WorldWideScience

Sample records for energy astrophysics research

  1. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  2. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  3. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  4. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Aharonian, Felix; Bergstroem, Lars; Dermer, Charles

    2013-01-01

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  5. High-Energy Spectroscopic Astrophysics Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Kahn, Steven M; von Ballmoos, Peter

    2005-01-01

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  6. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  7. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  8. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  9. Statistical learning methods in high-energy and astrophysics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Forschungszentrum Juelich GmbH, Zentrallabor fuer Elektronik, 52425 Juelich (Germany) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de; Kiesling, C. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2004-11-21

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application.

  10. Statistical learning methods in high-energy and astrophysics analysis

    International Nuclear Information System (INIS)

    Zimmermann, J.; Kiesling, C.

    2004-01-01

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application

  11. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  12. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    Science.gov (United States)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A theoretical methods.

  13. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  14. Astrophysical relevance of γ transition energies

    International Nuclear Information System (INIS)

    Rauscher, Thomas

    2008-01-01

    The relevant γ energy range is explicitly identified where additional γ strength must be located to have an impact on astrophysically relevant reactions. It is shown that folding the energy dependences of the transmission coefficients and the level density leads to maximal contributions for γ energies of 2≤E γ ≤4 unless quantum selection rules allow isolated states to contribute. Under this condition, electric dipole transitions dominate. These findings allow us to more accurately judge the relevance of modifications of the γ strength for astrophysics

  15. Particle and astrophysics aspects of ultrahigh energy cosmic rays

    International Nuclear Information System (INIS)

    Sigl, G.

    2001-01-01

    The origin of cosmic rays is one of the major unresolved astrophysical questions. In particular, the highest energy cosmic rays observed possess macroscopic energies and their origin is likely to be associated with the most energetic processes in the Universe. Their existence triggered a flurry of theoretical explanations ranging from conventional shock acceleration to particle physics beyond the Standard Model and processes taking place at the earliest moments of our Universe. Furthermore, many new experimental activities promise a strong increase of statistics at the highest energies and a combination with γ-ray and neutrino astrophysics will put strong constraints on these theoretical models. Detailed Monte Carlo simulations indicate that charged ultra-high energy cosmic rays can also be used as probes of large scale magnetic fields whose origin may open another window into the very early Universe. We give an overview over this quickly evolving research field. (author)

  16. Particle and astrophysics aspects of ultrahigh energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Sigl, G [Institut d' Astrophysique de Paris, Paris (France)

    2001-11-15

    The origin of cosmic rays is one of the major unresolved astrophysical questions. In particular, the highest energy cosmic rays observed possess macroscopic energies and their origin is likely to be associated with the most energetic processes in the Universe. Their existence triggered a flurry of theoretical explanations ranging from conventional shock acceleration to particle physics beyond the Standard Model and processes taking place at the earliest moments of our Universe. Furthermore, many new experimental activities promise a strong increase of statistics at the highest energies and a combination with {gamma}-ray and neutrino astrophysics will put strong constraints on these theoretical models. Detailed Monte Carlo simulations indicate that charged ultra-high energy cosmic rays can also be used as probes of large scale magnetic fields whose origin may open another window into the very early Universe. We give an overview over this quickly evolving research field. (author)

  17. Traversable geometric dark energy wormholes constrained by astrophysical observations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Meng, Xin-he [Nankai University, Department of Physics, Tianjin (China); Institute of Theoretical Physics, CAS, State Key Lab of Theoretical Physics, Beijing (China)

    2016-09-15

    In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω < -1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω{sub X} < -1 (or z < 0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology. (orig.)

  18. Traversable geometric dark energy wormholes constrained by astrophysical observations

    International Nuclear Information System (INIS)

    Wang, Deng; Meng, Xin-he

    2016-01-01

    In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω < -1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω X < -1 (or z < 0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology. (orig.)

  19. The High-Energy Astrophysics Learning Center, Version 1. [CD-ROM].

    Science.gov (United States)

    Whitlock, Laura A.; Allen, Jesse S.; Lochner, James C.

    The High-Energy Astrophysics (HEA) Learning Center gives students, teachers, and the general public a window into the world of high-energy astrophysics. The universe is revealed through x-rays and gamma rays where matter exists under extreme conditions. Information is available on astrophysics at a variety of reading levels, and is illustrated…

  20. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  1. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  2. High-energy-density physics foundation of inertial fusion and experimental astrophysics

    CERN Document Server

    Drake, R Paul

    2018-01-01

    The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation ...

  3. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  4. ENERGY RELAXATION OF HELIUM ATOMS IN ASTROPHYSICAL GASES

    International Nuclear Information System (INIS)

    Lewkow, N. R.; Kharchenko, V.; Zhang, P.

    2012-01-01

    We report accurate parameters describing energy relaxation of He atoms in atomic gases, important for astrophysics and atmospheric science. Collisional energy exchange between helium atoms and atomic constituents of the interstellar gas, heliosphere, and upper planetary atmosphere has been investigated. Energy transfer rates, number of collisions required for thermalization, energy distributions of recoil atoms, and other major parameters of energy relaxation for fast He atoms in thermal H, He, and O gases have been computed in a broad interval of energies from 10 meV to 10 keV. This energy interval is important for astrophysical applications involving the energy deposition of energetic atoms and ions into atmospheres of planets and exoplanets, atmospheric evolution, and analysis of non-equilibrium processes in the interstellar gas and heliosphere. Angular- and energy-dependent cross sections, required for an accurate description of the momentum-energy transfer, are obtained using ab initio interaction potentials and quantum mechanical calculations for scattering processes. Calculation methods used include partial wave analysis for collisional energies below 2 keV and the eikonal approximation at energies higher than 100 eV, keeping a significant energy region of overlap, 0.1-2 keV, between these two methods for their mutual verification. The partial wave method and the eikonal approximation excellently match results obtained with each other as well as experimental data, providing reliable cross sections in the astrophysically important interval of energies from 10 meV to 10 keV. Analytical formulae, interpolating obtained energy- and angular-dependent cross sections, are presented to simplify potential applications of the reported database. Thermalization of fast He atoms in the interstellar gas and energy relaxation of hot He and O atoms in the upper atmosphere of Mars are considered as illustrative examples of potential applications of the new database.

  5. Experimental studies of nuclear astrophysics

    International Nuclear Information System (INIS)

    He Jianjun; Zhou Xiaohong; Zhang Yuhu

    2013-01-01

    Nuclear astrophysics is an interdisciplinary subject combining micro-scale nuclear physics and macro-scale astrophysics. Its main aims are to understand the origin and evolution of the elements in the universe, the time scale of stellar evolution, the stellar environment and sites, the energy generation of stars from thermonuclear processes and its impact on stellar evolution and the mechanisms driving astrophysical phenomena, and the structure and property of compact stars. This paper presents the significance and current research status of nuclear astrophysics; we introduce some fundamental concepts, the nuclear physics input parameters required by certain astrophysics models, and some widely-used experimental approaches in nuclear astrophysics research. The potential and feasibility of research in this field using China’s current and planned large-scale scientific facilities are analyzed briefly. Finally, the prospects of the establishing a deep underground science and engineering laboratory in China are envisaged. (authors)

  6. Microphysics, cosmology, and high energy astrophysics

    International Nuclear Information System (INIS)

    Hoyle, F.

    1974-01-01

    The discussion of microphysics, cosmology, and high energy astrophysics includes particle motion in an electromagnetic field, conformal transformations, conformally invariant theory of gravitation, particle orbits, Friedman models with k = 0, +-1, the history and present status of steady-state cosmology, and the nature of mass. (U.S.)

  7. High energy astrophysics in radio-astronomical form

    International Nuclear Information System (INIS)

    Laan, H. van der

    1980-01-01

    The application of high energy astrophysics in observational astronomy, and in particular in radioastronomy, is considered. The current situation of extragalactic HEA, as brought to light by radio-astronomical techniques, is sketched. (C.F.)

  8. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1991-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching the astrophysics of gravitational collapse, neutron star birth and neutrino emission, and neutron star cooling, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; some nuclear matter properties might be best delineated by astrophysical considerations. Our research has focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. We are modifying our hydrodynamical code to use implicit differencing and to include multi-group neutrino diffusion and general relativity. In parallel, we are extending calculations of core collapse supernovae to long times after collapse by using a hybrid explicit-implicit hydrodynamical code and by using simplified neutrino transport. We hope to establish the existence or non-existence of the so-called long-term supernova mechanism. We are also extending models of the neutrino emission and cooling of neutron stars to include the effects of rotation and the direct Urca process that we recently discovered to be crucial. We have developed a rapid version of the dense matter equation of state for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. This version also has the great advantage that nuclear physics inputs, such as the nuclear incompressibility, symmetry, energy, and specific heat, can be specified

  9. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  10. Frontier Research in Astrophysics - II

    Science.gov (United States)

    2016-05-01

    The purpose of this international workshop is to bring together astrophysicists and physicists who are involved in various topics at the forefront of modern astrophysics and particle physics. The workshop will discuss the most recent experimental and theoretical results in order to advance our understanding of the physics governing our Universe. To accomplish the goals of the workshop, we believe it is necessary to use data from ground-based and space-based experiments and results from theoretical developments: work on the forefront of science which has resulted (or promises to result in) high-impact scientific papers. Hence, the main purpose of the workshop is to discuss in a unique and collaborative setting a broad range of topics in modern astrophysics, from the Big Bang to Planets and Exoplanets. We believe that this can provide a suitable framework for each participant who (while obviously not involved in all the topics discussed), will be able to acquire a general view of the main experimental and theoretical results currently obtained. Such an up-to-date view of the current research on cosmic sources can help guide future research projects by the participants, and will encourage collaborative efforts across various topical areas of research. The proceedings will be published in Proceedings of Science (PoS)- SISSA and will provide a powerful resource for all the scientific community and will be especially helpful for PhD students. The following items will be reviewed: Cosmology: Cosmic Background, Dark Matter, Dark Energy, Clusters of Galaxies. Physics of the Diffuse Cosmic Sources. Physics of Cosmic Rays. Physics of Discrete Cosmic Sources. Extragalactic Sources: Active Galaxies, Normal Galaxies, Gamma-Ray Bursts. Galactic Sources: Star Formation, Pre-Main-Sequence and Main- Sequence Stars, the Sun, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources, Nucleosynthesis, Asteroseismology

  11. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    Rees, M.J.

    1983-01-01

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  12. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  13. Positron astrophysics and areas of relation to low-energy positron physics

    International Nuclear Information System (INIS)

    Guessoum, N.

    2014-01-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  14. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  15. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arcones, Almudena; Bardayan, Dan W.

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.

  16. Solar, Stellar and Galactic Connections between Particle Physics and Astrophysics

    CERN Document Server

    Carraminana, Alberto

    2007-01-01

    This book collects extended and specialized reviews on topics linking astrophysics and particle physics at a level intermediate between a graduate student and a young researcher. The book includes also three reviews on observational techniques used in forefront astrophysics and short articles on research performed in Latin America. The reviews, updated and written by specialized researchers, describe the state of the art in the related research topics. This book is a valuable complement not only for research but also for lecturers in specialized course of high energy astrophysics, cosmic ray astrophysics and particle physics.

  17. Positron astrophysics and areas of relation to low-energy positron physics

    Science.gov (United States)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  18. Similarity and self-similarity in high energy density physics: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Falize, E.

    2008-10-01

    The spectacular recent development of powerful facilities allows the astrophysical community to explore, in laboratory, astrophysical phenomena where radiation and matter are strongly coupled. The titles of the nine chapters of the thesis are: from high energy density physics to laboratory astrophysics; Lie groups, invariance and self-similarity; scaling laws and similarity properties in High-Energy-Density physics; the Burgan-Feix-Munier transformation; dynamics of polytropic gases; stationary radiating shocks and the POLAR project; structure, dynamics and stability of optically thin fluids; from young star jets to laboratory jets; modelling and experiences for laboratory jets

  19. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    Energy Technology Data Exchange (ETDEWEB)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory.

  20. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    International Nuclear Information System (INIS)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory

  1. Nuclear astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Gade, A.

    2010-01-01

    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.

  2. Collision excitation studies useful for plasma diagnostics in astrophysics and fusion research

    International Nuclear Information System (INIS)

    Man Mohan; Aggarwal, Sunny

    2015-01-01

    The urgent research for energy sources has led many countries to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction of International Thermonuclear Experimental Reactor in France. Data on highly charged ions with high Z will be important in this quest. Atomic data such as energy levels, radiative rates and collision excitation plays an important role in fusion research and extensive knowledge of atomic parameters is needed for plasma diagnostics. There is a very limited knowledge so far about the heavy atoms due to involvement of strong relativistic effects. For heavy atoms, electron correlation effects and relativistic effects are strongly coupled making it necessary to use a relativistic theory which also incorporates 'electron correlations effects on the same footing. For treating heavy atoms there have been new developments and many codes in the relativistic domain have been developed by various authors. Among them, multi-configuration Hartree (Dirac) Fock (MCDF) model based codes have been found very useful in ab-initio investigations. We have calculated the energy levels, radiative rates and lifetimes for heavy charged F, Na and Mg like tungsten ions using MCDF and FAC and compared our results with the other available theoretical and experimental results. Also, we have performed collision excitation calculations for F, Na and Mg like tungsten ions which will be useful for astrophysical and fusion, plasma. Also, we have compared our collision excitation results with distorted wave calculations and they are found to be in good agreement. The main goal of this paper is to provide useful atomic physics data for use in fusion research and in astrophysical and industrial plasmas. (author)

  3. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  4. Studying astrophysical reactions with low-energy RI beams at CRIB

    Directory of Open Access Journals (Sweden)

    Yamaguchi H.

    2016-01-01

    Full Text Available Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS, the University of Tokyo. A typical measurement performed at CRIB is the elastic resonant scattering with the inverse kinematics. One recent experiment was on the α resonant scattering with 7Li and 7Be beams. This study is related to the astrophysical 7Li/7Be(α,γ reactions, important at hot p-p chain and νp-process in supernovae. There have also been measurements based on other experimental methods. The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α15O reaction at astrophysical energies via the three body reaction 2H(18F, α15On. The 18F(p, α 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  5. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  6. Extreme Energy Particle Astrophysics with ANITA-V

    Science.gov (United States)

    Wissel, Stephanie

    This proposal is in collaboration with Peter Gorham at the University of Hawaii, who is the PI of the lead proposal. Co-I Wissel and her group at California Polytechnic State University (Cal Poly) will be responsible for calibration equipment upgrades, calibration equipment, and deployment of the calibration system. The Cal Poly group is planning to provide calibration hardware and software products in support of the analysis of ANITAV data in search of ultra high-energy (UHE) neutrinos and cosmic rays. Wissel (now at Cal Poly, a new collaborating institution for ANITA-5) brings significant experience in the detection of high-energy and ultra-high energy particles to the collaboration, leveraging her thirteen years of experience in particle astrophysics and previous work on ANITA-III and ANITA-IV.

  7. Origin of a maximum of the astrophysical S factor in heavy-ion fusion reactions at deep subbarrier energies

    Science.gov (United States)

    Hagino, K.; Balantekin, A. B.; Lwin, N. W.; Thein, Ei Shwe Zin

    2018-03-01

    The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical reactions.

  8. Prospects of High Energy Laboratory Astrophysics

    International Nuclear Information System (INIS)

    Ng, Johnny S.T.; SLAC

    2006-01-01

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms

  9. Recent astrophysical applications of the Trojan Horse Method to nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Fu, C.; Tribble, R.; Banu, A.; Al-Abdullah, T.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-01-01

    The Trojan Horse Method (THM) is an unique indirect technique allowing to measure astrophysical rearrangement reactions down to astrophysical relevant energies. The basic principle and a review of the recent applications of the Trojan Horse Method are presented. The applications aiming to the extraction of the bare astrophysical S b (E) for some two-body processes are discussed

  10. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  11. Statistical learning in high energy and astrophysics

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2005-01-01

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot be controlled in a

  12. Statistical learning in high energy and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.

    2005-06-16

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot

  13. The astrophysical S factor for dd reaction at ultralow energies

    International Nuclear Information System (INIS)

    Bystritskii, Vit.M.; Bystritsky, V.M.; Grebenyuk, V.M.

    2001-01-01

    The experimental results of measurements of the astrophysical S factor for dd reaction at very low deuteron collision energies using liner plasma technique are presented. The experiment was fulfilled at the high-current generator of the High-Current Electronics Institute (Tomsk, Russia). The measured values of S factors for the deuteron collision energies 1.80, 2.06, and 2.27 keV are S dd = 114 ± 68, 64 ± 30, and 53 ± 16 keV b, respectively. The corresponding cross sections for dd reaction, described as a product of the barrier factor and measured astrophysical S factor are: σ dd n (E col = 1.80 keV) = (4.3 ± 2.6) x 10 -33 cm 2 ; σ dd n (E col = 2.06 keV) = (9.8 ± 4.6) x 10 -33 cm 2 ; σ dd n (E col = 2.27 keV) = (2.1 ± 0.6) x 10 -32 cm 2 [ru

  14. Indirect techniques in nuclear astrophysics

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Tribble, R.E.; Blokhintsev, L.D.; Cherubini, S.; Spitaleri, C.; Kroha, V.; Nunes, F.M.

    2005-01-01

    It is very difficult or often impossible to measure in the lab conditions nuclear cross sections at astrophysically relevant energies. That is why different indirect techniques are used to extract astrophysical information. In this talk different experimental possibilities to get astrophysical information using radioactive and stable beams will be addressed. 1. The asymptotic normalization coefficient (ANC) method. 2. Radiative neutron captures are determined by the spectroscopic factors (SP). A new experimental technique to determine the neutron SPs will be addressed. 3. 'Trojan Horse' is another unique indirect method, which allows one to extract the astrophysical factors for direct and resonant nuclear reactions at astrophysically relevant energies. (author)

  15. First advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2002-01-01

    The aim of the First Advanced Workshop ‘Gravity, Astrophysics, and Strings’ was: 1)Bringing together scientists from various branches of gravitational physics, astrophysics and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2)Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Astrophysics, and Strings; Relativistic Gravity; (Super)Strings. About 40 participants from Europe, America and Asia gave 30 invited talks and contributed presentations. The full text of 17 of them are included in this book

  16. Hydrodynamic instabilities in astrophysics and ICF

    International Nuclear Information System (INIS)

    Paul Drake, R.

    2005-01-01

    Inertial fusion systems and astrophysical systems both involve hydrodynamic effects, including sources of pressure, shock waves, rarefactions, and plasma flows. In the evolution of such systems, hydrodynamic instabilities naturally evolve. As a result, a fundamental understanding of hydrodynamic instabilities is necessary to understand their behavior. In addition, high-energy-density facilities designed for ICF purposes can be used to provide and experimental basis for understanding astrophysical processes. In this talk. I will discuss the instabilities that appear in astrophysics and ICF from the common perspective of the basic mechanisms at work. Examples will be taken from experiments aimed at ICF, from astrophysical systems, and from experiments using ICF systems to address issues in astrophysics. The high-energy-density research facilities of today can accelerate small but macroscopic amounts of material to velocities above 100 km/s, can heat such material to temperature above 100 eV, can produce pressures far above a million atmospheres (10''12 dybes/cm''2 or 0.1 TPascal), and can do experiments under these conditions that address basic physics issues. This enables on to devise experiments aimed directly at important process such as the Rayleigh Taylor instability at an ablating surface or at an embedded interface that is accelerating, the Richtmeyer Meshkov evolution of shocked interfaces, and the Kelvin-Helmholtz instability of shear flows. The talk will include examples of such phenomena from the laboratory and from astrophysics, and will discuss experiments to study them. (Author)

  17. Preface to special topic: High-energy density laboratory astrophysics

    International Nuclear Information System (INIS)

    Glenzer, Siegfried H

    2017-01-01

    Here, in the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems.

  18. The astrophysical S-factor for dd-reactions at keV-energy range

    International Nuclear Information System (INIS)

    Bystritskii, V.; Bystritsky, V.; Chaikovsky, S.

    2001-01-01

    The experimental results of measurements of the astrophysical S-factor for dd-reaction at keV-energy range collision energies using liner plasma technique are presented. The experiments were carried out at the high current generator of the Institute of High-Current Electronics in Tomsk, Russia. The measured values of the S-factors for the deuteron collision energies 1.80, 2.06 and 2.27 keV are S dd =(114±68), (64±30), (53±16) b x keV, respectively. The corresponding cross sections for dd-reactions, described as a product of the barrier factor and measured astrophysical S-factor, are σ dd n (E col =1.80 keV)=(4.3±2.6) x 10 -33 cm 2 ; σ dd n (E col =2.06 keV)=(9.8±4.6) x 10 -33 cm 2 ; σ dd n (E col =2.27 keV)=(2.1±0.6) x 10 -32 cm 2 . (orig.) [de

  19. The astrophysical S-factor for the dd-reaction at ultralow energies

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Grebenyuk, V.M.; Parzhitskij, S.S.

    1999-01-01

    The experimental results for measurements of the astrophysical S-factor for dd-reaction at very low deuteron collision energies using liner plasma technique are presented. The experiment was fulfilled at the high current generator of the High-Current Electronics Institute, Tomsk, Russia. The measured values of S-factor for the deuteron collision energies: 2.27, 2.06, and 1.8 keV are: S dd = (53 ± 16), (64 ± 30), (114 ±68)b · keV, respectively. The corresponding dd cross sections described as a product of the barrier factor and measured astrophysical S-factor are: σ dd n (E col = 1.8 keV) = (4.3 ± 2.6) · 10 -33 cm 2 ; σ dd n (E col = 2.06 keV) = (9.8 ± 4.6) · 10 -33 cm 2 ; σ dd n (E col = 2.27 keV) = (2.1 ±0.6) · 10 -32 cm 2

  20. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  1. IceCube: Particle Astrophysics with High Energy Neutrinos

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  2. Nuclear Astrophysics Experiments at CIAE

    International Nuclear Information System (INIS)

    Liu Weiping; Li Zhihong; Bai Xixiang; Lian Gang; Guo Bing; Zeng, Sheng; Yan Shengquan; Wang Baoxiang; Shu Nengchuan; Wu Kaisu; Chen Yongshou

    2005-01-01

    This paper describes nuclear astrophysical studies using the unstable ion beam facility GIRAFFE. We measured the angular distributions for some low energy reactions, such as 7 Be(d, n) 8 B, 11 C(d, n) 12 N, 8 Li(d, n) 9 Be and 8 Li(d, p) 9 Li in inverse kinematics, and indirectly derived the astrophysical S-factors or reaction rates of 7 Be(p, γ) 8 B, 11 C(p, γ) 12 N, 8 Li(n, γ) 9 Li at astrophysically relevant energies

  3. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Science.gov (United States)

    Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji

    2018-05-01

    We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).

  4. Polar Balloon Experiment for Astrophysics Research (Polar BEAR)

    Science.gov (United States)

    Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.

  5. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Directory of Open Access Journals (Sweden)

    Utsunomiya Hiroaki

    2018-01-01

    Full Text Available We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032.

  6. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    Science.gov (United States)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  7. Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources

    International Nuclear Information System (INIS)

    Mena, Olga; Mocioiu, Irina; Razzaque, Soebur

    2007-01-01

    High-energy neutrinos are expected to be produced in a variety of astrophysical sources as well as in optically thick hidden sources. We explore the matter-induced oscillation effects on emitted neutrino fluxes of three different flavors from the latter class. We use the ratio of electron and tau induced showers to muon tracks, in upcoming neutrino telescopes, as the principal observable in our analysis. This ratio depends on the neutrino energy, density profile of the sources, and on the oscillation parameters. The largely unknown flux normalization drops out of our calculation and only affects the statistics. For the current knowledge of the oscillation parameters we find that the matter-induced effects are non-negligible and the enhancement of the ratio from its vacuum value takes place in an energy range where the neutrino telescopes are the most sensitive. Quantifying the effect would be useful to learn about the astrophysics of the sources as well as the oscillation parameters. If the neutrino telescopes mostly detect diffuse neutrinos without identifying their sources, then any deviation of the measured flux ratios from the vacuum expectation values would be most naturally explained by a large population of hidden sources for which matter-induced neutrino oscillation effects are important

  8. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  9. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  10. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  11. Nuclear Data for Astrophysics Research: A New Online Paradigm

    International Nuclear Information System (INIS)

    Smith, Michael Scott

    2011-01-01

    Our knowledge of a wide range of astrophysical processes depends crucially on nuclear physics data. While new nuclear information is being generated at an ever-increasing rate, the methods to process this information into astrophysical simulations have changed little over the decades and cannot keep pace. Working online, 'cloud computing', may be the methodology breakthrough needed to ensure that the latest nuclear data quickly gets into astrophysics codes. The successes of the first utilization of cloud computing for nuclear astrophysics will be described. The advantages of cloud computing for the broader nuclear data community are also discussed.

  12. Nuclear interactions in high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1993-01-01

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. 4 He, 16 O, 20 Ne, 28 Si, 56 Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy 16 O, 28 Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs

  13. Extensive Air Showers High Energy Phenomena and Astrophysical Aspects - A Tutorial, Reference Manual and Data Book

    CERN Document Server

    Grieder, Peter K.F

    2010-01-01

    Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger et al. we have learned a great deal about these extremely energetic events and gained deep insights into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation, and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses the questions that continue to puzzle researchers. The book is divided into two parts, each in its own separate volume: Part I in Volume I deals mainly with the basic theoretical framework of the processes that determine an air shower and ends with a summary of ways to extract information on the primary radiation from air shower observations. It also presents a compi...

  14. Second advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2005-01-01

    The Second Advanced Workshop ‘Gravity, Astrophysics, and Strings’ held on 10-16 June 2004. It served four purposes: 1) Bringing together scientists from various branches of gravitational physics, astrophysics, and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2) Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference; 4) Stimulated creation of a new generation of young physicists for further development of the above basic topics in fundamental science. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Relativistic Gravity; (Super)Strings. About 35 participants from Europe, America and Asia gave 28 invited talks and contributed presentations. They and guided general discussion as well, which took place confirmed the considerable interest to the themes of the workshop. The full text of 16 of the presented papers are included in this book

  15. ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics

    Science.gov (United States)

    Knapp, M.; Seager, S.; Smith, M. W.; Pong, C. M.

    2017-12-01

    ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics) is a technology demonstration and opportunistic science mission to advance the state of the art in CubeSat capabilities for astrophysical measurements. The goal of ASTERIA is to achieve arcsecond-level line of sight pointing error and highly stable focal plane temperature control. These technologies will enable precision photometry, i.e. the careful measurement of stellar brightness over time. This in turn provides a way to study stellar activity, transiting exoplanets, and other astrophysical phenomena, both during the ASTERIA mission and in future CubeSat constellations. ASTERIA is a 6U CubeSat (roughly 10 x 20 x 30 cm, 12 kg) that will operate in low-Earth orbit. The payload consists of a lens and baffle assembly, a CMOS imager, and a two-axis piezoelectric positioning stage on which the focal plane is mounted. A set of commercial reaction wheels provides coarse attitude control. Fine pointing control is achieved by tracking a set of guide stars on the CMOS sensor and moving the piezoelectric stage to compensate for residual pointing errors. Precision thermal control is achieved by isolating the payload from the spacecraft bus, passively cooling the detector, and using trim heaters to perform small temperature corrections over the course of an observation. The ASTERIA project is a collaboration with MIT and is funded at JPL through the Phaeton Program for training early career employees. Flight hardware was delivered in June 2017, with launch expected in August 2017 and deployment targeted for October 2017.

  16. Radiative capture of nucleons at astrophysical energies with single-particle states

    International Nuclear Information System (INIS)

    Huang, J.T.; Bertulani, C.A.; Guimaraes, V.

    2010-01-01

    Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A<20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data.

  17. Promising lines of investigations in the realms of laboratory astrophysics with the aid of powerful lasers

    International Nuclear Information System (INIS)

    Belyaev, V. S.; Batishchev, P. A.; Bolshakov, V. V.; Elkin, K. S.; Karabadzhak, G. F.; Kovkov, D. V.; Matafonov, A. P.; Raykunov, G. G.; Yakhin, R. A.; Pikuz, S. A.; Skobelev, I. Yu.; Faenov, A. Ya.; Fortov, V. E.; Krainov, V. P.; Rozanov, V. B.

    2013-01-01

    The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosions and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 10 18 –10 22 W/cm 2 and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.

  18. Third advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2006-01-01

    The Third Advanced Workshop ‘Gravity, Astrophysics, and Strings’ held on 13-20 June 2005. The workshop: 1) Bringing together scientists from various branches of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2) Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference; 4) Stimulated creation of a new generation of young physicists for further development of the above basic topics in fundamental science. The workshop covered wide aspects of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Relativistic Gravity; Particle Physics and Fundamental Interactions; (Super)Strings. About 40 participants from Europe, America and Asia gave 32 invited talks and contributed presentations. They and guided general discussion as well, which took place confirmed the considerable interest to the themes of the workshop. The full text of 22 of the presented papers are included in this book

  19. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  20. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Lehoucq, Roland; Klotz, Gregory

    2015-11-01

    Astronomy deals with the position and observation of the objects in our Universe, from planets to galaxies. It is the oldest of the sciences. Astrophysics is the study of the physical properties of these objects. It dates from the start of the 20. century. Nuclear astrophysics is the marriage of nuclear physics, a laboratory science concerned with the infinitely small, and astrophysics, the science of what is far away and infinitely large. Its aim is to explain the origin, evolution and abundance of the elements in the Universe. It was born in 1938 with the work of Hans Bethe, an American physicist who won the Nobel Prize for physics in 1967, on the nuclear reactions that can occur at the center of stars. It explains where the incredible energy of the stars and the Sun comes from and enables us to understand how they are born, live and die. The matter all around us and from which we are made, is made up of ninety-two chemical elements that can be found in every corner of the Universe. Nuclear astrophysics explains the origin of these chemical elements by nucleosynthesis, which is the synthesis of atomic nuclei in different astrophysical environments such as stars. Nuclear astrophysics provides answers to fundamental questions: - Our Sun and the stars in general shine because nuclear reactions are taking place within them. - The stars follow a sequence of nuclear reaction cycles. Nucleosynthesis in the stars enables us to explain the origin and abundance of elements essential to life, such as carbon, oxygen, nitrogen and iron. - Star explosions, in the form of supernovae, disperse the nuclei formed by nucleosynthesis into space and explain the formation of the heaviest chemical elements such as gold, platinum and lead. Nuclear astrophysics is still a growing area of science. (authors)

  1. Astrophysics at nTOF facility

    International Nuclear Information System (INIS)

    Tagliente, G.; Colonna, N.; Maronne, S.; Terlizzi, R.; Abondanno, U.; Fujii, K.; Milazzo, P.M.; Moreau, C.; Belloni, F.; Aerts, G.; Berthoumieux, E.; Andriamonje, S.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M.C.; Gonzalez-Romero, E.; Andrzejewski, J.; Marganiec, J.; Assimakopoulos, P.; Karamanis, D.; Audouin, L.; Dillman, I.; Heil, M.; Kappeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wissak, K.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M.T.; Baumann, P.; David, S.; Kerveno, M.; Rudolf, G.; Lukic, S.; Becvar, F.; Krticka, M.; Bisterzo, S.; Ferrant, L.; Gallino, R.; Calvino, F.; Poch, A.; Pretel, C.; Calviani, M.; Gramegna, F.; Mastinu, P.; Capote, R.; Mengoni, A.; Capote, R.; Lozano, M.; Quesada, J.; Carrapico, C.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dominga-Pardo, C.; Tain, J.L.; Eleftheriadis, C.; Lamboudis, C.; Savvidis, I.; Stephan, C.; Tassan-Got, L.; Furman, W.; Haas, B.; Haight, R.; Reifarth, R.; Igashira, M.; Koehler, P.; Massimi, C.; Vannini, G.; Papadopoulos, C.; Pavlik, A.; Pavlopoulos, P.; Plomen, A.; Rullhusen, P.; Rauscher, T.; Rubbia, C.; Ventura, A.

