheduling that minimizes the imbalance energy and cost of a particular balancing group considering the demand prediction uncertainty. The group formation is performed by a Probabilistic Programming approach using Bayesian Markov Chain Monte Carlo (MCMC) method after applied on the historical demand statistics. Apart from the group formation, the aggregation strategy (with the help of Bayesian Inference) also clears out the upper-limit of the required storage capacity for a formed group, fraction of which is to be utilized in on-line operation. For on-line operation, a robust energy storage scheduling method is proposed that minimizes expected imbalance energy and cost (a non-linear function of imbalance energy) while incorporating the demand uncertainty of a particular group. The proposed methods are applied on the real apartment buildings' demand data in Tokyo, Japan. Simulation results are presented to verify the effectiveness of the proposed methods. - Highlights: • Strategic method for intelligent energy balancing group formation using Bayesian MCMC. • Stochastic programming based robust and online energy storage (battery) scheduling. • Imbalance cost (regulation) and energy reduction of a balancing group. • Imbalance cost reduction of 80% attainable by considerably lower battery capacity.
International Nuclear Information System (INIS)
Vladimirov, S.V.; Nambu, Mitsuhiro
1995-01-01
From investigations of resonant interactions of particles and waves in turbulent plasmas it is well known that not only resonant particles contribute to expressions for the wave energy and momentum providing conservation of these quantities for closed systems. In particular, it was demonstrated that contribution of the nonresonant particles is very important for the energy conservation in the quasilinear theory: although the nonresonant terms do not appear in the diffusion equation, they contribute to the wave energy (and, in general, wave momentum) ensuring the conservation of total energy (and momentum) in the system. We note that the real part of the dielectric permittivity ε ωk as well as the wave frequency ω k of the resonant waves do not depend on time in the quasilinear approximation since only nonresonant particles (which distribution is constant) contribute to them. The resonant wave amplitude, however, is the function on time, and changing of the wave energy is completely balanced by the corresponding change of the resonant particle energy. If in the system there are only nonresonant waves, and it is closed (i.e., there is no energy exchange with some external sources or sinks), the system is stationary and the nonresonant wave as well as particle energy are not changing
Exercise, energy expenditure and energy balance, as measured with doubly labelled water.
Westerterp, Klaas R
2018-02-01
The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1-3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H2 18O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00-2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00-2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.
International Nuclear Information System (INIS)
Casares, F.J.; Lopez-Luque, R.; Posadillo, R.; Varo-Martinez, M.
2014-01-01
Sizing SAPV techniques try to assess the reliability of the system from the stochastic simulation of the energy balance. This stochastic simulation implies the generation, for an extended period of time, of the main state variables of the physical equations describing the energy balance of the system, that is, the energy delivered to the load and the energy stored in the batteries. Most of these methods consider the daily load as a constant over the year and control the variables indicating the reliability associated with the supply of power to the load. Furthermore, these methods rely on previous random models for generating solar radiation data and, since the approximations of the simulation methods are asymptotic, when more precise reliability indicators are required, the simulation period needs to be extended. This paper presents a mathematical methodology to address the daily energy balance without resorting to simulation methods. This method is directly based on daily solar radiation series modelled according to Markov stochastic processes and Aguiar matrices. The characterization presented is the base of a rational method in which reliability does not depend on the number of iterations but on the precision of the conditional probabilities included in Aguiar matrices. - Highlights: • A new SAPV sizing method is presented and validated. • This model relates the PV sizing methods to the autocorrelative Aguiar model. • This statistical approach is only limited by Markov matrixes. • It permits the study of PV systems with variable daily demands or solar tracking. • LLP for a SAPV can be estimated quickly and in an analytic and precise way
International Nuclear Information System (INIS)
Penuela, G; Ordonez, A; Bejarano, A
1997-01-01
This equation, was based in 12 similar suppositions to those made by Walsh in its widespread expression for conventional deposits, he parts of the same volumetric consideration and finally the equation is reorganized; the author develops the equation and he gives a series of conclusions with regard to the same one
Force-balance and differential equation for the ground-state electron density in atoms and molecules
International Nuclear Information System (INIS)
Amovilli, C.; March, N.H.; Gal, T.; Nagy, A.
2000-01-01
Holas and March (1995) established a force-balance equation from the many-electron Schroedinger equation. Here, the authors propose this as a basis for the construction of a (usually approximate) differential equation for the ground-state electron density. By way of example they present the simple case of two-electron systems with different external potentials but with weak electron-electron Coulomb repulsion λe 2 /r 12 . In this case first-order Rayleigh-Schroedinger (RS) perturbation theory of the ground-state wave function is known to lead to a compact expression for the first-order density matrix γ(r,rprime) in terms of its diagonal density ρ(r) and the density corresponding to λ = 0. This result allows the force-balance equation to be written as a third-order linear, differential homogeneous equation for the ground-state electron density ρ(r). The example of the two-electron Hookean atom is treated: For this case one can also transcend the first-order RS perturbation theory and get exact results for discrete choices of force constants (external potential)
Dark energy equation of state and anthropic selection
International Nuclear Information System (INIS)
Garriga, Jaume; Linde, Andrei; Vilenkin, Alexander
2004-01-01
We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions
Loss of Energy Concentration in Nonlinear Evolution Beam Equations
Garrione, Maurizio; Gazzola, Filippo
2017-12-01
Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.
SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS
Directory of Open Access Journals (Sweden)
Salvatore Barbagallo
2009-12-01
Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.
SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow
Raghunath, Sriram; Brereton, Giles
2011-11-01
DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.
Energy Balance of Triathletes during an Ultra-Endurance Event
Directory of Open Access Journals (Sweden)
Anna Barrero
2014-12-01
Full Text Available The nutritional strategy during an ultra-endurance triathlon (UET is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE and the fluid balance through the race. Methods: Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI during the race. The EE was estimated from heart rate (HR recordings during the race, using the individual HR-oxygen uptake (Vo2 regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM, total body water (TBW and intracellular (ICW and extracellular water (ECW were assessed before and after the race using a multifrequency bioimpedance device (BIA. Results: Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%. BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Conclusions: Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit.
Energy balance of triathletes during an ultra-endurance event.
Barrero, Anna; Erola, Pau; Bescós, Raúl
2014-12-31
The nutritional strategy during an ultra-endurance triathlon (UET) is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE) and the fluid balance through the race. Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI) during the race. The EE was estimated from heart rate (HR) recordings during the race, using the individual HR-oxygen uptake (Vo2) regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM), total body water (TBW) and intracellular (ICW) and extracellular water (ECW) were assessed before and after the race using a multifrequency bioimpedance device (BIA). Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%). BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit.
Shchinnikov, P. A.; Safronov, A. V.
2014-12-01
General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.
International Nuclear Information System (INIS)
Nagashima, Keisuke; Fukuda, Takeshi
1991-12-01
Evidence of temperature gradient driven particle flux was observed from the sawtooth induced density propagation phenomenon in JT-60. This off-diagonal particle flux was confirmed using the numerical calculation of measured chord integrated electron density. It was shown that the discrepancies between thermal and particle diffusivities estimated from the perturbation method and energy/particle balance analysis can be explained by considering the flux equations with off-diagonal transport terms. These flux equations were compared with the E x B convective fluxes in an electro-static drift wave instability and it was found that the E x B fluxes are consistent with several experimental observations. (author)
Radiation dose in mammography: an energy-balance approach
International Nuclear Information System (INIS)
Shrivastava, P.N.
1981-01-01
An energy-balance approach for calculation of mean, integral, and midpoint doses in mammography is introduced. Estimation of mean absorbed dose for individual applications is described. Calculations made for a range of xeromammographic techniques used at various breast cancer detection centers show that although increasing the beam h.v.l. dramatically decreases breast surface exposure, it is insignificant in lowering mean breast dose or radiation risk. Thus selection of a moderate h.v.l. to optimize image quality in xeromammography may be more beneficial than unduly increasing h.v.l. merely to reduce surface exposure. The mean breast dose per mammogram with low h.v.l. screen-film techniques was 3 to 9 times lower than for xeromammography, suggesting that general acceptance of screen-film techniques can significantly reduce the risk associated with mammography
Radiation dose in mammography: an energy-balance approach
International Nuclear Information System (INIS)
Shrivastava, P.N.
1981-01-01
An energy-balance approach for calculation of mean, integral, and midpoint doses in mammography is introduced. Estimation of mean absorbed dose for individual applications is described. Differences in breast composition and thickness are accounted for by simple measurements of entrance and exit exposures. Calculations made for a range of xeromammographic techniques used at various breast cancer detection centers show that although increasing the beam h.v.l. dramatically decreases breast surface exposure, it is insignificant in lowering mean breast dose or radiation risk. Thus selection of a moderate h.v.l. to optimize image quality (soft-tissue contrast) in xeromammography may be more beneficial than unduly increasing h.v.l. merely to reduce surface exposure. The mean breast dose per mammogram with low-h.v.l. screen-film techniques was 3 to 9 times lower than for xeromammography, suggesting that general acceptance of screen-film techniques can significantly reduce the risk associated with mammography
Stephens, G. L.; Webster, P. J.; OBrien, D. M.
2013-12-01
We currently lack a quantitative understanding of how the Earth's energy balance and the poleward energy transport adjust to different forcings that determine climate change. Currently, there are no constraints that guide this understanding. We will demonstrate that the Earth's energy balance exhibits a remarkable symmetry about the equator, and that this symmetry is a necessary condition of a steady state climate. Our analysis points to clouds as the principal agent that highly regulates this symmetry and sets the steady state. The existence of this thermodynamic steady-state constraint on climate and the symmetry required to sustain it leads to important inferences about the synchronous nature of climate changes between hemispheres, offering for example insights on mechanisms that can sustain global ice ages forced by asymmetric hemispheric solar radiation variations or how climate may respond to increases in greenhouse gas concentration. Further inferences regarding cloud effects on climate can also be deduced without resorting to the complex and intricate processes of cloud formation, whose representation continues to challenge the climate modeling community. The constraint suggests cloud feedbacks must be negative buffering the system against change. We will show that this constraint doesn't exist in the current CMIP5 model experiments and the lack of such a constraint suggests there is insufficient buffering in models in response to external forcings
International Nuclear Information System (INIS)
Chankin, A. V.; Stangeby, P. C.
2006-01-01
A system of plasma particle and parallel momentum balance equations is derived appropriate for understanding the role of drifts in the edge and for edge modelling, particularly in the scrape-off layer (SOL) of tokamaks, stellarators and other magnetic confinement devices. The formulation allows for strong collisionality-but also covers the case of weak collisionality and strong drifts, a combination often encountered in the SOL. The most important terms are identified by assessing the magnitude of characteristic velocities and fluxes for the plasma edge region. Explanations of the physical nature of each term are provided. A number of terms that are sometimes not included in edge modelling has been included in the parallel momentum balance equation after detailed analysis of the parallel component of the gradient of the total pressure-stress tensor. This includes terms related to curvature and divergence of the field lines, as well as further contributions coming from viscous forces related mainly to the ion centrifugal drift. All these terms are shown to be roughly of the same order of magnitude as convective momentum fluxes related to drifts and therefore should be included in the momentum balance equation
Obstructive sleep apnea and energy balance regulation: A systematic review.
