WorldWideScience

Sample records for energy agency building

  1. International Energy Agency building energy simulation test (BESTEST) and diagnostic method

    International Nuclear Information System (INIS)

    Judkoff, R.; Neymark, J.

    1995-01-01

    This is a report on the Building Energy Simulation Test (BESTEST) project conducted by the Model Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 12 Subtask B, and the Energy Conservation in Buildings and Community Systems (BCS) Programme, Annex 21 Subtask C. Recognizing that the needs for model evaluation were similar in both IEA programmes, the combined Experts Group was approved by the Executive Committees in 1990. This is the first joint group organized by the respective IEA Executive Committees, and it has resulted in significant cost savings for all participating countries. The objective of this subtask has been to develop practical implementation procedures and data for an overall IEA validation methodology which has been under development by NREL since 1981, with refinements contributed by the United Kingdom. The methodology consists of a combination of empirical l validation, analytical verification, and comparative analysis techniques. This report documents a comparative testing and diagnostic procedure for thermal models related to the architectural fabric of the building. Other projects (reported elsewhere) conducted by this group include work on empirical validation, analytical verification, and comparative test cases for commercial buildings. In the BESTEST project, a method was developed for systematically testing whole-building energy simulation programs and diagnosing the sources of predictive disagreement. Field trials of the method were conducted with a number of(open q uotes)reference(close q uotes) programs selected by the participants to represent the best state-of-the-art detailed simulation capability available in the United States and Europe. These included BLAST, DOE2, ESP, SERIRES, S3PAS, TASE, and TRNSYS

  2. UP-report. Buildings in the energy system. Basis of the Development platform. Build to the Swedish Energy Agency's strategy work FOKUS; UP-rapport. Byggnader i energisystemet. Underlag fraan Utvecklingsplattformen. Bygg till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to the Swedish Energy Agency's strategies and priorities for research and innovation in the thematic area buildings in the energy system for the period 2011 - 2016. The report has been compiled by members of the development platform Build. This report provides background and the conditions of the area buildings in the energy system, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and knowledge which enabled the Swedish Energy Agency to then develop a strategy that meets the needs of the society and business.

  3. Energy efficient building design

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  4. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Runci, Paul; Meier, Alan

    2008-08-01

    This report presents results from a program evaluation of the U.S. Department of Energy?s Buildings Technologies Program (BTP) participation in collaborative international technology implementing agreements. The evaluation was conducted by researchers from the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory in the fall of 2007 and winter 2008 and was carried out via interviews with stakeholders in four implementing agreements in which BTP participates, reviews of relevant program reports, websites and other published materials. In addition to these findings, the report includes a variety of supporting materials such that aim to assist BTP managers who currently participate in IEA implementing agreements or who may be considering participation.

  5. Buildings Energy Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Buildings Energy Technology (BET) announces on a monthly basis the current worldwide information available on the technology required for economic energy conservation in buildings and communities. Each issue of BET also will include an article presenting a program overview or highlighting a current energy conservation technology project of DOE's Office of Building Technologies (OBT) plus a listing of scheduled meetings of interest. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  6. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  7. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  8. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  9. Energy performance in buildings

    International Nuclear Information System (INIS)

    Dall'O, Giuliano; Galante, Annalisa; Pitera, Luca

    2006-01-01

    The adoption of the building sector regulations strongly oriented to the energy sustainability becomes more effective, also on the economic plan, if placed by one spread of the energetic certification of the buildings [it

  10. Net positive energy buildings

    International Nuclear Information System (INIS)

    Romero, A.; Barreiro, E.; Sanchez Zabala, V.

    2010-01-01

    Buildings are great consumers of energy, being responsible for almost 36% of CO2 emissions in Europe. Though there are many initiatives towards the reduction of energy consumption and CO2 emissions in buildings, many of the alternatives are diminished due to a lack of a unique and holistic approach to the problem. This paper reports a new innovative concept of Positive Energy Buildings (EB+), as well as an integral methodology that covers the overall design process for achieving them. The methodology evaluates energy efficiency solutions at different scales, from building site to generation systems. An educational building design in Navarra serves as a case study to check the feasibility of the proposed methodology. The study concludes that the key to achieve a Positive Energy Building is a minimized energy demand, complemented by efficient facilities and enhanced by distributed power generation from renewable sources. (Author).

  11. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  12. Multi-level, Multi-stage and Stochastic Optimization Models for Energy Conservation in Buildings for Federal, State and Local Agencies

    Science.gov (United States)

    Champion, Billy Ray

    Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. . Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. . The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM

  13. Energy Performance of Buildings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2007-01-01

    programme (ECCP) was established in June 2000 to help identify the most environmentally cost-effective measures enabling the EU to meet its target under the Kyoto Protocol, namely an 8% reduction in greenhouse gas emissions from 1990 levels by 2012. Energy use in buildings accounts for almost half of all CO...... emissions in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong leadership role in promoting energy efficiency in buildings in Europe, and the Directive will be the most powerful instrument developed to date for the building sector in Europe....... One of the benefits of the directive is that it provides an integrated approach to different aspects of buildings energy use and that all aspects are expressed in simple energy performance indicators. The integrated approach allows flexibility regarding details, giving designers greater choice...

  14. Building Energy Asset Score for Building Owners

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for building owners.

  15. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...... and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo...

  16. Municipal Building Energy Usage

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set contains energy use data from 2009-2014 for 139 municipally operated buildings. Metrics include: Site & Source EUI, annual electricity, natural...

  17. Nuclear Energy Agency

    International Nuclear Information System (INIS)

    2011-01-01

    The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958 under the name of the OEEC European Nuclear Energy Agency. It received its present designation on 20 April 1972, when Japan became its first non-European full Member. Now, NEA membership consists of 28 OECD Member countries, i.e. Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, Norway, Portugal, Republic of Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States of America. The NEA is the only intergovernmental nuclear energy organization which brings together developed countries of North America, Europe and the Asia-Pacific region in a small, non-political forum with a relatively narrow, technical focus. - NEA membership represents much of the world's best nuclear expertise; - By pooling this expertise, the NEA provides each Member access to the substantial experience of others and an opportunity to substantially leverage its resources in this field; - Homogeneity of NEA membership makes possible a like-minded approach to problems, a climate of mutual trust and collaboration, the full exchange of experience, and a frank assessment of issues; - The NEA is relatively unfettered by political and bureaucratic constraints, and is able to focus effectively on the specific needs of its Members; - NEA scientific and technical work is in the forefront of knowledge and is known for its depth; - The NEA publishes consensus positions on key issues, providing Member countries with credible references; - The NEA is cost effective. It operates with a small staff, relying on Member country experts, and provides significant added value; - The NEA's system of standing technical committees enables the Agency to be flexible and responsive; - NEA joint projects and information exchange programmes enable interested Members and non-members to join forces in carrying

  18. Energy performance assessment of collective housing buildings

    OpenAIRE

    Fumagalli, Benjamin

    2013-01-01

    This project has been carried out for the ALEC (Agence Locale de l'Energie et du Climat) of Grenoble urban area, a French energy and climate agency. It has been composed of several missions, all related to energy management in residential buildings. First, an annual energy use assessment have been conducted for two different building samples:  the eco-district of De Bonne in Grenoble and a sample of about 25 social housing buildings over the region. These two assessments showed that the avera...

  19. Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Bourrelle, J.S.

    2011-01-01

    clear and consistent definition and a commonly agreed energy calculation methodology. The most important issues that should be given special attention before developing a new ZEB definition are: (1) the metric of the balance, (2) the balancing period, (3) the type of energy use included in the balance...... on the review of the most of the existing ZEB definitions and the various approaches towards possible ZEB calculation methodologies. It presents and discusses possible answers to the abovementioned issues in order to facilitate the development of a consistent ZEB definition and a robust energy calculation......The concept of Zero Energy Building (ZEB) has gained wide international attention during last few years and is now seen as the future target for the design of buildings. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires...

  20. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The different...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  1. Buildings Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Emmanuel, L. [eds.

    1996-11-01

    BET announces on a monthly basis current worldwide information available on the technology required for economic energy conservation in buildings and communities. It contains abstracts of DOE reports, journal articles, conference papers,patents,theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through IEA`s Energy Technology Data Exchange or government- to-government agreements. The citations are available for online searching and retrieval; current information, added daily, is available to DOE and its contractors.

  2. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST): Volume 2: Cases E300-E545.

    Energy Technology Data Exchange (ETDEWEB)

    Neymark J.; Judkoff, R.

    2004-12-01

    This report documents an additional set of mechanical system test cases that are planned for inclusion in ANSI/ASHRAE STANDARD 140. The cases test a program's modeling capabilities on the working-fluid side of the coil, but in an hourly dynamic context over an expanded range of performance conditions. These cases help to scale the significance of disagreements that are less obvious in the steady-state cases. The report is Vol. 2 of HVAC BESTEST Volume 1. Volume 1 was limited to steady-state test cases that could be solved with analytical solutions. Volume 2 includes hourly dynamic effects, and other cases that cannot be solved analytically. NREL conducted this work in collaboration with the Tool Evaluation and Improvement Experts Group under the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 22.

  3. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  4. Net zero building energy conservation

    Science.gov (United States)

    Kadam, Rohit

    This research deals with energy studies performed as part of a net-zero energy study for buildings. Measured data of actual energy utilization by a building for a continuous period of 33 months was collected and studied. The peak design day on which the building consumes maximum energy was found. The averages of the energy consumption for the peak month were determined. The DOE EnergyPlus software was used to simulate the energy requirements for the building and also obtain peak energy requirements for the peak month. Alternative energy sources such as ground source heat pump, solar photovoltaic (PV) panels and day-lighting modifications were applied to redesign the energy consumption for the building towards meeting net-zero energy requirements. The present energy use by the building, DOE Energy software simulations for the building as well as the net-zero model for the building were studied. The extents of the contributions of the individual energy harvesting measures were studied. For meeting Net Zero Energy requirement, it was found that the total energy load for the building can be distributed between alternative energy methods as 5.4% to daylighting modifications, 58% to geothermal and 36.6% to solar photovoltaic panels for electricity supply and thermal energy. Thus the directions to proceed towards achieving complete net-zero energy status were identified.

  5. Defining net zero energy buildings

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available Worldwide increasing attention to energy consumption and associated environmental impacts thereof has resulted in a critical attitude towards energy usage of building. Increasing costs of energy and dependence on energy service providers add...

  6. US energy agency making progress

    Science.gov (United States)

    2017-07-01

    The Advanced Research Projects Agency-Energy (ARPA-E) has the ability to make significant contributions to energy research but must be allowed time to do so, according to a report by the US National Academies of Sciences, Engineering and Medicine.

  7. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  8. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  9. Energy Innovations for Healthy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2016-09-23

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  10. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  11. Building energy governance in Shanghai

    Science.gov (United States)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  12. State building energy codes status

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

  13. Energy Management of Historic Buildings

    Science.gov (United States)

    Tokarčík, A.; Rovňák, M.

    2017-10-01

    The paper is focused on solving problems of design of energy management model in the context of historical buildings and monuments. The main goal of the energy management is to find solutions that preserve the historical heritage while not damaging the uniqueness of the buildings in question and their surroundings. The paper proposes a scheme of activities of energy management of historical monuments in the implementation of energy-efficient measures.

  14. Energy conservation in rented buildings

    Energy Technology Data Exchange (ETDEWEB)

    Klingberg, T.; Broechner, J.; Forsman, J.; Gaunt, L.; Holgersson, M.

    1984-08-01

    The bulletin is an anthology of nine essays by different authors addressing the issue of energy conservation in buildings, where there exists a landlord/tenant relationship. After an overview of the rental market and the stock of rental buildings different types of rental contracts and energy charges are described.

  15. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  16. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  17. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors....... However, the stakeholders’ reaction to energy flexibility have not been fully investigated. Therefore, this paper aims to investigate the stakeholder involvement in energy flexibility by applying the business ecosystem concept (including actors, relationships, value alliances, and influential factors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers...

  18. Energy conservation in large buildings

    Science.gov (United States)

    Rosenfeld, A.; Hafemeister, D.

    1985-11-01

    As energy prices rise, newly energy aware designers use better tools and technology to create energy efficient buildings. Thus the U.S. office stock (average age 20 years) uses 250 kBTU/ft2 of resource energy, but the guzzler of 1972 uses 500 (up×2), and the 1986 ASHRAE standards call for 100-125 (less than 25% of their 1972 ancestors). Surprisingly, the first real cost of these efficient buildings has not risen since 1972. Scaling laws are used to calculate heat gains and losses of buildings to obtain the ΔT(free) which can be as large as 15-30 °C (30-60 °F) for large buildings. The net thermal demand and thermal time constants are determined for the Swedish Thermodeck buildings which need essentially no heat in the winter and no chillers in summer. The BECA and other data bases for large buildings are discussed. Off-peak cooling for large buildings is analyzed in terms of saving peak-electrical power. By downsizing chillers and using cheaper, off-peak power, cost-effective thermal storage in new commercial buildings can reduce U.S. peak power demands by 10-20 GW in 15 years. A further potential of about 40 GW is available from adopting partial thermal storage and more efficient air conditioners in existing buildings.

  19. Tropical Zero Energy Office Building

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during......The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... by daylight, supplemented by electric lighting during very dark and overcast periods. Extensive active energy efficiency measures are implemented in the building in order to reduce the need for electricity to an absolute minimum, without compromising the request for comfortable temperatures and adequate...

  20. Energy use in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  1. Effect of capacity building programme of development agencies on ...

    African Journals Online (AJOL)

    Effect of capacity building programme of development agencies on well being of beneficiaries in Niger Delta, Nigeria. ... available for training. Adequate supervision will also go a long way to ensuring sustainability of the programmes. Key words: capacity building programme, development agencies, well being, beneficiaries ...

  2. Consumer Central Energy Flexibility in Office Buildings

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility in buildings will play an important role in the smart energy system. Office buildings have more potentials to provide energy flexibility to the grid compared to other types of buildings, due to the existing building management, control systems and large energy consumption....... Consumers in office buildings (building owners/managers and occupants) take a main role for adopting and engaging in building energy flexibility. In this paper provides a systematic review of consumer central energy flexibility in office buildings with the discussion of social, technical and business...... can boost energy flexibility in the office buildings....

  3. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  4. Assessment of energy utilization and leakages in buildings with building information model energy

    Directory of Open Access Journals (Sweden)

    Egwunatum I. Samuel

    2017-03-01

    Full Text Available Given the ability of building information models (BIM to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit less carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1 building energy consumption, (2 building energy performance and analysis, and (3 BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis tool with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world׳s first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise or size.

  5. An international survey of building energy codes and their implementation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    2017-08-01

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy demand from buildings. Access to benefits of building energy codes depends on comprehensive coverage of buildings by type, age, size, and geographic location; an implementation framework that involves a certified agency to inspect construction at critical stages; and independently tested, rated, and labeled building energy materials. Training and supporting tools are another element of successful code implementation, and their role is growing in importance, given the increasing flexibility and complexity of building energy codes. Some countries have also introduced compliance evaluation and compliance checking protocols to improve implementation. This article provides examples of practices that countries have adopted to assist with implementation of building energy codes.

  6. International Atomic Energy Agency annual report 2006

    International Nuclear Information System (INIS)

    2007-01-01

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2006 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2006/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  7. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  8. Energy efficient building design. A transfer guide for local governments

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  9. IEA Energy Training Capacity-building Programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The IEA has carried out training activities in energy-related areas from its origins as an agency, with the Emergency Response Exercises (ERE), designed to prepare member countries for oil supply disruption through a set of specially prepared drills simulating crisis conditions. The globalisation of world energy markets in recent years and the wider engagement of the IEA beyond its members have expanded this role, as demand for training instruction has increased. In response, the IEA has created the Energy Training and Capacity-Building Programme, which, through seminars and workshops, secondments and internships, will offer training in the methods and standards that make IEA work in a wide range of energy-related areas, including statistics, the international standard for objective policy recommendations.

  10. International Atomic Energy Agency and Malaysia

    International Nuclear Information System (INIS)

    Abd Rahim Mohd Nor

    1985-01-01

    A review on IAEA (International Atomic Energy Agency) and its relation with Malaysia is given. This article also discusses the background history of IAEA, its organization and functions in the field of nuclear energy

  11. Energy savings in Polish buildings

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  12. 76 FR 69714 - International Energy Agency Meetings

    Science.gov (United States)

    2011-11-09

    ...: Notice of Meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA... Industry Advisory Board (IAB) to the International Energy Agency (IEA) will be held at the headquarters of... of Switzerland --Questionnaire Response of The Netherlands 5. Emergency Response Exercises...

  13. Energy audit role in building planning

    Science.gov (United States)

    Sipahutar, Riman; Bizzy, Irwin

    2017-11-01

    An energy audit is one way to overcome the excessive use of energy in buildings. The increasing growth of population, economy, and industry will have an impact on energy demand and the formation of greenhouse gas emissions. Indonesian National Standard (SNI) concerning the building has not been implemented optimally due to the socialization process by a government not yet been conducted. An energy audit of buildings has been carried out at offices and public services. Most electrical energy in buildings used for air refresher equipment or air conditioning. Calculation of OTTV has demonstrated the importance of performing since the beginning of the planning of a building to get energy-efficient buildings.

  14. Heat pumps for older buildings. A project of the International Energy Agency; Waermepumpen fuer den Gebaeudebestand. Ein Projekt der Internationalen Energieagentur

    Energy Technology Data Exchange (ETDEWEB)

    Laue, Hans-Juergen [Informationaszentrum Waermepumpen und Kaeltetechnik IZW e.V., Karlsruhe (Germany)

    2009-03-15

    In this age of globalisation, reliable, competitive and environment-friendly energy supply is a prerequisite for Europe's economic success. Challenges on future power supply result mostly from the depletion of fossil energy sources, long-term trends of price increases for petroleum and natural gas, political instabilities in important regions of the world, and effects of global climate change. (orig.)

  15. The International Energy Agency's world energy outlook

    International Nuclear Information System (INIS)

    O'Dell, S.