    2009-01-01

    The neutron time of flight (n T OF) facility at CERN is a neutron spallation source, its white neutron energy spectrum ranges from thermal to several GeV, covering the full energy range of interest for nuclear astrophysics, in particular for measurements of the neutron capture cross-section required in s-process nucleosynthesis. This contribution gives an overview on the astrophysical program made at n T OF facility, the results and the implications will be considered.

  2. A new experimental setup established for low-energy nuclear astrophysics studies

    International Nuclear Information System (INIS)

    Chen, S.Z.; Xu, S.W.; He, J.J.; Hu, J.; Rolfs, C.E.; Zhang, N.T.; Ma, S.B.; Zhang, L.Y.; Hou, S.Q.; Yu, X.Q.; Ma, X.W.

    2014-01-01

    An experimental setup for low-energy nuclear astrophysics studies has been recently established at the Institute of Modern Physics (IMP), Lanzhou, China. The driver machine is a 320 kV high voltage platform, which can provide intense currents of proton, alpha and many heavy ion beams. The energy of a proton beam was calibrated against the nominal platform high voltage by using a well-known resonant reaction of 11 B(p,γ) 12 C and a non-resonant reaction 12 C(p,γ) 13 N. The accuracy was achieved to be better than ±0.5 keV. The detection system consists of a Clover-type high-purity germanium detector, a silicon detector and a plastic scintillator. The performance of the detectors was tested by several experiments. The astrophysical S-factors of the 7 Li(p,γ) 8 Be and 7 Li(p,α) 3 He reactions were measured with this new setup, and our data agree with the values found in the literature. In addition, the upgrade of our driver machine and experimental setup has been discussed. As a future goal, a fascinating National Deep Underground Laboratory in China, the deepest underground laboratory all over the world, is prospected

  3. Laboratory astrophysics. Model experiments of astrophysics with large-scale lasers

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    2012-01-01

    I would like to review the model experiment of astrophysics with high-power, large-scale lasers constructed mainly for laser nuclear fusion research. The four research directions of this new field named 'Laser Astrophysics' are described with four examples mainly promoted in our institute. The description is of magazine style so as to be easily understood by non-specialists. A new theory and its model experiment on the collisionless shock and particle acceleration observed in supernova remnants (SNRs) are explained in detail and its result and coming research direction are clarified. In addition, the vacuum breakdown experiment to be realized with the near future ultra-intense laser is also introduced. (author)

  4. Astrophysics Update 2

    CERN Document Server

    Mason, John W

    2006-01-01

    "Astrophysics Updates" is intended to serve the information needs of professional astronomers and postgraduate students about areas of astronomy, astrophysics and cosmology that are rich and active research spheres. Observational methods and the latest results of astronomical research are presented as well as their theoretical foundations and interrelations. The contributed commissioned articles are written by leading exponents in a format that will appeal to professional astronomers and astrophysicists who are interested in topics outside their own specific areas of research. This collection of timely reviews may also attract the interest of advanced amateur astronomers seeking scientifically rigorous coverage.

  5. On the origin of very-high-energy photons in astrophysics: a short introduction to acceleration and radiation physics

    International Nuclear Information System (INIS)

    Lemoine, M.; Pelletier, G.

    2015-01-01

    Powerful astrophysical sources produce non-thermal spectra of very-high-energy photons, with generic power-law distributions, through various radiative processes of charged particles, e.g., synchrotron radiation, inverse Compton processes, and hadronic interactions. Those charged particles have themselves been accelerated to ultra-relativistic energies in intense electromagnetic fields in the source. In many cases, the exact acceleration scheme is not known, but standard scenarios, such as Fermi mechanisms and reconnection processes are generally considered as prime suspects for the conversion of bulk kinetic or electromagnetic energy into a power law of supra-thermal particles. This paper proposes a short introduction to the various acceleration and radiative processes which shape the distributions of very-high-energy photons (E > 100 MeV) in astrophysics. (authors)

  6. Solar astrophysics: ghettosis from, or symbiosis with, stellar and galactic astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Pecker, J C; Thomas, R N [Centre National de la Recherche Scientifique, 75 - Paris (France). Inst. d' Astrophysique

    1976-07-01

    The authors summarize how the solar-stellar symbiotic approach, an astrophysical research method, has led to the modeling of a star as a concentration of matter and energy. The observational aspect of the method is to discover an 'anomalous' feature, in either the Sun, where the feature is small, or in an unusual or exceptional star, where the feature is large. The theoretical aspect of the method is to discover some physical inconsistency in theoretical models of some phenomenon or in theoretical basis for some diagnostic method, and attempt to develop a better approach, guided by the observational application.

  7. Research in nuclear astrophysics: stellar collapse and supernovae: Annual performance report, December 1, 1987--November 30, 1988

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1988-01-01

    This annual performance report summarizes the activity in the nuclear astrophysics research program in the Earth and Space Scienes Department at Stony Brook. The central themes in the projects that comprise this program are supernovae, neutron star formation, and the equation of state of hot, dense metter. There is a close coupling between the physics of nuclear matter and weak interactions on the one hand, and supernovae and neutron stars on the other. The properties of nuclear matter might at present best be delineated by astrophysical considerations. We have been active in researching both the nuclear physics of the equation of state and the astrophysics of stellar collapse, neutrino emission, and neutron star formation. 11 refs

  8. A method of simulation of large air showers of cosmic radiation. Application to High Energy Physics and to Astrophysics (10"1"3 - 10"2"1 eV)

    International Nuclear Information System (INIS)

    Capdevielle, Jean-Noel

    1972-01-01

    This research thesis addresses the study of large air showers and the field of high energy physics and of astrophysics. The author discusses fluctuations undergone by large showers, and reports the development of a simulation method which is used for the determination of the morphology of these large air showers, that is their longitudinal and lateral development. Simulation results are compared with experimental results, and the influence of fluctuations is discussed. The author reports the application of the simulation method to high energy physics and to astrophysics, notably through an example of use of the simulation method in application to the Kiel Group experiment performed at the Pic du Midi. Possible developments are then discussed [fr

  9. Computational Laboratory Astrophysics to Enable Transport Modeling of Protons and Hydrogen in Stellar Winds, the ISM, and other Astrophysical Environments

    Science.gov (United States)

    Schultz, David

    As recognized prominently by the APRA program, interpretation of NASA astrophysical mission observations requires significant products of laboratory astrophysics, for example, spectral lines and transition probabilities, electron-, proton-, or heavy-particle collision data. Availability of these data underpin robust and validated models of astrophysical emissions and absorptions, energy, momentum, and particle transport, dynamics, and reactions. Therefore, measured or computationally derived, analyzed, and readily available laboratory astrophysics data significantly enhances the scientific return on NASA missions such as HST, Spitzer, and JWST. In the present work a comprehensive set of data will be developed for the ubiquitous proton-hydrogen and hydrogen-hydrogen collisions in astrophysical environments including ISM shocks, supernova remnants and bubbles, HI clouds, young stellar objects, and winds within stellar spheres, covering the necessary wide range of energy- and charge-changing channels, collision energies, and most relevant scattering parameters. In addition, building on preliminary work, a transport and reaction simulation will be developed incorporating the elastic and inelastic collision data collected and produced. The work will build upon significant previous efforts of the principal investigators and collaborators, will result in a comprehensive data set required for modeling these environments and interpreting NASA astrophysical mission observations, and will benefit from feedback from collaborators who are active users of the work proposed.

  10. The role of Chandra in ten years from now and for the next few decades of astrophysical research

    Science.gov (United States)

    D'Abrusco, Raffaele; Becker, Glenn E.; McCollough, Michael L.; Rots, Arnold H.; Thong, Sinh A.; Van Stone, David; Winkelman, Sherry

    2018-06-01

    For almost twenty years, Chandra has advanced our understanding of the X-ray Universe by allowing astronomers to peer into a previously unexplored region of the high-energy observational parameters space. Thanks to its longevity,the mission has accumulated a large, unique body of observations whose legacy value, already tangible at this point, will only increase with time, and whose long-lasting influence extends well beyond the energy interval probed by Chandra. The Chandra archive, through the extensive characterization of the links between observations and literature, has measured the impact of Chandra on the astrophysical literature at a high level of granularity, providing striking evidence of how deeply and widely Chandra has impacted the advancement of both high-energy astrophysics and astronomical research from a multi-wavelength perspective. In this talk, based on the missions that have been submitted for recommendation at the next decadal survey and the possible outcomes of the evaluation process, I will discuss how Chandra archival data can be used to anticipate the projected scientific success and long-lasting effects of a X-ray mission like Lynx or, differently, how they will become instrumental to maximize the scientific output of a new generation of facilities that will observe in different energies. I will argue that, in either scenario, the centrality of Chandra will extend well after the final demise of the mission, and its data will continue serving the community in many different ways for the foreseeable future.

  11. Heavy ion irradiation of astrophysical ice analogs

    International Nuclear Information System (INIS)

    Duarte, Eduardo Seperuelo; Domaracka, Alicja; Boduch, Philippe; Rothard, Hermann; Balanzat, Emmanuel; Dartois, Emmanuel; Pilling, Sergio; Farenzena, Lucio; Frota da Silveira, Enio

    2009-01-01

    Icy grain mantles consist of small molecules containing hydrogen, carbon, oxygen and nitrogen atoms (e.g. H 2 O, GO, CO 2 , NH 3 ). Such ices, present in different astrophysical environments (giant planets satellites, comets, dense clouds, and protoplanetary disks), are subjected to irradiation of different energetic particles: UV radiation, ion bombardment (solar and stellar wind as well as galactic cosmic rays), and secondary electrons due to cosmic ray ionization of H 2 . The interaction of these particles with astrophysical ice analogs has been the object of research over the last decades. However, there is a lack of information on the effects induced by the heavy ion component of cosmic rays in the electronic energy loss regime. The aim of the present work is to simulate of the astrophysical environment where ice mantles are exposed to the heavy ion cosmic ray irradiation. Sample ice films at 13 K were irradiated by nickel ions with energies in the 1-10 MeV/u range and analyzed by means of FTIR spectrometry. Nickel ions were used because their energy deposition is similar to that deposited by iron ions, which are particularly abundant cosmic rays amongst the heaviest ones. In this work the effects caused by nickel ions on condensed gases are studied (destruction and production of molecules as well as associated cross sections, sputtering yields) and compared with respective values for light ions and UV photons. (authors)

  12. Low energy neutrino astrophysics with the large liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Undagoitia, T. Marrodan; Oberauer, L.; Potzel, W.; Winter, J.

    2007-01-01

    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will cover a broad field of physics. Apart from the detection of terrestrial and artificial neutrinos, and the search for proton decay, important contributions can be made to the astrophysics of stars by high-precision spectroscopy of low-energetic solar neutrinos and by the observation of neutrinos emitted by a galactic supernova. Moreover, the detection of the diffuse supernova neutrino background in LENA will offer the opportunity of studying both supernova core-collapse models and the supernova rate on cosmological timescales (z e events in an almost background-free energy window from ∼10 to 25 MeV. The search for such rare low-energetic events takes advantage of the high energy resolution and excellent background rejection possible in the LENA detector

  13. Superradiance energy extraction, black-hole bombs and implications for astrophysics and particle physics

    CERN Document Server

    Brito, Richard; Pani, Paolo

    2015-01-01

    This volume gives a unified picture of the multifaceted subject of superradiance, with a focus on recent developments in the field, ranging from fundamental physics to astrophysics. Superradiance is a radiation enhancement process that involves dissipative systems. With a 60 year-old history, superradiance has played a prominent role in optics, quantum mechanics and especially in relativity and astrophysics. In Einstein's General Relativity, black-hole superradiance is permitted by dissipation at the event horizon, which allows energy extraction from the vacuum, even at the classical level. When confined, this amplified radiation can give rise to strong instabilities known as "blackhole bombs'', which have applications in searches for dark matter, in physics beyond the Standard Model and in analog models of gravity. This book discusses and draws together all these fascinating aspects of superradiance.

  14. ‘Firewall’ phenomenology with astrophysical neutrinos

    Science.gov (United States)

    Afshordi, Niayesh; Yazdi, Yasaman K.

    2016-12-01

    One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics.

  15. ‘Firewall’ phenomenology with astrophysical neutrinos

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Yazdi, Yasaman K

    2016-01-01

    One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics. (paper)

  16. The new astrophysics

    International Nuclear Information System (INIS)

    Longair, M.

    1989-01-01

    The author offers a review of advances in astrophysics since 1945 when astronomers started to explore the universe beyond the bounds of the optical wavelength of the electromagnetic spectrum, especially in the fields of radio, x ray and gamma ray, cosmic ray, ultraviolet and infrared astronomies, as well as neutral hydrogen and molecular line studies. Theoretical and technological advances have also kept pace. An overview of the new astrophysics is offered focusing on the large-scale distribution of matter and the background microwave radiation, galaxies, stellar evolution and the interstellar media (dust, gas and high energy particles). Nucleosynthesis in stars is mentioned in a broader discussion of stellar evolution, and dead stars including supernovae. Active galaxies and quasars are discussed. After considering what should be included in astrophysical cosmology, the author looks to the future of the science. (U.K.)

  17. Magnetic Reconnection in Extreme Astrophysical Environments

    Science.gov (United States)

    Uzdensky, Dmitri

    Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tion — reconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron

  18. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  19. 12th Italian-Korean Symposium on Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Won Lee, Hyung; Remo Riffini; Vereshchagin

    2013-01-01

    This series of biannual symposia, since 1987, has been boosting exchange of information and collaborations between Italian and Korean astrophysicists on new and hot issues in the field of Relativistic Astrophysics. These symposia cover relativistic field theories, astrophysics and cosmology, topics such as gamma-ray bursts and compact stars, high energy cosmic rays, dark energy and dark matter, general relativity, black holes, and new physics related to cosmology. The organizers are confident that this symposium could deepen the understanding of not only astrophysics and cosmology but also Eastern and Western cultures.

  20. Searches for astrophysical neutrinos with IceCube

    International Nuclear Information System (INIS)

    Williams, D.

    2014-01-01

    Powerful astrophysical objects such as active galactic nuclei (AGN), core collapse supernovae and gamma ray bursts (GRBs) are potential sources of the highest energy cosmic rays. Many models of cosmic ray proton acceleration predict a corresponding flux of neutrinos in the TeV-PeV energy range. The detection of astrophysical neutrinos requires the largest neutrino detector ever built: IceCube, a cubic-kilometer array located near the geographic South Pole. IceCube has been collecting data throughout its construction, which was complete in December 2010. Data from the partial IceCube detector have already set interesting limits on astrophysical neutrino fluxes, including stringent limits on neutrino production in GRBs. (authors)

  1. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  2. Robotic telescopes for high energy astrophysics in Ondřejov

    Czech Academy of Sciences Publication Activity Database

    Nekola, Martin; Hudec, René; Jelínek, M.; Kocka, Matúš; Münz, F.; Kubánek, P.; Polášek, Cyril; Šimon, Vojtěch; Štrobl, Jan

    2010-01-01

    Roč. 28, č. 1 (2010), s. 79-85 ISSN 0922-6435. [400 Years of Astronomical Telescopes: A Review of History, Science and Technology. Noordwijk, 29.09.2008-02.10.2008] R&D Projects: GA ČR GA205/08/1207 Grant - others:ESA(XE) ESA-PECS project No. 98023 Institutional research plan: CEZ:AV0Z10030501 Keywords : robotic telescopes * BART * D50 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.140, year: 2010

  3. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  4. Applications of the Trojan Horse method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud-INFN, Catania (Italy)

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  5. Trojin horse method for indirect measurement of astrophysic S factor

    International Nuclear Information System (INIS)

    Fu Yuanyong; Zhou Shuhua; Li Chengbo; Wen Qungang

    2014-01-01

    The nuclear reaction rates in the astrophysical environment are indispensable input parameters in different astrophysics theories, and play important roles in understanding the astrophysical nuclear synthesis and the evolution of the universe. However, at the astrophysical temperature, the nuclear reactions proceed at very low energies. Due to the Coulomb barrier the reaction cross sections are very small, so that the direct measurement is almost impossible. The Trojin horse theory provides a useful method to measure indirectly the low energy two body cross sections by measuring the suitable three body reactions. Some approximations are applied in the theory to get convenient formula. This paper introduces the Trojin horse theory and its application in astrophysics nuclear reactions. (authors)

  6. Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    Science.gov (United States)

    Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.

    1986-01-01

    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.

  7. Excitation of compound states in the subsystems as indirect tool in nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Tribble R.E.

    2010-03-01

    Full Text Available Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S (E factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysically relevant energies. Here the theory and application of the THM for the resonant reactions is addressed.

  8. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Cardenas, M.

    1976-01-01

    It is revised the nuclear reactions which present an interest in astrophysics regarding the explanation of some problems such as the relative quantity of the elements, the structure and evolution of the stars. The principal object of the study is the determination of the experimental possibilities in the field of astrophysics, of an accelerator Van de Graaff's 700 KeV type. Two hundred nuclear reactions approximately, were found, and nothing or very little has been done in the intervals of energy which are of interest. Since the bombardment energies and the involved sections are low in some cases, there are real possibilities, for the largest number of stars to obtain important statistical data with the above mentioned accelerator, taking some necessary precautions. (author)

  9. Nuclear interactions of high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.

    1992-01-01

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays

  10. Astrophysics with small satellites in Scandinavia

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.......The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved....

  11. The importance of CNO isotopes in astrophysics

    International Nuclear Information System (INIS)

    Audoze, J.

    1977-01-01

    The research into CNO isotopes in astrophysics includes many different subfields of astrophysics such as meteoretical studies, experimental and theoretical nuclear astrophysics, optical astronomy, radio astronomy, etc. The purpose of this paper is to give some overview of the topic and guideline among these different subfields. (G.T.H.)

  12. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  13. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  14. Laboratory astrophysics with high energy and high power lasers: from radiative shocks to young star jets

    International Nuclear Information System (INIS)

    Diziere, A.

    2012-01-01

    Laboratory astrophysics are a rapidly developing domain of the High Energy Density Physics. It aims to recreate at smaller scales physical processes that astronomical telescopes have difficulties observing. We shall approach, in this thesis, three major subjects: 1) Jets ejected from young stars, characterized by an important collimation degree and ending with a bow shock; 2) Radiative shocks in which radiation emitted by the shock front itself plays a dominant role in its structure and 3) Accretion shocks in magnetic cataclysmic variables whose important cooling factor allows them to reach stationarity. From the conception to experimental realization, we shall attempt to reproduce in laboratory each of these processes by respecting the scaling laws linking both situations (experimental and astrophysical) established beforehand. The implementation of a large array of visible and X-ray diagnostics will finally allow to completely characterize them and calculate the dimensionless numbers that validate the astrophysical relevance. (author) [fr

  15. Thermonuclear Reaction Rate Libraries and Software Tools for Nuclear Astrophysics Research

    International Nuclear Information System (INIS)

    Smith, Michael S.; Cyburt, Richard; Schatz, Hendrik; Smith, Karl; Warren, Scott; Ferguson, Ryan; Wiescher, Michael; Lingerfelt, Eric; Buckner, Kim; Nesaraja, Caroline D.

    2008-01-01

    Thermonuclear reaction rates are a crucial input for simulating a wide variety of astrophysical environments. A new collaboration has been formed to ensure that astrophysical modelers have access to reaction rates based on the most recent experimental and theoretical nuclear physics information. To reach this goal, a new version of the REACLIB library has been created by the Joint Institute for Nuclear Astrophysics (JINA), now available online at http://www.nscl.msu.edu/~nero/db. A complementary effort is the development of software tools in the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to streamline, manage, and access the workflow of the reaction evaluations from their initiation to peer review to incorporation into the library. Details of these new projects will be described

  16. European Research Council supports an extensive study of the astrophysical p-process

    International Nuclear Information System (INIS)

    Gyuerky, Gy.

    2008-01-01

    Complete text of publication follows. The astrophysical p-process, the production mechanism of the heavy proton rich isotopes (the so-called p-nuclei) is still one of the least understood processes of nucleosynthesis. The modeling of the process requires a huge network of thousands of reactions where the rates of the involved reactions represent one of the biggest uncertainty in the resulting abundances of p-nuclei. In lack of experimental data the required reaction rates are taken from statistical model calculations which proved to be inaccurate in the mass and energy range relevant for the p-process. The systematic experimental study of the relevant reactions is therefore crucial to test the calculated reaction rates, to select the best input parameters for the calculations and, consequently, to contribute to a better understanding of the astrophysical p-process. The European Research Council (ERC) has acknowledged this need for experimental data when they decided to support a project devoted to this subject. In 2007 the first call of the ERC Frontier Research Scheme (Starting Grants) has been launched within the FP7 Specific Programme 'IDEAS'. From the very high number of applications, the peer reviewers of the ERC Scientific Council has recommended for funding the proposal entitled 'Nuclear reaction studies relevant to the astrophysical p-process nucleosynthesis'. An amount of 750,000 Euro has been allocated to the project for a 5 year duration. The starting date of the project was 1st July, 2008. With the ERC support, an extensive experimental study of the p-process is being carried out. The experiments will be carried out almost exclusively with the accelerators of the ATOMKI. The financial support allows to largely improve the available experimental technique. The purchase of two large volume HPGe detectors is in progress as a result of a public procurement. The upgrade of the nuclear electronics and data acquisition system used for p-process related

  17. Laboratory Astrophysics Division of The AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  18. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  19. Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

    CERN Document Server

    Vörös, Zoltán; IAFA 2011 - International Astrophysics Forum 2011 : Frontiers in Space Environment Research

    2012-01-01

    Magnetized plasmas in the universe exhibit complex dynamical behavior over a huge range of scales. The fundamental mechanisms of energy transport, redistribution and conversion occur at multiple scales. The driving mechanisms often include energy accumulation, free-energy-excited relaxation processes, dissipation and self-organization. The plasma processes associated with energy conversion, transport and self-organization, such as magnetic reconnection, instabilities, linear and nonlinear waves, wave-particle interactions, dynamo processes, turbulence, heating, diffusion and convection represent fundamental physical effects. They demonstrate similar dynamical behavior in near-Earth space, on the Sun, in the heliosphere and in astrophysical environments. 'Multi-scale Dynamical Processes in Space and Astrophysical Plasmas' presents the proceedings of the International Astrophysics Forum Alpbach 2011. The contributions discuss the latest advances in the exploration of dynamical behavior in space plasmas environm...

  20. NASA Astrophysics Funds Strategic Technology Development

    Science.gov (United States)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  1. Astrophysical hints of axion-like particles

    Science.gov (United States)

    Roncadelli, M.; Galanti, G.; Tavecchio, F.; Bonnoli, G.

    2015-01-01

    After reviewing three astrophysical hints of the existence of axion-like particles (ALPs), we describe in more detail a new similar hint involving flat spectrum radio quasars (FSRQs). Detection of FSRQs above about 20GeV pose a challenge to very-high-energy (VHE) astrophysics, because at those energies the ultraviolet emission from their broad line region should prevent photons produced by the central engine to leave the source. Although a few astrophysical explanations have been put forward, they are totally ad hoc. We show that a natural explanation instead arises within the conventional models of FSRQs provided that photon-ALP oscillations occur inside the source. Our analysis takes the FSRQ PKR 1222+206 as an example, and it looks tantalizing that basically the same choice of the free model parameters adopted in this case is consistent with those that provide the other three hints of the existence of ALPs.

  2. Journal of Astrophysics and Astronomy

    Indian Academy of Sciences (India)

    27

    Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore. 560034, India .... the hydrogen rich thermosphere so significantly that the internal energy of the gas becomes greater than the gravitational potential energy. This leads ... way greenhouse, water vapor would reach the stratosphere where it would.

  3. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  4. The Explorer program for astronomy and astrophysics

    International Nuclear Information System (INIS)

    Savage, B.D.; Becklin, E.E.; Cassinelli, J.P.; Dupree, A.K.; Elliot, J.L.; Hoffmann, W.F.; Hudson, H.S.; Jura, M.; Kurfess, J.; Murray, S.S.

    1986-01-01

    This report was prepared to provide NASA with a strategy for proceeding with Explorer-class programs for research in space astronomy and astrophysics. The role of Explorers in astronomy and astrophysics and their past accomplishments are discussed, as are current and future astronomy and astrophysics Explorers. Specific cost needs for an effective Explorer program are considered

  5. Dynamics and evolution of galactic nuclei (princeton series in astrophysics)

    CERN Document Server

    Merritt, David

    2013-01-01

    Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the las...

  6. Important plasma problems in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1995-01-01

    In astrophysics, plasmas occur under very extreme conditions. For example, there are ultrastrong magnetic fields in neutron stars, relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynolds numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. The author will describe one of the more exciting examples and will attempt to convey the excitement he felt when he was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics that have not been so easily resolved. In fact, a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. The author will attempt to describe one of the more important of these plasma--astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynolds number magnetohydrodynamics (MHD) dynamos

  7. Statistics and Informatics in Space Astrophysics

    Science.gov (United States)

    Feigelson, E.

    2017-12-01

    The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.

  8. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  9. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    International Nuclear Information System (INIS)

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance

  10. Time-symmetric integration in astrophysics

    Science.gov (United States)

    Hernandez, David M.; Bertschinger, Edmund

    2018-04-01

    Calculating the long-term solution of ordinary differential equations, such as those of the N-body problem, is central to understanding a wide range of dynamics in astrophysics, from galaxy formation to planetary chaos. Because generally no analytic solution exists to these equations, researchers rely on numerical methods that are prone to various errors. In an effort to mitigate these errors, powerful symplectic integrators have been employed. But symplectic integrators can be severely limited because they are not compatible with adaptive stepping and thus they have difficulty in accommodating changing time and length scales. A promising alternative is time-reversible integration, which can handle adaptive time-stepping, but the errors due to time-reversible integration in astrophysics are less understood. The goal of this work is to study analytically and numerically the errors caused by time-reversible integration, with and without adaptive stepping. We derive the modified differential equations of these integrators to perform the error analysis. As an example, we consider the trapezoidal rule, a reversible non-symplectic integrator, and show that it gives secular energy error increase for a pendulum problem and for a Hénon-Heiles orbit. We conclude that using reversible integration does not guarantee good energy conservation and that, when possible, use of symplectic integrators is favoured. We also show that time-symmetry and time-reversibility are properties that are distinct for an integrator.

  11. Neutrino particle astrophysics: status and outlook

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The discovery of astrophysical neutrinos at high energy by IceCube raises a host of questions: What are the sources? Is there a Galactic as well as an extragalactic component? How does the astrophysical spectrum continue to lower energy where the dominant signal is from atmospheric neutrinos? Is there a measureable flux of cosmogenic neutrinos at higher energy? What is the connection to cosmic rays? At what level and in what energy region should we expect to see evidence of the π0 decay photons that must accompany the neutrinos at production? Such questions are stimulating much theoretical activity and many multi-wavelength follow-up observations as well as driving plans for new detectors. My goal in this presentation will be to connect the neutrino data and their possible interpretations to ongoing multi-messenger observations and to the design of future detectors.

  12. Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles

    Science.gov (United States)

    Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie

    2018-04-01

    Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.

  13. 14th International School of Cosmic Ray Astrophysics

    CERN Document Server

    Stanev, Todor; Wefel, John P; Neutrinos and explosive events in the universe

    2005-01-01

    This volume contains the Lectures and selected participant contributions to the 14th Course of the International School of Cosmic Rays Astrophysics, a NATO Advanced Study Institute. Well known astrophysicists and astronomers discuss different aspects of the generation of high energy signals in powerful astrophysical objects concentrating on the production of neutrinos and gamma rays from high energy particle interactions. Recent results from new experiments and observatories are presented. Topics cover a wide range including the Spitzer infrared observatory, TeV gamma ray observations, dark matter, and neutrino telescopes. The combination of basic knowledge about the production of high energy signals with information about the data analysis of ongoing observations places the book between the usual levels of a textbook and a conference proceedings. It will give the reader a good introduction to the current field of astroparticle physics, and some of the fascinating astrophysics being addressed.

  14. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    International Nuclear Information System (INIS)

    Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D

    2012-01-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  15. VI European Summer School on Experimental Nuclear Astrophysics

    Science.gov (United States)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  16. Astrobites: Blogging Astrophysics Research, Bringing it to the Classroom, and beyond

    Science.gov (United States)

    Tsang, Benny Tsz Ho; Kohler, Susanna; Astrobites Team

    2017-06-01

    Transitioning from undergraduate studies to a career in scientific research is not without its difficulties. Astrobites (astrobites.com) is a graduate student-organized website that aims to decipher the research process in astrophysics and present the latest discoveries in form of daily digestible blog posts. Astrobites posts paint vivid mental pictures of diverse research topics without jargon or extensive presumed knowledge, helping readers to make the connections between topics. Besides summarizing research papers, our posts feature reviews on selected subjects, sharing in career development, live-blogging in conferences, and keynote speakers’ personal encounters with science! The accessibility of Astrobites attracts readers beyond undergraduate students, from professional astrophysicists exploring unfamiliar territory outside of their research to science educators looking for exciting and topical ideas for lesson plans. We will present our goals, readership, latest endeavors, and future initiatives.

  17. Goddard's Astrophysics Science Divsion Annual Report 2014

    Science.gov (United States)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India. Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing 100871, China. National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, Canada. Thirty Meter Project Office, ...

  19. Traversable braneworld wormholes supported by astrophysical observations

    Science.gov (United States)

    Wang, Deng; Meng, Xin-He

    2018-02-01

    In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space-time configurations in the Dvali-Gabadadze-Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space-time structure will open in terms of the 2 σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space-time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space-time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.

