WorldWideScience

Sample records for energy agency building

  1. 75 FR 20833 - Building Energy Codes

    Science.gov (United States)

    2010-04-21

    ...-0012] Building Energy Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the current model building energy codes or their equivalent. DOE is interested in better understanding... codes, Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings (or...

  2. UP-report. Buildings in the energy system. Basis of the Development platform. Build to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Byggnader i energisystemet. Underlag fraan Utvecklingsplattformen. Bygg till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation in the thematic area buildings in the energy system for the period 2011 - 2016. The report has been compiled by members of the development platform Build. This report provides background and the conditions of the area buildings in the energy system, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge which enabled the Swedish Energy Agency to then develop a strategy that meets the needs of the society and business.

  3. Cost and code study of underground building: a report to the Minnesota Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, R L

    1979-11-01

    The rapidly intensifying interest in the possible energy savings and environmental and land-use benefits associated with underground buildings has led increasing numbers of people to question restrictions that existing building codes place on underground construction and to make cost comparisons between underground structures and more-conventional buildings. Information in this report on earth-sheltered houses covers public policy issues (building code restrictions, taxation, insurance) and residential construction costs (cost breakdowns, general factors affecting costs, and life-cycle costs). The report also deals with regulatory and insurance issues (building codes, fire protection, insurance provisions) and construction costs for large underground buildings. The report recommends that: (1) the Minnesota Energy Agency consult with the Building Code Division of the Department of Administration on HUD Minimum Property Standards to examine the possibility of modifying several building-code requirements that affect earth-sheltered housing design; (2) HUD Minimum Property Standards be brought into line with the major building codes on the question of optional mechanical ventilation in houses; (3) model ordinances concerning setbacks, basement house provisions, and minimum square footage provisions to be drafted; (4) legal questions concerning the separation of ownership of the surface from that subsurface space be resolved; (5) questions concerning taxation of mined space be resolved; and (6) a life-cost inventory of underground residences and buildings in Minnesota be compiled.

  4. 76 FR 64931 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-10-19

    ...-0046] Building Energy Codes Cost Analysis AGENCY: Office of Energy Efficiency and Renewable Energy... reopening of the time period for submitting comments on the request for information on Building Energy Codes... the request for information on Building Energy Code Cost Analysis and provide docket number EERE-2011...

  5. Multi-level, Multi-stage and Stochastic Optimization Models for Energy Conservation in Buildings for Federal, State and Local Agencies

    Science.gov (United States)

    Champion, Billy Ray

    Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. . Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. . The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM

  6. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  7. IEA EBC Annex 67 Energy Flexible Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Jensen, Søren Østergaard

    2016-01-01

    know ledge on and demonstration of the Energy Flexibility Buildings can provide for the energy grids as well of to identify critical aspects and possible solutions to manage this Energy Flexibility. The paper discusses the background, the aims and the work plan of IEA (International Energy Agency) EBC......The foreseen large deployment of renewable energy sources may seriously affect the stability of energy grids. It will be necessary to control energy consumption to match instantaneous energy production. The built-in Energy Flexibility in buildings may be utilized for stabilizing the energy grids......, allowing for a larger roll out of renewable technologies. The Energy Flexibility of a building is the ability to manage its energy demand and generation according to local climate conditions, user needs and grid requirements. Energy Flexibility of buildings will thus allow for demand side management...

  8. Building energy, building leadership : recommendations for the adoption, development, and implementation of a commercial building energy code in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Akerstream, T. [Manitoba Hydro, Winnipeg, MB (Canada); Allard, K. [City of Thompson, Thompson, MB (Canada); Anderson, N.; Beacham, D. [Manitoba Office of the Fire Commissioner, Winnipeg, MB (Canada); Andrich, R. [The Forks North Portage Partnership, MB (Canada); Auger, A. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency; Downs, R.G. [Shindico Realty Inc., Winnipeg, MB (Canada); Eastwood, R. [Number Ten Architectural Group, Winnipeg, MB (Canada); Hewitt, C. [SMS Engineering Ltd., Winnipeg, MB (Canada); Joshi, D. [City of Winnipeg, Winnipeg, MB (Canada); Klassen, K. [Manitoba Dept. of Energy Science and Technology, Winnipeg, MB (Canada); Phillips, B. [Unies Ltd., Winnipeg, MB (Canada); Wiebe, R. [Ben Wiebe Construction Ltd., Winnipeg, MB (Canada); Woelk, D. [Bockstael Construction Ltd., Winnipeg, MB (Canada); Ziemski, S. [CREIT Management LLP, Winnipeg, MB (Canada)

    2006-09-15

    This report presented a strategy and a set of recommendations for the adoption, development and implementation of an energy code for new commercial construction in Manitoba. The report was compiled by an advisory committee comprised of industry representatives and government agency representatives. Recommendations were divided into 4 categories: (1) advisory committee recommendations; (2) code adoption recommendations; (3) code development recommendations; and (4) code implementation recommendations. It was suggested that Manitoba should adopt an amended version of the Model National Energy Code for Buildings (1997) as a regulation under the Buildings and Mobile Homes Act. Participation in a national initiative to update the Model National Energy Code for Buildings was also advised. It was suggested that the energy code should be considered as the first step in a longer-term process towards a sustainable commercial building code. However, the code should be adopted within the context of a complete market transformation approach. Other recommendations included: the establishment of a multi-stakeholder energy code task group; the provision of information and technical resources to help build industry capacity; the establishment of a process for energy code compliance; and an ongoing review of the energy code to assess impacts and progress. Supplemental recommendations for future discussion included the need for integrated design by building design teams in Manitoba; the development of a program to provide technical assistance to building design teams; and collaboration between post-secondary institutions to develop and deliver courses on integrated building design to students and professionals. 17 refs.

  9. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  10. Inventory of U.S.-led International Activities on Building Energy Efficiency Initial Findings

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alison; Evans, Meredydd

    2010-04-01

    Several U.S. Government agencies promote energy efficiency in buildings internationally. The types and scope of activities vary by agency. Those with the largest role include the U.S. Agency for International Development (USAID), the U.S. Department of State and the Environmental Protection Agency (EPA). Both USAID and the Department of State have a substantial presence overseas, which may present some complementarities with the Department of Energy’s efforts to reach out to other countries. Generally speaking, USAID focuses on capacity building and policy issues; the Department of State focuses on broad diplomatic efforts and some targeted grants in support of these efforts, and EPA has more targeted roles linked to ENERGY STAR appliances and a few other activities. Several additional agencies are also involved in trade-related efforts to promote energy efficiency in buildings. These include the Department of Commerce, the Export-Import Bank, the Overseas Private Investment Corporation and the Trade and Development Agency (TDA). This initial synthesis report is designed to summarize broad trends and activities relating to international cooperation on energy efficiency in buildings, which can help the U.S. Department of Energy (DOE) in developing its own strategy in this area. The Pacific Northwest National Laboratory will develop a more complete synthesis report later in 2010 as it populates a database on international projects on building energy efficiency.

  11. The Regional Biomass-Energy Agency (ERBE): an opportunity for the biomass-energy development in Wallonia

    International Nuclear Information System (INIS)

    Lemaire, P.; Menu, J.F.; Belle, J.F. van; Schenkel, Y.

    1997-01-01

    In 1995, the European Commission (Directorate-General for Energy) and the Walloon government set up a biomass-energy agency (ERBE), to promote and build biomass-energy projects in Wallonia (Belgium). A survey of biomass-energy potential indicates that wood-energy seems to offer the best utilization opportunities. Forest and logging residues, sawmills' and joineries' off-cuts, pallets residues, etc. could be burnt in wood district heating units with a significant social benefit. Consequently, the ERBE Agency is trying to set up projects in this way in Austria (+/- 100 wood heating systems) or in Sweden. It serves to inform industries and municipalities about biomass-energy, to advise them in the building of biomass-energy projects, to identify their energy needs and their biomass resources, to carry out prefeasibility studies, to inform them about financing opportunities, and so on. (author)

  12. 78 FR 55245 - Activities and Methodology for Assessing Compliance With Building Energy Codes

    Science.gov (United States)

    2013-09-10

    ...-0036] Activities and Methodology for Assessing Compliance With Building Energy Codes AGENCY: Office of... available to states to evaluate compliance with building energy codes and general approaches towards... building energy codes and general approaches towards compliance. The comment period ended on September 5...

  13. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  14. Energy Metrics for State Government Buildings

    Science.gov (United States)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  15. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  16. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  17. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  18. 75 FR 78231 - Management of Energy and Water Efficiency in Federal Buildings: Availability of Guidance

    Science.gov (United States)

    2010-12-15

    ... Water Efficiency in Federal Buildings: Availability of Guidance AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of availability. SUMMARY: This notice of availability... regarding Federal agency implementation of energy and water efficiency requirements. The draft Guidance for...

  19. Energy conservation in selected buildings, Gdansk. 1. final report

    International Nuclear Information System (INIS)

    1997-02-01

    This Final Report marks the end of the implementation stage of the project: 'Energy Conservation in Selected Buildings in Gdansk, Poland' supported by the Danish Environment-related Energy Sector Programme for Poland under the Danish Energy Agency. The residential and commercial sectors together with public buildings account for 40-45% of the total energy consumption and are dominated by the use of space heating and hot water. The sector has a significant over-consumption of energy, which first of all is due to the lack of or too weak incentives for the individual tenants to decrease the energy consumption. Bad thermal insulation of buildings and inefficient central heating systems with a widespread lack of measurement and automatic control systems give cause for extensive heat losses. The objective of the project has been to document the effects of energy savings in 18 multi-family houses when different types of energy saving measures are applied. These measures include thermal insulation of buildings, refurbishment of the heating system and introduction of individual billing system for heating and hot tap water. Energy audits of 18 buildings were performed by combination of on-site inspection of all buildings and data collection from the available drawings, technical descriptions, etc. The on-site inspection was carried out by use of an energy audit scheme specially developed for this project. (EG)

  20. Energy conservation in selected buildings, Gdansk. 1. final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This Final Report marks the end of the implementation stage of the project: `Energy Conservation in Selected Buildings in Gdansk, Poland` supported by the Danish Environment-related Energy Sector Programme for Poland under the Danish Energy Agency. The residential and commercial sectors together with public buildings account for 40-45% of the total energy consumption and are dominated by the use of space heating and hot water. The sector has a significant over-consumption of energy, which first of all is due to the lack of or too weak incentives for the individual tenants to decrease the energy consumption. Bad thermal insulation of buildings and inefficient central heating systems with a widespread lack of measurement and automatic control systems give cause for extensive heat losses. The objective of the project has been to document the effects of energy savings in 18 multi-family houses when different types of energy saving measures are applied. These measures include thermal insulation of buildings, refurbishment of the heating system and introduction of individual billing system for heating and hot tap water. Energy audits of 18 buildings were performed by combination of on-site inspection of all buildings and data collection from the available drawings, technical descriptions, etc. The on-site inspection was carried out by use of an energy audit scheme specially developed for this project. (EG)

  1. Effect of capacity building programme of development agencies on ...

    African Journals Online (AJOL)

    Effect of capacity building programme of development agencies on well being of beneficiaries in Niger Delta, Nigeria. ... available for training. Adequate supervision will also go a long way to ensuring sustainability of the programmes. Key words: capacity building programme, development agencies, well being, beneficiaries ...

  2. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  3. Energy Efficiency in the North American Existing Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This report presents the findings of a new assessment of the techno-economic and policy-related efficiency improvement potential in the North American building stock conducted as part of a wider appraisal of existing buildings in member states of the International Energy Agency. It summarizes results and provides insights into the lessons learned through a broader global review of best practice to improve the energy efficiency of existing buildings. At this time, the report is limited to the USA because of the large size of its buildings market. At a later date, a more complete review may include some details about policies and programs in Canada. If resources are available an additional comprehensive review of Canada and Mexico may be performed in the future.

  4. Mastery of energy in the French State buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-06-01

    One of the goals of the ADEME (the French Environment and Mastery of Energy Agency) is to improve the energy efficiency of buildings and of their equipments. Public and State buildings represent an important source of energy saving possibilities concerning the heating, the lighting and the air-conditioning. Total buildings energy consumption reached 86.3 Mtep in 1994 (45.2% of the total French energy consumption). State buildings represent only a 2.2 Mtep consumption per year for a heated surface of 65 millions of m{sup 2}. Heating represents 60% of this consumption. The corresponding functioning expenses are estimated to 3 billions of French Francs from which about 500 MF could be saved using more performing equipments and materials. In 1991, the French Ministry of Law in collaboration with the ADEME, carried out an action plan of energy audits for the mastery of energy in the French Law Courts. This action led to a 2.3 MF saving per year, from which 2.3 MF are gained without investments and 1.4 MF are linked to modernization works. Financing can be done by taking a 10 years credit-lease with refunding annuities lower than the saving generated by the investment. (J.S.). 1 ref., 1 photo.

  5. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  6. Economic and Environmental Impact of Energy Saving in Healthcare Buildings

    Directory of Open Access Journals (Sweden)

    Justo García-Sanz-Calcedo

    2018-03-01

    Full Text Available The purpose of this article is to estimate the economic and environmental impacts of energy consumption derived from healthcare buildings and proposes several energy-saving options in the sector. An experimental energy consumption study was development between 2005 and 2013 in 12 hospitals and 70 healthcare centres in Spain, built between 1980 and 2005 through audits carried out between 2005 and 2012, performed by the Extremadura Energy Agency. The study focused on electric energy, HVAC, DWH, lighting systems, renewable energies, maintenance strategy, thermal insulation, and optimal building size. Specifically, the following parameters were evaluated: energy savings, investment emission of CO2, NO2, and SO2 gases, and payback. The results revealed that through an appropriate energy management of healthcare buildings it is possible to save up to 8.60 kWh/m2 per year, for buildings of less than 5000 m2 (with no beds, which represents an expense of 1.55 €/m2. In healthcare buildings larger than 5000 m2 (with beds, it was possible to save up to 6.88 kWh/m2 per year, which represents an expense of 1.25 €/m2.

  7. 75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Science.gov (United States)

    2010-06-18

    ... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and....S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management... June 11, 2010. Cathy Zoi, Assistant Secretary, Energy Efficiency and Renewable Energy. [FR Doc. 2010...

  8. New DigiGuide. Zero-energy building; Nieuwe DigiGids. Energieneutraal Bouwen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    NL Agency ordered for a study on the aspects of zero-energy ('energy-neutral') building and listed and discussed briefly the latest developments [Dutch] Agentschap NL heeft onderzoek laten uitvoeren naar (aspecten van) energieneutraal bouwen en heeft de actuele ontwikkelingen vastgelegd.

  9. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  10. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are

  11. Energy-efficient buildings are environmentally friendly, architecturally attractive and economically compelling

    International Nuclear Information System (INIS)

    Wafa, Latifa Mohamed

    2006-01-01

    Standard building construction is wasteful, toxic, and is destroying the environment. It produced buildings that operate independently of its natural surrounding and depended heavily on mechanical systems that run with fossil fuel to create comfortable indoor environment. These buildings caused a wide range of health and environmental problems. The concern about the consequences of standard building construction have prompted countless experiments and design improvements to make built environment more energy efficient, less reliant on potentially limited fossil fuels and more reliant on renewable energy resources. The application of energy efficient technologies can make significant contribution to meeting the building and construction sector's energy demand, while at the same time providing better built environment, offering more comfortable living and working conditions for the users, cleaner and healthier in-outdoor environment, and cost no more to build. The proposes of the paper are to: 1-Promote the implementation of Energy-Efficient buildings through vigorous efforts, by engaging government agencies, design professions, engineers, and construction industry in the task of radically improving the performance of our buildings, neighborhoods, and cities. 2-Educate the general public (the consumers) that Energy-Efficient Building is good for their well-being, to their pocket and to the environment.3-Demonstrate that Energy-efficient Building are with highest standards of architecture design, the highest quality living and working environment and within a reasonable budget. The paper describes the technological options available for dealing sensibly with energy and focuses on the important areas of new building constructions and building refurbishment together with its specific energy requirements. The approach presented in this paper is just one of many methods of planning energy efficient buildings.This paper is part of the effort to promote Energy

  12. IEA Energy Training Capacity-building Programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The IEA has carried out training activities in energy-related areas from its origins as an agency, with the Emergency Response Exercises (ERE), designed to prepare member countries for oil supply disruption through a set of specially prepared drills simulating crisis conditions. The globalisation of world energy markets in recent years and the wider engagement of the IEA beyond its members have expanded this role, as demand for training instruction has increased. In response, the IEA has created the Energy Training and Capacity-Building Programme, which, through seminars and workshops, secondments and internships, will offer training in the methods and standards that make IEA work in a wide range of energy-related areas, including statistics, the international standard for objective policy recommendations.

  13. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  14. Market attractiveness Energy Performance Certificate for Buildings. Analysis of the survey results. Country report for the Netherlands

    International Nuclear Information System (INIS)

    Wobben, M.M.H.; Hoogelander, K.J.; Schorel, J.S.; Corpeleijn, M.F.; Hezelmans, A.; Verhoef, L.A.

    2006-09-01

    The STABLE project aims at launching a collaborative effort of national energy agencies and federations of building owners in order to establish a firm basis for market acceptance of building energy certification as defined in the Directive on the Energy Performance of Buildings. This report presents the results of a survey for the Netherlands. [nl

  15. 76 FR 13101 - Building Energy Codes Program: Presenting and Receiving Comments to DOE Proposed Changes to the...

    Science.gov (United States)

    2011-03-10

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2011-BT-BC-0009] Building Energy Codes.... The IgCC is intended to provide a green model building code provisions for new and existing commercial... Code (IgCC) AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION...

  16. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  17. Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

    2010-10-01

    As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energy’s (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventory across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.

  18. Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.

    2011-01-01

    The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires......, (4) the type of energy balance, (5) the accepted renewable energy supply options, (6) the connection to the energy infrastructure and (7) the requirements for the energy efficiency, the indoor climate and in case of gird connected ZEB for the building–grid interaction. This paper focuses...

  19. Implementing nationally determined contributions: building energy policies in India’s mitigation strategy

    Science.gov (United States)

    Yu, Sha; Evans, Meredydd; Kyle, Page; Vu, Linh; Tan, Qing; Gupta, Ashu; Patel, Pralit

    2018-03-01

    The Nationally Determined Contributions are allowing countries to examine options for reducing emissions through a range of domestic policies. India, like many developing countries, has committed to reducing emissions through specific policies, including building energy codes. Here we assess the potential of these sectoral policies to help in achieving mitigation targets. Collectively, it is critically important to see the potential impact of such policies across developing countries in meeting national and global emission goals. Buildings accounted for around one third of global final energy use in 2010, and building energy consumption is expected to increase as income grows in developing countries. Using the Global Change Assessment Model, this study finds that implementing a range of energy efficiency policies robustly can reduce total Indian building energy use by 22% and lower total Indian carbon dioxide emissions by 9% in 2050 compared to the business-as-usual scenario. Among various policies, energy codes for new buildings can result in the most significant savings. For all building energy policies, well-coordinated, consistent implementation is critical, which requires coordination across different departments and agencies, improving capacity of stakeholders, and developing appropriate institutions to facilitate policy implementation.

  20. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  1. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  2. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    Energy Technology Data Exchange (ETDEWEB)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  3. Net positive energy buildings

    International Nuclear Information System (INIS)

    Romero, A.; Barreiro, E.; Sanchez Zabala, V.

    2010-01-01

    Buildings are great consumers of energy, being responsible for almost 36% of CO2 emissions in Europe. Though there are many initiatives towards the reduction of energy consumption and CO2 emissions in buildings, many of the alternatives are diminished due to a lack of a unique and holistic approach to the problem. This paper reports a new innovative concept of Positive Energy Buildings (EB+), as well as an integral methodology that covers the overall design process for achieving them. The methodology evaluates energy efficiency solutions at different scales, from building site to generation systems. An educational building design in Navarra serves as a case study to check the feasibility of the proposed methodology. The study concludes that the key to achieve a Positive Energy Building is a minimized energy demand, complemented by efficient facilities and enhanced by distributed power generation from renewable sources. (Author).

  4. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  5. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  6. A roadmap for navigating voluntary and mandated programs for building energy efficiency

    International Nuclear Information System (INIS)

    Peterman, Andrew; Kourula, Arno; Levitt, Raymond

    2012-01-01

    Commercial building owners and managers often face the challenge of selecting the appropriate combination of voluntary and mandated programs for commercial building energy efficiency. Using a mixed-method, both quantitative and qualitative approach, this study finds that barriers to energy efficiency can be interpreted as strategic drivers for the emergence of five forms of voluntary and mandated program forms. We argue that the links between energy efficiency programs in commercial buildings should be conceptualized in a comprehensive manner by evaluating the strategic drivers that have ultimately led to the emergence of the principal forms of voluntary programs: economic incentives; certifications; alliances and partnerships; and internal company programs. We develop a conceptual framework that helps building owners and managers: identify the primary drivers for energy efficiency efforts; assess the efficacy and limitations of available program forms; apply each program form strategically in conjunction with a number of other program forms; and, ultimately, predict the emergence of new program forms. In addition to United States Department of Energy survey data, this study draws upon data collected through semi-structured interviews with experts at major U.S.-based corporations, federally funded laboratories, government agencies, and non-governmental organizations. - Highlights: ► Distills a complex system of energy efficiency programs into a single framework. ► Classify drivers, emerging forms, and shortcomings of each voluntary program form. ► Present survey and interview data from retail, real estate, and hospital experts. ► None of these programs alone meet organizational needs for energy efficiency. ► Entrepreneurs will play a key role by capitalizing on broken agency challenges.

  7. Compliance with building energy regulations for new-build dwellings

    International Nuclear Information System (INIS)

    Pan, Wei; Garmston, Helen

    2012-01-01

    Despite increasingly stringent building energy regulations worldwide, non-compliance exists in practice. This paper examines the profile of compliance with building energy regulations for new-build dwellings. In total 404 new-build dwellings completed in the UK from 2006 to 2009 were investigated. Only a third of these dwellings were evidenced as being compliant with Building Regulations Part L (England and Wales). Such low compliance casts a serious concern over the achievability of the UK Government's target for all new-build homes to be ‘zero carbon’ from 2016. Clearly evidenced was a lack of knowledge of Part L and its compliance requirements among the supply and building control sides of new-build dwellings. The results also indicate that the compliance profile was influenced by factors including Standard Assessment Procedure (UK Government's methodology for energy efficiency) calculation submissions, learning and experience of builders and building controls with Part L, use of Part L1A checklist, the introduction of energy performance certificate (EPC), build method, dwelling type, and project size. Better compliance was associated with flats over houses and timber frame over masonry. The use of EPC and Part L1A checklist should be encouraged. Key to addressing the lack of compliance with building energy regulations is training. -- Highlights: ► There exists a lack of compliance, worldwide, with building energy regulations. ► The implementation of England and Wales building energy regulations is problematic. ► Training, learning and experience of builders and building control are critical. ► Energy performance certificate and Part L 2006 checklist helped achieve compliance. ► Flats achieved better compliance over houses; and timber frame over masonry.

  8. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  9. French local agencies of energy control; Agences locales francaise de maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the SAVE program, the European Commission brings financial assistance to the creation of local or regional agencies of energy control in municipalities and regions. The main criteria are the impacts on the energy demand, the reinforcement of the economic and social cohesion, the environmental quality and the contribution to the economic development and the employment creation. In this document, realized by Energie-Cites, the Ademe objective is to present a state of the art of french local agencies. Ten agencies are presented as case study. Each case deals with the following topics: the main context of the action which details the energy and the environmental policy of the municipality, the creation and the description of the agency, the implemented actions and the perspectives. (A.L.B.)

  10. Building a Science Communication Culture: One Agency's Approach

    Science.gov (United States)

    DeWitt, S.; Tenenbaum, L. F.; Betz, L.

    2014-12-01

    Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.

  11. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  12. Building energy governance in Shanghai

    Science.gov (United States)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  13. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  14. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  15. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  16. Solar energy in buildings solved by building information modeling

    Science.gov (United States)

    Chudikova, B.; Faltejsek, M.

    2018-03-01

    Building lead us to use renewable energy sources for all types of buildings. The use of solar energy is the alternatives that can be applied in a good ratio of space, price, and resultant benefits. Building Information Modelling is a modern and effective way of dealing with buildings with regard to all aspects of the life cycle. The basis is careful planning and simulation in the pre-investment phase, where it is possible to determine the effective result and influence the lifetime of the building and the cost of its operation. By simulating, analysing and insert a building model into its future environment where climate conditions and surrounding buildings play a role, it is possible to predict the usability of the solar energy and establish an ideal model. Solar systems also very affect the internal layout of buildings. Pre-investment phase analysis, with a view to future aspects, will ensure that the resulting building will be both low-energy and environmentally friendly.

  17. French local agencies of energy control; Agences locales francaise de maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the SAVE program, the European Commission brings financial assistance to the creation of local or regional agencies of energy control in municipalities and regions. The main criteria are the impacts on the energy demand, the reinforcement of the economic and social cohesion, the environmental quality and the contribution to the economic development and the employment creation. In this document, realized by Energie-Cites, the Ademe objective is to present a state of the art of french local agencies. Ten agencies are presented as case study. Each case deals with the following topics: the main context of the action which details the energy and the environmental policy of the municipality, the creation and the description of the agency, the implemented actions and the perspectives. (A.L.B.)

  18. ImBuild: Impact of building energy efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  19. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  20. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  1. Buildings energy efficiency in the Southeast

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    In June 1992, energy service providers from around the Southeastern United States gathered at the Shenandoah Environment and Education Center of Georgia Power Company, to discuss issues related to energy efficiency buildings in the region. The meeting was organized by an ad hoc planning committee under the auspices of the Atlanta Support Office of the DOE. The objectives of the Workshop were to provide a forum for regional energy service providers to discuss matters of mutual concern and to identify issues of particular relevance to the Southeast. What characterizes energy use in the Southeast Most lists would include rapid population growth, high temperatures and humidity, a large air conditioning load on utilities, a relatively clean environment, and regulatory processes that seek to keep energy prices low. There was less unanimity on what are the priority issues. No definitive list of priorities emerged from the workshop. Participants did identify several areas where work should be initiated: networking, training/certification/education, performance of technical measures, and studies of market forces/incentives/barriers. The most frequently mentioned context for these work areas was that of utility programs. Presentations given during the first morning provided attendees an overview of energy use in the region and of building energy conservation programs being implemented both by state agencies and by utilities. These were the base for breakout and plenary sessions in which attendees expressed their views on specific topics. The regional need mentioned most often at the workshop was for networking among energy service providers in the region. In this context, this report itself is a follow up action. Participants also requested a regional directory of energy program resources. DOE agreed to assemble a preliminary directory based upon input from workshop attendees. Because the response was quick and positive, a directory is part of this document.

  2. European conferences. Integration of renewable energies in buildings; Conferences europeennes. Integration des energies renouvelables dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France); Letz, T. [Asder, 73 - Saint Alban Leysse (France); Tuille, F. [Observ' er, 75 - Paris (France)] [and others

    2001-07-01

    This document comprises 2 parts. First part is a detailed program of the exhibition with a press dossier which presents the different topics discussed during conferences and round tables, the market of renewable energies, and a list of agencies and companies involved in renewable energies development and products. The second part is the abstracts of the lectures presented during the European conferences on the integration of renewable energies in buildings (solar-thermal and photovoltaic systems, wood fuel and biomass). (J.S.)

  3. Energy Innovations for Healthy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2016-09-23

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  4. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  5. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  6. Energy efficiency in buildings. Manual for municipalities [in the Netherlands]; Energie prestatie gebouwen. Handboek gemeenten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    New buildings must meet requirements in terms of energy efficiency, expressed in the Energy Performance Coefficient (EPC). Municipalities must pre-test on the basis of calculations. There are two new tools, set up by the NL Agency, by means of which the tests can be performed: this handbook for municipalities and a software program [Dutch] Nieuwe gebouwen moeten aan eisen voldoen qua energiezuinigheid, uitgedrukt in de Energie Prestatie Coefficient (EPC). Gemeenten moeten vooraf toetsen aan de hand van berekeningen. Er zijn twee vernieuwde hulpmiddelen van het Agentschap.nl waarmee de toesting kan plaatsvinden: dit handboek voor gemeenten en een softwareprogramma.

  7. Commercial Building Energy Saver: An energy retrofit analysis toolkit

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Piette, Mary Ann; Chen, Yixing; Lee, Sang Hoon; Taylor-Lange, Sarah C.; Zhang, Rongpeng; Sun, Kaiyu; Price, Phillip

    2015-01-01

    Highlights: • Commercial Building Energy Saver is a powerful toolkit for energy retrofit analysis. • CBES provides benchmarking, load shape analysis, and model-based retrofit assessment. • CBES covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • CBES includes a web app, API, and a database of energy efficiency performance. • CBES API can be extended and integrated with third party energy software tools. - Abstract: Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision

  8. Energy audit role in building planning

    Science.gov (United States)

    Sipahutar, Riman; Bizzy, Irwin

    2017-11-01

    An energy audit is one way to overcome the excessive use of energy in buildings. The increasing growth of population, economy, and industry will have an impact on energy demand and the formation of greenhouse gas emissions. Indonesian National Standard (SNI) concerning the building has not been implemented optimally due to the socialization process by a government not yet been conducted. An energy audit of buildings has been carried out at offices and public services. Most electrical energy in buildings used for air refresher equipment or air conditioning. Calculation of OTTV has demonstrated the importance of performing since the beginning of the planning of a building to get energy-efficient buildings.

  9. Consumer Central Energy Flexibility in Office Buildings

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility in buildings will play an important role in the smart energy system. Office buildings have more potentials to provide energy flexibility to the grid compared to other types of buildings, due to the existing building management, control systems and large energy consumption....... Consumers in office buildings (building owners/managers and occupants) take a main role for adopting and engaging in building energy flexibility. In this paper provides a systematic review of consumer central energy flexibility in office buildings with the discussion of social, technical and business...... can boost energy flexibility in the office buildings....