    1996-01-01

    The 1996 edition of the World Energy Outlook to 2010 was reviewed. An overview of the energy projections was provided based on assumptions about economic growth and energy prices, geological potential, technological developments, the availability of traditional fuels outside the OECD and the future preferences of energy users. Demand vs. price movements were modelled, based on 'capacity constraints' and 'energy saving ' scenarios. Three major conclusions derived from the projections were: (1) world primary energy demand will grow steadily as it has over the past two decades, (2) fossil fuels will account for 90 per cent of total primary energy demand in 2010, and (3) a structural shift in the shares of different regions in world energy demand is likely to occur, i.e., the OECD share will fall in favor of the share of the ROW (rest of the world). 4 tabs., 9 figs

  16. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  17. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  18. Renewable Energy Applications for Existing Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  19. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are

  20. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  1. Energy in buildings: Efficiency, renewables and storage

    Science.gov (United States)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  2. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  3. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  4. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  5. Monitoring the energy systems of sustainable buildings

    Science.gov (United States)

    Bollin, Elmar

    2011-05-01

    The complexity of sustainable energy systems for buildings services calls for more transparency of the processes which provide energy for the buildings heating, cooling and power needs. In the frame of applied scientific research at University of Applied Sciences Offenburg, different systems and even buildings in total have been monitored over years to analyse their performance and to optimize the system installations and operations. New EU regulations like EN 16001 require an effective monitoring and a continuous commissioning of the energy relevant systems to certificate sustainable processes. On the other hand, new operation tools are necessary to handle the volatility of renewable energy sources and the buildings demand. Predictive building automation has shown good results when applied for energy systems with high inertia. Operating large-scale solar thermal systems and sustainable buildings over long-term periods the University of Applied Sciences provided evidence that monitoring is an essential system tool for an energy and cost efficient operation of sustainable buildings.

  6. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  7. Building Energy Asset Score for Architects

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for architects.

  8. Building a Science Communication Culture: One Agency's Approach

    Science.gov (United States)

    DeWitt, S.; Tenenbaum, L. F.; Betz, L.

    2014-12-01

    Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.

  9. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  10. Energy in buildings: Efficiency, renewables and storage

    Directory of Open Access Journals (Sweden)

    Koebel Matthias M.

    2017-01-01

    Full Text Available This lecture summary provides a short but comprehensive overview on the “energy and buildings” topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  11. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  12. Energy conservation in selected buildings, Gdansk. 1. final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This Final Report marks the end of the implementation stage of the project: `Energy Conservation in Selected Buildings in Gdansk, Poland` supported by the Danish Environment-related Energy Sector Programme for Poland under the Danish Energy Agency. The residential and commercial sectors together with public buildings account for 40-45% of the total energy consumption and are dominated by the use of space heating and hot water. The sector has a significant over-consumption of energy, which first of all is due to the lack of or too weak incentives for the individual tenants to decrease the energy consumption. Bad thermal insulation of buildings and inefficient central heating systems with a widespread lack of measurement and automatic control systems give cause for extensive heat losses. The objective of the project has been to document the effects of energy savings in 18 multi-family houses when different types of energy saving measures are applied. These measures include thermal insulation of buildings, refurbishment of the heating system and introduction of individual billing system for heating and hot tap water. Energy audits of 18 buildings were performed by combination of on-site inspection of all buildings and data collection from the available drawings, technical descriptions, etc. The on-site inspection was carried out by use of an energy audit scheme specially developed for this project. (EG)

  13. IEA EBC Annex 67 Energy Flexible Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Jensen, Søren Østergaard

    2016-01-01

    and load control and thereby demand response based on the requirements of the surrounding grids. Currently there is, however, no overview or insight into how much Energy Flexibility different building types and their usage may be able to offer to future energy systems. Three is thus a need for increasing......, allowing for a larger roll out of renewable technologies. The Energy Flexibility of a building is the ability to manage its energy demand and generation according to local climate conditions, user needs and grid requirements. Energy Flexibility of buildings will thus allow for demand side management......The foreseen large deployment of renewable energy sources may seriously affect the stability of energy grids. It will be necessary to control energy consumption to match instantaneous energy production. The built-in Energy Flexibility in buildings may be utilized for stabilizing the energy grids...

  14. 20 Years of Achievement and Future Challenge for International Capacity Building Regarding Safeguards and SSAC at Japan Atomic Energy Agency (JAEA)

    International Nuclear Information System (INIS)

    Senzaki, M.; Naoi, Y.; Kuribayashi, T.; Okumura, Y.

    2015-01-01

    Developing human resources in the fields of nuclear non-proliferation and safeguards is critical to promote the peaceful use of nuclear energy. The shortfall of human resources in such fields presents a serious challenge. It has, therefore, become important to urgently develop human resources and thereby to ensure. With a long experience in practicing Japan's nuclear non-proliferation policy, JAEA has been contributing since the 1990s to international human-resource development. More than 300 people from about 40 countries have joined the training courses organized by the Integrated Support Center for Nuclear Non-proliferation and Nuclear Security (ISCN) of JAEA. These courses use lectures, workshops, group discussions, and facility tours to teach knowledge of the basic concepts of IAEA safeguards, SSAC requirements, and safeguards tools to government officials who are responsible for safeguards implementation and to operators who are engaged in nuclear-material accounting and control. Based on Japan's statement at the 2010 Nuclear Security Summit, ISCN was established in December 2010. ISCN places top priority on providing support for the development of future leaders, the development of legal and regulatory infrastructure, and the fostering of nuclear non-proliferation culture. For further advancement, ISCN also examines the current situations of the Asian nations that ISCN supports, based on discussions made between the Japanese government and the IAEA. It works on formulating new training courses that focus on specific themes, such as NDA training and table-top exercises for CA under the AP, identified through needs surveys. ISCN is committed to the development of human resources in the field of safeguards and work closely with governmental organizations in Japan and with other Asian countries, the IAEA, US DOE, European Commission, FNCA, and APSN. (author)

  15. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  16. Solar energy in buildings solved by building information modeling

    Science.gov (United States)

    Chudikova, B.; Faltejsek, M.

    2018-03-01

    Building lead us to use renewable energy sources for all types of buildings. The use of solar energy is the alternatives that can be applied in a good ratio of space, price, and resultant benefits. Building Information Modelling is a modern and effective way of dealing with buildings with regard to all aspects of the life cycle. The basis is careful planning and simulation in the pre-investment phase, where it is possible to determine the effective result and influence the lifetime of the building and the cost of its operation. By simulating, analysing and insert a building model into its future environment where climate conditions and surrounding buildings play a role, it is possible to predict the usability of the solar energy and establish an ideal model. Solar systems also very affect the internal layout of buildings. Pre-investment phase analysis, with a view to future aspects, will ensure that the resulting building will be both low-energy and environmentally friendly.

  17. Understanding Net Zero Energy Building Concept Through Precedents from Different Climate Zones

    OpenAIRE

    Roudi, Farshid

    2015-01-01

    The building sector accumulates approximately a third of the final energy consumption. Consequently, the improvement of the energy efficiency in buildings has become an essential instrument in the energy policies to ensure the energy supply in the mid to long term moreover is the most cost effective strategy available for reducing carbon dioxide emissions. The International Energy Agency asserts that `energy efficiency improvements in buildings, appliances, transport, industry ...

  18. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...... calculated energy use. More buildings should be investigated in the same manner before any sound conclusion can be made regarding whether the implementation of EPBD in a wide context leads to truly energy-efficient buildings....

  19. Handbook of energy use for building construction

    Science.gov (United States)

    Stein, R. G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, railroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. Emphasis is given to new building construction; however, some information for the other parts of the construction industry is also included. Building designers are provided with information to determine the energy required for buildings construction and to evaluate the energy required for alternative materials, assemblies, and methods. It is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  20. Handbook of energy use for building construction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  1. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  2. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  3. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  4. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  5. 75 FR 29933 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Science.gov (United States)

    2010-05-28

    ... Price Indexes). If a new or replacement Federal building does not fit into one of these two categories... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and... construction of new Federal buildings and major renovations of Federal buildings. This NOPR specifically...

  6. 75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Science.gov (United States)

    2010-06-18

    ... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and... Federal buildings. This notice extends the comment period to August 12, 2010. DATES: DOE will hold a.... Department of Energy, Forrestal Building, Room 8E-089, 1000 Independence Avenue, SW., Washington, DC 20585...

  7. Commercial building energy use monitoring for utility load research

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchi, R.P.

    1987-01-01

    This paper describes a method to acquire empirical data regarding commercial building energy performance for utility load research. The method was devised and implemented for a large scale monitoring program being conducted for a federal electricity marketing and transmission agency in the Pacific Northwest states. An important feature of this method is its hierarchical approach, wherein building types, end-use loads, and key building characteristics are classified to accommodate analysis at many levels. Through this common taxonomy and measurement protocol, energy-use metering projects of varying detail and comprehensiveness can be coordinated. The procedures devised for this project have been implemented for approximately 150 buildings to date by specially trained contractors. Hence, this paper provides real-world insights of the complexity and power of end use measurements from commercial buildings to address utility load research topics. 6 refs.

  8. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  9. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  10. Energy Cloud: Services for Smart Buildings

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja

    2018-01-01

    , and network technologies. Using smart building energy management systems provides intelligent procedures to control buildings’ equipment such as HVAC (heating, ventilating, and air-conditioning) systems, home and office appliances, and lighting systems to reduce energy consumption while maintaining......Energy consumption in buildings is responsible for a significant portion of the total energy use and carbon emissions in large cities. One of the main approaches to reduce energy consumption and its environmental impact is to convert buildings into smart buildings using computer, software, sensor...... the required quality of living in all of the building’s spaces. This chapter discusses and reviews utilizing cloud computing to provide energy-related services to enhance the operations of smart buildings’ energy management systems. Cloud computing can provide many advantages for smart buildings’ energy...

  11. 77 FR 16826 - International Energy Agency Meetings

    Science.gov (United States)

    2012-03-22

    .... ACTION: Notice of meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency.... 6272(c)(1)(A)(i)) (EPCA), the following notice of meetings is provided: Meetings of the Industry... --Emergency Response Review of Switzerland --Emergency Response Review of The Netherlands --Questionnaire...

  12. International Atomic Energy Agency. Highlights of activities

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1991-09-01

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1991. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  13. International Atomic Energy Agency: Highlights of activities

    International Nuclear Information System (INIS)

    Gillen, A.

    1992-09-01

    This document provides a brief, well-illustrated summary of the activities of the International Atomic Energy Agency in the months up to September 1992. Especially mentioned are the programmes to enhance the safety of nuclear power, from the study of nuclear reactors to assessing the radiological consequences of reactor accidents, and the areas of non-proliferation and safeguards

  14. Goodbye Passive House, Hello Energy Flexible Building?

    NARCIS (Netherlands)

    Mlecnik, E.; LaRoche, P.; Schiler, M.

    2016-01-01

    The volume uptake of highly energy-efficient buildings is challenged by transformations in the energy system and the introduction of demand response strategies. In the near future buildings will be able to manage their demand and generation according to local climate conditions, user needs and

  15. ImBuild: Impact of building energy efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  16. The energy performance of office buildings throughout their building process

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Dewulf, Geert P.M.R.; Wamelink, J.W.F.; Geraedts, R.P.; Volker, L.

    2011-01-01

    Many innovative techniques and policy measures have been introduced to reduce energy consumption. Despite the high ambitions and societal pressures, the adoption rate of energy measures in office buildings is still low. Using adoption theories this paper provides a framework to analyse the adoption

  17. BUILDING DESIGN INFLUENCE ON THE ENERGY PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Moga Ligia

    2015-05-01

    Full Text Available Energy efficient design is a high priority in the national energy strategy of European countries considering the latest requirements of the European Directive on the Energy Performance of Buildings. The residential sector is responsible for a significant quantity of energy consumptions from the total amount of consumptions on a worldwide level. In residential building most of the energy consumptions are given mainly by heating, domestic hot water and lighting. Retrofitting the existing building stock offers great opportunities for reducing global energy consumptions and greenhouse gas emissions. The first part of the paper will address the need of thermal and energy retrofit of existing buildings. The second part will provide an overview on how various variables can influence the energy performance of a building that is placed in all four climatic zones from Romania. The paper is useful for specialist and designers from the construction field in understanding that buildings behave differently from the energy point of view in different climatic regions, even if the building characteristic remain the same.

  18. A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lombard, Luis; Gonzalez, Rocio [Grupo de Termotecnia, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, 41092 Sevilla (Spain); Ortiz, Jose [BRE (Building Research Establishment), Garston, Watford WD25 9XX (United Kingdom); Maestre, Ismael R. [Dpto. de Maquinas y Motores Termicos, Escuela Politecnica Superior de Algeciras, Universidad de Cadiz, Av. Ramon Puyol s/n, Algeciras 11202 Cadiz (Spain)

    2009-03-15

    Energy certification schemes for buildings emerged in the early 1990s as an essential method for improving energy efficiency, minimising energy consumption and enabling greater transparency with regards to the use of energy in buildings. However, from the beginning their definition and implementation process were diffuse and, occasionally, have confused building sector stakeholders. A multiplicity of terms and concepts such as energy performance, energy efficiency, energy ratings, benchmarking, labelling, etc., have emerged with sometimes overlapping meanings. This has frequently led to misleading interpretations by regulatory bodies, energy agencies and final consumers. This paper analyses the origin and the historic development of energy certification schemes in buildings along with the definition and scope of a building energy certificate and critical aspects of its implementation. Concepts such as benchmarking tools, energy ratings and energy labelling are clarified within the wider topic of certification schemes. Finally, a seven steps process is proposed as a guide for implementing building energy certification. (author)

  19. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  20. Commercial Building Energy Saver: An energy retrofit analysis toolkit

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Piette, Mary Ann; Chen, Yixing; Lee, Sang Hoon; Taylor-Lange, Sarah C.; Zhang, Rongpeng; Sun, Kaiyu; Price, Phillip

    2015-01-01

    Highlights: • Commercial Building Energy Saver is a powerful toolkit for energy retrofit analysis. • CBES provides benchmarking, load shape analysis, and model-based retrofit assessment. • CBES covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • CBES includes a web app, API, and a database of energy efficiency performance. • CBES API can be extended and integrated with third party energy software tools. - Abstract: Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision

  1. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  2. Economic and Environmental Impact of Energy Saving in Healthcare Buildings

    Directory of Open Access Journals (Sweden)

    Justo García-Sanz-Calcedo

    2018-03-01

    Full Text Available The purpose of this article is to estimate the economic and environmental impacts of energy consumption derived from healthcare buildings and proposes several energy-saving options in the sector. An experimental energy consumption study was development between 2005 and 2013 in 12 hospitals and 70 healthcare centres in Spain, built between 1980 and 2005 through audits carried out between 2005 and 2012, performed by the Extremadura Energy Agency. The study focused on electric energy, HVAC, DWH, lighting systems, renewable energies, maintenance strategy, thermal insulation, and optimal building size. Specifically, the following parameters were evaluated: energy savings, investment emission of CO2, NO2, and SO2 gases, and payback. The results revealed that through an appropriate energy management of healthcare buildings it is possible to save up to 8.60 kWh/m2 per year, for buildings of less than 5000 m2 (with no beds, which represents an expense of 1.55 €/m2. In healthcare buildings larger than 5000 m2 (with beds, it was possible to save up to 6.88 kWh/m2 per year, which represents an expense of 1.25 €/m2.

  3. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  4. Zero energy buildings and mismatch compensation factors

    DEFF Research Database (Denmark)

    Lund, Henrik; Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    This paper takes an overall energy system approach to analysing the mismatch problem of zero energy and zero emission buildings (ZEBs). The mismatch arises from hourly differences in energy production and consumption at the building level and results in the need for exchange of electricity via...... the public grid even though the building has an annual net-exchange of zero. This paper argues that, when looked upon from the viewpoint of the overall electricity supply system, a mismatch can be both negative and positive. Moreover, there are often both an element of levelling out mismatches between...... individual buildings and an element of economy of scale. For these three reasons mismatches should be dealt with at the aggregated level and not at the individual level of each building. Instead, this paper suggests to compensate the mismatch of a building by increasing (or decreasing) the capacity...

  5. 75 FR 78231 - Management of Energy and Water Efficiency in Federal Buildings: Availability of Guidance

    Science.gov (United States)

    2010-12-15

    ... Water Efficiency in Federal Buildings: Availability of Guidance AGENCY: Office of Energy Efficiency and... regarding Federal agency implementation of energy and water efficiency requirements. The draft Guidance for the Implementation and Follow-up of Identified Energy and Water Efficiency Measures in Covered...

  6. French local agencies of energy control; Agences locales francaise de maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the SAVE program, the European Commission brings financial assistance to the creation of local or regional agencies of energy control in municipalities and regions. The main criteria are the impacts on the energy demand, the reinforcement of the economic and social cohesion, the environmental quality and the contribution to the economic development and the employment creation. In this document, realized by Energie-Cites, the Ademe objective is to present a state of the art of french local agencies. Ten agencies are presented as case study. Each case deals with the following topics: the main context of the action which details the energy and the environmental policy of the municipality, the creation and the description of the agency, the implemented actions and the perspectives. (A.L.B.)

  7. Energy Efficiency in the North American Existing Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This report presents the findings of a new assessment of the techno-economic and policy-related efficiency improvement potential in the North American building stock conducted as part of a wider appraisal of existing buildings in member states of the International Energy Agency. It summarizes results and provides insights into the lessons learned through a broader global review of best practice to improve the energy efficiency of existing buildings. At this time, the report is limited to the USA because of the large size of its buildings market. At a later date, a more complete review may include some details about policies and programs in Canada. If resources are available an additional comprehensive review of Canada and Mexico may be performed in the future.

  8. Pumped hydro energy storage in buildings

    International Nuclear Information System (INIS)

    Oliveira e Silva, Guilherme de; Hendrick, Patrick

    2016-01-01

    Highlights: • Novel analysis of unique building with integrated pumped hydro energy storage system. • Full parameterisation of pumped hydro energy storage in buildings. • Feasibility of pumped hydro energy storage in buildings is studied. • Conditions for a better competitiveness of this technology are discussed. - Abstract: The growing use of variable energy sources is pushing the need for energy storage. With Pumped Hydro Energy Storage (PHES) representing most of the world’s energy storage installed capacity and given its maturity and simplicity, the question stands as to whether this technology could be used on a smaller scale, namely in buildings. In this paper, the feasibility of such an installation is analysed by modelling each one of its components and applying it to several installation scenarios. Proposed and existing installations are also reviewed, including a first-time analysis of an installation in France, which is presumably the only existing building with an integrated PHES system. It was found that the economies of scale that render large PHES installations competitive are not present in small installations. This limitation, associated to other important disadvantages, such as the large volume required, seem to point out PHES as an ill-suited solution for energy storage in buildings, an important finding for building design and energy policy. Nevertheless, if synergies with existing reservoirs could be found (for example for a building on a riverside), costs could be significantly lowered. Further research on possible synergies with other building systems as well as a life-cycle assessment analysis are recommended.