  20. Astrophysics at RIA (ARIA) Working Group

    International Nuclear Information System (INIS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-01-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities

  1. Relevance of axionlike particles for very-high-energy astrophysics

    International Nuclear Information System (INIS)

    De Angelis, Alessandro; Galanti, Giorgio; Roncadelli, Marco

    2011-01-01

    Several extensions of the standard model and, in particular, superstring theories suggest the existence of axionlike particles (ALPs), which are very light spin-zero bosons with a two-photon coupling. As a consequence, photon-ALP oscillations occur in the presence of an external magnetic field, and ALPs can lead to observable effects on the measured photon spectrum of astrophysical sources. An intriguing situation arises when blazars are observed in the very-high-energy (VHE) band--namely, above 100 GeV--as it is the case with the presently operating Imaging Atmospheric Cherenkov Telescopes H.E.S.S, Major Atmospheric Gamma Imaging Cherenkov telescope, Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback III, and VERITAS. The extragalactic background light produced by galaxies during cosmic evolution gives rise to a source dimming which becomes important in the VHE band and increases with energy, since hard photons from a blazar scatter off soft extragalactic background light photons thereby disappearing into e + e - pairs. This dimming can be considerably reduced by photon-ALP oscillations, and since they are energy independent the resulting blazar spectra become harder than expected. We consider throughout a scenario first proposed by De Angelis, Roncadelli, and Mansutti in which the above strategy is implemented with photon-ALP oscillations triggered by large-scale magnetic fields, and we systematically investigate its implications for VHE blazars. We find that for ALPs lighter than 5·10 -10 eV the photon survival probability is larger than predicted by conventional physics above a few hundred GeV. Specifically, a boost factor of 10 can easily occur for sources at large distance and large energy, e.g. at 8 TeV for the blazar 1ES 0347-121 at redshift z=0.188. This is a clear-cut prediction which can be tested with the planned Cherenkov Telescope Array and the High Altitude Water Cherenkov Experiment (HAWC) water Cherenkov

  2. Astrophysics and the exploration of the universe

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Garcia, R.A.; Brun, A.S.; Minier, V.; Andre, Ph.; Motte, F.; Mathis, St.; Foglizzo, Th.; Decourchelle, A.; Ballet, J.; Chaty, S.; Corbel, St.; Rodriguez, J.; Brahic, A.; Charnoz, S.; Ferrari, C.; Lagage, P.O.; Masset, F.; Pantin, E.; Sauvage, M.; Galliano, F.; Goldwurm, A.; Ballet, J.; Decourchelle, A.; Grenier, I.; Daddi, E.; Elbaz, D.; Bournaud, F.; Yvon, D.; Arnaud, M.; Teyssier, R.; Lehoucq, R.; Palanque-Delabrouille, N.; Lehoucq, R.; Cirelli, M.; Bonvin, C.; Mansoulie, B.; Ruhlmann-Kleider, V.; Refregier, A.; Brax, Ph.; Lavignac, St.; Starck, J.L.; Talvard, M.; Sauvage, M.; Cara, Ch.; Lagage, P.O.; Ferrari, C.; Rodriguez, L.; Sauvageot, J.L.; Lebrun, F.; Grenier, I.; Glicenstein, J.F.; Gerbier, G.

    2009-01-01

    This special issue of Clefs CEA journal is entirely devoted to astrophysics and to the exploration and probing of the Universe. A first part of this dossier, described here, makes a status of our present day knowledge about stars, planets, galaxies, the Universe structure and dark matter. Content: 1 - Stars seed the Universe: What does the Sun tell us?, Probing stellar interiors, From the Sun to the stars, A tour of stellar nurseries, How heavy elements arise, How supernovae explode, Supernova remnants, High-energy objects - sources for astonishment, Focus: A Probing the Universe across the entire light spectrum; 2 - Planets: a dance of small bodies, swirling around up to the finale of their birth: How our world was born, The rings of Saturn: a magnificent research laboratory, Planetary cocoons; 3 - Galaxies: a richly paradoxical evolution: The active life of galaxies, A mysterious black hole, Elucidating the cosmic ray acceleration mechanism, Seeking out the great ancestors, The formation of galaxies: a story of paradoxes, The morphogenesis of galaxies; 4 - The Universe, a homogeneous 'soup' that has turned into a hierarchical structure: The grand thermal history of the Universe, The cosmic web, The formation of the structures of the Universe: the interplay of models, Does the Universe have a shape? Is it finite, or infinite?; 5 - Odyssey across the dark side of the Universe: The puzzle of dark matter, Astrophysics and the observation of dark matter, The theory of dark matter, Could dark matter be generated some day at LHC? A Universe dominated by dark energy, Astrophysics and the observation of dark energy, Theories of dark energy, The matter-antimatter asymmetry of the Universe; 6 - Journey into the lights of the Universe: Microwave - ESA Planck Surveyor, Submillimeter and infrared - ArTeMis, Herschel Space Observatory, VLT-VISIR, Cassini-CIRS, Visible - SoHo-GOLF, X-ray - XMM-Newton, Gamma ray - INTEGRAL, Fermi Gamma-Ray Space Telescope, HESS, EDELWEISS

  3. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Stefano Ciroi. Articles written in Journal of Astrophysics and Astronomy. Volume 36 Issue 4 December 2015 pp 447-455 Review. Optical Counterparts of Undetermined Type -Ray Active Galactic Nuclei with Blazar-Like Spectral Energy Distributions.

  4. Evaluation of the astrophysical origin of a vertical high-energy neutrino event in IceCube using IceTop information

    Energy Technology Data Exchange (ETDEWEB)

    Stahlberg, Martin; Auffenberg, Jan; Rongen, Martin; Kemp, Julian; Hansmann, Bengt; Schaufel, Merlin; Wiebusch, Christopher [RWTH Aachen, III. Physikalisches Institut B, Otto-Blumenthal-Strasse, 52074 Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    A main goal of the IceCube neutrino observatory is the detection of high-energy astrophysical neutrinos. IceCube's surface detector component IceTop is an array of 81 stations comprised of two Cherenkov-light detecting tanks, each of which is filled with clear ice and contains two photomultiplier modules. IceTop allows for the detection of cosmic-ray induced air-showers above energies of a few 100 TeV. In addition, the atmospheric origin of neutrino events detected with IceCube can be verified by the observation of a coincident air-shower component on the surface with IceTop. In 2014, a vertically down-going high-energy muon neutrino event starting in IceCube has been observed. The astrophysical origin of this event is tested by a close examination of the IceTop data. The outcome of this analysis is used to assess the potential of the proposed IceTop extension, IceVeto, which further increases the geometrical acceptance of the surface detector.

  5. Recent results in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Coc, Alain; Kiener, Juergen [CNRS/IN2P3 et Universite Paris Sud 11, UMR 8609, Centre de Sciences Nucleaires et de Sciences de la Matiere (CSNSM), Orsay Campus (France); Hammache, Fairouz [CNRS/IN2P3 et Universite Paris Sud 11, UMR 8608, Institut de Physique Nucleaire d' Orsay (IPNO), Orsay Campus (France)

    2015-03-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified, e.g., {sup 12}C(α, γ){sup 16}O for stellar evolution, or {sup 13}C(α, n){sup 16}O and {sup 22}Ne(α, n){sup 25}Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g., in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model. (orig.)

  6. Recent results in nuclear astrophysics

    International Nuclear Information System (INIS)

    Coc, Alain; Kiener, Juergen; Hammache, Fairouz

    2015-01-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified, e.g., 12 C(α, γ) 16 O for stellar evolution, or 13 C(α, n) 16 O and 22 Ne(α, n) 25 Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g., in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model. (orig.)

  7. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  8. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    Science.gov (United States)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  9. The fluorine destruction in stars: First experimental study of the 19F(p,α)16O reaction at astrophysical energies

    International Nuclear Information System (INIS)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.

    2012-01-01

    The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E cm ∼ 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the 2 H( 19 F,α 16 O)n reaction. The TH measurement of the α 0 channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  10. Recent Progresses in Ab-Initio Studies of Low-Energy Few-Nucleon Reactions of Astrophysical Interest

    Science.gov (United States)

    Marcucci, Laura E.

    2017-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis. Related to this, we will discuss also the most recent calculation of tritium β -decay. Two frameworks will be considered, the conventional and the chiral effective field theory approach.

  11. Astrophysics of Red Supergiants

    Science.gov (United States)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  12. Research in high energy physics. Annual technical progress report, December 1, 1993--November 30, 1998

    International Nuclear Information System (INIS)

    Olsen, S.L.; Tata, X.

    1996-01-01

    The high energy physics research program at the University of Hawaii is directed toward the study of the properties of the elementary particles and the application of the results of these studies to the understanding of the physical world. Experiments using high energy accelerators are aimed at searching for new particles, testing current theories, and measuring properties of the known particles. Experiments using cosmic rays address particle physics and astrophysical issues. Theoretical physics research evaluates experimental results in the context of existing theories and projects the experimental consequences of proposed new theories

  13. Astrophysical Flows

    Science.gov (United States)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  14. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  15. Nuclear Astrophysics from View Point of Few-Body Problems

    International Nuclear Information System (INIS)

    Tumino, A.; Spitaleri, C.; Bertulani, C.; Mukhamedzhanov, A.M.

    2013-01-01

    Few-body systems provide very useful tools to solve different problems for nuclear astrophysics. This is the case of indirect techniques, developed to overcome some of the limits of direct measurements at astrophysical energies. Here the Coulomb dissociation, the asymptotic normalization coefficient and the Trojan Horse method are discussed. (author)

  16. Radiative properties of astrophysical matter: a quest to reproduce astrophysical conditions on earth

    International Nuclear Information System (INIS)

    Bailey, James E.

    2010-01-01

    Experiments in terrestrial laboratories can be used to evaluate the physical models that interpret astronomical observations. The properties of matter in astrophysical objects are essential components of these models, but terrestrial laboratories struggle to reproduce the extreme conditions that often exist. Megajoule-class DOE/NNSA facilities such as the National Ignition Facility and Z can create unprecedented amounts of matter at extreme conditions, providing new capabilities to test astrophysical models with high accuracy. Experiments at these large facilities are challenging, and access is very competitive. However, the cylindrically-symmetric Z source emits radiation in all directions, enabling multiple physics experiments to be driven with a single Z discharge. This helps ameliorate access limitations. This article describes research efforts under way at Sandia National Laboratories Z facility investigating radiation transport through stellar interior matter, population kinetics of atoms exposed to the intense radiation emitted by accretion powered objects, and spectral line formation in white dwarf (WD) photospheres. Opacity quantifies the absorption of radiation by matter and strongly influences stellar structure and evolution, since radiation dominates energy transport deep inside stars. Opacity models have become highly sophisticated, but laboratory tests at the conditions existing inside stars have not been possible - until now. Z research is presently focused on measuring iron absorption at conditions relevant to the base of the solar convection zone, where the electron temperature and density are 190 eV and 9 x 10 22 e/cc, respectively. Creating these conditions in a sample that is sufficiently large, long-lived, and uniform is extraordinarily challenging. A source of radiation that streams through the relatively-large samples can produce volumetric heating and thus, uniform conditions, but to achieve high temperatures a strong source is required. Z

  17. Status of the GILDA project for the 30 MeV-100 GeV high energy gamma ray astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Barbiellini, G. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Fuglesang, C. [ESA-EAC, Cologne (Germany); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    1995-09-01

    High energy gamma-ray astrophysics has greatly developed in the last few years because of the results of EGRET, on the Compton gamma ray observatory. The satellite observations have shown the importance of continuing the investigation of high energy gamma radiation but the emerging of new astrophysical and cosmological problems require for future experiments the realization of telescopes with parameters significatively improved with respect to the previous missions. In a traditional point of view, this is achieved with the increase of the length L of the device and, consequently, the mass of the telescope and satellite (growing as L{sup 3}). Such kinds of experiments are becoming rather expensive and are approaching the maximum value in cost, satellite mass and consuming resources. The telescope project GILDA presented in this paper is based on the use of silicon strip detectors. The silicon technique consents to obtain a much wider solid angle aperture; in this way there is more sensitivity without a growing in the size of the

  18. Status of the GILDA project for the 30 MeV-100 GeV high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P.; Barbiellini, G.; Fuglesang, C.; Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M.

    1995-01-01

    High energy gamma-ray astrophysics has greatly developed in the last few years because of the results of EGRET, on the Compton gamma ray observatory. The satellite observations have shown the importance of continuing the investigation of high energy gamma radiation but the emerging of new astrophysical and cosmological problems require for future experiments the realization of telescopes with parameters significatively improved with respect to the previous missions. In a traditional point of view, this is achieved with the increase of the length L of the device and, consequently, the mass of the telescope and satellite (growing as L 3 ). Such kinds of experiments are becoming rather expensive and are approaching the maximum value in cost, satellite mass and consuming resources. The telescope project GILDA presented in this paper is based on the use of silicon strip detectors. The silicon technique consents to obtain a much wider solid angle aperture; in this way there is more sensitivity without a growing in the size of the

  19. Cosmological birefringence constraints from CMB and astrophysical polarization data

    Energy Technology Data Exchange (ETDEWEB)

    Galaverni, M. [Studio Teologico Interdiocesano, V.le Timavo 93, Reggio Emilia, 42121 Italy (Italy); Gubitosi, G. [Dipartimento di Fisica and sez. Roma1 INFN, Università di Roma ' La Sapienza' , P.le A. Moro 2, Rome, 00185 Italy (Italy); Paci, F. [SISSA, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, 34136 Italy (Italy); Finelli, F., E-mail: matteo.galaverni@gmail.com, E-mail: giulia.gubitosi@imperial.ac.uk, E-mail: fpaci@sissa.it, E-mail: finelli@iasfbo.inaf.it [INAF-IASF Bologna, via Gobetti 101, Bologna, I-40129 Italy (Italy)

    2015-08-01

    Cosmological birefringence is a rotation of the polarization plane of photons coming from sources of astrophysical and cosmological origin. The rotation can also depend on the energy of the photons and not only on the distance of the source and on the cosmological evolution of the underlying theoretical model. In this work, we constrain few selected models for cosmological birefringence, combining CMB and astrophysical data at radio, optical, X and γ wavelengths, taking into account the specific energy and distance dependences.

  20. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  1. Astrophysical observations: lensing and eclipsing Einstein's theories.

    Science.gov (United States)

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  2. Exploring extreme plasma physics in the laboratory and in astrophysics

    Science.gov (United States)

    Silva, L. O.; Grismayer, T.; Fonseca, R. A.; Cruz, F.; Gaudio, F. D.; Martins, J. L.; Vieira, J.; Vranic, M.

    2017-10-01

    The interaction of ultra intense fields with plasmas is at the confluence of several sub-fields ranging from QED, and nuclear physics to high energy astrophysics, and fundamental plasma processes. It requires novel theoretical tools, highly optimised numerical codes and algorithms tailored to these complex scenarios, where physical mechanisms at very disparate temporal and spatial scales are self-consistently coupled in multidimensional geometries. The key developments implemented in Osiris will be presented along with some examples of problems, relevant for laboratory or astrophysical scenarios, that are being addressed resorting to the combination of massively parallel simulations with theoretical models. The relevance for near future experimental facilities such as ELI will also be presented. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  3. Bibliometric indicators of young authors in astrophysics

    DEFF Research Database (Denmark)

    Havemann, Frank; Larsen, Birger

    2015-01-01

    We test 16 bibliometric indicators with respect to their validity at the level of the individual researcher by estimating their power to predict later successful researchers. We compare the indicators of a sample of astrophysics researchers who later co-authored highly cited papers before...... their first landmark paper with the distributions of these indicators over a random control group of young authors in astronomy and astrophysics. We find that field and citation-window normalisation substantially improves the predicting power of citation indicators. The sum of citation numbers normalised...

  4. Astrophysics a very short introduction

    CERN Document Server

    Binney, James

    2016-01-01

    Astrophysics is the physics of the stars, and more widely the physics of the Universe. It enables us to understand the structure and evolution of planetary systems, stars, galaxies, interstellar gas, and the cosmos as a whole. In this Very Short Introduction, the leading astrophysicist James Binney shows how the field of astrophysics has expanded rapidly in the past century, with vast quantities of data gathered by telescopes exploiting all parts of the electromagnetic spectrum, combined with the rapid advance of computing power, which has allowed increasingly effective mathematical modelling. He illustrates how the application of fundamental principles of physics - the consideration of energy and mass, and momentum - and the two pillars of relativity and quantum mechanics, has provided insights into phenomena ranging from rapidly spinning millisecond pulsars to the collision of giant spiral galaxies. This is a clear, rigorous introduction to astrophysics for those keen to cut their teeth on a conceptual trea...

  5. A Laboratory Astrophysical Jet to Study Canonical Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    You, Setthivoine [Univ. of Washington, Seattle, WA (United States)

    2017-12-20

    Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficient with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.

  6. Fullerenes, PAHs, Amino Acids and High Energy Astrophysics

    Directory of Open Access Journals (Sweden)

    Susana Iglesias-Groth

    2014-12-01

    Full Text Available We present theoretical, observational and laboratory work on the spectral properties of fullerenes and hydrogenated fullerenes. Fullerenes in its various forms (individual, endohedral, hydrogenated, etc. can contribute to the UV bump in the extinction curves measured in many lines of sight of the Galaxy. They can also produce a large number of absorption features in the optical and near infrared which could be associated with diffuse interstellar bands. We summarise recent laboratory work on the spectral characterisation of fullerenes and hydrogenated fullerenes (for a range of temperatures. The recent detection of mid-IR bands of fullerenes in various astrophysical environments (planetary nebulae, reflection nebulae provide additional evidence for a link between fullerene families and diffuse interstellar bands. We describe recent observational work on near IR bands of C60+ in a protoplanetary nebula which support fullerene formation during the post-AGB phase. We also report on the survival of fullerenes to irradiation by high energy particles and gamma photons and laboratory work to explore the chemical  reactions that take place when fullerenes are exposed to this radiations in the presence of water, ammonia and other molecules as a potential path to form amino acids.

  7. Experimental And Theoretical High Energy Physics Research At UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Robert D. [University of California Los Angeles

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  8. Nuclear astrophysics lessons from INTEGRAL.

    Science.gov (United States)

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  9. VI School on Cosmic Rays and Astrophysics

    International Nuclear Information System (INIS)

    2017-01-01

    VI School on Cosmic Rays and Astrophysics 17-25 November 2015, Chiapas, Mexico The VI School on Cosmic Rays and Astrophysics was held at the MCTP, at the Autonomous University of Chiapas (UNACH), Tuxtla Gutiérrez, Chiapas, Mexico thanks to the Science for Development ICTP-UNACH-UNESCO Regional Seminar, 17-25 November 2015 (http://mctp.mx/e-VI-School-on-Cosmic-Rays-and-Astrophysics.html). The School series started in La Paz, Bolivia in 2004 and it has been, since then, hosted by several Latin American countires: 1.- La Paz, Bolivia (August, 2004), 2.- Puebla, Mexico (September, 2006), 3.- Arequipa, Peru (September, 2008), 4.- Santo André, Brazil (September, 2010), 5.- La Paz, Bolivia (August, 2012). It aims to promote Cosmic Ray (CR) Physics and Astrophysics in the Latin American community and to provide a general overview of theoretical and experimental issues on these topics. It is directed to undergraduates, postgraduates and active researchers in the field. The lectures introduce fundamental Cosmic Ray Physics and Astrophysics with a review of standards of the field. It is expected the school continues happening during the next years following a tradition. In this edition, the list of seminars included topics such as experimental techniques of CR detection, development of CR showers and hadronic interactions, composition and energy spectrum of primary CR, Gamma-Ray Bursts (GRBs), neutrino Astrophysics, spacecraft detectors, simulations, solar modulation, and the current state of development and results of several astroparticle physics experiments such as The Pierre Auger Observatory in Argentina, HAWC in Mexico, KASCADE and KASCADE Grande, HESS, IceCube, JEM-EUSO, Fermi-LAT, and others. This time the school has been complemented with the ICTP-UNACH-UNESCO Seminar of theory on Particle and Astroparticle Physics. The organization was done by MCTP, the Mesoamerican Centre for Theoretical Physics. The school had 46 participants, 30 students from Honduras, Brazil

  10. Space astronomy and astrophysics program by NASA

    Science.gov (United States)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  11. An introduction to nuclear astrophysics

    International Nuclear Information System (INIS)

    Norman, E.B.

    1987-09-01

    The role of nuclear reactions in astrophysics is described. Stellar energy generation and heavy element nucleosynthesis is explained in terms of specific sequences of charged-particle and neutron induced reactions. The evolution and final states of stars are examined. 20 refs. 11 figs., 2 tabs

  12. PREFACE: 5th Workshop of Young Researchers in Astronomy & Astrophysics

    Science.gov (United States)

    Forgács-Dajka, Emese; Plachy, Emese; Molnár, László

    2010-04-01

    The 5th Workshop of Young Researchers in Astronomy and Astrophysics was held on 2-4 September 2009 at the Eötvös University in Budapest, Hungary. This meeting fits into a conference series which can already be considered a tradition where the younger generation has the opportunity to present their work. The event was also a great opportunity for senior astronomers and physicists to form new connections with the next generation of researchers. The selection of invited speakers concentrated on the researchers currently most active in the field, mostly on a post-doctoral/tenure/fresh faculty position level. A number of senior experts and PhD students were also invited. As the conference focused on people rather than a specific field, various topics from theoretical physics to planetology were covered in three days. The programme was divided into six sections: Physics of the Sun and the Solar System Gravity and high-energy physics Galactic and extragalactic astronomy, cosmology Celestial mechanics and exoplanets Infrared astronomy and young stars Variable stars We had the pleasure of welcoming 10 invited review talks from senior researchers and 42 contributed talks and a poster from the younger generation. Participants also enjoyed the hospitality of the pub Pál at the Pálvölgyi-cave after giving, hearing and disputing countless talks. Brave souls even descended to the unbuilt, adventurous Mátyásvölgyi-cave. Memories of the conference were shadowed though. Péter Csizmadia, one of our participants and three other climbers attempted a first ever ascent to the Ren Zhong Feng peak in Sichuan, China, but they never returned from the mountains. Péter departed to China shortly after the conference, with best wishes from participants and friends. We dedicate this volume to his memory. The organisers thankthe Physics Doctoral School of Eötvös University for its hospitality. The workshop was supported by the Mecenatúra and Polányi Mihály Programmes of the National

  13. High Energy Astrophysics Tests of Lorentz Invariance and Quantum Gravity Models

    Science.gov (United States)

    Stecker, Floyd W.

    2012-01-01

    High energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approx.10(exp -35) m. I will discuss the possible signatures of Lorentz invariance violation (LIV) that can be manifested by observing of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) on the fraction of LIV at a Lorentz factor of approx. 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space-based detection techniques to improve searches for LIV in the future. I will also discuss how the LIV formalism casts doubt on the OPERA superluminal neutrino claim.

  14. The CATS Service: An Astrophysical Research Tool

    Directory of Open Access Journals (Sweden)

    O V Verkhodanov

    2009-03-01

    Full Text Available We describe the current status of CATS (astrophysical CATalogs Support system, a publicly accessible tool maintained at Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS (http://cats.sao.ru allowing one to search hundreds of catalogs of astronomical objects discovered all along the electromagnetic spectrum. Our emphasis is mainly on catalogs of radio continuum sources observed from 10 MHz to 245 GHz, and secondly on catalogs of objects such as radio and active stars, X-ray binaries, planetary nebulae, HII regions, supernova remnants, pulsars, nearby and radio galaxies, AGN and quasars. CATS also includes the catalogs from the largest extragalactic surveys with non-radio waves. In 2008 CATS comprised a total of about 109 records from over 400 catalogs in the radio, IR, optical and X-ray windows, including most source catalogs deriving from observations with the Russian radio telescope RATAN-600. CATS offers several search tools through different ways of access, e.g. via Web-interface and e-mail. Since its creation in 1997 CATS has managed about 105requests. Currently CATS is used by external users about 1500 times per day and since its opening to the public in 1997 has received about 4000 requests for its selection and matching tasks.

  15. Electric Currents along Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    Ioannis Contopoulos

    2017-10-01

    Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.

  16. Radioactive targets for nuclear astrophysics research at LANSCE

    International Nuclear Information System (INIS)

    Koehler, P.E.; O'Brien, H.A.; Gursky, J.C.

    1990-01-01

    During the past few years we have made measurements of (n,p) and (n,α) cross sections on several radioactive nuclei of importance to nuclear astrophysics. The measurements were made at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) from thermal neutron energy to approximately 100 keV. Successful measurements have been completed on the radioisotopes 7 Be, 22 Na and 36 Cl while preliminary data have been taken on targets of 54 Mn and 55 Fe. Similar measurements have also been made on the stable isotopes 14 N, 17 O and 35 Cl. We are currently assembling a 4π barium fluoride (BaF 2 ) detector which will allow us to expand our program to (n,γ) measurements. The (n,γ) (and in some cases future (n,p)) measurements will require targets with higher specific activity and greater chemical purity than we have so far been able to use. We discuss the fabrication techniques used for the samples produced so far, the requirements the future (n,γ) targets must meet and our current plans for producing them, and the physics motivations for the measurements

  17. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  18. Matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos

    Science.gov (United States)

    Huang, Guo-yuan; Liu, Jun-Hao; Zhou, Shun

    2018-06-01

    Can we observe the solar eclipses in the neutrino light? In principle, this is possible by identifying the lunar matter effects on the flavor conversions of solar neutrinos when they traverse the Moon before reaching the detectors at the Earth. Unfortunately, we show that the lunar matter effects on the survival probability of solar 8B neutrinos are suppressed by an additional factor of 1.2%, compared to the day-night asymmetry. However, we point out that the matter effects on the flavor conversions of high-energy astrophysical neutrinos, when they propagate through the Sun, can be significant. Though the flavor composition of high-energy neutrinos can be remarkably modified, it is quite challenging to observe such effects even in the next-generation of neutrino telescopes.

  19. Highlights of modern astrophysics: Concepts and controversies

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, V.

    1986-01-01

    In this book, physicists and astronomers review issues in astrophysics. The book stresses accomplishments of observational and theoretical work, and demonstrates how to reveal information about stars and galaxies by applying the basic principles of physics. It pinpoints conflicting views and findings on important topics and indicates possibilities for future research in the field of modern astrophysics

  20. Astrophysics today

    International Nuclear Information System (INIS)

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more

  1. THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE (19)F(p, alpha(0))(16)O REACTION AT ASTROPHYSICAL ENERGIES

    Czech Academy of Sciences Publication Activity Database

    La Cognata, M.; Mukhamedzhanov, A. M.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, Václav; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Zdeněk; Kiss, G.G.; Kroha, Václav; Lamia, L.; Mrázek, Jaromír; Palmerini, S.; Piskoř, Štěpán; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.

    2011-01-01

    Roč. 739, č. 2 (2011), L54 ISSN 2041-8205 R&D Projects: GA MŠk LC07050; GA ČR GAP203/10/0310 Institutional research plan: CEZ:AV0Z10480505 Keywords : ASYMPTOTIC GIANT BRANCH * CORONAE-BOREALIS STARS * NUCLEAR ASTROPHYSICS * COULOMB BARRIER * CROSS-SECTION * LOW-MASS * NUCLEOSYNTHESIS * CARBON Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.526, year: 2011

  2. Fundamental Questions in Astrophysics: Guidelines for Future UV Observatories

    CERN Document Server

    Gómez de Castro, Ana I

    2006-01-01

    Modern astrophysics is a mature science that has evolved from its early phase of discovery and classification to a physics-oriented discipline focused in finding answers to fundamental problems ranging from cosmology to the origin and diversity of life-sustainable systems in the Universe. For this very reason, progress of modern astrophysics requires the access to the electromagnetic spectrum in the broadest energy range. The Ultraviolet is a fundamental energy domain since it is one of the most powerful tool to study plasmas at temperatures in the 3,000-300,000~K range as well as electronic transitions of the most abundant molecules in the Universe. Moreover, the UV radiation field is a powerful astrochemical and photoionizing agent. This book describes the fundamental problems in modern astrophysics that cannot progress without easy and wide-spread access to modern UV instrumentation.

  3. First evidences for 19F(α, p)22Ne at astrophysical energies

    International Nuclear Information System (INIS)

    D’Agata, G.; Spitaleri, C.; Pizzone, R.G.; Figuera, P.; Guardo, G.L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lattuada, M.; Sergi, M.L.; Blagus, S.; Mijatović, T.; Milin, M.; Miljanic, D.; Prepolec, L.; Skukan, N.; Grassi, L.; Lamia, L.; Hayakawa, S.; Kshetri, R.

    2016-01-01

    19 F experimental abundances is overestimated in respect to the theoretical one: it is therefore clear that further investigations are needed. We focused on the 19 F(α, p) 22 Ne reaction, representing the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct methods is E C.M. ≈ 0.91 MeV, while the Gamow region is between 0.39 ÷ 0.8 MeV, far below the Coulomb barrier (3.8 MeV). For this reason, an experiment at Rudjer Boskovic Institute (Zagreb) was performed, applying the Trojan Horse Method. Following this method we selected the quasi-free contribution coming from 6 Li( 19 F,p 22 Ne) 2 H at E beam =6 MeV at kinematically favourable angles, and the cross section at energies 0 < E C.M. < 1.4 MeV was extracted in arbitrary units, covering the astrophysical region of interest. (paper)

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Since 1977, papers in Astrophysics and Astronomy appeared as a special section in Pramana. ... The journal publishes original research papers on all aspects of astrophysics and ... Articles are also visible in Web of Science immediately.

  5. Nuclear astrophysics at DRAGON

    International Nuclear Information System (INIS)

    Hager, U.

    2014-01-01

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented

  6. Benchmarking transition energies and emission strengths for X-ray astrophysics with measurements at the Livermore EBITs

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Natalie [Friedrich Alexander Univ., Erlangen (Germany)

    2017-03-15

    K-shell transitions in astrophysically abundant metals and L-shell transitions in Fe group elements show characteristic signatures in the soft X-ray spectrum in the energy range 0.1–10 keV. These signatures have great diagnostic value for plasma parameters such as electron and ion temperatures and densities, and can thus help understand the physics controlling the energetic processes in astrophysical sources. This diagnostic power increases with advances in spectral resolution and effective area of the employed X-ray observatories. However, to make optimal use of the diagnostic potential – whether through global spectral modeling or through diagnostics from local modeling of individual lines – the underlying atomic physics has to be complete and well known. With the next generation of soft X-ray observatories featuring micro-calorimeters such as the SXS on Astro- H/Hitomi and the X-IFU on Athena, broadband high-resolution spectroscopy with large effective area will become more commonly available in the next decade. With these spectrometers, the accuracy of the plasma parameters derived from spectral modeling will be limited by the uncertainty of the reference atomic data rather than by instrumental factors, as is sometimes already the case for the high-resolution grating observations with Chandra-HETG and XMM-Newton-RGS. To take full advantage of the measured spectra, assessment of the accuracy of and improvements to the available atomic reference data are therefore important. Dedicated measurements in the laboratory are essential to benchmark the theoretical calculations providing the bulk of the reference data used in astrophysics. Experiments at the Lawrence Livermore National Laboratory electron beam ion traps (EBIT-I and SuperEBIT) have a long history of providing this service. In this work, I present new measurements of transition energies and absolute electron impact excitation cross sections geared towards currently open atomic physics data needs.

  7. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  8. The Future of Gamma Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  9. The Astrophysical Multimessenger Observatory Network (AMON)

    Science.gov (United States)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  10. Progress report of a research program in experimental and theoretical high energy physics, 1 January 1992--31 May 1992

    International Nuclear Information System (INIS)

    Brandenberger, R.; Cutts, D.; Fried, H.M.; Guralnik, G.; Jevicki, A.; King, K.; Lanou, R.E.; Partridge, R.; Tan, C.I.; Widgoff, M.