  10. Energy Saving Homes and Buildings, Continuum Magazine, Spring 2014 / Issue 6 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2014-03-01

    This issue of Continuum focuses on NREL's research to improve the energy efficiency of residential and commercial buildings. Heating, cooling, and lighting our homes and commercial structures account for more than 70% of all electricity used in the United States. That costs homeowners, businesses, and government agencies more than $400 billion annually, about 40% of our nation's total energy costs. Producing that energy contributes almost 40% of our nation's carbon dioxide emissions.By 2030, an estimated 900 billion square feet of new and rebuilt construction will be developed worldwide, providing an unprecedented opportunity to create efficient, sustainable buildings. Increasing the energy performance of our homes alone could potentially eliminate up to 160 million tons of greenhouse gas emissions and lower residential energy bills by $21 billion annually by the end of the decade.

  11. Obsolete or resurgent? The International Energy Agency in a changing global landscape

    International Nuclear Information System (INIS)

    Van de Graaf, Thijs

    2012-01-01

    Founded in response to the 1973 oil shock, the International Energy Agency (IEA) is arguably still the most important multilateral organization for energy-importing countries. Yet, the global geopolitical landscape has changed considerably since the IEA's creation. The rise of new energy consumers, new energy-related challenges and new international energy forums prompt a rethink of the agency's current role and institutional design. This article seeks to contribute to the recent debate on the future role of the IEA by examining specific drivers, avenues and constraints for institutional reform. The method used is SWOT analysis, which allows to summarize the key factors emanating from an assessment of an organization's internal characteristics (strengths and weaknesses) and its external environment (opportunities and threats). Building on this SWOT analysis, the article formulates a strategy for the IEA to remain the focal point in global energy governance. Key elements of this strategy include: stronger engagement with new consumers, rapprochement with OPEC, becoming a leading voice in the energy transition, and changing the agency's internal governance practices. - Highlights: ► The IEA is challenged by the rise of new consumers, threats and organizations. ► Assessment of the agency’s internal characteristics and external environment. ► The IEA needs to step up its outreach policy and fully embrace sustainable energy.

  12. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  13. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    Science.gov (United States)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  14. 78 FR 69839 - Building Technologies Office Prioritization Tool

    Science.gov (United States)

    2013-11-21

    ... standards and building codes to ensure energy savings within buildings. BTO has developed a new technology... DEPARTMENT OF ENERGY Building Technologies Office Prioritization Tool AGENCY: Office of Energy....S. Department of Energy's (DOE) Building Technologies Office (BTO) developed the Prioritization Tool...

  15. Smart buildings: Energy efficient conditioning of building occupants

    NARCIS (Netherlands)

    Zeiler, W.; Houten, van M.A.; Boxem, G.; Vehler, R.; Verhoeven, M.; Fremouw, M.

    2009-01-01

    To further optimize energy performance of buildings, intelligent building control offers new possibilities. Intelligent Software Agents (ISA) can be implemented at different levels of building automation. Individual agents for individual climate control for each user of the building in combination

  16. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J -M

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  17. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J.-M.

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  18. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  19. Empirical Validation of Building Simulation Software

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  20. Energy efficiency of residential buildings. Energy consumption and investment costs of different building energy standards; Energieeffizienz von Wohngebaeuden. Energieverbraeuche und Investitionskosten energetischer Gebaeudestandards

    Energy Technology Data Exchange (ETDEWEB)

    Beecken, Christoph; Schulze, Stephan [Bow Ingenieure GmbH, Braunschweig (Germany)

    2011-12-15

    In view of the impending energy transition in Germany, turning away from fossil fuels and atomic power and leading to renewable energy sources, the construction of very energy efficient new buildings gains more and more in importance. Because the saving of energy with efficient buildings offers the highest potential to achieve the energy transition without loss of comfort and also complying with the climate protection target of limitation of the carbon dioxide emission. For new buildings in the initial project planning phase, the client needs qualified consulting concerning a reasonable energy standard for his building. The consulting should comprise the multitude of energy efficiency standards and the related financial incentives and not only cover the minimum standard of the German Building Energy Conservation Regulation EnEV (Energieeinsparverordnung). But the architect can hardly quantify the potentials to reduce energy consumption of buildings considering the multitude of existing standards with multifarious effects on energy consumption, technical requirements and building costs. With the help of an example multi-storey residential building in Hannover, current energy standards for residential buildings are compared. Besides the building construction also the building services like heating, hot water generation and ventilation are considered and the most important results concerning energy consumption and investment costs are compared.

  1. Boston in Top 25 of EPA’s List of Cities with the Most Energy Star Certified Buildings

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has announced its tenth annual Top Cities list, which ranks the 25 U.S. metropolitan areas with the most Energy Star certified buildings and superior energy performance in the preceding calendar year.

  2. Energy requirements for new buildings in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    Buildings account for circa 40% of the total energy use in Europe [1] and for about 36% of the EU's total CO{sub 2} emissions [2], including the existing energy conservation in buildings [3]. Key features of the Finnish energy policy are improved energy efficiency and increased use of renewable energy sources. To achieve a sustainable shift in the energy system, a target set by the authorities, both energy savings and increased use of low-pollution energy sources are therefore priority areas. Building low-energy buildings is in accordance with the declared national aim of reducing energy use and thus reducing CO{sub 2} emissions. The main motivation in renewing building codes for new buildings was to build more energy efficiently, encourage the use the most efficient energy sources and to enhance the use of renewable energy sources. In addition the aim was to give more freedom to fi nd the real optimal solutions for energy efficiency by optimising all aspects including the building architecture and different systems with demand controls. However, in order to ensure the good quality of buildings certain minimum requirements for structure U-values are given. (orig.)

  3. Intervention strategies for energy efficient municipal buildings: Influencing energy decisions throughout buildings` lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The current energy-related decisionmaking processes that take place during the lifetimes of municipal buildings in San Francisco do not reflect our ideal picture of energy efficiency as a part of staff awareness and standard practice. Two key problems that undermine the success of energy efficiency programs are lost opportunities and incomplete actions. These problems can be caused by technology-related issues, but often the causes are institutional barriers (organizational or procedural {open_quotes}people problems{close_quotes}). Energy efficient decisions are not being made because of a lack of awareness or policy mandate, or because financial resources are not available to decisionmakers. The Bureau of Energy Conservation (BEC) is working to solve such problems in the City & County of San Francisco through the Intervention Strategies project. In the first phase of the project, using the framework of the building lifetime, we learned how energy efficiency in San Francisco municipal buildings can be influenced through delivering services to support decisionmakers; at key points in the process of funding, designing, constructing and maintaining them. The second phase of the project involved choosing and implementing five pilot projects. Through staff interviews, we learned how decisions that impact energy use are made at various levels. We compiled information about city staff and their needs, and resources available to meet those needs. We then designed actions to deliver appropriate services to staff at these key access points. BEC implemented five pilot projects corresponding to various stages in the building`s lifetime. These were: Bond Guidelines, Energy Efficient Design Practices, Commissioning, Motor Efficiency, and Facilities Condition Monitoring Program.

  4. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  5. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  6. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM

    Directory of Open Access Journals (Sweden)

    Egwunatum Samuel

    2016-09-01

    Full Text Available Given the ability of a Building Information Model (BIM to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1 building energy consumption, (2 building energy performance and analysis, and (3 building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world’s first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise or its size.

  7. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  8. 75 FR 16739 - EDA Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative

    Science.gov (United States)

    2010-04-02

    ...: Promote regional development; Accelerate innovation, technology transfer, and entrepreneurship to create... priorities, which are: Collaborative Regional Innovation. Initiatives that support the development and growth... Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative AGENCY: Economic...

  9. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...

  10. Demonstration Platform for near-zero energy buildings - small houses; Demonstrationsplattform foer naeranollenergibyggnader - smaahus

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Svein; Fahlen, Per; Axell, Monica; Kovacs, Peter; Ylmen, Peter; Staahl, Fredrik

    2011-07-01

    On behalf of the Swedish Energy Agency, SP has investigated and recommended how one could form a platform for demonstration of single family houses as nearly zero energy houses. SP suggests that TMF, the national trade and employers' association of the wood processing and furniture industry in Sweden, should administrate this platform. The reason being that members of TMF produce almost 80% of all single family houses in Sweden. TMF also has the capacity to launch a demonstration platform in a reasonable short time. SP has also compiled a set on technical criteria regarding properties related to energy use that should be met by demonstration projects within the platform. One presumption has been that a house that meets the criteria in the south of Sweden also should meet the criteria in the north of Sweden. The reason being to promote an industrialized and cost effective building process. Another ambition has been not to disfavor smaller single family houses. The main criteria are on very energy efficient building envelopes and very efficient building services systems. The criteria are therefore more detailed than the current Swedish building regulations

  11. Inspiration and experiences from the joint analysis of shining examples of comprehensive energy renovation building projects within IEA EBC Annex 56

    DEFF Research Database (Denmark)

    Christen Mørck, Ove; Almeida, Manuela; Ferreira, Marco

    2016-01-01

    The International Energy Agency established in 2011 an Implementing Agreement within the Energy in Buildings and Communities Program to undertake research and provide an international focus on Cost Effective Energy and Carbon Emissions Optimization in Building Renovation (EBC Annex 56). The project...... aimed at developing a new methodology to enable cost effective renovation of existing buildings while optimizing energy consumption and carbon emissions reduction. Gathering of case studies was one of the activities undertaken to reach the overall project objectives. Among the case studies, a selection...

  12. China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd

    2010-04-01

    This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listed in the program documents and websites.

  13. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  14. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  15. Energy in buildings: Efficiency, renewables and storage

    Science.gov (United States)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  16. Introduction to the 1975 Berkeley Summer Study. [On efficient use of energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dean, E

    1977-05-01

    The 1975 Berkeley Summer Study on the Efficient Use of Energy in Buildings was held to bring together designers and researchers from the building profession, universities, and government agencies for an intensive examination of the problems of improved efficiencies of energy use for the heating and cooling of buildings. The focus of the Study was the development of an understanding of the maximum potential for the use of natural heat and light in what has become known as the ''passive mode'', as well as of the practical difficulties involved. Consequently much of the work is centered on window systems, daylighting, and ventilation. The motivation for the organization of the Study was the fact that buildings in general are not designed, constructed, or operated well from the point of view of energy use, and that the appropriate strategies for maximum energy efficiency are not well understood. There was, in addition, a certain reluctance to refer to the content of the work of the Study as ''energy conservation'' because of the suggestion that seems to occur to the public and the policymakers that conservation means some form of deprivation of a ''lower standard of living''.

  17. Energy Cloud: Services for Smart Buildings

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja

    2018-01-01

    , and network technologies. Using smart building energy management systems provides intelligent procedures to control buildings’ equipment such as HVAC (heating, ventilating, and air-conditioning) systems, home and office appliances, and lighting systems to reduce energy consumption while maintaining......Energy consumption in buildings is responsible for a significant portion of the total energy use and carbon emissions in large cities. One of the main approaches to reduce energy consumption and its environmental impact is to convert buildings into smart buildings using computer, software, sensor...... the required quality of living in all of the building’s spaces. This chapter discusses and reviews utilizing cloud computing to provide energy-related services to enhance the operations of smart buildings’ energy management systems. Cloud computing can provide many advantages for smart buildings’ energy...

  18. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...

  19. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  20. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  1. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  2. Country Report on Building Energy Codes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  3. Country Report on Building Energy Codes in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  4. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  5. Energy use in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  6. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  7. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    International Nuclear Information System (INIS)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-01-01

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards

  8. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  9. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  10. Overview of rural building energy efficiency in China

    International Nuclear Information System (INIS)

    He, Bao-jie; Yang, Li; Ye, Miao; Mou, Ben; Zhou, Yanan

    2014-01-01

    Over the past three decades, people's living standard in China has been greatly improved, accompanied by the rapid increasing building energy consumption. Rural building energy consumption has become one of the most important parts of the total energy consumption in China, which deserves to be paid much attention. It is of vital importance to promote building energy efficiency for the New Socialist Countryside and energy conservation and emission reduction. This paper provides an overview of building energy consumption in the countryside, which figures out the situation and challenges in energy-saving work. The government has worked for years on rural building code system aimed at narrowing the energy gap between urban areas, but it is in the beginning phase. This paper has analyzed the only special issues about rural building energy efficiency and the mandatory standards for urban buildings, which can facilitate the development of rural building energy efficiency. Based on the above analysis, some recommendations regarding the improvement of rural building energy efficiency are given. - Highlights: • Situation of rural energy consumption in China. • Challenges in rural building energy-saving work. • Design standard, special plan and some pilot projects are analyzed. • Effects of existing energy policies for urban buildings. • Some recommendations are given

  11. Sault Tribe Building Efficiency Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  12. Developing Secondary Students' Epistemic Agency in a Knowledge-Building Community

    Science.gov (United States)

    Lai, Kwok-Wing; Campbell, Madeline

    2018-01-01

    A key educational objective for the twenty-first century is developing students' epistemic agency. Epistemic agency is the active process of choosing when, what, where one learns and how one knows, as well as the capacity to create knowledge in a community. The knowledge-building communities model developed by Scardamalia and Bereiter was used in…

  13. Energy balance framework for Net Zero Energy buildings

    Science.gov (United States)

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  14. Building envelope influence on the annual energy performance in office buildings

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2016-01-01

    Full Text Available The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, Solar heat gain coefficient - SHGC on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the SHGC parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.

  15. The prepossession of international institutions for energy. The example International Energy Agency (IEA)

    International Nuclear Information System (INIS)

    Fell, H.J.

    2007-01-01

    In the contribution under consideration, the author reports on the fact that large international energy agencies, which are advisory active in energy questions active, affect the world-wide policy. In particular, these are the International Atomic Energy Authority in Vienna (Austria) and the International Energy Agency in Paris (France). The International Energy Agency is considered world-wide as the most important institution for all energy questions. Nearly annually, it publishes the World Energy Outlook by summarizing the most important current energy data of the world, prognoses the future power supply and makes future energy prices. The reality of the International Energy Agency looks completely differently: It performs no own sciences, but consists of statisticians, who gather only statistical data without scientific analysis. The author of this contribution summarizes the work of the International Energy Agency in three points: (a) Promotion of the interests of companies in mineral oil, natural gas, coal and atomic energy; (b) Hindering the world-wide conversion of renewable energy; (c) Endangerment of the world economy and prevention of an effective climate protection. The International Energy Agency does not justice to its own goal of a reliable, economical and pollution free power supply

  16. BUILDING DESIGN INFLUENCE ON THE ENERGY PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Moga Ligia

    2015-05-01

    Full Text Available Energy efficient design is a high priority in the national energy strategy of European countries considering the latest requirements of the European Directive on the Energy Performance of Buildings. The residential sector is responsible for a significant quantity of energy consumptions from the total amount of consumptions on a worldwide level. In residential building most of the energy consumptions are given mainly by heating, domestic hot water and lighting. Retrofitting the existing building stock offers great opportunities for reducing global energy consumptions and greenhouse gas emissions. The first part of the paper will address the need of thermal and energy retrofit of existing buildings. The second part will provide an overview on how various variables can influence the energy performance of a building that is placed in all four climatic zones from Romania. The paper is useful for specialist and designers from the construction field in understanding that buildings behave differently from the energy point of view in different climatic regions, even if the building characteristic remain the same.

  17. BLAST: Building energy simulation in Hong Kong

    Science.gov (United States)

    Fong, Sai-Keung

    1999-11-01

    The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was

  18. Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology

    International Nuclear Information System (INIS)

    Ballarini, Ilaria; Corrado, Vincenzo; Madonna, Francesco; Paduos, Simona; Ravasio, Franco

    2017-01-01

    The European residential building stock is largely composed of buildings with poor energy performance, therefore basic retrofit actions could lead to significant energy savings. However, energy refurbishment measures should be identified in accurate way, taking into account the technical viability and aiming both to increase the building energy performance and to restrain the costs. The present article investigates the effects of different measures applied to the Italian residential building stock by using the building typology, which consists of 120 building types, representative of six construction ages, four building sizes and five climatic zones. A quasi-steady state model has been used to calculate the energy performance; the economic evaluation has been carried out as specified in the EU cost-optimal comparative methodology (Directive 2010/31/EU). The most effective measures and packages of measures, in terms of energy saving and global cost reduction, are identified and discussed. The results are addressed to important purposes for energy policy, as for instance: (a) to provide political authorities with the most effective energy efficiency measures as to encourage retrofit processes through the allocation of financial incentives, (b) to offer a knowledge-base for developing energy refurbishment scenarios of residential building stocks and forecasting future energy resource demand. - Highlights: • Investigation of energy savings and cost effectiveness of the Italian housing stock refurbishments. • Application of the building typology approach of the IEE-TABULA project. • Knowledge-base for bottom-up models of the building stock energy performance. • Supporting the political authorities to promote effective refurbishment measures.

  19. Low-energy buildings on mainstream market terms

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Elle, Morten; Hoffmann, Birgitte

    2008-01-01

    implementation of strict energy performance requirements in mainstream building. The paper describes how the municipality of Egedal experienced a collapse in regulation for low-energy buildings and what struggles it had to take on in order to convince the mainstream building industry and their customers......This paper looks into the challenge of actually implementing energy efficient technologies and concepts in mainstream new build. The aim of the paper is to point out some of the provisos of promoting low-energy buildings on mainstream market terms, emphasising the need to understand forces working...... against implementation of low-energy buildings. The study is based on actor-network theory, emphasising the relations and struggles that form the basis for pushing for low-energy buildings. The paper is based on a case study of the proactive attempt of a Danish municipality to force through an actual...

  20. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  1. New solutions in the use of energy. Characteristics for a Mediterranean building; Nouvelles solutions dans l'utilisation de l'energie. Caracteristiques pour un batiment mediterraneen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document is edited by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE) with the participation of the ICAEN (Institut Catala d'Energia) (Barcelona, Spain) and Punto Energia (Milan, Italy) and with the help of the general direction of energy of the European Commission (DG 17, sub-program 'Energy'). It presents the rules for the elaboration of a 'building program' devoted to foremen and which aims at integrating the energy and environmental requirements of a building prior to its construction: 1 - planning (goal, preliminary and feasibility studies); 2 - elaboration of the energy program (environmental context of the project, demand formulation: environmental impact, comfort, electricity and water uses, maintenance, costs..); 3 - characteristics of a Mediterranean building (regional aspect, envelope and passive heating/cooling techniques, active techniques), 4 - energy feasibility study; 5 - evaluation means. (J.S.)

  2. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  3. Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2015-07-01

    Full Text Available A Net Zero Energy Building (NZEB considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB, the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC/Energy in Buildings and Communities Programme (EBC Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

  4. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  5. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  6. Energy consumption of building related energy functions in houses and utility buildings

    International Nuclear Information System (INIS)

    Van Arkel, W.G.; Jeeninga, H.; Menkveld, M.; Ruijg, G.J.

    1999-11-01

    This study investigates the development of the use of electricity and natural gas in houses and buildings until 2010. For the domestic sector it is studied how much energy is used now and will be used in future for heating, for production of hot water, for lighting, for ventilation and for cooling. For different sorts of buildings (shops, hospitals, schools, offices, restaurants) it has been determined how much gas will be used for heating, for hot water production and by humidifiers. It has also been calculated how much electricity will be used for lighting, ventilation, cooling and humidifying. The influence of higher and lower energy prices on the amount of use has been studied. Experts have been asked to give their opinions on trends in the use of buildings and the role of new technologies. The influence of these ideas on the use of energy has been calculated. 44 refs

  7. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  8. Role of executive agencies for energy efficiency with a view on activities of Serbian Energy Efficiency Agency

    Directory of Open Access Journals (Sweden)

    Kovačić Bojan J.

    2012-01-01

    Full Text Available Many countries, particularly in Europe, have executive energy efficiency agencies at national, regional and local levels that are organized in different ways. For all of them, it is common that there are existing strategic needs in their countries for enhancement of conditions and measures for rational use of energy and fuels. Serbian Energy Efficiency Agency was established in 2002 within the reform of the energy sector in Serbia and its current status was defined in 2004 by the Energy Law. It contributes to the improvement of social responsibility towards energy in all structures of the state and society, by proposing energy efficiency incentives, promoting importance of energy efficiency, as well as by managing energy efficiency and renewable energy programs and projects.

  9. Building energy efficiency in different climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Tsang, C.L.; Yang Liu

    2008-01-01

    Energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter - in China using DOE-2.1E. The primary aim was to investigate the thermal and energy performance of office buildings with centralised heating, ventilation and air conditioning plants in the major climatic zones in China. The computed results were analysed in three aspects - heating load, cooling load and the corresponding building energy consumption. The building peak monthly heating load varied from 142 MW h (1033 MW h cooling) in Hong Kong to 447 MW h (832 MW h cooling) in Harbin. It was also found that passive solar designs could have large energy savings potential in the severe cold and cold climates. In Harbin, the window solar component helped lower the annual building heating load by 650 MW h. Internal loads (lighting and office equipment) and part load operations of fans and pumps also played a significant role in the overall building energy efficiency. This paper presents the work, its findings and energy efficiency implications

  10. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for energy-efficiency studies of advanced building technologies. That investment has helped spawn a $2.4-billion US market for key products -- energy-efficient lighting and advanced window coatings -- and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 the authors estimate that the products of that investment will save consumers $16 billion annually. But LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. They analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. They develop planning and demand-management methodologies for electric and gas utilities. They identify technologies and analytical methods for improving human comfort and the quality of indoor air. They contribute to the information superhighway. They focus on the special problems and opportunities presented by energy use in the public sector. And they do all these things at the local, national, and international levels. At LBL, they are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. They also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  11. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for development of advanced energy-efficient building technologies, software, and standards. That investment has helped spawn a $2.4-billion U.S. market for key products-energy-efficient lighting and advanced window coatings-and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 we estimate that the products of that investment will save consumers $16 billion annually. LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. We analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. We develop planning and demand-management methodologies for electric and gas utilities. We identify technologies and analytical methods for improving human comfort and the quality of indoor air. We contribute to the information superhighway. We focus on the special problems and opportunities presented by energy use in the public sector. And we do all these things at the local, national, and international levels. At LBL, we are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. We also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  12. Energy Signal Tool for Decision Support in Building Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  13. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  14. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  15. Building thermography as a tool in energy audits and building commissioning procedure

    Science.gov (United States)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  16. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  17. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  18. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building

    Science.gov (United States)

    Skiba, Marta; Rzeszowska, Natalia

    2017-09-01

    One of the five far-reaching goals of the European Union is climate change and sustainable energy use. The first step in the implementation of this task is to reduce energy demand in buildings to a minimum by 2021, and in the case of public buildings by 2019. This article analyses the possibility of improving energy efficiency in public buildings, the relationship between particular indicators of the demand for usable energy (UE), final energy (FE) and primary energy (PE) in buildings and the impact of these indicators on the assessment of energy efficiency in public buildings, based on 5 variants of extensive thermal renovation of a school building. The analysis of the abovementioned variants confirms that the thermal renovation of merely the outer envelope of the building is insufficient and requires the use of additional energy sources, for example RES. Moreover, each indicator of energy demand in the building plays a key role in assessing the energy efficiency of the building. For this reason it is important to analyze each of them individually, as well as the dependencies between them.

  19. Building Energy Codes: Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  20. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  1. Energy efficiency evaluation of hospital building office

    International Nuclear Information System (INIS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S.A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings. (paper)

  2. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  3. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  4. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  5. Energy conservation in rented buildings

    Energy Technology Data Exchange (ETDEWEB)

    Klingberg, T.; Broechner, J.; Forsman, J.; Gaunt, L.; Holgersson, M.

    1984-08-01

    The bulletin is an anthology of nine essays by different authors addressing the issue of energy conservation in buildings, where there exists a landlord/tenant relationship. After an overview of the rental market and the stock of rental buildings different types of rental contracts and energy charges are described.

  6. Handbook of energy use for building construction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  7. Handbook of energy use for building construction

    Science.gov (United States)

    Stein, R. G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, railroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. Emphasis is given to new building construction; however, some information for the other parts of the construction industry is also included. Building designers are provided with information to determine the energy required for buildings construction and to evaluate the energy required for alternative materials, assemblies, and methods. It is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  8. Zero Energy Building definition–a literature review

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Marszal, Anna Joanna

    2011-01-01

    The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately, th...

  9. Commercial Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  10. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since the author......Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... with practitioners in the building sector at the local level. The aim of this report is to look into municipal efforts to promote energy efficient buildings to learn from their experiences: What types of challenges are municipalities facing, when attempting to disseminate energy efficient technologies in local...... building projects through municipal planning practices, and how do they cope with these challenges? The report is based on an in-depth study of proactive planning practices performed by municipal partners in the Class 1 project and a series of experiences, strategies and instru-ments are identified...

  11. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  12. 76 FR 69714 - International Energy Agency Meetings

    Science.gov (United States)

    2011-11-09

    ...: Notice of Meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA... Industry Advisory Board (IAB) to the International Energy Agency (IEA) will be held at the headquarters of... of Switzerland --Questionnaire Response of The Netherlands 5. Emergency Response Exercises...

  13. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    Science.gov (United States)

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI

  14. Renewable Energy Applications for Existing Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  15. International Atomic Energy Agency annual report 2006

    International Nuclear Information System (INIS)

    2007-01-01

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2006 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2006/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  16. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  17. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  18. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Runci, Paul; Meier, Alan

    2008-08-01

    This report presents results from a program evaluation of the U.S. Department of Energy?s Buildings Technologies Program (BTP) participation in collaborative international technology implementing agreements. The evaluation was conducted by researchers from the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory in the fall of 2007 and winter 2008 and was carried out via interviews with stakeholders in four implementing agreements in which BTP participates, reviews of relevant program reports, websites and other published materials. In addition to these findings, the report includes a variety of supporting materials such that aim to assist BTP managers who currently participate in IEA implementing agreements or who may be considering participation.

  19. Unintended anchors: Building rating systems and energy performance goals for U.S. buildings

    International Nuclear Information System (INIS)

    Klotz, Leidy; Mack, Daniel; Klapthor, Brent; Tunstall, Casey; Harrison, Jennilee

    2010-01-01

    In the U.S., where buildings account for 40% of energy use, commercial buildings use more energy per unit area than ever before. However, exemplary buildings demonstrate the feasibility of much better energy performance at no additional first cost. This research examines one possible explanation for this inconsistency. The aim is to investigate whether the anchoring bias, which refers to our tendency to gravitate towards a pre-defined standard regardless of its relevance, influences energy performance goals in building design. The scope examines professionals who help set energy performance goals for U.S. buildings. Prior to being asked to set an energy performance goal, these professionals were randomly directed to one of three series of questions. One series set an anchor of 90% energy reduction beyond standard practice, one set a 30% anchor, and one set no anchor. Respondents exposed to the 90% anchor, and respondents exposed to no anchor at all, set higher energy performance goals than respondents exposed to the 30% anchor. These results suggest that building rating systems that only reward incremental energy improvements may inadvertently create anchors, thereby discouraging more advanced energy performance goals and inhibiting energy performance that is technically and economically feasible.

  20. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    Science.gov (United States)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  1. Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation

    Directory of Open Access Journals (Sweden)

    Faustino Patiño-Cambeiro

    2017-07-01

    Full Text Available There is an urgent need for energy efficiency in buildings within the European framework, considering its environmental implications, and Europe’s energy dependence. Furthermore, the need for enhancing and increasing productivity in the building industry turns new technologies and building energy performance simulation environments into extremely interesting solutions towards rigorous analysis and decision making in renovation within acceptable risk levels. The present work describes a multidisciplinary approach for the estimation of the energy performance of an educational building. The research involved data acquisition with advanced geomatic tools, the development of an optimized building information model, and energy assessment in Building Performance Simulation (BPS software. Interoperability issues were observed in the different steps of the process. The inspection and diagnostic phases were conducted in a timely, accurate manner thanks to automated data acquisition and subsequent analysis using Building Information Modeling based tools (BIM-based tools. Energy simulation was performed using Design Builder, and the results obtained were compared with those yielded by the official software tool established by Spanish regulations for energy certification. The discrepancies between the results of both programs have proven that the official software program is conservative in this sense. This may cause the depreciation of the assessed buildings.

  2. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  3. US energy agency making progress

    Science.gov (United States)

    2017-07-01

    The Advanced Research Projects Agency-Energy (ARPA-E) has the ability to make significant contributions to energy research but must be allowed time to do so, according to a report by the US National Academies of Sciences, Engineering and Medicine.

  4. Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting

    Directory of Open Access Journals (Sweden)

    Paola Marrone

    2018-03-01

    Full Text Available A large part of the stock of Italian educational buildings have undertaken energy retrofit interventions, thanks to European funds allocated by complex technical-administrative calls. In these projects, the suggested retrofit strategies are often selected based on the common best practices (considering average energy savings but are not supported by proper energy investigations. In this paper, Italian school buildings’ stock was analyzed by cluster analysis with the aim of providing a methodology able to identify the best energy retrofit interventions from the perspective of cost-benefit, and to correlate them with the specific characteristics of the educational buildings. This research is based on the analysis of about 80 school buildings located in central Italy and characterized by different features and construction technologies. The refurbished buildings were classified in homogeneous clusters and, for each of them, the most representative building was identified. Furthermore, for each representative building a validating procedure based on dynamic simulations and a comparison with actual energy use was performed. The two buildings thus singled out provide a model that could be developed into a useful tool for Public Administrations to suggest priorities in the planning of new energy retrofits of existing school building stocks.