  9. Energy Aspects of Green Buildings - International Experience

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2016-12-01

    At present, reduction of greenhouse gas emissions is one of the main environmental priorities globally, and implementation of sustainability aspects in the construction industry, including energy aspects, is of major importance for long-term environmental development, as buildings have a long life cycle and require many resources both for construction and operation periods. The aim of the research is to analyse energy aspects of green buildings. The results of research show that the construction of green buildings can significantly result in energy savings and has other benefits for different market participants. Future research directions have been identified as well.

  10. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  11. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  12. ENERGY PERFORMANCE OF OFFICE BUILDINGS IN GHANA

    African Journals Online (AJOL)

    User

    constructed air-conditioned commercial build- ings, especially in the metropolitan areas of. Accra and Kumasi. The supply of energy has however not been able to meet its demand. Ac- cording to the Energy Commission Ghana re- port (ECG, 2007), energy consumption of households increased from 26% in 2000 to 37%.

  13. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  14. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  15. External shading devices for energy efficient building

    Science.gov (United States)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  16. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    Lee, Siew Eang; Rajagopalan, Priyadarsini

    2008-01-01

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  17. Sault Tribe Building Efficiency Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  18. Energy Signal Tool for Decision Support in Building Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  19. Energy Consumption Forecasting for University Sector Buildings

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2017-10-01

    Full Text Available Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type. A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed.

  20. Buildings Interaction with Urban Energy Systems

    DEFF Research Database (Denmark)

    Heller, Alfred; Wyckmans, Annemie; Zucker, Gerhard

    2015-01-01

    The goal towards a fossil free energy system is expressed in amongst others European and national targets, and puts pressure on the application of renewable energy sources combined with energy efficiency. Many cities are even more ambitious than their national targets and want to be among the first...... to demonstrate that they can become not only smart fossil-free energy cities but sustainable in a wider sense, including water, waste, transportation and more. In the current paper, the research agenda to support such goals through smart city efforts is presented for a few European cases as examples, focusing...... on the impacts that buildings play in the overall energy system. Here buildings are not only consumers but rather prosumers that are able to produce renewable energy themselves. Buildings moreover offer potential storage capacities that can be utilized in demand shifting, which is necessary to enable increased...

  1. Building Energy Efficiency through Innovative Thermodevices (BEEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Y. Sungtaek [Univ. of California, Los Angeles, CA (United States); Dunn, Bruce [Univ. of California, Los Angeles, CA (United States); Pei, Qibing [Univ. of California, Los Angeles, CA (United States); Kim, C. -J. [Univ. of California, Los Angeles, CA (United States)

    2012-12-14

    This is the final scientific/technical report for the project "Compact MEMS Electrocaloric Cooling Module" sponsored by ARAPA-E as part of its Building Energy Efficiency through Innovative Thermodevices (BEEIT) program.

  2. Commercial Building Partners Catalyze Energy Efficient Buildings Across the Nation

    Science.gov (United States)

    2012-08-01

    Energy Efficiency in Buildings, Fueling Our Future with Efficiency, Pacific Grove, CA, August 12,-17, 2012, Government or Federal Purpose Rights License ...could work with local businesses, leasing groups, or franchises to extend this project model and use the funding model. Acknowledgements The

  3. Revealing myths about people, energy and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.; Moezzi, M.

    2000-05-01

    In this essay we take a closer look at some energy myths, focusing on the ways energy professionals and the public alike, talk, write and teach about how energy affects the way in which we design, operate, retrofit and inhabit buildings. What myths about people, energy and buildings are current today? Who tells these myths and why do we believe them? How do myths affect our behavior? Myths are a way of understanding the world we live in. They may represent incomplete understanding, or be based on premises that are scientifically not valid, but they help us understand and explain how the world works, and we shape our behavior accordingly.

  4. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  5. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    the context of performance of resident businesses. We examine both business performance and energy performance and how they relate to one another to conclude that building occupants, who are also employees, hold the key to optimizing both metrics in one of the most cost-efficient ways. Finally, the goal...... of our contribution is twofold: 1) to re-scope the concept of building performance to and show the importance to consider, hand- in-hand, both energy performance and performance of resident businesses, and 2) re-state the importance of the potential that lies in the active involvement of building...

  6. Rating the energy performance of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-12-01

    In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

  7. Buildings and energy in the 1980`s

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Many energy programs were put into place during the 1970`s and 1980`s to lessen the dependence upon foreign oil supplies and to improve how all forms of energy are used. A significant percent of total energy consumption occurred in the residential and commercial sectors. This report concentrates on the physical makeup of the residential and commercial buildings sectors and their use of energy, and examines changes that occurred during the 1980`s. Chapter 1 presents a summary of major findings. The following three chapters focus on different aspects of the overarching theme of buildings and energy in the 1980`s. Chapter 2 discusses major characteristics of residential and commercial buildings. Chapter 3 considers the major energy sources and end uses in terms of number of buildings and floorspace. Chapter 4 focuses on energy consumption and expenditures. Chapters 2, 3, and 4 contain tables at the end of each chapter that summarize data from detailed tables that are available separately on diskette or via EIA`s Electronic Publishing System (EPUB). Following the body of the report, appendices and a glossary provide additional information on the methodologies used in this report and on the residential and commercial building consumption surveys on which this report is based. 62 figs., 30 tabs.

  8. Integrating energy expertise into building design

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Stratton, R.C. (Pacific Northwest Lab., Richland, WA (USA)); Bailey, M.L. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of the Deputy Assistant Secretary for Building Technologies)

    1990-08-01

    Most commercial buildings designed to today will use more energy to operate, and cost more to design and construct than necessary. Significant energy savings cold be achieved with little or not increase in first cost if energy-efficient design technologies were used. Research into integration of building systems indicates that by considering energy performance early in the design process, energy savings between 30% and 50% of current energy consumption rates are technically and economically feasible. However, most building design teams do not adequately consider the energy impacts of design decisions to achieve these savings. The US Department of Energy has initiated a project, led by Pacific Northwest Laboratory, to develop advanced computer-based technologies that will help designers take advantage of these large potential energy savings. The objective of this work is to develop automated, intelligent, energy design assistance that can be integrated into computer aided design systems of the future. This paper examines the need for this technology by identifying the impediments to energy-efficient design, identifies essential and desirable features of such systems, presents the concept under development in this effort, illustrates how energy expertise might be incorporated into design, and discusses the importance of an integrated approach. 8 refs., 1 fig.

  9. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  10. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  11. Energy use in farm buildings

    OpenAIRE

    Hörndahl, Torsten

    2008-01-01

    In Sweden, the agricultural sector uses an estimated 3.7 TWh per year as electricity or fuel. About 34% of this total is estimated to be used in the production of beef, pork, eggs and milk, including the spreading of manure. Some energy is also used for harvesting ley and cereals as feed, which is not included. Most of the energy used is in the form of electricity (approx 63%). All these estimates are based on a 1981-1984 survey by Nilsson & Påhlstorp (1985). Most of the technical equipment i...

  12. Comparison of Building Energy Modeling Programs: Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dandan [Tsinghua Univ., Beijing (China); Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Da [Tsinghua Univ., Beijing (China); Wang, Chuang [Tsinghua Univ., Beijing (China)

    2012-06-01

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In the fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to

  13. Toward buildings with a positive energy balance

    International Nuclear Information System (INIS)

    Visier, Jean-Christophe

    2008-01-01

    As the results of the recent 'Grenelle of the Environment', which assembled French officials and organizations for a wide-ranging discussion of ecological issues, enter into application, buildings should gradually switch from being the foremost consumers of energy to becoming producers of energy. The stakes, technically, economically and socially, are enormous

  14. ENERGY MONITORING OF BUILDINGS OF UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Rozen V. P.

    2013-08-01

    Full Text Available Publications for cluster analysis application in order to solve energy efficiency problems were analyzed. With the help of cluster analysis the cauterization of buildings of Cherkasy State Technological University is carried out. System-forming factors for clusters and dimensions for the calculation of energy intensity norms within a cluster have been determined.

  15. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    Science.gov (United States)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  16. Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House

    Energy Technology Data Exchange (ETDEWEB)

    Balcomb, J. D.; Hancock, C. E.; Barker, G.

    1999-06-23

    The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

  17. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study......In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  18. ESCO Project for Buildings of Government Agencies in Thailand

    Directory of Open Access Journals (Sweden)

    Prukvilailert Monchai

    2016-01-01

    Full Text Available In Thailand, Department of Alternative Energy Development and Efficiency (DEDE have organized the ESCO project to promote and encourage the use of machinery, materials and equipment having high efficiency for government buildings. ESCO company provides the invest and management for changing equipments in the buildings. In this paper, the evaluation of the project has been presented. The potential of electricity savings is about 77 million kwhr/year. It can reduce imports of crude oil about 6.58 thousand tons of crude oil (Ktoe/year. The budget to invest is BHT 1,504 million, with an average payback period of 4.85. However, we found that the establishment of the budget is the barriers. The recommendations and solutions using legal process have been presented to proceed the project in the future.

  19. Analysis of a Building Energy Efficiency Certification System in Korea

    Directory of Open Access Journals (Sweden)

    Duk Joon Park

    2015-12-01

    Full Text Available The Korean government has established a national plan for the promotion of zero energy buildings to respond to climate change and energy crises. To achieve this plan, several energy efficiency policies for new and existing buildings have been developed. The Building Energy Efficiency Certification System (BEECS aims to promote the spread of high energy-efficient buildings by evaluating and certifying building energy performance. This study discussed Korean building energy efficiency policies and analyzed especially the influence of the BEECS on the actual energy consumption of a residential building and calculated energy performance of non-residential buildings. The BEECS was evaluated to have influence on gas and district heating consumption in residential buildings. For non-residential buildings, a decreasing trend was shown in calculated primary energy consumption in the years since the BEECS has been enacted. Appropriate improvements of the certification system were also discussed by analyzing relationship between building characteristics and their energy consumptions.

  20. Country Report on Building Energy Codes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  1. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  2. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  3. Country Report on Building Energy Codes in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

    2009-04-17

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

  4. Country Report on Building Energy Codes in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  5. Country Report on Building Energy Codes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  6. Optimized design of low energy buildings

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Esbensen, Peter Kjær; Svendsen, Sv Aa Højgaard

    1999-01-01

    by 33% compared to current level and that the CO2 emission should be halved. This calls for sustainable development in the building sector, but at the same time, it has to be economically efficient. People are conscious about savings in energy, but consideration to economic aspects are their primary...... to evaluate different separate solutions when they interact in the building.When trying to optimize several parameters there is a need for a method, which will show the correct price-performance of each part of a building under design. The problem with not having such a method will first be showed...

  7. Energy efficiency in buildings. Yearbook 2016

    International Nuclear Information System (INIS)

    Poeschk, Juergen

    2016-01-01

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change. [de

  8. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  9. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  10. Building Energy Codes: Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  11. International Energy Agency 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    The IEA Executive Director's Annual Report 2013 is the second of a regular annual series reporting on the IEA’s operational and organisational achievements, as well as challenges and events over the year. It was presented to the IEA Governing Board and is also released publicly to ensure transparency and to take stock of the organisation's activities from a strategic perspective. 2013 was a banner year for the IEA, given continued changes in the global energy economy as well as the IEA Ministerial meeting in November which brought together Energy Ministers from all 28 IEA member countries, accession countries Chile and Estonia, seven key partner countries - Brazil, China, India, Indonesia, Mexico, Russian Federation and South Africa - as well as more that 30 top-level executives from the energy industry. Key Ministerial outcomes included the first IEA Ministers' Joint Statement on Climate Change and a declaration of association by six key partner countries to build multilateral cooperation with the IEA.

  12. Building envelope for New Buildings and Energy Renovation of Existing Buildings. Project results

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Rose, Jørgen; Esbensen, Peter Kjær

    1999-01-01

    At the energy conference in 1995, Denmark agreed on reducing the total CO2-emission by 20%. To achieve this goal, it is necessary to increase thermal insulation thickness both in new and retrofitted buildings.This will, for both cases, impose a series of building physics problems, as the knowledge......, a group of scientists at the Department of Buildings and Energy, Technical University of Denmark, have started a research project to develop better solutions for new building and energy renovation.The publication report the status after the first 3 year of the Building Envelope Project with emphasis...... of heat- and moistureflow is insufficiently documented for large insulation thicknesses. Thermal bridges, for instance, plays a larger role for the overall heat loss in these constructions, and moisture in insulation materials will decrease the overall performance of the construction.Due to these facts...

  13. Energy savings in CSFR - building sector

    International Nuclear Information System (INIS)

    Jacobsen, F.R.

    1993-01-01

    The Czechoslovak/Danish project on energy savings in buildings proves that it is possible to save up to 30% of the energy in buildings. 10% can be saved at an investment of 27 bill KCS. The total investment that is needed to save 30% is 140 bill KCS. Further energy savings can be obtained through more energy efficient supply systems. Information dissemination is important for the energy saving programme as are economic incentives. Investments in energy savings should be profitable for the investor, but this is not the case in the Czech and Slovak republics today. Changes are needed. Energy prices are still to low, compared to investment costs. Financial possibilities are not satisfactory for private investors. Price systems are not favourable to investment in energy savings. Training is needed for boiler men and energy consultants. Legislation is essential for the support of the full range of activities in the energy sector. Research and Development activities must back up the development of the sector. Pilot projects can illuminate the savings potential. The production of technical equipment for control and metering and production of insulation materials must be promoted. (AB)

  14. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  15. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  16. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  17. Capacity Building and Empowerment: A panacea and a challenge for agency-university engagement

    OpenAIRE

    Suarez-Balcazar, Yolanda; Balcazar, Fabricio; Iriarte, Edurne García; Taylor-Ritzler, Tina

    2008-01-01

    Capacity building is an effective strategy for promoting organizational change and/or improving the quality of social services. In this article I present an empowerment approach to capacity building. In doing so I propose a number of principles that can promote capacity building and collaboration between social service agencies and universities from an empowerment perspective: keeping the control of the capacity building process in the agency; developing competencies that matter to the people...

  18. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiufeng; Bhattachayra, Prajesh; O& #x27; Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

    2011-11-01

    Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

  19. Nuclear Energy Agency. 6. activity report. 1977

    International Nuclear Information System (INIS)

    1978-01-01

    NEA has, as a primary objective, to ensure through international co-operation that the nuclear option is available for consideration in its true worth. The safety and regulatory aspects of nulear development have represented in 1977 about two thirds of NEA's total effort; and a high degree of priority was given to questions of nuclear safety and of radioactive waste management. Similarly, the growing need of Member countries for an integrated appraisal of technical, economic, safety, environmental and political questions influencing the nuclear fuel cycle was increasingly taken into account. Finally, a general effort was made to achieve greater visibility for the positive results of the NEA programme, as a contribution to improved public understanding of the factors underlying nuclear power programmes. As in previous years, the NEA programme continued to involve close collaboration with the International Atomic Energy Agency (IAEA) and the Commission of the European Communities. Within the OECD, close collaboration was maintained with the Combined Energy Staff and the Environment Directorate

  20. Inventory of U.S.-led International Activities on Building Energy Efficiency Initial Findings

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alison; Evans, Meredydd

    2010-04-01

    Several U.S. Government agencies promote energy efficiency in buildings internationally. The types and scope of activities vary by agency. Those with the largest role include the U.S. Agency for International Development (USAID), the U.S. Department of State and the Environmental Protection Agency (EPA). Both USAID and the Department of State have a substantial presence overseas, which may present some complementarities with the Department of Energy’s efforts to reach out to other countries. Generally speaking, USAID focuses on capacity building and policy issues; the Department of State focuses on broad diplomatic efforts and some targeted grants in support of these efforts, and EPA has more targeted roles linked to ENERGY STAR appliances and a few other activities. Several additional agencies are also involved in trade-related efforts to promote energy efficiency in buildings. These include the Department of Commerce, the Export-Import Bank, the Overseas Private Investment Corporation and the Trade and Development Agency (TDA). This initial synthesis report is designed to summarize broad trends and activities relating to international cooperation on energy efficiency in buildings, which can help the U.S. Department of Energy (DOE) in developing its own strategy in this area. The Pacific Northwest National Laboratory will develop a more complete synthesis report later in 2010 as it populates a database on international projects on building energy efficiency.

  1. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  2. The International Energy Agency collaboration in wind energy

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.; Pershagen, B.

    1991-07-01

    The International Energy Agency (IEA) wind energy agreements have provided a useful framework for international cooperative efforts during more than thirteen years. Nine comprehensive research Tasks have been successfully completed and three Tasks are currently in progress. The sharing of research and information has clearly contributed to the development of wind technology, has eliminated unnecessary redundancy in national programmes, has encouraged utilization of the most efficient approaches to solve common problems, and has created a cooperative spirit among the professional groups that seems to be unique. After a brief introduction on the activities of the IEA on wind energy an overview is given of the ongoing tasks and other current activities with regard to the subject. 1 fig., 5 tabs., 9 refs

  3. Effects of Building Occupancy on Indicators of Energy Efficiency

    OpenAIRE

    Aapo Huovila; Pekka Tuominen; Miimu Airaksinen

    2017-01-01

    The potential to reduce energy consumption in buildings is high. The design phase of the building is very important. In addition, it is vital to understand how to measure the energy efficiency in the building operation phase in order to encourage the right efficiency efforts. In understanding the building energy efficiency, it is important to comprehend the interplay of building occupancy, space efficiency, and energy efficiency. Recent studies found in the literature concerning energy effici...

  4. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  5. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC

  6. Commercial building energy use in six cities in Southern China

    International Nuclear Information System (INIS)

    Xu, Peng; Huang, Joe; Shen, Pengyuan; Ma, Xiaowen; Gao, Xuefei; Xu, Qiaolin; Jiang, Han; Xiang, Yong

    2013-01-01

    With China’s continuing economic growth, the percentage of government offices and large commercial buildings has increased tremendously; thus, the impact of their energy usage has grown drastically. In this survey, a database with more than 400 buildings was created and analyzed. We researched energy consumption by region, building type, building size and vintage, and we determined the total energy use and performed end use breakdowns of typical buildings in six cities in southern China. The statistical analysis shows that, on average, the annual building electricity use ranged from 50 to 100 kW h/m 2 for office buildings, 120 to 250 kW h/m 2 for shopping malls and hotels, and below 40 kW h/m 2 for education facilities. Building size has no direct correlation with building energy intensity. Although modern commercial buildings built in the 1990s and 2000s did not use more energy on average than buildings built previously, the highest electricity intensive modern buildings used much more energy than those built prior to 1990. Commercial buildings in China used less energy than buildings in equivalent weather locations in the US and about the same amount of energy as buildings in India. However, commercial buildings in China provide comparatively less thermal comfort than buildings in comparable US climates. - Highlights: ► The worst modern buildings use more energy than the worst old buildings. ► Government office buildings did not use more energy than private office buildings. ► Commercial buildings in China use less energy than buildings in the US. ► Modern commercial buildings don't use more energy than old buildings.