    1992-01-01

    This report discusses research at Brown University in experimental and theoretical high energy physics. Some of the research programs conducted are: interactions of leptons and hadrons form accelerator and astrophysical sources; hadron interactions with hydrogen and heavier nuclei; large volume detector at the Gran Sasso Laboratory; GEM collaboration at SSC; and hadron colliders and neutrino physics

  11. Strategic field No.5 'the origin of matter and the universe'. Toward interdisciplinary researches in particle, nuclear and astrophysics

    International Nuclear Information System (INIS)

    Aoki, Shinya

    2011-01-01

    Four main research subjects in the strategic field No. 5 'The origin of matter and the universe', planned to be investigated on 'Kei' super computer, are explained in detail, by focusing on interdisciplinary aspect of researches among particle, nuclear and astrophysics. (author)

  12. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  13. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  14. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  15. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1968-01-01

    Advances in Astronomy and Astrophysics, Volume 6 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with the description of improved methods for analyzing and classifying families of periodic orbits in a conservative dynamical system with two degrees of freedom. The next chapter describes the variation of fractional luminosity of distorted components of close binary systems in the course of their revolution, or the accompanying changes in radial velocity. This topic is followed by discussions on vari

  16. Nuclear astrophysics data at ORNL

    International Nuclear Information System (INIS)

    Smith, M.S.; Blackmon, J.C.

    1998-01-01

    There is a new program of evaluation and dissemination of nuclear data of critical importance for nuclear astrophysics within the Physics Division of Oak Ridge National Laboratory. Recent activities include determining the rates of the important 14 O(α,p) 17 F and 17 F(p,γ) 18 Ne reactions, disseminating the Caughlan and Fowler reaction rate compilation on the World Wide Web, and evaluating the 17 O(p,α) 14 N reaction rate. These projects, which are closely coupled to current ORNL nuclear astrophysics research, are briefly discussed along with future plans

  17. Nuclear astrophysics: Recent results on CNO-cycle reactions and AGB nucleosynthesis

    International Nuclear Information System (INIS)

    La Cognata, M.

    2011-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 100 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method and new experimental facilities such as deep underground laboratories have been devised yielding new cutting-edge results.

  18. Scientific and technical progress in high-energy astrophysics at INPE

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Jayanthi, U.B.; Jardim, J.O.D.; Braga, J.; Santo, C.M.E.

    1984-01-01

    The recent advances in high-energy Astrophysics pertains to the study of compact objects in galactic nuclei, binary systems and pulsars. These aspects are best understood by the study of the emissions in X- and gamma rays of these objects through the temporal variation in flux and spectrum. The Southern Hemisphere offers some of the unique objects for investigations such as galactic center, the Vela pulsar etc. For high temporal and spectra resolution studies two telescopes 'GeLi' and 'Pulsar' were designed and constructed. To support these scientific activities, a program in balloon launching and data acquisition facilities has been developed since 1971. The 'Balloon Launching Center' of INPE has capacity to launch balloons of -850,000 m 3 with payloads weighting about 1,000 Kg. Taking advantage of these facilities, project 'Bantar', with the goal to measure the atmospheric gamma-ray radiation in the Antartic Region, is under progress. (Author) [pt

  19. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    Energy Technology Data Exchange (ETDEWEB)

    Chardonnet, Pascal [Coordinator IRAP PhD EMJD, Université de Nice 28, avenue Valrose 06103 Nice (France); LAPTh, Université de Savoie, CNRS, B.P. 110, Annecy-le-Vieux F-74941 (France); ICRANet, Piazza della Repubblica 10, 65122 Pescara (Italy); Department for Theoretical Nuclear Physics, National Research Nuclear University Moscow Engineering Physics Institute, MEPhI, Moscow (Russian Federation)

    2015-12-17

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet

  20. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    International Nuclear Information System (INIS)

    Chardonnet, Pascal

    2015-01-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet

  1. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    Science.gov (United States)

    Chardonnet, Pascal

    2015-12-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the

  2. Experimental astrophysics with high power lasers and Z pinches

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  3. Astronomy and astrophysics for the 1970's. Volume 2. Reports of the panels

    International Nuclear Information System (INIS)

    1973-01-01

    Specific panel reports include: radio astronomy, optical astronomy, infrared astronomy, space astronomy, solar astronomy, theoretical astrophysics, dynamical astronomy, astrophysics and relativity, and statistics. These provide guidance as to the major trends anticipated in astronomical and astrophysical research. They also list instrumental facilities, auxiliary equipment, and programs of theoretical research and offer numerous recommendations

  4. Indirect techniques in nuclear astrophysics. Asymptotic normalization coefficient and trojan horse

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Gagliardi, C.A.; Pirlepesov, F.; Trache, L.; Tribble, R.E.; Blokhintsev, L.D.; Brown, B.A.; Nunes, F.M.; Burjan, V.; Kroha, V.; Cherubini, S.; Pizzone, R.G.; Romano, S.; Spitaleri, C.; Tumino, A.; Irgaziev, B.F.; Tang, X.D.

    2006-01-01

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are presented. (orig.)

  5. β-delayed α decay of {sup 16}N and the {sup 12}C(α,γ){sup 16}O cross section at astrophysical energies: A new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, S., E-mail: simone.sanfilippo@studium.unict.it [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S.Sofia 64, 95123 Catania (Italy); Cherubini, S.; Lattuada, M.; Spitaleri, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S.Sofia 64, 95123 Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); Hayakawa, S.; Di Pietro, A.; Figuera, P.; La Cognata, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Gulino, M. [INFN - Laboratori Nazionali del Sud, Catania, Italy and Università Kore, Enna (Italy); Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study, University of Tokyo, Wako Branch, Saitama (Japan); Kubono, S.; Wakabayashi, Y. [RIKEN Nishina Center, Wako, Saitama (Japan); Hashimoto, T. [RCNP, Osaka University, Osaka (Japan); Iwasa, N.; Okoda, Y.; Ushio, K. [Department of Physics, Tohoku University, Sendai (Japan); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka (Japan); Mazzocco, M. [Dipartimento di Fisica e Astronomia, Università di Padova and INFN-Sez. Padova, Padova (Italy); and others

    2015-02-24

    The {sup 12}C(α,γ){sup 16}O reaction at energies corresponding to the quiescent helium burning in massive stars is regarded as one of the most important processes in nuclear astrophysics. Although this process has being studied for over four decades, our knowledge of its cross section at the energies of interest for astrophysics is still widely unsatisfactory. Indeed, no experimental data are available around 300 keV and in the energy region of astrophysical interest extrapolations are performed using some theoretical approaches, usually R-matrix calculations. Consequently, the published astrophysical factors range from 1 to 288 keVb for S{sub E1}(300) and 7 to 120 keVb for S{sub E2}(300), especially because of the unknown contribution coming from subthreshold resonances. To improve the reliability of these extrapolations, data from complementary experiments, such as elastic and quasi- elastic α scattering on {sup 12}C, α-transfer reactions to {sup 16}O, and {sup 16}N decay are usually included in the analysis. Here the β-delayed α decay of {sup 16}N is used to infer information on the {sup 12}C(α,γ){sup 16}O reaction and a new experimental technique is suggested.

  6. 3rd Session of the Sant Cugat Forum on Astrophysics

    CERN Document Server

    Gravitational wave astrophysics

    2015-01-01

    This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics — Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field.

  7. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    Science.gov (United States)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  8. New Improved Indirect Measurement of the {sup 19}F( p , α ){sup 16}O Reaction at Energies of Astrophysical Relevance

    Energy Technology Data Exchange (ETDEWEB)

    Indelicato, I.; La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Tumino, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); Hayakawa, S. [RIKEN, CNS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mazzocco, M.; Strano, E.; Torresi, D., E-mail: indelicato@lns.infn.it [INFN, Sezione di Padova, Padova (Italy)

    2017-08-10

    Fluorine abundance determination is of great importance in stellar physics to understand s-elements production and mixing processes in asymptotic giant branch (AGB) stars. Up to now, theoretical models overproduce F abundances in AGB stars with respect to the observed values, thus calling for further investigation of the reactions involving fluorine. In particular, the {sup 19}F( p , α ){sup 16}O reaction is the main destruction channel of fluorine at the bottom of the convective envelope in AGB stars, an H-rich environment where it can experience temperatures high enough to determine its destruction, owing to additional mixing processes. In this paper the Trojan horse method (THM) was used to extract the {sup 19}F( p , α {sub 0}){sup 16}O S-factor in the energy range of astrophysical interest ( E {sub cm} ≈ 0–1 MeV). This is the most relevant channel at the low temperatures (few 10{sup 7} K) characterizing the bottom of the convective envelope, according to current knowledge. A previous indirect experiment using the THM has observed three resonances in the energy regions below E {sub cm} ≈ 450 keV. These energies correspond to typical AGB temperatures, thus implying a significant increase in the reaction rate. Statistics are scarce for performing an accurate separation between resonances, preventing one from drawing a quantitative conclusion about their total widths and spin parities. Before THM measurement, only extrapolations were available below about 500 keV, showing a non-resonant behavior that sharply contradicts the trend of the astrophysical factor at higher energies. A new experiment has been performed to verify the measured TH astrophysical factor and to perform more accurate spectroscopy of the involved resonances.

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Sagar Sethi. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 41 Review. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using ...

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Sravani Vaddi. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 41 Review. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using ...

  11. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Abudusaimaitijiang Yisikandeer. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 3 September 2016 pp 22 Research Article. Velocity Distributions of Runaway Stars Produced by Supernovae in the Galaxy · Abudusaimaitijiang Yisikandeer ...

  12. Ongoing Space Physics - Astrophysics Connections

    OpenAIRE

    Eichler, David

    2005-01-01

    I review several ongoing connections between space physics and astrophysics: a) Measurements of energetic particle spectra have confirmed theoretical prediction of the highest energy to which shocks can accelerate particles, and this has direct bearing on the origin of the highest energy cosmic rays. b) Mass ejection in solar flares may help us understand photon ejection in the giant flares of magnetar outbursts. c) Measurements of electron heat fluxes in the solar wind can help us understand...

  13. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  14. The Trojan horse method in nuclear astrophysics

    International Nuclear Information System (INIS)

    Aliotta, M.; Rolfs, C.; Lattuada, M.; Pellegriti, M.G.; Pizzone, R.G.; Spitaleri, C.; Miljanic, Dj.; Typel, S.; Wolter, H.H.

    2001-01-01

    Because of the Coulomb barrier, reaction cross sections in astrophysics cannot be accessed directly at the relevant Gamow energies, unless very favourable conditions are met (e.g. LUNA--underground experiments). Theoretical extrapolations of available data are then needed to derive the astrophysical S(0)-factor. Various indirect processes have been used in order to obtain additional information on the parameters entering these extrapolations. The Trojan Horse Method is an indirect method which might help to bypass some of the problems typically encountered in direct measurements, namely the presence of the Coulomb barrier and the effect of the electron screening. However, a comparison with direct data in an appropriate energy region (e.g. around the Coulomb barrier) is crucial before extending the method to the relevant Gamow energy. Additionally, experimental and theoretical tests are needed to validate the assumptions underlying the method. The application of the Trojan Horse Method to some cases of interest is discussed

  15. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S. [INFN-LNS, Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, Texas (United States); University of Catania and INFN-LNS, Catania (Italy); and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  16. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Abhishek Shukla. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 1 March 2017 pp 7 Research Article. Benford's Distribution in Extrasolar World: Do the Exoplanets Follow Benford's Distribution? Abhishek Shukla Ankit Kumar Pandey ...

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Jordan Vannitsen. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 4 December 2017 pp 70 Research Article. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar ...

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Ankit Kumar Pandey. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 1 March 2017 pp 7 Research Article. Benford's Distribution in Extrasolar World: Do the Exoplanets Follow Benford's Distribution? Abhishek Shukla Ankit Kumar Pandey ...

  20. On the significance of magnetospheric research for progress in astrophysics

    International Nuclear Information System (INIS)

    Faelthammar, C-G.; Akasofu, S-I.; Alfen, H.

    1978-04-01

    Recent discoveries by means of in situ measurements have led to a substantial revision of our picture of the magnetosphere and parts of the heliosphere. This concerns such essential aspects as the character and distribution of electric fields and currents, the ways in which charged particles are energized, and the chemical composition of the magnetospheric plasma. This revision reflects the fact that even in fundamental respects, real cosmical plasmas behave in different ways than predicted by the idealized models that have traditionally been used in magnetospheric physics as well as in astrophysics. The new understanding of the general properties of cosmical plasma that has been, and continues to be, provided by in situ measurements gives us a much improved basis on which to interpret astrophysical observations

  1. 75 FR 1087 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Science.gov (United States)

    2010-01-08

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following Astronomy and Astrophysics Advisory Committee ( 13883) meeting... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and [[Page...

  2. 75 FR 22863 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Science.gov (United States)

    2010-04-30

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following meeting: Name: Astronomy and Astrophysics Advisory Committee... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and...

  3. 77 FR 2095 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Science.gov (United States)

    2012-01-13

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following Astronomy and Astrophysics Advisory Committee ( 13883) meeting... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and...

  4. 76 FR 58049 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Science.gov (United States)

    2011-09-19

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following Astronomy and Astrophysics Advisory Committee ( 13883) meeting... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and...

  5. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  6. X-ray polarimetry and new prospects in high-energy astrophysics

    International Nuclear Information System (INIS)

    Sgrò, C.

    2016-01-01

    Polarimetry is universally recognized as one of the new frontiers in X-ray astrophysics. It is a powerful tool to investigate a variety of astrophysical processes, as well as a mean to study fundamental physics in space. A renewed interest is testified by dedicated missions approved for phase A by ESA and NASA. The main advance is the availability of a gas pixel detector that is able to add polarization measurement to imaging and spectroscopy, and can be used at the focus of a conventional X-ray optics. The detector exploits the photoelectric effect in gas and a finely segmented ASIC as a collecting anode. In this work I will describe in detail the experimental technique and the detector concept, and illustrate the scientific prospects of these new missions.

  7. Summary of sessions on nuclear astrophysics

    Science.gov (United States)

    Rolfs, C.

    In the minds of some there exists the patronizing belief that nuclear physics is a mature science. The same is not believed about nuclear astrophysics, which has been an active branch of astrophysics for over fifty years, but is now in the midst of an exciting revival in experimental and theoretical research around the world. The ultimate goal is to understand how nuclear processes generate the energy of stars over their lifetimes and, in doing so, synthesize heavier elements from the primordial hydrogen and helium produced in the Big Bang, which led to the expanding universe. Impressive progress has been made in this goal and this was rewarded. However, there are major puzzles, such as the solar neutrino problem to name just one, which challenge the fundaments of the field. To solve these problems, new nuclear physics data are needed employing novel experimental techniques such as radioactive ion beams and underground accelerator facilities. Without such new data, much of the work done so far will - in an optimistic view - be incomplete and - in a pessimistic view - be possibly wrong. Thus, new data do not represent a fine structure information or a cleaning-up job, but they represent the major next step in this exciting field&

  8. Preface: Eighth European Summer School on Experimental Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Claudio, Spitaleri; Livio, Lamia; Gianluca, Pizzone Rosario

    2016-01-01

    In this book a collection of the lecture notes given during the Eighth European Summer School on Experimental Nuclear Astrophysics is given. The school, whose first edition was first held in 2003, took place from 13 to 20 of September 2015 in Santa Tecla, a small village about 15 km north of Catania, characterized by its position on the volcanic shores of the Ionian Sea, surrounded by the spectacular “Timpa” area, a green protected park specific for its mediterranean vegetation. 80 young students and researchers from more than 20 countries attended the lectures and were also encouraged to present their work and results. The school, has tried once more to present to the young students the global picture of nuclear astrophysics research in the last years. Thus the scientific program of the school covered a wide range of topics dealing with various aspects of nuclear astrophysics, such as stellar evolution and nucleosynthesis, neutrino physics, the Big Bang, direct and indirect methods and radioactive ion beams. Nuclear astrophysics plays a key role in understanding energy production in stars, stellar evolution and the concurrent synthesis of the chemical elements and their isotopes. It is also a fundamental tool to explain the ashes of the early universe, to determine the age of the universe through the study of pristine stellar objects and to predict the evolution of the Sun or Stars. The “bone structure” for the above aspects is based on nuclear reactions, whose rates need to be determined in laboratories. Although impressive progress has been made over the past decades, which was rewarded by Nobel prizes, several open questions are still unsolved, which challenge the basis of the present understanding. A list of the lecture topics is given below: —Big Bang Nucleosynthesis —Stellar evolution and Nucleosynthesis —radioactive ion beams —detector and facilities for nuclear astrophysics —indirect methods in nuclear astrophysics —plasma physics An

  9. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    Science.gov (United States)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  10. International Conference on Particle Physics and Astrophysics

    CERN Document Server

    2015-01-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) will be held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Basic Research and Particle Physics of National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. Therefore we will bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. ICPPA-2015, aims to present the most recent results in astrophysics and collider physics and reports from the main experiments currently taking data. The working languages of the conference are English and Russian.

  11. Atmospheric and astrophysical Neutrinos above 1 TeV Interacting in IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adam, J.

    2015-01-01

    The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutrinos produced in distant astrophysical objects. A search for ≳100  TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos...... the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints...... on the diffuse astrophysical neutrino spectrum, Φ_ν=2.06_{-0.3}^{+0.4}×10-18(E_ν/10^5  GeV)^{-2.46±0.12} GeV^-1 cm^−2 sr^−1 s^-1 for 25  TeV

  12. Studies in nuclear structure relevant to Astrophysics: theoretical and experimental efforts

    International Nuclear Information System (INIS)

    Saha Sarkar, Maitreyee

    2016-01-01

    Experimental and theoretical investigations in the region around doubly magic neutron rich 132 Sn nucleus have recently revealed many intriguing issues concerning some newer aspects of nuclear structure in such exotic environments. These nuclei lie on or close to the path of the astrophysical r-process flow. A glimpse of the implication of these studies on the r-process nucleosynthesis will be discussed. Presently, the Nuclear Physics group in Saha Institute of Nuclear Physics is working for installation of a high-current, low energy Accelerator as the primary component of the Facility for Research in low Energy Nuclear Astrophysics (FRENA), a national facility, at Kolkata. Planning for future experiments has been undertaken for successful utilization of this facility. Implantation technique has been found to be one of the most effective methods to produce isotopically pure targets. We have prepared a few isotopically pure targets using this technique. Being the slowest process of the CNO cycle, study of the 14 N(p, γ) 15 O(Q = 7297 keV) capture reaction is of high astrophysical interest. From an experiment utilizing one of the newly prepared 14 N implanted targets, a preliminary estimate of the lifetime of 6792 keV state in 15 O has been obtained, using Doppler shift attenuation method (DSAM). The sensitivity of the results with respect to the uncertainties in various input quantities has been tested. This endeavour will be helpful to design a better experiment to extract more precise lifetime for this important state

  13. THE SZ EFFECT IN THE PLANCK ERA: ASTROPHYSICAL AND COSMOLOGICAL IMPACT

    Directory of Open Access Journals (Sweden)

    Sergio Colafrancesco

    2013-12-01

    Full Text Available The Sunyaev–Zel’dovich effect (SZE is a relevant probe for cosmology and particle astrophysics. The Planck Era marks a definite step forward in the use of this probe for astrophysics and cosmology. Astrophysical applications to galaxy clusters, galaxies, radiogalaxies and large-scale structures are discussed. Cosmological relevance for the Dark Energy equation of state, modified Gravity scenarios, Dark Matter search, cosmic magnetism and other cosmological applications is also reviewed. Future directions for the study of the SZE and its polarization are finally outlined.

  14. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  15. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2006-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Gireesh C. Joshi. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 4 December 2017 pp 72 Research Article. Identification of Stellar Sequences in Various Stellar Systems: ESO65-SC03, Teutsch 106, Turner 6 · Gireesh C. Joshi.

  17. Model independent spectroscopic information from an analysis of peripheral direct radiative capture reaction and its application for an extrapolation of an astrophysical S-factor to stellar energies

    International Nuclear Information System (INIS)

    Igamov, S.B.; Tursunmuratov, T.M.; Yarmukhamedov, R.

    2003-01-01

    In this work, within the framework of the cluster potential approach we develop a method which can be used an independent source of getting information on the value of the nuclear vertex constant (NVC) (or respective asymptotical normalization coefficient (ANC)) from the analysis of the direct radiative capture cross section σ(E)(or the astrophysical S-factor S(E)) at extremely low energies by a model independent way as possible. The main idea of the proposed method is that at stellar energies peripheral direct radiative capture reaction of astrophysical interest proceeds mainly through the tail of the overlap integral, which is completely determined by the binding energy and the respective ANC (or NVC). The main advantage of the proposed method is that it allows us to determine both the absolute value of NVC (or ANC) and the astrophysical S-factor S(E) at solar energies (0-50 keV) by means of the analysis of the same experimental astrophysical S-factor S exp (E) in a correct self consistent way using the same potential both for the bound state and for scattering state. The method has been applied for an investigation of the direct radiative capture t(α, γ) 7 Li and 3 He(α, γ) 7 Be reactions at extremely low energies. At first, this method was used for analysis of the S exp (E) to determine values of the modulus squared of the NVC's (or the respective ANC's). The values of NVC's are presented. Then, the obtained NVC's are used by us for extrapolation of the S(E) of the reactions considered to stellar energies (E=0-50 keV) for the 3 He(α, γ) 7 Be reaction and for the t(α, γ) 7 Li reaction. The obtained results are compared with those other authors

  18. Low energy accelerators for research and applications

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2013-01-01

    Charged particle accelerators are instruments for producing a variety of radiations under controlled conditions for basic and applied research as well as applications. They have helped enormously to study the matter, atoms, nuclei, sub-nuclear particles and their constituents, forces involved in the related phenomena etc. No other man-made instrument has been so effective in such studies as the accelerator. The large accelerator constructed so far is the Large Hadron Collider (LHC) housed in a tunnel of 27 km circumference, while a small accelerator can fit inside a room. Small accelerators accelerate charged particles such as electrons, protons, deuterons, alphas and, in general ions to low energy, generally, below several MeV. These particle beams are used for studies in nuclear astrophysics, atomic physics, material science, surface physics, bio sciences etc. They are used for ion beam analysis such as RBS, PIXE, NRA, AMS, CPAA etc. More importantly, the ion beams have important industrial applications like ion implantation, surface modification, isotope production etc. while electron beams are used for material processing, material modification, sterilization, food preservation, non destructive testing etc. In this talk, role of low energy accelerators in research and industry as well as medicine will be discussed. (author)

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Zhao Wen-juan. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 21 Research Article. Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine · Liu Zhong-bao Song Wen-ai Zhang Jing ...

  20. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  1. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    International Nuclear Information System (INIS)

    Tumino, A.; Gulino, M.; Spitaleri, C.; Cherubini, S.; Romano, S.; Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G.; Lamia, L.

    2014-01-01

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally

  2. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A.; Gulino, M. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Università degli Studi di Enna Kore, Enna (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  3. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Sergey V. Ershkov. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 1 March 2017 pp 5 Research Article. Forbidden Zones for Circular Regular Orbits of the Moons in Solar System, R3BP · Sergey V. Ershkov · More Details Abstract Fulltext ...

  5. Research in astrophysics: Stellar collapse and supernovae: Termination report, August 1, 1980-November 30, 1986

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Mazurek, T.J.; Yahil, A.

    1987-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. The chief emphasis of the program was on stellar collapse, Type II supernovae and neutron star formation. Central to these topics are the development of an equation of state of hot, dense matter and numerical simulations of gravitational collapse and neutron star birth. The LLPR compressible liquid drop model is the basis of the former. It has been refined to include curvature corrections to the surface energy and nuclear force parameters which are in better agreement with experimental quantities. Numerically optimized versions were used in supernova simulations. Such studies of the equation of state can also be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. A novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity was developed. We modeled not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling of the nascent neutron star. For the latter evolution we also used a hydrostatic code with detailed neutrino transport. Our studies of neutrinos in stellar collapse and neutron star formation concentrated on their detectability and signatures, as neutrinos are the only direct probe of collapse and early supernova dynamics. The neutrino signatures seen from SN1987a are in complete accord with the predictions our group has been making since 1982. Complementary studies included modeling nucleosynthesis and the accretion process in quasars, and investigating the influence of galaxy clustering on the large scale structure of the universe. The last study might impose constraints on high energy theories, such as those of inflation and GUT, which can now only be tested astrophysically. 38 refs

  6. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    The fifth edition of the bi-annual 'Nuclear Physics in Astrophysics (NPA)' conference series was held in Eilat, Israel on April 3-8, 2011. This Conference is also designated as the 24th Nuclear Physics Divisional Conference of the EPS. The main purpose of this conference, as that of the four previous ones in this series, is to deal with those aspects of nuclear physics that are directly related to astrophysics. The concept of such a meeting was conceived by the Nuclear Physics Board of the European Physical Society in 1998. At that time, the idea of such a conference was quite new and it was decided that this meeting would be sponsored by the EPS. The first meeting, in January 2001, was planned and organized in Eilat, Israel. Due to international circumstances the conference was moved to Debrecen, Hungary. Subsequent conferences were held in Debrecen again, in Dresden, Germany, and in Frascati, Italy (moved from Gran Sasso due to the tragic earthquake that hit the L'Aquila region). After 10 years the conference finally returned to Eilat, the originally envisioned site. Eilat is a resort town located on the shore of the Gulf of Eilat, which connects Israel to the Red Sea and further south to the Indian Ocean. It commands spectacular views of the desert and mountains, offering unique touristic attractions. The local scientific backdrop of the conference is the fact that the Israeli scientific scene exhibits a wide variety of research activities in many areas of nuclear physics and astrophysics. A new accelerator, SARAF at Soreq Nuclear Research Center is presently undergoing final acceptance tests. SARAF will serve as a platform for production of radioactive ion beams and nuclear-astrophysics research in Israel. The meeting in Eilat was organized by four Israeli scientific institutions, Hebrew University, Soreq Nuclear Research Center, Tel Aviv University and the Weizmann Institute of Science. The welcome reception and lectures were held at the King Solomon hotel and

  7. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  8. Simultaneous and Comparable Numerical Indicators of International, National and Local Collaboration Practices in English-Medium Astrophysics Research Papers

    Science.gov (United States)

    Méndez, David I.; Alcaraz, M. Ángeles

    2016-01-01

    Introduction: We report an investigation on collaboration practices in research papers published in the most prestigious English-medium astrophysics journals. Method: We propose an evaluation method based on three numerical indicators to study and compare, in absolute terms, three different types of collaboration (international, national and…

  9. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  10. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  11. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  12. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  13. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  14. Indirect Techniques in Nuclear Astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Blokhintsev, L.D.; Brown, S.

    2007-01-01

    We address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique to determine the astrophysical factor for the 13 C(α, n) 16 O reaction which is one of the neutron generators for the s processes in AGB stars. The TH method is a unique indirect technique allowing one to measure astrophysical S factors for rearrangement reactions down to astrophysically relevant energies. We derive equations connecting the cross sections for the binary direct and resonant reactions determined from the indirect TH reactions to direct cross sections measurements

  15. Hot topics of X-ray Astrophysics from past and future missions

    International Nuclear Information System (INIS)

    Costa, Enrico

    2013-01-01

    50 years after the first discovery, X-ray Astrophysics is a well-established discipline, with a continuous development of detection/observation techniques. These can find application on both large observatories and thematic space missions. I will recall the main milestones of X-ray Astrophysics and review some of the hottest topics of High Energy Astrophysics, included some open problems of Fundamental Physics, that can be addressed with measurements in the X-ray band. I will show which proposed missions and which concepts of new missions could be more attractive for a future development of this discipline

  16. AN UPDATED 6Li(p, α)3He REACTION RATE AT ASTROPHYSICAL ENERGIES WITH THE TROJAN HORSE METHOD

    International Nuclear Information System (INIS)

    Lamia, L.; Spitaleri, C.; Sergi, M. L.; Pizzone, R. G.; Tumino, A.; La Cognata, M.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Pappalardo, L.

    2013-01-01

    The lithium problem influencing primordial and stellar nucleosynthesis is one of the most interesting unsolved issues in astrophysics. 6 Li is the most fragile of lithium's stable isotopes and is largely destroyed in most stars during the pre-main-sequence (PMS) phase. For these stars, the convective envelope easily reaches, at least at its bottom, the relatively low 6 Li ignition temperature. Thus, gaining an understanding of 6 Li depletion also gives hints about the extent of convective regions. For this reason, charged-particle-induced reactions in lithium have been the subject of several studies. Low-energy extrapolations of these studies provide information about both the zero-energy astrophysical S(E) factor and the electron screening potential, U e . Thanks to recent direct measurements, new estimates of the 6 Li(p, α) 3 He bare-nucleus S(E) factor and the corresponding U e value have been obtained by applying the Trojan Horse method to the 2 H( 6 Li, α 3 He)n reaction in quasi-free kinematics. The calculated reaction rate covers the temperature window 0.01 to 2T 9 and its impact on the surface lithium depletion in PMS models with different masses and metallicities has been evaluated in detail by adopting an updated version of the FRANEC evolutionary code.

  17. BRAVO (Brazilian Astrophysical Virtual Observatory): data mining development

    Science.gov (United States)

    De Carvalho, R. R.; Capelato, H. V.; Velho, H. C.

    2007-08-01

    The primary goal of the BRAVO project is to generate investment in information technology, with particular emphasis on datamining and statistical analysis. From a scientific standpoint, the participants assembled to date are engaged in several scientific projects in various fields of cosmology, astrophysics, and data analysis, with significant contributions from international partners. These scientists conduct research on clusters of galaxies, small groups of galaxies, elliptical galaxies, population synthesis, N-body simulations, and a variety of studies in stellar astrophysics. One of the main aspects of this project is the incorporation of these disparate areas of astrophysical research within the context of the coherent development of database technology.Observational cosmology is one of the branches of science experiencing the largest growth in the past few decades. large photometric and spectroscopic surveys have been carried out in both hemispheres. As a result, an extraordinary amount of data in all portions of the electromagnetic spectrum exists, but without standard techniques for storage and distribution. This project will utilize several specific astronomical databases, created to store data generated by several instruments (including SOAR, Gemini, BDA, etc), uniting them within a common framework and with standard interfaces. We are inviting members of the entire Brazilian astronomical community to partake in this effort. This will certainly impact both education and outreach efforts, as well as the future development of astrophysical research. Finally, this project will provide a constant investment in human resources. First, it will do so by stimulating ongoing short technical visits to Johns Hopkins University and Caltech. These will allow us to bring software technology and expertise in datamining back to Brazil. Second, we will organize the Summer School on Software Technology in Astrophysics, which will be designed to ensure that the Brazilian

  18. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  19. The collective emission of electromagnetic waves from astrophysical jets - Luminosity gaps, BL Lacertae objects, and efficient energy transport

    Science.gov (United States)

    Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.

    1988-01-01

    A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.

  20. Minicourses in Astrophysics, Modular Approach, Vol. II.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  1. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1986-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of both an equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model is the basis of the former. We are refining it to include both curvature corrections to the surface energy nuclear force parameters which are in better agreement with recently determined experimental quantities. Our study of the equation of state has the added bonus that our results can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes a fast, but accurate, approximation to the complete LLPR equation of state. We model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures. Complementary studies include modelling both mass accretion in the nuclei of galaxies and investigating both galaxy clustering and the large scale structure of the universe. These studies are intended to shed light on the early history of the universe, in which both nuclear and elementary particle physics play a crucial role

  2. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  3. Research in particle physics

    International Nuclear Information System (INIS)

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron endash positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ''electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider

  4. Gamma-ray bursts: astrophysical puzzle of the century

    International Nuclear Information System (INIS)

    Hudec, R.