Shechter, Ari
2017-08-01
Obesity and obstructive sleep apnea (OSA) have a reciprocal relationship. Sleep disruptions characteristic of OSA may promote behavioral, metabolic, and/or hormonal changes favoring weight gain and/or difficulty losing weight. The regulation of energy balance (EB), i.e., the relationship between energy intake (EI) and energy expenditure (EE), is complex and multi-factorial, involving food intake, hormonal regulation of hunger/satiety/appetite, and EE via metabolism and physical activity (PA). The current systematic review describes the literature on how OSA affects EB-related parameters. OSA is associated with a hormonal profile characterized by abnormally high leptin and ghrelin levels, which may encourage excess EI. Data on actual measures of food intake are lacking, and not sufficient to make conclusions. Resting metabolic rate appears elevated in OSA vs. Findings on PA are inconsistent, but may indicate a negative relationship with OSA severity that is modulated by daytime sleepiness and body weight. A speculative explanation for the positive EB in OSA is that the increased EE via metabolism induces an overcompensation in the drive for hunger/food intake, which is larger in magnitude than the rise in EI required to re-establish EB. Understanding how OSA affects EB-related parameters can help improve weight loss efforts in these patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Salehi, A. A.; Vosoughi, N.; Shahriari, M.
2002-01-01
In reactor core neutronic calculations, we usually choose a control volume and investigate about the input, output, production and absorption inside it. Finally, we derive neutron transport equation. This equation is not easy to solve for simple and symmetrical geometry. The objective of this paper is to introduce a new direct method for neutronic calculations. This method is based on physics of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equation series without production of neutron transport differential equation and mandatory passing form differential equation bridge. This method, which is named Direct Discrete Method, was applied in static state, for a cylindrical geometry in one group energy. The validity of the results from this new method are tested with MCNP-4B code with a one group energy library. One energy group direct discrete equation produces excellent results, which can be compared with the results of MCNP-4B
Nitzsche, Anika; Pfaff, Holger; Jung, Julia; Driller, Elke
2013-01-01
To examine the relationships among employees' emotional exhaustion, positive and negative work-home interaction, and perceived work-life balance culture in companies. Data for this study were collected through online surveys of employees from companies in the micro- and nanotechnology sectors (N = 509). A structural equation modeling analysis was performed. A company culture perceived by employees as supportive of their work-life balance was found to have both a direct negative effect on emotional exhaustion and an indirect negative effect meditated by negative work-home interaction. In addition, whereas negative work-home interaction associated positively with emotional exhaustion, positive work-home interaction had no significant effect. The direct and indirect relationship between work-life balance culture and emotional exhaustion has practical implications for health promotion in companies.
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Energy year 2005 - how is the energy balance in Rogaland and what are the implications?
International Nuclear Information System (INIS)
2006-01-01
The topic of the lunch meeting is the current and future energy balance in the county of Rogaland, Norway. The question of how to meet the future's increased energy demand is treated. An assessment of the energy situation in the years 2005-2015 is made. Regional projects are presented in the forms of coal fired power station, gasworks and wind power projects. The presented projects are Haugaland Kraft's coal-fired power station, Naturkraft's gas fired power plant and Norsk Vind Energi's wind turbine plants (ml)
International Nuclear Information System (INIS)
Narvaez, Paulo Cesar
1999-01-01
The dimension of nets of distribution of gases is a complex problem, so much for the diversity of the phenomena that they are presented, like for the variation of the properties of the fluids, especially, the density for effect of the changes in the pressure along the net. This work presents a model for its simulation starting from the deduction of the general equation of flow in stable and isothermal state, its inclusion in the pattern of balance of nodes and the solution of this for the method of linealization of equations. Additionally, a summary of the empiric equations more used is made for the calculation of the fall of pressure for gases flowing in pipes and an example that it illustrates the application of the pattern and the developed method
Energy, fiscal balances and national sharing : research report
International Nuclear Information System (INIS)
Mansell, R.; Anderson, J.; Schlenker, R.; Calgary Univ., AB
2005-01-01
In recent years, the large fiscal surpluses of the Alberta government have attracted considerable attention. The economies of this major oil and gas producing region in Canada have expanded due to rising energy demand and high prices. The province accounts for nearly 75 per cent of Canada's oil and gas production, while its energy sector accounts for more than 50 per cent of the Alberta economy. Non-renewable resource revenue for the provincial government has increased along with gains in output and employment. There are some concerns that the strength in Alberta's fiscal position and in the economy may undermine Canada's fiscal equalization regime. Proposed solutions include federal policies that transfer more of Alberta's wealth to other regions. Alberta is concerned that a national fiscal, energy or environmental policy that transfers huge amounts of income out of the province would result in bankruptcies and a legacy of mistrust. There is also growing awareness in the province that it will be difficult to maintain a strong economy and that revenues will decline as reserves of conventional oil and gas are depleted. Presently, it is more challenging to develop unconventional energy supplies due to labour, environmental, technology and infrastructure constraints. This paper examined the record of fiscal redistribution across regions in Canada along with the future of Alberta's resource revenues in an effort to pursue informed discussion on these issues. The authors indicated that the province is already the largest net contributor to federal fiscal balances and redistribution to other regions. Alberta's net contributions are greater than what one would expect given accepted measures of fairness and the same standards applied to other regions. It was suggested that asking Albertans to make even larger net fiscal contributions to the benefit of other regions is not consistent with any standard of fairness. 12 refs., 3 tabs., 4 figs
Executive summary of the energy balance from Sao Paulo State, Brazil, 1996. Base year: 1995
International Nuclear Information System (INIS)
1996-01-01
This document presents a executive summary of the energy balance in the year 1995, reporting the energy consumption considering the energy market dynamics and increasing ratio in the residential, public, commercial, agricultural, cattle breeding, transportation and industry areas
Effective dark energy equation of state in interacting dark energy models
Energy Technology Data Exchange (ETDEWEB)
Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)
2012-07-24
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.
Effective dark energy equation of state in interacting dark energy models
International Nuclear Information System (INIS)
Avelino, P.P.; Silva, H.M.R. da
2012-01-01
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.
Constraining the Surface Energy Balance of Snow in Complex Terrain
Lapo, Karl E.
Physically-based snow models form the basis of our understanding of current and future water and energy cycles, especially in mountainous terrain. These models are poorly constrained and widely diverge from each other, demonstrating a poor understanding of the surface energy balance. This research aims to improve our understanding of the surface energy balance in regions of complex terrain by improving our confidence in existing observations and improving our knowledge of remotely sensed irradiances (Chapter 1), critically analyzing the representation of boundary layer physics within land models (Chapter 2), and utilizing relatively novel observations to in the diagnoses of model performance (Chapter 3). This research has improved the understanding of the literal and metaphorical boundary between the atmosphere and land surface. Solar irradiances are difficult to observe in regions of complex terrain, as observations are subject to harsh conditions not found in other environments. Quality control methods were developed to handle these unique conditions. These quality control methods facilitated an analysis of estimated solar irradiances over mountainous environments. Errors in the estimated solar irradiance are caused by misrepresenting the effect of clouds over regions of topography and regularly exceed the range of observational uncertainty (up to 80Wm -2) in all regions examined. Uncertainty in the solar irradiance estimates were especially pronounced when averaging over high-elevation basins, with monthly differences between estimates up to 80Wm-2. These findings can inform the selection of a method for estimating the solar irradiance and suggest several avenues of future research for improving existing methods. Further research probed the relationship between the land surface and atmosphere as it pertains to the stable boundary layers that commonly form over snow-covered surfaces. Stable conditions are difficult to represent, especially for low wind speed
Energy balance calculations and assessment of two thermochemical sulfur cycles
International Nuclear Information System (INIS)
Leger, D.; Lessart, P.; Manaud, J.P.; Benizri, R.; Courvoisier, P.
1978-01-01
Thermochemical cyclic processes which include the highly endothermal decomposition of sulphuric acid are promising for hydrogen production by water-splitting. Our study is directed toward two cycles of this family, each involving the formation and decomposition of sulphuric acid and including other reactions using iron sulphide for the first and oxides and bromides of copper and magnesium for the second. Thermochemical analyses of the two cycles are undertaken. Thermodynamic studies of the reactions are carried out, taking into account possible side-reactions. The concentration of reactants, products and by-products resulting from simultaneous equilibria are calculated, the problems of separation thoroughly studied and the flow-diagrams of the processes drawn up. Using as heat source the helium leaving a 3000 MWth high temperature nuclear reactor and organizing internal heat exchange the enthalpy diagrams are drawn up and the net energy balances evaluated. The overall thermal efficiencies are about 28%, a value corresponding to non-optimized process schemes. Possible improvements aiming at energy-saving and increased efficiency are indicated
Brazilian energy balance 1996: calendar year 1995; Balanco energetico nacional 1996: ano base 1995
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-07-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances.
Brazilian energy balance 1996: calendar year 1995; Balanco energetico nacional 1996: ano base 1995
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-07-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances.
Brazilian energy balance 1998: calendar year 1997; Balanco energetico nacional 1998: ano base 1997
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-07-01
This report shows the energy flows of different primary and secondary sources, from the production to the final consumption in every sector of the Brazilian economy, for the calendar year 1995. It's divided into nine sections, as follows: summary; energy supply and consumption by source; energy consumption by sector; energy foreign trading; transformation center balances ;energy resources and reserves; energy and socio economy; regional parameters; and appendices - installed capacity, international data, general structure of the balance, information processing, conversion units and consolidated energy balances.
Energy balance for Sachsen-Anhalt 2010; Energiebilanz Sachsen-Anhalt 2010
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-01-15
The energy balance of Saxony-Anhalt is presented in physical units, in terrajoule and in coal equivalent to show supply, conversion, and consumption of primary and secondary energy sources in the year under report 2010 Energy balance for Sachsen-Anhalt.
Gut microbiota and energy balance: role in obesity.
Blaut, Michael
2015-08-01
The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long- and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated.
Scheduling algorithms for saving energy and balancing load
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Antonios
2012-08-03
In this thesis we study problems of scheduling tasks in computing environments. We consider both the modern objective function of minimizing energy consumption, and the classical objective of balancing load across machines. We first investigate offline deadline-based scheduling in the setting of a single variable-speed processor that is equipped with a sleep state. The objective is that of minimizing the total energy consumption. Apart from settling the complexity of the problem by showing its NP-hardness, we provide a lower bound of 2 for general convex power functions, and a particular natural class of schedules called s{sub crit}-schedules. We also present an algorithmic framework for designing good approximation algorithms. For general convex power functions our framework improves the best known approximation-factor from 2 to 4/3. This factor can be reduced even further to 137/117 for a specific well-motivated class of power functions. Furthermore, we give tight bounds to show that our framework returns optimal s{sub crit}-schedules for the two aforementioned power-function classes. We then focus on the multiprocessor setting where each processor has the ability to vary its speed. Job migration is allowed, and we again consider classical deadline-based scheduling with the objective of energy minimization. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time for any convex and non-decreasing power function. Our algorithm relies on repeated maximum flow computations. Regarding the online problem and power functions P(s) = s{sup {alpha}}, where s is the processor speed and {alpha} > 1 a constant, we extend the two well-known single-processor algorithms Optimal Available and Average Rate. We prove that Optimal Available is {alpha}{sup {alpha}}-competitive as in the single-processor case. For Average Rate we show a competitive factor of (2{alpha}){sup {alpha}}/2 + 1, i.e., compared to the single
Relationships between energy balance and health traits of dairy cattle in early lactation.