  7. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Science.gov (United States)

    2013-05-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE..., DC 20503 And to Mr. Dana O'Hara, Office of Energy Efficiency and Renewable Energy (EE- 2G), U.S...

  8. Solar energy conscious allotting and building

    International Nuclear Information System (INIS)

    Moor, R.; Winter, R.

    1992-10-01

    In order to use solar energy now and in the future several measures should be taken in the field of urban development and housing construction. A number of policy instruments is available to the local governments to stimulate the use of solar energy. However, little use is made of these possibilities so far. In many municipalities there are uncertainties about the financial consequences of solar energy conscious building. In practice it appears that there are hardly any extra costs for the infrastructure if building blocks and roofs are designed and built with south orientation. Also possibilities to minimize the investment barrier for the occupants of the houses are available. An overview is presented of the policy instruments and practical examples are given for the Dutch municipalities Gouda, Schiedam, Heerhugowaard, Delft and Haarlemmermeer. 2 tabs., 2 appendices, 6 refs

  9. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  10. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... window is made of fiber-reinforced plastic (plastic reinforced by fine fibers made of glass). This composite material is a weatherproof material with very low thermal conductivity and high mechanical strength. These properties make the material very suitable for frame profiles due to lower heat loss...

  11. Characteristics of the Department of Energy's Building Inventory 2005-2010

    Energy Technology Data Exchange (ETDEWEB)

    Loper, Susan A.; Sandusky, William F.

    2012-02-01

    The Pacific Northwest National Laboratory (PNNL) as part of their on-going support to the Department of Energy's Federal Energy Management Program (FEMP) was asked to analyze special building data for an agency to gain a better understanding of the portfolio characteristics to help better shape implementation of their alternative financing activities. This report provides information for one agency, Department of Energy (DOE), and how those characteristics have changed over time.

  12. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  13. Building Energy Information Systems: User Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  14. Building energy information systems. User case studies

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, J.; Piette, M.A.; Ghatikar, G. [Lawrence Berkeley, National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2011-01-15

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze, and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  15. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  16. Computational Optimisation for Zero Energy Building Design, Interviews with Twenty Eight International Experts

    OpenAIRE

    Attia, Shady

    2012-01-01

    Given the implication of designing Net Zero Energy Buildings (NZEBs), which involves complex passive and active design strategies, the use of computational automated optimization techniques is becoming more essential. Therefore, this structured interviews aims to assess gaps, needs and problems considering the integration of optimization techniques to support the design of NZEBs. This work is part of the International Energy Agency (IEA) Task 40: Towards Net Zero Energy Buildings Subtask B...

  17. Energy-efficient buildings are environmentally friendly, architecturally attractive and economically compelling

    International Nuclear Information System (INIS)

    Wafa, Latifa Mohamed

    2006-01-01

    Standard building construction is wasteful, toxic, and is destroying the environment. It produced buildings that operate independently of its natural surrounding and depended heavily on mechanical systems that run with fossil fuel to create comfortable indoor environment. These buildings caused a wide range of health and environmental problems. The concern about the consequences of standard building construction have prompted countless experiments and design improvements to make built environment more energy efficient, less reliant on potentially limited fossil fuels and more reliant on renewable energy resources. The application of energy efficient technologies can make significant contribution to meeting the building and construction sector's energy demand, while at the same time providing better built environment, offering more comfortable living and working conditions for the users, cleaner and healthier in-outdoor environment, and cost no more to build. The proposes of the paper are to: 1-Promote the implementation of Energy-Efficient buildings through vigorous efforts, by engaging government agencies, design professions, engineers, and construction industry in the task of radically improving the performance of our buildings, neighborhoods, and cities. 2-Educate the general public (the consumers) that Energy-Efficient Building is good for their well-being, to their pocket and to the environment.3-Demonstrate that Energy-efficient Building are with highest standards of architecture design, the highest quality living and working environment and within a reasonable budget. The paper describes the technological options available for dealing sensibly with energy and focuses on the important areas of new building constructions and building refurbishment together with its specific energy requirements. The approach presented in this paper is just one of many methods of planning energy efficient buildings.This paper is part of the effort to promote Energy

  18. Energy consumptions in existing buildings; Les consommations d'energie des batiments existants

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, St. [Ecole Nationale Superieure des Arts et Industries de Strasbourg, 78 - Saint-Remy-Les-Chevreuse (France)]|[Costic, 78 - Sainte Remy les Chevreuses (France)

    2002-05-01

    This document presents a sectoral analysis of the energy consumptions in existing French buildings: 1) - residential sector: social buildings, private dwellings; 2) - tertiary sector: office buildings, hotels, commercial buildings, school buildings, hospitals; 3) - industry; 4) - general status. (J.S.)

  19. Energy flow and thermal comfort in buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome

    is based on both radiation and convection. Radiant terminals have the advantage of making use of low grade sources (i.e. low temperature heating and high temperature cooling), thus decreasing the primary energy consumption of buildings. But there is a lack of knowledge on the heat transfer from...... the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam, radiant floor, wall and ceiling) have been compared for a typical office room, both numerically......), radiant and air-based terminals have similar energy needs. For higher air change rate, the energy consumption of radiant terminals is lower than that of air-based terminals due to the higher air temperature. At 2 ACH, the energy savings of a radiant wall can be estimated to around 10 % compared...

  20. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    building projects through municipal planning practices, and how do they cope with these challenges? The report is based on an in-depth study of proactive planning practices performed by municipal partners in the Class 1 project and a series of experiences, strategies and instru-ments are identified....... The study of municipal planning practices shows that the municipalities make serious efforts to mobilise local stakeholders to implement energy efficient technologies through municipal planning practices, and that they are struggling to cope with the reluctance of these stakeholders to change their building...... prac-tices. The municipalities experience that the well-established planning instruments are often neither applicable nor effective in order to induce the necessary changes in local building practices. Instead, the municipalities develop custom-designed planning approaches by exploiting their strong...

  1. Integrating Renewable Energy Requirements Into Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  2. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  3. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  4. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  5. Energy efficiency in buildings. Manual for municipalities [in the Netherlands]; Energie prestatie gebouwen. Handboek gemeenten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    New buildings must meet requirements in terms of energy efficiency, expressed in the Energy Performance Coefficient (EPC). Municipalities must pre-test on the basis of calculations. There are two new tools, set up by the NL Agency, by means of which the tests can be performed: this handbook for municipalities and a software program [Dutch] Nieuwe gebouwen moeten aan eisen voldoen qua energiezuinigheid, uitgedrukt in de Energie Prestatie Coefficient (EPC). Gemeenten moeten vooraf toetsen aan de hand van berekeningen. Er zijn twee vernieuwde hulpmiddelen van het Agentschap.nl waarmee de toesting kan plaatsvinden: dit handboek voor gemeenten en een softwareprogramma.

  6. International Atomic Energy Agency Annual Report 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  7. International Atomic Energy Agency Annual Report 2014

    International Nuclear Information System (INIS)

    2015-01-01

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  8. Nonresidential Building Energy Consumption Survey (NBECS)

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, D.M.; Tsao, H.J.; Schmoyer, R.L. Jr.; MacDonald, J.M.

    1990-10-01

    Imputation procedures were designed for the 1983 Nonresidential Buildings Energy Consumption Survey (NBECS) of the Energy Information Administration (EIA) using 1979 NBECS data. The study included methodology development, data analysis, regression analyses, empirical evaluations of the regression models, and imputation procedures. Models considered were engineering models, stepwise regression, weighted regression, nonlinear regression, and log transformation regression. A method for determining the appropriateness of the imputation model for a particular set of independent variables is recommended. Although this study was completed in 1985, this final version of the report is being issued due to continuing requests for information. 32 tabs.

  9. Energy Gaining Windows for Residental Buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

    2008-01-01

    This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

  10. 76 FR 74050 - Measured Building Energy Performance Data Taxonomy

    Science.gov (United States)

    2011-11-30

    ... Cody Taylor, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Survey, the Residential Energy Consumption Survey, University of Dayton, ENERGY STAR, and the General...

  11. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  12. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  13. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1981-05-01

    The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

  14. International Atomic Energy Agency Annual Report 2012

    International Nuclear Information System (INIS)

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2012. - The IAEA Annual Report 2012 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). - The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2012 and Background to the Safeguards Statement. - Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. - Except where indicated, all sums of money are expressed in United States dollars. - The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. - The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. - The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non- Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used

  15. International Atomic Energy Agency Annual Report 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2012. - The IAEA Annual Report 2012 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). - The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2012 and Background to the Safeguards Statement. - Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. - Except where indicated, all sums of money are expressed in United States dollars. - The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. - The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. - The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non- Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used

  16. International Atomic Energy Agency Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2013. The IAEA Annual Report 2013 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 15, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2013 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear- Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used in

  17. 77 FR 29322 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2012-05-17

    ... the Buildings Technologies Program-Building Energy Codes Program Manager, U.S. Department of Energy... hotel, motel, and other transient residential building types of any height as commercial buildings for... insulation and length requirements Skylight definition change Penalizing electric resistance heating in the...

  18. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  19. Curriculum for Commissioning Energy Efficient Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Lia [Portland Energy Conservation, Inc., OR (United States)

    2012-12-27

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  20. Capacity Building and Empowerment: A panacea and a challenge for agency-university engagement

    Directory of Open Access Journals (Sweden)

    Yolanda Suarez-Balcazar

    2008-09-01

    Full Text Available Capacity building is an effective strategy for promoting organizational change and/or improving the quality of social services. In this article I present an empowerment approach to capacity building. In doing so I propose a number of principles that can promote capacity building and collaboration between social service agencies and universities from an empowerment perspective: keeping the control of the capacity building process in the agency; developing competencies that matter to the people in the agency; engaging in supportive roles; maintaining a strengths-based approach to capacity building; focusing on sustainability, institutionalization and utilization of acquired skills; and paying attention to cultural and contextual issues. Further, the challenges and benefits of the empowerment approach to university-agency collaboration are discussed in this article.

  1. Review of Methods for Buildings Energy Performance Modelling

    Science.gov (United States)

    Krstić, Hrvoje; Teni, Mihaela

    2017-10-01

    Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting – replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance

  2. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...... place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of façades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part...... of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages...

  3. International Atomic Energy Agency Annual Report 2010

    International Nuclear Information System (INIS)

    2011-01-01

    The Annual Report 2010 aims to summarize only the significant activities of the Agency during the year in question The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement and Background to the Safeguards Statement and Summary. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM and is also available on the Agency's web site at http://www.iaea.org./Publications/ Reports/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) The term 'nuclear weapon State' is as used in the NPT.

  4. International Atomic Energy Agency Annual Report 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The Annual Report 2009 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2008-2009 (GC(51)/2). The introductory chapter, '2009 in Perspective', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2009 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional infomation covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Publications/Reports/Anrep2009/index.html. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear-Weapon States (United Natinos document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear weapon State' is as used in the NPT

  5. The Nuclear Energy Agency of the OECD through its history

    International Nuclear Information System (INIS)

    Echavarri, L.

    2008-01-01

    This year, 2008, marks the 50th Anniversary of the OECD Nuclear Energy Agency (NEA). During these years the Agency has adapted to the evolution of the world energy situation. At the beginning the Agency launches international collaboration projects to establish the technological bases required for nuclear energy, then helps member countries in the construction of nuclear power plants and later analyzes the safety criteria as a consequence of the Three Miles Island and Chernobyl accidents. Based on this experience, the NEA faces the X XI Century prepared to contribute, even more, to a better international collaboration for a safe, environmentally friendly and economical use of the nuclear energy. (Author)

  6. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  7. New DigiGuide. Zero-energy building; Nieuwe DigiGids. Energieneutraal Bouwen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    NL Agency ordered for a study on the aspects of zero-energy ('energy-neutral') building and listed and discussed briefly the latest developments [Dutch] Agentschap NL heeft onderzoek laten uitvoeren naar (aspecten van) energieneutraal bouwen en heeft de actuele ontwikkelingen vastgelegd.

  8. Energy Performance Indicators in the Swedish Building Procurement Process

    Directory of Open Access Journals (Sweden)

    Ingrid Allard

    2017-10-01

    Full Text Available In Sweden, all new buildings need to comply with the National Board of Housing, Building and Planning’s requirement on specific purchased energy (kWh/m2. Accordingly, this indicator is often used to set design criteria in the building procurement process. However, when energy use is measured in finished buildings, the measurements often deviate significantly from the design calculations. The measured specific purchased energy does not necessarily reflect the responsibility of the building contractor, as it is influenced by the building operation, user behavior and climate. Therefore, Swedish building practitioners may prefer other indicators for setting design criteria in the building procurement process. The aim of this study was twofold: (i to understand the Swedish building practitioners’ perspectives and opinions on seven building energy performance indicators (envelope air leakage, U-values for different building parts, average U-value, specific heat loss, heat loss coefficient, specific net energy, and specific purchased energy; and (ii to understand the consequences for the energy performance of multi-family buildings of using the studied indicators to set criteria in the procurement process. The study involved a Delphi approach and simulations of a multi-family case study building. The studied indicators were discussed in terms of how they may meet the needs of the building practitioners when used to set building energy performance criteria in the procurement process.

  9. Computational Support for the Selection of Energy Saving Building Components

    NARCIS (Netherlands)

    De Wilde, P.J.C.J.

    2004-01-01

    Buildings use energy for heating, cooling and lighting, contributing to the problems of exhaustion of fossil fuel supplies and environmental pollution. In order to make buildings more energy-efficient an extensive set of âenergy saving building componentsâ has been developed that contributes to

  10. Zero Energy Building definition–a literature review

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Marszal, Anna Joanna

    2011-01-01

    The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately...

  11. Pusat Tenaga Malaysia's Zero Energy Office (ZEO) Building

    DEFF Research Database (Denmark)

    Tang, C.K.; Reimann, Gregers Peter; Kristensen, Poul Erik

    Technical Review of the Zero Energy Office building in Malaysia. The building, which has an energy index of 50 kWh/m2/year, reaches a net annual energy of zero through the use of building integrated photovoltaic panels. For reference, ordinary offices in Malaysia consume 200 - 300 kWh/m2/year...

  12. Energy efficiency in multi-story buildings

    Directory of Open Access Journals (Sweden)

    Staritcyna Anastasiia

    2016-01-01

    Full Text Available In this project a research on energy efficiency of Malta house was provided, it is a residential multi-story building in Helsinki, Jätkäsaari area. This project describes introduction with a new heating system for residential dwellings, which uses only heated air. To maintain air temperature in comfort level heat recovery and district heating is used in the same system. The task was to research efficacy of the enclosure structures. For research the 3D model has been created in the program the Revit 2015 and Lumion 13. Thermotechnical calculation for three types of a design has been executed in the program U-value.net.

  13. Energy consumption of building related energy functions in houses and utility buildings

    International Nuclear Information System (INIS)

    Van Arkel, W.G.; Jeeninga, H.; Menkveld, M.; Ruijg, G.J.

    1999-11-01

    This study investigates the development of the use of electricity and natural gas in houses and buildings until 2010. For the domestic sector it is studied how much energy is used now and will be used in future for heating, for production of hot water, for lighting, for ventilation and for cooling. For different sorts of buildings (shops, hospitals, schools, offices, restaurants) it has been determined how much gas will be used for heating, for hot water production and by humidifiers. It has also been calculated how much electricity will be used for lighting, ventilation, cooling and humidifying. The influence of higher and lower energy prices on the amount of use has been studied. Experts have been asked to give their opinions on trends in the use of buildings and the role of new technologies. The influence of these ideas on the use of energy has been calculated. 44 refs

  14. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    Energy Technology Data Exchange (ETDEWEB)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  15. Intervention strategies for energy efficient municipal buildings: Influencing energy decisions throughout buildings` lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The current energy-related decisionmaking processes that take place during the lifetimes of municipal buildings in San Francisco do not reflect our ideal picture of energy efficiency as a part of staff awareness and standard practice. Two key problems that undermine the success of energy efficiency programs are lost opportunities and incomplete actions. These problems can be caused by technology-related issues, but often the causes are institutional barriers (organizational or procedural {open_quotes}people problems{close_quotes}). Energy efficient decisions are not being made because of a lack of awareness or policy mandate, or because financial resources are not available to decisionmakers. The Bureau of Energy Conservation (BEC) is working to solve such problems in the City & County of San Francisco through the Intervention Strategies project. In the first phase of the project, using the framework of the building lifetime, we learned how energy efficiency in San Francisco municipal buildings can be influenced through delivering services to support decisionmakers; at key points in the process of funding, designing, constructing and maintaining them. The second phase of the project involved choosing and implementing five pilot projects. Through staff interviews, we learned how decisions that impact energy use are made at various levels. We compiled information about city staff and their needs, and resources available to meet those needs. We then designed actions to deliver appropriate services to staff at these key access points. BEC implemented five pilot projects corresponding to various stages in the building`s lifetime. These were: Bond Guidelines, Energy Efficient Design Practices, Commissioning, Motor Efficiency, and Facilities Condition Monitoring Program.

  16. The International Atomic Energy Agency Flag Code

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of the IAEA Flag Code which was promulgated by the Director General on 15 September 1999, pursuant to the decision of the Board of Governors on 10 June 1999 to adopt an Agency flag as described in document GOV/1999/41 and its use in accordance with a flag code to be promulgated by the Director General

  17. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...

  18. Do LEED-certified buildings save energy? Yes, but...

    Energy Technology Data Exchange (ETDEWEB)

    Newsham, Guy R.; Mancini, Sandra; Birt, Benjamin J. [National Research Council Canada - Institute for Research in Construction, Ottawa (Canada)

    2009-08-15

    We conducted a re-analysis of data supplied by the New Buildings Institute and the US Green Buildings Council on measured energy use data from 100 LEED-certified commercial and institutional buildings. These data were compared to the energy use of the general US commercial building stock. We also examined energy use by LEED certification level, and by energy-related credits achieved in the certification process. On average, LEED buildings used 18-39% less energy per floor area than their conventional counterparts. However, 28-35% of LEED buildings used more energy than their conventional counterparts. Further, the measured energy performance of LEED buildings had little correlation with certification level of the building, or the number of energy credits achieved by the building at design time. Therefore, at a societal level, green buildings can contribute substantial energy savings, but further work needs to be done to define green building rating schemes to ensure more consistent success at the individual building level. Note, these findings should be considered as preliminary, and the analyses should be repeated when longer data histories from a larger sample of green buildings are available. (author)

  19. 41 CFR 102-73.75 - What functions must Federal agencies perform with regard to leasing building space?