    1998-01-01

    An overview is given of the problems of gamma-ray bursts /GRB/. As GRB became one of the greatest mysteries in modern astrophysics, this field of astrophysics is a subject of intensive research. The article covers some topical aspects of experiments related to the indentification of gamma-ray bursts. The preparation and results of experiments in the Astronomical Institute of the Academy of Sciences of the Czech Republic are described. (Z.J.)

  5. NASA's Physics of the Cosmos and Cosmic Origins programs manage Strategic Astrophysics Technology (SAT) development

    Science.gov (United States)

    Pham, Thai; Thronson, Harley; Seery, Bernard; Ganel, Opher

    2016-07-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" "How did galaxies, stars, and planets come to be?" and "Are we alone?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos2 (PCOS), Cosmic Origins3 (COR), and Exoplanet Exploration Program4 (ExEP) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the

  6. Astronomy & Astrophysics: an international journal

    Science.gov (United States)

    Bertout, C.

    2011-07-01

    After a brief historical introduction, we review the scope, editorial process, and production organization of A&A, one of the leading journals worldwide dedicated to publishing the results of astrophysical research. We then briefly discuss the economic model of the Journal and some current issues in scientific publishing.

  7. Journal of Astrophysics and Astronomy

    Indian Academy of Sciences (India)

    65

    Northern IMF as simulated by PIC code in parallel with MHD model-Journal of Astrophysics ... The global structure of the collisionless bow shock was inves- tigated by ..... international research community, access to modern space science simulations. ...... LaTeX Font Info: Redeclaring math alphabet \\mathbf on input line 29.

  8. A New ECR Ion Source for Nuclear Astrophysics Studies

    Science.gov (United States)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  9. Building a visionary astrophysics program from the ground up

    Science.gov (United States)

    Mathews, Geoffrey S.; Barnes, Joshua Edward; Coleman, Paul; Gal, Roy R.; Meech, Karen J.; Mendez, Roberto Hugo; Nassir, Michael A.; Sanders, David B.

    2015-08-01

    The University of Hawaii’s Institute for Astronomy is in the process of implementing a new Bachelor of Science in Astrophysics at UH Manoa. This requires a significant adjustment in the role of the IfA, which has long been at the forefront of modern astronomy in Hawaii and is now broadening its educational mission. The IfA’s history of excellence in research and access to observational resources are expected to draw students from around the nation and the world. These factors have inspired our programmatic focus culminating in a senior year research experience. We expect that the program will produce many undergraduate astrophysics majors, making it an ideal testbed to apply modern theories of learning to the teaching of astrophysics. We have explicitly designed the major around three pillars: physical theory, the application of physics to astrophysical phenomena, and the development of core observational astronomy skills. We describe our cooperative approach to developing a program-level curriculum map of key concepts and skills, as well as descriptors of student success throughout the program. These are central tools for course design, program assessment, and professional development.

  10. Investigations in γ-Ray Astrophysics and Astroparticle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Krennrich, Frank [Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy

    2016-06-28

    This report describes the status of data analysis efforts, results and publications of research grant DE-SC0009917. The research is focused on TeV gamma-ray studies of astrophysical sources and related particle physics questions.

  11. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  12. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Takahashi, K.

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  13. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  14. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  15. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  16. Challenges and opportunities in laboratory plasma astrophysics

    Science.gov (United States)

    Drake, R. Paul

    2017-06-01

    We are in a period of explosive success and opportunity in the laboratory study of plasma phenomena that are relevant to astrophysics. In this talk I will share with you several areas in which recent work, often foreshadowed 20 or 30 years ago, has produced dramatic initial success with prospects for much more. To begin, the talk will provide a brief look at the types of devices used and the regimes they access, showing how they span many orders of magnitude in parameters of interest. It will then illustrate the types of work one can do with laboratory plasmas that are relevant to astrophysics, which range from direct measurement of material properties to the production of scaled models of certain dynamics to the pursuit of complementary understanding. Examples will be drawn from the flow of energy and momentum in astrophysics, the formation and structure of astrophysical systems, and magnetization and its consequences. I hope to include some discussion of collisionless shocks, very dense plasmas, work relevant to the end of the Dark Ages, reconnection, and dynamos. The talk will conclude by highlighting some topics where it seems that we may be on the verge of exciting new progress.The originators of work discussed, and collaborators and funding sources when appropriate, will be included in the talk.

  17. Novelty and Foreseeing Research Trends: The Case of Astrophysics and Astronomy

    Science.gov (United States)

    Varga, Attila

    2018-05-01

    Metrics based on reference lists of research articles or on keywords have been used to predict citation impact. The concept behind such metrics is that original ideas stem from the reconfiguration of the structure of past knowledge, and therefore atypical combinations in the reference lists, keywords, or classification codes indicate future high-impact research. The current paper serves as an introduction to this line of research for astronomers and also addresses some of the methodological questions in this field of innovation studies. It is still not clear if the choice of particular indexes, such as references to journals, articles, or specific bibliometric classification codes affects the relationship between atypical combinations and citation impact. To understand more aspects of the innovation process, a new metric has been devised to measure to what extent researchers are able to anticipate the changing combinatorial trends of the future. Results show that the variant of the latter anticipation scores that is based on paper combinations is a good predictor of the future citation impact of scholarly works. The study also shows that the effects of tested indexes vary with the aggregation levels that were used to construct them. A detailed analysis of combinatorial novelty in the field reveals that certain sub-fields of astronomy and astrophysics have different roles in the reconfiguration of past knowledge.

  18. Measurements of radiative material properties for astrophysical plasmas

    International Nuclear Information System (INIS)

    Bailey, James E.

    2010-01-01

    The new generation of z-pinch, laser, and XFEL facilities opens the possibility to produce astrophysically-relevant laboratory plasmas with energy densities beyond what was previously possible. Furthermore, macroscopic plasmas with uniform conditions can now be created, enabling more accurate determination of the material properties. This presentation will provide an overview of our research at the Z facility investigating stellar interior opacities, AGN warm-absorber photoionized plasmas, and white dwarf photospheres. Atomic physics in plasmas heavily influence these topics. Stellar opacities are an essential ingredient of stellar models and they affect what we know about the structure and evolution of stars. Opacity models have become highly sophisticated, but laboratory tests have not been done at the conditions existing inside stars. Our research is presently focused on measuring Fe at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9 x 10 22 e/cc, respectively. The second project is aimed at testing atomic kinetics models for photoionized plasmas. Photoionization is an important process in many astrophysical plasmas and the spectral signatures are routinely used to infer astrophysical object's characteristics. However, the spectral synthesis models at the heart of these interpretations have been the subject of very limited experimental tests. Our current research examines photoionization of neon plasma subjected to radiation flux similar to the warm absorber that surrounds active galactic nuclei. The third project is a recent initiative aimed at producing a white dwarf photosphere in the laboratory. Emergent spectra from the photosphere are used to infer the star's effective temperature and surface gravity. The results depend on knowledge of H, He, and C spectral line profiles under conditions where complex physics such as quasi-molecule formation may be important. These

  19. Scaling law in laboratory astrophysics

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jie

    2001-01-01

    The use of state-of-the-art lasers makes it possible to produce, in the laboratory, the extreme conditions similar to those in astrophysical processes. The introduction of astrophysics-relevant ideas in laser-plasma interaction experiments is propitious to the understanding of astrophysical phenomena. However, the great difference between laser-produced plasma and astrophysical objects makes it awkward to model the latter by laser-plasma experiments. The author presents the physical reasons for modeling astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. This allows the creation of experimental test beds where observation and models can be quantitatively compared with laboratory data

  20. Determination of the S18 astrophysical factor for 8B(p,γ)9C from the breakup of 9C at intermediate energies

    International Nuclear Information System (INIS)

    Trache, L.; Mukhamedzhanov, A.M.; Tribble, R.E.; Carstoiu, F.

    2002-06-01

    We have used existing data on the one-proton-removal cross section of 9 C at 285 MeV/u and Glauber model calculations to extract the asymptotic normalization coefficient for the wave function of the last proton in the ground state of 9 C. The calculations are done first using folded potentials starting from two different effective nucleon-nucleon interactions and second in the optical limit using three nucleon-nucleon interactions, and the results are found to be consistent, with no new parameters adjusted. We find C 2 (p 3/2 ) + C 2 (p 1/2 ) = 1.22±0.13 fm -1 . From this result we obtain the astrophysical factor for the proton radiative capture reaction 8 B(p,γ) 9 C as S 18 (0) = 46 ± 6 eV.b. The calculated energy dependence of the astrophysical S-factor for the energy region E cm = 0 - 0.8 MeV and the reaction rates for T 9 = 0 - 1 are included. (authors)

  1. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized

  2. Critical ionisation velocity effects in astrophysical plasmas

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1979-08-01

    Critical ionisation velocity effects are relevant to astrophysical situations where neutral gas moves through a magnetised plasma. The experimental significance of the critical velocity is well established and the physical basis is now becoming clear. The underlying mechanism depends on the combined effects of electron impact ionisation and electron energisation by collective plasma interactions. For low density plasmas a theory based on a circular process involving electron heating through a modified two stream instability has been developed. Several applications of critical velocity effects to astrophysical plasmas have been discussed in the literature. The importance of the effect in any particular case may be determined from a detailed consideration of energy and momentum balance, using appropriate atomic rate coefficients and taking full account of collective plasma processes. (Auth.)

  3. Status reports of supercomputing astrophysics in Japan

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Nagasawa, Mikio

    1990-01-01

    The Workshop on Supercomputing Astrophysics was held at National Laboratory for High Energy Physics (KEK, Tsukuba) from August 31 to September 2, 1989. More than 40 participants of physicists, astronomers were attendant and discussed many topics in the informal atmosphere. The main purpose of this workshop was focused on the theoretical activities in computational astrophysics in Japan. It was also aimed to promote effective collaboration between the numerical experimentists working on supercomputing technique. The various subjects of the presented papers of hydrodynamics, plasma physics, gravitating systems, radiative transfer and general relativity are all stimulating. In fact, these numerical calculations become possible now in Japan owing to the power of Japanese supercomputer such as HITAC S820, Fujitsu VP400E and NEC SX-2. (J.P.N.)

  4. Theoretical nuclear structure and astrophysics at FAIR

    International Nuclear Information System (INIS)

    Rodríguez, Tomás R

    2014-01-01

    Next generation of radioactive ion beam facilities like FAIR will open a bright future for nuclear structure and nuclear astrophysics research. In particular, very exotic nuclei (mainly neutron rich) isotopes will be produced and a lot of new exciting experimental data will help to test and improve the current nuclear models. In addition, these data (masses, reaction cross sections, beta decay half-lives, etc.) combined with the development of better theoretical approaches will be used as the nuclear physics input for astrophysical simulations. In this presentation I will review some of the state-of-the-art nuclear structure methods and their applications.

  5. Turbulence and Self-Organization Modeling Astrophysical Objects

    CERN Document Server

    Marov, Mikhail Ya

    2013-01-01

    This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.

  6. New and old accelerators: what can they do for astrophysics

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1985-07-01

    The quantum numbers and energy spectrum of high energy accelerators and storage rings are described, along with some ways they may contribute to astrophysical issues. Some emphasis is given to the role of relativistic heavy-ion colliders in possibly providing laboratory samples of quark-gluon plasma. 6 refs., 3 figs

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2 ... emission and the thermal conduction belowto the transition region. ... s provide the required heating rate to balance the energy losses in the ...

  8. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  9. Evolution and seismic tools for stellar astrophysics

    CERN Document Server

    Monteiro, Mario JPFG

    2008-01-01

    A collection of articles published by the journal "Astrophysics and Space Science, Volume 316, Number 1-4", August 2008. This work covers 10 evolution codes and 9 oscillation codes. It is suitable for researchers and research students working on the modeling of stars and on the implementation of seismic test of stellar models.

  10. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  11. Astrophysics a new approach

    CERN Document Server

    Kundt, Wolfgang

    2005-01-01

    For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. -- This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The...

  12. Trojan horse particle invariance: The impact on nuclear astrophysics

    International Nuclear Information System (INIS)

    Pizzone, R. G.; La Cognata, M.; Spitaleri, C.; Bertulani, C. A.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Lamia, L.; Spartá, R.; Tumino, A.

    2014-01-01

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and 6 Li(d,α) 4 He reactions, which were tested using different quasi-free break-up's, namely 6 Li and 3 He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions

  13. Trojan horse particle invariance: The impact on nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Pizzone, R. G.; La Cognata, M. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Spitaleri, C. [Universitá di Catania and Laboratori Nazionali del Sud - INFN (Italy); Bertulani, C. A. [Texas A and M University, Commerce (United States); Mukhamedzhanov, A. M. [Texas A and M University, College Station, Texas (United States); Blokhintsev, L. D. [Moscow State University, Moscow (Russian Federation); Lamia, L.; Spartá, R. [Universitá di Catania and Laboratori Nazionali del Sud - INFN, Catania (Italy); Tumino, A. [Universitá Kore, Enna (Italy)

    2014-05-02

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and {sup 6}Li(d,α){sup 4}He reactions, which were tested using different quasi-free break-up's, namely {sup 6}Li and {sup 3}He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.

  14. The Trojan Horse method as an indirect approach for nuclear astrophysics studies

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A; Spitaleri, C; Cherubini, S; Cognata, M La; Lamia, L; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L, E-mail: tumino@lns.infn.i [Laboratori Nazionali del Sud - INFN, Catania (Italy)

    2010-01-01

    The Trojan Horse method (THM) is a powerful indirect technique that provides a successful alternative path to determine the bare nucleus astrophysical S(E) factor for rearrangement reactions down to astrophysical energies. This is done by measuring the cross section for a suitable three body process in the quasi-free kinematics regime. Prescriptions and basic features will be presented together with some applications to demonstrate how THM works.

  15. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  16. Gravity, particles and astrophysics

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1980-01-01

    The author deals with the relationship between gravitation and elementary particle physics, and the implications of these subjects for astrophysics. The text is split up into two parts. The first part represents a relatively non-technical overview of the subject, while the second part represents a technical examination of the most important aspects of non-Einsteinian gravitational theory and its relation to astrophysics. Relevant references from the fields of gravitation, elementary particle theory and astrophysics are included. (Auth.)

  17. Black Hole Astrophysics The Engine Paradigm

    CERN Document Server

    Meier, David L

    2012-01-01

    As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spe...

  18. Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J.; Bagherpour, H. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Al Samarai, I. [Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI, 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Collaboration: IceCube Collaboration; and others

    2017-09-10

    The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos, which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5 σ . This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks, this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations ≲−30°.

  19. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  20. Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anzhong [Baylor Univ., Waco, TX (United States). Department of Physics

    2014-08-14

    This final report describes the activities of the Baylor University Gravity, Cosmology and Astroparticle Physics (GCAP) group on the project: Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics, during the time, August 15, 2010 - August 14, 2014. We are grateful for the financial support provided by the U.S. Department of Energy for this research, which leads to our exceptional success. We are very proud to say that we have achieved all the goals set up in our project and made significant contributions to the understanding of the field. In particular, with this DOE support, we have published 38 articles in the prestigious national/international journals, which have already received about 1000 citations so far.

  1. Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics

    International Nuclear Information System (INIS)

    Wang, Anzhong

    2014-01-01

    This final report describes the activities of the Baylor University Gravity, Cosmology and Astroparticle Physics (GCAP) group on the project: Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics, during the time, August 15, 2010 - August 14, 2014. We are grateful for the financial support provided by the U.S. Department of Energy for this research, which leads to our exceptional success. We are very proud to say that we have achieved all the goals set up in our project and made significant contributions to the understanding of the field. In particular, with this DOE support, we have published 38 articles in the prestigious national/international journals, which have already received about 1000 citations so far.

  2. Global kinetic theory of astrophysical jets

    International Nuclear Information System (INIS)

    Chang, T.

    1989-01-01

    We suggest that an astrophysical plasma stream flowing outward from a central object aling an open magnetic field line with decreasing field strength generally will have anisotropic velocity distributions. I particular, the electron distribution function of this type of plasma streams will contain a 'thermally populated' region and a stretche out high energy tail (or 'jet-like') region collimated in the utward direction of the magnetic field line. Our argument is based on a global, collisional, kinetic theory. Because the 'kinetic jets' are always pointed aling the outward direction of the field lines, thy are automatically collimated and will assume whatever the peculiar geometries dictated by the magnetic field. This result should be useful in the understanding of the basic structures of such diverse astrophysical objects as the extragalactic radio jets, stellar winds, the solar wind, planetary polar winds, and galactic jets. (author). 8 refs.; 2 figs

  3. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  4. Encyclopedia of Astronomy and Astrophysics

    CERN Document Server

    2002-01-01

    Interstellar medium, Light, Magnetisphere, Matter, Planet Earth, Public Impact, Solar Activity, Solar Heliosphere, Solar Interior, Solar Systems, Space, Stellar Astrophysics, Stellar Populations, Telescopes, Time The Encyclopedia of Astronomy and Astrophysics covers 30 major subject areas, such as Active galaxies, Astrometry, Astrophysical theory, Atmospheres, Binary stars, Biography, Clusters, Coordinates, Cosmology, Earth, Education, Galaxies,

  5. Plasma in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1982-10-01

    Two examples of plasma phenomena of importance to astrophysics are reviewed. These are examples where astrophysical understanding hinges on further progress in plasma physics understanding. The two examples are magnetic reconnection and the collisionless interaction between a population of energetic particles and a cooler gas or plasma, in particular the interaction between galactic cosmic rays and the interstellar medium

  6. Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

    Science.gov (United States)

    Assis, P.; Barres de Almeida, U.; Blanco, A.; Conceição, R.; D'Ettorre Piazzoli, B.; De Angelis, A.; Doro, M.; Fonte, P.; Lopes, L.; Matthiae, G.; Pimenta, M.; Shellard, R.; Tomé, B.

    2018-05-01

    Current detectors for Very-High-Energy γ-ray astrophysics are either pointing instruments with a small field of view (Cherenkov telescopes), or large field-of-view instruments with relatively large energy thresholds (extensive air shower detectors). In this article, we propose a new hybrid extensive air shower detector sensitive in an energy region starting from about 100 GeV. The detector combines a small water-Cherenkov detector, able to provide a calorimetric measurement of shower particles at ground, with resistive plate chambers which contribute significantly to the accurate shower geometry reconstruction. A full simulation of this detector concept shows that it is able to reach better sensitivity than any previous gamma-ray wide field-of-view experiment in the sub-TeV energy region. It is expected to detect with a 5σ significance a source fainter than the Crab Nebula in one year at 100 GeV and, above 1 TeV a source as faint as 10% of it. As such, this instrument is suited to detect transient phenomena making it a very powerful tool to trigger observations of variable sources and to detect transients coupled to gravitational waves and gamma-ray bursts.

  7. Research accomplishments in particle physics: Research progress report, July 16, 1986 to July 15, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This document reports the activities of Boston University researchers in five projects in high energy physics research during the period July 16, 1986 to July 15, 1987. These include: search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; study of high energy electron-positron annihilation, using the ASP and SLD detectors at SLAC; development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; measurement of the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL, with a major portion of design and construction of accelerator components at Boston University; and study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  8. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  9. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector

    International Nuclear Information System (INIS)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.

    2011-01-01

    The IceCube Neutrino Observatory is a 1 km 3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E -2 astrophysical ν μ flux of 8.9x10 -9 GeV cm -2 s -1 sr -1 . The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.

  10. Nuclear energy and astrophysics applications of ENDF/B-VII.1 evaluated nuclear library

    International Nuclear Information System (INIS)

    Pritychenko, B.

    2012-01-01

    Recently released ENDF/B-VII.1 evaluated nuclear library contains the most up-to-date evaluated neutron cross section and covariance data. These data provide new opportunities for nuclear science and astrophysics application development. The improvements in neutron cross section evaluations and more extensive utilization of covariance files, by the Cross Section Evaluation Working Group (CSEWG) collaboration, allowed users to produce neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates, and provide additional insights on the currently available neutron-induced reaction data. Nuclear reaction calculations using the ENDF/B-VII.1 library and current computer technologies will be discussed and new results will be presented

  11. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y

    2006-08-21

    The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are important concepts introduced recently for application to prediction and analysis of astrophysical phenomena. However Euler scaling by itself provides no information on the distinctive spectral range of high Reynolds number turbulent flows found in astrophysics situations. On the other hand, time-dependent mixing transition gives no indication on whether a flow that just passed the mixing transition is sufficient to capture all of the significant dynamics of the complete astrophysical spectral range. In this paper, a new approach, based on additional insight gained from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. From this perspective, we caution that the energy containing range of the turbulent flow measured in a laboratory setting must not be unintentionally contaminated in such a way that the interactive influences of this spectral scale range in the corresponding astrophysical situation cannot be faithfully represented. In this paper we introduce the concept of a minimum state as the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve to fulfill this objective. Later in the paper we show that the Reynolds number of the minimum state may be determined as 1.6 x 10{sup 5}. Our efforts here can be viewed as a unification and extension of the concepts of both similarity scaling and transient mixing transition concepts. At the last the implications of our approach in planning future intensive laser experiments or massively parallel numerical simulations are discussed. A systematic procedure is outlined so that as the capabilities of the laser interaction experiments and supporting results from detailed numerical simulations performed in recently advanced supercomputing facilities increase

  12. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations

    International Nuclear Information System (INIS)

    Zhou Ye

    2007-01-01

    The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are important concepts introduced recently for application to prediction and analysis of astrophysical phenomena. However, Euler scaling by itself provides no information on the distinctive spectral range of high Reynolds number turbulent flows found in astrophysics situations. On the other hand, time-dependent mixing transition gives no indication on whether a flow that just passed the mixing transition is sufficient to capture all of the significant dynamics of the complete astrophysical spectral range. In this paper, a new approach, based on additional insight gained from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. From this perspective, the energy-containing range of the turbulent flow measured in a laboratory setting must not be unintentionally contaminated in such a way that the interactive influences of this spectral scale range in the corresponding astrophysical situation cannot be faithfully represented. In this paper, the concept of a minimum state is introduced as the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve to fulfill this objective. Later in the paper, the Reynolds number of the minimum state is determined as 1.6x10 5 . The temporal criterion for the minimum state is also obtained. The efforts here can be viewed as a unification and extension of the concepts of both similarity scaling and transient mixing transition concepts. Finally, the implications of our approach in planning future intensive laser experiments or massively parallel numerical simulations are discussed. A systematic procedure is outlined so that as the capabilities of the laser interaction experiments and supporting results from detailed numerical simulations performed in recently advanced

  13. Astrophysical Institute, Potsdam

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Built upon a tradition of almost 300 years, the Astrophysical Institute Potsdam (AIP) is in an historical sense the successor of one of the oldest astronomical observatories in Germany. It is the first institute in the world which incorporated the term `astrophysical' in its name, and is connected with distinguished scientists such as Karl Schwarzschild and Albert Einstein. The AIP constitutes on...

  14. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  15. Results of search for the point superhigh-energy gamma ray sources carried out in the Crimean Astrophysical Observatory in the years 1969-1973

    International Nuclear Information System (INIS)

    Stepanyan, A.A.; Vladimirskij, B.M.; Neshpor, Yu.I.; Fomin, V.P.

    1975-01-01

    Astrophysical objects possessing high density of ultrahigh energy γ-particles are observed. The observations have been carried out in the Crimean astrophysical observatory of the AN SSSR for the period of 1969-1973. 43 celestial objects have been chosen for observation, among them are both the supposed and well-known sources of hard electromaanetic radiation (x-ray or γ-radiation with the energy of quanta up to 10 -8 eV). Regular observations of celestial bodies are followed by recording Cherenkov bursts by method of scanning with two groups of detectors, each consisting of two parallel-directed light detectors switched on to coincidences. Criteria for selecting the material are described. Paricular attention is paid to stability of the equipment parameters, permanent atmospheric transparency, presence of such atmospheric phenomena as meteors, summer lightings, and so on. As the objects under observation the authors involve x-ray sources, pulsars, supernovae, novae, supernovae remnants, radiogalaxies, point γ-sources. The data obtained and also those of other authors are summarized in a catalog including 72 objects from the Northern part of the celestial sphere

  16. Facilities at Indian Institute of Astrophysics and New Initiatives

    Science.gov (United States)

    Bhatt, Bhuwan Chandra

    2018-04-01

    The Indian Institute of Astrophysics is a premier national institute of India for the study of and research into topics pertaining to astronomy, astrophysics and related subjects. The Institute's main campus in Bangalore city in southern India houses the main administrative set up, library and computer center, photonics lab and state of art mechanical workshop. IIA has a network of laboratories and observatories located in various places in India, including Kodaikanal (Tamilnadu), Kavalur (Tamilnadu), Gauribidanur (Karnataka), Leh & Hanle (Jammu & Kashmir) and Hosakote (Karnataka).

  17. When neutrinos attack - the impact of agressive neutrinos in astrophysics.

    Science.gov (United States)

    Kneller, James

    2004-11-01

    Of all the constituents within the standard model of particle physics our understanding of the neutrino has benefited the most from the interaction of astrophysics and `terraphysics'. Much has been learned about the properties of the neutrino from each: experiments here on Earth temper our appreciation of the role that neutrinos play in the cosmos while astrophysics can provide the densities and temperatures in which the neutrinos do more than simply flee. But their reluctance to interact means that it is not until we venture into the most extreme environments of astrophysics that we observe neutrinos pushing back' as hard as they are being pushed'. We review two sites where this occurs: the early Universe and the accretion disk, engines' of gamma ray bursts. Neutrinos play an important role in the evolution of the early Universe with a particular focus upon the electron neutrino in determining the primordial elemental composition via its participation in the most important reaction at that time. Within gamma ray burst accretion disks we again see the electron neutrinos at work in the nuclear reactions and through their function as the coolant' for the disk. Removal of the disk energy, and its deposition into the remnants of the massive star surrounding the disk, may lead to the formation of highly relativistic jets that will later be observed as the burst. We show what has been learned so far about the neutrino and its properties from the study of such environments and discuss where future research is heading.

  18. Future coordinated researches by Argonne (USA), Tashkent (Uzbekistan) and Almaty (Kazakhstan) nuclear centres on the nuclear reactions and astrophysics

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Kadyrzhanov, K.K.; Rehm, K.E.

    2004-01-01

    An actual problem of modern nuclear physics and astrophysics is realistic evaluation of astrophysical S-factors and rates of the nuclear reactions, which are responsible for the energy generation and nucleosynthesis in Universe. The essential progress in understanding of these processes has been made in the last decade. Those are the discovery of neutrino oscillations, obtaining new precise data on the reactions cross sections at rather low energies, development of methods of extrapolation to the stellar energy region. Nevertheless, the available experimental data close to stellar energies are very poor especially for unstable particles interactions, and uncertainties remain rather remarkable. It leads to large errors when measured data are extrapolated to astrophysical important super low energy region. The experimental possibilities for improvement the accuracy of the data using 'indirect' measurements are discussed. One of them is based on the peripheral character of charged particles interaction at low energy in which the asymptotical normalization coefficients (ANC) of overlapping functions are used for extrapolation. In this case the differential cross-section of the particle transfer reaction is expressed via the product of ANCs squares of participating particles. Their values may be obtained from the peripheral reactions at larger energies where the accuracy of measurement is higher. From this point of view the particle transfer A(x,y)B reactions are the most preferable, where (x,y) are ( 13 N, 12 C) or ( 17 F, 16 O) (proton transfer) and ( 13 C, 12 C) or ( 17 O, 16 O) (neutron transfer). We should know firstly the ANCs for 13 C→ 12 C+n ( 17 O→ 16 O+n) and 13 N→ 12 C+p ( 17 F→ 16 O+p) systems, and all other ANCs B→ A+p(n) are expressed through these values. The nucleon separation energies ε N are relatively small for these nuclei (ε 13N → 12C+p =1.943 MeV; ε 17F → 16O+p =0.6003 MeV; ε 13C → 12C+n =4.946 MeV and ε 17O → 16O+n =4.143 Me

  19. A simulation package for soft X-ray and EUV spectroscopy of astrophysical and laboratory plasmas in different environments

    International Nuclear Information System (INIS)

    Liang, G Y; Li, F; Wang, F L; Zhong, J Y; Zhao, G; Wu, Y

    2014-01-01

    Spectroscopic researches in astronomy are significantly dependent on theoretical modelling methods, such as Chianti, Xstar, Cloudy etc. Recently, a different research community - Laboratory Astrophysics tries to benchmark these theoretical models or simulate the astrophysical phenomenon directly in conditions accessed in ground laboratory. Those unavoidable differences between the astrophysical objects and laboratory provide a need for a self-consistent model to make a bridge for the two cases. So we setup a visualized simulation package for soft X-ray and EUV spectroscopy in astrophysical and laboratory plasmas.

  20. The Astrophysics Source Code Library by the numbers

    Science.gov (United States)

    Allen, Alice; Teuben, Peter; Berriman, G. Bruce; DuPrie, Kimberly; Mink, Jessica; Nemiroff, Robert; Ryan, PW; Schmidt, Judy; Shamir, Lior; Shortridge, Keith; Wallin, John; Warmels, Rein

    2018-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) was founded in 1999 by Robert Nemiroff and John Wallin. ASCL editors seek both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and add entries for the found codes to the library. Software authors can submit their codes to the ASCL as well. This ensures a comprehensive listing covering a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL is indexed by both NASA’s Astrophysics Data System (ADS) and Web of Science, making software used in research more discoverable. This presentation covers the growth in the ASCL’s number of entries, the number of citations to its entries, and in which journals those citations appear. It also discusses what changes have been made to the ASCL recently, and what its plans are for the future.

  1. NASA Announces 2009 Astronomy and Astrophysics Fellows

    Science.gov (United States)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include

  2. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1987-01-01

    This document presents a report of the research accomplishments of Boston University researchers in six projects in high energy physics research: Study of high energy electron-positron annihilation, using the ASP and SLD detectors at SLAC; Search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; Development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; and Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  3. Astrophysics science operations - Near-term plans and vision

    Science.gov (United States)

    Riegler, Guenter R.

    1991-01-01

    Astrophysics science operations planned by the Science Operations branch of NASA Astrophysics Division for the 1990s for the purpose of gathering spaceborne astronomical data are described. The paper describes the near-future plans of the Science Operations in the areas of the preparation of the proposal; the planning and execution of spaceborne observations; the collection, processing, and analysis data; and the dissemination of results. Also presented are concepts planned for introduction at the beginning of the 20th century, including the concepts of open communications, transparent instrument and observatory operations, a spiral requirements development method, and an automated research assistant.

  4. CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics

    Science.gov (United States)

    Owen, John Michael; Raskin, Cody; Frontiere, Nicholas

    2018-01-01

    The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied

  5. Nuclear Data for Astrophysics: Resources, Challenges, Strategies, and Software Solutions

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Lingerfelt, Eric J.; Nesaraja, Caroline D.; Hix, William Raphael; Roberts, Luke F.; Koura, Hiroyuki; Fuller, George M.; Tytler, David

    2008-01-01

    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos -- the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual 'pipeline' leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research.

  6. A plasma deflagration accelerator as a platform for laboratory astrophysics

    Science.gov (United States)

    Underwood, Thomas C.; Loebner, Keith T. K.; Cappelli, Mark A.