Collard, B L; Boettcher, P J; Dekkers, J C; Petitclerc, D; Schaeffer, L R
2000-11-01
The objective of the study was to calculate phenotypic relationships between energy balance in early lactation and health and reproduction in that lactation. Data were 26,701 daily records of dry matter intake and milk production, periodic measures of milk composition and body weight, and all health and reproductive information from 140 multiparous Holstein cows. Daily energy balance was calculated by multiplying feed intake by the concentration of energy of the ration and subtracting the amount of energy required for maintenance (based on parity and body weight) and for milk production (based on yield and concentrations of fat, protein, and lactose). Six measures of energy balance were defined: mean daily energy balance during the first 20, 50, and 100 d of lactation; minimum daily energy balance; days in negative energy balance; and total energy deficit. Measures of health were the numbers of occurrences of each of the following during lactation: all udder problems, mastitis, all locomotive problems, laminitis, digestive problems, and reproductive problems. Reproductive traits were the number of days to first observed estrus and number of inseminations. Several significant relationships between energy balance and health were observed. Increased digestive and locomotive problems were associated with longer and more extreme periods of negative energy balance.
Existence of high-energy solutions for supercritical fractional Schrodinger equations in R^N
Directory of Open Access Journals (Sweden)
Lu Gan
2016-12-01
Full Text Available In this article, we study supercritical fractional Schr\\"odinger equations. Applying the finite-dimensional reduction method and the penalization method, we obtain the high-energy solutions for this equation.
Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo
2017-02-01
The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.
A Mixed Transmission Strategy to Achieve Energy Balancing in Wireless Sensor Networks
DEFF Research Database (Denmark)
Liu, Tong; Gu, Tao; Jin, Ning
2017-01-01
In this paper, we investigate the problem of energy balanced data collection in wireless sensor networks, aiming to balance energy consumption among all sensor nodes during the data propagation process. Energy balanced data collection can potentially save energy consumption and prolong network...... lifetime, and hence, it has many practical implications for sensor network design and deployment. The traditional hop-by-hop transmission model allows a sensor node to propagate its packets in a hop-by-hop manner toward the sink, resulting in poor energy balancing for the entire network. To address...... the problem, we apply a slice-based energy model, and divide the problem into inter-slice and intra-slice energy balancing problems. We then propose a probability-based strategy named inter-slice mixed transmission protocol and an intra-slice forwarding technique to address each of the problems. We propose...
Zhao, Dan; Wang, Xiaoman; Cheng, Yuan; Liu, Shaogang; Wu, Yanhong; Chai, Liqin; Liu, Yang; Cheng, Qianju
2018-05-01
Piecewise-linear structure can effectively broaden the working frequency band of the piezoelectric energy harvester, and improvement of its research can promote the practical process of energy collection device to meet the requirements for powering microelectronic components. In this paper, the incremental harmonic balance (IHB) method is introduced for the complicated and difficult analysis process of the piezoelectric energy harvester to solve these problems. After obtaining the nonlinear dynamic equation of the single-degree-of-freedom piecewise-linear energy harvester by mathematical modeling and the equation is solved based on the IHB method, the theoretical amplitude-frequency curve of open-circuit voltage is achieved. Under 0.2 g harmonic excitation, a piecewise-linear energy harvester is experimentally tested by unidirectional frequency-increasing scanning. The results demonstrate that the theoretical and experimental amplitudes have the same trend, and the width of the working band with high voltage output are 4.9 Hz and 4.7 Hz, respectively, and the relative error is 4.08%. The open-output peak voltage are 21.53 V and 18.25 V, respectively, and the relative error is 15.23%. Since the theoretical value is consistent with the experimental results, the theoretical model and the incremental harmonic balance method used in this paper are suitable for solving single-degree-of-freedom piecewise-linear piezoelectric energy harvester and can be applied to further parameter optimized design.
Hohlraums energy balance and x-ray drive
International Nuclear Information System (INIS)
Kilkenny, J.D.
1994-01-01
For many years there has been an active ICF program in the US concentrating on x-ray drive. X-ray drive is produced by focusing laser beams into a high Z hohlraum. Conceptually, the radiation field comes close to thermodynamic equilibrium, that is it becomes isotropic and Planckian. These properties lead to the benefits of x-ray drive--it is relatively easy to obtain drive symmetry on a capsule with no small scalelengths drive perturbations. Other advantages of x-ray drive is the higher mass ablation rate, leading to lower growth rates for hydrodynamic instabilities. X-ray drive has disadvantages, principally the loss of energy to the walls of the hohlraum. This report is divided into the following sections: (1) review of blackbody radiation; (2) laser absorption and conversion to x-rays; (3) x-ray absorption coefficient in matter and Rosseland mean free path; (4) Marshak waves in high Z material; (5) x-ray albedo; and (6) power balance and hohlraum temperature
Energy balance of the optimised CVT-hybrid-driveline
Energy Technology Data Exchange (ETDEWEB)
Hoehn, Bernd-Robert; Pflaum, Hermann; Lechner, Claus [Forschungsstelle fuer Zahnraeder und Getriebebau, Technische Univ. Muenchen, Garching (Germany)
2009-07-01
Funded by the DFG (German Research Foundation) and some industry partners like GM Powertrain Europe, ZF, EPCOS the Optimised CVT-Hybrid was developed at Technische Universitaet Muenchen in close collaboration with the industry and is currently under scientific investigation. Designed as a parallel hybrid vehicle the Optimised CVT-Hybrid combines a series-production diesel engine with a small electric motor. The core element of the driveline is a two range continuously variable transmission (i{radical}i-transmission), which is based on a chain variator. By a special shifting process without interruption of traction force the ratio range of the chain variator is used twice; thereby a wide transmission-ratio spread is achieved by low complexity. Thus the transmission provides a large pull-away ratio for the small electric motor and a fuel-efficient overdrive ratio for the ic-engine. Instead of heavy and space-consuming accumulators a small efficient package of double layer capacitors (UltraCaps) is used for electric energy and power storage. The driveline management is done by an optimised vehicle controller. Within the scope of the research project two prototype drivelines were manufactured. One driveline is integrated into an Opel Vectra Caravan and is available for investigations at the roller dynamometer and in the actual road traffic. The second hybrid driveline is assembled at the powertrain test rig of the FZG for detailed analysis of system behaviour and fuel consumption. Based on measurements of standardised driving cycles system behaviour, fuel consumption and a detailed energy balance of the Optimised CVT-Hybrid are presented. In comparison to the series-production vehicle the fuel savings are shown. (orig.)
General Navier–Stokes-like momentum and mass-energy equations
Energy Technology Data Exchange (ETDEWEB)
Monreal, Jorge, E-mail: jmonreal@mail.usf.edu
2015-03-15
A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.
Knegsel, van A.T.M.
2007-01-01
Keywords: dairy cows; dietary energy source; glucogenic nutrients; lipogenic nutrients; negative energy balance; metabolic disorders; reproduction, immune system Dairy cows experience a negative energy balance (NEB) in early lactation which results from high energy requirements for milk production
Larson, V. H.
1982-01-01
The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.
Directory of Open Access Journals (Sweden)
P W H Kwong
Full Text Available To use structural equation modelling (SEM to determine (1 the direct and indirect associations of strength of paretic lower limb muscles with the level of community integration, and (2 the direct association of walking endurance and balance performance with the level of community integration in community-dwelling stroke survivors.In this cross-sectional study of 105 stroke survivors, the Subjective Index of Physical and Social Outcome (SIPSO was used to measure the level of community integration. Lower-limb strength measures included isometric paretic ankle strength and isokinetic paretic knee peak torque. The Berg Balance Scale (BBS and the 6-minute walk test (6MWT were used to evaluate balance performance and walking endurance, respectively.SEM revealed that the distance walked on the 6MWT had the strongest direct association with the SIPSO score (β = 0.41, p <0.001. An increase of one standard deviation in the 6MWT distance resulted in an increase of 0.41 standard deviations in the SIPSO score. Moreover, dorsiflexion strength (β = 0.18, p = 0.044 and the BBS score (β = 0.21, p = 0.021 had direct associations with the SIPSO score.The results of the proposed model suggest that rehabilitation training of community-dwelling stroke survivors could focus on walking endurance, balance performance and dorsiflexor muscle strengthening if the aim is to augment the level of community integration.
Kowalski, Karol
2009-05-21
In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.
Application of the heat-balance and refined integral methods to the Korteweg-de Vries equation
Directory of Open Access Journals (Sweden)
Myers Timothy G.
2009-01-01
Full Text Available In this paper we consider approximate travelling wave solutions to the Korteweg-de Vries equation. The heat-balance integral method is first applied to the problem, using two different quartic approximating functions, and then the refined integral method is investigated. We examine two types of solution, chosen by matching the wave speed to that of the exact solution and by imposing the same area. The first set of solutions is generally better with an error that is fixed in time. The second set of solutions has an error that grows with time. This is shown to be due to slight discrepancies in the wave speed.
International Nuclear Information System (INIS)
Filippov, A.V.; Shirkov, G.D.; Consoli, F.; Gammino, S.; Ciavola, G.; Celona, L.; Barbarino, S.
2008-01-01
The investigation of the widespread model for the calculation of ion charge-state distributions (CSD) in electron cyclotron-resonance ion source based on the set of balance equations is given. The modification of this model that allows one to describe the confinement and accumulation processes of highly charged ions in ECR plasma for gas mixing case more precisely is discussed. The new approach for the time confinement calculation (ions and electrons) based on the theory of Pastukhov is offered, viz. - calculation of confinement times during two step minimization of special type functionals. The results obtained by this approach have been compared with available experimental data
Risteski, Ice B.
2010-01-01
In this article, the author discovers a paradox of balancing chemical equations. The many counterexamples illustrate that the considered procedure of balancing chemical equations given in the paper1 is inconsistent. A new complex vector method for paradox resolution is given too. V članku avtor opisuje paradoks pri uravnoteženju kemijskih reakcij. Več primerov dokazuje, da je procedura uravnoteženja kemijskih reakcij v viru1 inkonsistentna. Predstavljena je nova kompleksna vektorska metoda...
Heat storage in forest biomass improves energy balance closure
Lindroth, A.; Mölder, M.; Lagergren, F.
2010-01-01
Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance
Energy decay of a viscoelastic wave equation with supercritical nonlinearities
Guo, Yanqiu; Rammaha, Mohammad A.; Sakuntasathien, Sawanya
2018-06-01
This paper presents a study of the asymptotic behavior of the solutions for the history value problem of a viscoelastic wave equation which features a fading memory term as well as a supercritical source term and a frictional damping term: u_{tt}- k(0) Δ u - \\int \\limits _0^{&infty } k'(s) Δ u(t-s) ds +|u_t|^{m-1}u_t =|u|^{p-1}u, { in } Ω × (0,T), u(x,t)=u_0(x,t), \\quad { in } Ω × (-∞,0]), where Ω is a bounded domain in R^3 with a Dirichlét boundary condition and u_0 represents the history value. A suitable notion of a potential well is introduced for the system, and global existence of solutions is justified, provided that the history value u_0 is taken from a subset of the potential well. Also, uniform energy decay rate is obtained which depends on the relaxation kernel -k'(s) as well as the growth rate of the damping term. This manuscript complements our previous work (Guo et al. in J Differ Equ 257:3778-3812, 2014, J Differ Equ 262:1956-1979, 2017) where Hadamard well-posedness and the singularity formulation have been studied for the system. It is worth stressing the special features of the model, namely the source term here has a supercritical growth rate and the memory term accounts to the full past history that goes back to -∞.
Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M
2014-12-01
Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P balance was lower (P military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.
An experimental study of the ion energy balance of a magnetized plasma
International Nuclear Information System (INIS)
Pots, B.F.M.; Hooff, P. van; Schram, D.C.; Sijde, B. van der
1981-01-01
A report is given on an experimental study of the ion energy balance of the magnetized and current-driven plasma f a hollow cathode discharge. The balance appears to be classical. At the axis of the plasma column the electron-ion Coulomb interaction is in equilibrium with the ion-neutral interaction. No significant influence on the energy balance by the spontaneously appearing plasma turbulence is formed. (author)
Djallel ZEBBAR; Salaheddine ZEBBAR; Sidali HORR
2016-01-01
Distribution knowledge of the energy introduced into the combustion chamber is of great importance in the theory of internal combustion engines. This work aims to highlight the very complex relationship, often indistinguishable between internal and external energy balances components. The scrutiny of internal balance components has permitted to trace back up to the external balance. This can be easily established on a test bench equipped for the occasion. It will assess the perfection of ener...
Energy Technology Data Exchange (ETDEWEB)
Leite, Alvaro Afonso Furtado [Universidade Estadual de Santa Cruz (DCET/UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas], email: aafleite@uesc.br; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico], email: bajay@fem.unicamp.br
2010-07-01
The need to discuss the reformulation of two important tools for the Brazilian energy planning - the National Energy Balance (BEN) and the Useful Energy Balance (BEU) - was the motivation to carry out the study reported in this paper. The concepts embodied in the BEN were set out in the seventies, while those structuring the BEU were defined in the eighties. Since then, the ways to produce, trade and consume energy underwent important changes in Brazil and the expansion planning of the national energy system requires, nowadays, more detailed information and, in some cases, more reliable data than those currently provided by the two balances. They need, thus, to be refined, and this paper aims to contribute towards this goal. (author)
Energy balance of the Rio de Janeiro State - 1980/1994
International Nuclear Information System (INIS)
1995-01-01
This document informs the energetic balance for Rio de Janeiro State -1980/1994, containing the energy fluxes from primary and secondary energy sources in the main sectors of Rio de Janeiro economy. 50 figs., 139 tabs
Effect of mass asymmetry on the mass dependence of balance energy
International Nuclear Information System (INIS)
Goyal, Supriya
2011-01-01
We demonstrate the role of the mass asymmetry on the balance energy (E bal ) by studying asymmetric reactions throughout the periodic table and over entire colliding geometry. Our results, which are almost independent of the system size and as well as of the colliding geometries indicate a sizeable effect of the asymmetry of the reaction on the balance energy.
On Energy Balance and Production Costs in Tubular and Flat Panel Photobioreactors
Norsker, N.H.; Barbosa, M.J.; Vermue, M.H.; Wijffels, R.H.
2012-01-01
Reducing mixing in both flat panel and tubular photobioreactors can result in a positive net energy balance with state-of-the-art technology and Dutch weather conditions. In the tubular photobioreactor, the net energy balance becomes positive at velocities <0.3 ms-1, at which point the biomass
Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M
2014-03-29
Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. Copyright © 2014 Elsevier Inc. All rights reserved.
The energy balance of a plasma in partial local thermodynamic equilibrium
Kroesen, G.M.W.; Schram, D.C.; Timmermans, C.J.; de Haas, J.C.M.
1990-01-01
The energy balance for electrons and heavy particles constituting a plasma in partial local thermodynamic equilibrium is derived. The formulation of the energy balance used allows for evaluation of the source terms without knowledge of the particle and radiation transport situation, since most of
Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal
Miles, Evan S.; Pellicciotti, Francesca; Willis, Ian C.; Steiner, Jakob F.; Buri, Pascal; Arnold, Neil S.
2016-01-01
Supraglacial ponds on debris-covered glaciers present a mechanism of atmosphere/glacier energy transfer that is poorly studied, and only conceptually included in mass-balance studies of debris-covered glaciers. This research advances previous efforts to develop a model of mass and energy balance for
Neutron balance as indicator of long-term resource availability in growing nuclear energy system
Energy Technology Data Exchange (ETDEWEB)
Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2017-09-15
The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.
Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation
Energy Technology Data Exchange (ETDEWEB)
Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul
2007-08-13
We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.
Diagnosis, balances and energy indicators in municipalities of 'BASAL' project
International Nuclear Information System (INIS)
Pérez Martín, David; Soler Iglesias, Belkis; López López, Ileana; Moreno, Helsy; Matos, Yamilexis; Sanfiel, Caridad; Román, José Enrique
2015-01-01
Under the 'Basis for Environmental Sustainability Local Food' project (BASAL)) transverse energy-related activities were conducted. In this work we are analyzed and presented energy diagnoses in municipalities Los Palacios, Guira de Melena and Jimaguayú, capturing energy statistics in the 3 municipalities, energy balances and key energy indicators compared to support sustainability and decision making. (full text)
The Shifting Global Power Balance Equations and the Emerging Real ‘New World Order’
Ovie-D’Leone, Alex Igho
2010-01-01
Expansion in globalization arising from increased interconnectivity and interdependence across the worldis causing a shift both in the focus of what now could determine the principal international powervariables and the criteria for power balancing calculus. One direct challenge to the status quo is theemergence on one hand of new state actors which are becoming more assertive, as well as some other newkey non-state actors now matching states seemingly one-on-one on the world stage in many sp...
Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo
2017-08-01
The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.
Saito, Hirotaka; Šimůnek, Jiri
2009-07-01
SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may
International Nuclear Information System (INIS)
Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming
2015-01-01
Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.
Energy Technology Data Exchange (ETDEWEB)
Timmann, Bernd [HAMBURG ENERGIE, Hamburg (Germany). Direktvermarktung und Regelenergie; Bettinger, Carola [HAMBURG ENERGIE, Hamburg (Germany). Forschungsprojekt SMART POWER HAMBURG
2013-04-15
HAMBURG ENERGIE GmbH (Hamburg, Federal Republic of Germany) bundles 40 biogas plants with a total capacity of 15 megawatts to a virtual power plant. Thus, also small, decentralized plants may offer negative balancing power and achieve additional profits that were previously available only to large producers. In the medium term, HAMBURG ENERGIE wants to place a performance of 150 MW on the market.
The Martian climate and energy balance models with CO2/H2O atmospheres
Hoffert, M. I.
1986-01-01
The analysis begins with a seasonal energy balance model (EBM) for Mars. This is used to compute surface temperature versus x = sin(latitude) and time over the seasonal cycle. The core model also computes the evolving boundaries of the CO2 icecaps, net sublimational/condensation rates, and the resulting seasonal pressure wave. Model results are compared with surface temperature and pressure history data at Viking lander sites, indicating fairly good agreement when meridional heat transport is represented by a thermal diffusion coefficient D approx. 0.015 W/sq. m/K. Condensational wind distributions are also computed. An analytic model of Martian wind circulation is then proposed, as an extension of the EMB, which incorporates vertical wind profiles containing an x-dependent function evaluated by substitution in the equation defining the diffusion coefficient. This leads to a parameterization of D(x) and of the meridional circulation which recovers the high surface winds predicted by dynamic Mars atmosphere models (approx. 10 m/sec). Peak diffusion coefficients, D approx. 0.6 w/sq m/K, are found over strong Hadley zones - some 40 times larger than those of high-latitude baroclinic eddies. When the wind parameterization is used to find streamline patterns over Martian seasons, the resulting picture shows overturning hemispheric Hadley cells crossing the equator during solstices, and attaining peak intensities during the south summer dust storm season, while condensational winds are most important near the polar caps.
Directory of Open Access Journals (Sweden)
Qifeng Zhuang
2015-11-01
Full Text Available Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER images from an improved two-source energy balance (TSEB model. The original TSEB approach may overestimate latent heat flux under vegetative stress conditions, as has also been reported in recent research. We replaced the Priestley-Taylor equation used in the original TSEB model with one that uses plant moisture and temperature constraints based on the PT-JPL model to obtain a more accurate canopy latent heat flux for model solving. The collected ASTER data and field observations employed in this study are over corn fields in arid regions of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER area, China. The results were validated by measurements from eddy covariance (EC systems, and the surface energy flux estimates of the improved TSEB model are similar to the ground truth. A comparison of the results from the original and improved TSEB models indicates that the improved method more accurately estimates the sensible and latent heat fluxes, generating more precise daily evapotranspiration (ET estimate under vegetative stress conditions.
Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.
2017-12-01
The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced
Understanding the Relationship Between Food Variety, Food Intake, and Energy Balance.
Raynor, Hollie A; Vadiveloo, Maya
2018-03-01
In accordance with US dietary guidance, incorporating variety into the diet can align with energy balance, though greater food variety in some categories may make energy balance more challenging. Thus, experimental and epidemiologic evidence is summarized on the relationship between food variety, food and energy intake, and energy balance. Lab-based, experimental research consistently demonstrates that greater variety within foods or sensory characteristics of food increases food and energy intake within an eating occasion. Epidemiologic evidence is less consistent, potentially driven by differing methodologies, particularly in defining and measuring food variety. Moreover, the effect of variety on energy balance appears to be moderated by food energy density. Integrating insights from experimental and epidemiologic research are essential for strengthening food variety guidance including developing evidence-based definitions of food variety, understanding moderators of the relationship, and developing practical guidance interpretable to consumers.
On some properties of Einstein equations with the perfect fluid energy-momentum tensor
International Nuclear Information System (INIS)
Biesiada, M.; Szydlowski, M.; Szczesny, J.
1989-01-01
We discuss the symmetries of Einstein equations with the perfect fluid energy momentum tensor. We show that the symmetries inherited from vacuum equations enforce the equation of state in the form p p 0 = γρ which is the most often used one and contains models with the cosmological constant. 9 refs. (author)
On FEL integral equation and electron energy loss in intermediate gain regime
International Nuclear Information System (INIS)
Takao, Masaru
1994-03-01
The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)
Energy Technology Data Exchange (ETDEWEB)
1991-12-31
The Nineteenth Annual Illinois Energy Conference was held in Chicago, Illinois November 1991. It was organized by the Energy Resources Center, University of Illinois at Chicago with major support provided by the US Environmental Protection Agency, the US Department of Energy, the Illinois Commerce Commission, the Illinois Department of Energy and Natural Resources, and the Citizens Council on Energy Resources. The conference program was developed by a planning committee who drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The members of the planning committee were brought together for a full-day session where they were asked to assess the political, economic, and social impacts of the proposed National Energy Strategy as it relates to Illinois and the Midwest region. Within this context, the planning committee identified several major issues including: (1) Is the proposed plan a balanced strategy; (2) What are the NES impacts on the transportation sector; (3) What are the opportunities for improved efficiency in the Electric Utility Sector; and (4) What is the role of advanced research and development.
Energy balance and physical demands during an 8-week arduous military training course.