  5. Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China

    International Nuclear Information System (INIS)

    Xu Pengpeng; Chan, Edwin Hon-Wan; Queena Kun Qian

    2011-01-01

    Hotel building is a type of high-energy-consuming building and most existing hotel buildings need energy efficiency improvement in China. Energy performance contracting (EPC) is considered a win-win mechanism to organize building energy efficiency retrofit (BEER) project. However, EPC mechanism has been introduced into China relatively recently and many EPCs have not been successful in building energy efficiency retrofit projects. This research aims to develop a set of critical success factors (CSFs) of EPC for sustainable energy efficiency retrofit (BEER) of hotel buildings in China. Semi-structured interviews and a questionnaire survey with practitioners and other professionals were conducted. The findings reveal the relative importance of the 21 number of identified success factors. In order to explore the underlying relationship among the identified critical success factors (CSFs), factor analysis method was adopted for further investigation, which leads to grouping the 21 identified CSFs into six clusters. These are (1) project organization process, (2) EPC project financing for hotel retrofit, (3) knowledge and innovation of EPC, sustainable development (SD), and M and V, (4) implementation of sustainable development strategy, (5) contractual arrangement, and (6) external economic environment. Finally, several relevant policies were proposed to implement EPC successfully in sustainable BEER in hotel buildings. - Highlights: → EPC is a win-win mechanism to organize building energy efficiency retrofit project. → CSFs of EPC mechanism for sustainable BEER of hotel building in China are examined. → Six clusters are extracted from 21 identified CSFs based on factor analysis.

  6. Classification of low energy houses in Danish Building Regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    The new Danish Building Regulations (Building Regulations, 2005) introduces the total energy consumption, i.e. energy use for heating, ventilation, cooling and domestic hot water, for buildings as a measure for the energy efficiency of new buildings, i.e. moving away from the former U-value demands....... In addition to the minimum requirements for new buildings, the new Building Regulations also specify requirements for characterizing a building as either low energy building class 1 or low energy building class 2. This paper describes a type-house that is presently being built in Denmark. The type......-house easily meets the requirements for being categorized as a low energy building class 1, and the paper investigates how much U-values can be increased if the type-house were to fulfil the requirements for a low energy building class 2 or a building that just fulfils the minimum demands....

  7. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  8. Driving forces and barriers to improved energy performance of buildings: an analysis of energy performance of Swedish buildings, 2000-2006

    Energy Technology Data Exchange (ETDEWEB)

    Fuglseth, Bente Beckstroem

    2008-06-15

    The building sector is responsible for a substantial part of energy use and green house gas emissions in Europe. This report explores driving forces and barriers to improved energy performance of buildings, using the Swedish building sector as a case. The development of energy performance of buildings in Sweden from 2000 until 2006 is explored by applying a threefold understanding of energy performance of buildings: substitution from fossil fuels to renewable energy, conversion from electrical heating to thermal energy and reduction in energy demand. Three explanatory approaches are used to analyse driving forces and barriers to improved energy performance: the techno-economic approach stresses the physical aspects of infrastructure and technologies, the institutional approach emphasizes the role of institutional factors, while the regulative approach focuses on formal rules and laws. The study concludes that all factors have promoted substitution of fossil fuels with renewable energy, while they have prevented conversion from electrical heating to thermal energy and reduction in energy demand. (author). 95 refs

  9. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  10. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    Lee, Siew Eang; Rajagopalan, Priyadarsini

    2008-01-01

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  11. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  12. Tropical Zero Energy Office Building

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during...... of 24 – 26 oC can be maintained throughout the office hours. The PV roof of the building serves multiple purposes. During daytime, the roof becomes the powerplant of the building, and during nighttime, the PV roof becomes the “cooling tower” for the chiller. The roof will be covered by a thin water film...

  13. Energy absorption build-up factors in teeth

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Rudraswamy, B.

    2012-01-01

    Geometric progression fitting method has been used to compute energy absorption build-up factor of teeth [enamel outer surface, enamel middle, enamel dentin junction towards enamel, enamel dentin junction towards dentin, dentin middle and dentin inner surface] for wide energy range (0.015-15 MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption build-up factor on incident photon energy, penetration depth, electron density and effective atomic number has also been studied. The energy absorption build-up factors increases with the penetration depth and electron density of teeth. So that the degree of violation of Lambert-Beer (I = I 0 e -μt ) law is less for least penetration depth and electron density. The energy absorption build-up factors for different regions of teeth are not same hence the energy absorbed by the different regions of teeth is not uniform which depends on the composition of the medium. The relative dose of gamma in different regions of teeth is also estimated. Dosimetric implication of energy absorption build-up factor in teeth has also been discussed. The estimated absorption build up factors in different regions of teeth may be useful in the electron spin resonance dosimetry. (author)

  14. Economic assessment of energy storage for load shifting in Positive Energy Building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Georges, Emeline

    2016-01-01

    Net Zero Energy Buildings (NZEB) and Positive Energy Buildings (PEB) are gaining more and more interest. In this paper, the impact of the integration of a battery in a positive energy building is assessed in order to increase its self-consumption of electricity. Parametric studies are carried out......-in tariff and a 5 kWh battery. Finally, simple correlations (based on the feed-in tariff, the annual electrical consumption and production) to predict the optimal size of battery and the lowest payback period are proposed.......Net Zero Energy Buildings (NZEB) and Positive Energy Buildings (PEB) are gaining more and more interest. In this paper, the impact of the integration of a battery in a positive energy building is assessed in order to increase its self-consumption of electricity. Parametric studies are carried out...... by varying the building envelope characteristics, the power supply system, the climate, the lightning and appliances profiles, the roof tilt, the battery size and the electricity tariffs, leading to 3200 cases. The analysis is performed on an annual basis in terms of self-consumption rate, shifted energy...

  15. ASEAN--USAID Buildings Energy Conservation Project final report. Volume 2, Technology

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.; Busch, J.F. [eds.

    1992-06-01

    This volume reports on research in the area of energy conservation technology applied to commercial buildings in the Association of Southeast Asian Nations (ASEAN) region. Unlike Volume I of this series, this volume is a compilation of original technical papers prepared by different authors in the project. In this regard, this volume is much like a technical journal. The papers that follow report on research conducted by both US and ASEAN researchers. The authors representing Indonesia, Malaysia, Philippines, and Thailand, come from a range of positions in the energy arena, including government energy agencies, electric utilities, and universities. As such, they account for a wide range of perspectives on energy problems and the role that technology can play in solving them. This volume is about using energy more intelligently. In some cases, the effort is towards the use of more advanced technologies, such as low-emittance coatings on window glass, thermal energy storage, or cogeneration. In others, the emphasis is towards reclaiming traditional techniques for rendering energy services, but in new contexts such as lighting office buildings with natural light, or cooling buildings of all types with natural ventilation. Used in its broadest sense, the term ``technology`` encompasses all of the topics addressed in this volume. Along with the more customary associations of technology, such as advanced materials and equipment and the analysis of their performance, this volume treats design concepts and techniques, analysis of ``secondary`` impacts from applying technologies (i.e., unintended impacts, or impacts on parties not directly involved in the purchase and use of the technology), and the collection of primary data used for conducting technical analyses.

  16. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  17. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  18. Energy savings potential from improved building controls for the US commercial building sector

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  19. Empirical Validation of Building Simulation Software : Modeling of Double Facades

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  20. Quantification of Uncertainty in Predicting Building Energy Consumption

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    2012-01-01

    Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new...... approach for the prediction of building energy consumption is presented. The approach quantifies the uncertainty of building energy consumption by means of stochastic differential equations. The approach is applied to a general heat balance for an arbitrary number of loads and zones in a building...... for the dynamic thermal behaviour of buildings. However, for air flow and energy consumption it is found to be much more significant due to less “damping”. Probabilistic methods establish a new approach to the prediction of building energy consumption, enabling designers to include stochastic parameters like...

  1. Defining net zero energy buildings

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available Worldwide increasing attention to energy consumption and associated environmental impacts thereof has resulted in a critical attitude towards energy usage of building. Increasing costs of energy and dependence on energy service providers add...

  2. New solutions in the use of energy. Characteristics for a Mediterranean building; Nouvelles solutions dans l'utilisation de l'energie. Caracteristiques pour un batiment mediterraneen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document is edited by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE) with the participation of the ICAEN (Institut Catala d'Energia) (Barcelona, Spain) and Punto Energia (Milan, Italy) and with the help of the general direction of energy of the European Commission (DG 17, sub-program 'Energy'). It presents the rules for the elaboration of a 'building program' devoted to foremen and which aims at integrating the energy and environmental requirements of a building prior to its construction: 1 - planning (goal, preliminary and feasibility studies); 2 - elaboration of the energy program (environmental context of the project, demand formulation: environmental impact, comfort, electricity and water uses, maintenance, costs..); 3 - characteristics of a Mediterranean building (regional aspect, envelope and passive heating/cooling techniques, active techniques), 4 - energy feasibility study; 5 - evaluation means. (J.S.)

  3. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  4. Economical optimization of building elements for use in design of nearly zero energy buildings

    DEFF Research Database (Denmark)

    Hansen, Sanne

    2012-01-01

    Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on how to end up with the most economical optimal solution. Therefore this paper present a method...... for finding the economical optimal solutions based on the use of the cost of conserved energy for each main building envelope part and building service system and cost of produced energy for each energy producing system. By use of information on construction cost and developed models of the yearly energy use...

  5. Guidelines for Using Building Information Modeling for Energy Analysis of Buildings

    Directory of Open Access Journals (Sweden)

    Thomas Reeves

    2015-12-01

    Full Text Available Building energy modeling (BEM, a subset of building information modeling (BIM, integrates energy analysis into the design, construction, and operation and maintenance of buildings. As there are various existing BEM tools available, there is a need to evaluate the utility of these tools in various phases of the building lifecycle. The goal of this research was to develop guidelines for evaluation and selection of BEM tools to be used in particular building lifecycle phases. The objectives of this research were to: (1 Evaluate existing BEM tools; (2 Illustrate the application of the three BEM tools; (3 Re-evaluate the three BEM tools; and (4 Develop guidelines for evaluation, selection and application of BEM tools in the design, construction and operation/maintenance phases of buildings. Twelve BEM tools were initially evaluated using four criteria: interoperability, usability, available inputs, and available outputs. Each of the top three BEM tools selected based on this initial evaluation was used in a case study to simulate and evaluate energy usage, daylighting performance, and natural ventilation for two academic buildings (LEED-certified and non-LEED-certified. The results of the case study were used to re-evaluate the three BEM tools using the initial criteria with addition of the two new criteria (speed and accuracy, and to develop guidelines for evaluating and selecting BEM tools to analyze building energy performance. The major contribution of this research is the development of these guidelines that can help potential BEM users to identify the most appropriate BEM tool for application in particular building lifecycle phases.

  6. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Science.gov (United States)

    2013-05-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE..., DC 20503 And to Mr. Dana O'Hara, Office of Energy Efficiency and Renewable Energy (EE- 2G), U.S...

  7. Energy Performance Indicators in the Swedish Building Procurement Process

    Directory of Open Access Journals (Sweden)

    Ingrid Allard

    2017-10-01

    Full Text Available In Sweden, all new buildings need to comply with the National Board of Housing, Building and Planning’s requirement on specific purchased energy (kWh/m2. Accordingly, this indicator is often used to set design criteria in the building procurement process. However, when energy use is measured in finished buildings, the measurements often deviate significantly from the design calculations. The measured specific purchased energy does not necessarily reflect the responsibility of the building contractor, as it is influenced by the building operation, user behavior and climate. Therefore, Swedish building practitioners may prefer other indicators for setting design criteria in the building procurement process. The aim of this study was twofold: (i to understand the Swedish building practitioners’ perspectives and opinions on seven building energy performance indicators (envelope air leakage, U-values for different building parts, average U-value, specific heat loss, heat loss coefficient, specific net energy, and specific purchased energy; and (ii to understand the consequences for the energy performance of multi-family buildings of using the studied indicators to set criteria in the procurement process. The study involved a Delphi approach and simulations of a multi-family case study building. The studied indicators were discussed in terms of how they may meet the needs of the building practitioners when used to set building energy performance criteria in the procurement process.

  8. Commercial building energy use in six cities in Southern China

    International Nuclear Information System (INIS)

    Xu, Peng; Huang, Joe; Shen, Pengyuan; Ma, Xiaowen; Gao, Xuefei; Xu, Qiaolin; Jiang, Han; Xiang, Yong

    2013-01-01

    With China’s continuing economic growth, the percentage of government offices and large commercial buildings has increased tremendously; thus, the impact of their energy usage has grown drastically. In this survey, a database with more than 400 buildings was created and analyzed. We researched energy consumption by region, building type, building size and vintage, and we determined the total energy use and performed end use breakdowns of typical buildings in six cities in southern China. The statistical analysis shows that, on average, the annual building electricity use ranged from 50 to 100 kW h/m 2 for office buildings, 120 to 250 kW h/m 2 for shopping malls and hotels, and below 40 kW h/m 2 for education facilities. Building size has no direct correlation with building energy intensity. Although modern commercial buildings built in the 1990s and 2000s did not use more energy on average than buildings built previously, the highest electricity intensive modern buildings used much more energy than those built prior to 1990. Commercial buildings in China used less energy than buildings in equivalent weather locations in the US and about the same amount of energy as buildings in India. However, commercial buildings in China provide comparatively less thermal comfort than buildings in comparable US climates. - Highlights: ► The worst modern buildings use more energy than the worst old buildings. ► Government office buildings did not use more energy than private office buildings. ► Commercial buildings in China use less energy than buildings in the US. ► Modern commercial buildings don't use more energy than old buildings.

  9. Global climate-oriented building energy use scenarios

    International Nuclear Information System (INIS)

    Harvey, L.D. Danny

    2014-01-01

    This paper explores the extent to which global fuel use in buildings could be reduced, and the growth in global electricity use in buildings limited, by applying stringent (factor of 3–4) improvements to recent building codes for new buildings worldwide and large (factor of 2–3) reductions in the energy use of existing buildings through renovations. The analysis is carried out for 10 different socio-economic regions of the world, taking into account existing building stock and energy intensities in each region and projected changes in population and income, which in most parts of the world will drive large increases in building floor area. A stock turnover model is applied to project changes in heating, cooling, service hot water (SHW) and non-thermal electricity demand with various rates of improvement in standards for new and renovated buildings, and various rates of renovation and demolition of existing buildings. For a scenario in which population peaks at about 9 billion and global average per capita GDP increases to twice the 2010 value by 2100, the global fuel demand could be reduced by a factor of four while limiting maximum annual electricity demand to twice the 2010 value. - Highlights: • A detailed model for generating global scenarios of building energy use is presented. • Drivers of increasing energy use are population and per capita GDP in 10 regions. • Heating, cooling and ventilation energy uses are projected using a stock turnover model. • Global building fuel demand could decrease by 60–80% by 2100 relative to 2010. • Global building electricity demand could be limited to a 100–200% increase

  10. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  11. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  12. Intelligent analysis of energy consumption in school buildings

    International Nuclear Information System (INIS)

    Raatikainen, Mika; Skön, Jukka-Pekka; Leiviskä, Kauko; Kolehmainen, Mikko

    2016-01-01

    Highlights: • Electricity and heating energy consumptions of six school buildings were compared. • Complex multivariate data was analysed using modern computational methods. • Variation in electricity consumption cost is considerably low between study schools. • District heating variation is very slight in two new study schools. • District heating cost describes energy efficiency and state of building automation. - Abstract: Even though industry consumes nearly half of total energy production, the relative share of total energy consumption related to heating and operating buildings is growing constantly. The motivation for this study was to reveal the differences in electricity use and district heating consumption in school buildings of various ages during the working day and also during the night when human-based consumption is low. The overall aim of this study is to compare the energy (electricity and heating) consumption of six school buildings in Kuopio, Eastern Finland. The selected school buildings were built in different decades, and their ventilation and building automation systems are also inconsistent. The hourly energy consumption data was received from Kuopion Energia, the local energy supply company. In this paper, the results of data analysis on the energy consumption in these school buildings are presented. Preliminary results show that, generally speaking, new school buildings are more energy-efficient than older ones. However, concerning energy efficiency, two very new schools were exceptional because ventilation was on day and night in order to dry the building materials in the constructions. The novelty of this study is that it makes use of hourly smart metering consumption data on electricity and district heating, using modern computational methods to analyse complex multivariate data in order to increase knowledge of the buildings’ consumption profiles and energy efficiency.

  13. A Fuzzy-Based Building Energy Management System for Energy Efficiency

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2018-01-01

    Full Text Available Information and communication technologies (ICT offer immense potential to improve the energetic performance of buildings. Additionally, common building control systems are typically based on simple decision-making tools, which possess the ability to obtain controllable parameters for indoor temperatures. Nevertheless, the accuracy of such common building control systems is improvable with the integration of advanced decision-making techniques embedded into software and energy management tools. This paper presents the design of a building energy management system (BEMS, which is currently under development, and that makes use of artificial intelligence for the automated decision-making process required for optimal comfort of occupants and utilization of renewables for achieving energy-efficiency in buildings. The research falls under the scope of the H2020 project BREASER which implements fuzzy logic with the aim of governing the energy resources of a school in Turkey, which has been renovated with a ventilated façade with integrated renewable energy sources (RES. The BRESAER BEMS includes prediction techniques that increase the accuracy of common BEMS tools, and subsequent energy savings, while ensuring the indoor thermal comfort of the building occupants. In particular, weather forecast and simulation strategies are integrated into the functionalities of the overall system. By collecting the aforementioned information, the BEMS makes decisions according to a well-established selection of key performance indicators (KPIs with the objective of providing a quantitative comparable value to determine new actuation parameters.

  14. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  15. Energy consumption, energy savings, and emission analysis in Malaysian office buildings

    International Nuclear Information System (INIS)

    Saidur, R.

    2009-01-01

    This paper is concerned with the estimation of energy use in office buildings in Malaysia and with the energy use of major equipment. Energy intensity (EI) - a measure of a building's energy performance - is estimated for Malaysia and compared with a number of selected countries. Air conditioners are shown to be the major energy users (57%) in office buildings, followed by lighting (19%), lifts and pumps (18%) and other equipment (6%). It is estimated that 77,569 MWh of energy can be saved and a huge reduction of emissions achieved through the application of advance glazing, compact fluorescent lamps (CFL), insulation, housekeeping, and by raising thermostat set point temperature of air conditioners, and reducing EI. It is also estimated that a very substantial amount of energy can be saved by making use of energy-efficient motors in building systems with different motor loading percentages. Finally, it can be shown that the use of variable speed drives (VSDs) and energy-efficient motors leads to substantial energy savings and an enormous reduction in emissions.

  16. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  17. Predicting energy performance of a net-zero energy building: A statistical approach

    International Nuclear Information System (INIS)

    Kneifel, Joshua; Webb, David

    2016-01-01

    Highlights: • A regression model is applied to actual energy data from a net-zero energy building. • The model is validated through a rigorous statistical analysis. • Comparisons are made between model predictions and those of a physics-based model. • The model is a viable baseline for evaluating future models from the energy data. - Abstract: Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid Climate Zone, and compares these

  18. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  19. Massive financing of the energy transition - SFTE feasibility study: synthesis report, Energy renovation of public buildings

    International Nuclear Information System (INIS)

    2014-11-01

    The Energy Shift Financing Agency's (SFTE) project aims to establish a broad partnership between public and private entities to stimulate the economy and deliver between euros 180 bn and euros 420 bn of investment in Europe over 10 years for the benefit of medium-sized projects (in the order of euros 1 m) that are necessary for the energy transition. It will enable EU banks to finance the energy renovation of public buildings under excellent - cheap and long-term - conditions. A feasibility study has been conducted by the AFTER association with an exemplary consortium of public and private stakeholders in France: local authorities, industry players, banks/financial institutions, NGOs, Plan Batiment Durable. Many European institutions have expressed their interest in the initiative. Now the implementation of the SFTE project requires a commitment from European and national public authorities. Such a proactive real-estate policy would significantly contribute to economic recovery, cut costs, CO_2 emissions and the external deficit and improve energy independence, and could quickly create jobs. This document is the French version of the synthesis report of the SFTE project feasibility study. Two notes are attached to the document: one about the SFTE project adaptation to the Juncker's 315 bn euros investment plan, and the other about the selection of public buildings energy retrofitting in the Juncker plan and the French-German proposals

  20. Training program for energy conservation in new-building construction. Volume II. Energy conservation technology: for the building inspector

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    A Model Code for Energy Conservation in New Building Construction has been developed by those national organizations primarily concerned with the development and promulgation of model codes. The technical provisions are based on ASHRAE Standard 90-75 and are intended for use by state and local officials. This training manual contains the basic information necessary to acquaint the field building inspector with the concepts of energy conservation in buildings and instructs him in the basic techniques of field inspection of energy compliance.

  1. Enhancing energy efficiency in public buildings: The role of local energy audit programmes

    International Nuclear Information System (INIS)

    Annunziata, Eleonora; Rizzi, Francesco; Frey, Marco

    2014-01-01

    In the objective of reaching the “nearly zero-energy buildings” target set by the European Union, municipalities cover a crucial role in advocating and implementing energy-efficient measures on a local scale. Based on a dataset of 322 municipalities in Northern Italy, we carried out a statistical analysis to investigate which factors influence the adoption of energy efficiency in municipal buildings. In particular, the analysis focuses on four categories of factors: (i) capacity building for energy efficiency, (ii) existing structure and competences for energy efficiency, (iii) technical and economic support for energy efficiency, and (iv) spill-over effect caused by adoption of “easier” energy-efficient measures. Our results show that capacity building through training courses and technical support provided by energy audits affect positively the adoption of energy efficiency in municipal buildings. The size of the municipal authority, the setting of local energy policies for residential buildings and funding for energy audits are not correlated with energy efficiency in public buildings, where the “plucking of low hanging fruit” often prevails over more cost-effective but long-term strategies. Finally, our results call for the need to promote an efficient knowledge management and a revision of the Stability and Growth Pact. - Highlights: • Public procurement supports the deployment of the energy efficiency of buildings. • Energy audits and other factors influence energy efficiency in public buildings. • Econometric analysis applied to data from 322 municipalities in Northern Italy. • Municipalities need to overtake the “plucking of low-hanging fruit”. • Knowledge management should be associated with removal of budget constraints

  2. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  3. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    concern which can be seen during the construction of new buildings. People want energy-friendly solutions, but they should be economical optimized. An exonomical optimized building design with respect to energy consumption is the design with the lowest total cost (investment plus operational cost over its...... to evaluate different separate solutions when they interact in the building.When trying to optimize several parameters there is a need for a method, which will show the correct price-performance of each part of a building under design. The problem with not having such a method will first be showed...

  4. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  5. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  6. Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?

    International Nuclear Information System (INIS)

    Xu, Peng; Xu, Tengfang; Shen, Pengyuan

    2013-01-01

    Based upon the results from extensive building monitoring and surveys on occupant’s behaviors in a representative nine-story apartment building in northern China, building energy simulations were performed to evaluate the impacts of integrative retrofits implemented. Integrative retrofits required by the newer building energy standard produced significant heating-energy savings (i.e., 53%) when compared with baseline buildings commonly built in early 1980s. Taking into account district-heating-system upgrades as part of integrative retrofit measures, a representative apartment building was 66% more efficient than the baseline building. Contrary to expectation, little behavioral change was found in response to the provisions of monetary incentive, billing-method reform, or metering of heating energy use in individual apartment units. Yet this paper identified sizable energy savings potential if occupants’ behavioral changes were to actually happen. This indicates that provisions of financial incentives or individual metering were insufficient for triggering substantial behavioral changes leading toward more energy savings in the current buildings. It is recommended that innovative energy policies, technology upgrades, and education would be needed to promote behavioral changes toward additional energy savings. Finally, measures and strategies to further enhance thermal integrity criteria (e.g., insulations of roof and balcony) are recommended in China’s future building energy policy reforms. - Highlights: ► Integrative retrofits significantly reduce residential heating energy in north China. ► Energy effects of retrofits, incentive, billing and behavioral changes were studied. ► Monetary incentive, control or metering technologies did not lead to behavior change. ► Potential energy savings due to occupants’ behavioral changes are sizable. ► Thermal integrity needs to be enhanced in future building standards and policies.

  7. Energy Conservation of the Designated Government Buildings in Thailand

    Directory of Open Access Journals (Sweden)

    Wangskarn Prapat

    2016-01-01

    Full Text Available The designated government buildings have implemented and administered energy program under the energy development and promotion Act 2007 for many years continuously until 2015. Appointment person responsible for energy, performing energy management and implementing the energy conservation work plan and measures are legal requirements for the designated buildings. Therefore, the ministry of Energy has launched the project to support the implementation of energy management. The aim of the project was to create the energy management system in the designated government buildings, and to reduce energy consumption. In this paper, the evaluation of the project has been presented from the achievements of 839 designated government buildings. The energy saving is more than 440 ktoe/year. This is about 3% of energy consumptions of buildings.

  8. Establishing a commercial building energy data framework for India

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, Satish [Alliance for an Energy Efficient Economy, New Delhi (India); Mathew, Sangeeta [Alliance for an Energy Efficient Economy, New Delhi (India); Stratton, Hannah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathew, Paul A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singh, Mohini [Synurja, Inc. (India)

    2018-04-18

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The United States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.

  9. Distributed DC-UPS for energy smart buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Munoz, A.; Pallares-Lopez, V.; Real-Calvo, R.J.; Gil-de-Castro, A. [Universidad de Cordoba, Area de Electronica, Dpto. Arquitectura de Computadores, Electronica y Tecnologia Electronica, Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); De la Rosa, Juan Jose Gonzalez [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202 Algeciras-Cadiz (Spain)

    2011-01-15

    Energy efficiency (EE) improvement is one of the most important targets to be achieved on every society as a whole and in buildings in particular. Energy Smart Building aims to accelerate the uptake of EE, healthy buildings that by integrating smart technology and solutions consume radically little resources while enhancing the quality of life. This paper addresses how uninterruptible power supply (UPS), particularly when configured in distributed DC mode, can become an Energy Efficient (EE) solution in high tech buildings, especially when integrated with complimentary Power Quality (PQ) measures. The paper is based upon PQ audits conducted at different IT-intensive modern building. Some of the mayor objectives of the PQ studies were: detecting the main involved disturbances by PQ monitoring, identifying the power disturbances root causes, characterizing the electromagnetic compatibility level of equipments and installation and providing guidelines for implementing energy-efficiency solutions. It was found that the main problems for the equipment installed were harmonics and voltage sag (dip). Finally, this paper demonstrates the impacts of generalized electronic devices on the PQ of the buildings and the implications on energy uses. (author)

  10. International Atomic Energy Agency and Malaysia

    International Nuclear Information System (INIS)

    Abd Rahim Mohd Nor

    1985-01-01

    A review on IAEA (International Atomic Energy Agency) and its relation with Malaysia is given. This article also discusses the background history of IAEA, its organization and functions in the field of nuclear energy

  11. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Qing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  12. North European Understanding of Zero Energy/Emission Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, J. S.; Nieminen, J.

    2010-01-01

    countries are still to adopt a national definition for these types of buildings. This results often in more than one understanding of ZEBs in each country. This study provides a concise source of information on the north European understanding of zero energy/emission buildings. It puts forward a number......The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately...... may observe a correlation between the zero energy/emission building approach adopted by a country and this particular country’s utility grid characteristics. Moreover, it is to be noted that the ZEB concept is not well defined at the national level in northern Europe and that all of the participating...

  13. Alternative Natural Energy Sources in Building Design.

    Science.gov (United States)

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  14. Federal Buildings Supplemental Survey 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

  15. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  16. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  17. Optimizing Existing Multistory Building Designs towards Net-Zero Energy

    Directory of Open Access Journals (Sweden)

    Mohammad Y. AbuGrain

    2017-03-01

    Full Text Available Recent global developments in awareness and concerns about environmental problems have led to reconsidering built environment approaches and construction techniques. One of the alternatives is the principle of low/zero-energy buildings. This study investigates the potentials of energy savings in an existing multi-story building in the Mediterranean region in order to achieve net-zero energy as a solution to increasing fossil fuel prices. The Colored building at the Faculty of Architecture, Eastern Mediterranean University, Cyprus was chosen as a target of this study to be investigated and analyzed in order to know how energy efficiency strategies could be applied to the building to reduce annual energy consumption. Since this research objective is to develop a strategy to achieve net-zero energy in existing buildings, case study and problem solving methodologies were applied in this research in order to evaluate the building design in a qualitative manner through observations, in addition to a quantitative method through an energy modeling simulation to achieve desirable results which address the problems. After optimizing the building energy performance, an alternative energy simulation was made of the building in order to make an energy comparison analysis, which leads to reliable conclusions. These methodologies and the strategies used in this research can be applied to similar buildings in order to achieve net-zero energy goals.

  18. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  19. Energy savings in the Danish building stock until 2050

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    2014-01-01

    are energy upgraded according to the requirements stipulated in the Danish Building Regulations 2010. Furthermore, scenario analyses was made for the potential impact on the energy consumption of introducing different levels of tightening of the energy requirements for existing buildings in the Danish...... Building Regulations. Compliance with the requirements in the Danish Building Regulations will potentially result in energy savings for space heating and domestic hot water around 30 % until 2050. Further tightening of the component insulation level requirements will only result in marginally higher......A study has been conducted analysing the energy savings for space heating and domestic hot water in the Danish building stock due to renovation of building components at the end of their service life. The purpose of the study was to estimate the energy savings until 2050 as building components...

  20. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  1. Statistical models describing the energy signature of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Thavlov, Anders

    2010-01-01

    Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA......-values, time constants of the building, and other parameters related to the heat dynamics. A method for selecting the most appropriate model for a given building is outlined and finally a perspective of the applications is given. Aknowledgements to the Danish Energy Saving Trust and the Interreg IV ``Vind i...

  2. Energy plus standard in buildings constructed by housing associations?

    International Nuclear Information System (INIS)

    Stutterecker, Werner; Blümel, Ernst

    2012-01-01

    In order to achieve national, European and international energy goals, energy efficiency strategies in the building sector have to be implemented. The passive house standard and low energy standards are already successfully established in single dwelling houses. These high performance standards are starting to penetrate into the sector of housing associations. A case study about an apartment building constructed by a housing association is presented here. It describes the monitoring concept and the results of the 1st year of monitoring. Depending on the definition of the zero energy building standard (extent of loads included in the balancing), the building could be classified as an energy plus building or as a building, which uses more energy, than is supplied by on-site generation. If the building's total energy use (including user specific loads) is defined as load, only 34.5% of these loads were provided by the net energy output of the PV system. If only the heating energy demand is defined as load, the PV system even yielded a surplus of 45.6% of the energy load. -- Highlights: ► Energy monitoring of an apartment building constructed by a housing association. ► Planned as a Passive House with a semi-central ventilation system with decentralized heat pump technology. ► Total end energy demand of the building was 43 kWh/(m² a). ► Total net energy generation by the PV system was 15 kWh/(m² a). ► Apartment no. 1: 52% of the energy demand were used for heating and ventilation.