    2017-06-01

    The replication of astrophysical flows in the laboratory is critical for isolating particular phenomena and dynamics that appear in complex, highly-coupled natural systems. In particular, plasma jets are observed in astrophysical contexts at a variety of scales, typically at high magnetic Reynolds number and driven by internal currents. In this paper, we present detailed measurements of the plasma parameters within deflagration-produced plasma jets, the scaling of these parameters against both machine operating conditions and the corresponding astrophysical phenomena. Using optical and spectroscopic diagnostics, including Schlieren cinematography, we demonstrate the production of current-driven plasma jets of ∼100 km/s and magnetic Reynolds numbers of ∼100, and discuss the dynamics of their acceleration into vacuum. The results of this study will contribute to the reproduction of various types of astrophysical jets in the laboratory and indicate the ability to further probe active research areas such as jet collimation, stability, and interaction.

  7. Minicourses in Astrophysics, Modular Approach, Vol. I.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  8. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  9. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  10. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    Cline, D.B.

    1993-01-01

    Progress on seven tasks is reported. (I)UCLA hadronization model, antiproton decay, PEP4/9 e + e - analysis: In addition to these topics, work on CP and CPT phenomenology at a φ factory and letters of support on the hadronization project are included. (II)ICARUS detector and rare B decays with hadron beams and colliders: Developments are summarized and some typcial events as shown; in addition, the RD5 collaboration at CERN and the asymmetric φ factory project are sketched. (III)Theoretical physics: Feynman diagram calculations in gauge theory; supersymmetric standard model; effects of quantum gravity in breaking of global symmetries; models of quark and lepton substructure; renormalized field theory; large-scale structure in the universe and particle-astrophysics/early universe cosmology. (IV)H dibaryon search at BNL, kaon experiments (E799/KTeV) at Fermilab: Project design and some scatterplots are given. (V)UCLA participation in the experiment CDF at Fermilab. (VI)Detectors for hadron physics at ultrahigh energy colliders: Scintillating fiber and visible light photon counter research. (VII)Administrative support and conference organization

  11. Proceedings of the topical conference on nuclear physics, high energy physics and astrophysics (NPHEAP-2010)

    International Nuclear Information System (INIS)

    Vo Van Thuan; Tran Duc Thiep; Le Hong Khiem

    2011-01-01

    There were roughly 80 scientists gathering for the NPHEAP-2010 and there 61 oral talks and posters have been presented. The audience has been introduced to the status of long term nuclear power program of Vietnam up to 2030. One of the highlights for near future activity of Vietnamese nuclear sector should be the manpower training and education for this huge master plan. Most of invited and contributed papers have devoted to both basic nuclear physics at world radioactive beams and applied nuclear instrumentation. In addition to some traditional astronomical papers, there were more contributions on advanced cosmic ray physics and related nuclear astrophysics. A few of papers on high energy and particle physics jointly showed a high interest in flavor physics at LHC, KEK and J-PARC. (NHA)

  12. AN UPDATED {sup 6}Li(p, {alpha}){sup 3}He REACTION RATE AT ASTROPHYSICAL ENERGIES WITH THE TROJAN HORSE METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, L.; Spitaleri, C.; Sergi, M. L. [Dipartimento di Fisica e Astronomia, Universita di Catania, I-95123 Catania (Italy); Pizzone, R. G.; Tumino, A.; La Cognata, M. [INFN-Laboratori Nazionali del Sud, I-95125 Catania (Italy); Tognelli, E.; Degl' Innocenti, S.; Prada Moroni, P. G. [Dipartimento di Fisica, Universita di Pisa, I-56127 Pisa (Italy); Pappalardo, L. [Dipartimento di Fisica e Scienze della Terra, Universita di Ferrara, I-44100 Ferrara (Italy)

    2013-05-01

    The lithium problem influencing primordial and stellar nucleosynthesis is one of the most interesting unsolved issues in astrophysics. {sup 6}Li is the most fragile of lithium's stable isotopes and is largely destroyed in most stars during the pre-main-sequence (PMS) phase. For these stars, the convective envelope easily reaches, at least at its bottom, the relatively low {sup 6}Li ignition temperature. Thus, gaining an understanding of {sup 6}Li depletion also gives hints about the extent of convective regions. For this reason, charged-particle-induced reactions in lithium have been the subject of several studies. Low-energy extrapolations of these studies provide information about both the zero-energy astrophysical S(E) factor and the electron screening potential, U{sub e} . Thanks to recent direct measurements, new estimates of the {sup 6}Li(p, {alpha}){sup 3}He bare-nucleus S(E) factor and the corresponding U{sub e} value have been obtained by applying the Trojan Horse method to the {sup 2}H({sup 6}Li, {alpha} {sup 3}He)n reaction in quasi-free kinematics. The calculated reaction rate covers the temperature window 0.01 to 2T{sub 9} and its impact on the surface lithium depletion in PMS models with different masses and metallicities has been evaluated in detail by adopting an updated version of the FRANEC evolutionary code.

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K. Karami1 2 R. Mohebi1. Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj, Iran. Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Maragha, Iran.

  14. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  15. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Drake, R. P.; Remington, B. A.

    2000-01-01

    We demonstrate that two systems described by the equations of the ideal magnetohydrodynamics (MHD) evolve similarly, if the initial conditions are geometrically similar and certain scaling relations hold. The thermodynamic properties of the gas must be such that the internal energy density is proportional to the pressure. The presence of the shocks is allowed. We discuss the applicability conditions of the ideal MHD and demonstrate that they are satisfied with a large margin both in a number of astrophysical objects, and in properly designed simulation experiments with high-power lasers. This allows one to perform laboratory experiments whose results can be used for quantitative interpretation of various effects of astrophysical MHD. (c) 2000 The American Astronomical Society

  16. Possibilities at LAMPF for studying nuclei of astrophysical interest

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Bunker, M.E.

    1985-01-01

    Nuclear data needs in astrophysics range from neutron capture cross sections of a number of stable or near-stable nuclei to decay and neutron binding-energy data for highly neutron-rich nuclei. LAMPF has the potential to contribute significantly to these needs. The new Los Alamos Neutron Scattering Center (LANSCE, aka WNR/PSR) offers world-class capabilities for neutron capture studies up to an MeV or so. The study of nuclei far from stability could be extended into some regions of astrophysical interest using a proposed He-jet coupled mass separator system with a target/production chamber in the LAMPF beam stop area. Specific examples of possible studies at each facility are presented

  17. Nuclear astrophysics with indirect methods

    International Nuclear Information System (INIS)

    Shubhchintak

    2016-01-01

    In the area of astrophysics, it is well known that several different type of nuclear reactions are involved in the production of elements and for energy generation in stars. The knowledge of rates and cross section of these reactions is necessary in order to understand the origin of elements in the universe. Particularly, interests are there in the processes like pp-chain, CNO cycle, r-process and s-process, which are responsible for the formation of majority of the nuclei via various reactions like (p, γ), (n, γ), (α, γ) etc

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The SSC+ERC model using the external seed photons from hot dust or Broad Line Region (BLR) emission is probably favourable avoiding the extreme ... Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China.

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 39; Issue 1. Issue front cover thumbnail. Volume 39, Issue 1. February 2018. Article ID 1. Editorial · Samir Mandal Indranil Chattopadhyay Anuj Nandi Santabrata Das · More Details Abstract Fulltext PDF. Article ID 2 Review. High energy transients: The ...

  20. Astrophysics days and MHD

    International Nuclear Information System (INIS)

    Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien

    2001-05-01

    This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number

  1. Remarks about the thermodynamics of astrophysical systems in mutual interaction and related notions

    International Nuclear Information System (INIS)

    Velazquez, L

    2016-01-01

    ensembles in this scenario. To clarify how some of conventional notions and theoretical frameworks could be extended to open astrophysical systems, an exploratory study of a paradigmatic situation is presented: a binary astrophysical system. This analysis is carried out in the framework of the quadrupole approximation, which represents the lowest coupling among internal and collective degrees of freedom. Apparently, collective motions are responsible for a non-linear energy interchange among the astrophysical systems. This mechanism introduces some modifications in stationary and stability conditions for the thermodynamic equilibrium such as a generalization of Thirring’s stability condition for systems with negative heat capacities (1970 Z. Phys. 235 339). Additionally, the stability of collective motions of this binary astrophysical system is also discussed, which is related to the low energy thermodynamic behavior of the model discussed by Votyakov and colleagues (2002 Phys. Rev. Lett. 89 031101). The thermodynamic limit for self-gravitating gas of identical non-relativistic point particles is then derived and compared with other different proposals. The astrophysical counterpart of the Gibbs–Duhem relation is obtained and compared with the recent proposal of Latella and colleagues (2015 Phys. Rev. Lett. 114 230601). Finally, the incidence of non-extensivity during the merger of two identical astrophysical systems is analyzed. Contrary to the situation considered in the Gibbs paradox, the merger is an irreversible process that crucially depends on the existence (or non-existence) of the external gravitational influence of other systems. (paper: quantum statistical physics, condensed matter, integrable systems)

  2. Theoretical Research at the High Energy Frontier: Cosmology and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Lawrence M. [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics and School of Earth and Space Exploration

    2017-03-31

    Radiation. Undoubtedly the most significant outstanding problem in high-energy physics is also a problem in cosmology, and indeed originated not from accelerators but from astrophysical observations: What is the origin and nature of the dark energy that appears to dominate the Universe? An understanding of quantum gravity, and perhaps a new understanding of quantum mechanics or quantum field theory may be required to fully address this problem. At the moment, the physics of black holes may provide the best opportunity to explore these issues, while the discovery of the Higgs suggests several new possible connections to physics that might be relevant for dark energy. Finally, pending confirmation of a gravitational wave signal from inflation, to date the only direct evidence for fundamental particle physics beyond the standard model comes, at least in part, from astrophysical neutrino observations. A remarkable convergence of theory, observation and experiment has been taking place that is allowing great strides to be made in our knowledge of the parameters that describe the universe, if not the origin of these parameters. Given the new discoveries now being made, and the incredible capabilities of future instruments, it is an exciting time to make progress in our fundamental understanding the origin and evolution of the Universe and the fundamental forces that guide that evolution. As a result, it is natural that our DOE theory research program at Arizona State University focuses in large part on the connections between particle physics and cosmology and astrophysics in order to improve our understanding of fundamental physics. Our areas of research cover all of the areas described above. Our group now consists of four faculty PI’s and their postdocs and students, complemented by long term visitor Frank Wilczek, and physics faculty colleagues Cecilia Lunardini, Richard Lebed, and Andrei Belitsky, whose interests overlap in areas ranging from particle theory and

  3. Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Pino, M. [Institut Domènech i Montaner, C/Maspujols 21-23, 43206 Reus (Spain); Rocha, C.I.S.A. [Externato Ribadouro, Rua de Santa Catarina 1346, 4000-447 Porto (Portugal); Wietersheim, M. von, E-mail: Carlos.Martins@astro.up.pt, E-mail: Ana.Pinho@astro.up.pt, E-mail: up201106579@fc.up.pt, E-mail: mpc_97@yahoo.com, E-mail: cisar97@hotmail.com, E-mail: maxivonw@gmail.com [Institut Manuel Sales i Ferré, Avinguda de les Escoles 6, 43550 Ulldecona (Spain)

    2015-08-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w{sub 0}. Moreover, in these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.

  4. Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C.; Pino, M.; Rocha, C.I.S.A.; Wietersheim, M. von

    2015-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w 0 . Moreover, in these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints

  5. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2. Energy Dependence of Near-relativistic Electron Spectrum at Geostationary Orbit during the SEP Events of 2005. A. Chandrasekhar Reddy Jatin Rathod Girija Rajaram Radharani Alyana D. S. Misra C. G. Patil M. Y. S. Prasad ...

  6. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  7. New Improved Indirect Measurement of the F-19(p, alpha)O-16 Reaction at Energies of Astrophysical Relevance

    Czech Academy of Sciences Publication Activity Database

    Indelicato, I.; La Cognata, M.; Spitaleri, C.; Burjan, Václav; Cherubini, S.; Gulino, M.; Hayakawa, S.; Hons, Zdeněk; Kroha, Václav; Lamia, L.; Mazzocco, M.; Mrázek, Jaromír; Pizzone, R. G.; Romano, S.; Strano, E.; Torresi, D.; Tumino, A.

    2017-01-01

    Roč. 845, č. 1 (2017), č. článku 19. ISSN 0004-637X Institutional support: RVO:61389005 Keywords : nuclear reactions * nucleosynthesis * abundances Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  8. Measurements of the Coulomb dissociation cross section of 156 MeV 6Li projectiles at extremely low relative fragment energies of astrophysical interest

    International Nuclear Information System (INIS)

    Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J.; Baur, G.

    1991-04-01

    Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV 6 Li-projectiles at 208 Pb with small emission angles of the a particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0deg-2deg. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follow theoretical predictions of the astrophysical S-factor and extrapolations of corresponding radiative capture reaction cross section to very low c. m. energies of the a particle and deuterons. Various implications of the approach are discussed. (orig.) [de

  9. Nuclear data for astrophysics: resources, challenges, strategies, and software solutions

    International Nuclear Information System (INIS)

    Smith, M.S.; Lingerfelt, E.J.; Nesaraja, C.D.; Raphael Hix, W.; Roberts, L.F.; Hiroyuki, Koura; Fuller, G.M.; Tytler, D.

    2008-01-01

    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos - the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual - pipeline - leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the Bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research. (authors)

  10. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  11. Exploring the cosmic frontier. Astrophysical instruments for the 21st century

    International Nuclear Information System (INIS)

    Lobanov, A.P.; Zensus, J.A.; Cesarsky, C.; Diamond, P.

    2007-01-01

    In the coming decades, astrophysical science will benefit enormously from the construction and operation of several major international ground- and space based facilities, such as ALMA, Herschel/Planck, and SKA in the far infrared to radio band, Extremely Large Telescopes, JWST and GAIA in the optical to near infrared regime, XEUS and Constellation-X in the X-ray, and GLAST in the Gamma-ray regime. These and other new instruments will have a major impact in a wide range of scientific topics including the cosmological epoch of reionization, galactic dynamics and nuclear activity, stellar astronomy, extra-solar planets, gamma-ray bursts, X-ray binaries, and many others. On May 18-21, 2004, the Max-Planck-Society's Harnack-Haus in Dahlem, Berlin hosted the international symposium ''Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century''. The symposium in Berlin was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting and discussing the fundamental scientific problems that will be addressed by major future astrophysical facilities in the next few decades. This book contains 70 papers from the meeting and is intended to give a lasting account of a snapshot of an evolving scientific discourse and interaction throughout our field of research. (orig.)

  12. Theoretical nuclear structure and astrophysics. Progress report for 1993-1995

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-01-01

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops

  13. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  14. Astrophysics in a nutshell from the telescope to the sputnik

    International Nuclear Information System (INIS)

    Alfven, H.; Faelthammar, C.G.

    1988-03-01

    Progress in astrophysics - as well as in many other sciences - is not only due to new ideas but also to the introduction of new methods of observation. The 'Copernican revolution' was more due to the introduction of the telescope than to the heliocentric model which had been invented 2000 years earlier. Further, the decisive importance of electromagnetic effects in astrophysics originated from Langmuir's invention of the plasma probe and from Birkeland's terrella experiment and his observations of plasma in space (aurora). A similar revolution has now been introduced by space research which has made possible in situ measurements in cosmic plasmas and has opened the X-ray and γ-ray regions to observation. The result is a drastic revision of essential parts of astrophysics (including cosmology) leading to the 'Plasma Universe' model. (authors)

  15. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    Science.gov (United States)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  16. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  17. Theoretical Research at the High Energy Frontier: Cosmology, Neutrinos, and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Lawrence M; Vachaspati, Tanmay; Parikh, Maulik

    2013-03-06

    The DOE theory group grew from 2009-2012 from a single investigator, Lawrence Krauss, the PI on the grant, to include 3 faculty (with the addition of Maulik Parikh and Tanmay Vachaspati), and a postdoc covered by the grant, as well as partial support for a graduate student. The group has explored issues ranging from gravity and quantum field theory to topological defects, energy conditions in general relativity, primordial magnetic fields, neutrino astrophysics, quantum phases, gravitational waves from the early universe, dark matter detection schemes, signatures for dark matter at the LHC, and indirect astrophysical signatures for dark matter. In addition, we have run active international workshops each year, as well as a regular visitor program. As well, the PI's outreach activities, including popular books and articles, and columns for newspapers and magazines, as well as television and radio appearances have helped raise the profile of high energy physics internationally. The postdocs supported by the grant, James Dent and Roman Buniy have moved on successfully to a faculty positions in Louisiana and California.

  18. Astrophysical constraints on Planck scale dissipative phenomena.

    Science.gov (United States)

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

  19. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1977-06-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft ..gamma..-ray events of cosmic origin.

  20. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    International Nuclear Information System (INIS)

    Kaufmann, P.

    1977-01-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft γ-ray events of cosmic origin. (Auth.)

  1. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  2. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    Science.gov (United States)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not

  3. FIRST KODAI-TRIESTE WORKSHOP ON PLASMA ASTROPHYSICS

    CERN Document Server

    Hasan, S. S; Krishan, V; TURBULENCE, DYNAMOS, ACCRETION DISKS, PULSARS AND COLLECTIVE PLASMA PROCESSES

    2008-01-01

    It is well established and appreciated by now that more than 99% of the baryonic matter in the universe is in the plasma state. Most astrophysical systems could be approximated as conducting fluids in a gravitational field. It is the combined effect of these two that gives rise to the mind boggling variety of configurations in the form of filaments, loops , jets and arches. The plasma structures that cannot last for more than a second or less in a laboratory remain intact for astronomical time and spatial scales in an astrophysical setting. The case in point is the well known extragalactic jets whose collimation and stability has remained an enigma inspite of the efforts of many for many long years. The high energy radiation sources such as the active galactic nuclei again summon the coherent plasma radiation processes for their exceptionally large output from regions of relatively small physical sizes. The generation of magnetic field, anomalous transport of angular momentum with decisive bearing on star for...

  4. The search for a main cause of uncertainty of the calculated astrophysical S factor for the direct radiative capture d(α, γ)6Li reaction at stellar energies

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Igamov, S.B.; Nishonov, M.M.; Yarmukhamedov, R.

    2004-01-01

    Full text: It is well known that the d( α,γ ) 6 Li reaction is one of the sources of the 6 Li production in the Big Bang nucleosynthesis. At the present time rather large uncertainties exist in the prediction of the rate of this reaction, which are mainly due to the absence both of the reliable experimental cross section (or the astrophysical S factor, S(E)) and of the theoretical calculations at extremely low energies E (E ≤ 600 keV) (see [1] and references therein). The aim of our work is to find out the principal cause of the existing large spread of the calculated values of S(E) at extremely low energies obtained by different authors, including the results of the present work. The basic idea of our consideration is that the d( α, γ) 6 Li reaction at such energies is predominantly peripheral [2]-[4]. Therefore the values of S(E) at extremely low energies are mainly determined by the nuclear vertex constant (NVC) (or by the asymptotic normalization constant (ANC)) for the virtual decay 6 Li→α+ d. Taking this circumstance into account, we calculated the NVC for the virtual decay 6 Li→α + d in the framework of three- body ( np) Faddeev equations in the momentum space. The Malfliet-Tjon and Graz potentials for NN interaction and the Sack-Biedenharn-Breit and Yamaguchi type potentials for αN interaction were used. The results of our calculations show that the obtained values of the NVC (or the ANC) are sensitive to the form of NN and αN potentials. This result is also corroborated by the values of the NVC calculated within the microscopic model using the Minnesota and Volkov potentials for NN- interaction [5]. The values of the NVC obtained in the present work were used to determine the values of the astrophysical S factor for the direct radiative capture d( α,γ ) 6 Li reaction at extremely low energies. It is shown that the values of the NVC corresponding to the different forms of NN and αN potentials lead to the different values of the

  5. Schroedinger’s Code: A Preliminary Study on Research Source Code Availability and Link Persistence in Astrophysics

    Science.gov (United States)

    Allen, Alice; Teuben, Peter J.; Ryan, P. Wesley

    2018-05-01

    We examined software usage in a sample set of astrophysics research articles published in 2015 and searched for the source codes for the software mentioned in these research papers. We categorized the software to indicate whether the source code is available for download and whether there are restrictions to accessing it, and if the source code is not available, whether some other form of the software, such as a binary, is. We also extracted hyperlinks from one journal’s 2015 research articles, as links in articles can serve as an acknowledgment of software use and lead to the data used in the research, and tested them to determine which of these URLs are still accessible. For our sample of 715 software instances in the 166 articles we examined, we were able to categorize 418 records as according to whether source code was available and found that 285 unique codes were used, 58% of which offered the source code for download. Of the 2558 hyperlinks extracted from 1669 research articles, at best, 90% of them were available over our testing period.

  6. Carbon dioxide and climate: an astrophysical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, R S

    1979-01-01

    In this survey the earth is viewed from the astrophysical perspective, i.e. using global mean values of environmental parameters. The role of carbon dioxide is described in the processes of energy transfer from the earth's surface to space, which determine global climate as measured by the mean surface temperature. Analogies and differences between the problems of the terrestrial atmosphere and those of the solar and stellar atmospheres are examined, both in the computation of model atmospheres and in remote sensing of atmospheric temperature and composition. Subsequently, the temporal astrophysical perspective, with a review of the evolution of CO/sub 2/ abundance and climate on astrophysical or geological time scales, on earth as an Venus (the runaway greenhouse) and on Mars is introduced. Variation of CO/sub 2/ may have been critical to the maintenance of an environment in which life could originate and evolve, and may itself have been affected by life. On human time scales, the recent and continuing increase in atmospheric CO/sub 2/ raises new problems, which are briefly surveyed. It is argued, that the differential greenhouse effect of increased CO/sub 2/ in the earth's atmosphere is essentially identifical to the blanketing effect of spectral lines on the temperature structure of stellar atmospheres. The methods used by astrophysicists in such studies are reviewed and compared with those used to evaluate the differential greenhouse effect of CO/sub 2/ in radiative-convective models of the earth's atmosphere. The latter methods remain relatively crude, but recent results by different authors are in reasonably good agreement; however, the astrophysical perspective, i.e. the use of one-dimensional global mean models, remains a gross simplification of the real complexity of the earth's climate system, which is also true in stellar atmospheres.

  7. Research in particle physics. [Dept. of Physics, Boston Univ

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Scott J.

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  8. Distance correlation methods for discovering associations in large astrophysical databases

    International Nuclear Information System (INIS)

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P.

    2014-01-01

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.

  9. Nuclear interactions of high energy heavy ions and applications in astrophysics. Final technical report

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1998-01-01

    Projectile fragmentation experiments have been conducted at the LBL Bevalac accelerator, utilizing both the B40 and the HISS facilities, to produce a dataset of 36 beam/energy combinations covering projectiles from 4 He to 58 Ni and various energies from 170--2100 MeV/nucleon. While some runs were subject to beam instabilities, magnet problems or low statistics, there remains a large dataset which is still being analyzed. The results will be used to investigate the physics of the intermediate energy fragmentation process and will find application in the astrophysics of cosmic ray propagation in the galaxy. An overview of the science goals and rationale is followed by presentation of the experimental techniques and apparatus that has been employed. Data analysis, including both detector subsystem and accelerator calibration, is discussed with emphasis on the unique features of the dataset and the analysis problems being addressed. Results from the experiments are presented throughout to illustrate the status of the analysis, e.g., momentum distribution widths. Total, Elemental and Isotopic cross sections from various beam/energy combinations are presented, including the first data on 32 S fragmentation and the complete isotopic fragmentation cross sections for 28 Si interacting in both Carbon and Hydrogen targets. The new results are compared to any existing data and to formulae used to predict unmeasured cross sections. The size and complexity of the dataset and the required detail of the analysis precluded finishing the full analysis under the subject grant. Plans for additional analysis are presented, and these will be carried out in coming years as time and resources permit

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Center for Astrophysics, Guangzhou University, Guangzhou 510006, China. Department of Physics, School for Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China. Astronomy Science and Technology Research Laboratory of Department of Education of Guangdong Province, Guangzhou ...

  11. Local models of astrophysical discs

    Science.gov (United States)

    Latter, Henrik N.; Papaloizou, John

    2017-12-01

    Local models of gaseous accretion discs have been successfully employed for decades to describe an assortment of small-scale phenomena, from instabilities and turbulence, to dust dynamics and planet formation. For the most part, they have been derived in a physically motivated but essentially ad hoc fashion, with some of the mathematical assumptions never made explicit nor checked for consistency. This approach is susceptible to error, and it is easy to derive local models that support spurious instabilities or fail to conserve key quantities. In this paper we present rigorous derivations, based on an asympototic ordering, and formulate a hierarchy of local models (incompressible, Boussinesq and compressible), making clear which is best suited for a particular flow or phenomenon, while spelling out explicitly the assumptions and approximations of each. We also discuss the merits of the anelastic approximation, emphasizing that anelastic systems struggle to conserve energy unless strong restrictions are imposed on the flow. The problems encountered by the anelastic approximation are exacerbated by the disc's differential rotation, but also attend non-rotating systems such as stellar interiors. We conclude with a defence of local models and their continued utility in astrophysical research.

  12. Titles of Scientific Letters and Research Papers in Astrophysics: A Comparative Study of Some Linguistic Aspects and Their Relationship with Collaboration Issues

    Science.gov (United States)

    Méndez, David I.; Alcaraz, M. Ángeles

    2017-01-01

    In this study we compare the titles of scientific letters and those of research papers published in the field of astrophysics in order to identify the possible differences and/or similarities between both genres in terms of several linguistic and extra-linguistic variables (length, lexical density, number of prepositions, number of compound…

  13. Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics

    Science.gov (United States)

    Diaz-Torres, Alexis; Wiescher, Michael

    2018-05-01

    A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.

  14. Theoretically palatable flavor combinations of astrophysical neutrinos

    International Nuclear Information System (INIS)

    Bustamante, Mauricio

    2015-07-01

    The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.

  15. An introduction to observational astrophysics

    CERN Document Server

    Gallaway, Mark

    2016-01-01

    Observational Astrophysics follows the general outline of an astrophysics undergraduate curriculum targeting practical observing information to what will be covered at the university level. This includes the basics of optics and coordinate systems to the technical details of CCD imaging, photometry, spectography and radio astronomy.  General enough to be used by students at a variety of institutions and advanced enough to be far more useful than observing guides targeted at amateurs, the author provides a comprehensive and up-to-date treatment of observational astrophysics at undergraduate level to be used with a university’s teaching telescope.  The practical approach takes the reader from basic first year techniques to those required for a final year project. Using this textbook as a resource, students can easily become conversant in the practical aspects of astrophysics in the field as opposed to the classroom.

  16. Nonlinear dynamics and astrophysics

    International Nuclear Information System (INIS)

    Vallejo, J. C.; Sanjuan, M. A. F.

    2000-01-01

    Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)

  17. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-01-01

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the 18 F+p→ 15 O+α process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  18. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Rayet, M.

    1990-01-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects

  19. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  20. Relativistic Astrophysics and Cosmology: A Primer

    International Nuclear Information System (INIS)

    Abramowicz, Marek A

    2007-01-01

    'Relativistic Astrophysics and Cosmology: A Primer' by Peter Hoyng, was published last year by Springer. The book is based on lectures given by the author at University of Utrecht to advanced undergraduates. This is a short and scholarly book. In about 300 pages, the author has covered the most interesting and important applications of Albert Einstein's general relativity in present-day astrophysics and cosmology: black holes, neutron stars, gravitational waves, and the cosmic microwave background. The book stresses theory, but also discusses several experimental and observational topics, such as the Gravity Probe B mission, interferometer detectors of gravitational waves and the power spectrum of the cosmic microwave background. The coverage is not uniform. Some topics are discussed in depth, others are only briefly mentioned. The book obviously reflects the author's own research interests and his preferences for specific mathematical methods, and the choice of the original artwork that illustrates the book (and appears on its cover) is a very personal one. I consider this personal touch an advantage, even if I do not always agree with the author's choices. For example, I employ Killing vectors as a very useful mathematical tool not only in my research on black holes, but also in my classes. I find that my students prefer it when discussions of particle, photon and fluid motion in the Schwarzschild and Kerr spacetimes are based explicitly and directly on the Killing vectors rather than on coordinate calculations. The latter approach is, of course, the traditional one, and is used in Peter Hoyng's book. Reading the book is a stimulating experience, because the reader can almost feel the author's presence. The author's opinions, his mathematical taste, his research pleasures, and his pedagogical passion are apparent everywhere. Lecturers contemplating a new course on relativistic astrophysics could adopt Hoyng's book as the text. Their students will be in the author

  1. Nuclear reactions in AGB nucleosynthesis: the 19F(α, p22Ne at energies of astrophysical relevance

    Directory of Open Access Journals (Sweden)

    D’Agata G.

    2017-01-01

    Full Text Available The abundance of 19F in the universe is strictly related to standard and extra-mixing processes taking place inside AGB-stars, that are considered to be the most important sites for its production. Nevertheless the way in which it is destroyed is far from being well understood. For this reason we studied the 19F(α,p22Ne reaction, that is supposed to be the main destruction channel in the Helium-rich part of the star. In this experiment, the reaction has been studied in the energy range of relevance for astrophysics (0÷1 MeV via the Trojan Horse Method (THM, using the three-body reaction 6Li(19F,p22Ned.

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Pankaj Jain1 S. Sarala2. Physics Department, Indian Institute of Technology, Kanpur 208 016, India. National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Post Bag 3, Ganeshkhind, Pune 411 007, India.

  3. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  4. ''DIANA'' - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    International Nuclear Information System (INIS)

    Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

    2009-01-01

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges

  5. Swedish Energy Research 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Swedish Energy Research 2009 provides a brief, easily accessible overview of the Swedish energy research programme. The aims of the programme are to create knowledge and skills, as needed in order to commercialise the results and contribute to development of the energy system. Much of the work is carried out through about 40 research programmes in six thematic areas: energy system analysis, the building as an energy system, the transport sector, energy-intensive industries, biomass in energy systems and the power system. Swedish Energy Research 2009 describes the overall direction of research, with examples of current research, and results to date within various thematic areas and highlights

  6. Recent progress in ab-initio studies of nuclear reactions of astrophysical interest with A ≤ 3

    Science.gov (United States)

    Marcucci, Laura E.

    2018-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the consequences for the solar neutrino fluxes of the recent determination for the astrophysical S-factor of the proton weak capture by proton, and on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis.

  7. Astrophysical opacity library

    International Nuclear Information System (INIS)

    Huebner, W.F.; Merts, A.L.; Magee, N.H. Jr.; Argo, M.F.

    1977-08-01

    The astrophysical elements opacity library includes equation of state data, various mean opacities, and 2000 values of the frequency-dependent extinction coefficients in equally spaced intervals u identical with hν/kT from 0 to 20 for 41 degeneracy parameters eta from -28 (nondegenerate) to 500 and 46 temperatures kT from 1 eV to 100 keV. Among available auxiliary quantities are the free electron density, mass density, and plasma cutoff frequency. A library-associated program can produce opacities for mixtures with up to 20 astrophysically abundant constituent elements at 4 levels of utility for the user

  8. SERS internship Fall 1992--Spring 1993: Abstract and research papers

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-05

    This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics.