    Science.gov (United States)

    2010-07-01

    ... Federal agencies perform with regard to leasing building space? 102-73.75 Section 102-73.75 Public... functions must Federal agencies perform with regard to leasing building space? Federal agencies, upon approval from GSA, must perform all functions of leasing building space, and land incidental thereto, for...

  20. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  1. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  2. Zero Energy Building definition–a literature review

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Marszal, Anna Joanna

    2011-01-01

    The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately......, the lack of a common understanding for this new type of building results in misunderstandings, endless discussions, and moreover number of unique approaches often applicable for a single ZEB project...

  3. 78 FR 16665 - International Energy Agency Meetings

    Science.gov (United States)

    2013-03-18

    ...: Challenges Ahead 6. Understanding Chinese Apparent Oil Demand 7. Potential Implications of the European... Energy, Justice, and State, the Federal Trade Commission, the General Accounting Office, Committees of...

  4. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

    OpenAIRE

    Shoubi, Mojtaba Valinejad; Shoubi, Masoud Valinejad; Bagchi, Ashutosh; Barough, Azin Shakiba

    2015-01-01

    A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM) has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy con...

  5. Economical optimization of building elements for use in design of nearly zero energy buildings

    DEFF Research Database (Denmark)

    Hansen, Sanne

    2012-01-01

    for finding the economical optimal solutions based on the use of the cost of conserved energy for each main building envelope part and building service system and cost of produced energy for each energy producing system. By use of information on construction cost and developed models of the yearly energy use......Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on how to end up with the most economical optimal solution. Therefore this paper present a method...... for each component, a function is set up that represents the relation of the marginal cost of conserved energy and the energy use for different quantities and qualities of the components. The optimal mix of solutions for the whole building is found by selecting building parts with the same cost...

  6. Energy Conservation of the Designated Government Buildings in Thailand

    Directory of Open Access Journals (Sweden)

    Wangskarn Prapat

    2016-01-01

    Full Text Available The designated government buildings have implemented and administered energy program under the energy development and promotion Act 2007 for many years continuously until 2015. Appointment person responsible for energy, performing energy management and implementing the energy conservation work plan and measures are legal requirements for the designated buildings. Therefore, the ministry of Energy has launched the project to support the implementation of energy management. The aim of the project was to create the energy management system in the designated government buildings, and to reduce energy consumption. In this paper, the evaluation of the project has been presented from the achievements of 839 designated government buildings. The energy saving is more than 440 ktoe/year. This is about 3% of energy consumptions of buildings.

  7. 75 FR 34724 - International Energy Agency Meetings

    Science.gov (United States)

    2010-06-18

    ... Greece. --Questionnaire Response of Denmark. --Questionnaire Response of Norway. 5. Emergency Policy for... accordance with section 252(c)(1)(A)(i) of the Energy Policy and Conservation Act (42 U.S.C. 6272(c)(1)(A)(i... 29). --Energy Security Indicators Model. 9. Policy and Other Developments in Member Countries...

  8. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  9. Building Energy Audit Report for Pearl Harbor, HI

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Chvala, William D.; De La Rosa, Marcus I.; Dixon, Douglas R.

    2010-09-30

    A building energy audit was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management Program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at selected Pearl Harbor buildings, identify cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This report documents the findings of that assessment.

  10. European conferences. Integration of renewable energies in buildings; Conferences europeennes. Integration des energies renouvelables dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France); Letz, T. [Asder, 73 - Saint Alban Leysse (France); Tuille, F. [Observ' er, 75 - Paris (France)] [and others

    2001-07-01

    This document comprises 2 parts. First part is a detailed program of the exhibition with a press dossier which presents the different topics discussed during conferences and round tables, the market of renewable energies, and a list of agencies and companies involved in renewable energies development and products. The second part is the abstracts of the lectures presented during the European conferences on the integration of renewable energies in buildings (solar-thermal and photovoltaic systems, wood fuel and biomass). (J.S.)

  11. Establishing a commercial building energy data framework for India

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, Satish [Alliance for an Energy Efficient Economy, New Delhi (India); Mathew, Sangeeta [Alliance for an Energy Efficient Economy, New Delhi (India); Stratton, Hannah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathew, Paul A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singh, Mohini [Synurja, Inc. (India)

    2018-04-18

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The United States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.

  12. A key to success: Improved statistics on energy end use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Agneta [WSP Environmental (Sweden); Gullberg, Monica [AaF-Process AB (Sweden); Suvilehto, Heini-Marja [Swedish Energy Agency, Eskilstuna (Sweden); Goeransson, Anders [Profu AB (Sweden)

    2007-07-01

    Detailed statistics on energy end-use patterns in buildings is a prerequisite for structured energy and facility management and successful creation, impact prediction, implementation and monitoring of energy policies and proposed actions for reduced GHG-emissions from the building stock. Moreover, lack of evaluation significance is often used as an argument against energy-efficiency actions. The quality of national building energy statistics has during recent years declined, resulting in an increasingly difficult situation for policy makers and energy-efficiency advocates. To improve this situation the Swedish National Energy Agency has launched a new programme, including one project dealing with improved energy statistics in non-residential buildings. The project runs in six year cycles, and step-wise covers all categories of tertiary buildings. End use will be mapped out in approximately 1 000 buildings during each six-year period. High priority is given to electricity, and its allocation between different end use categories (heating, cooling, lighting, ventilation, etc), although total energy end use is noted as well. The first audits were carried out in 2005, including 123 offices and administration buildings. The second year audits include school buildings and were performed during 2006. The first-year results provide highly interesting detailed information. Findings from the 2005 audits are e.g. that energy end-use varies with a factor four between buildings, and, contrary to common assumptions, total average electricity consumption in office buildings has decreased. This paper will describe the findings of the two first years of audits; furthermore it will elaborate on the rational behind improved building energy statistics, including important applications of such data.

  13. Procedure for Measuring and Reporting Commercial Building Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  14. Developing Secondary Students' Epistemic Agency in a Knowledge-Building Community

    Science.gov (United States)

    Lai, Kwok-Wing; Campbell, Madeline

    2018-01-01

    A key educational objective for the twenty-first century is developing students' epistemic agency. Epistemic agency is the active process of choosing when, what, where one learns and how one knows, as well as the capacity to create knowledge in a community. The knowledge-building communities model developed by Scardamalia and Bereiter was used in…

  15. OECD Nuclear Energy Agency. 3. Activity report, 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The main activities of the Agency are reviewed: study of nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation, gas-cooled fast reactors, direct conversion, isotopic batteries; nuclear energy information

  16. Commercial Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  17. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    Science.gov (United States)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  18. Technical definition for nearly zero energy buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member States to define what these for them exactly constitute. In the definition local conditions are to be obviously taken into account, but the uniform methodology can be used in all...... Member States. The directive defines nearly zero energy building as a building that has a very high energy performance and requires the calculation of primary energy indicator. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable...... sources, including energy from renewable sources produced on-site or nearby. Based on the directive’s definition, nearly zero energy building is technically defined through the net zero energy building, which is a building using 0 kWh/(m² a) primary energy. Following the cost-optimality principle...

  19. The International Atomic Energy Agency - IAEA

    International Nuclear Information System (INIS)

    Pezzutti, A.A.C.

    1980-01-01

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation [pt

  20. Energy consumption in commercial buildings: A comparison with BEPS budgets

    Science.gov (United States)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  1. Role of executive agencies for energy efficiency with a view on activities of Serbian Energy Efficiency Agency

    Directory of Open Access Journals (Sweden)

    Kovačić Bojan J.

    2012-01-01

    Full Text Available Many countries, particularly in Europe, have executive energy efficiency agencies at national, regional and local levels that are organized in different ways. For all of them, it is common that there are existing strategic needs in their countries for enhancement of conditions and measures for rational use of energy and fuels. Serbian Energy Efficiency Agency was established in 2002 within the reform of the energy sector in Serbia and its current status was defined in 2004 by the Energy Law. It contributes to the improvement of social responsibility towards energy in all structures of the state and society, by proposing energy efficiency incentives, promoting importance of energy efficiency, as well as by managing energy efficiency and renewable energy programs and projects.

  2. Energy savings in the Danish building stock until 2050

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    2014-01-01

    A study has been conducted analysing the energy savings for space heating and domestic hot water in the Danish building stock due to renovation of building components at the end of their service life. The purpose of the study was to estimate the energy savings until 2050 as building components...... are energy upgraded according to the requirements stipulated in the Danish Building Regulations 2010. Furthermore, scenario analyses was made for the potential impact on the energy consumption of introducing different levels of tightening of the energy requirements for existing buildings in the Danish...... Building Regulations. Compliance with the requirements in the Danish Building Regulations will potentially result in energy savings for space heating and domestic hot water around 30 % until 2050. Further tightening of the component insulation level requirements will only result in marginally higher...

  3. Building Energy Asset Score for Real Estate Managers

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for real estate managers.

  4. Revisit of Energy Use and Technologies of High Performance Buildings

    OpenAIRE

    Li Ph.D., Cheng

    2014-01-01

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfoli...

  5. Daylight performance assessment of an innovative energy efficient building envelope

    OpenAIRE

    Casquero Modrego, Núria

    2016-01-01

    Buildings are considered to be one of the primary contributors to the socioeconomic development of a country. However, they use a large portion of energy and available natural resources. With the industrialization leading to an increase in urban population, the number of urban buildings which has major effects on energy consumption, has significantly increased. Even with the implementation of energy efficient policies, energy consumption in buildings has regularly grown over the last decad...

  6. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low......Indoor environmental quality and energy performance of buildings are becoming more and more important in the design and construction of low energy, passive and zero energy buildings. At the same time, improved insulation and air tightness have the potential to resulting in a deterioration...... energy buildings, and propose a set of indices that would enable better quantification and comparison among low energy buildings. In this study, the building codes and voluntary guidelines have been reviewed on the basis of experience of Finland, UK, Denmark, USA and Germany. The analysis in this paper...

  7. Holistic energy retrofitting of multi-storey building to low energy level

    DEFF Research Database (Denmark)

    Morelli, Martin; Tommerup, Henrik M.; Tafdrup, Morten K.

    2011-01-01

    The European building sector is responsible for about 40% of the total primary energy consumption. New buildings constructed every year represent about 1% of the existing building mass; hence, the energy-saving potential lies in existing buildings. Buildings with facades worth preserving cannot b...

  8. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  9. Research Support Facility - Zero Energy Building Moves Closer to Reality

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-01

    The DOE's Research Support Facility showcases high-performance design features, passive energy strategies, and renewable energy. It is a prototype for future large-scale net-zero energy buildings.

  10. Technical definition for nearly zero energy buildings nZEB

    DEFF Research Database (Denmark)

    Kurnitski, Jarek; Allard, Francis; Braham, Derrick

    This REHVA Task Force proposes a technical definition for nearly zero energy buildings required in the implementation of the Energy performance of buildings directive recast. Energy calculation framework and system boundaries associated with the definition are provided to specify which energy flows...... or maximum harmonized requirements as well as details of energy performance calculation framework, it will be up to the Member States to define what these for them exactly constitute. In the definition local conditions are to be obviously taken into account, but the uniform methodology can be used in all...... sources, including energy from renewable sources produced on-site or nearby. Based on the directive’s definition, nearly zero energy building is technically defined through the net zero energy building, which is a building using 0 kWh/(m² a) primary energy. Following the cost-optimality principle...

  11. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  12. Energy restoration of Primary school building 'Dobrila Stambolic' in Svrljig

    Directory of Open Access Journals (Sweden)

    Radosavljević Jasmina M.

    2017-01-01

    Full Text Available Energy efficiency has become an integral part of the projects by adoption of laws and regulations on energy efficiency in 2011. This paper presents energy rehabilitation of the primary school building 'Dobrila Stambolic' in Svrljig. Energy restoration of this building, in addition to replacement of the roof cladding and roof constructions, included the installation of thermal insulation on all facade walls of the building, replacement of windows and heating system. By applying the suggested refurbishments the building energy class rating transferred from F to D which is two classes improvement.

  13. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  14. Estimating building energy consumption using extreme learning machine method

    International Nuclear Information System (INIS)

    Naji, Sareh; Keivani, Afram; Shamshirband, Shahaboddin; Alengaram, U. Johnson; Jumaat, Mohd Zamin; Mansor, Zulkefli; Lee, Malrey

    2016-01-01

    The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN. - Highlights: • Buildings consume huge amounts of energy for operation. • Envelope materials and insulation influence building energy consumption. • Extreme learning machine is used to estimate energy usage of a sample building. • The key effective factors in this study are insulation thickness and K-value.

  15. Optimizing Existing Multistory Building Designs towards Net-Zero Energy

    Directory of Open Access Journals (Sweden)

    Mohammad Y. AbuGrain

    2017-03-01

    Full Text Available Recent global developments in awareness and concerns about environmental problems have led to reconsidering built environment approaches and construction techniques. One of the alternatives is the principle of low/zero-energy buildings. This study investigates the potentials of energy savings in an existing multi-story building in the Mediterranean region in order to achieve net-zero energy as a solution to increasing fossil fuel prices. The Colored building at the Faculty of Architecture, Eastern Mediterranean University, Cyprus was chosen as a target of this study to be investigated and analyzed in order to know how energy efficiency strategies could be applied to the building to reduce annual energy consumption. Since this research objective is to develop a strategy to achieve net-zero energy in existing buildings, case study and problem solving methodologies were applied in this research in order to evaluate the building design in a qualitative manner through observations, in addition to a quantitative method through an energy modeling simulation to achieve desirable results which address the problems. After optimizing the building energy performance, an alternative energy simulation was made of the building in order to make an energy comparison analysis, which leads to reliable conclusions. These methodologies and the strategies used in this research can be applied to similar buildings in order to achieve net-zero energy goals.

  16. Indoor radon problem in energy efficient multi-storey buildings.

    Science.gov (United States)

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  18. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  19. Revisit of Energy Use and Technologies of High Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  20. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM

    Directory of Open Access Journals (Sweden)

    Egwunatum Samuel

    2016-09-01

    Full Text Available Given the ability of a Building Information Model (BIM to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1 building energy consumption, (2 building energy performance and analysis, and (3 building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world’s first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise or its size.

  1. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM)

    Science.gov (United States)

    Egwunatum, Samuel; Joseph-Akwara, Esther; Akaigwe, Richard

    2016-09-01

    Given the ability of a Building Information Model (BIM) to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1) building energy consumption, (2) building energy performance and analysis, and (3) building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world's first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise) or its size.

  2. The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)

  3. 1994 Building energy codes and standards workshops: Summary and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Shankle, D.L.

    1994-09-01

    During the spring of 1994, Pacific Northwest Laboratory (PNL), on behalf of the U.S. Department of Energy (DOE) Office of Codes and Standards, conducted five two-day Regional Building Energy Codes and Standards workshops across the United States. Workshops were held in Chicago, Philadelphia, Atlanta, Dallas, and Denver. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing state building codes in their states. The workshops provided an opportunity for state and other officials to learn more about the Energy Policy Act of 1992 (EPAct) requirements for residential and commercial building energy codes, the Climate Change Action Plan, the role of the U.S. Department of Energy and the Building Energy Standards Program at Pacific Northwest Laboratory, the commercial and residential codes and standards, the Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. In addition to receiving information on the above topics, workshop participants were also encouraged to inform DOE of their needs, particularly with regard to implementing building energy codes, enhancing current implementation efforts, and building on training efforts already in place. This paper documents the workshop findings and workshop planning and follow-up processes.

  4. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  5. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Qing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  6. Barriers' and policies' analysis of China's building energy efficiency

    International Nuclear Information System (INIS)

    Zhang, Yurong; Wang, Yuanfeng

    2013-01-01

    With the rapid economic growth and the improvement of people's living standards, China's building energy consumption has kept rising during the past 15 years. Under the effort of the Chinese government and the society, China's building energy efficiency has made certain achievements. However, the implementation of building energy efficiency in China is still far from its potential. Based on the analysis of the existing policies implemented in China, the article concluded that the most essential and the most effective ways to promote building energy efficiency is the government's involvement as well as economic and financial incentives. In addition, the main barriers in the process of promoting building energy efficiency in China are identified in six aspects. It has been found that the legal system and administrative issues constitute major barriers, and the lack of financial incentives and the mismatching of market mechanism also hamper the promotion of building energy efficiency. Finally, in view of the existing policies and barriers analysis, three corresponding policy proposals are presented. -- Highlights: •The existing policies implemented in China from three aspects are presented and analysed. •The Government's involvement is the most essential effective way to promote building-energy efficiency. •Six aspects of barriers in promoting building energy efficiency in China are identified. •The legal system and administrative issues constitute the major barriers. •Three policy proposals to further promote building energy efficiency in China are proposed

  7. The impact of clerestory lights on energy efficiency of buildings

    Directory of Open Access Journals (Sweden)

    Đenadić Dalibor M.

    2015-01-01

    Full Text Available The buildings are among major energy consumers, whose energy efficiency is rather low. Clerestory windows are responsible for a large portion of energy losses from the buildings. The energy efficiency of buildings can greatly be improved by upgrading clerestory and other windows. This paper focuses on the theoretical and experimental investigations on how this can be performed in an old school building in the town of Bor in eastern part of Serbia. For that purpose a modern measuring technique has been applied to identify the existing status, and to compare theoretical and actual conditions.

  8. International Energy Agency 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The IEA Executive Director’s Annual Report 2012 is the first of a regular annual series reporting on the IEA’s operational and organisational achievements, as well as challenges and events over the year. It is presented to the IEA Governing Board and released publicly to ensure transparency and also to take stock of the organisation’s activities from a strategic perspective. 2012 was a transitional year for the IEA, given fundamental changes in the global energy economy as well as internal management and budget issues. At the same time demand for IEA products set new records, and the public and political impact of IEA work through effective communication was measured as high.