  3. Designing of zero energy office buildings in hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gwad, Mohamed

    2011-07-01

    The designing of office buildings by using large glass areas to have a transparent building is an attractive approach in the modern office building architecture. This attitude increases the energy demand for cooling specially in the hot arid region which has long sun duration time, while the use of small glazing areas increases the energy demand for lighting. The use of uncontrolled natural ventilation increases the rate of hot ambient air flow which increases the building energy demand for cooling. At the same time, the use of mechanical ventilation to control the air change rate may increase the energy demand for fans. Some ideas such as low energy design concept are introduced for improving the building energy performance and different rating systems have been developed such as LEED, BREEAM and DGNB for evaluating building energy performance system. One of the new ideas for decreasing the dependence on fossil fuels and improving the use of renewable energy is the net zero-energy building concept in which the building generates enough renewable energy on site to equal or exceed its annual energy use. This work depends on using the potentials of mixing different energy strategies such as hybrid ventilation strategy, passive night cooling, passive chilled ceiling side by side with the integrating of photovoltaic modules into the building facade to produce energy and enrich the architectural aesthetics and finally reaching the Net Zero Energy Building. There are different definitions for zero energy buildings, however in this work the use of building-integrated Photovoltaic (BIPV) to provide the building with its annual energy needs is adopted, in order to reach to a Grid-Connected Net-Zero Energy Office Building in the hot arid desert zone represented by Cairo, Egypt. (orig.)

  4. Pusat Tenaga Malaysia's Zero Energy Office (ZEO) Building

    DEFF Research Database (Denmark)

    Tang, C.K.; Reimann, Gregers Peter; Kristensen, Poul Erik

    Technical Review of the Zero Energy Office building in Malaysia. The building, which has an energy index of 50 kWh/m2/year, reaches a net annual energy of zero through the use of building integrated photovoltaic panels. For reference, ordinary offices in Malaysia consume 200 - 300 kWh/m2/year...

  5. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  6. Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Delia D’Agostino

    2017-01-01

    Full Text Available Buildings are the focus of European (EU policies aimed at a sustainable and competitive low-carbon economy by 2020. Reducing energy consumption of existing buildings and achieving nearly zero energy buildings (NZEBs are the core of the Energy Efficiency Directive (EED and the recast of the Energy Performance of Building Directive (EPBD. To comply with these requirements, Member States have to adopt actions to exploit energy savings from the building sector. This paper describes the differences between deep, major and NZEB renovation and then it provides an overview of best practice policies and measures to target retrofit and investment related to non-residential buildings. Energy requirements defined by Member States for NZEB levels are reported comparing both new and existing residential and non-residential buildings. The paper shows how the attention given to refurbishment of NZEBs increased over the last decade, but the achievement of a comprehensive implementation of retrofit remains one of main challenges that Europe is facing.

  7. Energy simulation in building design

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1992-01-01

    Design decision support related to building energy consumption and / or indoor climate, should be based on an integral approach of environment, building, heating, ventilating and airconditioning (HVAC) system and occupants. The tools to achieve this are now available in the form of computer

  8. ASEAN-USAID buildings energy conservation project. Volume 1, Energy standards: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.; Busch, J.F. [eds.][Lawrence Berkeley Lab., CA (United States); Deringer, J.J. [Deringer Group, Riva, MD (United States)

    1992-06-01

    Mandatory or voluntary energy-efficiency standards for new or existing buildings can play an important role in a national program aimed at promoting energy conservation. Building codes and standards can provide a degree of control over design and building practices throughout the construction process, and encourage awareness of energy-conscious design. Studies in developed countries indicate that efficiency standards can produce energy reductions on the order of 20 to 40% or more. Within ASEAN, analyses of the savings potential from the proposed standards suggest that if implemented, these standards would produce savings over current new design practice of 19% to 24%. In this volume we provide an overview of the ASEAN-USAID project aimed at promulgating standards for energy efficiency in commercial buildings. The process of developing and implementing energy-efficiency standards for buildings can be subdivided into two key components: policy development; and technical and economic analysis. Each of these involves a number of steps and processes, as outlined in Figure 1-1. This volume describes the technical and economic analyses used to develop the proposed energy efficiency standards for four countries (Malaysia, Thailand, the Philippines, and Indonesia), and to refine an energy standard existing in Singapore since 1979. Though oriented toward the ASEAN region, the analysis methods described here are applicable in a range of settings, provided appropriate modifications are made for local building construction, climatic, economic, and political conditions. Implementation issues are not specifically addressed here; rather this volume is oriented towards the analytical work needed to establish or revise an energy standard for buildings.

  9. Estimating building energy consumption using extreme learning machine method

    International Nuclear Information System (INIS)

    Naji, Sareh; Keivani, Afram; Shamshirband, Shahaboddin; Alengaram, U. Johnson; Jumaat, Mohd Zamin; Mansor, Zulkefli; Lee, Malrey

    2016-01-01

    The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN. - Highlights: • Buildings consume huge amounts of energy for operation. • Envelope materials and insulation influence building energy consumption. • Extreme learning machine is used to estimate energy usage of a sample building. • The key effective factors in this study are insulation thickness and K-value.

  10. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... a missing link in the development. In this paper is demonstrated how a link between a dynamic Building Simulation Programme (BSP) and a simulation program for District Heating (DH) networks can give important information during the design phase. By using a BSP it is possible to analyze the influence...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...

  11. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  12. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eley, Charles; Gupta, Smita; Torcellini, Paul; Mchugh, Jon; Liu, Bing; Higgins, Cathy; Iplikci, Jessica; Rosenberg, Michael I.

    2017-06-30

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute; Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.

  13. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  14. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  15. The effectiveness of energy management system on energy efficiency in the building

    Science.gov (United States)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  16. Economic assessment of electric energy storage for load shifting in positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Do Carmo, Carolina Madeira Ramos; Georges, Emeline

    2017-01-01

    Net zero energy buildings and positive energy buildings are gaining more and more interest. This paper evaluates the impact of the integration of a battery in a positive energy building used to increase its self-consumption of electricity. Parametric studies are carried out by varying the buildin...... and a 3.7 kWh battery. Finally, simple correlations (based on the feed-in tariff, the annual electrical consumption and production) to predict the optimal size of battery and the lowest payback period are proposed.......Net zero energy buildings and positive energy buildings are gaining more and more interest. This paper evaluates the impact of the integration of a battery in a positive energy building used to increase its self-consumption of electricity. Parametric studies are carried out by varying the building...... envelope characteristics, the power supply system, the climate, the lighting and appliances profiles, the roof tilt angle, the battery size and the electricity tariffs, leading to 3200 cases. The analysis is performed on an annual basis in terms of self-consumption and self-production rate and payback...

  17. A review of building energy regulation and policy for energy conservation in developing countries

    International Nuclear Information System (INIS)

    Iwaro, Joseph; Mwasha, Abraham

    2010-01-01

    The rapid growth of energy use, worldwide, hfs raised concerns over problems of energy supply and exhaustion of energy resources. Most of the developed countries are implementing building energy regulations such as energy standards, codes etc., to reduce building energy consumption. The position of developing countries with respect to energy regulations implementation and enforcement is either poorly documented or not documented at all. In addition, there is a lack of consistent data, which makes it difficult to understand the underlying changes that affect energy regulation implementation in developing countries. In that respect, this paper investigates the progress of building energy regulations in developing countries and its implication for energy conservation and efficiency. The present status of building energy regulations in 60 developing countries around the world was analysed through a survey of building energy regulations using online survey. The study revealed the present progress made on building energy regulations in relation to implementation, development and compliance; at the same time the study recommends possible solutions to the barriers facing building energy regulation implementation in the developing world. - Research Highlights: →Progress and implications of energy regulations in developing countries. →Investigation assessed the progress made on energy regulations using online survey. →Energy regulation activities is progressively increasing in developing countries. →The study identified 25 developing countries without energy regulatory standards. →The study shows relationship between energy regulation and energy consumption.

  18. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  19. Building-owners energy-education program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The objectives of the program are to develop and test market a cogent education program aimed specifically at building owners to help them be more decisive and knowledgeable, and to motivate them to direct their managers and professionals to implement a rational plan for achieving energy conservation in their commercial office buildings and to establish a plan, sponsored by the Building Owners and Managers Association International (BOMA) to implement this educational program on a nation-wide basis. San Francisco, Chicago, and Atlanta were chosen for test marketing a model program. The procedure used in making the energy survey is described. Energy survey results of participating buildings in San Francisco, Chicago, and Atlanta are summarized. (MCW)

  20. The role and place of National Atomic Energy Agency in Romania

    International Nuclear Information System (INIS)

    Rapeanu, S.

    1996-01-01

    The paper presents the structure and the main tasks of the National Atomic Energy Agency (ANEA), a Romanian governmental authority established in the fall of the year 1994. The agency has two divisions: the first devoted to elaboration of long term strategies and coordination of national programs and the second devoted to the international co-operations with institutes and international organizations. The author reports the measures taken by the Agency to solve a number of problems and programs, some of them still under way: nuclear safety, CANDU reactor improvements, nuclear fuel cycle, heavy water cryogenic detritiation, radiation protection of population and environment, domestic manufacturing of NPP equipment and nuclear materials, decommissioning the nuclear facilities, radioactive waste processing and disposal, and emergency provisions in case of nuclear events. The author mentions also the open question of resumption of building the Unit 2 of Cernavoda NPP, the expertise potential of Romania in nuclear field, the meetings with experts from IAEA in technical cooperation problems and works of the international group (with participation of Argentina, Canada, Korea, India, Japan, Pakistan and Romania) on progress in HWR reactors

  1. Energy and architecture: improvement of energy performance in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Matthias; Wycmans, Annemie; Solbraa, Anne; Grytli, Eir

    2011-07-01

    This book aims to give an overview of different aspects of retrofitting existing buildings. The target group is students of architecture and building engineering as well as building professionals. Eight out of ten buildings which we will inhabit in 2050 already exist. This means that a great potential for reducing our carbon footprint lies in the existing building stock. Students from NTNU have used the renovation of a 1950s school building at Linesoeya in Soer-Trondelag as a case to increase their awareness and knowledge about the challenges building professionals need to overcome to unite technical details and high user quality into good environmental performance. The students were invited by the building owners and initiators of LIPA Eco Project to contribute to its development: By retrofitting an existing building to passive house standards and combining this with energy generated on site, LIPA Eco Project aims to provide a hands-on example with regard to energy efficiency, architectural design and craftsmanship for a low carbon society. The overall goal for this project is to raise awareness regarding resource efficiency measures in architecture and particularly in existing building mass.(au)

  2. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  3. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov (United States)

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL researchers are developing tools to understand the impact of changes in home and building energy use and how researchers who received a record of invention for a home energy management system in a smart home laboratory

  4. Energy efficiency in buildings. Yearbook 2016

    International Nuclear Information System (INIS)

    Poeschk, Juergen

    2016-01-01

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change. [de

  5. Financing the energy renovation of residential buildings through soft loans and third-party investment schemes. Infinite Solutions Guidebook

    International Nuclear Information System (INIS)

    Schilken, Peter; Cicmanova, Jana; Turner, Ian; Van Liefland, Stijn; Kaiser, Maaike; Ethuin, Perrine; Bernair, Corinne; Bertolotti, Enzo; Mordacci, Marco; Fraval, Jacques; Beaupetit, Helene; Safiulins, Timurs; Latisevs, Jevgenijs; Wenzel, Philipp; Dehghan, Bahram; Rask Nielsen, Poul

    2017-02-01

    Financing the energy retrofitting of buildings is a great challenge. With investments ranging from euros 200 to euros 1,200 /m 2 (CITYnvest study, 2015), access to attractive and long-term financing is perceived as the primary barrier to carrying out ambitious energy retrofits, in particular those aiming at achieving 50-75% energy savings. In this guidebook, Energy Cities' members share their experience and guide you through the process of setting up a soft loan financing scheme. The Stuttgart's 'care-free energy renovation package' and third party investment scheme are described in detail in a dedicated case study. The guidebook is intended for local and regional authorities, energy agencies and their associations, national energy agencies, ministries and fund managers, organisations providing training to cities and regions, banks and financing institutions. In short, all organisations and actors who could be interested in replicating these financing schemes or who could support cities and regions in doing so. The guidebook consists of four chapters: Chapter 1: an introduction to soft loan schemes. Chapter 2: step-by-step guidance on how to build a soft loan financing scheme, including an overview of three already tested alternative business models. Chapter 3: summary and recommendations. Chapter 4: case studies, including Stuttgart's third party investment scheme

  6. Investigation of building energy autonomy in the sahelian environment

    International Nuclear Information System (INIS)

    Coulibaly, O; Koulidiati, J; Ouedraogo, A; Kuznik, F; Baillis, D

    2012-01-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m 2 /year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  7. Barriers' and policies' analysis of China's building energy efficiency

    International Nuclear Information System (INIS)

    Zhang, Yurong; Wang, Yuanfeng

    2013-01-01

    With the rapid economic growth and the improvement of people's living standards, China's building energy consumption has kept rising during the past 15 years. Under the effort of the Chinese government and the society, China's building energy efficiency has made certain achievements. However, the implementation of building energy efficiency in China is still far from its potential. Based on the analysis of the existing policies implemented in China, the article concluded that the most essential and the most effective ways to promote building energy efficiency is the government's involvement as well as economic and financial incentives. In addition, the main barriers in the process of promoting building energy efficiency in China are identified in six aspects. It has been found that the legal system and administrative issues constitute major barriers, and the lack of financial incentives and the mismatching of market mechanism also hamper the promotion of building energy efficiency. Finally, in view of the existing policies and barriers analysis, three corresponding policy proposals are presented. -- Highlights: •The existing policies implemented in China from three aspects are presented and analysed. •The Government's involvement is the most essential effective way to promote building-energy efficiency. •Six aspects of barriers in promoting building energy efficiency in China are identified. •The legal system and administrative issues constitute the major barriers. •Three policy proposals to further promote building energy efficiency in China are proposed

  8. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  9. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  10. The International Energy Agency`s role in world-wide wind energy development

    Energy Technology Data Exchange (ETDEWEB)

    Rangi, R. [Natural Resources Canada, Ottawa, Ontario (Canada); Ancona, D. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Wind energy is now being deployed world-wide at a rapidly increasing rate and the International Energy Agency (IEA) has a changing role in its growth. IEA was founded in 1974 within the framework of the Organization for Economic Cooperation and Development (OECD) to collaborate on comprehensive international energy programs. IEA membership consists of eighteen parties from sixteen countries and the European Commission. Recently there has been increasing interest in IEA participation from both OECD and non-OECD countries. Non-OECD countries participating in various IEA Agreements include: China, India, Israel, Korea, and Russia. Because of its diverse international makeup, the IEA is viewed as a source of reliable technical and economic information. The World Bank has approached the Executive Committee for Wind Energy R & D, through the IEA Renewable Energy Working Party, to assist in the expansion of wind deployment. In addition, IEA is moving from R & D programs to include tracking of implementation incentives offered by its members.

  11. On variations of space-heating energy use in office buildings

    International Nuclear Information System (INIS)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-01-01

    Highlights: • Space heating is the largest energy end use in the U.S. building sector. • A key design and operational parameters have the most influence on space heating. • Simulated results were benchmarked against actual results to analyze discrepancies. • Yearly weather changes have significant impact on space heating energy use. • Findings enable stakeholders to make better decisions on energy efficiency. - Abstract: Space heating is the largest energy end use, consuming more than seven quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However

  12. Factsheet on Energy Neutral School Buildings and Office Buildings; Infoblad Energieneutrale scholen en kantoren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    A brief overview is given of all aspects of energy-neutral building and renovating school and office buildings. Besides technique, also attention is given to process, financing, management and maintenance. This factsheet is part of a series of three factsheets on energy neutral construction of houses and buildings. The other two are: 'Factsheet on Energy Neutral Building : Definition and ambition' and 'Factsheet on Energy Neutral Building' [Dutch] Een kort overzicht wordt gegeven van alle aspecten van energieneutraal bouwen en renoveren van woningen. Naast techniek komen ook proces, financiering en beheer en onderhoud aan de orde. Dit Infoblad maakt deel uit van een serie van drie Infobladen over energieneutraal bouwen voor woningen en gebouwen. De andere twee zijn: 'Infoblad Energieneutraal bouwen: definitie en ambitie' en 'Infoblad Energieneutrale Woningbouw'.

  13. Solar energy in buildings; L'energie solaire dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers the presentations given at the first French national meetings of solar energy for the development of solar systems in buildings. The meeting was organized over two days. The first day comprises 4 workshops about: urbanism and planning, cultural acceptability of solar energy in buildings (the OPAC 38 housing association, point of view on an energy information point, the Freiburg (Germany) solar region and marketing examples), technical integration to the structure (Clipsol solutions), and economical criteria (compared impacts of R and D public photovoltaic programs (USA, Japan, Germany, France, Italy), financing of rehabilitation projects, global approach of solar photovoltaic energy, technical solutions and strategy of products development, why and how to make an economical analysis of solar energy applications in the building industry). The second day comprises a plenary session and a round table: global status of solar energy development in Europe, status of French programs, renewable energies in Europe, the experience of Alsace region (Eastern France), the success of German solar markets, and the tools for the launching of solar energy. Two syntheses for these two days of meetings complete the document. (J.S.)

  14. Zero energy buildings and mismatch compensation factors

    DEFF Research Database (Denmark)

    Lund, Henrik; Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    This paper takes an overall energy system approach to analysing the mismatch problem of zero energy and zero emission buildings (ZEBs). The mismatch arises from hourly differences in energy production and consumption at the building level and results in the need for exchange of electricity via...... the public grid even though the building has an annual net-exchange of zero. This paper argues that, when looked upon from the viewpoint of the overall electricity supply system, a mismatch can be both negative and positive. Moreover, there are often both an element of levelling out mismatches between...... of the energy production unit. Based on historical data for the electricity supply area in western Denmark, this paper makes a first attempt to quantify mismatch compensation factors. The results indicate that such compensation factors are a little below one for buildings with photovoltaics (PV) and a little...

  15. Indoor radon problem in energy efficient multi-storey buildings.

    Science.gov (United States)

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Energy intelligent buildings based on user activity : A survey

    NARCIS (Netherlands)

    Nguyen, Tuan Anh; Aiello, Marco

    Occupant presence and behaviour in buildings has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. Energy-unaware behaviour can add one-third to a building's designed energy performance. Consequently,

  17. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    International Nuclear Information System (INIS)

    Feng Yanping; Wu Yong; Liu Changbin

    2009-01-01

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  18. Energy-efficiency supervision systems for energy management in large public buildings. Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Yan-ping, Feng [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China); Yong, Wu [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Chang-bin, Liu [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized. (author)

  19. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yanping [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China)], E-mail: fengyanping10@sohu.com; Wu Yong [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Liu Changbin [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  20. Goodbye Passive House, Hello Energy Flexible Building?

    NARCIS (Netherlands)

    Mlecnik, E.; LaRoche, P.; Schiler, M.

    2016-01-01

    The volume uptake of highly energy-efficient buildings is challenged by transformations in the energy system and the introduction of demand response strategies. In the near future buildings will be able to manage their demand and generation according to local climate conditions, user needs and

  1. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  2. Energy conservation in developing countries using green building idea

    International Nuclear Information System (INIS)

    Rashid, Akram; Qureshi, Ijaz Mansoor

    2013-01-01

    Green buildings uses processes that are environmentally responsible and resource-efficient throughout a building's life-cycle. In these buildings Certain energy conservative and environment friendly steps are considered and implemented from design, construction, operation, maintenance and renovation. In present era no doubt new technologies are constantly constructed and used in creating greener structures, energy efficient buildings. The common objective is to reduce the overall impact of the built environment on human health using available energy efficiently. To increase the efficiency of the System or the building, Onsite generation of renewable energy through solar power, wind power, hydro power, or biomasscan significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building. Any how power generation using renewable sources that is Solar system may further enhance energy conservation ideas. Power Factor improvement can also be another source of efficient tool for efficient use of Electrical Energy in green buildings. In developing countries a significant amount of Electrical Energy can be conserved and System efficiency as a whole can be increased by Power Factor correction. The reverse flow of power can be locally engaged instead of creating extra stress and opposition to the existing grid lines.

  3. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  4. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  5. Energy-efficient and low CO{sub 2} office building

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    Current office buildings are becoming more and more energy efficient. In particular the importance of heating is decreasing, but the share of electricity use is increasing. When the CO{sub 2} equivalent emissions are considered, the emissions from embodied energy make up an important share of the total, indicating that the building materials have a high importance which is often ignored when only the energy efficiency of running the building is considered. This paper studies a new office building in design phase. The results showed that the reduction of energy use reduces both the primary energy use and CO{sub 2} eq. emissions. Especially the reduction of electricity use has a high importance for both primary energy use and CO{sub 2} emissions when fossil fuels are used. The lowest CO{sub 2} eq. emissions were achieved when bio-based, renewable energies or nuclear power was used to supply energy for the office building. Evidently then the share of CO{sub 2} eq. emissions from the embodied energy of building materials and products became the dominant source of CO{sub 2} eq. emissions. (orig.)

  6. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    Jin Zhenxing; Wu Yong; Li Baizhan; Gao Yafeng

    2009-01-01

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  7. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenxing; Li, Baizhan; Gao, Yafeng [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China); Wu, Yong [The Department of Science and Technology, Ministry of Construction, Beijing 100835 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China. (author)

  8. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zhenxing [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)], E-mail: jinzhenxing33@sina.com; Wu Yong [Department of Science and Technology, Ministry of Construction, Beijing 100835 (China); Li Baizhan; Gao Yafeng [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  9. Regulation proposal for voluntary energy efficiency labelling of commercial buildings

    International Nuclear Information System (INIS)

    Lamberts, Roberto; Goulart, Solange; Carlo, Joyce; Westphal, Fernando

    2006-01-01

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m 2 or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  10. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

    Directory of Open Access Journals (Sweden)

    Mojtaba Valinejad Shoubi

    2015-03-01

    Full Text Available A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy consumed by a double story bungalow house in Johor, Malaysia, and assessments of alternative material configurations to determine the best energy performance were evaluated by using Revit Architecture 2012 and Autodesk Ecotect Analysis software to show which of the materials helped in reducing the operational energy use of the building to the greatest extent throughout its annual life cycle. At the end, some alternative, sustainable designs in terms of energy savings have been suggested.

  11. The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)

  12. Pharmacia Building Q, Skokie, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    2002-12-01

    This case study was prepared as one in a series for the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new and retrofit laboratory buildings in both the public and the private sectors. The energy-efficient elements of the laboratory featured in this case study-Pharmacia Corporation's new Building Q in Skokie, Illinois-include sustainable design, light-filled interior spaces for daylighting, energy-efficient fume hoods and other equipment, occupancy sensors to reduce lighting loads, and spectrally selective glazing to allow more light and less heat into the building. Water-saving fixtures are used, as well. Building Q has been certified Gold (the second highest rating) through the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) system.

  13. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  14. Commercial Building Energy Asset Rating Program -- Market Research

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  15. Potential heat savings during ongoing renovation of buildings until 2050

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper; Aggerholm, Søren

    information about insulation level, building component areas, i.e. roofs, external walls, floors and windows/doors, per unit area (gross heated floor area). The report is made for the Danish Energy Agency and targeted the Danish building industry, the agency itself and political decision makers in preparation...

  16. Municipal Building Energy Usage

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set contains energy use data from 2009-2014 for 139 municipally operated buildings. Metrics include: Site & Source EUI, annual electricity, natural...

  17. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...... leadership role in promoting energy efficiency in buildings in Europe, that will be the most powerful instrument developed to date for the building sector in Europe....

  18. The development of preliminary energy bench marking for office buildings in Malaysia

    International Nuclear Information System (INIS)

    Azah Ahmad; Asfaazam Kasbani

    2006-01-01

    Benchmarking energy consumption in buildings means comparing how much energy is used in a building to an average or theoretical standard relative to a set of similar buildings. Building energy benchmarking is a useful starting point for commercial building owners to target energy saving opportunities. Building owners can determine the energy performance efficiency level of their buildings and compare it to the entire group of office buildings of its class. It is also useful during the design stage of a new building or retrofit to determine if a design is relatively efficient. The energy performance of a building can be assessed using Building Energy Index (BEI) regardless of building's size, height or age. In the development of preliminary energy benchmarking for office buildings in Malaysia, Malaysia Energy Centre (PTM) has taken a step through its involvement with The Energy Efficiency and Conservation Network, via the Association of Southeast Asia Nations (ASEAN) Centre for Energy (ACE) through a project a develop a similar benchmarking system for various ASEAN members. Through data collection of 54 office building throughout Malaysia, preliminary or baseline energy consumption could be determined. This paper discusses the findings of current energy consumption of office buildings. I will also examine the overall trends of energy consumption among office buildings in Malaysia

  19. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  20. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  1. 41 CFR 102-74.515 - Will the affected person or organization and the Federal agency buildings manager have an...

    Science.gov (United States)

    2010-07-01

    ... or organization and the Federal agency buildings manager have an opportunity to state their positions... and the Federal agency buildings manager have an opportunity to state their positions on the issues... manager will have an opportunity to state their positions on the issues, both verbally and in writing. ...

  2. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  3. Sensitivity analysis of the energy demand of existing buildings based on the Danish Building and Dwelling Register

    DEFF Research Database (Denmark)

    Nielsen, Anker; Wittchen, Kim Bjarne; Bertelsen, Niels Haldor

    2014-01-01

    performance certificate. The Danish Building Research Institute has described a method that can be applied for estimating the energy demand of dwellings. This is based on the information in the Danish Building and Dwelling Register and requirements in the Danish Building Regulations from the year......The EU Directive on the Energy Performance of Buildings requires that energy certification of buildings should be implemented in Denmark so that houses that are sold or let should have an energy performance certificate. The result is that only a small part of existing houses has an energy...... of construction of the house. The result is an estimate of the energy demand of each building with a variation. This makes it possible to make an automatic classification of all buildings. The paper discusses the uncertainties and makes a sensitivity analysis to find the important parameters. The variations...

  4. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  5. Data and analytics to inform energy retrofit of high performance buildings

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-01

    Highlights: • High performance buildings can be retrofitted using measured data and analytics. • Data of energy use, systems operating and environmental conditions are needed. • An energy data model based on the ISO Standard 12655 is key for energy benchmarking. • Three types of analytics are used: energy profiling, benchmarking, and diagnostics. • The case study shows 20% of electricity can be saved by retrofit. - Abstract: Buildings consume more than one-third of the world’s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis – energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high

  6. Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Sawaya, Geof; Chen, Yixing; Taylor-Lange, Sarah C.

    2015-01-01

    Small and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback. - Highlights: • A DEEP (database of energy efficiency performance) supports building retrofit. • DEEP is an SQL database with pre-simulated results from 10 million EnergyPlus runs. • DEEP covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • DEEP accelerates retrofit of small commercial buildings to save energy use and cost. • DEEP can be expanded and integrated with third-party energy software tools.

  7. An overview of solar energy applications in buildings in Greece

    Science.gov (United States)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  8. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  9. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  10. Results. Building integrated energy supply; Resultater. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations of which the best combinations were selected. The final result takes form of a single top-50 list with the best combinations of energy systems according to CO{sub 2} emission, energy consumption and economics. The present report contains the conclusions of and comments on the project's results. (ln)

  11. Ultra high benefits system for electric energy saving and management of lighting energy in buildings

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Presenting a novel multi channel smart system to manage lighting energy in buildings. • Saving considerable electric energy which is converted to lighting in buildings. • Providing desired constant and adjustable luminance for each location in buildings. • Capability of working with all AC electric power sources. • To automatically control and manage lighting energy in buildings. - Abstract: This paper presents a smart system, including a multi channel dimmer and a central process unit (CPU) together with an exact multi channel feedback mechanism, which automatically regulates and manages lighting in buildings. Based on a multi channel luminance feedback, a high benefits technique is utilized to convert the electric energy to lighting energy. Saving a lot of the electric energy which should be converted to lighting energy in buildings, managing the lighting energy in buildings, providing desired constant and adjustable luminance for each room (location), and the capability of working with all AC electric power sources regardless of frequency and voltage amplitude are some advantages of using the proposed system and technique, thus it will be widely used in buildings. An experimental prototype of the proposed smart system has been constructed to validate the theoretical results and to carry out the experimental tests. Experimental results earned by utilizing the proposed smart system in a sample building are presented to prove the benefits of using the system. The experimental results explicitly show a considerable electric energy saving (about 27%) in the sample building while the proposed system has provided desired constant and adjustable luminance for each location of the building

  12. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  13. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    Science.gov (United States)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  14. External shading devices for energy efficient building

    Science.gov (United States)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  15. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    Science.gov (United States)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  16. Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands

    NARCIS (Netherlands)

    Li, Rongling; Dane, G.Z.; Finck, C.J.; Zeiler, W.

    2017-01-01

    Building energy flexibility might play a crucial role in demand side management for integrating intermittent renewables into smart grids. The potential of building energy flexibility depends not only on the physical characteristics of a building but also on occupant behaviour in the building.