  9. SERS internship Fall 1992--Spring 1993: Abstract and research papers

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics

  10. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States)

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  11. Research for energy

    International Nuclear Information System (INIS)

    Garbers, C.F.

    1983-01-01

    This paper deals with energy R D and its funding in the South African public sector. The objectives of the National Programme for Energy Research are discussed within the framework of the country's manpower and financial needs and limitations. It is shown that energy research is multidisciplinary where the focus is on infrastructure development within the constraints of technical, economic and environmental factors. Possible mechanisms to cater for the country's energy research funding are suggested

  12. Numerical simulation in astrophysics

    International Nuclear Information System (INIS)

    Miyama, Shoken

    1985-01-01

    There have been many numerical simulations of hydrodynamical problems in astrophysics, e.g. processes of star formation, supernova explosion and formation of neutron stars, and general relativistic collapse of star to form black hole. The codes are made to be suitable for computing such problems. In astrophysical hydrodynamical problems, there are the characteristics: problems of self-gravity or external gravity acting, objects of scales very large or very short, objects changing by short period or long time scale, problems of magnetic force and/or centrifugal force acting. In this paper, we present one of methods of numerical simulations which may satisfy these requirements, so-called smoothed particle methods. We then introduce the methods briefly. Then, we show one of the applications of the methods to astrophysical problem (fragmentation and collapse of rotating isothermal cloud). (Mori, K.)

  13. MAX: Development of a Laue diffraction lens for nuclear astrophysics

    International Nuclear Information System (INIS)

    Barriere, N.; Ballmoos, P. von; Skinner, G.; Smither, B.; Bastie, P.; Hinglais, E.; Abrosimov, N.; Alvarez, J.M.; Andersen, K.; Courtois, P.; Halloin, H.; Harris, M.; Isern, J.; Jean, P.; Knoedlseder, J.; Ubertini, P.; Vedrenne, G.; Weidenspointner, G.; Wunderer, C.

    2006-01-01

    The next generation of instrumentation for nuclear astrophysics will have to achieve an improvement in sensitivity by a factor of 10-100 over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge and propose to combine the required sensitivity with high spectral and angular resolution, and the capability to measure the polarization of the photons. MAX is a space-borne crystal diffraction telescope, featuring a broad-band Laue lens optimized for the observation of compact sources in two wide energy bands of high astrophysical relevance. Gamma rays will be focused from the large collecting area of a crystal diffraction lens onto a very small detector volume. As a consequence, the signal to background ratio is greatly enhanced, leading to unprecedented sensitivities

  14. Double layers and circuits in astrophysics

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-05-01

    As the rate of energy release in a double layer with voltage DeltaV is P corresponding to IDeltaV, a double layer must be treated part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by menas of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroroal particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made. It is found that students using these textbooks remain essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for half a centry (e.g., double layers, Langmuir, 1929: pinch effect, Bennet, 1934). The conclusion is that astrophysics is too important to be left in the hands of the astrophysicist. Earth bound and space telescope data must be treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course with modern plasma theory. At least by volume the universe consists to more than 99 percent of plasma, and electromagnetic forces are 10/sup39/ time stronger than gravitation

  15. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  16. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  17. Progress of the Felsenkeller Shallow-Underground Accelerator for Nuclear Astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cavanna, F.; Cowan, T. E.; Grieger, M.; Hensel, T.; Junghans, A. R.; Ludwig, F.; Müller, S. E.; Rimarzig, B.; Reinicke, S.; Schulz, S.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M. P.; Wagner, A.; Wagner, L.; Zuber, K.

    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 µA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.

  18. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  19. Computational Infrastructure for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael S.; Hix, W. Raphael; Bardayan, Daniel W.; Blackmon, Jeffery C.; Lingerfelt, Eric J.; Scott, Jason P.; Nesaraja, Caroline D.; Chae, Kyungyuk; Guidry, Michael W.; Koura, Hiroyuki; Meyer, Richard A.

    2006-01-01

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that is freely available online at nucastrodata.org. Features of, and future plans for, this software suite are given

  20. Modeling the astrophysical dynamical process with laser-plasmas

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jun; Zhang Jie

    2001-01-01

    The use of the state-of-the-art laser facility makes it possible to create conditions of the same or similar to those in the astrophysical processes. The introduction of the astrophysics-relevant ideas in laser-plasma experiments is propitious to the understanding of the astrophysical phenomena. However, the great difference between the laser-produced plasmas and the astrophysical processes makes it awkward to model the latter by laser-plasma experiments. The author addresses the physical backgrounds for modeling the astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. Thus, allowing the creation of experimental test beds where observations and models can be quantitatively compared with laser-plasma data. Special attentions are paid on the possibilities of using home-made laser facilities to model astrophysical phenomena

  1. Highlights of the NASA particle astrophysics program

    Energy Technology Data Exchange (ETDEWEB)

    Jones, William Vernon, E-mail: w.vernon.jones@nasa.gov [Astrophysics Division DH000, Science Mission Directorate, NASA Headquarters, Washington DC (United States)

    2014-07-01

    The NASA Particle Astrophysics Program covers Origin of the Elements, Nearest Sources of Cosmic Rays, How Cosmic Particle Accelerators Work, The Nature of Dark Matter, and Neutrino Astrophysics. Progress in each of these topics has come from sophisticated instrumentation flown on long duration balloon (LDB) flights around Antarctica over the past two decades. New opportunities including Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging for the next major step. Stable altitudes and long durations enabled by SPB flights ensure ultra-long duration balloon (ULDB) missions that can open doors to new science opportunities. The Alpha Magnetic Spectrometer (AMS) has been operating on the ISS since May 2011. The CALorimetric Electron Telescope (CALET) and Cosmic Ray Energetics And Mass (CREAM) experiments are being developed for launch to the Japanese Experiment Module Exposed Facility (JEM-EF) in 2015. And, the Extreme Universe Space Observatory (EUSO) is planned for launch to the ISS JEM-EF after 2017. Collectively, these four complementary ISS missions covering a large portion of the cosmic ray energy spectrum serve as a cosmic ray observatory. (author)

  2. Highlights of the NASA particle astrophysics program

    International Nuclear Information System (INIS)

    Jones, William Vernon

    2014-01-01

    The NASA Particle Astrophysics Program covers Origin of the Elements, Nearest Sources of Cosmic Rays, How Cosmic Particle Accelerators Work, The Nature of Dark Matter, and Neutrino Astrophysics. Progress in each of these topics has come from sophisticated instrumentation flown on long duration balloon (LDB) flights around Antarctica over the past two decades. New opportunities including Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging for the next major step. Stable altitudes and long durations enabled by SPB flights ensure ultra-long duration balloon (ULDB) missions that can open doors to new science opportunities. The Alpha Magnetic Spectrometer (AMS) has been operating on the ISS since May 2011. The CALorimetric Electron Telescope (CALET) and Cosmic Ray Energetics And Mass (CREAM) experiments are being developed for launch to the Japanese Experiment Module Exposed Facility (JEM-EF) in 2015. And, the Extreme Universe Space Observatory (EUSO) is planned for launch to the ISS JEM-EF after 2017. Collectively, these four complementary ISS missions covering a large portion of the cosmic ray energy spectrum serve as a cosmic ray observatory. (author)

  3. Laboratory studies of photoionized plasma related to astrophysics

    International Nuclear Information System (INIS)

    Yang Peiqiang; Wang Feilu; Zhao Gang

    2011-01-01

    Photoionized plasma is universal in astronomy and has great importance on account of its close relation to compact astrophysical objects such as black holes. Recently, with the development of high energy density lasers and Z-pinch facilities, it has become possible to simulate astronomical photoionized plasma in the laboratory. These experiments help us to benchmark and modify the photoionization models, and to understand the photoionization processes to diagnose related astronomical plasma environments. (authors)

  4. FIRST LIGHT: MeV ASTROPHYSICS FROM THE MOON

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Richard S. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Lawrence, David J., E-mail: richard.s.miller@uah.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2016-06-01

    We report evidence of the first astrophysical source detected from the Moon at MeV energies. Our detection of Cygnus X-1 is a validation of a new investigative paradigm in which the lunar environment is intrinsic to the detection approach: the Lunar Occultation Technique (LOT). NASA’s Lunar Prospector mission served as a proxy for a dedicated LOT-based mission. The characteristic signature of temporal modulation, generated by repeated lunar occultations and encoded within acquired gamma-ray data (0.5–9 MeV), is consistent with an unambiguous detection of Cygnus X-1 at 5.4 σ significance. Source localization and long-term monitoring capabilities of the LOT are also demonstrated. This “first light” detection verifies the basic tenets of the LOT methodology, reinforces its feasibility as an alternative astronomical detection paradigm for nuclear astrophysics investigations, and is an illustration of the fundamental benefits of the Moon as a platform for science.

  5. Direct measurement of resonance strengths in 34S(α ,γ )38Ar at astrophysically relevant energies using the DRAGON recoil separator

    Science.gov (United States)

    Connolly, D.; O'Malley, P. D.; Akers, C.; Chen, A. A.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Fulton, B. R.; Greife, U.; Hager, U.; Hutcheon, D. A.; Ilyushkin, S.; Laird, A. M.; Mahl, A.; Ruiz, C.

    2018-03-01

    Background: Nucleosynthesis of mid-mass elements is thought to occur under hot and explosive astrophysical conditions. Radiative α capture on 34S has been shown to impact nucleosynthesis in several such conditions, including core and shell oxygen burning, explosive oxygen burning, and type Ia supernovae. Purpose: Broad uncertainties exist in the literature for the strengths of three resonances within the astrophysically relevant energy range (ECM=1.94 -3.42 MeV at T =2.2 GK ). Further, there are several states in 38Ar within this energy range which have not been previously measured. This work aimed to remeasure the resonance strengths of states for which broad uncertainty existed as well as to measure the resonance strengths and energies of previously unmeasured states. Methods: Resonance strengths and energies of eight narrow resonances (five of which had not been previously studied) were measured in inverse kinematics with the DRAGON facility at TRIUMF by impinging an isotopically pure beam of 34S ions on a windowless 4He gas target. Prompt γ emissions of de-exciting 38Ar recoils were detected in an array of bismuth germanate scintillators in coincidence with recoil nuclei, which were separated from unreacted beam ions by an electromagnetic mass separator and detected by a time-of-flight system and a multianode ionization chamber. Results: The present measurements agree with previous results. Broad uncertainty in the resonance strength of the ECM=2709 keV resonance persists. Resonance strengths and energies were determined for five low-energy resonances which had not been studied previously, and their strengths were determined to be significantly weaker than those of previously measured resonances. Conclusions: The five previously unmeasured resonances were found not to contribute significantly to the total thermonuclear reaction rate. A median total thermonuclear reaction rate calculated using data from the present work along with existing literature values

  6. γ astrophysics above 10-30 GeV with the MAGIC telescope

    International Nuclear Information System (INIS)

    Mirzoyan, Razmick

    1999-01-01

    The project on the 17 m oe telescope, dubbed MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), is dedicated for γ astrophysics in the energy range from 10-30 GeV till 50-100 TeV. MAGIC will for the first time allow to explore with very high sensitivity the energy range 10-300 GeV and to bridge the existing energy gap between satellite and ground-based air Cherenkov measurements. We believe MAGIC will serve as a prototype for future multi-telescope γ ray observatories

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Author Affiliations. K. Karami1 2 3 R. Mohebi1. Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj, Iran. Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Maragha, Iran. Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan, Iran.

  8. Study of aluminum emission spectra in astrophysical plasmas

    International Nuclear Information System (INIS)

    Jin Zhan; Zhang Jie

    2001-01-01

    High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer

  9. Quark matter in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Olinto, A.V.

    1987-10-01

    We dicuss the role of quark matter in astrophysics and cosmology. The implications of the dynamics of the quark-hadron phase transition in the early universe for the element abundances from big bang nucleosynthesis and the composition of the dark matter in the universe are addressed. We discuss the possibility of deciding on an equation of state for high density matter by observing the cooling of a neutron star remnant of SN1987A. Quark matter models for the Centauros events, Cygnus X-3 cosmic ray events, high energy gamma-ray bursts and the solar neutrino problem are described. 25 refs., 3 figs

  10. Old and New from Multifrequency Astrophysics

    Directory of Open Access Journals (Sweden)

    Franco Giovannelli

    2014-12-01

    Full Text Available In this short review paper we comment on some the most important steps that have been made in the past decades for a better understanding of the physics governing our Universe. The results we discuss come from the many groundand-space-based experiments developed for measuring astrophysical sources in various energy bands. These experimental results are discussed within the framework of current theoretical models. Because of the limited length of this paper, we have selected only a few topics that, in our opinion, have been crucial for the progress of our understanding of the physics of cosmic sources.

  11. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  12. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1989-01-01

    This document reports the past year's achievements and the present directions of the activities of Boston University researchers in seven projects in high energy physics research: study of high energy electron-positron annihilation, using the SLD detector at SLAC; search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring detector system at BNL; development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; study of proton-antiproton collisions using the UA1 detector at CERN; and study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  13. Toward observational neutrino astrophysics

    International Nuclear Information System (INIS)

    Koshiba, M.

    1988-01-01

    It is true that: (1) The first observation of the neutrino burst from the supernova SN1987a by Kamiokande-II which was immediately confirmed by IBM; and (2) the first real-time, directional, and spectral observation of solar 8 B neutrinos also by Kamiokande-II could perhaps be considered as signalling the birth of observational astrophysics. The field, however, is still in its infancy and is crying out for tender loving care. Namely, while the construction of astronomy requires the time and the direction of the signal and that of astrophysics requires, in addition to the spectral information, the observations of (1) could not give the directional information and the results of both (1) and (2) are still suffering from the meager statistics. How do we remedy this situation to let this new born science of observational neutrino astrophysics grow healthy. This is what the author addresses in this talk. 15 refs., 8 figs

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 1. Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f ( R , T ) Theory of Gravity. P. K. AGRAWAL D. D. PAWAR. Research Article Volume 38 Issue 1 March 2017 Article ID 2 ...

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Department of Physics, Pune University, Pune 411 007, India. Department of Physics, The College of New Jersey, PO Box 7718, Ewing, NJ 08628-0718, USA. Indian Institute of Astrophysics (IIA) Bangalore 560 034, India. Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, ...

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 18 Research Article. Gulmarg, Kashmir, India: Potential Site for Optical Astronomical Observations ... Active Galactic Nucleus Feedback with the Square Kilometre Array and Implications for Cluster Physics and Cosmology · Asif Iqbal ...

  17. When astrophysics meets lay and specialized audiences: titles in popular and scientific papers

    OpenAIRE

    Alcaraz Ariza, María Ángeles; Méndez Alcaraz, David Israel

    2016-01-01

    In this study we carry out a comparative analysis between titles of research papers published in the most authoritative specialized European and US-based astrophysics journals written in English and titles of articles on astrophysics published in Scientific American Magazine, the most prestigious English-written journal in the divulgation of science. We specifically address issues related to three linguistic variables: title length, title lexical density and title type. Our main results show ...

  18. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  19. Research in particle physics. Progress report, June 1, 1992--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron{endash}positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ``electrostatic muon kicker``; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  20. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  1. Observational astrophysics

    CERN Document Server

    Léna, Pierre; Lebrun, François; Mignard, François; Pelat, Didier

    2012-01-01

    This is the updated, widely revised, restructured and expanded third edition of Léna et al.'s successful work Observational Astrophysics. It presents a synthesis on tools and methods of observational astrophysics of the early 21st century. Written specifically for astrophysicists and graduate students, this textbook focuses on fundamental and sometimes practical limitations on the ultimate performance that an astronomical system may reach, rather than presenting particular systems in detail. In little more than a decade there has been extraordinary progress in imaging and detection technologies, in the fields of adaptive optics, optical interferometry, in the sub-millimetre waveband, observation of neutrinos, discovery of exoplanets, to name but a few examples. The work deals with ground-based and space-based astronomy and their respective fields. And it also presents the ambitious concepts behind space missions aimed for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spec...

  2. Final Report for Research in High Energy Physics (University of Hawaii)

    Energy Technology Data Exchange (ETDEWEB)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  3. Astrophysical radiative shocks: From modeling to laboratory experiments

    Czech Academy of Sciences Publication Activity Database

    Gonzales, N.; Stehlé, C.; Audit, E.; Busquet, M.; Rus, Bedřich; Thais, F.; Acef, O.; Barroso, P.; Bar-Shalom, A.; Bauduin, D.; Kozlová, Michaela; Lery, T.; Madouri, A.; Mocek, Tomáš; Polan, Jiří

    2006-01-01

    Roč. 24, - (2006), s. 535-540 ISSN 0263-0346 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE; European Commission(XE) 5592 - JETSET Grant - others:CNRS(FR) PNPS Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * laser plasmas * radiative shock waves * radiative transfer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.958, year: 2006

  4. Energy research

    International Nuclear Information System (INIS)

    1979-03-01

    Status reports are given for the Danish Trade Ministry's energy research projects on uranium prospecting and extraction, oil and gas recovery, underground storage of district heating, electrochemical energy storage systems, wind mills, coal deposits, coal cambustion, energy consumption in buildings, solar heat, biogas, compost heat. (B.P.)

  5. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 2. Issue front cover thumbnail. Volume 38, Issue 2. June 2017. Article ID 18 Research Article. Gulmarg, Kashmir, India: Potential Site for Optical Astronomical Observations · Ajaz Ahmad Dar Manzoor A. Malik · More Details Abstract Fulltext PDF.

  7. Stopping Power Measurements: Implications in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Carmen Angulo; Thierry Delbar; Jean-Sebastien Graulich; Pierre Leleux

    1999-01-01

    The stopping powers of C, CH 2 , Al, Ni, and polyvinylchloride (PVC) for several light ions ( 9 Be, 11 B, 12 C, 14 N, 16 O, 19 F, 20 Ne) with an incident energy of 1 MeV/amu have been measured at the Louvain-la-Neuve cyclotron facility. Stopping powers are given relative to the one for 5.5 MeV 4 He ions with an uncertainty of less than 1%. We compare our results with two widely used semiempirical models and we discuss some implications in nuclear astrophysics studies

  8. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  9. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Fueloep, Zs.

    2005-01-01

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  10. Scalar fields and their applications in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Mbelek, Jean-Paul

    2003-01-01

    This research thesis reports an analysis of the different existing theoretical contexts of occurrence of scalar fields in unified field theories, astrophysics and cosmology. More particularly, most of unified theories (Grand Unified Theories of GUTs, string theories, and so on) can be reduced, within astrophysical and cosmological conditions, to the form of effective theories such as Kaluza-Klein (multi-dimensional theories) or Brans-Dicke (four-dimensional theories) theories which comprise scalar fields. After a presentation of these theories, the author discusses the concept of scalar fields in field quantum theories and in cosmology. He proposes a stabilised model of the Kaluza-Klein theory in 5D, and several experiments designed to measure G. The thesis is completed by several published articles and contributions [fr

  11. Magnetohydrodynamic models of astrophysical jets

    International Nuclear Information System (INIS)

    Beskin, Vasily S

    2010-01-01

    In this review, analytical results obtained for a wide class of stationary axisymmetric flows in the vicinity of compact astrophysical objects are analyzed, with an emphasis on quantitative predictions for specific sources. Recent years have witnessed a great increase in understanding the formation and properties of astrophysical jets. This is due not only to new observations but also to advances in analytical theory which has produced fairly simple relations, and to what can undoubtedly be called a breakthrough in numerical simulation which has enabled confirmation of theoretical predictions. Of course, we are still very far from fully understanding the physical processes occurring in compact sources. Nevertheless, the progress made raises hopes for near-future test observations that can give insight into the physical processes occurring in active astrophysical objects. (reviews of topical problems)

  12. Astrophysics and the exploration of the universe; L'astrophysique et l'exploration de l'Univers

    Energy Technology Data Exchange (ETDEWEB)

    Turck-Chieze, S.; Garcia, R.A.; Brun, A.S.; Minier, V.; Andre, Ph.; Motte, F.; Mathis, St.; Foglizzo, Th.; Decourchelle, A.; Ballet, J.; Chaty, S.; Corbel, St.; Rodriguez, J.; Brahic, A.; Charnoz, S.; Ferrari, C.; Lagage, P.O.; Masset, F.; Pantin, E.; Sauvage, M.; Galliano, F.; Goldwurm, A.; Ballet, J.; Decourchelle, A.; Grenier, I.; Daddi, E.; Elbaz, D.; Bournaud, F.; Yvon, D.; Arnaud, M.; Teyssier, R.; Lehoucq, R.; Palanque-Delabrouille, N.; Lehoucq, R.; Cirelli, M.; Bonvin, C.; Mansoulie, B.; Ruhlmann-Kleider, V.; Refregier, A.; Brax, Ph.; Lavignac, St.; Starck, J.L.; Talvard, M.; Sauvage, M.; Cara, Ch.; Lagage, P.O.; Ferrari, C.; Rodriguez, L.; Sauvageot, J.L.; Lebrun, F.; Grenier, I.; Glicenstein, J.F.; Gerbier, G.

    2009-07-01

    This special issue of Clefs CEA journal is entirely devoted to astrophysics and to the exploration and probing of the Universe. A first part of this dossier, described here, makes a status of our present day knowledge about stars, planets, galaxies, the Universe structure and dark matter. Content: 1 - Stars seed the Universe: What does the Sun tell us?, Probing stellar interiors, From the Sun to the stars, A tour of stellar nurseries, How heavy elements arise, How supernovae explode, Supernova remnants, High-energy objects - sources for astonishment, Focus: A Probing the Universe across the entire light spectrum; 2 - Planets: a dance of small bodies, swirling around up to the finale of their birth: How our world was born, The rings of Saturn: a magnificent research laboratory, Planetary cocoons; 3 - Galaxies: a richly paradoxical evolution: The active life of galaxies, A mysterious black hole, Elucidating the cosmic ray acceleration mechanism, Seeking out the great ancestors, The formation of galaxies: a story of paradoxes, The morphogenesis of galaxies; 4 - The Universe, a homogeneous 'soup' that has turned into a hierarchical structure: The grand thermal history of the Universe, The cosmic web, The formation of the structures of the Universe: the interplay of models, Does the Universe have a shape? Is it finite, or infinite?; 5 - Odyssey across the dark side of the Universe: The puzzle of dark matter, Astrophysics and the observation of dark matter, The theory of dark matter, Could dark matter be generated some day at LHC? A Universe dominated by dark energy, Astrophysics and the observation of dark energy, Theories of dark energy, The matter-antimatter asymmetry of the Universe; 6 - Journey into the lights of the Universe: Microwave - ESA Planck Surveyor, Submillimeter and infrared - ArTeMis, Herschel Space Observatory, VLT-VISIR, Cassini-CIRS, Visible - SoHo-GOLF, X-ray - XMM-Newton, Gamma ray - INTEGRAL, Fermi Gamma-Ray Space Telescope, HESS

  13. Measurement of the 13C(α,n)16O reaction at astrophysical energies using the Trojan Horse Method. Focus on the -3 keV subthreshold resonance

    International Nuclear Information System (INIS)

    La Cognata, M.; Spitaleri, C.; Guardo, G.L.; Puglia, S.M.R.; Romano, S.; Sparta, R.; Trippella, O.; Kiss, G.G.; Rogachev, G.V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D.; Mukhamedzhanov, A.M.; Lamia, L.

    2014-01-01

    Most of the nuclei in the mass range 90 ≤ A ≤ 208 are produced through the so-called s-process, namely through a series of neutron capture reactions on seed nuclei followed by β-decays. The 13 C(α,n) 16 O reaction is the neutron source for the main component of the s-process. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≤ 10 8 K, corresponding to an energy interval of 140 - 230 keV. In this region, the astrophysical S (E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17 O. Direct measurements could not soundly establish its contribution owing to the cross section suppression at astrophysical energies determined by the Coulomb barrier between interacting nuclei. Indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method turns out to be very suited for the study of the 13 C(α,n) 16 O reaction as it allows us to access the low as well as the negative energy region, in particular in the case of resonance reactions. We have applied the Trojan Horse Method to the 13 C( 6 Li; n 16 O)d quasi-free reaction. By using the modified R-matrix approach, the asymptotic normalization coefficient (C(O(1/2+),α 13 C)] 2 of the 6.356 MeV level has been deduced as well as the n-partial width, allowing to attain an unprecedented accuracy for the 13 C(α,n) 16 O astrophysical factor. A preliminary analysis of a partial data set has lead to (C(O(1/2+),α 13 C)] 2 = (6.7-0.6+0.9) fm -1 , slightly larger than the values in the literature, determining a 13 C(α,n) 16 O reaction rate in agreement with the most results in the literature at ∼ 10 8 K, with enhanced accuracy thanks to this innovative approach. (authors)

  14. Miklós Konkoly Thege (1842-1916). 100 Years of Observational Astronomy and Astrophysics. A collection of papers on the history of Observational Astrophysics

    Science.gov (United States)

    Sterken, C.; Hearnshaw, J. B.

    2001-12-01

    This book results from presentations and discussions by a group of astronomers and historians during a three-day workshop held at Tihany (Hungary), on 13-15 August 1999. This meeting - the second forum dedicated to the rise of observational astrophysics in the nineteenth and early twentieth century - coincided with the centenary of Hungary's national observatory. The basic principle of this series of meetings is to reflect on the work and personality of a single individual or of a group of persons, at the same time avoiding the really dominant figures that typify the age. The series focuses on key people who epitomize a way of thinking and working, that has in turn formed many of the ideas by which we do astrophysical research today. Hence the evocation of the scientific spirit of the era under consideration is attempted. Such a leading key person undoubtedly was Miklós Konkoly Thege. A superb instrumentalist and observer, Konkoly became the founding father of Hungarian astronomy through the establishment of his private observatory that later became the Royal Hungarian Ogyalla Observatory, the precursor of the modern Konkoly Observatory. The workshop was organized at the occasion of the centennial anniversary of Konkoly Observatory. The book outlines five major themes. The first part describes the birth of observational astrophysics in Hungary and focuses on historical aspects of 19th-century Hungarian astronomy from three different viewpoints: the historical narrative based on historical facts, the perspective as seen by an expert in historical instrumentation, and a discussion of the socio-political consequences of nineteenth-century developments for our present times. The second part analyses the birth of observational astrophysics in countries with which Konkoly and his collaborators had close contacts: Japan, South Africa and France. The third part of the book discusses the establishment of the discipline of photometry worldwide. An important aspect of 19th

  15. Neutrinos at the forefront of elementary physics and astrophysics - Slides and abstracts

    International Nuclear Information System (INIS)

    Wark, D.; Cabrera, A.; Clark, K.; Cribier, M.; Rubbia, A.; Schwetz, T.; Hagedorn, C.; Bajc, B.; Thomas, J.; Nakahata, M.; Bravar, S.; Raffelt, G.; Mirizzi, A.; Serpico, P.; Drappeau, S.; Turk-Chieze, S.; Vignaud, D.; Kouchner, A.; Gay, P.; Baerwald, P.; Van Elewyck, V.; Branco, G.; Arbey, A.; Saviano, N.; Cirelli, M.; Verde, L.; Courtois, H.; Mauger, F.; Giunti, C.; Smadja, G.; Gascon, J.; Katsanevas, S.; Autiero, D.

    2014-01-01

    The conference has focused on neutrinos as a bridge between the two words of particle physics and astrophysics/cosmology with 3 main topics: -) the fundamental properties of neutrinos (neutrino masses and oscillations, mass hierarchy, neutrinoless double beta decay, neutrinos as Majorana particles, the search for CP violation in the leptonic sector, hints of physics beyond the standard model, the present experimental scenario and future large size experiments for neutrino oscillations and astro particle physics...); -) Neutrinos in astrophysics (neutrinos from the sun, neutrinos from Supernovae, high energy neutrinos... ); -) Neutrinos in cosmology (measurements of large scale structures, cosmological parameters, nucleosynthesis, dark matter, sterile neutrinos,...). This document is made up of the slides of the presentations and a few abstracts.

  16. The 2nd International Conference on Particle Physics and Astrophysics

    CERN Document Server

    Soldatov, Evgeny; ICPPA 2016

    2016-01-01

    The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016) will be held in Moscow, Russia, (from the 10th to 14th of October). The conference is organized by the National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and to develop new ideas in fundamental research. Therefore we will bring together experts and young scientists working in experimental and theoretical aspects of nuclear physics, particle physics (including astroparticle physics), and cosmology. ICPPA-2016 aims to present the most recent results in astrophysics and collider physics from the main experiments actively taking data as well as any upgrades for the methods of experimental particle physics. Furthermore, one special workshop will be held within the framework of this conference: «SiPM development and application». The working language of the conference is English

  17. Hard X-ray/soft gamma-ray telescope designs for future astrophysics missions

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Pivovaroff, Michael J.

    2013-01-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating...

  18. New astrophysical school of thermodynamics. Space dynamics and gravitism

    Energy Technology Data Exchange (ETDEWEB)

    Gal-Or, B [Technion-Israel Inst. of Tech., Haifa. Dept. of Aeronautical Engineering

    1978-07-01

    Much verified information has been accumulated in recent years which shows that many fundamental concepts involving classical physics, thermodynamics, astrophysics and the general theory of relativity are strongly coupled together. This evidence is employed in this paper to explain principles of the astrophysical school of thermodynamics; a growing revolutionary school which deduces thermodynamics, energy dissipation, and time anisotropies from the Newtonian and Einsteinian theories of gravitation and from the dynamics of radiation in 'unsaturable' (intercluster) space. Accordingly, the density of radiation and the dynamics of ('unsaturable') outer space affect all processes in the galactic media, in the solar system, in the magnetosphere and on Earth. The origin of all observed irreversibilities in nature - of time, of all time anisotropics, of energy dissipation, of T-violations in 'elementary particles', of retarded potentials in electrodynamics, of the biological clocks, and of biological arrows of time - is one; it is the radiation unsaturability of space. But, since this unsaturability and gravitation are interconnected, the origin of asymmetries, structure, and thermodynamics is explained within the framework of the Newtonian and Einsteinian theories of gravitation. The theory presented here forms a part of a general approach called gravitism, which unifies some other disciplinary studies in the natural sciences with a unified approach to gravitation and the theory of time.

  19. Improved predictions of nuclear reaction rates for astrophysics applications with the TALYS reaction code

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J.

    2008-01-01

    Nuclear reaction rates for astrophysics applications are traditionally determined on the basis of Hauser-Feshbach reaction codes, like MOST. These codes use simplified schemes to calculate the capture reaction cross section on a given target nucleus, not only in its ground state but also on the different thermally populated states of the stellar plasma at a given temperature. Such schemes include a number of approximations that have never been tested, such as an approximate width fluctuation correction, the neglect of delayed particle emission during the electromagnetic decay cascade or the absence of the pre-equilibrium contribution at increasing incident energies. New developments have been brought to the reaction code TALYS to estimate the Maxwellian-averaged reaction rates of astrophysics relevance. These new developments give us the possibility to calculate with an improved accuracy the reaction cross sections and the corresponding astrophysics rates. The TALYS predictions for the thermonuclear rates of astrophysics relevance are presented and compared with those obtained with the MOST code on the basis of the same nuclear ingredients for nuclear structure properties, optical model potential, nuclear level densities and γ-ray strength. It is shown that, in particular, the pre-equilibrium process significantly influences the astrophysics rates of exotic neutron-rich nuclei. The reciprocity theorem traditionally used in astrophysics to determine photo-rates is also shown no to be valid for exotic nuclei. The predictions obtained with different nuclear inputs are also analyzed to provide an estimate of the theoretical uncertainties still affecting the reaction rate prediction far away from the experimentally known regions. (authors)

  20. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adams, J.