Richmond, Victoria L; Horner, Fleur E; Wilkinson, David M; Rayson, Mark P; Wright, Antony; Izard, Rachel
2014-04-01
This study assessed soldier's physical demands and energy balance during the Section Commanders' Battles Course (SCBC). Forty male soldiers were monitored during the 8-week tactics phase of the SCBC. Energy expenditure was measured using the doubly labeled water method. Cardiovascular strain (heart rate) and physical activity (using triaxial accelerometer) were also monitored. Average sized portions of meals were weighed, with all recipes and meals entered into a dietary analysis program to calculate the calorie content. Energy expenditure averaged 19.6 ± 1.8 MJ · d(-1) in weeks 2 to 3 and 21.3 ± 2.0 MJ · d(-1) in weeks 6 to 7. Soldiers lost 5.1 ± 2.6 kg body mass and body fat percent decreased from 23 ± 4% to 19 ± 5%. This average weight loss equates to an estimated energy deficit of 2.69 MJ · d(-1). The Army provided an estimated 14.0 ± 2.2 MJ · d(-1) in weeks 2 to 3 and 15.7 ± 2.2 MJ · d(-1) in weeks 6 to 7. Although this provision adheres to the minimum requirement of 13.8 MJ · d(-1) set by Army regulations, soldiers were in a theoretical 5.6 MJ · d(-1) energy deficit. The physical demands of SCBC were high, and soldiers were in energy deficit resulting in loss in body mass; primarily attributed to a loss in fat mass. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Directory of Open Access Journals (Sweden)
L. M. Kistler
Full Text Available During the main and early recovery phase of a geomagnetic storm on February 18, 1998, the Equator-S ion composition instrument (ESIC observed spectral features which typically represent the differences in loss along the drift path in the energy range (5–15 keV/e where the drift changes from being E × B dominated to being gradient and curvature drift dominated. We compare the expected energy spectra modeled using a Volland-Stern electric field and a Weimer electric field, assuming charge exchange along the drift path, with the observed energy spectra for H^{+} and O^{+}. We find that using the Weimer electric field gives much better agreement with the spectral features, and with the observed losses. Neither model, however, accurately predicts the energies of the observed minima.
Key words. Magnetospheric physics (energetic particles trapped; plasma convection; storms and substorms
Toward Nexus Equation: A Conceptual and Mathematical Framework for Water- Energy-Food Nexus
Abou Najm, Majdi; Higgins, Chad
2016-04-01
Water, energy, and agriculture are highly interdependent that attempts to achieve sustainability in any of those three domains will directly impact the others. These interdependencies, collectively known as the Water-Energy-Food Nexus, become more complex and more critical as the climate changes, the population grows, habits and lifestyles alternate, and the prices of water, energy, and food increase. However, and despite several attempts to incorporate the nexus, the global research community continues to focus on different subsets of the problem with limited holistic attempts to address the full problem. At best, interactions between two of the three domains were studied, often neglecting the impact of such interaction on the third domain. For example, agricultural researchers tracked water costs by applying concepts like virtual water or water footprint, or using large-scale system models to investigate food and water security, ignoring most often the corresponding energy footprint. Similarly, investigators quantified water-energy tradeoffs in the highly engineered, centralized systems of water and power management, paying no attention to water diversion from agriculture. Most nexus initiatives focused on reviews and data collection of existing knowledge and relevant facts, but unfortunately lacked a conceptual and mathematical framework that can integrate all the gathered knowledge and account for multiple interactions, feedbacks, or natural processes that occur across all three domains of the nexus. Here, we present an integrated conceptual and mathematical framework (roadmap) for the nexus. This framework is driven by spatiotemporal demands for water, energy, and food to be satisfied by resource management of the three domains, envisioned as a stepwise process, with each step requiring inputs from the three nexus domains and creating waste products. The efficiency of each step, combined with mass balances, create the linkages and feedback loops within the
International Nuclear Information System (INIS)
Doss, K.G.R.; Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.; Ludewigt, B.; Poskanzer, A.M.; Ritter, H.G.; Schmidt, H.R.; Lawrence Berkeley Lab., CA; Kampert, K.H.; Loehner, H.
1987-08-01
In nuclear collisions of AU+Au, Nb+Nb and Ca+Ca at bombarding energies between 150 and 800 MeV per nucleon transverse energy and transverse momenta of light particles are studied event by event at θ = 90 0 in the center of mass system. At all energies a rise of the mean transverse energy per nucleon is observed with increasing charged particle multiplicity. Particularly large values of E perpendicular to have been found for 3 He-fragments. The hydrodynamical picture is discussed for a possible separation of the collective flow and the thermal parts of the E perpendicular to -spectrum. From this, evidence for a rather stiff equation of state is found. (orig.)
Energy balance of Sao Paulo State, Brazil 2012. Calendar year 2011
International Nuclear Information System (INIS)
2012-01-01
The document presents the consolidated annual energy balances, which encompasses: Executive Summary; Participation of the Sao Paulo's Electric Energy in the National Context; Overview Energy Mix of the State of Sao Paulo; Final Consumption by Source; Final Consumption by Sectors in 2011; Contents of the Energy Balance for the State of Sao Paulo; Methodology; Summary of the period in analysis; Supply and Demand of energy by source; External trade of energy; Energy imports and export; Transformation center balances; Energy and Economy and Resources and energy Reserves. In this 2012 edition, we highlight the growth of gasoline consumption at the expense of ethanol, compared with previous years. The fall harvest of cane sugar and federal policies aimed at artificially support the price of gasoline are some of the factors that led to the fall in competitiveness of ethanol. Nowadays, it is up to the government to create policies to stimulate the supply of renewable fuels to replace fossil fuels. (author)
Energy Technology Data Exchange (ETDEWEB)
Katz, Jessica; Denholm, Paul; Cochran, Jaquelin
2015-06-01
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
The global mean energy balance under cloud-free conditions
Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles
2017-04-01
är, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.
11. State energy balance - 1978-1992 - Minas Gerais, Brazil
International Nuclear Information System (INIS)
1994-07-01
The Minas Gerais energetic system report is presented including the energy sources by economic-social sectors and statistical data about energy consumption, energy demand and energy supply for the period 1978/1992, with revised and updated data. 96 figs., 119 tabs
International Nuclear Information System (INIS)
Kessides, Ioannis N.; Wade, David C.
2011-01-01
This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.
Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model
Directory of Open Access Journals (Sweden)
Guoli Ren
2017-01-01
Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.
Inverse scattering scheme for the Dirac equation at fixed energy
International Nuclear Information System (INIS)
Leeb, H.; Lehninger, H.; Schilder, C.
2001-01-01
Full text: Based on the concept of generalized transformation operators a new hierarchy of Dirac equations with spherical symmetric scalar and fourth component vector potentials is presented. Within this hierarchy closed form expressions for the solutions, the potentials and the S-matrix can be given in terms of solutions of the original Dirac equation. Using these transformations an inverse scattering scheme has been constructed for the Dirac equation which is the analog to the rational scheme in the non-relativistic case. The given method provides for the first time an inversion scheme with closed form expressions for the S-matrix for non-relativistic scattering problems with central and spin-orbit potentials. (author)
Knegsel, van A.T.M.; Brand, van den H.; Dijkstra, J.; Tamminga, S.; Kemp, B.
2005-01-01
The pathway for oxidation of energy involves a balanced oxidation of C2 and C3 compounds. During early lactation in dairy cattle this C2/C3 ratio is out of balance, due to a high availability of lipogenic (C2) products and a low availability of glycogenic (C3) products relative of the C2 and C3
Energy balance of lactating primiparous sows as affected by feeding level and dietary energy source
Brand, van den, H.; Heetkamp, M.J.W.; Soede, N.M.; Schrama, J.W.; Kemp, B.
2000-01-01
The effects of feeding level and major dietary energy source used during lactation on sow milk composition, piglet body composition, and energy balance of sows were determined. During a 21-d lactation, 48 primiparous sows were fed either a Fat-rich (134.9 g/kg fat; 196.8 g/kg carbohydrate) or a Starch-rich (33.2 g/kg fat; 380.9 g/kg carbohydrate) diet at either a High (44 MJ NE/d; 1,050 g protein/d) or a Low (33 MJ NE/d; 790 g protein/d) feeding level. Within each feeding level, the two diets...
Energy-balance check for continuous energy cross section library CENACE-1.0
International Nuclear Information System (INIS)
Zhao Qiujuan; Wu Haicheng; Ge Zhigang
2014-01-01
In order to verify the reliability of the multiple-temperature continuous energy cross section library CENACE-1.0 when used for calculating nuclear heating in reactor core, NJOY99/HEATR module and auxiliary code chkACEheat developed locally were used to perform energy-balance check for all materials in the library. The test results show that the pass rate of KERMA factors and heat production cross sections of the CENACE-1.0 library is better than that of the other ACE libraries used as comparison. However, unreasonable KERMA factors still exist in various evaluation libraries, and methods to directly revise the calculation results of KERMA factors need to be developed. (authors)
Energy balance during underwater implosion of ductile metallic cylinders.
Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M
2014-11-01
Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.
Directory of Open Access Journals (Sweden)
E. Rets
2017-01-01
Full Text Available Frequency and intensity of river floods rise observed in the North Caucasus during last decades is considered to be driven by recent climate change. In order to predict possible future trends in extreme hydrological events in the context of climate change, it is essential to estimate the contribution of different feed sources in complicated flow-forming processes in the alpine part of the North Caucasus. A study was carried out for the Djankuat River basin, the representative for the North Caucasus system. Simultaneous measurements of electrical conductivity, isotopic and ion balance equations, and energy balance modeling of ice and snow melt were used to evaluate the contribution of different sources and processes in the Djankuat River runoff regime formation. A forecast of possible future changes in the Djankuat glacier melting regime according to the predicted climate changes was done.
Comparison of equations for predicting energy expenditure from accelerometer counts in children
DEFF Research Database (Denmark)
Nilsson, A; Brage, S; Riddoch, C
2008-01-01
calorimeter-based (CAL) equation (mixture of activities). Predicted physical activity energy expenditure (PAEE) was the main outcome variable. In comparison with DLW-predicted PAEE, both laboratory-derived equations significantly (PPAEE by 17% and 83%, respectively, when based on a 24-h...... prediction, while the TM equation significantly (PPAEE by 46%, when based on awake time only. In contrast, the CAL equation agreed better with the DLW equation under the awake time assumption. Predicted PAEE differ substantially between equations, depending on time-frame assumptions......, and interpretations of average levels of PAEE in children from available equations should be made with caution. Further development of equations applicable to free-living scenarios is needed....
International Nuclear Information System (INIS)
Patthanaissaranukool, Withida; Polprasert, Chongchin; Englande, Andrew J.
2013-01-01
Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO 2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of
The former USSR: an energy balance in urgent need of improvement
International Nuclear Information System (INIS)
Provost, H.
1993-01-01
The energy balance of the former USSR is a decisive factor in the economies of the countries now remaining. This balance is facing a crunch due to excessive consumption of liquid hydrocarbons, combined with a downswing in production since 1988. There is a pressing need to open up the petroleum industries to Western technologies and partnerships. 1 fig., 4 tabs
International Nuclear Information System (INIS)
Buchert, Thomas
2005-01-01
A system of effective Einstein equations for spatially averaged scalar variables of inhomogeneous cosmological models can be solved by providing a 'cosmic equation of state'. Recent efforts to explain dark energy focus on 'backreaction effects' of inhomogeneities on the effective evolution of cosmological parameters in our Hubble volume, avoiding a cosmological constant in the equation of state. In this letter, it is argued that if kinematical backreaction effects are indeed of the order of the averaged density (or larger as needed for an accelerating domain of the universe), then the state of our regional Hubble volume would have to be in the vicinity of a far-from-equilibrium state that balances kinematical backreaction and average density. This property, if interpreted globally, is shared by a stationary cosmos with effective equation of state p eff = -1/3 ρ eff . It is concluded that a confirmed explanation of dark energy by kinematical backreaction may imply a paradigmatic change of cosmology. (letter to the editor)
Regularity and energy conservation for the compressible Euler equations
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.; Wiedemann, E.