  9. 4th international conference in sustainability in energy and buildings

    CERN Document Server

    Höjer, Mattias; Howlett, Robert; Jain, Lakhmi

    2013-01-01

    This volume contains the proceedings of the Fourth International Conference on Sustainability in Energy and Buildings, SEB12, held in Stockholm, Sweden, and is organised by KTH Royal Institute of Technology, Stockholm, Sweden in partnership with KES International. The International Conference on Sustainability in Energy and Buildings focuses on a broad range of topics relating to sustainability in buildings but also encompassing energy sustainability more widely. Following the success of earlier events in the series, the 2012 conference includes the themes Sustainability, Energy, and Buildings and Information and Communication Technology, ICT. The SEB’12 proceedings includes invited participation and paper submissions across a broad range of renewable energy and sustainability-related topics relevant to the main theme of Sustainability in Energy and Buildings. Applicable areas include technology for renewable energy and sustainability in the built environment, optimisation and modeling techniques, informati...

  10. Energy management handbook for building operating engineers student workbook

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The handbook provides operating engineers with the basic information needed to implement specific energy conservation opportunities, and additional information is presented relative to the formulation and development of the energy management plan. Chapters are entitled: The Need for Energy Management (International Factors, The US Energy Situation, Energy and the Building Owner); The Fundamentals of Energy Consumption in Buildings (Energy Basics, Heat Basics, Heat Flow and the Building Envelope, Air and Comfort, Factors Affecting Energy Use In Buildings); Principles of Energy Conservation (Building Energy Consumption Characteristics); Planning the Energy Management Program (Obtaining Commitment and Support, Establishing the Energy Use Index, Organizing to Develop the Plan, Developing and Implementing the Plan); Conducting a Survey of Facilities and Operations (The Energy Audit, Preparation of Building and Systems Profile, Measurement and Instrumentation); Guidelines for Energy Conservation (Operator ECO's, Owner ECO'S); Developing the Draft Final Plan (Analyze Survey Findings, Putting the Plan on Paper, Review and Submit); Implementing the Program (Developing the Final Plan, Implementing the Plan, Monitoring and Updating the Program). A glossary is included and specific information on degree days and cooling hours for some selected cities and a computer energy study data for the New York Hilton are included in appendices. (MCW)

  11. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    Science.gov (United States)

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI

  12. North European Understanding of Zero Energy/Emission Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Nieminen, Jyri

    2010-01-01

    countries are still to adopt a national definition for these types of buildings. This results often in more than one understanding of ZEBs in each country. This study provides a concise source of information on the north European understanding of zero energy/emission buildings. It puts forward a number......The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately...... may observe a correlation between the zero energy/emission building approach adopted by a country and this particular country’s utility grid characteristics. Moreover, it is to be noted that the ZEB concept is not well defined at the national level in northern Europe and that all of the participating...

  13. The reference building--one approach in the evolution of building energy performance criteria for houses

    Energy Technology Data Exchange (ETDEWEB)

    Heldenbrand, J.L.; Petersen, S.R.

    1982-12-01

    The reference building approach described in this paper was introduced in the context of the National Bureau of Standards support for the building energy conservation criteria program of the Office of Buildings and Community Systems, U.S. Department of Energy. The role of NBS is to develop technical data and methods for design, construction, and retrofitting of energy efficient buildings. Recent federal initiatives to regulate energy use at the design stage of new buildings support the broadening of performance standards to the whole-building level. A logical means of developing such standards is to provide a methodology for linking component performance standards to the whole-building design-energy-performance level. A side benefit of such a methodology is the assurance that these two paths to building design are consistent and complementary. The ''Reference Building Approach'' (RBA) reported here is one such method. As described here, the RBA approach is not a complete package suitable as a substitute for the Department of Energy's proposed Building Energy Performance Standards (BEPS). However, the paper deals with an element of BEPS and offers a possible improvement to it.

  14. Regulation proposal for voluntary energy efficiency labelling of commercial buildings

    International Nuclear Information System (INIS)

    Lamberts, Roberto; Goulart, Solange; Carlo, Joyce; Westphal, Fernando

    2006-01-01

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m 2 or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  15. Application of Energy Performance Indicators for Residential Building Stocks

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper; Diefenbach, Nikolaus

    2016-01-01

    Energy performance indicators of residential building stocks can either describe existing empirical data of a building stock or the input and outcome of building stock modelling. In EPISCOPE both types of quantities are clearly separated by distinguishing monitoring indicators and scenario indica...

  16. Massive financing of the energy transition - SFTE feasibility study: synthesis report, Energy renovation of public buildings

    International Nuclear Information System (INIS)

    2014-11-01

    The Energy Shift Financing Agency's (SFTE) project aims to establish a broad partnership between public and private entities to stimulate the economy and deliver between euros 180 bn and euros 420 bn of investment in Europe over 10 years for the benefit of medium-sized projects (in the order of euros 1 m) that are necessary for the energy transition. It will enable EU banks to finance the energy renovation of public buildings under excellent - cheap and long-term - conditions. A feasibility study has been conducted by the AFTER association with an exemplary consortium of public and private stakeholders in France: local authorities, industry players, banks/financial institutions, NGOs, Plan Batiment Durable. Many European institutions have expressed their interest in the initiative. Now the implementation of the SFTE project requires a commitment from European and national public authorities. Such a proactive real-estate policy would significantly contribute to economic recovery, cut costs, CO 2 emissions and the external deficit and improve energy independence, and could quickly create jobs. This document is the French version of the synthesis report of the SFTE project feasibility study. Two notes are attached to the document: one about the SFTE project adaptation to the Juncker's 315 bn euros investment plan, and the other about the selection of public buildings energy retrofitting in the Juncker plan and the French-German proposals

  17. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    Science.gov (United States)

    Malkani, Arvin P.

    2012-01-01

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is…

  18. The prepossession of international institutions for energy. The example International Energy Agency (IEA)

    International Nuclear Information System (INIS)

    Fell, H.J.

    2007-01-01

    In the contribution under consideration, the author reports on the fact that large international energy agencies, which are advisory active in energy questions active, affect the world-wide policy. In particular, these are the International Atomic Energy Authority in Vienna (Austria) and the International Energy Agency in Paris (France). The International Energy Agency is considered world-wide as the most important institution for all energy questions. Nearly annually, it publishes the World Energy Outlook by summarizing the most important current energy data of the world, prognoses the future power supply and makes future energy prices. The reality of the International Energy Agency looks completely differently: It performs no own sciences, but consists of statisticians, who gather only statistical data without scientific analysis. The author of this contribution summarizes the work of the International Energy Agency in three points: (a) Promotion of the interests of companies in mineral oil, natural gas, coal and atomic energy; (b) Hindering the world-wide conversion of renewable energy; (c) Endangerment of the world economy and prevention of an effective climate protection. The International Energy Agency does not justice to its own goal of a reliable, economical and pollution free power supply

  19. APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS

    Energy Technology Data Exchange (ETDEWEB)

    Lokmanhekim, M.; Goldstein, D. B.; Levine, M. D.; Rosenfield, A. H.

    1980-10-01

    One important requirement emerging from national and international efforts to shift from our present energy-intensive way of life to an energy conservation mode is the development of standards for assessing and regulating energy use and performance in buildings. This paper describes a life-cycle-cost approach to Building Energy Performance Standards (BEPS) calculated by using DOE-2: The Energy Use Analysis of Buildings Computer Program. The procedure outlined raises important questions that must be answered before the energy budgets devised from this approach can be reliably used as a policy tool, The DOE-2 program was used to calculate the energy consumption in prototype buildings and in their modified versions in which energy conservation measures were effected. The energy use of a modified building with lowest life-cycle-cost determines the energy budget for all buildings of that type. These calculations were based on a number of assumptions that may be controversial. These assumptions regard accuracy of the model, comparison of the DOE-2 program with other programs, stability of the energy budget, and sensitivity of the results to variations in the building parameters.

  20. Energy savings in the Danish building stock until 2050

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    2014-01-01

    are energy upgraded according to the requirements stipulated in the Danish Building Regulations 2010. Furthermore, scenario analyses was made for the potential impact on the energy consumption of introducing different levels of tightening of the energy requirements for existing buildings in the Danish...... savings, due to the level of the current requirements. Higher energy savings can, though, be achieved e.g. by setting requirements for balanced mechanical ventilation with heat recovery and use of solar heating for domestic hot water.......A study has been conducted analysing the energy savings for space heating and domestic hot water in the Danish building stock due to renovation of building components at the end of their service life. The purpose of the study was to estimate the energy savings until 2050 as building components...

  1. Quantification of Uncertainty in Predicting Building Energy Consumption

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    2012-01-01

    Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new app...... inhabitant behaviour, operation, and maintenance to predict the performance of the systems and the level of certainty for fulfilling design requirements under random conditions.......Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new...... approach for the prediction of building energy consumption is presented. The approach quantifies the uncertainty of building energy consumption by means of stochastic differential equations. The approach is applied to a general heat balance for an arbitrary number of loads and zones in a building...

  2. Cooperative Efforts Raise Building Energy Codes and Appliance Standards

    Energy Technology Data Exchange (ETDEWEB)

    Brandegee Group

    1999-01-15

    An overview of the U.S. Department of Energy Office of Codes and Standards programs to establish minimum efficiency codes, standards, and guidelines for reduced energy use and lower operating costs in U.S. building components.

  3. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches

    Directory of Open Access Journals (Sweden)

    Mojtaba Valinejad Shoubi

    2015-03-01

    Full Text Available A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy consumed by a double story bungalow house in Johor, Malaysia, and assessments of alternative material configurations to determine the best energy performance were evaluated by using Revit Architecture 2012 and Autodesk Ecotect Analysis software to show which of the materials helped in reducing the operational energy use of the building to the greatest extent throughout its annual life cycle. At the end, some alternative, sustainable designs in terms of energy savings have been suggested.

  4. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  5. Environmental and Energy Aspects of Construction Industry and Green Buildings

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2017-04-01

    Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.

  6. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  7. An energy efficient building for the Arctic climate

    DEFF Research Database (Denmark)

    Vladyková, Petra

    the fundamental definition of a passive house in the Arctic and therefore to save the cost of traditional heating, but that would incur high costs for the building materials and the provision of technical solutions of extremely high standards which would take too many years to pay back in the life time...... usage of an extreme energy efficient building in the Arctic. The purpose of this Ph.D. study is to determine the optimal use of an energy efficient house in the Arctic derived from the fundamental definition of a passive house, investigations of building parameters including the building envelope...... of a building. The fundamental definition which applies to all climates can be realized in the Arctic regions at very high costs using fundamental design values and the building technologies available in the Arctic. Based on the investigations, the optimal energy performing building is derived from a passive...

  8. Energy plus standard in buildings constructed by housing associations?

    International Nuclear Information System (INIS)

    Stutterecker, Werner; Blümel, Ernst

    2012-01-01

    In order to achieve national, European and international energy goals, energy efficiency strategies in the building sector have to be implemented. The passive house standard and low energy standards are already successfully established in single dwelling houses. These high performance standards are starting to penetrate into the sector of housing associations. A case study about an apartment building constructed by a housing association is presented here. It describes the monitoring concept and the results of the 1st year of monitoring. Depending on the definition of the zero energy building standard (extent of loads included in the balancing), the building could be classified as an energy plus building or as a building, which uses more energy, than is supplied by on-site generation. If the building's total energy use (including user specific loads) is defined as load, only 34.5% of these loads were provided by the net energy output of the PV system. If only the heating energy demand is defined as load, the PV system even yielded a surplus of 45.6% of the energy load. -- Highlights: ► Energy monitoring of an apartment building constructed by a housing association. ► Planned as a Passive House with a semi-central ventilation system with decentralized heat pump technology. ► Total end energy demand of the building was 43 kWh/(m² a). ► Total net energy generation by the PV system was 15 kWh/(m² a). ► Apartment no. 1: 52% of the energy demand were used for heating and ventilation.

  9. Building concepts for a transition towards energy neutrality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.J.; Paauw, J. [TNO Built Environment and Geosciences, Delft (Netherlands); Opstelten, I.J.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2007-03-15

    In this paper building concepts for the near future are described which enable the transition towards a net energy neutral building sector in the Netherlands by the year 2050. With 'net energy neutrality' is meant that, on a yearly basis, the total energy consumption in the built environment is compensated by local renewable energy production e.g. by using solar thermal (T), photovoltaic (PV), PVT and/or wind. A study concerning the feasibility of a 'net energy neutral built environment by 2050' set the energetic ambitions for the building concepts to be developed. This resulted in different concepts for residential buildings and for office-buildings. The building concepts are based on passive house technology to minimise the heating and cooling demand, and make optimal use of active and passive solar energy. Concepts for new to build domestic buildings are in fact energy producing to compensate for the remaining energy demand of existing, renovated dwellings. In all concepts the 'trias energetica' or 'energy pyramid' served as a general guideline, striving for minimisation of energy demand, maximal usage of renewable energy and usage of fossil fuels as efficiently as possible. Different full roof integrated options for using solar energy (PV, T or PVT) with variable storage options have been compared by making simulations with a dynamic simulation programme, to gain insight on their impact on energy, building engineering and economic impact. Also different possibilities for installations to fulfil the heating demand for the space heating and DHW demand are compared. For each concept, the resulting primary energy profiles for space heating and cooling, domestic hot water, electricity consumption for lighting, ventilation and household appliances are given.

  10. North European Understanding of Zero Energy/Emission Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, J. S.; Nieminen, J.

    2010-01-01

    countries are still to adopt a national definition for these types of buildings. This results often in more than one understanding of ZEBs in each country. This study provides a concise source of information on the north European understanding of zero energy/emission buildings. It puts forward a number......The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately......, the lack of a common understanding for this new type of building results in most countries to have their own, unique approaches. This paper presents the northern (Danish, Finish, Norwegian and Swedish) understanding of ZEBs and gathers together information related to ZEBs in these countries. Generally, we...

  11. Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming

    OpenAIRE

    Lindberg, Karen Byskov; Doorman, Gerard L.; Fischer, David; Korpås, Magnus; Ånestad, Astrid; Sartori, Igor

    2016-01-01

    According to EU’s Energy Performance of Buildings Directive (EPBD), all new buildings shall be nearly Zero Energy Buildings (ZEB) from 2018/2020. How the ZEB requirement is defined has large implications for the choice of energy technology when considering both cost and environmental issues. This paper presents a methodology for determining ZEB buildings’ cost optimal energy system design seen from the building owner’s perspective. The added value of this work is the inclusion of peak load ta...

  12. Investigation of building energy autonomy in the sahelian environment

    International Nuclear Information System (INIS)

    Coulibaly, O; Koulidiati, J; Ouedraogo, A; Kuznik, F; Baillis, D

    2012-01-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m 2 /year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  13. Obsolete or resurgent? The International Energy Agency in a changing global landscape

    International Nuclear Information System (INIS)

    Van de Graaf, Thijs

    2012-01-01

    Founded in response to the 1973 oil shock, the International Energy Agency (IEA) is arguably still the most important multilateral organization for energy-importing countries. Yet, the global geopolitical landscape has changed considerably since the IEA's creation. The rise of new energy consumers, new energy-related challenges and new international energy forums prompt a rethink of the agency's current role and institutional design. This article seeks to contribute to the recent debate on the future role of the IEA by examining specific drivers, avenues and constraints for institutional reform. The method used is SWOT analysis, which allows to summarize the key factors emanating from an assessment of an organization's internal characteristics (strengths and weaknesses) and its external environment (opportunities and threats). Building on this SWOT analysis, the article formulates a strategy for the IEA to remain the focal point in global energy governance. Key elements of this strategy include: stronger engagement with new consumers, rapprochement with OPEC, becoming a leading voice in the energy transition, and changing the agency's internal governance practices. - Highlights: ► The IEA is challenged by the rise of new consumers, threats and organizations. ► Assessment of the agency’s internal characteristics and external environment. ► The IEA needs to step up its outreach policy and fully embrace sustainable energy.

  14. Analysis of Different Methods for Computing Source Energy in the Context of Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David; Pless, Shanti

    2016-08-26

    Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from site energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.

  15. Building Energy Audit Report, for Hickam AFB, HI

    Energy Technology Data Exchange (ETDEWEB)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.; Dixon, Douglas R.

    2010-09-30

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  16. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...

  17. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  18. Low-energy buildings on mainstream market terms

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Elle, Morten; Hoffmann, Birgitte

    2008-01-01

    This paper looks into the challenge of actually implementing energy efficient technologies and concepts in mainstream new build. The aim of the paper is to point out some of the provisos of promoting low-energy buildings on mainstream market terms, emphasising the need to understand forces working...

  19. Analysis of the Russian Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  20. Implementing nationally determined contributions: building energy policies in India’s mitigation strategy

    Science.gov (United States)

    Yu, Sha; Evans, Meredydd; Kyle, Page; Vu, Linh; Tan, Qing; Gupta, Ashu; Patel, Pralit

    2018-03-01

    The Nationally Determined Contributions are allowing countries to examine options for reducing emissions through a range of domestic policies. India, like many developing countries, has committed to reducing emissions through specific policies, including building energy codes. Here we assess the potential of these sectoral policies to help in achieving mitigation targets. Collectively, it is critically important to see the potential impact of such policies across developing countries in meeting national and global emission goals. Buildings accounted for around one third of global final energy use in 2010, and building energy consumption is expected to increase as income grows in developing countries. Using the Global Change Assessment Model, this study finds that implementing a range of energy efficiency policies robustly can reduce total Indian building energy use by 22% and lower total Indian carbon dioxide emissions by 9% in 2050 compared to the business-as-usual scenario. Among various policies, energy codes for new buildings can result in the most significant savings. For all building energy policies, well-coordinated, consistent implementation is critical, which requires coordination across different departments and agencies, improving capacity of stakeholders, and developing appropriate institutions to facilitate policy implementation.

  1. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  2. Commissioning of building HVAC systems for improvement of energy performance; Commissioning of building HVAC systems for improvement of energy performance. Teilnahme IEA-ECBCS Annex 40 (Betreiberkompetenz)

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, J.-M.

    2005-06-15

    This paper takes a look at the tasks performed in Task 40 of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA that is taking a look at the commissioning of building HVAC systems with the aim of improving the energy performance of such systems. Emphasis is put on the Swiss contribution to the task. This well-illustrated paper presents information on the structure of the task, time-lines and a diagram for its implementation structures. Also, the countries participating in Task 40 and their representatives are listed, and various work already published by the annex is noted. The paper places a focus on operator competence and lists points to be taken into account when carrying out work on optimising energy consumption. The various processes involved are noted and discussed. Management guidelines are presented and economical and market aspects are discussed. Finally, projects that will continue the work are noted.