  17. 1995 building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1996-02-01

    During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

  18. Assessment of Energy Credits in LEED-Certified Buildings Based on Certification Levels and Project Ownership

    Directory of Open Access Journals (Sweden)

    Asli Pelin Gurgun

    2018-02-01

    Full Text Available Compared to other categories, the Energy and Atmosphere category contributes the most to the maximum obtainable points in the Leadership in Energy and Environmental Design (LEED certification system. The objective of the study was to identify the extent to which project teams take advantage of the credits in the Energy and Atmosphere category of LEED. This study analyzes the performance of practitioners in achieving points in the Energy and Atmosphere credits of LEED-New Construction (NC 2009 for 1500 buildings that received LEED certification in the US. For a better understanding of the credit patterns, the differences in the performance of practitioners are investigated relative to certification levels and project ownership. Achievement in credits is calculated in terms of percent of maximum points (PMP, since the maximum achievable points differ for each credit. Practitioners’ achievements in the credits were ranked as follows: (1 enhanced commissioning, (2 optimized energy performance, (3 enhanced refrigerant management, (4 green power, (5 measurement and verification, and (6 on-site renewable energy. The largest achievement differences were observed in the on-site renewable energy credit. Concerning building ownership, investors were found to optimize mostly energy efficiency and on-site renewable energy, but to mostly skip enhanced refrigerant management. Performance in the measurement and verification credit was similar for all owner types, whereas investors performed differently from corporations, and government agencies in the enhanced commissioning credit. Practitioners who recognize these priorities and differences are expected to be better positioned to make sustainability-related decisions in building design and construction.

  19. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    Science.gov (United States)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  20. Nuclear power issue as seen by the International Energy Agency

    International Nuclear Information System (INIS)

    Kelly, P.

    1976-01-01

    An account is given of the work of the International Energy Agency towards reducing the dependence of member states on imported oil. Forecasts of energy consumption are discussed, and the contributions that could be made by various energy sources, and by energy conservation, are examined. It is concluded that nuclear power is essential to a reduced dependence policy. The constraints on full realization of national nuclear programmes are stated as follows: licensing delays, waste disposal, financing, uranium supply, and fuel services. Ways in which these could be overcome by national and international action are suggested. Reference is made to the work of other atomic energy agencies: IAEA and OECD Nuclear Energy Agency. (U.K.)

  1. Building regulations in energy efficiency: Compliance in England and Wales

    International Nuclear Information System (INIS)

    Pan Wei; Garmston, Helen

    2012-01-01

    There is an international pragmatic shift towards the use of building energy regulations, standards and codes to reduce building energy consumption. The UK Government revised Building Regulations in 2002, 2006 and 2010, towards more stringent energy efficiency standards and ultimately the target of ‘zero carbon’ new homes from 2016. This paper aims to: reveal levels of compliance with energy Building Regulations of new-build dwellings in England and Wales; explore underlying issues; and identify possible solutions. In total 376 new-build dwellings were investigated. The compliance revealed was poor, at a level of 35%; accompanied by 43% ‘grey compliance’ and 21% ‘grey non-compliance’ (due to insufficient evidence of achieving required carbon emissions reductions). It is a serious concern when building control approves so many dwellings when insufficient evidence of compliance has been received. Underlying issues were centred on: incorrect compilation and/or insufficient submission of carbon emissions calculations by builders/developers; inappropriate timings of such submissions; and a paucity of proper checks by building control. Exploring these issues reveals a complex system of factors influencing energy regulations compliance, which involves a wide range of stakeholders. The findings should inform the formulation and implementation of energy efficiency building regulations and policy in the future. - Highlights: ► The compliance with energy Building Regulations (England and Wales) was poor. ► The problematic implementation of energy Building Regulations is a serious concern. ► Identified issues suggest a lack of knowledge of builders and building control. ► There is a complex system of factors influencing energy regulations compliance. ► A systems approach is needed to improve compliance, while training is crucial.

  2. Intelligent multi-objective optimization for building energy and comfort management

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2018-04-01

    Full Text Available The rapid economic and population growth in developing countries, effective and efficient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels, of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time in buildings, requires enhanced well-being of indoor environment and living standards. Therefore, building operations require more energy because most of the energy is consumed to make the indoor environment comfortable. Consequently, there is the need of improved energy efficiency to decrease energy consumption in buildings. In relation to this, the primary challenge of building control systems is the energy consumption and comfort level are generally conflicting to each other. Therefore, an important problem of sustainable smart buildings is to effectively manage the energy consumption and comfort and attain the trade-off between the two. Thus, smart buildings are becoming a trend of future construction that facilitates intelligent control in buildings for the fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been developed with evolutionary multi-objective genetic algorithm (MOGA optimization method. The corresponding case study simulation results for the effective management of users’ comfort and energy efficiency have been carried out. The case study results show the management of energy supply for each comfort parameter and maintain high comfort index achieving balance between the energy consumption and comfort level. Keywords: Energy, Buildings, Comfort, Management, Optimization, Trade-off

  3. Intelligent use of buildings' energy information

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Juusela, M., Email: mia.ala-juusela@vtt.fi

    2012-06-15

    The IntUBE project will increase the possibility of reaching the European Commission's energy efficiency goals by facilitating more efficient use of the existing building stock. IntUBE stands for Intelligent Use of Buildings' Energy Information. The results of the IntUBE-project are expected not only to enhance the comfort levels of building users, but also to reduce overall energy costs through better energy efficiency. The IntUBE project was a European cooperation between twelve partners from nine European countries and received funding from the European Commission. The project was implemented between May 2009 and April 2011. The IntUBE consortium spans key research partners from northern to southern Europe including SMEs committed to exploiting the results of the project. The project was coordinated by VTT. (orig.)

  4. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  5. How much information disclosure of building energy performance is necessary?

    International Nuclear Information System (INIS)

    Hsu, David

    2014-01-01

    Many different governments have begun to require disclosure of building energy performance, in order to allow owners and prospective buyers to incorporate this information into their investment decisions. These policies, known as disclosure or information policies, require owners to benchmark their buildings and sometimes conduct engineering audits. However, given substantial variation in the cost to disclose different types of information, it is natural to ask: how much and what kind of information about building energy performance should be disclosed, and for what purposes? To answer this question, this paper assembles and cleans a comprehensive panel dataset of New York City multifamily buildings, and analyzes its predictive power using a Bayesian multilevel regression model. Analysis of variance (ANOVA) reveals that building-level variation is the most important factor in explaining building energy use, and that there are few, if any, relationships of building systems to observed energy use. This indicates that disclosure laws requiring benchmarking data may be relatively more useful than engineering audits in explaining the observed energy performance of existing buildings. These results should inform the further development of information disclosure laws. - Highlights: • A comprehensive panel dataset of energy performance and building characteristics was assembled and cleaned. • The effectiveness of the disclosed information to predict building energy performance was tested using a regression model. • Building-level variation has a greater effect than any building characteristic or systems. • Benchmarking data alone predicts energy performance equally as well as both benchmarking and engineering audit data together, and better than audit data alone

  6. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  7. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    Science.gov (United States)

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  8. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  9. ENERGY STAR and Green Buildings--Using ENERGY STAR Resources for Green Building Rating Systems: LEED[R], Green Globes[R] and CHPS

    Science.gov (United States)

    Utebay, Kudret

    2011-01-01

    Every building, from the smallest school to the tallest skyscraper, uses energy. This energy is most often generated by burning fossil fuels, which releases greenhouse gases into the atmosphere and contributes to climate change. Existing commercial buildings offer a significant opportunity for low-cost, immediate emissions and energy cost…

  10. European national strategies to move towards very low energy buildings

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    high energy performance. It is important to stress the need for MS to introduce a national or regional definition of very low energy buildings in their building regulation and to develop a national strategy towards this level of energy performance to become the standard. This market transformation...... the ambition in the EU Action plan - to develop an EU strategy towards very low energy houses. The current recast of the EPBD is an opportunity, which must not be missed to introduce the requirement to MS to define very low energy buildings and a national strategy towards this level of energy performance....... A strategy for improved energy efficiency of existing buildings is a necessity if the energy consumption is to be reduced significantly over a limited period of time. The life time of buildings ranges from 50 to 100 years and improvement of the existing building stock will thus have much higher impact than...

  11. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  12. Energy consumption in commercial buildings: A comparison with BEPS budgets

    Science.gov (United States)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  13. New building technology based on low energy design

    International Nuclear Information System (INIS)

    Meggers, Forrest; Leibundgut, Hansjurg

    2009-01-01

    Full text: The construction, operation and maintenance of all residential, commercial, and industrial buildings are responsible for over half of global greenhouse gas emissions, and two-thirds of global electricity is generated solely for building operation. This single sector has a huge potential impact on the future sustainability of society, and therefore new advanced technologies must be rapidly developed and implemented in what is often a slow-moving sector. The concept of the low exergy building has created a new framework for the development of high performance building systems. Exergy analysis has been used to help minimize the primary energy demands of buildings through the minimization of losses in the chain of energy supply in a building system. The new systems that have been created have been shown to be more comfortable and more energy efficient. These systems include integrated thermal mass systems heated by high efficiency heat pumps integrated with energy recovery systems that eliminate the waste that is common in building systems. The underlying principles and concepts of low exergy building systems will be presented along with the analysis of several technologies being implemented in a low Ex building in Zurich, Switzerland. These include an advanced ground source heat pump strategy with integrated heat recovery, decentralized ventilation, and a unique active wall insulation system, which are being researched as part of the IEA ECBCS Annex 49 (www.annex49.org). (author)

  14. Building concepts for a transition towards energy neutrality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.J.; Paauw, J. [TNO Built Environment and Geosciences, Delft (Netherlands); Opstelten, I.J.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2007-03-15

    In this paper building concepts for the near future are described which enable the transition towards a net energy neutral building sector in the Netherlands by the year 2050. With 'net energy neutrality' is meant that, on a yearly basis, the total energy consumption in the built environment is compensated by local renewable energy production e.g. by using solar thermal (T), photovoltaic (PV), PVT and/or wind. A study concerning the feasibility of a 'net energy neutral built environment by 2050' set the energetic ambitions for the building concepts to be developed. This resulted in different concepts for residential buildings and for office-buildings. The building concepts are based on passive house technology to minimise the heating and cooling demand, and make optimal use of active and passive solar energy. Concepts for new to build domestic buildings are in fact energy producing to compensate for the remaining energy demand of existing, renovated dwellings. In all concepts the 'trias energetica' or 'energy pyramid' served as a general guideline, striving for minimisation of energy demand, maximal usage of renewable energy and usage of fossil fuels as efficiently as possible. Different full roof integrated options for using solar energy (PV, T or PVT) with variable storage options have been compared by making simulations with a dynamic simulation programme, to gain insight on their impact on energy, building engineering and economic impact. Also different possibilities for installations to fulfil the heating demand for the space heating and DHW demand are compared. For each concept, the resulting primary energy profiles for space heating and cooling, domestic hot water, electricity consumption for lighting, ventilation and household appliances are given.

  15. China building energy consumption: Situation, challenges and corresponding measures

    International Nuclear Information System (INIS)

    Cai, W.G.; Wu, Y.; Zhong, Y.; Ren, H.

    2009-01-01

    As one of the biggest parts of total national energy consumption (TNEC), building energy consumption (BEC) catches public eyes and has been regarded as a crucial problem of the current society. For the past 20 years, BEC in china has been increasing at a high speed. To curb the rapid growing of BEC, china has enforced and implemented a series of policies. These include enforcing BEC constraints on new building projects, promoting more environment friendly building designs, establishing a more sophisticated legislation for building energy conservation, and increasing the total budget in the area of BEC control. This article analyzed china BEC situation and the challenges. As the main point, the measures required by China government to improve building energy efficiency were introduced as well.

  16. China's building energy demand: Long-term implications from a detailed assessment

    International Nuclear Information System (INIS)

    Eom, Jiyong; Clarke, Leon; Kim, Son H.; Kyle, Page; Patel, Pralit

    2012-01-01

    Buildings are an important contributor to China's energy consumption and attendant CO 2 emissions. Measures to address energy consumption and associated emissions from the buildings sector will be an important part of strategy to reduce the country's CO 2 emissions. This study presents a detailed, service-based model of China's building energy demand, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explored long-term pathways of China's building energy demand and identified opportunities to reduce greenhouse gas emissions. A range of different scenarios was also developed to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth: In the reference scenarios, the sector's final energy demand will increase by 110–150% by 2050 and 160–220% by 2095 from its 2005 level. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy. -- Highlights: ► We developed a building energy model for China, nested in an integrated-assessment framework. ► We explore long-term pathways of China's building energy use by implementing a range of scenarios. ► China's building energy consumption will continue to grow and be electrified over the century. ► Improved building energy technology will slow down the growth in building energy consumption. ► Electrification will be accelerated by the implementation of carbon policy.

  17. Primary energy implications of different design strategies for an apartment building

    International Nuclear Information System (INIS)

    Tettey, Uniben Yao Ayikoe; Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, we explored the effects of different design strategies on final and primary energy use for production and operation of a newly constructed apartment building. We analysed alternatives of the building “As built” as well as to energy efficiency levels of the Swedish building code and passive house criteria. Our approach is based on achieving improved versions of the building alternatives from combination of design strategies giving the lowest space heating and cooling demand and primary energy use, respectively. We found that the combination of design strategies resulting in the improved building alternatives varies depending on the approach. The improved building alternatives gave up to 19–34% reduction in operation primary energy use compared to the initial alternatives. The share of production primary energy use of the improved building alternatives was 39–54% of the total primary energy use for production, space heating, space cooling and ventilation over 50-year lifespan, compared to 31–42% for the initial alternatives. This study emphasises the importance of incorporating appropriate design strategies to reduce primary energy use for building operation and suggests that combining such strategies with careful choice of building frame materials could result in significant primary energy savings in the built environment. - Highlights: • Primary energy implications of different design strategies were analysed. • The improved building alternatives had 19–34% lower operation primary energy use. • The improved building alternatives had higher production primary energy use. • Still, the improved building alternatives had lower overall primary energy use. • Design strategies should be combined with careful building frame material choice.

  18. Technical definition for nearly zero energy buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member States to define what these for them exactly constitute. In the definition local conditions are to be obviously taken into account, but the uniform methodology can be used in all......This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... in which way are taken into account in the energy performance assessment. The intention of the Task Force is to help the experts in the Member States in defining the nearly zero energy buildings in a uniform way. The directive requires nearly zero energy buildings, but since it does not give minimum...

  19. Solar energy in buildings; L'energie solaire dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers the presentations given at the first French national meetings of solar energy for the development of solar systems in buildings. The meeting was organized over two days. The first day comprises 4 workshops about: urbanism and planning, cultural acceptability of solar energy in buildings (the OPAC 38 housing association, point of view on an energy information point, the Freiburg (Germany) solar region and marketing examples), technical integration to the structure (Clipsol solutions), and economical criteria (compared impacts of R and D public photovoltaic programs (USA, Japan, Germany, France, Italy), financing of rehabilitation projects, global approach of solar photovoltaic energy, technical solutions and strategy of products development, why and how to make an economical analysis of solar energy applications in the building industry). The second day comprises a plenary session and a round table: global status of solar energy development in Europe, status of French programs, renewable energies in Europe, the experience of Alsace region (Eastern France), the success of German solar markets, and the tools for the launching of solar energy. Two syntheses for these two days of meetings complete the document. (J.S.)

  20. Climate impacts on extreme energy consumption of different types of buildings.

    Directory of Open Access Journals (Sweden)

    Mingcai Li

    Full Text Available Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382. The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  1. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    International Nuclear Information System (INIS)

    Zachman, W.; Carlisle, N.

    2001-01-01

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook

  2. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  3. Building Energy-Efficiency Best Practice Policies and Policy Packages

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); de la Rue de Can, Stephane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Amann, Jennifer Thorne [American Council for an Energy-Efficient Economy (ACEEE), Washington, D.C. (United States); Staniaszek, Dan [Sustainability Consulting Ltd., London (United Kingdom)

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO2 emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries.

  4. Worldwide status of energy standards for buildings: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Janda, K.B.; Busch, J.F.

    1993-02-01

    This informal survey was designed to gain information about the worldwide status of energy efficiency standards for buildings, particularly non-residential buildings such as offices, schools, and hotels. The project has three goals: 1. To understand and learn from the experience of countries with existing building energy standards; 2. To locate areas where these lessons might be applied and energy standards might be effectively proposed and developed; and 3. To share the information gathered with all participating countries. These appendices include the survey cover letter, the survey, and the details of selected energy standards in 35 countries, thus providing supporting material for the authors` article of the same title.

  5. Automatic Energy Control And Monitoring System For Building

    Directory of Open Access Journals (Sweden)

    Hnin Nu Thaung

    2015-08-01

    Full Text Available The use of smart home technology in the home or building offers significant potential for energy savings. In this paper an energy management system based on wireless sensor networks. The proposed system is composed of two main components a wireless sensor network and monitoring terminal. Wireless sensors are used for sensing and transmitting electricity data and remote monitoring and control of appliances are provided to users through computer. The system enables users to save energy by monitoring and controlling appliances through terminal. This paper gives an overview of sensor technology and wireless networks in the development of an intelligent energy management system for buildings. This technology has ample potential to change the way live and work. ZigBee is used as a communication medium in building intelligent energy management system in this paper. From the prototype setup it is shown that ZigBee is a suitable technology to be adopted as the communication infrastructure in energy management system for buildings .The proposed system can be installed and maintained in residential environments with ease.

  6. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. D.; Baechler, H. C.; Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01

    In accordance with federal legislation, the U.S. Department of Energy (DOE) has sponsored a study to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration study was conducted by DOE and the Pacific Northwest Laboratory (PNL). The demonstration is the second step in a three-step process: I) development of interim standards, 2) demonstration of the interim standards, and 3) development of final standards. The standards are mandatory for federal agency housing procurements. Nevertheless, PNL found at the start of the demonstration that agency use of the interim standards had been minimal. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. To fulfill this aspect of the legislation, the standards use a computer software program called COSTSAFR which generates a point system that individualizes the standards to specific projects based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects. For the demonstration, PNL and DOE chose five federal agency housing projects which had been built in diverse geographic and climate regions. Participating agencies were the Air Force, the Army (which provided two case studies), the Navy, and the Department of Health and Human Services. PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to the procurement and design of each housing project. The demonstration started at the point in the project where agencies would establish their energyefficiency requirements for the project and followed the procurement process through the designers' use of the point

  7. A Method to Estimate Energy Demand in Existing Buildings Based on the Danish Building and Dwellings Register (BBR)

    DEFF Research Database (Denmark)

    Nielsen, Anker; Bertelsen, Niels Haldor; Wittchen, Kim Bjarne

    2013-01-01

    an energy label. The Danish Building Research Institute has described a method that can be used to estimate the energy demand in buildings specially dwellings. This is based on the information in the Danish Building and Dwelling Register (BBR) and information on building regulations at construction year......The Energy Performance Directive requires energy certifications for buildings. This is implemented in Denmark so that houses that are sold must have an energy performance label based on an evaluation from a visit to the building. The result is that only a small part of the existing houses has...... for the house. The result is an estimate for energy demand in each building with a variation. This makes it possible to make an automatic classification of all buildings. Then it is possible to find houses in need for thermal improvements. This method is tested for single family houses and flats. The paper...

  8. Comparison of building energy use data between the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jianjun; Hong, Tianzhen; Shen, Qi; Feng, Wei; Yang, Le; Im, Piljae; Lu, Alison; Bhandari, Mahabir

    2013-10-30

    Buildings in the United States and China consumed 41percent and 28percent of the total primary energy in 2011, respectively. Good energy data are the cornerstone to understanding building energy performance and supporting research, design, operation, and policy making for low energy buildings. This paper presents initial outcomes from a joint research project under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The goal is to decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders. This paper first reviews and compares several popular existing building energy monitoring systems in both countries. Next a standard energy data model is presented. A detailed, measured building energy data comparison was conducted for a few office buildings in both countries. Finally issues of data collection, quality, sharing, and analysis methods are discussed. It was found that buildings in both countries performed very differently, had potential for deep energy retrofit, but that different efficiency measures should apply.

  9. Zero energy office building renovation; Energieneutrale kantoorrenovatie

    Energy Technology Data Exchange (ETDEWEB)

    Deguelle, D.; Krijnen, M. [DHV, Amersfoort (Netherlands); Heijnis, J. [cepezed, Delft (Netherlands)

    2011-04-15

    Building Brains has been set up by TNO as a cooperative and started September 21, 2009. The aim of the project was to answer the question how the energy consumption in the Netherlands can be reduced by 50% up to 2030 or how the built environment can be made energy-neutral. This issue of the magazine is dedicated to Building Brains project. Four different renovation concepts are compared: energy-neutral renovation that involves the exclusive use of sustainable generated energy;.the application of the passive construction principles; the use of Double Skin Facades; and decentralized facade-integrated installation techniques. Following the results of this study two optimized refurbishment approaches for a zero energy office are designed. [Dutch] Building Brains is een door TNO opgezet samenwerkingsproject dat op 21 september 2009 van start ging. Het doel van het project is antwoord te geven op de vraag hoe tot 2030 het energiegebruik in Nederland kan worden gehalveerd of hoe de gebouwde omgeving energieneutraal kan worden gemaakt. Deze aflevering van het tijdschrift TVVL is vrijwel geheel gewijd aan het Building Brains project. Er is onderzocht hoe verschillende renovatieconcepten scoren. Er zijn vier renovatieconcepten met elkaar vergeleken: energie neutraal renoveren door middel van duurzame energieopwekking, toepassen van het passiefhuisprincipe, toepassen van een tweedehuidfacade en toepassen van een decentrale, gevel-geintegreerde installatie. Uit de studie kwamen twee geoptimaliseerde concepten voor een energieneutrale kantoorrenovatie naar voren.

  10. Effect of facade components on energy efficiency in office buildings

    International Nuclear Information System (INIS)

    Ihara, Takeshi; Gustavsen, Arild; Jelle, Bjørn Petter

    2015-01-01

    Highlights: • Investigation of facade properties for energy efficiency of Tokyo office buildings. • Higher reflectance for opaque parts may slightly reduce energy demand. • Lower window U-value and solar heat gain coefficient are potential solutions. • Decreased heating due to insulation did not always compensate increased cooling. • Fundamental data for adjustment of facade properties of buildings are provided. - Abstract: Properties of facade materials should be considered to determine which of them strongly affect building energy performance, regardless of the building shapes, scales, ideal locations, and building types, and thus may be able to promote energy efficiency in buildings. In this study, the effects of four fundamental facade properties related to the energy efficiency of office buildings in Tokyo, Japan, were investigated with the purpose of reducing the heating and cooling energy demands. Some fundamental design factors such as volume and shape were also considered. It was found that the reduction in both the solar heat gain coefficient and window U-value and increase in the solar reflectance of the opaque parts are promising measures for reducing the energy demand. Conversely, the reduction in the U-value of the opaque parts decreased the heating energy demand, and this was accompanied by an increase in the cooling energy demand in some cases because the total energy demands were predominantly for cooling. The above-mentioned promising measures for reducing building energy demands are thus recommended for use, and an appropriate U-value should be applied to the opaque parts based on careful considerations. This study provides some fundamental ideas to adjust the facade properties of buildings.

  11. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    2005-01-01

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  12. Supervisory Control of Loads and Energy Storage in Next-Generation Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Feitau [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frank, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scheib, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bernal Heredia, Willy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    A zero energy building (ZEB)—also known as a net zero energy or zero net energy building—is a building that exports as much renewable energy as the total energy it imports from other sources on an annual basis (DOE 2015). Large-scale and commercially viable ZEBs are now in the marketplace, and they are expected to become a larger share of the commercial building footprint as government and private sector policies continue to promote the development of buildings that produce more on-site energy than they use. However, the load profiles of ZEBs are currently perceived by electric utilities to be unfavorable and unpredictable. As shown in Figure ES-1, ZEB load profiles can have abrupt changes in magnitude, at times switching rapidly between exporting and importing electricity. This is a challenge for utilities, which are responsible for constantly balancing electricity supply and demand across the grid. Addressing these concerns will require new strategies and tools.

  13. Energy Consumption Forecasting for University Sector Buildings

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2017-10-01

    Full Text Available Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type. A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed.

  14. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  15. Low-energy district heating in energy-efficient building areas

    International Nuclear Information System (INIS)

    Dalla Rosa, A.; Christensen, J.E.

    2011-01-01

    This paper presents an innovative low-energy district heating (DH) concept based on low-temperature operation. The decreased heating demand from low-energy buildings affects the cost-effectiveness of traditionally-designed DH systems, so we carried out a case study of the annual energy performance of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network design, and operational temperature and pressure. In the north-European climate, we found that human behaviour can lead to 50% higher heating demand and 60% higher heating power than those anticipated in the reference values in the standard calculations for energy demand patterns in energy-efficient buildings. This considerable impact of human behaviour should clearly be included in energy simulations. We also showed that low-energy DH systems are robust systems that ensure security of supply for each customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding the optimal solution with regard to economic and energy efficiency issues. Here we showed the advantage of low supply and return temperatures, their effect on energy efficiency and that

  16. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zachman, W.; Carlisle, N.

    2001-07-19

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook.

  17. Impact of Weather and Occupancy on Energy Flexibility Potential of a Low-energy Building

    DEFF Research Database (Denmark)

    Zilio, Emanuele; Foteinaki, Kyriaki; Gianniou, Panagiota

    The introduction of renewable energy sources in the energy market leads to instability of the energy system itself; therefore, new solutions to increase its flexibility will become more common in the coming years. In this context the implementation of energy flexibility in buildings is evaluated...... solar radiation and the outdoor temperature appeared to have the larger impact on the thermal flexibility of the building. Specifically, the energy flexibility potential of the examined apartment can ensure its thermal autonomy up to 200 h in a typical sunny winter day......., using heat storage in the building mass. This study focuses on the influence of weather conditions and internal gains on the energy flexibility potential of a nearly-zero-energy building in Denmark. A specific six hours heating program is used to reach the scope. The main findings showed that the direct...

  18. How effective is mandatory building energy disclosure program in Australia?

    Science.gov (United States)

    Kim, S.; Lim, B. T. H.

    2018-04-01

    Mandatory green building regulations are often considered as the most effective tool to promote better energy efficiency and environmental protection. Nevertheless, its effectiveness compared to the voluntary counterpart has not been fully explored yet. In addressing this gap, this study aims to examine the environmental performance of green building stocks affected by the Australian mandatory building energy disclosure program. To this, this study analysed energy savings and carbon reduction efficiencies using the normalisation approach. The result shows that mandatory energy disclosure program did contribute to the reduction in energy usage and carbon emissions from the affected building stocks. More specifically, affected green building stocks showed a good efficiency especially in carbon reductions. The research results inform policymakers the possible improvement required for the mandatory disclosure program to increase the effectiveness towards dealing with the contemporary environmental issues aroused from the building sector, especially in energy savings perspective.

  19. Energy and exergy assessments for an enhanced use of energy in buildings

    Science.gov (United States)

    Goncalves, Pedro Manuel Ferreira

    Exergy analysis has been found to be a useful method for improving the conversion efficiency of energy resources, since it helps to identify locations, types and true magnitudes of wastes and losses. It has also been applied for other purposes, such as distinguishing high- from low-quality energy sources or defining the engineering technological limits in designing more energy-efficient systems. In this doctoral thesis, the exergy analysis is widely applied in order to highlight and demonstrate it as a significant method of performing energy assessments of buildings and related energy supply systems. It aims to make the concept more familiar and accessible for building professionals and to encourage its wider use in engineering practice. Case study I aims to show the importance of exergy analysis in the energy performance assessment of eight space heating building options evaluated under different outdoor environmental conditions. This study is concerned with the so-called "reference state", which in this study is calculated using the average outdoor temperature for a given period of analysis. Primary energy and related exergy ratios are assessed and compared. Higher primary exergy ratios are obtained for low outdoor temperatures, while the primary energy ratios are assumed as constant for the same scenarios. The outcomes of this study demonstrate the significance of exergy analysis in comparison with energy analysis when different reference states are compared. Case study II and Case study III present two energy and exergy assessment studies applied to a hotel and a student accommodation building, respectively. Case study II compares the energy and exergy performance of the main end uses of a hotel building located in Coimbra in central Portugal, using data derived from an energy audit. Case study III uses data collected from energy utilities bills to estimate the energy and exergy performance associated to each building end use. Additionally, a set of energy

  20. Energy use in low-energy and passive buildings: A comparison of predicted and measured energy; Energibruk i lavenergi- og passivbygg

    Energy Technology Data Exchange (ETDEWEB)

    Langseth, Benedicte; Everett, Emilie Naerum; Havskjold, Monica

    2012-11-01

    The purpose of this report is to get a better view of the real energy use in low-energy and passive buildings in relation to what is intended in the design phase.There is obtained 64 observations of expected and measured energy use in low-energy and passive buildings. Some of these observations are the average of several homes in the same field. There have been some difficulties to obtain information on energy use in Norwegian buildings. This is partly because there are few such buildings in Norway so far, it has not been a focus on energy monitoring, and partly that some building owners have not wanted to give up information.The data show that the measured energy use in buildings, on average, is higher than expected energy consumption. There are some very large differences between expected and measured energy use, both in terms of energy for heating and total energy consumption. In addition, there is big variation in the differences - some observations have almost no difference, others have large positive deviations while others have large negative deviation.There are five main reasons for discrepancies that go on in our findings, these are: errors in building body, faulty technical equipment, improper design of the building, higher indoor temperatures than expected, and improper use of the building. The first three reasons should be relatively easy to reduce the impact of, through increased training and knowledge of the developer, better monitoring of energy use, and especially the communication between the developer and the residents / operator. Many of them Xrgia have been in contact with think they could build 'correct' at the next opportunity. For the last two reasons, indoor temperature and the use of the building, this will be largely dependent on the individual. Data show that more than one building with the same expected energy consumption can have significant variations in measured energy use. Our conclusion is that the use of the building is

  1. Sensitivity analysis of the energy demand of existing buildings based on the Danish Building and Dwelling Register (BBR)

    DEFF Research Database (Denmark)

    Nielsen, Anker; Wittchen, Kim Bjarne; Bertelsen, Niels Haldor

    2014-01-01

    performance certificate. The Danish Building Research Institute has described a method that can be applied for estimating the energy demand of dwellings. This is based on the information in the Danish Building and Dwelling Register and requirements in the Danish Building Regulations from the year......The EU Directive on the Energy Performance of Buildings requires that energy certification of buildings should be implemented in Denmark so that houses that are sold or let should have an energy performance certificate. The result is that only a small part of existing houses has an energy...... of construction of the house. The result is an estimate of the energy demand of each building with a variation. This makes it possible to make an automatic classification of all buildings. The paper discusses the uncertainties and makes a sensitivity analysis to find the important parameters. The variations...