2017-01-01
Roč. 223, č. 3 (2017), s. 1375-1395 ISSN 0003-9527 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.392, year: 2016 http://link.springer.com/article/10.1007%2Fs00205-016-1060-5
International Nuclear Information System (INIS)
Morrison, P.J.
1992-04-01
Expressions for the energy content of one-dimensional electrostatic perturbations about homogeneous equilibria are revisited. The well-known dielectric energy, var-epsilon D , is compared with the exact plasma free energy expression, δ 2 F, that is conserved by the Vlasov-Poisson system. The former is an expression in terms of the perturbed electric field amplitude, while the latter is determined by a generating function, which describes perturbations of the distribution function that respect the important constraint of dynamical accessibility of the system. Thus the comparison requires solving the Vlasov equation for such a perturbations of the distribution function in terms of the electric field. This is done for neutral modes of oscillation that occur for equilibria with stationary inflection points, and it is seen that for these special modes δ 2 F = var-epsilon D . In the case of unstable and corresponding damped modes it is seen that δ 2 F ≠ var-epsilon D ; in fact δ 2 F ≡ 0. This failure of the dielectric energy expression persists even for arbitrarily small growth and damping rates since var-epsilon D is nonzero in this limit, whereas δ 2 F remains zero. The connection between the new exact energy expression and the at-best approximate var-epsilon D is described. The new expression motivates natural definitions of Hamiltonian action variables and signature. A general linear integral transform is introduced that maps the linear version of the noncanonical Hamiltonian structure, which describes the Vlasov equation, to action-angle (diagonal) form
Smidt, J.; Ingwersen, J.; Streck, T.
2015-12-01
The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap
CO2 balance in production of energy based on biogas
DEFF Research Database (Denmark)
Nielsen, Per Sieverts; Holm-Nielsen, J.B.
1997-01-01
Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....
Johnson, Paul; Howell, Sydney; Duck, Peter
2017-08-13
A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Energy, environment and economics: greenhouse policy in the balance
International Nuclear Information System (INIS)
Wilkenfeld, G.L.
1990-01-01
Taking New South Wales as a case study, this paper reviews the government's major economic and environmental concerns, and analyses how they bear on energy and greenhouse policy options. The government's economic strategy emphasises the continuing importance of primary resources, minerals processing and energy-intensive manufacturing, where the State is perceived to have a competitive advantage because of its extensive coal resources. The implications of these trends for the energy utilities and for greenhouse energy policy are analysed. 22 refs., 1 tab
Solar energy research and development: program balance. Annex, Volume I
Energy Technology Data Exchange (ETDEWEB)
None
1978-02-01
An evaluation of federal research, development, and demonstration options on solar energy is presented. This assessment treats seven groups of solar energy technologies: solar heating and cooling of buildings, agricultural and industrial process heat, biomass, photovoltaics, thermal power, wind, and ocean thermal energy conversion. The evaluation methodology is presented in detail. (MHR)
Energy balance from Parana State - 1980-1992
International Nuclear Information System (INIS)
1993-01-01
The energy flows of primary and secondary energy sources since the production to the end consumption in the main sectors of Parana State economy during 1980 to 1992, are presented. The supply and demand, consumption and production of energy sources are shown. Some information about resources and reserves are also cited. (C.G.C.)
Energy balance of the Sao Paulo State - 1991
International Nuclear Information System (INIS)
1993-01-01
The energy production and consumption for the several categories of the economy in the Brazilian State of Sao Paulo are presented. The data are given according to the energy source and to consumer sectors and information about the import, export, losses in the transformation and distribution of the several forms of energy is supplied. 18 figs., 120 tabs
Brazilian Energy Balance 2016 - calendar year 2015; Balanco energetico nacional 2016 - ano base 2015
Energy Technology Data Exchange (ETDEWEB)
NONE
2016-07-01
The BEB is divided into eight chapters and ten annexes, whose contents are as follow. Chapter 1 - Energy Analysis and Aggregated Data - presents energy highlights per source in 2015 and analyses the evolution of the domestic energy supply and its relationship with economic growth. Chapter 2 - Energy Supply and Demand by Source - has the accountancy, per primary and secondary energy sources, of the production, import, export, variation of stocks, losses, adjustments and total consumption disaggregated per socioeconomic sector in the country. Chapter 3 - Energy Consumption by Sector - presents the final energy consumption classified by primary and secondary source for each sector of the economy. Chapter 4 - Energy Imports and Exports - presents the evolution of the data on the import and export of energy and the dependence on external energy. Chapter 5 - Balance of Transformation Centers - presents the energy balances for the energy transformation centers including their losses. Chapter 6 - Energy Resources and Reserves - has the basic concepts use in the survey of resources and reserves of primary energy sources. Chapter 7 - Energy and Socioeconomics - contains a comparison of energy, economic and population parameters, specific consumption, energy intensities, average prices and spending on petroleum imports. Chapter 8 - State Energy Data - presents energy data for the states by Federal Unit, main energy source production, energy installations, reserves and hydraulic potential. Relating to annexes the current structure is presented bellow: Annex I - Installed Capacity - shows the installed capacity of electricity generation, the installed capacity of Itaipu hydro plant and the installed capacity for oil refining. Annex II - Self-production of Electricity - presents disaggregated data of self-production, considering sources and sectors. Annex III - World Energy Data - presents the main indicators for the production, import, export and consumption per energy source
Icardi, Matteo; Ronco, Gianni; Marchisio, Daniele Luca; Labois, Mathieu
2014-01-01
The inhomogeneous generalized population balance equation, which is discretized with the direct quadrature method of moment (DQMOM), is solved to predict the bubble size distribution (BSD) in a vertical pipe flow. The proposed model is compared with a more classical approach where bubbles are characterized with a constant mean size. The turbulent two-phase flow field, which is modeled using a Reynolds-Averaged Navier-Stokes equation approach, is assumed to be in local equilibrium, thus the relative gas and liquid (slip) velocities can be calculated with the algebraic slip model, thereby accounting for the drag, lift, and lubrication forces. The complex relationship between the bubble size distribution and the resulting forces is described accurately by the DQMOM. Each quadrature node and weight represents a class of bubbles with characteristic size and number density, which change dynamically in time and space to preserve the first moments of the BSD. The predictions obtained are validated against previously published experimental data, thereby demonstrating the advantages of this approach for large-scale systems as well as suggesting future extensions to long piping systems and more complex geometries. © 2014 Elsevier Inc.
Icardi, Matteo
2014-09-01
The inhomogeneous generalized population balance equation, which is discretized with the direct quadrature method of moment (DQMOM), is solved to predict the bubble size distribution (BSD) in a vertical pipe flow. The proposed model is compared with a more classical approach where bubbles are characterized with a constant mean size. The turbulent two-phase flow field, which is modeled using a Reynolds-Averaged Navier-Stokes equation approach, is assumed to be in local equilibrium, thus the relative gas and liquid (slip) velocities can be calculated with the algebraic slip model, thereby accounting for the drag, lift, and lubrication forces. The complex relationship between the bubble size distribution and the resulting forces is described accurately by the DQMOM. Each quadrature node and weight represents a class of bubbles with characteristic size and number density, which change dynamically in time and space to preserve the first moments of the BSD. The predictions obtained are validated against previously published experimental data, thereby demonstrating the advantages of this approach for large-scale systems as well as suggesting future extensions to long piping systems and more complex geometries. © 2014 Elsevier Inc.
Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mecha...
Determination of r Factor of Kalbach-Mann Systematics for Energy Balance
International Nuclear Information System (INIS)
Zhang Jingshang
2008-01-01
Kalbach-Mann systematics is a very useful formula to discrete the double-differential cross sections of emitted particles. However, the energy balance by using this systematics is still a task to be studied. In the form of Legendre polynomial expansion the energy balance has been proved analytically. In terms of this approach, the formula to determine the pre-equilibrium fraction r factor of Kalbach-Mann systematics has been obtained for keeping energy balance strictly. This formula could be straightforwardly applied for describing the double-differential cross sections of all projectile types in the continuum spectrum emissions. It indicates that Legendre expansion coefficient with l = 1 is the key term in the energy balance
van Berkel, J.; Boot, C.R.L.; Proper, K.I.; Bongers, P.M.; van der Beek, A.J.
2013-01-01
OBJECTIVE:: To evaluate the process of the implementation of an intervention aimed at improving work engagement and energy balance, and to explore associations between process measures and compliance. METHODS:: Process measures were assessed using a combination of quantitative and qualitative
Berkel, J. van; Boot, C.R.L.; Proper, K.I.; Bongers, P.M.; Beek, A.J. van der
2013-01-01
OBJECTIVE:: To evaluate the process of the implementation of an intervention aimed at improving work engagement and energy balance, and to explore associations between process measures and compliance. METHODS:: Process measures were assessed using a combination of quantitative and qualitative
Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn
2018-04-01
Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.
Directory of Open Access Journals (Sweden)
Juliette A. Brown
2015-02-01
Full Text Available Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH or orexins/hypocretins (OX are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Directory of Open Access Journals (Sweden)
Ahmed Taha Ayoub
2017-09-01
Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.
Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael
2018-06-01
In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.
Green IGP Link Weights for Energy-efficiency and Load-balancing in IP Backbone Networks
Francois, Frederic; Wang, Ning; Moessner, Klaus; Georgoulas, Stylianos; Xu, Ke
2013-01-01
The energy consumption of backbone networks has become a primary concern for network operators and regulators due to the pervasive deployment of wired backbone networks to meet the requirements of bandwidth-hungry applications. While traditional optimization of IGP link weights has been used in IP based load-balancing operations, in this paper we introduce a novel link weight setting algorithm, the Green Load-balancing Algorithm (GLA), which is able to jointly optimize both energy efficiency ...
Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training.
Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Gundersen, Yngvar; Castellani, John W; Karl, J Philip; Carrigan, Christopher T; Teien, Hilde-Kristin; Madslien, Elisabeth-Henie; Montain, Scott J; Pasiakos, Stefan M
2016-08-01
Soldiers often experience negative energy balance during military operations that diminish whole-body protein retention, even when dietary protein is consumed within recommended levels (1.5-2.0 g·kg·d). The objective of this study is to determine whether providing supplemental nutrition spares whole-body protein by attenuating the level of negative energy balance induced by military training and to assess whether protein balance is differentially influenced by the macronutrient source. Soldiers participating in 4-d arctic military training (AMT) (51-km ski march) were randomized to receive three combat rations (CON) (n = 18), three combat rations plus four 250-kcal protein-based bars (PRO, 20 g protein) (n = 28), or three combat rations plus four 250-kcal carbohydrate-based bars daily (CHO, 48 g carbohydrate) (n = 27). Energy expenditure (D2O) and energy intake were measured daily. Nitrogen balance (NBAL) and protein turnover were determined at baseline (BL) and day 3 of AMT using 24-h urine and [N]-glycine. Protein and carbohydrate intakes were highest (P balance (-3313 ± 776 kcal·d), net protein balance (NET) (-0.24 ± 0.60 g·d), and NBAL (-68.5 ± 94.6 mg·kg·d) during AMT were similar between groups. In the combined cohort, energy intake was associated (P balance and NBAL during AMT. These data reinforce the importance of consuming sufficient energy during periods of high energy expenditure to mitigate the consequences of negative energy balance and attenuate whole-body protein loss.