  3. How much information disclosure of building energy performance is necessary?

    International Nuclear Information System (INIS)

    Hsu, David

    2014-01-01

    Many different governments have begun to require disclosure of building energy performance, in order to allow owners and prospective buyers to incorporate this information into their investment decisions. These policies, known as disclosure or information policies, require owners to benchmark their buildings and sometimes conduct engineering audits. However, given substantial variation in the cost to disclose different types of information, it is natural to ask: how much and what kind of information about building energy performance should be disclosed, and for what purposes? To answer this question, this paper assembles and cleans a comprehensive panel dataset of New York City multifamily buildings, and analyzes its predictive power using a Bayesian multilevel regression model. Analysis of variance (ANOVA) reveals that building-level variation is the most important factor in explaining building energy use, and that there are few, if any, relationships of building systems to observed energy use. This indicates that disclosure laws requiring benchmarking data may be relatively more useful than engineering audits in explaining the observed energy performance of existing buildings. These results should inform the further development of information disclosure laws. - Highlights: • A comprehensive panel dataset of energy performance and building characteristics was assembled and cleaned. • The effectiveness of the disclosed information to predict building energy performance was tested using a regression model. • Building-level variation has a greater effect than any building characteristic or systems. • Benchmarking data alone predicts energy performance equally as well as both benchmarking and engineering audit data together, and better than audit data alone

  4. Intelligent analysis of energy consumption in school buildings

    International Nuclear Information System (INIS)

    Raatikainen, Mika; Skön, Jukka-Pekka; Leiviskä, Kauko; Kolehmainen, Mikko

    2016-01-01

    Highlights: • Electricity and heating energy consumptions of six school buildings were compared. • Complex multivariate data was analysed using modern computational methods. • Variation in electricity consumption cost is considerably low between study schools. • District heating variation is very slight in two new study schools. • District heating cost describes energy efficiency and state of building automation. - Abstract: Even though industry consumes nearly half of total energy production, the relative share of total energy consumption related to heating and operating buildings is growing constantly. The motivation for this study was to reveal the differences in electricity use and district heating consumption in school buildings of various ages during the working day and also during the night when human-based consumption is low. The overall aim of this study is to compare the energy (electricity and heating) consumption of six school buildings in Kuopio, Eastern Finland. The selected school buildings were built in different decades, and their ventilation and building automation systems are also inconsistent. The hourly energy consumption data was received from Kuopion Energia, the local energy supply company. In this paper, the results of data analysis on the energy consumption in these school buildings are presented. Preliminary results show that, generally speaking, new school buildings are more energy-efficient than older ones. However, concerning energy efficiency, two very new schools were exceptional because ventilation was on day and night in order to dry the building materials in the constructions. The novelty of this study is that it makes use of hourly smart metering consumption data on electricity and district heating, using modern computational methods to analyse complex multivariate data in order to increase knowledge of the buildings’ consumption profiles and energy efficiency.

  5. Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.

    2008-05-14

    This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

  6. Solar Energy Windows and Smart IR Switchable Building Technologies

    Energy Technology Data Exchange (ETDEWEB)

    McCarny, James; Kornish, Brian

    2011-09-30

    The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.

  7. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  8. Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China

    International Nuclear Information System (INIS)

    Xu Pengpeng; Chan, Edwin Hon-Wan; Queena Kun Qian

    2011-01-01

    Hotel building is a type of high-energy-consuming building and most existing hotel buildings need energy efficiency improvement in China. Energy performance contracting (EPC) is considered a win-win mechanism to organize building energy efficiency retrofit (BEER) project. However, EPC mechanism has been introduced into China relatively recently and many EPCs have not been successful in building energy efficiency retrofit projects. This research aims to develop a set of critical success factors (CSFs) of EPC for sustainable energy efficiency retrofit (BEER) of hotel buildings in China. Semi-structured interviews and a questionnaire survey with practitioners and other professionals were conducted. The findings reveal the relative importance of the 21 number of identified success factors. In order to explore the underlying relationship among the identified critical success factors (CSFs), factor analysis method was adopted for further investigation, which leads to grouping the 21 identified CSFs into six clusters. These are (1) project organization process, (2) EPC project financing for hotel retrofit, (3) knowledge and innovation of EPC, sustainable development (SD), and M and V, (4) implementation of sustainable development strategy, (5) contractual arrangement, and (6) external economic environment. Finally, several relevant policies were proposed to implement EPC successfully in sustainable BEER in hotel buildings. - Highlights: → EPC is a win-win mechanism to organize building energy efficiency retrofit project. → CSFs of EPC mechanism for sustainable BEER of hotel building in China are examined. → Six clusters are extracted from 21 identified CSFs based on factor analysis.

  9. Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology

    International Nuclear Information System (INIS)

    Ballarini, Ilaria; Corrado, Vincenzo; Madonna, Francesco; Paduos, Simona; Ravasio, Franco

    2017-01-01

    The European residential building stock is largely composed of buildings with poor energy performance, therefore basic retrofit actions could lead to significant energy savings. However, energy refurbishment measures should be identified in accurate way, taking into account the technical viability and aiming both to increase the building energy performance and to restrain the costs. The present article investigates the effects of different measures applied to the Italian residential building stock by using the building typology, which consists of 120 building types, representative of six construction ages, four building sizes and five climatic zones. A quasi-steady state model has been used to calculate the energy performance; the economic evaluation has been carried out as specified in the EU cost-optimal comparative methodology (Directive 2010/31/EU). The most effective measures and packages of measures, in terms of energy saving and global cost reduction, are identified and discussed. The results are addressed to important purposes for energy policy, as for instance: (a) to provide political authorities with the most effective energy efficiency measures as to encourage retrofit processes through the allocation of financial incentives, (b) to offer a knowledge-base for developing energy refurbishment scenarios of residential building stocks and forecasting future energy resource demand. - Highlights: • Investigation of energy savings and cost effectiveness of the Italian housing stock refurbishments. • Application of the building typology approach of the IEE-TABULA project. • Knowledge-base for bottom-up models of the building stock energy performance. • Supporting the political authorities to promote effective refurbishment measures.

  10. Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

    2010-10-01

    As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energy’s (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventory across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.

  11. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  12. Building the energy infrastructure in Atlantic Canada

    International Nuclear Information System (INIS)

    Curry, T.

    2007-01-01

    This paper discusses the energy infrastructure in Atlantic Canada. The energy development is poised to help transform the economy of New Brunswick. Planning for energy projects and supporting infrastructure are under way and regional opportunities are emerging

  13. Energy Flexible Buildings, Case study: TU Delft campus, The Netherlands

    NARCIS (Netherlands)

    Mlecnik, E.; Hellinga, C.; Stoelinga, P.

    2018-01-01

    In-depth knowledge from demonstrations is needed for the future development of facility management, related to the introduction of energy-saving devices, buildings and energy systems. Particularly there is a need to understand better how the concept of Energy Flexibility can effect energy saving

  14. Application of Partial Safety Factorsin Building Energy Performance Assessment

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Hesselholt, A.

    2009-01-01

    In practise many buildings show significant deviation between the predicted annual energy consumption and the actual energy consumption. One of the main reasons for the discrepancy is the difference between the assumptions made during the calculations and the actual conditions including occupants...... a design energy consumption that can be used for the usual energy calculations....

  15. Worldwide status of energy standards for buildings: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Janda, K.B.; Busch, J.F.

    1993-02-01

    This informal survey was designed to gain information about the worldwide status of energy efficiency standards for buildings, particularly non-residential buildings such as offices, schools, and hotels. The project has three goals: 1. To understand and learn from the experience of countries with existing building energy standards; 2. To locate areas where these lessons might be applied and energy standards might be effectively proposed and developed; and 3. To share the information gathered with all participating countries. These appendices include the survey cover letter, the survey, and the details of selected energy standards in 35 countries, thus providing supporting material for the authors` article of the same title.

  16. Energy Literacy and Agency of New Zealand Children

    Science.gov (United States)

    Aguirre-Bielschowsky, I.; Lawson, R.; Stephenson, J.; Todd, S.

    2017-01-01

    The development of energy literacy (knowledge, attitudes, and intended behaviour) and agency of New Zealand children (age 9-10) were investigated through thematic and exploratory statistical analyses of interviews (October 2011-April 2012) with 26 children, their parents and teachers, focus groups and photo elicitation. The children knew that…

  17. Environment. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-06-01

    The catalogue lists all publications of the International Atomic Energy Agency dealing with the Environment issued during the period 1980-1993. The major subjects covered include: effect of agrochemical residues on soils and aquatic ecosystems, application of radioisotopes in conservation of the environment, siting of nuclear power plants, environmental isotope data and environmental contamination due to nuclear accidents

  18. Radiation therapy. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-04-01

    This catalog lists all sales publications of the International Atomic Energy Agency dealing with Radiation Therapy, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue

  19. International Atomic Energy Agency Publications. Catalogue 1986-1999

    International Nuclear Information System (INIS)

    2000-11-01

    This catalogue lists all sales publications of the International Atomic Energy Agency issued from 1986 up to the end of 1999 and still available. Some earlier titles which form part of an established series or are still considered important have also been included. The catalogue is in CD-ROM format

  20. Environment. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-05-01

    This catalog lists all sales publications of the International Atomic Energy Agency dealing with the Environment, and issued during the period 1 January 1990 - 30 April 2001. Most publications are issued in English, though some are also available in other languages. These are noted in the catalogue

  1. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  2. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  3. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  4. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  5. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  6. The politics of civil society building: European private aid agencies and democratic transitions in Central America

    NARCIS (Netherlands)

    Biekart, C.H.

    1999-01-01

    Strengthening civil society may be all the rage in the international donor community, but what does it mean in practice? This seminal work critically examines the political aspects of civil society building and the role of non-governmental development aid agencies during recent democratic

  7. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  8. Results. Building integrated energy supply; Resultater. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations of which the best combinations were selected. The final result takes form of a single top-50 list with the best combinations of energy systems according to CO{sub 2} emission, energy consumption and economics. The present report contains the conclusions of and comments on the project's results. (ln)

  9. European national strategies to move towards very low energy buildings

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    , Denmark, Finland, France, Germany and United Kingdom (England and Wales). Even though the calculation methods are in accordance with the definitions in the EPBD and thus the relevant CEN standards, there are national deviations that make a cross-country comparison of the calculated energy performance...... high energy performance. It is important to stress the need for MS to introduce a national or regional definition of very low energy buildings in their building regulation and to develop a national strategy towards this level of energy performance to become the standard. This market transformation......The low energy building definition was introduced at various times across Europe. Some countries have even had different definitions of low energy buildings at different periods of time. The 22 answers received included 7 countries with an existing official definition and 7 countries with a planned...

  10. Building Energy-Efficiency Best Practice Policies and Policy Packages

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); de la Rue de Can, Stephane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Amann, Jennifer Thorne [American Council for an Energy-Efficient Economy (ACEEE), Washington, D.C. (United States); Staniaszek, Dan [Sustainability Consulting Ltd., London (United Kingdom)

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO2 emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries.

  11. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  12. Building Energy Asset Score for Utilities and Energy Efficiency Program Administrators

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for utilities and energy efficiency program administrators.

  13. Energy consumption of electricity end uses in Malaysian historic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruzzaman, Syahrul N.; Edwards, Rodger E.; Zawawi, Emma M.A.

    2007-07-15

    Malaysia has inherited hundreds of heritage buildings from the past including those from the Indian, Chinese and Colonial eras apart from the indigenous traditional buildings. These buildings have the most unique ecstatic value from the viewpoint of architecture, culture, art, etc. Malaysian economy boom in 1980s spurred the need for more buildings especially in large cities. As a result, most of the historic buildings have been converted and transformed into commercial use. As reported by METP, Malaysian buildings energy uses are reflected by the energy consumption in the industrial and commercial sectors. Most of the buildings' energy consumption is electricity, used for running and operating the plants, lighting, lifts and escalators and other equipment in the buildings. These are amongst the factors that have resulted in the high demand for electricity in Malaysia. As outlined in the eighth Malaysia Plan, Malaysia is taking steps in conserving energy and reducing energy consumption on electricity consumption in building. This paper aims to present the breakdown of the major electricity end uses characteristics of historic buildings in Malaysia. The analysis was performed on annual data, allowing comparison with published benchmarks to give an indication of efficiency. Based on data collected a 'normalisation' calculated electricity consumption was established with the intention of improving the comparison between buildings in different climatic regions or with different occupancy patterns. This is useful for identifying where the design needed further attention and helped pinpoint problem areas within a building. It is anticipated that this study would give a good indication on the electricity consumption characteristics of historic buildings in Malaysia. (Author)

  14. Inspiration and experiences from the joint analysis of shining examples of comprehensive energy renovation building projects within IEA EBC Annex 56

    DEFF Research Database (Denmark)

    Christen Mørck, Ove; Almeida, Manuela; Ferreira, Marco

    2016-01-01

    The International Energy Agency established in 2011 an Implementing Agreement within the Energy in Buildings and Communities Program to undertake research and provide an international focus on Cost Effective Energy and Carbon Emissions Optimization in Building Renovation (EBC Annex 56). The proje...

  15. China building energy consumption: Situation, challenges and corresponding measures

    International Nuclear Information System (INIS)

    Cai, W.G.; Wu, Y.; Zhong, Y.; Ren, H.

    2009-01-01

    As one of the biggest parts of total national energy consumption (TNEC), building energy consumption (BEC) catches public eyes and has been regarded as a crucial problem of the current society. For the past 20 years, BEC in china has been increasing at a high speed. To curb the rapid growing of BEC, china has enforced and implemented a series of policies. These include enforcing BEC constraints on new building projects, promoting more environment friendly building designs, establishing a more sophisticated legislation for building energy conservation, and increasing the total budget in the area of BEC control. This article analyzed china BEC situation and the challenges. As the main point, the measures required by China government to improve building energy efficiency were introduced as well.

  16. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  17. A review of building energy regulation and policy for energy conservation in developing countries

    International Nuclear Information System (INIS)

    Iwaro, Joseph; Mwasha, Abraham

    2010-01-01

    The rapid growth of energy use, worldwide, hfs raised concerns over problems of energy supply and exhaustion of energy resources. Most of the developed countries are implementing building energy regulations such as energy standards, codes etc., to reduce building energy consumption. The position of developing countries with respect to energy regulations implementation and enforcement is either poorly documented or not documented at all. In addition, there is a lack of consistent data, which makes it difficult to understand the underlying changes that affect energy regulation implementation in developing countries. In that respect, this paper investigates the progress of building energy regulations in developing countries and its implication for energy conservation and efficiency. The present status of building energy regulations in 60 developing countries around the world was analysed through a survey of building energy regulations using online survey. The study revealed the present progress made on building energy regulations in relation to implementation, development and compliance; at the same time the study recommends possible solutions to the barriers facing building energy regulation implementation in the developing world. - Research Highlights: →Progress and implications of energy regulations in developing countries. →Investigation assessed the progress made on energy regulations using online survey. →Energy regulation activities is progressively increasing in developing countries. →The study identified 25 developing countries without energy regulatory standards. →The study shows relationship between energy regulation and energy consumption.

  18. Factsheet on Energy Neutral School Buildings and Office Buildings; Infoblad Energieneutrale scholen en kantoren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    A brief overview is given of all aspects of energy-neutral building and renovating school and office buildings. Besides technique, also attention is given to process, financing, management and maintenance. This factsheet is part of a series of three factsheets on energy neutral construction of houses and buildings. The other two are: 'Factsheet on Energy Neutral Building : Definition and ambition' and 'Factsheet on Energy Neutral Building' [Dutch] Een kort overzicht wordt gegeven van alle aspecten van energieneutraal bouwen en renoveren van woningen. Naast techniek komen ook proces, financiering en beheer en onderhoud aan de orde. Dit Infoblad maakt deel uit van een serie van drie Infobladen over energieneutraal bouwen voor woningen en gebouwen. De andere twee zijn: 'Infoblad Energieneutraal bouwen: definitie en ambitie' en 'Infoblad Energieneutrale Woningbouw'.

  19. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    Science.gov (United States)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  20. The Cost of Enforcing Building Energy Codes: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sturges, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosenquist, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    The purpose of this literature review is to summarize key findings regarding the costs associated with enforcing building energy code compliance—primarily focusing on costs borne by local government. The review takes into consideration over 150 documents that discuss, to some extent, code enforcement. This review emphasizes those documents that specifically focus on costs associated with energy code enforcement. Given the low rates of building energy code compliance that have been reported in existing studies, as well as the many barriers to both energy code compliance and enforcement, this study seeks to identify the costs of initiatives to improve compliance and enforcement. Costs are reported primarily as presented in the original source. Some costs are given on a per home or per building basis, and others are provided for jurisdictions of a certain size. This literature review gives an overview of state-based compliance rates, barriers to code enforcement, and U.S. Department of Energy (DOE) and key stakeholder involvement in improving compliance with building energy codes. In addition, the processes and costs associated with compliance and enforcement of building energy codes are presented. The second phase of this study, which will be presented in a different report, will consist of surveying 34 experts in the building industry at the national and state or local levels in order to obtain additional cost information, building on the findings from the first phase, as well as recommendations for where to most effectively spend money on compliance and enforcement.

  1. Workshop proceeding of the industrial building energy use

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Gadgil, A. (eds.)

    1988-01-01

    California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

  2. International Atomic Energy Agency Safeguards: Challenge and response

    Science.gov (United States)

    Spector, Leonard S.

    2017-11-01

    This article provides a critical review of the nuclear accounting and inspection system of the International Atomic Energy Agency (IAEA), known as "IAEA safeguards." The article focuses on the multiple challenges the Agency confronts in verifying that all nuclear activities in the countries under its safeguards system are being pursued for exclusively peaceful purposes. The principal challenges noted are those posed by: undeclared facilities, the development of enrichment and reprocessing capabilities, illicit procurement activities, denial of inspector access, difficulties in verifying absence of weaponization activities, and difficulties in establishing that all nuclear-relevant activities in a state are peaceful. The article is in the form of annotated PowerPoint briefing slides.