  2. The Cost of Enforcing Building Energy Codes: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sturges, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosenquist, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    The purpose of this literature review is to summarize key findings regarding the costs associated with enforcing building energy code compliance—primarily focusing on costs borne by local government. The review takes into consideration over 150 documents that discuss, to some extent, code enforcement. This review emphasizes those documents that specifically focus on costs associated with energy code enforcement. Given the low rates of building energy code compliance that have been reported in existing studies, as well as the many barriers to both energy code compliance and enforcement, this study seeks to identify the costs of initiatives to improve compliance and enforcement. Costs are reported primarily as presented in the original source. Some costs are given on a per home or per building basis, and others are provided for jurisdictions of a certain size. This literature review gives an overview of state-based compliance rates, barriers to code enforcement, and U.S. Department of Energy (DOE) and key stakeholder involvement in improving compliance with building energy codes. In addition, the processes and costs associated with compliance and enforcement of building energy codes are presented. The second phase of this study, which will be presented in a different report, will consist of surveying 34 experts in the building industry at the national and state or local levels in order to obtain additional cost information, building on the findings from the first phase, as well as recommendations for where to most effectively spend money on compliance and enforcement.

  3. Renewable building energy systems and passive human comfort solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-08-15

    With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised

  4. The Nuclear Energy Agency of the OECD through its history

    International Nuclear Information System (INIS)

    Echavarri, L.

    2008-01-01

    This year, 2008, marks the 50th Anniversary of the OECD Nuclear Energy Agency (NEA). During these years the Agency has adapted to the evolution of the world energy situation. At the beginning the Agency launches international collaboration projects to establish the technological bases required for nuclear energy, then helps member countries in the construction of nuclear power plants and later analyzes the safety criteria as a consequence of the Three Miles Island and Chernobyl accidents. Based on this experience, the NEA faces the X XI Century prepared to contribute, even more, to a better international collaboration for a safe, environmentally friendly and economical use of the nuclear energy. (Author)

  5. An analysis of the demonstration projects for renewable energy application buildings in China

    International Nuclear Information System (INIS)

    Liu, Xingmin; Ren, Hong; Wu, Yong; Kong, Deping

    2013-01-01

    During the 2006–2008 period, there were 386 demonstration projects for renewable energy application buildings (REAB) organised by Chinese government, with a total area of approximately 40,420,000 m 2 . By the end of 2011, the vast majority of these projects had been completed and had passed the final acceptance. This paper analyses the measures taken by the Chinese government, including economic incentive mechanisms, organising agencies, application and evaluation systems, online monitoring platforms, acceptance inspections, assessment systems, standard criteria and so forth. This paper then evaluates the policy effects. The paper shows that there has been a satisfactory effect in the development of the REAB market, mobilising the enthusiasm of the government, equipment manufacturers and scientific research institutions, and promoting energy conservation. In addition, this paper analyses the suitability of different technological types in different climatic zones, which provides further guidance for the development of the REAB. Finally, based on the analyses of the problems met in the implementation of the demonstration projects, this paper proposes some policy suggestions concerning standard criteria, technological development, project management, incentive mechanisms and so on, to promote the development of the REAB more effectively in the future in China. - Highlights: • The policy measures to promote the development of renewable energy application buildings in China. • Evaluation of the demonstration policy effects in the market development and other aspects. • Analyses of the regional applicability for renewable energy application buildings in China. • Analyses of problems met in the implementation of the demonstration projects. • Put forward some policy suggestions on standard, technology, management, etc

  6. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  7. Energy consumptions in existing buildings; Les consommations d'energie des batiments existants

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, St. [Ecole Nationale Superieure des Arts et Industries de Strasbourg, 78 - Saint-Remy-Les-Chevreuse (France)]|[Costic, 78 - Sainte Remy les Chevreuses (France)

    2002-05-01

    This document presents a sectoral analysis of the energy consumptions in existing French buildings: 1) - residential sector: social buildings, private dwellings; 2) - tertiary sector: office buildings, hotels, commercial buildings, school buildings, hospitals; 3) - industry; 4) - general status. (J.S.)

  8. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  9. 4th international conference in sustainability in energy and buildings

    CERN Document Server

    Höjer, Mattias; Howlett, Robert; Jain, Lakhmi

    2013-01-01

    This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organised by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB’12 proceedings includes invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimisation and modeling techniques, informati...

  10. The building network energy statistics 2002[Norway]; Bygningsnettverkets energistatistikk 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The report surveys a Norwegian network within the construction business and the energy utilization particularly in various buildings. There are sections on the network structure, the energy use in 2002, the building aspects and various project types. The emphasis is on energy conservation aspects. Various technologies and energy systems as well as building types, are discussed. (tk)

  11. Computational Support for the Selection of Energy Saving Building Components

    NARCIS (Netherlands)

    De Wilde, P.J.C.J.

    2004-01-01

    Buildings use energy for heating, cooling and lighting, contributing to the problems of exhaustion of fossil fuel supplies and environmental pollution. In order to make buildings more energy-efficient an extensive set of âenergy saving building componentsâ has been developed that contributes to

  12. Whole building energy performance anomaly detection at TU/e

    NARCIS (Netherlands)

    Hensen, J.L.M.; Bynum, J.D.

    2013-01-01

    Existing buildings account for the majority of energy consumption in the building sector. Surveys of existing buildings have found an estimated 10-20% reduction in energy consumption may be feasible. Research at the Eindhoven University of Technology (TU/e) is seeking to realize this potential in

  13. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    International Nuclear Information System (INIS)

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  14. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: zhaojing@tju.edu.cn; Wu Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Zhu Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  15. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Zhu, Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu, Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end. (author)

  16. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  17. The analysis of energy consumption of a commercial building in Tianjin, China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m 2 per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  18. Actual building energy use patterns and their implications for predictive modeling

    International Nuclear Information System (INIS)

    Heidarinejad, Mohammad; Cedeño-Laurent, Jose G.; Wentz, Joshua R.; Rekstad, Nicholas M.; Spengler, John D.; Srebric, Jelena

    2017-01-01

    Highlights: • Developed three building categories based on energy use patterns of campus buildings. • Evaluated implication of temporal energy data granularity on predictive modeling. • Demonstrated importance of monitoring daily chilled water consumption. • Identified interval electricity data as an indicator of building operation schedules. • Demonstrated a calibration process for energy modeling of a campus building. - Abstract: The main goal of this study is to understand the patterns in which commercial buildings consume energy, rather than evaluating building energy use based on aggregate utility bills typically linked to building principal tenant activity or occupancy type. The energy consumption patterns define buildings as externally-load, internally-load, or mixed-load dominated buildings. Penn State and Harvard campuses serve as case studies for this particular research project. The buildings in these two campuses use steam, chilled water, and electricity as energy commodities and maintain databases of different resolutions to include minute, hourly, daily, and monthly data instances depending on the commodity and available data acquisition system. The results of this study show monthly steam consumption directly correlates to outdoor environmental conditions for 88% of the studied buildings, while chilled water consumption has negligible correlation to the outdoor environmental conditions. Thus, in terms of monthly chilled water consumption, 86% of buildings are internally-load and mixed-load dominated, respectively. Chilled water consumption is better suited for the daily analyses compared to the monthly and hourly analyses. While the influence of building operation schedules affects the analyses at the hourly level, the monthly chilled water consumptions are not good indicators of the building energy consumption patterns. Electricity consumption at the monthly (or seasonal) level can support the building energy simulation tools for the

  19. Federal Existing Buildings Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy buildings to existing buildings in the federal sector. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  20. Federal New Buildings Handbook for Net Zero Energy, Water, and Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-14

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This document is focused on applying EERE’s definition of zero energy buildings to federal sector new buildings. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  1. Energy savings in CSFR - building sector

    International Nuclear Information System (INIS)

    Jacobsen, F.R.

    1993-01-01

    The Czechoslovak/Danish project on energy savings in buildings proves that it is possible to save up to 30% of the energy in buildings. 10% can be saved at an investment of 27 bill KCS. The total investment that is needed to save 30% is 140 bill KCS. Further energy savings can be obtained through more energy efficient supply systems. Information dissemination is important for the energy saving programme as are economic incentives. Investments in energy savings should be profitable for the investor, but this is not the case in the Czech and Slovak republics today. Changes are needed. Energy prices are still to low, compared to investment costs. Financial possibilities are not satisfactory for private investors. Price systems are not favourable to investment in energy savings. Training is needed for boiler men and energy consultants. Legislation is essential for the support of the full range of activities in the energy sector. Research and Development activities must back up the development of the sector. Pilot projects can illuminate the savings potential. The production of technical equipment for control and metering and production of insulation materials must be promoted. (AB)

  2. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  3. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  4. Contrasting the capabilities of building energy performance simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, Drury B. [US Department of Energy, Washington, DC (United States); Hand, Jon W. [University of Strathclyde, Glasgow, Scotland (United Kingdom). Energy Systems Research Unit; Kummert, Michael [University of Wisconsin-Madison (United States). Solar Energy Laboratory; Griffith, Brent T. [National Renewable Energy Laboratory, Golden, CO (United States)

    2008-04-15

    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability. (author)

  5. Scenarios of building energy demand for China with a detailed regional representation

    International Nuclear Information System (INIS)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon

    2014-01-01

    Building energy consumption currently accounts for 28% of China's total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures. - Highlights: • We conduct integrated assessment of Chinese building energy use at sub-regional level. • The C and HSCW regions each account for one-third of China's building energy use. • China's building energy use with climate change would decrease by 5% in 2050. • With climate change energy use rises in HSWW region and declines in other regions

  6. The energetic concept in the administration building of the Federal Environmental Agency in Dessau. Technical innovation for a sustainable operation; Das energetische Konzept im Dienstgebaeude des Umweltbundesamtes in Dessau. Technische Innovationen fuer einen nachhaltigen Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The new office building of the Federal Environmental Agency (Dessau-Rosslau, Federal Republic of Germany) was implemented as a pilot project for environmentally sustainable construction with high-energy targets. In order to reduce the consumption of fossil fuels significantly, the building should have a very low power consumption and enable a sustainable operation. A mostly compact form of the building and a highly insulated building envelope are a first prerequisite.

  7. The International Atomic Energy Agency's safeguards system

    International Nuclear Information System (INIS)

    Wagner, W.

    2000-01-01

    A system of international safeguards has been established to provide assurance that nuclear materials in civilian use are not diverted from their peaceful purpose. The safeguards system is administered by the International Atomic Energy Agency/Department of Safeguards and devolves from treaties and other international agreements. Inspectors from the Agency verify reports from States about nuclear facilities by audits, observation, and measurements. (author)

  8. Energy Building Regulations: The Effect of the Federal Performance Standards on Building Code Administration and the Conservation of Energy in New Buildings.

    Science.gov (United States)

    Kopper, William D.

    1980-01-01

    Explores the changes in the administration and enforcement of building regulations that will be engendered by the proposed federal energy building standards. Also evaluates the effectiveness of those standards in meeting congressional intent. Available from U.C. Davis Law Review, School of Law, Martin Luther King Jr. Hall, University of…

  9. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  10. Low energy class 1 typehouses according to the Danish building regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Kragh, Jesper; Svendsen, Svend

    2008-01-01

    In 2005 the Danish Building regulations introduced two low energy classes for buildings in addition to tightened minimum requirements. The low energy class 1 and low energy class 2 correspond to total energy use, i.e. energy use for heating, ventilation, cooling and domestic hot water, as 50......% and 75% of the minimum requirement respectively. The main purpose of introducing the low energy classes were to further support and encourage the development of low energy buildings in Denmark. In 2010 it is expected that demands in the Building Regulations are tightened by 25-30% and in 2015...... it is expected that the minimum demand will correspond to the low energy class 1 demands of today. In order to secure this development in the building regulations, it is essential to support the development of low energy solutions and demonstrate that the goal is well within reach of the Danish building industry...

  11. Cost-effectiveness of solar energy in energy-efficient buildings

    International Nuclear Information System (INIS)

    Kessler, S.; Iten, R.; Vettori, A.; Haller, A.; Ochs, M.; Keller, L.

    2005-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that examined the potentials and restraints with respect to the use of solar energy in the new construction and refurbishment of residential buildings in Switzerland. The method used is based on a 'learning-curve' technique. The first part of the report deals with the development of prices for solar-collector installations from 1990 until now. The second part deals with today's costs and future developments up to the year 2030. A reference building is used as the basis for the comparison of eight system variants. A further eight variants combine solar technology with traditional heating installations such as oil, gas and wood boilers and heat-pumps. Scenarios for the market situation for solar energy in 2030 are discussed

  12. Annual report 2005[International Atomic Energy Agency]; Informe anual 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Annual Report reviews the results of the Agency's programme according to the three 'pillars' of technology, safety and verification. The main part of the report, starting on page 13, generally follows the programme structure as it applied in 2005. The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. Information on specific issues can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review and Technical Cooperation Report. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is also provided on the attached CD-ROM, and is also available on the Agency?s iaea.org web site (http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2005/). All sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to Technology are: Nuclear Power; Nuclear Fuel Cycle and Materials Technologies; Capacity Building and Nuclear Knowledge Maintenance for Sustainable Energy Development; Nuclear Science; Food and Agriculture; Human Health; Water Resources; Protection of the Marine and Terrestrial Environment; Physical and Chemical Applications. Topics related to Safety and Security discussed in this report are: Safety of Nuclear Installations; Radiation and Transport Safety; Management of Radioactive Waste; Nuclear Security. Topics related to Verification are Safeguards and Verification in Iraq Pursuant to UNSC Resolutions. A separate

  13. Revealing myths about people, energy and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.; Moezzi, M.

    2000-05-01

    In this essay we take a closer look at some energy myths, focusing on the ways energy professionals and the public alike, talk, write and teach about how energy affects the way in which we design, operate, retrofit and inhabit buildings. What myths about people, energy and buildings are current today? Who tells these myths and why do we believe them? How do myths affect our behavior? Myths are a way of understanding the world we live in. They may represent incomplete understanding, or be based on premises that are scientifically not valid, but they help us understand and explain how the world works, and we shape our behavior accordingly.

  14. Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain

    Directory of Open Access Journals (Sweden)

    Javier M. Rey-Hernández

    2018-04-01

    Full Text Available This paper develops an energy analysis for an existing near Zero Energy (nZEB and Zero Carbon Emissions building called LUCIA, located at the university campus in Valladolid (Spain. It is designed to supply electricity, cooling and heating needs through solar energy (Photovoltaic Systems, PV, biomass and an Earth–Air Heat Exchanger (EAHE, besides a Combined Heat Power (CHP. It is currently among the top three buildings with the highest LEED certification in the World. The building model is simulated with DesignBuilder version 5. The results of the energy analysis illustrate the heating, cooling and lighting consumptions expected, besides other demands and energy uses. From this data, we carried out an energy balance of the nZEB, which will help to plan preventive actions when compared to the actual energy consumptions, improving the management and control of both the building and its systems. The primary energy indicator obtained is 67 kWh/m2 a year, and 121 kWh/m2 a year for renewable energy generation, with respect to 55 kWh/m2 and 45 kWh/m2 set as reference in Europe. The Renewable Energy Ratio (RER is 0.66. These indicators become a useful tool for the energy analysis of the nZEB according to the requirements in the European regulations and for its comparison with further nZEB.

  15. World Energy Outlook 2004. The new report of the International Energy Agency; World Energy Outlook 2004. Le nouveau rapport de l'Agence Internationale de l'Energie

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-12-01

    Here is given the complete text of the summary of the World Energy Outlook report of the International Energy Agency. This report includes an alternative scenario which gives the image of an energy future more efficient and more respectful of the environment than those of the reference scenario. (O.M.)

  16. Sustainability in Energy and Buildings : Proceedings of the 3rd International Conference in Sustainability in Energy and Buildings

    CERN Document Server

    Namaane, Aziz; Howlett, Robert; Jain, Lakhmi

    2012-01-01

    Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB’11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systèmes (LSIS) in Marseille, France in partnership with KES International.   SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field.   The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: - the application of intelligent sensing, control, optimisation and modelling techniques to sustainability and - the technology of sustainable buildings.  These two themes combine synergetically to address issues relating to The Intelligent Building.   SEB’11 attracted a significant number of submissions from around the w...

  17. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  18. Energy research program: energy in buildings for the years 2008-2011; Energieforschungsprogramm. Energie in Gebaeuden fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Filleux, Ch.

    2009-08-15

    In Switzerland, existing buildings account for approximately 50% of primary energy consumption. Climate change, as well as the demand on supply, require that Swiss construction practices be immediately adapted. For new buildings, innovative technologies are now widely available. However, their integration into new construction is still too slow due to the fact that current construction practices still lack a holistic approach. Today there also lacks practical solutions for renovations of existing buildings. Therefore, the great challenge for research and development today are 1.5 million pre-existing buildings, which will dictate the future energy consumption for decades. The Federal Energy Research Commission (CORE) has recognized the situation and has considered these issues in its 2008 - 2011 concept for federal energy research. The present research programme Energy in Buildings of the Swiss Federal Office of Energy focuses on the long-term objectives of CORE. This results in the following actions in the building sector: (a) Reducing energy consumption and improving energy efficiency; (b) Integration of renewable energy sources; (c) Reduction of CO{sub 2} emissions through the use of improved technologies. The research programme is therefore focused on concepts and technologies that have long-term objectives, without neglecting the short and medium term goals. The objectives for the period 2008 - 2011 are: (i) Concepts for buildings and housing developments concerning the development of construction methods that are compatible with the goal of a 2,000-watt society (preservation of architectural diversity, use of passive solar energy and daylight); (ii) Concepts, technologies and planning tools for the improvement of energy systems in buildings; (iii) Heating, cooling and ventilation systems in buildings that are compatible with the goal of a 2,000-watt society (efficient cooling systems, heat pumps, etc.); (iv) Increase in efficient use of electricity in

  19. Ecological and Economic Use of Energy by Optimization of Building Construction

    International Nuclear Information System (INIS)

    Jahrmann, H. J.

    1998-01-01

    A major part of energy used in daily life is consumed by heating buildings during cold weather periods and for cooling buildings at warmer times. Another major use of energy takes place during production of building materials, construction of the building itself and the depletion and disposal of this building at the end of its lifecycle. Therefore it seems apparent, that effective conservation and saving of energy is a very comprehensive and total approach. The topic is not solely energy saving, it rather is the most effective use of economical and ecological resources. To be energy conscious we have to give closer look to all phases in the existence of a building, and not only of the building. The human being as well must be thoroughly considered in his surrounding, all aspects of his housing suspected for the waste and potential of energy use. So human itself, with his well being in the house, is a major source of energy use. Even the humans health and sickness with its need for cure will cause significant energy input. In the first phase of energy saving programs two aspects should be focused: 1. Primary energy need of construction materials: Primary energy need is the amount of energy used to produce a construction material; from its base origin up to assembling in the housing. Complete ecological balances already exist for a number of materials. Significant difference between materials is observed. The potential for energy saving is impressive. At least 10-30% total energy conservation during the lifecycle of a building appears likely. In many cases a strong positive impact on local economy is expected too. 2. Energy saving by improvement of the thermal quality of buildings: Energy conscious construction of buildings shows an enormous potential for saving. Thermal insulation and effective heating and ventilation systems promise energy savings in the amount of 30-70%. Infrared thermal building analysis and software simulations used prior revitalization of

  20. Energy consumption quota of public buildings based on statistical analysis

    International Nuclear Information System (INIS)

    Zhao Jing; Xin Yajuan; Tong Dingding

    2012-01-01

    The establishment of building energy consumption quota as a comprehensive indicator used to evaluate the actual energy consumption level is an important measure for promoting the development of building energy efficiency. This paper focused on the determination method of the quota, and firstly introduced the procedure of establishing energy consumption quota of public buildings including four important parts: collecting data, classifying and calculating EUIs, standardizing EUIs, determining the measure method of central tendency. The paper also illustrated the standardization process of EUI by actual calculation based on the samples of 10 commercial buildings and 19 hotel buildings. According to the analysis of the frequency distribution of standardized EUIs of sample buildings and combining the characteristics of each measure method of central tendency, comprehensive application of mode and percentage rank is selected to be the best method for determining the energy consumption quota of public buildings. Finally the paper gave some policy proposals on energy consumption quota to help achieve the goal of further energy conservation. - Highlights: ► We introduce the procedure of determining energy consumption quota (ECQ). ► We illustrate the standardization process of EUI by actual calculation of samples. ► Measures of central tendency are brought into determine the ECQ. ► Comprehensive application of mode and percentage rank is the best method for ECQ. ► Punitive or incentive measures for ECQ are proposed.

  1. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  2. The Cost of Enforcing Building Energy Codes: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-15

    The purpose of this study is to present key findings regarding costs associated with enforcing building energy code compliance–primarily focusing on costs borne by local government. Building codes, if complied with, have the ability to save a significant amount of energy. However, energy code compliance rates have been significantly lower than 100%. Renewed interest in building energy codes has focused efforts on increasing compliance, particularly as a result of the 2009 American Recovery and Reinvestment Act (ARRA) requirement that in order for states to receive additional energy grants, they must have “a plan for the jurisdiction achieving compliance with the building energy code…in at least 90 percent of new and renovated residential and commercial building space” by 2017 (Public Law 111-5, Section 410(2)(C)). One study by the Institute for Market Transformation (IMT) estimated the costs associated with reaching 90% compliance to be $810 million, or $610 million in additional funding over existing expenditures, a non-trivial value. [Majersik & Stellberg 2010] In this context, Lawrence Berkeley National Laboratory (LBNL) conducted a study to better pinpoint the costs of enforcement through a two-phase process.

  3. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  4. Energy management study: A proposed case of government building

    International Nuclear Information System (INIS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-01-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building

  5. Energy management study: A proposed case of government building

    Science.gov (United States)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  6. Energy management study: A proposed case of government building

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd [School of Technology Management and Logistics, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Baharum, Mohd Faizal [School of Building, Housing and Planning, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  7. Energy consumption in buildings for different sport activities

    Energy Technology Data Exchange (ETDEWEB)

    Norrfors, M; Werner, G; Oertenstrand, G

    1978-01-01

    Some buildings for different kinds of sport activities have a great energy demand. The actions which could be taken in order to decrease the energy demand and at the same time decrease the operating costs for these buildings are summarized. References are given to literature of current interest in this field.

  8. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  9. Buildings energy efficiency in the Southeast. Summary of workshop: Report to attendees

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    In June 1992, energy service providers from around the Southeastern United States gathered at the Shenandoah Environment and Education Center of Georgia Power Company, to discuss issues related to energy efficiency buildings in the region. The meeting was organized by an ad hoc planning committee under the auspices of the Atlanta Support Office of the DOE. The objectives of the Workshop were to provide a forum for regional energy service providers to discuss matters of mutual concern and to identify issues of particular relevance to the Southeast. What characterizes energy use in the Southeast? Most lists would include rapid population growth, high temperatures and humidity, a large air conditioning load on utilities, a relatively clean environment, and regulatory processes that seek to keep energy prices low. There was less unanimity on what are the priority issues. No definitive list of priorities emerged from the workshop. Participants did identify several areas where work should be initiated: networking, training/certification/education, performance of technical measures, and studies of market forces/incentives/barriers. The most frequently mentioned context for these work areas was that of utility programs. Presentations given during the first morning provided attendees an overview of energy use in the region and of building energy conservation programs being implemented both by state agencies and by utilities. These were the base for breakout and plenary sessions in which attendees expressed their views on specific topics. The regional need mentioned most often at the workshop was for networking among energy service providers in the region. In this context, this report itself is a follow up action. Participants also requested a regional directory of energy program resources. DOE agreed to assemble a preliminary directory based upon input from workshop attendees. Because the response was quick and positive, a directory is part of this document.

  10. Energy saving innovations in residential buildings. Energiesparende Innovationen im Eigenheim

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, E; Meyer, T

    1983-01-01

    Socio-economic studies have been carried out in the course of the ''Landstuhl demonstration project'' with the aim of evaluating supporting and hampering factors for the realization of energy saving measures, especially for the use of innovation techniques and the use of passive solar energy in residential buildings. The results of two opinion polls have been presented by means of standardized personal interviews with building-owners (in the whole Federal Republic and in the demonstration area) and with building experts (264 persons questioned). The evaluations of the results of the opinion poll show that energy conservation plays an important but not a dominant part in the planning of residential buildings. In the ''Landstuhl area'' energy saving investments took an above-average high position (large impact of the demonstration project). The building-owners and experts most frequently wanted and recommended increased conventional measures. It could be shown that the imagination of the building-owners was asked too much when taking measures for the use of passive solar energy.

  11. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    potential of the energy saving in the society it is very important to address the decisive involvement of the end-users. The human behaviour is the factor that affects the most the energy use in low-energy buildings and should be included in energy simulations. The results can then be linked to programs...... the implementation of C02 neutral communities. A link between a dynamic energy simulation program for buildings and a simulation program for district heating networks is demonstrated. The results of the investigation give an example of how to analyze a community and make recommendations for applying the low...... in a cost-effective way in areas with linear heat densities down to 0.20 MWh/(m.year). Even in cases where the user behaviour is not optimal, the system is able to deliver heat to each customer. The low-energy district heating concept could be strategic for reaching ambitious energy and climate targets...

  12. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  13. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the following areas will offer business

  14. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    International Nuclear Information System (INIS)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-01-01

    Highlights: •Developed methods and used data models to integrate city’s public building records. •Shading from neighborhood buildings strongly influences urban building performance. •A case study demonstrated the workflow, simulation and analysis of building retrofits. •CityBES retrofit analysis feature provides actionable information for decision making. •Discussed significance and challenges of urban building energy modeling. -- Abstract: Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details of using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city’s mild

  15. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    Science.gov (United States)

    Malkani, Arvin P.

    2012-01-01

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is…

  16. Ecological urban renewal in Vesterbro, Copenhagen - 3 buildings with low-energy and solar energy in practice[Denmark]; Byoekologisk byfornyelse paa Vesterbro - 3 ejendomme med lavenergi- og solenergianvendelse i praksis

    Energy Technology Data Exchange (ETDEWEB)

    Vejsig Pedersen, P.

    2000-03-01

    The report is the final report on a demonstration project backed by the Danish Energy Agency concerning solar energy/low energy solutions in relation to ecological urban renewal in Hedebygade, Vesterbro. The report describes developing work relating to solar cells, ventilation with counter current heat recover and total economic and ecological urban optimization, and innovating initiatives relating to 3 buildings with a total of 62 apartments and a business property. The annual energy consumption for heating and hot water can be reduced by a combination of the following means: Use of super low-energy windows; New ventilation solutions with counter current heat recovery and air heating; Use of facade insulation, solar walls and building integrated solar cells; New types of low temperature installations e.g. centrally placed radiators and use of hot water heat exchangers; Improved light conditions by use of glassed rooms. (EHS)

  17. Procedure for Measuring and Reporting Commercial Building Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  18. The impact of clerestory lights on energy efficiency of buildings

    Directory of Open Access Journals (Sweden)

    Đenadić Dalibor M.

    2015-01-01

    Full Text Available The buildings are among major energy consumers, whose energy efficiency is rather low. Clerestory windows are responsible for a large portion of energy losses from the buildings. The energy efficiency of buildings can greatly be improved by upgrading clerestory and other windows. This paper focuses on the theoretical and experimental investigations on how this can be performed in an old school building in the town of Bor in eastern part of Serbia. For that purpose a modern measuring technique has been applied to identify the existing status, and to compare theoretical and actual conditions.

  19. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  20. A Buildings Module for the Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  1. Energy absorption and exposure build-up factors in teeth

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Rudraswamy, B.

    2010-01-01

    Full text: Gamma and X-radiation are widely used in medical imaging and radiation therapy. The user of radioisotopes must have knowledge about how radiation interacts with matter, especially with the human body, because when photons enter the medium/body, they degrade their energy and build up in the medium, giving rise to secondary radiation which can be estimated by a factor which is called the 'build-up factor'. It is essential to study the exposure build up factor in radiation dosimetry. G.P. fitting method has been used to compute energy absorption and exposure build-up factor of teeth (enamel outer surface (EOS), enamel middle (EM), enamel dentin junction towards enamel (EDJE), enamel dentin junction towards dentin (EDJD), dentin middle (DM) and dentin inner surface (DIS)) for wide energy range (0.015 MeV-15 MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption and exposure build up factor on incident photon energy, Penetration depth and effective atomic number has also been assessed. The relative dose distribution at a distance r from the point source is also estimated. The computed exposure and absorption build-up factors are useful to estimate the gamma and Bremsstrahlung radiation dose distribution teeth which is useful in clinical dosimetry

  2. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    International Nuclear Information System (INIS)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon

    2014-01-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO 2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13–22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement. - Highlights: • We assessed long-term impacts of building codes and climate policy using GCAM. • Building energy codes would reduce Chinese building energy use by 13–22%. • The impacts of codes on building energy use vary by climate region and sub-sector

  3. The origins of the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B [Commissariat a l' Energie Atomique, International Relations (France)

    1977-08-15

    On 23 October 1956 in New York, 81 member countries of the United Nations Organization or of its specialized agencies adopted the Statute of the International Atomic Energy Agency, which was to go into formal operation before the end of 1957. A major step towards world-wide control of nuclear energy thus came to be taken more than ten years after the idea of establishing such control had been launched - the first tentative efforts, from 1946 to 1948, having ended in failure. The account follows in an attempt to retrace this 'prehistory' of the IAEA.