Sleep restriction is not associated with a positive energy balance in adolescent boys
DEFF Research Database (Denmark)
Klingenberg, Lars; Chaput, Jean-Philippe; Holmbäck, Ulf
2012-01-01
A short sleep (SS) duration has been linked to obesity in observational studies. However, experimental evidence of the potential mechanisms of sleep restriction on energy balance is conflicting and, to our knowledge, nonexistent in adolescents.......A short sleep (SS) duration has been linked to obesity in observational studies. However, experimental evidence of the potential mechanisms of sleep restriction on energy balance is conflicting and, to our knowledge, nonexistent in adolescents....
Systems-design and energy-balance considerations for impact fusion
International Nuclear Information System (INIS)
Krakowski, R.A.; Miller, R.L.
1979-01-01
Areas of concern and potential problems for impact fusion are qualitatively considered within an overall systems context. A parametric and qualitative description of the general energy balance and systems considerations for an Impact Fusion Reactor (IFR) design is discussed. Reactor systems design considerations for an IFR are presented. An attempt to assess the IFR viability is made based on highly simplified but limiting projectile-target energy balances and thermonuclear burn models
International Nuclear Information System (INIS)
Mozolevski, I.E.
2001-01-01
We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses
DEFF Research Database (Denmark)
Guzinski, R.; Nieto, H.; Stisen, S.
2015-01-01
Evapotranspiration (ET) is the main link between the natural water cycle and the land surface energy budget. Therefore water-balance and energy-balance approaches are two of the main methodologies for modelling this process. The water-balance approach is usually implemented as a complex....... The temporal patterns produced by the remote sensing and hydrological models are quite highly correlated (r ≈ 0.8). This indicates potential benefits to the hydrological modelling community of integrating spatial information derived through remote sensing methodology (contained in the ET maps...
Balancing energy, development and climate priorities in India. Current trends and future projections
International Nuclear Information System (INIS)
Shukla, P.R.; Garg, A.; Dhar, S.; Halsnaes, K.
2007-09-01
This report gives a short introduction to the project: Projecting future energy demand: Balancing development, energy and climate priorities in large developing countries. Furthermore, the report analyses Indian energy, development and climate change, followed by an assessment of cross-country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. The focus is on the energy sector policies that mainstream climate interests within development choices. (BA)
Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome
Energy Technology Data Exchange (ETDEWEB)
Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo
2008-07-01
Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)
Fuel Cells for Balancing Fluctuation Renewable Energy Sources
DEFF Research Database (Denmark)
Mathiesen, Brian Vad
2007-01-01
In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage of...... with hydrogen production or electric cars, and on the other hand using biomass and bio fuels [11]. Fuel cells can have an important role in these future energy systems.......In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage...... flexibility, such as SOFCs, heat pumps and heat storage technologies are more important than storing electricity as hydrogen via electrolysis in energy systems with high amounts of wind [12]. Unnecessary energy conversions should be avoided. However in future energy systems with wind providing more than 50...
Arc tracking energy balance for copper and aluminum aeronautic cables
International Nuclear Information System (INIS)
André, T; Valensi, F; Teulet, P; Cressault, Y; Zink, T; Caussé, R
2017-01-01
Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted. (paper)
A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies
Bonetti, F.; McInnes, C. R.
2016-12-01
Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.
Optimized energy recovery in line with balancing of an ATES
Behi, M.; Mirmohammadi, S.A.; Suma, A.B.; Palm, B.E.
2014-01-01
The present study explores the potential imbalance problem of the Aquifer Thermal Energy Storage (ATES) system at the Eindhoven University of Technology (TU/e) campus, Eindhoven. This ATES is one of the largest European aquifer thermal energy storage systems, and has a seasonal imbalance problem.
Discrete event simulations for glycolysis pathway and energy balance
Zwieten, van D.A.J.; Rooda, J.E.; Armbruster, H.D.; Nagy, J.D.
2010-01-01
In this report, the biological network of the glycolysis pathway has been modeled using discrete event models (DEMs). The most important feature of this pathway is that energy is released. To create a stable steady-state system an energy molecule equilibrating enzyme and metabolic reactions have
International Nuclear Information System (INIS)
Kalita, P.K.; Kanwar, R.S.
1992-01-01
The effects of water table management practices (WTMP) on corn growth in 1989 and 1990 at two field sites, Ames and Ankeny, Iowa, were evaluated by calculating crop water stress index (CWSI) and monitoring plant physiological parameters during the growing seasons. Experiments were conducted on field lysimeters at the Ames site by maintaining water tables at 0.3-, 0.6-, and 0.9-m depths and in a subirrigation field at the Ankeny site with 0.2-, 0.3-, 0.6-, 0.9-, and 1.1-m water table depths, and periodically measuring leaf and air temperature, transpiration rate, stomatal conductance, and photosynthetically active radiation (PAR) using leaf chamber techniques. Net radiation of canopy was estimated using the leaf energy balance equation and leaf chamber measurements and then correlated with PAR. Analysis of data revealed that net radiation, leaf air temperature differential, transpiration rate, stomatal conductance, and CWSI were strongly related to WTMP during vegetative and flowering stages of corn growth. Excess water in the root zone with a water table depth of 0.2 m caused the maximum crop water stress and ceased crop growth. Both water and oxygen could be adequately maintained for favorable crop growth by adopting the best WTMP. Results indicate that plant physiological parameters and CWSI could be used to evaluate the effectiveness of WTMP and develop the best WTMP for corn growth in the humid region
Capacitor voltage ripple reduction and arm energy balancing in MMC-HVDC
DEFF Research Database (Denmark)
Parikh, Harsh; Martin-Loeches, Ruben Sánches; Tsolaridis, Georgios
2016-01-01
Modular Multilevel Converters are emerging and widely used in HVDC applications. However, the submodule capacitors are still large and the energy balancing under unbalanced conditions is a challenge. In this paper, an analytical model focusing on the energy stored in the capacitors and voltage...... variations is utilized in order to achieve better performance. By injecting a second order harmonic component into the circulating current, the energy variation and consequently the capacitor voltage ripple is reduced allowing for a capacitor size reduction. At the same time, an arm energy balancing...
Conservation of energy for the Euler-Korteweg equations
Dębiec, Tomasz
2017-12-30
In this article we study the principle of energy conservation for the Euler-Korteweg system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the Euler-Korteweg system to conserve the total energy. The result applies to the system of Quantum Hydrodynamics.
Conservation of energy for the Euler-Korteweg equations
Dębiec, Tomasz; Gwiazda, Piotr; Świerczewska-Gwiazda, Agnieszka; Tzavaras, Athanasios
2017-01-01
In this article we study the principle of energy conservation for the Euler-Korteweg system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the Euler-Korteweg system to conserve the total energy. The result applies to the system of Quantum Hydrodynamics.
Thorne, Lawrence R.
2011-01-01
I propose a novel approach to balancing equations that is applicable to all chemical-reaction equations; it is readily accessible to students via scientific calculators and basic computer spreadsheets that have a matrix-inversion application. The new approach utilizes the familiar matrix-inversion operation in an unfamiliar and innovative way; its purpose is not to identify undetermined coefficients as usual, but, instead, to compute a matrix null space (or matrix kernel). The null space then...
Arciero, Paul J; Ormsbee, Michael J; Gentile, Christopher L; Nindl, Bradley C; Brestoff, Jonathan R; Ruby, Maxwell
2013-07-01
Unrefined, complex carbohydrates and lean protein diets are used to combat obesity, although it's unknown whether more frequent meals may improve this response. The effects of consuming traditional (~15%) versus higher (~35%) protein intakes as three or six meals/day on abdominal fat, postprandial thermogenesis (TEM), and cardiometabolic biomarkers in overweight individuals during 28 days of energy balance (BAL) and deficit (NEG), respectively were compared. Overweight individuals (n = 30) were randomized into three groups: two high-protein groups (35% of energy) consumed as three (HP3) or six (HP6) meals/day and one group consumed three meals/day of a traditional intake (TD3). Following a 5-day baseline control (CON), subjects consumed their respective diets throughout a 56-day intervention consisting of two, 28 day phases: a BAL followed by a NEG phase (75% of energy needs). Total body fat (BF) and abdominal BF (ABF), body weight (BW), TEM, and fasting biomarkers were assessed at the end of CON, BAL, and NEG phases. BW remained stable throughout CON and BAL in all groups, whereas BF (P meals/day in overweight individuals during both BAL and NEG. Copyright © 2013 The Obesity Society.
Directory of Open Access Journals (Sweden)
C. Corbari
2010-10-01
Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.
Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.
Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.
The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.
Electrochemical energy storage for renewable sources and grid balancing
Moseley, Patrick T
2015-01-01
Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen
Darboux Transformations for Energy-Dependent Potentials and the Klein–Gordon Equation
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2013-01-01
We construct explicit Darboux transformations for a generalized Schrödinger-type equation with energy-dependent potential, a special case of which is the stationary Klein–Gordon equation. Our results complement and generalize former findings (Lin et al., Phys Lett A 362:212–214, 2007).
Spontaneous symmetry breaking and self-consistent equations for the free-energy
International Nuclear Information System (INIS)
Lovesey, S.W.
1980-03-01
A variational procedure for the free-energy is used to derive self-consistent equations that allow for spontaneous symmetry breaking. For an N-component phi 4 -model the equations are identical to those obtained by summing all loops to order 1/N. (author)
Directory of Open Access Journals (Sweden)
Maxim Olegovich Korpusov
2012-07-01
Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.
Directory of Open Access Journals (Sweden)
Djallel ZEBBAR
2016-06-01
Full Text Available Distribution knowledge of the energy introduced into the combustion chamber is of great importance in the theory of internal combustion engines. This work aims to highlight the very complex relationship, often indistinguishable between internal and external energy balances components. The scrutiny of internal balance components has permitted to trace back up to the external balance. This can be easily established on a test bench equipped for the occasion. It will assess the perfection of energy's use, the heat loss and the possibility of their reducing, the energy efficiency of exhaust gas use, the possibility and ways of engine operating parameters improving and finally it will allowing to calculate the cooling and energy recovery systems.
Droste-Franke, Bert; Rehtanz, Christian; Sauer, Dirk Uwe; Schneider, Jens-Peter; Schreurs, Miranda; Ziesemer, Thomas
2012-01-01
A significant problem of integrating renewable energies into the electricity system is the temporally fluctuating energy production by wind and solar power plants. Thus, in order to meet the ambitious long-term targets on CO2 emission reduction, long-term viable low-carbon options for balancing electricity will be needed. This interdisciplinary study analyses published future energy scenarios in order to get an impression of the required balancing capacities and shows which framework conditions should be modified to support their realisation. The authors combine their perspectives from energy engineering, technology assessment, political science, economical science and jurisprudence and address science, politics, actors in the energy sector and the interested public. Respectively, requirements for the balancing systems are analysed, considering the case of Germany as a large country with high ambitions to reduce greenhouse gas emissions. Additionally, an approach to investigate the optimal design of the techn...
Fontenla, J. M.; Avrett, E. H.; Loeser, R.
1990-01-01
The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.
Comparison of tropical and subtropical glacier surface energy balance in Africa and South America
Nicholson, L.; Prinz, R.; Kinnard, C.; Mölg, T.; Winkler, M.; Kaser, G.