    2014-01-01

    Cube detector are consistent with the previously reported astrophysical flux in the 100 TeV–PeV range at the level of 10^-8  GeV cm^-2 s^-1 sr^-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ. The data are consistent with expectations for equal fluxes of all...

  1. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J

    2008-01-01

    Context. Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. Aims. The reaction code TALYS has been recently updated to estimate the Maxwellian-averaged reaction rates that are of astrophysical relevance. These new developments enable the reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. Methods. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. Results. It is shown that TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. For the first time, the Maxwellian- averaged (n, 2n) reaction rate is calculated for all nuclei and its competition with the radiative capture rate is discussed. Conclusions. The TALYS code provides a new tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability. (authors)

  2. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  3. Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Science.gov (United States)

    Bonolis, Luisa

    2017-06-01

    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.

  4. Special relativity in general frames from particles to astrophysics

    CERN Document Server

    Gourgoulhon, Éric

    2013-01-01

    Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn’t restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active g...

  5. 2nd International Conference on Nuclear Physics in Astrophysics

    CERN Document Server

    Fülöp, Zsolt; Somorjai, Endre; The European Physical Journal A : Volume 27, Supplement 1, 2006

    2006-01-01

    Launched in 2004, "Nuclear Physics in Astrophysics" has established itself in a successful topical conference series addressing the forefront of research in the field. This volume contains the selected and refereed papers of the 2nd conference, held in Debrecen in 2005 and reprinted from "The European Physical Journal A - Hadrons and Nuclei".

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. A. Pirya1 S. Nandi1 D. J. Saikia2 C. Konar3 M. Singh1. Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 129, India. National Centre for Radio Astrophysics, Pune University Campus, Post Bag 3, Pune 411 007, India. ASIAA, Taipei 10617, Taiwan, Republic of China.

  7. Exploring the Cosmic Frontier Astrophysical Instruments for the 21st Century

    CERN Document Server

    Lobanov, Andrei P; Cesarsky, Catherine; Diamond, Phillip J

    2007-01-01

    In the coming decades, astrophysical science will benefit enormously from the construction and operation of several major international ground- and space based facilities, such as ALMA, Herschel/Planck, and SKA in the far infrared to radio band, Extremely Large Telescopes, JWST and GAIA in the optical to near infrared regime, XEUS and Constellation-X in the X-ray, and GLAST in the Gamma-ray regime. These and other new instruments will have a major impact in a wide range of scientific topics including the cosmological epoch of reionization, galactic dynamics and nuclear activity, stellar astronomy, extra-solar planets, gamma-ray bursts, X-ray binaries, and many others. On May 18-21, 2004, the Max-Planck-Society’s Harnack-Haus in Dahlem, Berlin hosted the international symposium "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century". The symposium in Berlin was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting ...

  8. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia; Angulo, C.; Arnould, M.

    2000-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. we report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged-particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies, the theoretical predictions obtained in the framework of the Hauser-Feshbach model is used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (authors)

  9. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia

    1999-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. We report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged -particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies the theoretical predictions obtained in the framework of the Hauser-Feshbach model are used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (author)

  10. Studying the high energy cosmic radiation: contributions to its detection and to the exploration of its origin

    International Nuclear Information System (INIS)

    Lamanna, Giovanni

    2009-01-01

    The Astro-particle Physics is a discipline where scientists from both the astrophysics and the particle physics communities meets to investigate the Universe aiming to answer to fundamental questions in the field of physics, cosmology and astrophysics. The high energy astrophysics domain, which explores the extremes sources where the larger collective transfer of energy take place, studies the most energetic cosmic radiation as privileged messengers of the history of the Universe. My research path, summarized in this work, is made of personal contributions in the development of new detection technologies, in the data analysis, perspectives and phenomenological studies about the scientific purposes of large experiments: e.g. AMS, ANTARES, HESS, CTA, POLAR. My contributions are the results of research activities in coherence with two main scientific goals in the context of the astro-particle physics domain: - The implication of the high energy cosmic radiation measurement for the investigation on the nature and distribution of the dark matter; - The investigation of the origin of the galactic cosmic radiation for the understanding of the most energetic processes in the Universe. (author)

  11. Analogue Hawking radiation from astrophysical black-hole accretion

    International Nuclear Information System (INIS)

    Das, Tapas K

    2004-01-01

    We show that spherical accretion onto astrophysical black holes can be considered as a natural example of an analogue system. We provide, for the first time, an exact analytical scheme for calculating the analogue Hawking temperature and surface gravity for general relativistic accretion onto astrophysical black holes. Our calculation may bridge the gap between the theory of transonic astrophysical accretion and the theory of analogue Hawking radiation. We show that the domination of the analogue Hawking temperature over the actual Hawking temperature may be a real astrophysical phenomenon, though observational tests of this fact will at best be difficult and at worst might prove to be impossible. We also discuss the possibilities of the emergence of analogue white holes around astrophysical black holes. Our calculation is general enough to accommodate accreting black holes with any mass

  12. Experimental simulation of lightning, interacting explosions and astrophysical jets with pulsed lasers

    International Nuclear Information System (INIS)

    Villagran-Muniz, M; Sobral, H; Navarro-Gonzalez, R; Velazquez, P F; Raga, A C

    2003-01-01

    Tabletop laboratory experiments have been used to simulate natural lightning, interacting explosions and astrophysical jets. When a high-energy laser pulse is focused in air, a laser-induced plasma (LIP) is produced, that generates a shock wave and an adiabatic expansion of the gas. In our work we have used LIPs in order to simulate lightning, for the study of chemical reactions relevant to atmospheric science. Several diagnostics have been applied to our LIPs, such as deflectometry, shadowgraphy and interferometry, which yield full spatial information of the process (electron density and temperature, the position of the shock wave fronts and the expansion of the hot gas), with a time resolution that ranges from nanoseconds to milliseconds. A new diagnostic alternative was implemented for shadowgraphy, which uses either continuous lasers or conventional light sources. The experimental results have been reproduced by hydrodynamic codes that we have developed. With astrophysical applications in mind, we have simulated and diagnosed the interaction of two explosions, with the aforementioned techniques. For this purpose, two LIPs are synchronized and diagnosed spatially and temporarily. Also, by producing the LIP in a glass sphere with a nozzle that ejects a shock wave and hot gas, we are able to simulate astrophysical jets. With such experiments, astrophysical models developed by us have been validated, showing excellent agreement between experiments and numerical simulations

  13. Nuclear astrophysics of the sun

    International Nuclear Information System (INIS)

    Kocharov, G.E.

    1980-01-01

    In the first chapter we will discuss the problem of nuclear reactions in the interior of the sun and consider the modern aspects of the neutrino astrophysics of the Sun. The second chapter is devoted to the high energy interactions in the solar atmosphere during the flares. Among a great number of events during the solar flares we shall consider mainly the nuclear reactions. Special attention will be paid to the genetic connection between the different components of solar electromagnetic and corpuscular radiation. The idea of the unity of processes in different parts of the Sun, from hot and dense interior up to the rare plasma of the solar corona will be the main line of the book. (orig./WL) 891 WL/orig.- 892 HIS

  14. C{sub 60} AS A PROBE FOR ASTROPHYSICAL ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Brieva, A. C.; Jäger, C.; Huisken, F. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gredel, R.; Henning, T., E-mail: aab01@alumni.aber.ac.uk [Max Planck Institute for Astronomy (MPIA), Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-08-01

    The C{sub 60} molecule has been recently detected in a wide range of astrophysical environments through its four active intramolecular vibrational modes ( T {sub 1u}) near 18.9, 17.4, 8.5, and 7.0 μ m. The strengths of the mid-infrared emission bands have been used to infer astrophysical conditions in the fullerene-rich regions. Widely varying values of the relative intrinsic strengths (RIS) of these four bands are reported in laboratory and theoretical papers, which impedes the derivation of the excitation mechanism of C{sub 60} in the astrophysical sources. The spectroscopic analysis of the C{sub 60} samples produced with our method delivers highly reproducible RIS values of 100, 25 ± 1, 26 ± 1 and 40 ± 4. A comparison of the inferred C{sub 60} emission band strengths with the astrophysical data shows that the observed strengths cannot be explained in terms of fluorescent or thermal emission alone. The large range in the observed 17.4 μ m/18.9 μ m emission ratios indicates that either the emission bands contain significant contributions from emitters other than C{sub 60}, or that the population distribution among the C{sub 60} vibrational modes is affected by physical processes other than thermal or UV excitation, such as chemo-luminescence from nascent C{sub 60} or possibly Poincaré fluorescence resulting from an inverse internal energy conversion. We have carefully analyzed the effect of the weakly active fundamental modes and second order modes in the mid-infrared spectrum of C{sub 60}, and propose that neutral C{sub 60} is the carrier of the unidentified emission band at 6.49 μ m which has been observed in fullerene-rich environments.

  15. Recent progress on astrophysical opacity

    International Nuclear Information System (INIS)

    Rogers, F.J.; Iglesias, C.A.

    1992-08-01

    Improvements in the calculation of the opacity of astrophysical plasmas has helped to resolve several long-standing puzzles in the modeling of variable stars. The most significant opacity enhancements over the Los Alamos Astrophysical Library (LAOL) are due to improvements in the equation of state and atomic physics. Comparison with experiment has corroborated the predicted large opacity increases due to transitions in M-shell iron. We give a summary of recent developments

  16. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  17. Introduction to Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Iliadis, Christian

    2010-01-01

    In the first lecture of this volume, we will present the basic fundamental ideas regarding nuclear processes occurring in stars. We start from stellar observations, will then elaborate on some important quantum-mechanical phenomena governing nuclear reactions, continue with how nuclear reactions proceed in a hot stellar plasma and, finally, we will provide an overview of stellar burning stages. At the end, the current knowledge regarding the origin of the elements is briefly summarized. This lecture is directed towards the student of nuclear astrophysics. Our intention is to present seemingly unrelated phenomena of nuclear physics and astrophysics in a coherent framework.

  18. Analyses of High-Energy Sources with ESA Gaia

    Czech Academy of Sciences Publication Activity Database

    Hudec, R.; Šimon, Vojtěch; Hudcová, Věra

    2010-01-01

    Roč. 1248, - (2010), s. 583-584 ISSN 1551-7616. [X-ray astronomy 2009. Bologna, 07.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : high-energy sources * gamma-ray bursts * low-dispersion spectra Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. Java 3D Interactive Visualization for Astrophysics

    Science.gov (United States)

    Chae, K.; Edirisinghe, D.; Lingerfelt, E. J.; Guidry, M. W.

    2003-05-01

    We are developing a series of interactive 3D visualization tools that employ the Java 3D API. We have applied this approach initially to a simple 3-dimensional galaxy collision model (restricted 3-body approximation), with quite satisfactory results. Running either as an applet under Web browser control, or as a Java standalone application, this program permits real-time zooming, panning, and 3-dimensional rotation of the galaxy collision simulation under user mouse and keyboard control. We shall also discuss applications of this technology to 3-dimensional visualization for other problems of astrophysical interest such as neutron star mergers and the time evolution of element/energy production networks in X-ray bursts. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  20. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  1. Demographics in Astronomy and Astrophysics

    Science.gov (United States)

    Ulvestad, James S.

    2011-05-01

    Astronomy has been undergoing a significant demographic shift over the last several decades, as shown by data presented in the 2000 National Research Council (NRC) report "Federal Funding of Astronomical Research," and the 2010 NRC report, "New Worlds, New Horizons in Astronomy and Astrophysics." For example, the number of advertised postdoctoral positions in astronomy has increased much more rapldly than the number of faculty positions, contributing to a holding pattern of early-career astronomers in multiple postdoctoral positions. This talk will summarize some of the current demographic trends in astronomy, including information about gender and ethnic diversity, and describe some of the possible implications for the future. I thank the members of the Astro2010 Demographics Study Group, as well as numerous white-paper contributors to Astro2010, for providing data and analyses.

  2. Physics and astrophysics a selection of key problems

    CERN Document Server

    Ginzburg, Vitalii Lazarevich

    2013-01-01

    Physics and Astrophysics discusses some major problems concerned with macrophysics. Such topics as the controlled thermonuclear fusion, high- temperature superconductivity, and metallic exciton liquid in semiconductors are covered. The definition and elements related to microphysics are discussed. This section focuses on mass spectrum, quarks and gluons, and the interaction of particles at high and super high energies. The book gives a brief overview of the general theory of relativity. The production and origin of gravitational waves are discussed in detail. Cosmology is the study of space an

  3. Progress report of a research program in experimental and theoretical high energy physics, 1 November 1993--31 October 1994

    International Nuclear Information System (INIS)

    Brandenberger, R.; Cutts, D.; Fried, H.M.

    1994-01-01

    This paper reports on the following tasks: theoretical high-energy physics; computational physics; interactions of leptons and hadrons from accelerator and astrophysical sources; and hadron collider and neutrino physics

  4. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  5. Nuclear astrophysics. Irfu - IN2P3 prospective of 2012

    International Nuclear Information System (INIS)

    Assie, M.; Hammache, F.; Khan, E.; Margueron, J.; Sereville, N. de; Bastin, B.; Oliveira Santos, F. de; Ploszajczak, M.; Sorlin, O.; Bernard, D.; Chieze, J.-P.; Decourchelle, A.; Ducret, J. E.; Foglizzo, T.; Gilles, D.; Schanne, S.; Turck-Chieze, S.; Coc, A.; Duprat, J.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.; Courtin, S.; Dufour, M.; Haas, F.; Gulminelli, F.; Gunsing, F.; Obertelli, A.; Maurin, D.; Renaud, M.; Smirnova, N.

    2011-01-01

    This document proposes a rather detailed overview of the different research works performed by nuclear astrophysicists belonging to the Irfu and to the IN2P3. It also presents the main results and envisaged researches. These issues are herein presented by distinguishing four main themes. The first one concerns the main issues of the field: cosmology and nuclear physics, hydrostatic nucleosynthesis and stellar evolution, explosive nucleosynthesis (supernovae, novae, X-bursts), neutron stars and protostars, galactic cosmic radiation and nuclear astrophysics, formation of the Solar System. The second theme concerns means of observation: astro-seismology, X astronomy, nuclear gamma astronomy, meteorites and micro-meteorites. The third theme concerns measurements in laboratory: steady beam accelerators, radioactive beam accelerators, neutron beams, production of radioactive targets, power lasers, isotopic analysis of extraterrestrial matter. The fourth theme concerns nuclear theories for astrophysics. Appendices propose summaries of objectives of current projects, and tables indicating involved staff and budgets

  6. Energy research for tomorrow

    International Nuclear Information System (INIS)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard

    2011-04-01

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial application and

  7. Energy research for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Arzberger, Isolde; Breh, Wolfgang; Brendler, Vinzenz; Danneil, Friederike; Eulenburg, Katharina; Messner, Frank; Ossing, Franz; Saupe, Stephan; Sieber, Julia; Zeiss, Erhard (eds.)

    2011-04-15

    One of the central challenges of the 21st century is to ensure a sustainable energy supply for the world's people and its economy. That's why scientists are searching for solutions that will provide sufficient amounts of energy - reliably, affordably and without endangering the natural environment on which our lives are based. One thing everyone agrees on is that there are no obvious solutions. No single energy carrier or technology will suffice to safeguard our future energy supply. Consequently, researchers must examine a broad range of options and develop many different kinds of technologies. This is the only way to create a sustainable energy system that adequately takes local environmental, political, social and economic conditions into account. Germany's largest scientific organisation, the Helmholtz Association of German Research Centres, is carrying out world-class research into diverse aspects of this existential challenge in its Research Field Energy. A broad spectrum of energy sources such as the sun, nuclear fusion, fossil fuels, geothermal energy, water, wind, nuclear fission and biomass are being investigated - but this is not all. Technologies for energy storage, energy distribution and efficient energy use also play a key role. This comprehensive approach corresponds to the energy concept of the government of the Federal Republic of Germany, which calls for a dynamic energy mix that includes the expanded use of renewable energies, a corresponding extension of the power grid, the development of new energy storage systems and increased energy efficiency. The scientists of the Helmholtz Association are investigating entire chains of energy processes, including boundary conditions and side effects such as the impact on the climate and the environment and acceptance issues. They are taking into account interactions with other sectors such as the raw materials, construction and mobility industries. Energy research is directed at industrial

  8. Alpha resonant scattering for astrophysical reaction studies

    International Nuclear Information System (INIS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-01-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7 Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7 Be(α,γ) reaction, and proposed a new cluster band in 11 C

  9. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  10. An overview of the Los Alamos Crestone Project : uses for astrophysical problems

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, R. P. (Robert P.); Gittings, M. L. (Michael L.); Gisler, Galen R.; Coker, R. F. (Robert F.); New, K. C. (Kimberly C.); Hueckstaedt, R. M. (Robert M.)

    2004-01-01

    The Los Alamos Crestone Project is part of the Department of Energy's (DoE) Advanced Simulation and Computing (ASC) program. The main goal of this project is to investigate the use of continuous adaptive mesh refinement (CAMR) techniques for application to problems of interest to the Laboratory. An overview of the astrophysical simulations performed with the SAGE/RAGE codes will be shown here, including asteroid impacts in the deep-ocean, asteroid impacts on the continental shelf (e.g. - Chicxulub - the dinosaur killer), calculations of massive black holes at the galactic center, and calculations of supernova explosions. Examples of these simulations will be shown. We have shown that the SAGE and RAGE codes of the Crestone Project have been very successful products of the DoE's Advanced Simulation and Computing program. It is clear to those performing massively-parallel computations, that the use of thousands of processors in parallel is fundamentally changing the way we think about computer simulations. The Crestone Project codes are fully utilizing each new ASC supercomputer as they become available. The SAGE and RAGE codes are sophisticated Continuous Adaptive Mesh Refinement hydrodynamics codes for large parallel simulations. SAGE and RAGE are becoming useful tools for astrophysical applications. Further research is starting in a wider variety of areas, including cosmological studies with Mike Norman's group at UCSD.

  11. Theoretical nuclear structure and astrophysics. Progress report for 1996

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops

  12. Heavy ion physics challenges at Bevalac/SIS energies

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.

    1987-11-01

    This paper discusses where the future of higher energy heavy ion acceleration may lead in terms of understanding the nucleus. The discussion concerns obstacles to formulating an equation of state for nuclear matter at high temperature and density. Implications of this research for astrophysical problems is also presented. (LSP)

  13. Hera: High Energy Astronomical Data Analysis via the Internet

    Science.gov (United States)

    Valencic, Lynne A.; Chai, P.; Pence, W.; Snowden, S.

    2011-09-01

    The HEASARC at NASA Goddard Space Flight Center has developed Hera, a data processing facility for analyzing high energy astronomical data over the internet. Hera provides all the software packages, disk space, and computing resources needed to do general processing of and advanced research on publicly available data from High Energy Astrophysics missions. The data and data products are kept on a server at GSFC and can be downloaded to a user's local machine. This service is provided for free to students, educators, and researchers for educational and research purposes.

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 1. Abundances of La138 and Ta180 Through ν-Nucleosynthesis in 20 M ⊙ Type II Supernova Progenitor, Guided by Stellar Models for Seeds. N. Lahkar S. Kalita H. L. Duorah K. Duorah. Research Article Volume 38 Issue 1 March 2017 Article ID 8 ...

  15. 2004 ASTRONOMY & ASTROPHYSICS

    Indian Academy of Sciences (India)

    user

    This publication of the Academy on Astronomy and Astrophysics is unique in ... bring out position papers on societal issues where science plays a major ..... funding agencies, the Astronomical Society of ..... orbit very close to the parent star.

  16. 78 FR 2293 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-01-10

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... meeting includes the following topics: --Astrophysics Division Update --NASA Astrophysics Roadmapping It...

  17. 78 FR 66384 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-11-05

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --Presentation of Astrophysics Roadmap --Reports from Program Analysis Groups...

  18. 75 FR 51116 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-08-18

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... topics: --Astrophysics Division Update --2010 Astronomy and Astrophysics Decadal Survey --Update on...

  19. International Conference on Recent Advances in Spectroscopy : Theoretical, Experimental, and Astrophysical Perspectives

    CERN Document Server

    Chaudhuri, Rajat K; Raveendran, A. V; Satya Narayanan, A; Recent Advances in Spectroscopy : Theoretical, Astrophysical and Experimental Perspectives

    2010-01-01

    In recent years there have been great advances in the fields of laboratory and astronomical spectroscopy. These have been equally matched by large-scale computations using state-of-the-art theoretical methods. The accurate atomic opacities that are available today play a great role in the field of biomedical research using nanotechnology. The proceedings of the "International Conference on Recent Advances in Spectroscopy: Theoretical, Experimental and Astrophysical Perspectives" contain both invited and contributory papers, which give the most recent results by the peers in the areas of theoretical and experimental atomic physics as well as observational astrophysics.

  20. White Paper on Nuclear Astrophysics

    OpenAIRE

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Berstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town mee...

  1. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-01-19

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the... following topics: --Astrophysics Division Update --Updates on Select Astrophysics Missions --Discussion of...

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Anjan A. Sen. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 33 Review. Cosmology and Astrophysics using the Post-Reionization HI · Tapomoy Guha Sarkar Anjan A. Sen · More Details Abstract Fulltext PDF.

  3. Before the Ring: synthesis of linear organic molecules in astrophysical ices by low energy electron impact

    Science.gov (United States)

    Huels, Michael A.; Bass Andrew, D.; Mirsaleh-Kohan, Nasrin; Sanche, Leon

    The question of the origin for the building blocks of life, either synthesized here on earth, or in space [1], has been the subject of much debate, experimental investigation, or astronomical observation, much of it stimulated by the early experiments of Miller [2], and subsequent space radiation related variations thereof [3-5]. And while the precise details of the formation of even the simplest biomolecules that make up life on earth still remain shrouded inmystery, one of the notions that persist throughout the debate is that the building blocks of life, such as amino-acids, or even the cyclic components of RNA and DNA, or other cyclic hydrocarbons (e.g. PHAs), where synthesized via radiolysis [6] either in the earths proto-atmosphere, its early oceans, or in the near interstellar space surrounding the early earth. Here we provide experimental evidence for the hypothesis that interactions of low energy secondary electrons and ions, formed during the radiolysis of matter, with atoms and molecules in the medium, may have played, and may still play an important role in the chemical transformation of astrophysical or planetary surface ices [7], where they lead to the synthesis of more complex chemical species from less complex, naturally occurring components. We report the synthesis and desorption of new chemical species from simple molecular surface ices, containing CH4 / CD4 , C2 D2 , O2 , CO, CO2 , or N2 in various combination mixtures, irradiated by low energy (CO+ (n = 1-3), among others. The formation of all these linear, pre-biotic molecular species, produced here by electron initiated cation-reactions in simple molecular films, suggests that similar mechanisms likely precede the synthesis of life's most basic cyclic molecular components in planetary, or astrophysical surface ices that are continuously subjected to the types of space radiations (UV, X-or -ray, or heavy ions) that can generate such low energy secondary electrons. [Funded by NSERC and Canadian

  4. The proceedings of the 1st international workshop on laboratory astrophysics experiments with large lasers

    International Nuclear Information System (INIS)

    Remington, B.A.; Goldstein, W.H.

    1996-01-01

    The world has stood witness to the development of a number of highly sophisticated and flexible, high power laser facilities (energies up to 50 kJ and powers up to 50 TW), driven largely by the world-wide effort in inertial confinement fusion (ICF). The charter of diagnosing implosions with detailed, quantitative measurements has driven the ICF laser facilities to be exceedingly versatile and well equipped with diagnostics. Interestingly, there is considerable overlap in the physics of ICF and astrophysics. Both typically involve compressible radiative hydrodynamics, radiation transport, complex opacities, and equations of state of dense matter. Surprisingly, however, there has been little communication between these two communities to date. With the recent declassification of ICF in the USA, and the approval to commence with construction of the next generation ''superlasers'', the 2 MJ National Ignition Facility in the US, and its equivalent, the LMJ laser in France, the situation is ripe for change. . Given the physics similarities that exist between ICF and astrophysics, one strongly suspects that there should exist regions of overlap where supporting research on the large lasers could be beneficial to the astrophysics community. As a catalyst for discussions to this end, Lawrence Livermore National Laboratory sponsored this workshop. Approximately 100 scientists attended from around the world, representing eight countries: the USA, Canada, UK, France, Germany, Russia, Japan, and Israel. A total of 30 technical papers were presented. The two day workshop was divided into four sessions, focusing on nonlinear hydrodynamics, radiative hydrodynamics, radiation transport, and atomic physics-opacities. Copies of the presentations are contained in these proceedings

  5. The proceedings of the 1st international workshop on laboratory astrophysics experiments with large lasers

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B.A.; Goldstein, W.H. [eds.

    1996-08-09

    The world has stood witness to the development of a number of highly sophisticated and flexible, high power laser facilities (energies up to 50 kJ and powers up to 50 TW), driven largely by the world-wide effort in inertial confinement fusion (ICF). The charter of diagnosing implosions with detailed, quantitative measurements has driven the ICF laser facilities to be exceedingly versatile and well equipped with diagnostics. Interestingly, there is considerable overlap in the physics of ICF and astrophysics. Both typically involve compressible radiative hydrodynamics, radiation transport, complex opacities, and equations of state of dense matter. Surprisingly, however, there has been little communication between these two communities to date. With the recent declassification of ICF in the USA, and the approval to commence with construction of the next generation ``superlasers``, the 2 MJ National Ignition Facility in the US, and its equivalent, the LMJ laser in France, the situation is ripe for change. . Given the physics similarities that exist between ICF and astrophysics, one strongly suspects that there should exist regions of overlap where supporting research on the large lasers could be beneficial to the astrophysics community. As a catalyst for discussions to this end, Lawrence Livermore National Laboratory sponsored this workshop. Approximately 100 scientists attended from around the world, representing eight countries: the USA, Canada, UK, France, Germany, Russia, Japan, and Israel. A total of 30 technical papers were presented. The two day workshop was divided into four sessions, focusing on nonlinear hydrodynamics, radiative hydrodynamics, radiation transport, and atomic physics-opacities. Copies of the presentations are contained in these proceedings.

  6. The path to improved reaction rates for astrophysics

    International Nuclear Information System (INIS)

    Rauscher, T.

    2011-01-01

    This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and α particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided. (author)

  7. Communicating the Science from NASA's Astrophysics Missions

    Science.gov (United States)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  8. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  9. Allen's astrophysical quantities

    CERN Document Server

    2000-01-01

    This new, fourth, edition of Allen's classic Astrophysical Quantities belongs on every astronomer's bookshelf. It has been thoroughly revised and brought up to date by a team of more than ninety internationally renowned astronomers and astrophysicists. While it follows the basic format of the original, this indispensable reference has grown to more than twice the size of the earlier editions to accommodate the great strides made in astronomy and astrophysics. It includes detailed tables of the most recent data on: - General constants and units - Atoms, molecules, and spectra - Observational astronomy at all wavelengths from radio to gamma-rays, and neutrinos - Planetary astronomy: Earth, planets and satellites, and solar system small bodies - The Sun, normal stars, and stars with special characteristics - Stellar populations - Cataclysmic and symbiotic variables, supernovae - Theoretical stellar evolution - Circumstellar and interstellar material - Star clusters, galaxies, quasars, and active galactic nuclei ...

  10. Search for point-like sources using the diffuse astrophysical muon-neutrino flux in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Rene; Haack, Christian; Raedel, Leif; Schoenen, Sebastian; Schumacher, Lisa; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube, a cubic-kilometer sized neutrino detector at the geographic South Pole, has recently confirmed a flux of high-energy astrophysical neutrinos in the track-like muon channel. Although this muon-neutrino flux has now been observed with high significance, no point sources or source classes could be identified yet with these well pointing events. We present a search for point-like sources based on a six year sample of upgoing muon-neutrinos with very low background contamination. To improve the sensitivity, the standard likelihood approach has been modified to focus on the properties of the measured astrophysical muon-neutrino flux.

  11. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  12. A weakened cascade model for turbulence in astrophysical plasmas

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.

    2011-01-01

    A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.

  13. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: study of high energy electron-positron annihilation, using SLD detector at SLAC. Development of integrated transition radiation detection and tracking for an SSC detector; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; Development of a new underground detector facility in the Gran Saso Laboratory in Italy to search for magnetic monopoles and to study astrophysical muons and neutrinos; Search for proton decay and neutrinos from point astrophysical sources, and the study of cosmic ray muons and neutrinos in the IMB detector; Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Fabrication (with M.I.T. and Princeton) of the BGO endcaps and associated tracking chambers for the L3 detector at LEP. Development of a central tracker for the SSC; and This new tasks requests support for research, development, and beam testing of a prototype SSC calorimeter featuring a tower geometry and composed of lead alloy and scintillating fibers

  14. CELESTE: an atmospheric Cherenkov telescope for high energy gamma astrophysics

    Czech Academy of Sciences Publication Activity Database

    Paré, E.; Balauge, B.; Bazer-Bachi, R.; Bergeret, H.; Berny, F.; Briand, N.; Bruel, P.; Cerutti, M.; Collon, J.; Cordier, A.; Cornbise, P.; Debiais, G.; Dezalay, J. P.; Dumora, D.; Durand, E.; Eschstruth, P.; Espigat, P.; Fabre, B.; Fleury, P.; Gilly, J.; Gouillaud, J. C.; Gregory, C.; Hérault, N.; Holder, J.; Hrabovský, Miroslav; Incerti, S.; Jouenne, A.; Kalt, L.; LeGallou, R.; Lott, B.; Manigot, P.; Neveu, J.; Olive, J. F.; Palatka, Miroslav; Perez, A.; Rebii, A.; Rob, L.; Sans, J. L.; Schovánek, Petr; Villard, G.

    2002-01-01

    Roč. 490, - (2002), s. 71-89 ISSN 0168-9002 R&D Projects: GA MŠk LN00A006 Institutional research plan: CEZ:AV0Z1010920 Keywords : gamma-ray astronopy * atmospheric Cherenkov detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.167, year: 2002

  15. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  16. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  17. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  18. AstroMail: Electronic mail for the astrophysics community

    Science.gov (United States)

    Scherrer, Phillip H.; Bogart, Richard S.

    1993-01-01

    As part of the NASA Science Internet User Support Services program, NASA Goddard was interested in R&D which could extend the SolarMail system developed by members of the Wilcox Space Observatory at Stanford University to support a larger astrophysics user community. Specific objectives of the R&D effort were to include: a clone of the existing SolarMail system with additional documentation, enabling a parallel mail system to be established by populating the database; a cloned version of SolarMail functioning with a user database similar to that of the High Energy Astrophysics Division (HEAD) of the American Astronomical Society; a report on the status and surveyed usage of SolarMail and its clones into an extendable distributed mail system to serve as the basis for AstroMail, including a draft declaration of policy; a prototype AstroMail system based on the above specifications and including at least SolarMail and one of its clones supporting a set of astronomy user databases as subsets; and a report on the status of the prototype AstroMail with recommendations for future modifications to AstroMail.

  19. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  20. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)