  4. The origins of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1977-01-01

    On 23 October 1956 in New York, 81 member countries of the United Nations Organization or of its specialized agencies adopted the Statute of the International Atomic Energy Agency, which was to go into formal operation before the end of 1957. A major step towards world-wide control of nuclear energy thus came to be taken more than ten years after the idea of establishing such control had been launched - the first tentative efforts, from 1946 to 1948, having ended in failure. The account follows in an attempt to retrace this 'prehistory' of the IAEA

  5. Rev-Changes in Primary Energy Use and CO2 Emissions—An Impact Assessment for a Building with Focus on the Swedish Proposal for Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Mattias Gustafsson

    2017-07-01

    Full Text Available In the European Union’s Energy Performance of Buildings Directive, the energy efficiency goal for buildings is set in terms of primary energy use. In the proposal from the National Board of Housing, Building, and Planning, for nearly zero energy buildings in Sweden, the use of primary energy is expressed as a primary energy number calculated with given primary energy factors. In this article, a multi-dwelling building is simulated and the difference in the primary energy number is investigated when the building uses heat from district heating systems or from heat pumps, alone or combined with solar thermal or solar photovoltaic systems. It is also investigated how the global CO2 emissions are influenced by the different energy system combinations and with different fuels used. It is concluded that the calculated primary energy number is lower for heat pump systems, but the global CO2 emissions are lowest when district heating uses mostly biofuels and is combined with solar PV systems. The difference is up to 140 tonnes/year. If the aim with the Swedish building code is to decrease the global CO2 emissions then the ratio between the primary energy factors for electricity and heat should be larger than three and considerably higher than today.

  6. 1998 ACEEE summer study on energy efficiency in buildings: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    These proceedings are contained in the following 10 volumes: (1) Residential buildings--Technologies, design and performance analysis; (2) Residential buildings--Program design, implementation and evaluation; (3) Commercial buildings--Technologies, design and performance analysis; (4) Commercial buildings--Program design, implementation and evaluation; (5) International collaborations and global market issues; (6) Deregulation of the utility industry and role of energy services companies; (7) Market transformation; (8) Information technologies, consumer behavior, and non-energy benefits; (9) Sustainable development, climate change, energy planning, and policy; and (10) Building industry trends. Papers have been processed separately for inclusion on the data base.

  7. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  8. Clean energy, technical files; Energie propre, les fiches techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document is the compilation of the 42 issues of the 'Energie propre - Maitrise de la Demande d'Energie' newsletter published between September 1996 and July 1999 by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE). Each issue is a technical file presenting a particular action or study carried out in the framework of the program of mastery of energy demand in Provence-Alpes-Cote d'Azur region (SE France). These studies and actions concern various types of buildings: high schools, residential buildings for old people, office buildings, social buildings, hotels, recreational facilities, and cover all aspects of energy conservation: space heating, lighting systems, ventilation systems, thermal insulation, appliances.. (J.S.)

  9. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  10. Review of the Application of Green Building and Energy Saving Technology

    Science.gov (United States)

    Tong, Zhineng

    2017-12-01

    The use of energy-saving technologies in green buildings should run through the entire process of building design, construction and use, enabling green energy-saving technologies to maximize their effectiveness in construction. Realize the sustainable development of green building, reduce energy consumption, reduce people’s interference with the natural environment, suitable for people living in “green” building.

  11. Energy consumption of electricity end uses in Malaysian historic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruzzaman, Syahrul N.; Edwards, Rodger E.; Zawawi, Emma M.A.

    2007-07-15

    Malaysia has inherited hundreds of heritage buildings from the past including those from the Indian, Chinese and Colonial eras apart from the indigenous traditional buildings. These buildings have the most unique ecstatic value from the viewpoint of architecture, culture, art, etc. Malaysian economy boom in 1980s spurred the need for more buildings especially in large cities. As a result, most of the historic buildings have been converted and transformed into commercial use. As reported by METP, Malaysian buildings energy uses are reflected by the energy consumption in the industrial and commercial sectors. Most of the buildings' energy consumption is electricity, used for running and operating the plants, lighting, lifts and escalators and other equipment in the buildings. These are amongst the factors that have resulted in the high demand for electricity in Malaysia. As outlined in the eighth Malaysia Plan, Malaysia is taking steps in conserving energy and reducing energy consumption on electricity consumption in building. This paper aims to present the breakdown of the major electricity end uses characteristics of historic buildings in Malaysia. The analysis was performed on annual data, allowing comparison with published benchmarks to give an indication of efficiency. Based on data collected a 'normalisation' calculated electricity consumption was established with the intention of improving the comparison between buildings in different climatic regions or with different occupancy patterns. This is useful for identifying where the design needed further attention and helped pinpoint problem areas within a building. It is anticipated that this study would give a good indication on the electricity consumption characteristics of historic buildings in Malaysia. (Author)

  12. How to Define Nearly Net Zero Energy Buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    2011-01-01

    or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member State to define what these for them exactly constitute. In the definition, local conditions are to be obviously taken into account, but the uniform methodology can be used in all......This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... in which way are taken into account in the energy performance assessment. The intention of the Task Force is to help the experts in the Member States in defining the nearly zero energy buildings in a uniform way. The directive requires nearly zero energy buildings, but since it does not give minimum...

  13. The International Energy Agency collaboration in wind energy

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.; Pershagen, B.

    1991-07-01

    The International Energy Agency (IEA) wind energy agreements have provided a useful framework for international cooperative efforts during more than thirteen years. Nine comprehensive research Tasks have been successfully completed and three Tasks are currently in progress. The sharing of research and information has clearly contributed to the development of wind technology, has eliminated unnecessary redundancy in national programmes, has encouraged utilization of the most efficient approaches to solve common problems, and has created a cooperative spirit among the professional groups that seems to be unique. After a brief introduction on the activities of the IEA on wind energy an overview is given of the ongoing tasks and other current activities with regard to the subject. 1 fig., 5 tabs., 9 refs

  14. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  15. Energy monitoring and the 'energy passport' for buildings - Preliminary study; Energie-Monitoring Gebaeude und Gebaeude-Energiepass

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A.; Menti, U.-P. [Amstein and Walthert AG, Zuerich (Switzerland); Sigg, R.; Besser, U. [Intep Integrale Planung GmbH, Zuerich (Switzerland)

    2004-07-01

    This preliminary study for the Swiss Federal Office of Energy (SFOE) examines the situation in Switzerland with regard to the creation of an energy-consumption rating system for buildings. Present and future developments in Europe in this area are examined. This preliminary study provides the basis for a main study in that it defines the main questions to be looked at. Present-day data collection on the energy consumption of buildings is looked at critically. The authors suggest the integration of an energy-consumption data bank in the existing building and apartment register. The situation in Europe, where specific ideas on the introduction of national 'energy passports' for buildings are being looked at, is considered. The work that will have to be done in Switzerland in this area is reviewed, and the essential prerequisites for the implementation of such an energy-monitoring system are discussed.

  16. Energy-efficient window systems. Effects on energy use and daylight in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buelow-Huebe, H.

    2001-11-01

    This thesis deals with energy-efficient windows in Swedish buildings. Parametric studies were performed in the dynamic energy simulation tool Derob-LTH in order to study the effects of window choices on energy use and indoor climate for both residential and office buildings. A steady-state program was used to evaluate two years of measurements of energy use and indoor temperatures of an energy-efficient row-house. Two behavioural studies regarding (1) daylight transmittance, view and room perception using super-insulated windows and (2) the satisfaction with the daylight environment and the use of shading devices in response to daylight/sunlight were conducted in full-scale laboratory environments exposed to the natural climate. Results show that as the energy-efficiency of buildings increase, window U-values must decrease in order not to increase the annual heating demand, since the heating season is shortened, and useful solar gains become smaller. For single-family houses with a window-to-floor area ratio of 15 % and insulated according the current Swedish building code, the U-values should thus on average be lower than 1.0 W/m{sup 2}K. For houses insulated according to 1960s standard, the U-value may on average be 1.6 W/m{sup 2}K. For colder climates (northern Sweden), the U-values should be somewhat lower, while slightly higher U-values can be tolerated in milder climates of south Sweden. Thermal comfort during winter is improved for energy-efficient windows. However, overheating problems exist for both super-insulated houses and highly glazed office buildings showing a need for very low U-values in combination with low g-values. Daylight experiments indicate that the use of two low-emittance coatings tints the transmitted daylight enough to be appreciated, and colours may be perceived as more drab and rooms more enclosed. A compromise between energy-efficiency and daylighting may be needed, and it is suggested that only one coating be used except when very

  17. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Science.gov (United States)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  18. Improving energy sustainability for public buildings in Italian mountain communities.

    Science.gov (United States)

    Mutani, Guglielmina; Cornaglia, Mauro; Berto, Massimo

    2018-05-01

    The objective of this work is to analyze and then optimize thermal energy consumptions of public buildings located within the mountain community of Lanzo, Ceronda and Casternone Valleys. Some measures have been proposed to reduce energy consumption and consequently the economic cost for energy production, as well as the harmful GHG emissions in the atmosphere. Initially, a study of the mountain territory has been carried out, because of its vast extension and climatic differences. Defined the communities and the buildings under investigation, energy dependant data were collected for the analysis of energy consumption monitoring: consumption data of three heating seasons, geometric buildings characteristics, type of opaque and transparent envelope, heating systems information with boiler performance and climatic data. Afterward, five buildings with critical energy performances were selected; for each of these buildings, different retrofit interventions have been hypothesized to reduce the energy consumption, with thermal insulation of vertical or horizontal structures, new windows or boiler substitution. The cost-optimal technique was used to choose the interventions that offered higher energy performance at lower costs; then a retrofit scenario has been planned with a specific financial investment. Finally, results showed possible future developments and scenarios related to buildings energy efficiency with regard to the topic of biomass exploitation and its local availability in this area. In this context, the biomass energy resource could to create a virtuous environmental, economic and social process, favouring also local development.

  19. Building Standards and Codes for Energy Conservation

    Science.gov (United States)

    Gross, James G.; Pierlert, James H.

    1977-01-01

    Current activity intended to lead to energy conservation measures in building codes and standards is reviewed by members of the Office of Building Standards and Codes Services of the National Bureau of Standards. For journal availability see HE 508 931. (LBH)

  20. Cost analysis of LEED certified United States navy buildings

    OpenAIRE

    Kirar, Carl V.

    2011-01-01

    CIVINS (Civilian Institutions) Thesis document A study was completed at UW-Madison in 2010 that reviewed the energy consumption of US Navy buildings which earned Leadership in Energy and Environmental Design (LEED) certification by the United States Green Building Council (USGBC). The research compared LEED certified buildings to a commercial counterpart within the US Navy inventory against Executive Order (EO) 13423. The EO mandated that all federal agencies meet a 30 percent reduction of...

  1. Optimization of the Public Buildings Energy Supply

    DEFF Research Database (Denmark)

    Filipović, P.; Dominkovic, Dominik Franjo; Ćosić, B.

    2016-01-01

    There is a rising interest in the improvement of energy efficiency in public buildings nowadays atthe EU level. Increasing energy efficiency can lead to both better thermal comfort, as well as netsavings on energy bills. Furthermore, the right choice of energy source can lead to large savings inC...

  2. Building Energy Consumption Pattern Analysis of Detached Housing for the Policy Decision Simulator

    Science.gov (United States)

    Lim, Jiyoun; Lee, Seung-Eon

    2018-03-01

    The Korean government announced its plan to raise the previous reduction goal of greenhouse gas emission from buildings by 26.9% until 2020 on July 2015. Therefore, policies regarding efficiency in the building energy are implemented fast, but the level of building owners and market understanding is low in general, and the government service system which supports decision making for implementing low-energy buildings has not been provided yet. The purpose of this study is to present the design direction for establishing user customized building energy database to perform a role to provide autonomous ecosystem of low-energy buildings. In order to reduce energy consumption in buildings, it is necessary to carry out the energy performance analysis based on the characteristics of target building. By analysing about 20-thousand cases of the amount of housing energy consumption in Korea, this study suggested the real energy consumption pattern by building types. Also, the energy performance of a building could be determined by energy consumption, but previous building energy consumption analysis programs required expert knowledge and experience in program usage, so it was difficult for normal building users to use such programs. Therefore, a measure to provide proper default using the level of data which general users with no expert knowledge regarding building energy could enter easily was suggested in this study.

  3. Buildings Energy Efficiency: Interventions Analysis under a Smart Cities Approach

    Directory of Open Access Journals (Sweden)

    Gabriele Battista

    2014-07-01

    Full Text Available Most of the world’s population lives in urban areas and in inefficient buildings under the energy point of view. Starting from these assumptions, there is the need to identify methodologies and innovations able to improve social development and the quality of life of people living in cities. Smart cities can be a viable solution. The methodology traditionally adopted to evaluate building energy efficiency starts from the structure’s energy demands analysis and the demands reduction evaluation. Consequently, the energy savings is assessed through a cascade of interventions. Regarding the building envelope, the first intervention is usually related to the reduction of the thermal transmittance value, but there is also the need to emphasize the building energy savings through other parameters, such as the solar gain factor and dye solar absorbance coefficients. In this contribution, a standard building has been modeled by means of the well-known dynamic software, TRNSYS. This study shows a parametrical analysis through which it is possible to evaluate the effect of each single intervention and, consequently, its influence on the building energy demand. Through this analysis, an intervention chart has been carried out, aiming to assess the intervention efficiency starting from the percentage variation of energy demands.

  4. Optimal balance between energy demand and onsite energy generation for robust net zero energy buildings considering future scenarios

    NARCIS (Netherlands)

    Kotireddy, R.R.; Hoes, P.; Hensen, J.L.M.

    2015-01-01

    Net-zero energy buildings have usually very low energy demand, and consequently heating ventilation and air conditioning (HVAC) systems are designed and controlled to meet this low energy demand. However, a number of uncertainties in the building use, operation and external conditions such as

  5. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  6. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  7. Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania

    Directory of Open Access Journals (Sweden)

    Jolanta Šadauskienė

    2014-08-01

    Full Text Available In order to fulfil the European Energy Performance of Buildings Directive (EPBD requirements for the reduction of energy consumption, European national requirements have been created for building envelope thermal properties and calculation methodology to determine if building energy efficiency is created. This is however not true in all methodologies. The necessity of building air tightness appears only for new A class buildings, and there are no requirements for air tightness for other building classes. Therefore, the aim of this work is to improve the methodology for the calculation of energy efficiency of buildings, while taking into account the air tightness of the buildings. In order to achieve this aim, the sum energy consumption of investigated buildings was calculated, energy efficiency classes were determined, air tightness of the buildings was measured, and reasons for insufficient air tightness were analyzed. Investigation results show that the average value of air tightness of A energy efficiency class buildings is 0.6 h−1. The results of other investigated buildings, corresponding to B and C energy efficiency classes, show insufficient air tightness (the average n50 value is 6 h−1; herewith, energy consumption for heating is higher than calculated, according to the energy efficiency methodology. This paper provides an energy performance evaluation scheme, under which performed evaluation of energy performance of buildings ensures high quality construction work, building durability, and the reliability of heat-loss calculations.

  8. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    International Nuclear Information System (INIS)

    Dai Xuezhi; Wu Yong; Di Yanqiang; Li Qiaoyan

    2009-01-01

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  9. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai Xuezhi [China Academy of Building Research, Beijing 100013 (China)], E-mail: daixz9999@126.com; Wu Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Di Yanqiang [China Academy of Building Research, Beijing 100013 (China); Li Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system.

  10. Government regulation and associated innovations in building energy-efficiency supervisory systems for large-scale public buildings in a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xuezhi; Di, Yanqiang [China Academy of Building Research, Beijing 100013 (China); Wu, Yong [Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Li, Qiaoyan [Department of Building, School of Design and Environment, National University of Singapore (Singapore)

    2009-06-15

    The supervision of energy efficiency in government office buildings and large-scale public buildings is the main embodiment for government implementation of Public Administration in the fields of resource saving and environmental protection. Aimed at improving the current situation of lack of government administration in building energy efficiency, this paper proposes the concept of 'change and redesign of governmental supervision in building energy efficiency', repositioning the role of government supervision. Based on this theory and other related theories in regulation economic and modern management, this paper analyzes and researches the action and function of all level governments in execution of the supervisory system of building energy efficiency in government office buildings and large-scale public buildings. This paper also defines the importance of government supervision in energy-efficiency system. Finally, this paper analyzes and researches the interaction mechanism between government and owners of different type buildings, government and energy-efficiency service institution with gambling as main features. This paper also presents some measurements to achieve a common benefit community in implementation of building energy-efficiency supervisory system. (author)

  11. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  12. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  13. The impact of Zero Energy Buildings on the Scandinavian energy system

    International Nuclear Information System (INIS)

    Seljom, Pernille; Lindberg, Karen Byskov; Tomasgard, Asgeir; Doorman, Gerard; Sartori, Igor

    2017-01-01

    This paper investigates how an extensive implementation of net Zero Energy Buildings (ZEBs) affects cost-optimal investments in the Scandinavian energy system towards 2050. Analyses are done by a stochastic TIMES model with an explicit representation of the short-term uncertainty related to electricity supply and heat demand in buildings. We define a nearly ZEB to be a highly efficient building with on-site PV production. To evaluate the flexibility requirement of the surrounding energy system, we consider no use of energy storage within the ZEBs. The results show that ZEBs reduce the investments in non-flexible hydropower, wind power and Combined Heat and Power, and increase the use of direct electric heating and electric boilers. With building integrated PV production of 53 TWh in 2050, ZEBs increase the Scandinavian electricity generation by 16 TWh and increase the net electricity export by 19 TWh. Although the increased production reduces the electricity prices, the low heat demand in ZEBs gives a drop in the electricity consumption by 4 TWh in 2050. Finally, the results demonstrate that the Scandinavian energy system is capable of integrating a large amount of ZEBs with intermittent PV production due to the flexible hydropower in Norway and Sweden. - Highlights: • We analyse cost-optimal integration of ZEBs in the Scandinavian energy system. • We capture impact of short-term uncertainty on long-term investment decisions. • ZEBs reduce the investments in the electricity and heating sector. • The Scandinavian electricity sector is capable of integrating ZEBs with PV. • The operation of the flexible hydropower is changed with ZEBs.

  14. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  15. The buildings networks' energy statistics 2003; Bygningsnettverkets energistatistikk 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The report presents analyses and statistics for the energy consumption in various types of building, mostly commercial buildings. It shows how the energy consumption varies with the type of heating system, cooling, size of building, age etc. Also shown are figures for the energy consumption in relation to function, such as number of students in schools, number of people in nursing homes etc. The climate in Norway was the 6th warmest in 137 years. Energy consumption is given for different climatic zones.

  16. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2018-01-01

    Full Text Available Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects. Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  17. On the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, S [International Atomic Energy Agency, Vienna (Austria)

    1963-07-15

    The main concepts motivating the decision to establish an international agency for peaceful uses of atomic energy are presented in the paper. They consists of: 1) co-ordination in the fields of safety field, legal liability and safeguards; 2) ensuring that scientific and technical data are made freely accessible on a worldwide scale and 3) assisting the developing countries in benefiting from this new science and technology and use the atomic energy for economic and social development

  18. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    International Nuclear Information System (INIS)

    Gulbinas, R.; Jain, R.K.; Taylor, J.E.

    2014-01-01

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  19. POST OCCUPANCY EVALUATION OF ENERGY-EFFICIENT BUILDINGS IN TROPICAL CLIMATES – MALAYSIA

    Directory of Open Access Journals (Sweden)

    Ban-Huat Ng

    2013-07-01

    Full Text Available There exists a well-known gap between occupants and building’s energy-efficient designs. A comprehensive building performance diagnostic technique, Post Occupancy Evaluation (POE may surpass the current evaluation method by reducing the gap between occupants and building’s energy-efficient design. Due to these reasons, the aim of this research is to identify the problems with respect to energy-efficient design which affect occupants’ comfort. This research focuses on the application of energy-efficient design in office building and was conducted on energy-efficient buildings in Malaysia. A building performance survey framework, Energy-efficient Building Environmental Quality Questionnaire (EBEQ2, was  used to identify the problems affecting occupants’ comfort and buildings’ Indoor Environmental Quality (IEQ. The result was analyzed using Statistical Package for Social Science (SPSS. The research outcome shows that majority of occupants are not satisfied  with the thermal comfort and lighting condition of  the buildings. Building certified with sustainable building rating tools does not guarantee better IEQ performance. Thus  continuous research is needed to ensure energy-efficient building concept is applied effectively in each type of building.

  20. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  1. Energy retrofit of commercial buildings. Case study and applied methodology

    Energy Technology Data Exchange (ETDEWEB)

    Aste, N.; Del Pero, C. [Department of Building Environment Science and Technology (BEST), Politecnico di Milano, Via Bonardi 3, 20133 Milan (Italy)

    2013-05-15

    Commercial buildings are responsible for a significant share of the energy requirements of European Union countries. Related consumptions due to heating, cooling, and lighting appear, in most cases, very high and expensive. Since the real estate is renewed with a very small percentage each year and current trends suggest reusing the old structures, strategies for improving energy efficiency and sustainability should focus not only on new buildings, but also and especially on existing ones. Architectural renovation of existing buildings could provide an opportunity to enhance their energy efficiency, by working on the improvement of envelopes and energy supply systems. It has also to be noted that the measures aimed to improve the energy performance of buildings should pay particular attention to the cost-effectiveness of the interventions. In general, there is a lack of well-established methods for retrofitting, but if a case study achieves effective results, the adopted strategies and methodologies can be successfully replicated for similar kinds of buildings. In this paper, an iterative methodology for energy retrofit of commercial buildings is presented, together with a specific application on an existing office building. The case study is particularly significant as it is placed in an urban climatic context characterized by cold winters and hot summers; consequently, HVAC energy consumption is considerable throughout the year. The analysis and simulations of energy performance before and after the intervention, along with measured data on real energy performance, demonstrate the validity of the applied approach. The specifically developed design and refurbishment methodology, presented in this work, could be also assumed as a reference in similar operations.

  2. Building energy modeling for green architecture and intelligent dashboard applications

    Science.gov (United States)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the

  3. Energy Costs of Energy Savings in Buildings: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Rousse

    2012-08-01

    Full Text Available It is often claimed that the cheapest energy is the one you do not need to produce. Nevertheless, this claim could somehow be unsubstantiated. In this article, the authors try to shed some light on this issue by using the concept of energy return on investment (EROI as a yardstick. This choice brings semantic issues because in this paper the EROI is used in a different context than that of energy production. Indeed, while watts and negawatts share the same physical unit, they are not the same object, which brings some ambiguities in the interpretation of EROI. These are cleared by a refined definition of EROI and an adapted nomenclature. This review studies the research in the energy efficiency of building operation, which is one of the most investigated topics in energy efficiency. This study focuses on the impact of insulation and high efficiency windows as means to exemplify the concepts that are introduced. These results were normalized for climate, life time of the building, and construction material. In many cases, energy efficiency measures imply a very high EROI. Nevertheless, in some circumstances, this is not the case and it might be more profitable to produce the required energy than to try to save it.

  4. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    Science.gov (United States)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  5. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  6. Optimising building net energy demand with dynamic BIPV shading

    International Nuclear Information System (INIS)

    Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A.

    2017-01-01

    Highlights: •Coupled analysis of PV generation and building energy using adaptive BIPV shading. •20–80% net energy saving compared to an equivalent static system. •The system can in some cases compensate for the entire heating/cooling/lighting load. •High resolution radiation simulation including impacts of module self shading. -- Abstract: The utilisation of a dynamic photovoltaic system for adaptive shading can improve building energy performance by controlling solar heat gains and natural lighting, while simultaneously generating electricity on site. This paper firstly presents an integrated simulation framework to couple photovoltaic electricity generation to building energy savings through adaptive shading. A high-resolution radiance and photovoltaic model calculates the photovoltaic electricity yield while taking into account partial shading between modules. The remaining solar irradiation that penetrates the window is used in a resistance-capacitance building thermal model. A simulation of all possible dynamic configurations is conducted for each hourly time step, of which the most energy efficient configuration is chosen. We then utilise this framework to determine the optimal orientation of the photovoltaic panels to maximise the electricity generation while minimising the building’s heating, lighting and cooling demand. An existing adaptive photovoltaic facade was used as a case study for evaluation. Our results report a 20–80% net energy saving compared to an equivalent static photovoltaic shading system depending on the efficiency of the heating and cooling system. In some cases the Adaptive Solar Facade can almost compensate for the entire energy demand of the office space behind it. The control of photovoltaic production on the facade, simultaneously with the building energy demand, opens up new methods of building management as the facade can control both the production and consumption of electricity.

  7. Evaluating energy performance in non-domestic buildings : a review

    NARCIS (Netherlands)

    Borgstein, E.H.; Lamberts, R.; Hensen, J.L.M.

    2016-01-01

    Evaluation methods can be used to determine what constitutes good energy performance in a building. With an increasing focus on energy use of buildings worldwide, this evaluation assumes a fundamental importance. This paper provides a comprehensive review of the available methods for analysing,

  8. Energy Saving Potential of PCMs in Buildings under Future Climate Conditions

    Directory of Open Access Journals (Sweden)

    Abdo Abdullah Ahmed Gassar

    2017-11-01

    Full Text Available Energy consumption reduction under changing climate conditions is a major challenge in buildings design, where excessive energy consumption creates an economic and environmental burden. Improving thermal performance of the buildings through support applying phase change material (PCM is a promising strategy for reducing building energy consumption under future climate change. Therefore, this study aims to investigate the energy saving potentials in buildings under future climate conditions in the humid and snowy regions in the hot continental and humid subtropical climates of the east Asia (Seoul, Tokyo and Hong Kong when various PCMs with different phase change temperatures are applied to a lightweight building envelope. Methodology in this work is implemented in two phases: firstly, investigation of energy saving potentials in buildings through inclusion of three types of PCMs with different phase temperatures into the building envelop separately and use weather file in the present (2017; and, secondly, evaluation of the effect of future climate change on the performance of PCMs by analyzing energy saving potentials of PCMs with 2020, 2050 and 2080 weather data. The results show that the inclusion of PCM into the building envelope is a promising strategy to increase the energy performance in buildings during both heating and cooling seasons in Seoul, Tokyo and Hong Kong under future climate conditions. The energy savings achieved by using PCMs in those regions are electricity savings of 4.48–8.21%, 3.81–9.69%, and 1.94–5.15%, and gas savings of 1.65–16.59%, 7.60–61.76%, and 62.07–93.33% in Seoul, Tokyo and Hong Kong, respectively, for the years 2017, 2020, 2050 and 2080. In addition, BioPCM and RUBITHERMPCM are the most efficient for improving thermal performance and saving energy in buildings in the tested regions and years.

  9. Solar energy conscious allotting and building

    International Nuclear Information System (INIS)

    Moor, R.; Winter, R.

    1992-10-01

    In order to use solar energy now and in the future several measures should be taken in the field of urban development and housing construction. A number of policy instruments is available to the local governments to stimulate the use of solar energy. However, little use is made of these possibilities so far. In many municipalities there are uncertainties about the financial consequences of solar energy conscious building. In practice it appears that there are hardly any extra costs for the infrastructure if building blocks and roofs are designed and built with south orientation. Also possibilities to minimize the investment barrier for the occupants of the houses are available. An overview is presented of the policy instruments and practical examples are given for the Dutch municipalities Gouda, Schiedam, Heerhugowaard, Delft and Haarlemmermeer. 2 tabs., 2 appendices, 6 refs

  10. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...... of draught risk during a whole year, giving building designers a tool for the design stage of a building. The tool uses simple one-at-a-time calculations of flow elements and assesses the uncertainty of the result by counting the number of overlapping flow elements. The calculation time is low, making...... it usable in the early design stage to optimise the building layout. The tool provides an overview of the general draught pattern over a period, e.g. a whole year, and of how often there is a draught risk....

  11. User evaluations of energy efficient buildings: the interplay of buildings and users in seven European case studies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Hauge, Aashild Lappegaard; Denizou, Karine; Jerkoe, Sidsel; Waagoe, Solvaar; Berker, Thomas

    2011-07-01

    The buildings in our study have been operational for just a short period and most of them are still in an adjustment phase. The findings show that users in all case studies often stressed the positive aspects connected to the newness and the architectural quality of the buildings. The interviews also show that energy efficiency is often regarded as a bonus or side effect that is gladly accepted but not the main criteria for choosing a house. Nonetheless, most residents seemed to appreciate the environmental benefits over time. Several respondents were also more concerned about the environment now than before they moved into or started to work in an energy efficient building, and they also reported more environmentally friendly behaviour. In most of the case studies, concerns were expressed about thermal comfort. Informants often experienced the building as too hot in the summer and/or too cold in the winter. This perceived discomfort caused different types of personal actions, which had a potential to interfere with the concept and the calculated energy balance. In order to improve internal conditions, the users in almost every case intervened with the planned use. They found common and known ways to improving their comfort in the buildings without considering how to optimize the new system. None of the respondents had much prior knowledge of energy efficient buildings before moving in or starting to work in the case study buildings. They did not know what to expect from their new environment, and were unfamiliar with the concepts. Many of the informants complained about a lack of information on systems and insufficient training. The studies also show that the occupants desired to control at least some operational aspects. Despite intermittent difficulties with thermal comfort, the tolerance for the buildings performance appeared to be high throughout all the case studies and many respondents were proud of 'their' buildings. Energy efficient buildings are not the

  12. User evaluations of energy efficient buildings: the interplay of buildings and users in seven European case studies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Hauge, Aashild Lappegaard; Denizou, Karine; Jerkoe, Sidsel; Waagoe, Solvaar; Berker, Thomas

    2011-07-01

    The buildings in our study have been operational for just a short period and most of them are still in an adjustment phase. The findings show that users in all case studies often stressed the positive aspects connected to the newness and the architectural quality of the buildings. The interviews also show that energy efficiency is often regarded as a bonus or side effect that is gladly accepted but not the main criteria for choosing a house. Nonetheless, most residents seemed to appreciate the environmental benefits over time. Several respondents were also more concerned about the environment now than before they moved into or started to work in an energy efficient building, and they also reported more environmentally friendly behaviour. In most of the case studies, concerns were expressed about thermal comfort. Informants often experienced the building as too hot in the summer and/or too cold in the winter. This perceived discomfort caused different types of personal actions, which had a potential to interfere with the concept and the calculated energy balance. In order to improve internal conditions, the users in almost every case intervened with the planned use. They found common and known ways to improving their comfort in the buildings without considering how to optimize the new system. None of the respondents had much prior knowledge of energy efficient buildings before moving in or starting to work in the case study buildings. They did not know what to expect from their new environment, and were unfamiliar with the concepts. Many of the informants complained about a lack of information on systems and insufficient training. The studies also show that the occupants desired to control at least some operational aspects. Despite intermittent difficulties with thermal comfort, the tolerance for the buildings performance appeared to be high throughout all the case studies and many respondents were proud of 'their' buildings. Energy efficient buildings are

  13. Assessment of energy efficiency options in the building sector of Lebanon

    International Nuclear Information System (INIS)

    Chedid, R.B.; Ghajar, R.F.