2010-05-01
Tropical glaciers exist only at high altitude, and meteorological and surface energy balance studies of these glaciers can tell us much about the conditions and changes occurring in the mid troposphere. Understanding the surface energy balance and resultant mass balance regime of tropical glaciers is prerequisite to predicting glacier evolution, and future meltwater contributions to local hydrological resources, in response to future climate scenarios. Tropical glacier mass balance variability is strongly linked to precipitation and, via this, to multi-annual climate oscillations such as ENSO and IOZM, so it is useful to understand what role these differing regional influences play in comparison to the similarities imposed by the overarching tropical climate conditions and seasonality. New surface energy balance and mass balance data is available from Lewis glacier (Kenya, 0°09' S; 37°18' E), and here we use an energy and mass balance model to determine the surface energy flux characteristics at this site through a wet and dry season. Results are compared with those from Kersten glacier (Tanzania, 3°04' S; 37°21' E) to understand how conditions at these two glaciers compare and thus what coherent and contrasting climatic information glaciological records from these two sites can be expected to deliver. Meteorological data available from glacier stations on Antizana (Ecuador, 0°25' S; 78°09' W), Artesonraju (Peru, 8°28' S; 77°38' W) Zongo (Bolivia, 16°39' S; 67°47' W) and Guanaco (Chile, 29°20' S; 70°00' W) glaciers in South America offer the opportunity to examine how the surface fluxes and seasonal variability of the energy balance compares to those of the African glaciers. We include the extra-tropical Chilean example for comparison with the similarly high altitude, cold ice of Kersten glacier.
Balancing act: Government roles in an energy conservation network
Peterman, A.; Kourula, A.; Levitt, R.
2014-01-01
Government-led interorganizational alliance networks present a sensible opportunity to overcome many societal challenges through collaborative governance. In particular, few researchers have studied alliance networks in the field of energy conservation in commercial buildings—a sector with unique
Integrative Control of Energy Balance and Reproduction in Females
Garcia-Garcia, R. M.
2012-01-01
There is a strong association between nutrition and reproduction. Chronic dietary energy deficits as well as energy surpluses can impair reproductive capacity. Metabolic status impacts reproductive function at systemic level, modulating the hypothalamic GnRH neuronal network and/or the pituitary gonadotropin secretion through several hormones and neuropeptides, and at the ovarian level, acting through the regulation of follicle growth and steroidogenesis by means of the growth hormone-IGF-ins...
On the energy-critical fractional Sch\\"odinger equation in the radial case
Guo, Zihua; Sire, Yannick; Wang, Yuzhao; Zhao, Lifeng
2013-01-01
We consider the Cauchy problem for the energy-critical nonlinear Schr\\"odinger equation with fractional Laplacian (fNLS) in the radial case. We obtain global well-posedness and scattering in the energy space in the defocusing case, and in the focusing case with energy below the ground state.
Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations.
Kopka, Ryszard
2017-12-22
In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional-order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated for various input signal shapes and parameters. Very high consistency between estimated and experimental results fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of supercapacitor energy storage.
Higgins, C. W.; Abou Najm, M.
2015-12-01
balances, create the linkages and feedback loops within the nexus. Such an approach allows for a compact, single representation of the 'nexus equation' that generally represents all interactions, material pathways, feedback loops and embedded resource echoes.
Energy balance of Sao Paulo state, Brazil 2008. Calendar year 2007
International Nuclear Information System (INIS)
2008-01-01
This document presents the consolidated annual energy balances and also tables and graphics which detailed the evolution and the present status of offer and demand of each energy resources used by Sao Paulo, Brazil, economy and regionalized and environmental information. It covers the period of 1994 to 2007 and includes energy fluxes of the energy primary and secondary resources, from the production to the final consumption of the main sectors of the state economy
Energy balance of Sao Paulo state, Brazil 2009. Calendar year 2008
International Nuclear Information System (INIS)
2009-01-01
This document presents the consolidated annual energy balances and also tables and graphics which detailed the evolution and the present status of offer and demand of each energy resources used by Sao Paulo, Brazil, economy and regional and environmental information. It covers the period of 1995 to 2008 and includes energy fluxes of the energy primary and secondary resources, from the production to the final consumption of the main sectors of the state economy
PINTO, Andressa S.; CHEDID, Marcio F.; GUERRA, Léa T.; ÁLVARES-DA-SILVA, Mario R.; ARAÚJO, Alexandre de; GUIMARÃES, Luciano S.; LEIPNITZ, Ian; CHEDID, Aljamir D.; KRUEL, Cleber R. P.; GREZZANA-FILHO, Tomaz J. M.; KRUEL, Cleber D. P.
2016-01-01
ABSTRACT Background: Reliable measurement of basal energy expenditure (BEE) in liver transplant (LT) recipients is necessary for adapting energy requirements, improving nutritional status and preventing weight gain. Indirect calorimetry (IC) is the gold standard for measuring BEE. However, BEE may be estimated through alternative methods, including electrical bioimpedance (BI), Harris-Benedict Equation (HBE), and Mifflin-St. Jeor Equation (MSJ) that carry easier applicability and lower cost....
Analysis of PV system energy balance based on meteorological data
Czech Academy of Sciences Publication Activity Database
Prokop, L.; Mišák, S.; Pelikán, Emil; Juruš, Pavel; Kasanický, Ivan
2013-01-01
Roč. 89, č. 11 (2013), s. 27-30 ISSN 0033-2097 R&D Projects: GA MŠk LD12009 Grant - others:GA ČR(CZ) GA102/09/1842; GA MŠk(CZ) ED2.1.00/03.0069; VŠB(CZ) sp2013/68; GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : photovoltaic power plant * energy concept * energy consumption * PAX system * solar radiation Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 0.244, year: 2011 http://pe.org.pl/abstract_pl.php?nid=8034
Energy balance and deformation at scission in 240Pu fission
Directory of Open Access Journals (Sweden)
Manuel Caamaño
2017-07-01
Full Text Available The experimental determination of the total excitation energy, the total kinetic energy, and the evaporation neutron multiplicity of fully identified fragments produced in transfer-induced fission of 240Pu, combined with reasonable assumptions, permits to extract the intrinsic and collective excitation energy of the fragments as a function of their atomic number, along with their quadrupole deformation and their distance at scission. The results show that the deformation increases with the atomic number, Z, except for a local maximum around Z=44 and a minimum around Z=50, associated with the effect of deformed shells at Z∼44, N∼64, and spherical shells in 132Sn, respectively. The distance between the fragments also shows a minimum around Z1=44, Z2=50, suggesting a mechanism that links the effect of structure with the length of the neck at scission.
Energy Technology Data Exchange (ETDEWEB)
Droste-Franke, Bert [Europaeische Akademie zur Erforschung von Folgen Wissenschaftlich-Technischer Entwicklungen GmbH, Bad Neuenahr-Ahrweiler (Germany); Paal, Boris P.; Rehtanz, Christian; Sauer, Dirk Uwe; Schneider, Jens-Peter; Schreurs, Miranda; Ziesemer, Thomas
2012-07-01
A significant problem of integrating renewable energies into the electricity system is the temporally fluctuating energy production by wind and solar power plants. Thus, in order to meet the ambitious long-term targets on CO{sub 2} emission reduction, long-term viable low-carbon options for balancing electricity will be needed. This interdisciplinary study analyses published future energy scenarios in order to get an impression of the required balancing capacities and shows which framework conditions should be modified to support their realisation. The authors combine their perspectives from energy engineering, technology assessment, political science, economical science and jurisprudence and address science, politics, actors in the energy sector and the interested public. Respectively, requirements for the balancing systems are analysed, considering the case of Germany as a large country with high ambitions to reduce greenhouse gas emissions. Additionally, an approach to investigate the optimal design of the technical system for balancing electricity over Europe is sketched. Looking at the challenges of a future energy system a mix of complementary technologies will prospectively become prevalent. In order to foster the needed innovation processes adequately, several funding mechanisms and legal regulations should be adapted. The authors give recommendations to handle major challenges in the development of the technical infrastructure, for the design of market conditions and for specific support of the application of balancing technologies. (orig.)
Investment, firm value, and risk for a system operator balancing energy grids
International Nuclear Information System (INIS)
Dockner, Engelbert J.; Kucsera, Dénes; Rammerstorfer, Margarethe
2013-01-01
With the liberalization of energy markets integrated energy companies have separated into entities that specialize in production and/or transmission of energy. Transmission of energy requires balancing the grid to guarantee system security, which is performed by the (independent) system operator (SO). When the SO faces stochastic demand, grid balancing has sizeable consequences on current and future profits, and hence, on firm value and firm risk. We explore these value and risk consequences with and without an investment option to expand transmission capacity. We show that firm value consists of the value of the transmission capacity in place plus the value of a short put and a short call option that are the result of the SO's balancing actions. Firm risk without investment option is non-linear and determined by the short option positions. It is decreasing with increasing energy demand. The existence of an option to expand transmission capacity increases firm value and firm risk. - Highlights: ► Grid balancing under stochastic demand affect current and future revenues, and firm value and firm risk. ► Balancing firm value consists of the value of the transmission capacity plus the value of a short strangle. ► Firm risk without investment option is determined by the short strangle and decreasing with increasing energy demand. ► The existence of an expansion option implies that transmission capacity increases firm value and firm risk
Knegsel, van A.T.M.; Brand, van den H.; Dijkstra, J.; Kemp, B.
2007-01-01
This paper summarizes three recent studies by the same authors with the objective to study the effect of dietary energy source on the energy balance (EB) and risk for metabolic and reproductive disorders in dairy cows in early lactation. The first study, a literature survey, illustrated that feeding
Knegsel, van A.T.M.; Remmelink, G.J.; Jorjong, S.; Fievez, V.; Kemp, B.
2014-01-01
The objective of this study was to evaluate the effects of dry period length and dietary energy source in early lactation on milk production, feed intake, and energy balance (EB) of dairy cows. Holstein-Friesian dairy cows (60 primiparous and 108 multiparous) were randomly assigned to dry period
Energy balance and transient responses in wave driven plasmas
International Nuclear Information System (INIS)
Rax, J.M.
1987-06-01
In a current-drive experiment with a RF power source, a certain amount of power is absorbed by resonant electrons. From the electrons, energy can flow through four channels: it can be converted into magnetic work when the electron interacts with an electric field, or it can be converted into heat when the electron collides the thermal plasma. In addition, there exists also the conversion of the low frequency RF energy into high frequency non thermal free-free or cyclotron radiation. Efficiencies of these conversions are considered together with the turn-on times of the associated responses
de Guzman, Allan B.; Ines, Joanna Louise C.; Inofinada, Nina Josefa A.; Ituralde, Nielson Louie J.; Janolo, John Robert E.; Jerezo, Jnyv L.; Jhun, Hyae Suk J.
2013-01-01
While a number of empirical studies have been conducted regarding risk for falls among the elderly, there is still a paucity of similar studies in a developing country like the Philippines. This study purports to test through Structural Equation Modeling (SEM) a model that shows the interaction between and among nutrition, balance, fear of…
Wainwright, Camille L.
Four classes of high school chemistry students (N=108) were randomly assigned to experimental and control groups to investigate the effectiveness of a computer assisted instruction (CAI) package during a unit on writing/naming of chemical formulas and balancing equations. Students in the experimental group received drill, review, and reinforcement…
Staver, John R.; Jacks, Tom
1988-01-01
Investigates the influence of five cognitive variables on high school students' performance on balancing chemical equations by inspection. Reports that reasoning, restructuring, and disembedding variables could be a single variable, and that working memory capacity does not influence overall performance. Results of hierarchical regression analysis…