    2004-01-01

    This paper examines the merits of implementing energy efficiency policies in the building sector in Lebanon following the approach normally adopted in Climate Change studies. The paper first examines the impact of the energy sector on the Lebanese economy, and then assesses the feasibility of implementing suitable energy efficiency options in the building sector. For this purpose, a detailed analysis of the building sector in Lebanon is presented with emphasis on the thermal characteristics of building envelopes and the energy consuming equipment. The long-term benefits of applying energy efficiency options in the building sector are then assessed using a scenario-type analysis that compares these benefits against those of a baseline scenario that assumes no significant implementation of energy efficiency policies. Finally, feasible options are highlighted and recommendations to remove the major barriers hindering the penetration of energy efficiency options in the Lebanese market are provided

  14. Clean energy, technical files; Energie propre, les fiches techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document is the compilation of the 42 issues of the 'Energie propre - Maitrise de la Demande d'Energie' newsletter published between September 1996 and July 1999 by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE). Each issue is a technical file presenting a particular action or study carried out in the framework of the program of mastery of energy demand in Provence-Alpes-Cote d'Azur region (SE France). These studies and actions concern various types of buildings: high schools, residential buildings for old people, office buildings, social buildings, hotels, recreational facilities, and cover all aspects of energy conservation: space heating, lighting systems, ventilation systems, thermal insulation, appliances.. (J.S.)

  15. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  16. CSA C873 Building Energy Estimation Methodology - A simplified monthly calculation for quick building optimization

    NARCIS (Netherlands)

    Legault, A.; Scott, L.; Rosemann, A.L.P.; Hopkins, M.

    2014-01-01

    CSA C873 Building Energy Estimation Methodology (BEEM) is a new series of (10) standards that is intended to simplify building energy calculations. The standard is based upon the German DIN Standard 18599 that has 8 years of proven track record and has been modified for the Canadian market. The BEEM

  17. Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.

    2008-05-14

    This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

  18. Environmental and Energy Aspects of Construction Industry and Green Buildings

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2017-04-01

    Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.

  19. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  20. Operation of buildings: Energy supply and energy conservation measures

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, H

    1985-01-01

    Energy saving in public administration. A list-like collection of the measures to monitor the consumption, the measures of saving energy at existing buildings, new systems and by new techniques. Examples with figures for the savings achieved in the region of Marburg-Biedenkopf (Hesse). Guidelines are set up which are mainly based on energy saving, heat recovery, use of new technologies and renewable energy sources, fluidized-bed combustion also in smaller plants of ca. 2 MW, waste management separating wastes into burnable/unburnable, information of the public administration and the people and the setting up of energy concepts. (PJH).

  1. Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project

    International Nuclear Information System (INIS)

    Ballarini, Ilaria; Corgnati, Stefano Paolo; Corrado, Vincenzo

    2014-01-01

    Retrofit actions applied to the existent building stock aim at increasing the energy performance, considering the optimal trade-off between energy savings and costs, according to the Directive 2010/31/EU. To select effective refurbishment measures and to quantify the energy saving potentials of the existent building stock, the analysis should be performed on “reference buildings”. This article presents a methodology for the identification of reference buildings, according to the IEE-TABULA project (2009–12) aimed at creating a harmonised structure for “European Building Typologies”. Among the possible applications of the building typology, this work focuses on the potentialities of energy savings and CO 2 emission reductions for the European residential building stock. In particular, the Italian approach to model the energy balance of a subset of the national building stock is described; the results show the enormous potentialities of energy savings even with basic energy retrofit actions. Cost analyses were not in the scope of the project, but the results of this study are the basis for further investigations aimed at assessing the cost effectiveness of sets of measures. In this regard, the TABULA building-types are being applied by the Italian government for calculating cost-optimal levels of energy performance, complying with the Directive 2010/31/EU objectives. - Highlights: • European building stocks need retrofit actions to improve the energy performance. • Necessity to define “reference buildings” in order to perform cost-optimal analyses. • Definition of a National “Building Typology” according to IEE-TABULA project. • Methodology to identify reference buildings for assessing energy saving potentials

  2. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  3. Calculation steps. Building integrated energy supply; Beregningsgang. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations. The present report describes the applied simulation models, and explains the results and computer codes. The parameter variations are described for each house as well as the common calculation steps for each house. The results are presented in case sheets, as performance graphs, and top-50 lists for the best cases regarding CO{sub 2} emission, energy consumption and economics. (ln)

  4. Dataset on the energy performance of atrium type hotel buildings.

    Science.gov (United States)

    Vujosevic, Milica; Krstic-Furundzic, Aleksandra

    2018-04-01

    The data presented in this article are related to the research article entitled "The Influence of Atrium on Energy Performance of Hotel Building" (Vujosevic and Krstic-Furundzic, 2017) [1], which describes the annual energy performance of atrium type hotel building in Belgrade climate conditions, with the objective to present the impact of the atrium on the hotel building's energy demands for space heating and cooling. This dataset is made publicly available to show energy performance of selected hotel design alternatives, in order to enable extended analyzes of these data for other researchers.

  5. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  6. Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers. Project document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    'Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers' includes major steps in implementing the EU EPB directive in Latvia. The EPB directive includes a number of efforts: 1. A methodology for calculation of the integrated energy performance of buildings 2. Application of minimum requirements on the energy performance for new buildings 3. Application of minimum requirements on the energy performance for larger existing buildings subject to major renovation 4. Energy performance certification (energy labelling) of buildings 5. Regular inspection of boilers and of air-conditioning systems in buildings, and assessment of heating installations in older systems. The present project includes activities connected to point 4 and point 5. The results will include 4 steps in implementing the EU EPB directive: 1) A Latvian training of certified independent energy auditors to be active conducting energy audits and issuing energy performance certificates. Including a handbook in energy auditing. 2) A Latvian training of certified independent experts for inspection of boilers, air-con systems and assessing older heating systems. Including a handbook in boiler inspection. 3) A proposal for the institutional set-up for a connected scheme for energy auditing and a scheme for boiler inspection 4) Initial information on the scheme of energy auditors and of the boiler inspection. (au)

  7. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings

    International Nuclear Information System (INIS)

    Gaglia, Athina G.; Balaras, Constantinos A.; Mirasgedis, Sevastianos; Georgopoulou, Elena; Sarafidis, Yiannis; Lalas, Dimitris P.

    2007-01-01

    Comprehensive information and detailed data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector. This paper elaborates the approach used to determine the potential energy conservation in the Hellenic NR building stock. A major obstacle that had to be overcome was the need to make suitable assumptions for missing detailed primary data. A qualitative and quantitative assessment of scattered national data resulted in a realistic assessment of the existing NR building stock and energy consumption. Different energy conservation scenarios and their impact on the reduction of CO 2 emissions were evaluated. Accordingly, the most effective energy conservation measures are: addition of thermal insulation of exposed external walls, primarily in hotels and hospitals; installation of energy efficient lamps; installation of solar collectors for sanitary hot water production, primarily in hotels and health care; installation of building management systems in office/commercial and hotel buildings; replacement of old inefficient boilers; and regular maintenance of central heating boilers

  8. Commercial Building Energy Asset Rating Tool User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

    2012-05-01

    The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

  9. New kinds of energy-storing building composite PCMs for thermal energy storage

    International Nuclear Information System (INIS)

    Biçer, Alper; Sarı, Ahmet

    2013-01-01

    Graphical abstract: In this work, 10 new kinds of BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters into gypsum, cement, diatomite, perlite and vermiculite. DSC results showed that the melting temperatures and energy storage capacities of the prepared BCPCMs are in range of about 40–55 °C and 31–126 J/g, respectively. TG investigations and thermal cycling test showed that the BCPCMs had good thermal endurance and thermal reliability. It can be also concluded that among the prepared 10 kinds materials, especially the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage applications in buildings due to the fact that they have relatively high heat storage ability. Highlights: ► New kinds BCPCMs were prepared by blending of liquid XPL and XPM esters with some building materials. ► The BCPCMs had suitable melting temperatures and energy storage capacities. ► Especially, the BCPCMs including perlite, vermiculite, diatomite were found to better candidates for thermal energy storage. - Abstract: Energy storing-composite phase change materials (PCMs) are significant means of thermal energy storage in buildings. Although several building composite PCMs (BCPCMs) have been developed in recent years, the additional investigations are still required to enrich the diversity of BCPCMs for solar heating and energy conservation applications in buildings. For this purpose, the present work is focused the preparation, characterization and determination of 10 new kinds of BCPCMs. The BCPCMs were prepared by blending of liquid xylitol pentalaurate (XPL) and xylitol pentamyristate (XPM) esters with gypsum, cement, diatomite, perlite and vermiculite as supporting matrices. The scanning electron microscopy (SEM) and Fourier Transform Infrared (FT-IR) analysis showed that the ester compounds were adsorbed uniformly into the building materials due to capillary forces

  10. Radon-daughter exposures in energy-efficient buildings

    International Nuclear Information System (INIS)

    Nero, A.V.; Berk, J.V.; Boegel, M.L.; Hollowell, C.D.; Ingersoll, J.G.; Nazaroff, W.W.

    1981-10-01

    A radon concentration of 1 pCi/1 (37 Bq/m 3 ) appears to lie in the range that is typical for air inside US residential buildings. Moreover, some US residences have concentrations higher than 1 pCi/1, sometimes by an order of magnitude, implying significant individual risk to occupants. For typical radon daughter equilibrium ratios, this concentration corresponds to a radon daughter exposure rate of 0.2 working level months (WLM) per year. This exposure rate may account for a significant lung cancer incidence if data on lung cancers per unit exposure in miners are applicable to such low exposures. Reductions in air exchange rates may rise the typical exposure rate and even increase it to unacceptable levels in some cases. Measures that reduce energy use by reducing natural infiltration or mechanical ventilation in new or retrofit buildings are therefore undergoing severe scrutiny. Lawrence Berkeley Laboratory has performed measurements in buildings specifically designed to use energy efficiently or utilize solar heating. In many of these buildings radon concentrations appear to arise primarily from soil underlying the buildings. Measures to control higher levels, e.g., by mechanical ventilation with heat recuperation, appear to be economical. However, to evaluate energy-saving programs adequately requires a much more comprehensive characterization of radon sources (for example, by geographical area) and a much fuller understanding of the dynamics of radon and its daughters indoors than now exist

  11. Performance analysis of an energy efficient building prototype by using TRNSYS

    OpenAIRE

    Lai, Kun; Wang, Wen; Giles, Harry

    2014-01-01

    Buildings section accouts for a large part of the total primary energy consumption. This paper reports a simulative study on an energy efficient building prototype named MIDMOD by using TRNSYS program. The prototype is a new genre of affordable medium density building concepts that are more adaptable, durable, and energy efficient as whole-life housing typologies than those currently available.The building envelope thermal insulation and air tightness are enhanced to reduce heat loss. Several...

  12. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  13. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  14. Building Service Delivery Networks: Partnership Evolution Among Children's Behavioral Health Agencies in Response to New Funding.

    Science.gov (United States)

    Bunger, Alicia C; Doogan, Nathan J; Cao, Yiwen

    2014-12-01

    Meeting the complex needs of youth with behavioral health problems requires a coordinated network of community-based agencies. Although fiscal scarcity or retrenchment can limit coordinated services, munificence can stimulate service delivery partnerships as agencies expand programs, hire staff, and spend more time coordinating services. This study examines the 2-year evolution of referral and staff expertise sharing networks in response to substantial new funding for services within a regional network of children's mental health organizations. Quantitative network survey data were collected from directors of 22 nonprofit organizations that receive funding from a county government-based behavioral health service fund. Both referral and staff expertise sharing networks changed over time, but results of a stochastic actor-oriented model of network dynamics suggest the nature of this change varies for these networks. Agencies with higher numbers of referral and staff expertise sharing partners tend to maintain these ties and/or develop new relationships over the 2 years. Agencies tend to refer to agencies they trust, but trust was not associated with staff expertise sharing ties. However, agencies maintain or form staff expertise sharing ties with referral partners, or with organizations that provide similar services. In addition, agencies tend to reciprocate staff expertise sharing, but not referrals. Findings suggest that during periods of resource munificence and service expansion, behavioral health organizations build service delivery partnerships in complex ways that build upon prior collaborative history and coordinate services among similar types of providers. Referral partnerships can pave the way for future information sharing relationships.

  15. Case Study of a Nearly Zero Energy Building in Italian Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Hassan Saeed Khan

    2017-11-01

    Full Text Available The building sector is an important stakeholder in the energy and environmental scenario of any country. It continues to grow across the world due to factors such as population growth, and economic and infrastructure development. Within the European Union, buildings account for 40% of the total energy requirements and 30% of carbon dioxide emissions. The building sector is keen to improve its sustainability standards and also to help achieve the 20-20-20 targets set by the European Union. The present work aims to design a nearly zero energy sports gymnasium building in Calolziocorte, Italy. Various sustainability techniques are applied in an integrated design project approach using ECOTECT software to undertake the energy modelling exercise. Firstly, the base-case is modelled with conventional building materials and the total energy demand is calculated. Duly considering the local climatic conditions, sustainable materials are chosen for walls, the floor, the roof, and windows and a 38% reduction is noted in the total energy demand of the building compared to the base-case. The impact of louvers as a passive design technique has also been examined on the total energy demand of the building. The monthly load/discomfort analysis is undertaken for various individual functions inside the building to identify the critical areas that consume more energy. The monthly load/discomfort analysis is performed with the proposed materials and the air infiltration rate is improved through the building envelope and 63% reduction is noted in the total energy demand of the building compared to the base-case. A solar access analysis is conducted to understand the on-site energy production and then the building net energy demand is calculated, which is reduced to 90% compared to the base-case.

  16. 77 FR 61592 - Arkansas Electric Cooperative Corporation; Mississippi Delta Energy Agency; Clarksdale Public...

    Science.gov (United States)

    2012-10-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-110-000] Arkansas Electric Cooperative Corporation; Mississippi Delta Energy Agency; Clarksdale Public Utilities Commission.... 825(h), Arkansas Electric Cooperative Corporation, Mississippi Delta Energy Agency, and its two...

  17. Energy in buildings on-line (EGon). Main phase - Final report; Energie im Gebaeude online (EGon). Hauptphase - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P.

    2009-10-15

    A prototype service was developed to measure and evaluate the space heating energy consumption in buildings in an automated, cost-efficient way. The service consists of a low cost hardware and an internet portal which visualises and evaluates the data. In 10 buildings taking part in the building programme of the Climate Cent Foundation a hardware was installed. It measured heating energy consumption and daily sent this data via GPRS to a central server in Berne, Switzerland. Additionally, information about local ambient temperature and solar irradiation was gathered from weather satellites and stored together with the measurement data on the central server. A customised software analysed the data and visualised them. All data, graphs and results were stored in a password protected area, accessible via internet. Measurement data were correlated in a multiple linear regression with the daily average ambient temperature and solar irradiation. The correlation coefficient R2 was higher than 90% for 5 of the buildings (higher than 65% for 9 buildings). Yearly space heating energy consumption in a standard year was estimated by applying the regression parameters to the daily values of ambient temperature and solar irradiation for one year using Meteonorm data. For building owners, architects, space heating planners and energy experts, a similar service as applied in our study could be useful for several purposes: (i) Determine and visualise the real energy consumption and energy performance indicator of a building; (ii) Check if the energy consumption of a certain building meets the expectations / calculations; (iii) Verification of the success of a renovation; (iv) Identify energy leakages / energy saving potential in buildings; (v) Optimise space heating control of buildings; (vi) Gather information for a planned renovation of a building (insulation or renewal of heating installation). The project participants plan to improve the existing prototype and start a second

  18. End-use energy consumption estimates for U.S. commercial buildings, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.; Wrench, L.E.

    1997-03-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

  19. Sustainability in energy and buildings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    M' Sirdi, Nacer; Namaane, Aziz [LSIS Laboratory of Systems and Information Sciences, Marseilles (France); Howlett, Robert J. [KES International, Shoreham-by-Sea (United Kingdom); Jain, Lakhmi C. (eds.) [South Australia Univ., Adelaide, SA (Australia). School of Electrical and Information Engineering

    2012-07-01

    Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB'11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systemes (LSIS) in Marseille, France in partnership with KES International. SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field. The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: - the application of intelligent sensing, control, optimisation and modelling techniques to sustainability and - the technology of sustainable buildings. These two themes combine synergetically to address issues relating to The Intelligent Building. SEB'11 attracted a significant number of submissions from around the world. These were subjected to a two-stage blind peer-review process. With the objective of producing a high-quality conference, only the best 50 or so of these were selected for presentation at the conference and publication in the proceedings. It is hoped that you will find this volume an interesting, informative and useful resource for your research.

  20. Benchmarking the energy performance of office buildings: A data envelopment analysis approach

    Directory of Open Access Journals (Sweden)

    Molinos-Senante, María

    2016-12-01

    Full Text Available The achievement of energy efficiency in buildings is an important challenge facing both developed and developing countries. Very few papers have assessed the energy efficiency of office buildings using real data. To overcome this limitation, this paper proposes an energy efficiency index for buildings having a large window-to-wall ratio, and uses this index to identify the main architectural factors affecting energy performance. This paper assesses, for the first time, the energy performances of 34 office buildings in Santiago, Chile, by using data envelopment analysis. Overall energy efficiency is decomposed into two indices: the architectural energy efficiency index, and the management energy efficiency index. This decomposition is an essential step in identifying the main drivers of energy inefficiency and designing measures for improvement. Office buildings examined here have significant room for improving their energy efficiencies, saving operational costs and reducing greenhouse gas emissions. The methodology and results of this study will be of great interest to building managers and policymakers seeking to increase the sustainability of cities.

  1. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  2. Intelligent energy buildings based on RES and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, S., E-mail: kaplanis@teipat.gr; Kaplani, E. [R.E.S. Laboratory, Mechanical Engineering Dept., Technological Educational Institute of Western Greece M. Alexandrou 1, Koukouli 26 334, Patra (Greece)

    2015-12-31

    The paper presents the design features, the energy modelling and optical performance details of two pilot Intelligent Energy Buildings, (IEB). Both are evolution of the Zero Energy Building (ZEB) concept. RES innovations backed up by signal processing, simulation models and ICT tools were embedded into the building structures in order to implement a new predictive energy management concept. In addition, nano-coatings, produced by TiO2 and ITO nano-particles, were deposited on the IEB structural elements and especially on the window panes and the PV glass covers. They exhibited promising SSP values which lowered the cooling loads and increased the PV modules yield. Both pilot IEB units were equipped with an on-line dynamic hourly solar radiation prediction model, implemented by sensors and the related software to manage effectively the energy source, the loads and the storage or the backup system. The IEB energy sources covered the thermal loads via a south façade embedded in the wall and a solar roof which consists of a specially designed solar collector type, while a PV generator is part of the solar roof, like a compact BIPV in hybrid configuration to a small wind turbine.

  3. Energy and Environmental Research in the Building Area; Forschen und Bauen im Kontext von Energie und Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A. [Fachhochschule Nordwestschweiz (HABG-IEB), Muttenz (Switzerland); Chianese, D. [Scuola Universitaria Professionale della Svizzera Italiana, Dipartimento Ambiente Costruzioni e Design, Instituto di Sostenibilita Applicata all' Ambiente Costruito (SUPSI-DACD-ISAAC), Canobbio (Switzerland); Filleux, Ch. [Basler und Hofmann, Zuerich (Switzerland); Gaegauf, Ch. [Oekozentrum Langenbruck, Langenbruck (Switzerland); Gugerli, H. [Amt fuer Hochbauten der Stadt Zuerich, Zuerich (Switzerland); Menti, U.-P. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland); Rommel, M. [Hochschule fuer Technik, Institut fuer Solartechnik (SPF), Rapperswil (Switzerland); Schwehr, P. [brenet, building and renewable energies network of technology, HTA Luzern, Horw (Switzerland); Zimmermann, M. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2010-07-01

    These proceedings of the 16{sup th} Swiss Status Seminar held in September 2010 at the Swiss Federal Institute of Technology ETH in Zurich, Switzerland, present a comprehensive overview of the two-day event on Swiss energy and environmental topics in the building area. A total of 55 lectures in ten sessions covered architectural and building topics. The main lectures at the beginning of the seminar covered models for sustainable city development, building for the 2000-watt society and design principles. Also the 'Tropical House' project, the 'Self' autonomous house, the new Monte Rosa mountaineers hut and the Swiss Village project in Masdar were presented. The presentations were divided into nine thematic areas: The house as a 'power station', building renewal, energy management, heat pumps, processes, innovative building and renovation, city districts, building technologies, ventilation and the building as a system. Twenty poster contributions completed the seminar. Themes addressed in the 'house as a power station' set looked at the local generation of power, buildings that generate or even export energy and low-energy consumption buildings. Building renewal topics discussed included grey energy and legal topics, energy management contributions dealt with control, hot water preparation and energy efficiency. The heat pump section dealt with theory and practice of heating and cooling, multi-functional and low-exergy systems and related calculation aids. The processes section included contributions on infra-red analysis, solar-assisted systems, modelling, eco-balances and the City of Zurich's resource strategy for mineral building materials. Innovative building and renovation topics included renovation with prefabricated elements, integrated photovoltaic modules, retrofits as well as financing topics. The topics covered in the district development set included contributions on sustainable (re-)development, the 2000-watt

  4. Multi-Criteria Analysis of Alternative Energy Supply Solutions to Public Nearly Zero Energy Buildings

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2013-12-01

    Full Text Available The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water, solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to determine an optimal energy supply variant, the estimated results of energy, environmental, and economic evaluation have been converted into non-dimensional variables (3E using multi-criteria analysis.Article in Lithuanian

  5. Energy optimization of office buildings; Energioptimering af kontorbyggeri

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Place Hansen, E.J. de (Statens Byggeforskningsinstitut (SBi), Hoersholm (Denmark)); Radisch, N.H.; Treldal, J. (Ramboell A/S, Koebenhavn (Denmark))

    2011-07-01

    The project analysed two main office building types - high-rises and low-rises - and calculated a number of parameters, using the simulation program BSim. Calculations showed that the overall building design and orientation effect is moderate compared with, for instance, use of daylight control and low-energy lighting, computers, etc. Considerable energy savings can be achieved by use of natural ventilation in the summer, thus only using mechanical ventilation with heat recovery during the day in the winter. Open-plan offices result in a better indoor climate and lower energy consumption than cubicle offices. (LN)

  6. Assessment of building integrated energy supply and energy saving schemes on a national level in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.; Morthorst, P.E.; Birkl, C.

    2011-06-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The results of these analyses were integrated in five scenarios to examine the consequences at national level of implementing insulation together with solar panels, photovoltaics and heat pumps in single-family houses. The simulations focused on the building period between 1961 and 1972 characterised by high building activity and low energy performance. The five scenarios - a baseline scenario, a maximum savings scenario, a maximum production scenario, and a combination scenario - showed that regardless of scenario, a consequent use of individual heat pumps leads to the greatest energy savings and CO{sub 2} reductions. (ln)

  7. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  8. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    Science.gov (United States)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  9. Effects of energy and carbon taxes on building material competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund, (Sweden)

    2007-04-15

    The relations between building material competitiveness and economic instruments for mitigating climate change are explored in this bottom-up study. The effects of carbon and energy taxes on building material manufacturing cost and total building construction cost are modelled, analysing individual materials as well as comparing a wood-framed building to a reinforced concrete-framed building. The energy balances of producing construction materials made of wood, concrete, steel, and gypsum are described and quantified. For wood lumber, more usable energy is available as biomass residues than is consumed in the processing steps. The quantities of biofuels made available during the production of wood materials are calculated, and the cost differences between using these biofuels and using fossil fuels are shown under various tax regimes. The results indicate that higher energy and carbon taxation rates increase the economic competitiveness of wood construction materials. This is due to both the lower energy cost for material manufacture, and the increased economic value of biomass by-products used to replace fossil fuel. (Author)

  10. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  11. The unique role of a public power agency in nuclear communications

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, L.A.; Dobken, J.C., E-mail: lascheele@energy-northwest.com, E-mail: jcdobken@energy-northwest.com [Energy Northwest, Richland, WA (United States)

    2014-07-01

    Public power utilities hold a special responsibility to communicate effectively with the public and to serve as both capacity-building and information resources for public utility district members. Energy Northwest was formed in 1957 as joint state operating agency, and today agency membership includes 27 public power utility districts comprising nearly every public power utility district in Washington state and several municipalities. Energy Northwest owns and operates a diverse portfolio of resources, including a wind project, a hydro project, a solar demonstration project, and the U.S. Pacific Northwest's only nuclear energy facility, the Columbia Generating Station in southeast Washington. Member utilities look to Energy Northwest to provide them with thorough and accurate information on all things nuclear, including the contributions of nuclear energy to the region's energy mix, radiation effects and nuclear accidents. The agency plays a diverse role in relationship building among nuclear entities within the region; providing decision makers with accurate and timely information; developing forums in which member public power utilities become well-versed in talking to their constituents about nuclear issues; and using diverse outlets, including social media, to communicate directly with ratepayers throughout the region. (author)

  12. The unique role of a public power agency in nuclear communications

    International Nuclear Information System (INIS)

    Scheele, L.A.; Dobken, J.C.

    2014-01-01

    Public power utilities hold a special responsibility to communicate effectively with the public and to serve as both capacity-building and information resources for public utility district members. Energy Northwest was formed in 1957 as joint state operating agency, and today agency membership includes 27 public power utility districts comprising nearly every public power utility district in Washington state and several municipalities. Energy Northwest owns and operates a diverse portfolio of resources, including a wind project, a hydro project, a solar demonstration project, and the U.S. Pacific Northwest's only nuclear energy facility, the Columbia Generating Station in southeast Washington. Member utilities look to Energy Northwest to provide them with thorough and accurate information on all things nuclear, including the contributions of nuclear energy to the region's energy mix, radiation effects and nuclear accidents. The agency plays a diverse role in relationship building among nuclear entities within the region; providing decision makers with accurate and timely information; developing forums in which member public power utilities become well-versed in talking to their constituents about nuclear issues; and using diverse outlets, including social media, to communicate directly with ratepayers throughout the region. (author)

  13. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...... systems. This energy declaration must refer to the primary energy or CO2 emissions. The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant...

  14. Perceived health and comfort in relation to energy use and building characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, C.-A.; Johner, N. [Ecole Polytechnique Federale, Lausanne (Switzerland); Foradini, F. [E4Tech S., Lausanne (Switzerland); Bluyssen, P.; Cox, C. [TNO Built Environment and Geosciences, Delft (Netherlands); Oliveira Fernandes, E. De [IDMEC-FUEP, Porto (Portugal); Mueller, B. [Technical University of Berlin, Berlin (Germany); Aizlewood, C. [Building Research Establishment, Watford (United Kingdom)

    2006-09-15

    Within the European research project Health Optimisation Protocol for Energy-efficient Building (HOPE), 96 apartment buildings and 64 office buildings (of which approximately 75% have been designed to be energy-efficient) were investigated. The building characteristics were assessed according to a checklist during a walk-through survey. Occupant questionnaires were used to determine satisfaction about comfort (thermal visual, acoustical and indoor air quality (IAQ)) and their health (Sick Building Syndrome and allergies). Building-averaged collected data are compared, looking for correlations between building characteristics on one hand, and perceived comfort and health on the other hand. Strong correlations are found between perceived IAQ, thermal, acoustic and lighting comfort, confirming results from other studies. Significant correlations between the perceived comfort and building related symptoms were also found, comfortable and healthier buildings being well distinct from uncomfortable ones. Differences of perceived comfort or health between low- and high-energy buildings show that it is possible to design buildings that are healthy, comfortable and energy efficient. (author)

  15. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  16. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  17. Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption

    International Nuclear Information System (INIS)

    Herrando, María; Cambra, David; Navarro, Marcos; Cruz, Lucio de la; Millán, Gema; Zabalza, Ignacio

    2016-01-01

    Highlights: • Most of the Faculty Buildings studied are within the average of CO_2 emissions. • Academic and Research buildings have a similar simulated energy consumption. • Several restrictions found in the official Energy Performance Certification tool. • Average deviation of 30% between estimated and real energy consumption. • Electrical equipment and user behaviour notably increase the energy performance gap. - Abstract: A systematic method has been established to perform and analyse in detail the Energy Performance Certification of 21 Faculty Buildings located at the University of Zaragoza (Spain), according to the transposition of Directive 2010/31/EU. First of all, the problem background and a review of the state-of-the-art of the energy certification in buildings is outlined, regarding both the actual state of the Government regulations and the studies undertaken in several countries to assess the energy performance of different types of buildings, residential and non-residential. A summary of the causes found in other studies for the discrepancies between the estimated (by simulation) and actual energy consumption is shown which is afterwards tested and compared with the results found in the present study. Thereafter, the method followed to undertake the buildings’ Energy Performance Certification is explained, and the main results found together with the discussion are detailed, comparing actual vs. estimated energy consumption in the different case studies and proposing reasons for these deviations. The energy consumption breakdown by uses for several buildings is also analysed, and potential improvements for the simulation software are assessed.

  18. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  19. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  20. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2013-08-09

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.