  3. New building technology based on low energy design

    International Nuclear Information System (INIS)

    Meggers, Forrest; Leibundgut, Hansjurg

    2009-01-01

    Full text: The construction, operation and maintenance of all residential, commercial, and industrial buildings are responsible for over half of global greenhouse gas emissions, and two-thirds of global electricity is generated solely for building operation. This single sector has a huge potential impact on the future sustainability of society, and therefore new advanced technologies must be rapidly developed and implemented in what is often a slow-moving sector. The concept of the low exergy building has created a new framework for the development of high performance building systems. Exergy analysis has been used to help minimize the primary energy demands of buildings through the minimization of losses in the chain of energy supply in a building system. The new systems that have been created have been shown to be more comfortable and more energy efficient. These systems include integrated thermal mass systems heated by high efficiency heat pumps integrated with energy recovery systems that eliminate the waste that is common in building systems. The underlying principles and concepts of low exergy building systems will be presented along with the analysis of several technologies being implemented in a low Ex building in Zurich, Switzerland. These include an advanced ground source heat pump strategy with integrated heat recovery, decentralized ventilation, and a unique active wall insulation system, which are being researched as part of the IEA ECBCS Annex 49 (www.annex49.org). (author)

  4. Building design guidelines for solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  5. Life Cycle Cost Optimization of a BOLIG+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition......, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in the Denmark should mostly be focused on grid-connected ZEBs – Net ZEBs, and the annual primary energy balance. The Life Cycle Cost (LCC) analysis conducted with a study...

  6. Building energy partnership between Bulgaria and Austria

    International Nuclear Information System (INIS)

    Geisslhofer, A.

    1999-01-01

    The project of Energie Verwertungsagentur (EVA) studies the possibilities for partnership between the two countries with respect of background conditions. Energy Efficiency Funds in some Central and East European countries (CEEC) in the framework of the PHARE programme and in co-operation with the EBDR aimed at increasing the market penetration of Combined District Heating and Power (CHP) technologies are being formed. The proposed project includes establishment of a Competence Centre for CHP technologies promotion. The Programme for the promotion of energy efficiency investments foresees co-financing the existing energy-efficiency funds and promotion and support of so called Energy Service Companies (ESCOs) which invest into energy efficiency measures on their own and get re-financing from the cuts in the energy bills. Several surveys show the considerable potential for the use of renewable energy sources (RES) in some CEEC. Proposed projects, as well as creation of Promotion Centres for RES and its future tasks are discussed

  7. Renewable building energy systems and passive human comfort solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-08-15

    With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised

  8. Methodological Approach to the Energy Analysis of Unconstrained Historical Buildings

    OpenAIRE

    Chiara Burattini; Fabio Nardecchia; Fabio Bisegna; Lucia Cellucci; Franco Gugliermetti; Andrea de Lieto Vollaro; Ferdinando Salata; Iacopo Golasi

    2015-01-01

    The goal set by the EU of quasi-zero energy buildings is not easy to reach for a country like Italy, as it holds a wide number of UNESCO sites and most of them are entire historical old towns. This paper focuses on the problem of the improvement of energy performance of historical Italian architecture through simple interventions that respect the building without changing its shape and structure. The work starts from an energy analysis of a building located in the historic center of Tivoli, a...

  9. Final report on the energy edge impact evaluation of 28 new, low-energy commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, M.A.; Diamond, R.; Nordman, B. [and others

    1994-08-01

    This report presents the findings of the Energy Edge Impact Evaluation. It is the fourth and final report in a series of project impact evaluation reports. Energy Edge is a research-oriented demonstration of energy efficiency in 28 new commercial buildings. Beginning in 1985,the project, sponsored by the Bonneville Power Administration (BPA), was developed to evaluate the potential for electricity conservation in new commercial buildings. By focusing on the construction of new commercial buildings, Energy Edge meets the region`s goal of capturing otherwise lost opportunities to accomplish energy conservation. That is, the best time to add an energy-efficiency measure to a building is during the construction phase.

  10. Source Energy and Emission Factors for Energy Use in Buildings (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Torcellini, P.

    2007-06-01

    This document supports the other measurement procedures and all building energy-monitoring projects by providing methods to calculate the source energy and emissions from the energy measured at the building. Energy and emission factors typically account for the conversion inefficiencies at the power plant and the transmission and distribution losses from the power plant to the building. The energy and emission factors provided here also include the precombustion effects, which are the energy and emissions associated with extracting, processing, and delivering the primary fuels to the point of conversion in the electrical power plants or directly in the buildings.

  11. Tools for Energy Efficiency in Buildings

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Aden, Nate; Tsakiris, Aristeidis

    With growing urbanization, our cities are playing an increasingly important role in accelerating energy efficiency improvements and mitigating climate change (REN21 2016). Cities are one of the biggest consumers of energy in the world, representing almost two-thirds of global primary energy demand...... Celsius above pre-industrial levels (IEA 2016)....

  12. Improving Energy Efficiency of Buildings in the Urals

    Science.gov (United States)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).

  13. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  14. Energy savings potential from improved building controls for the US commercial building sector

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  15. Uncertainty of Energy Consumption Assessment of Domestic Buildings

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Simonsen, A.

    2009-01-01

    In order to assess the influence of energy reduction initiatives, to determine the expected annual cost, to calculate life cycle cost, emission impact, etc. it is crucial to be able to assess the energy consumption reasonably accurate. The present work undertakes a theoretical and empirical study...... of the uncertainty of energy consumption assessment of domestic buildings. The calculated energy consumption of a number of almost identical domestic buildings in Denmark is compared with the measured energy consumption. Furthermore, the uncertainty is determined by means of stochastic modelling based on input...

  16. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  17. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  18. World energy: Building a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  19. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  20. Energy policy of the International Energy Agency (IEA) countries. General review of the year 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This book is a general review on energy policy leaded by Members countries of International Energy Agency (IEA) during the year 1990. This book describes also the trends and the recent events which have affected energy demand, energy conservation, energy efficiency, energy supply and energy source development. This annual review gives the IEA energy forecasting for the next years, till year 2001. A detailed study of energy policy in Federal Republic of Germany, Austria, Denmark, Greece, Ireland and Japan is given. The policy of fifteen another Members countries, which have been analyzed the previous years, is recapitulated and briefly brought up to date

  1. A Literature Review of Zero Energy Buildings (ZEB) Definitions

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per

    The report gives a Literature Review of Zero Energy Buildings (ZEB) Definitions. It all startede when the consequences of the oil crisis became noticeable and the issue of the fossil fuels sources and the energy use were discussed. Nevertheless, in the late seventies and early eighties appeared few...... articles, in which phrases‘a zero energy house', ‘a neutral energy autonomous house' or ‘an energy-independent house' were used.' were used....

  2. Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Delia D’Agostino

    2017-01-01

    Full Text Available Buildings are the focus of European (EU policies aimed at a sustainable and competitive low-carbon economy by 2020. Reducing energy consumption of existing buildings and achieving nearly zero energy buildings (NZEBs are the core of the Energy Efficiency Directive (EED and the recast of the Energy Performance of Building Directive (EPBD. To comply with these requirements, Member States have to adopt actions to exploit energy savings from the building sector. This paper describes the differences between deep, major and NZEB renovation and then it provides an overview of best practice policies and measures to target retrofit and investment related to non-residential buildings. Energy requirements defined by Member States for NZEB levels are reported comparing both new and existing residential and non-residential buildings. The paper shows how the attention given to refurbishment of NZEBs increased over the last decade, but the achievement of a comprehensive implementation of retrofit remains one of main challenges that Europe is facing.

  3. Defense Health Agency and the Deployment of the Electronic Health Record: Building an Organizational Framework for Implementation and Sustainment

    Science.gov (United States)

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. DEFENSE HEALTH ...AGENCY AND THE DEPLOYMENT OF THE ELECTRONIC HEALTH RECORD: BUILDING AN ORGANIZATIONAL FRAMEWORK FOR IMPLEMENTATION AND SUSTAINMENT by Anthony E...DEFENSE HEALTH AGENCY AND THE DEPLOYMENT OF THE ELECTRONIC HEALTH RECORD: BUILDING AN ORGANIZATIONAL FRAMEWORK FOR IMPLEMENTATION AND SUSTAINMENT 5

  4. 41 CFR 102-79.30 - May Federal agencies allot space in Federal buildings for establishing fitness centers?

    Science.gov (United States)

    2010-07-01

    ... allot space in Federal buildings for establishing fitness centers? 102-79.30 Section 102-79.30 Public... Space Fitness Centers § 102-79.30 May Federal agencies allot space in Federal buildings for establishing fitness centers? Yes, in accordance with 5 U.S.C. 7901, Federal agencies can allot space in Federal...

  5. Zero energy buildings in the logistics warehouse systems

    Science.gov (United States)

    Zajac, Pawel; Kwasniowski, Stanislaw

    2017-11-01

    The article discusses the evaluation of possible reductions of energy consumption in warehouse buildings and the analysis of construction and functioning of modern storage warehouses. For a warehouse the following are presented: operation evaluation measures and indexes, an energy balance, ideas for improvements in terms of energy conservation in particular functioning zones.

  6. Occupancy measurement in building: A litterature review, application on an energy efficiency research demonstrated building

    Directory of Open Access Journals (Sweden)

    Caucheteux A.

    2013-01-01

    Full Text Available Measuring the energy efficiency of buildings and its confrontation with the current Building Energy Simulations now faces knowledge of what is commonly called “occupancy”. This work has been made in order to implement a monitoring system on a research demonstrator building at DLRCA in Angers (France. The goals were first to know the occupancy as input data of models but also to build occupancy models. Occupancy can be defined as all the action of occupants that affect building energy efficiency. The chosen monitoring deals with its presence, lightning, windows opening and internal gains. It seems that the use of an Infra- red detector allows a accuracy of 5 min in the detection of presence. The use of dry contact sensors allows the detection of five different rates of slide windows opening that can affect temperature decrease. Light sensors seem to be efficient to detect artificial lighting states when correctly configured.

  7. Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

    Science.gov (United States)

    Antonopoulos, Chrissi Argyro

    This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed

  8. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  9. Energy management study: A proposed case of government building

    International Nuclear Information System (INIS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-01-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building

  10. Boston in Top 25 of EPA’s List of Cities with the Most Energy Star Certified Buildings

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has announced its tenth annual Top Cities list, which ranks the 25 U.S. metropolitan areas with the most Energy Star certified buildings and superior energy performance in the preceding calendar year.

  11. Energy Saving Homes and Buildings, Continuum Magazine, Spring 2014 / Issue 6 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2014-03-01

    This issue of Continuum focuses on NREL's research to improve the energy efficiency of residential and commercial buildings. Heating, cooling, and lighting our homes and commercial structures account for more than 70% of all electricity used in the United States. That costs homeowners, businesses, and government agencies more than $400 billion annually, about 40% of our nation's total energy costs. Producing that energy contributes almost 40% of our nation's carbon dioxide emissions.By 2030, an estimated 900 billion square feet of new and rebuilt construction will be developed worldwide, providing an unprecedented opportunity to create efficient, sustainable buildings. Increasing the energy performance of our homes alone could potentially eliminate up to 160 million tons of greenhouse gas emissions and lower residential energy bills by $21 billion annually by the end of the decade.

  12. Passive solar energy-efficient architectural building Design ...

    African Journals Online (AJOL)

    In this paper analyses have been done on the climate data for various climatic regions in North Cyprus to obtain physical architectural building design specification with a view to develop passive solar energy-efficient building. It utilizes a computer program, ARCHIPAK, together with climate data (for 25 year period) to get ...

  13. Energy Efficiency of Higher Education Buildings: A Case Study

    Science.gov (United States)

    Soares, Nelson; Pereira, Luísa Dias; Ferreira, João; Conceição, Pedro; da Silva, Patrícia Pereira

    2015-01-01

    Purpose: This paper aims to propose an energy efficiency plan (with technical and behavioural improvement measures) for a Portuguese higher education building--the Teaching Building of the Faculty of Economics of the University of Coimbra (FEUC). Design/methodology/approach: The study was developed in the context of both the "Green…

  14. Advanced Energy Efficiency Design Strategies In Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, S.; Torcellini, P.

    2000-08-17

    This paper presents two US retail building projects that were designed and constructed using the energy design process. These buildings, the BigHorn Center in Silverthorne, Colorado, and the Zion National Park Visitor Center in Springdale, Utah, were both completed and occupied during the spring of 2000.

  15. Load Matching and Grid Interaction of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Voss, Karsten; Sartori, Igor; Napolitano, Assunta

    2010-01-01

    “Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations...... of seasonal energy storage on-site. Even though the wording “Net Zero Energy Building” focuses on the annual energy balance, large differences may occur between solution sets in the amount of grid interaction needed to reach the goal. The paper reports on the analysis of example buildings concerning the load...... matching and grid interaction. Indices to describe both issues are proposed and foreseen as part of a harmonized definition framework. The work is part of subtask A of the IEA SHCP Task40/ECBCS Annex 52: “Towards Net Zero Energy Solar Buildings”....

  16. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low...

  17. Energy efficiency in public buildings; Eficiencia energetica em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Kiperstok, Asher; Garcia, Agenor Gomes Pinto; Vianna, Luis Gustavo; Freitas, Daniela; Oliveira, Braulio; Azevedo, Alexandre; Alves, Igor; Fagundes, Vitor Lacerda [Universidade Federal da Bahia (TECLIM/UFBA), Salvador, BA (Brazil). Rede de Tecnologias Limpas

    2010-07-01

    The implementation process of a energy management system in buildings of the Bahia state administration is presented. Completed a first phase, with a prior knowledge of the characteristics of the energy use in buildings and the implementation of a daily consumption monitoring system (the Vianet), a second phase begins with the definition of consumption targets and mobilization actions of the people, both the whole of the users, and more strongly the 'eco team', group which shall be responsible for the management. This paper makes a theoretical consideration on the use of energy in buildings, showing the room for energy management in addition to the simple exchange by efficient equipment, estimates the reduction obtained by the energy efficiency program of the electric utility with the exchange of light fixtures and air conditioners, shows the targeting process and difficulties found and identifies measures that will be implemented to achieve increasingly efficient patterns of energy use. (author)

  18. Evaluation of different weather files on energy analysis of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Michopoulos, Apostolos; Voulgari, Vassiliki; Papakostas, Konstantinos; Kyriakis, Nikolas [Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of Thessaloniki -- POB 487 -- 541 24 Thessaloniki (Greece)

    2012-07-01

    The building energy demand simulation tools consist the compass of the roadmap towards the energy efficient building. Apart from the software itself, the result of the simulation strongly depends on the degree the data used represent the actual situation, among which the climate data of the area are a key factor. In this work, the energy demand of a large building complex is estimated, using the widely accepted EnergyPlus building simulation software in combination with two, also widely accepted, weather files. The simulation results for heating are compared with the actual fuel consumption of a three-year operation period. The comparison reveals that the weather file and the size of the simulation domain significantly affect the simulation representativeness.

  19. Allegheny County Municipal Building Energy and Water Use

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains energy and water use information from 2010 to 2014 for 144 County-operated buildings. Metrics include: kBtu (thousand British thermal units),...

  20. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

    2013-07-01

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

  1. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  2. Geothermal energy - effective solutions for heating and cooling of buildings

    International Nuclear Information System (INIS)

    Veleska, Viktorija

    2014-01-01

    Energy and natural resources are essential prerequisites for the maintenance of the life and the development of human civilization. With the advancement of technology is more emphasis on energy efficiency and reducing carbon dioxide emissions. Energy efficiency is using less power without reducing the quality of life. Almost half of the energy used is devoted to buildings, including heating and cooling. Buildings are a major source of CO 2 emissions in the atmosphere. Reducing the impact of buildings on the environment and the development of renewable energy, energy solutions are key factor in terms of sustainable development. Energy and geothermal pumps posts represent effective solutions for large facilities for heating and cooling. Geothermal energy piles represent a system of pipes that circulate thermal fluid and embedded in earth, thus extracting heat from the bearing to satisfy the needs for heating and cooling. Experience has shown that this type of energy piles can save up to two thirds of the cost of conventional heating, while geothermal pump has the ability to low temperature resources (such as groundwater and earth) to extract energy and raise the higher level needed for heating buildings. Their implementation is supported by an active group of researchers working with industry to demonstrate the benefits of dual benefit performance at the foundations. Initiative for renewable heat and potential for further adoption of solutions with these technologies is rapidly expanding. The use of this source of energy has great potential due to environmental, economic and social benefits. (author)

  3. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  4. Discovering unexpected information using a building energy visualization tool

    Science.gov (United States)

    Lange, B.; Rodriguez, N.; Puech, W.; Vasques, X.

    2013-03-01

    Building energy consumption is an important problem in construction field, old buildings are gap of energy and they need to be refactored. Energy footprint of buildings needs to be reduced. New buildings are designed to be suitable with energy efficiency paradigm. To improve energy efficiency, Building Management Systems (BMS) are used: BMS are IT (Information Technology) systems composed by a rules engine and a database connected to sensors. Unfortunately, BMS are only monitoring systems: they cannot predict and mine efficiently building information. RIDER project has emerged from this observation. This project is conducted by several French companies and universities, IBM at Montpellier, France, leads the project. The main goal of this project is to create a smart and scalable BMS. This new kind of BMS will be able to dig into data and predict events. This IT system is based on component paradigm and the core can be extended with external components. Some of them are developed during the project: data mining, building generation model and visualization. All of these components will provide new features to improve rules used by the core. In this paper, we will focus on the visualization component. This visualization use a volume rendering method based on sensors data interpolation and a correlation method to create new views. We will present the visualization method used and which rules can be provided by this component.

  5. Environment, 1986-1997. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1998-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Environment and issued during the period of 1986-1997. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  6. Earth sciences. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Earth Sciences and issued during the period 1 January 1990 - 31 May 2001. Most publications are issued in English, though some are also available in other languages. This is noted as A for Arabic, C for Chinese, E for English, F for French, R for Russian and S for Spanish before the relevant ISBN number

  7. Current radiation protection activities of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1996-01-01

    The International Atomic Energy Agency (IAEA) program of the Radiation Safety Section is described in this paper. The Section has two main components: (1) the development of consensus safety documentation and (2) the use of that documentation as the basis for assisting countries to deal safely with their applications of radiation and radioactivity. Main activities of the section are listed for each of these components. Activities include documentation, coordinated research programs, and assistance to developing countries. 14 tabs

  8. Load Matching and Grid Interaction of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Voss, Karsten; Candanedo, José A.; Geier, Sonja

    2010-01-01

    “Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations of se...... matching and grid interaction. Indices to describe both issues are proposed and foreseen as part of a harmonized definition framework. The work is part of subtask A of the IEA SHCP Task40/ECBCS Annex 52: “Towards Net Zero Energy Solar Buildings”.......“Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations...... of seasonal energy storage on-site. Even though the wording “Net Zero Energy Building” focuses on the annual energy balance, large differences may occur between solution sets in the amount of grid interaction needed to reach the goal. The paper reports on the analysis of example buildings concerning the load...

  9. Simulations of Innovative Solutions for Energy Efficient Building Facades

    OpenAIRE

    Ahuja, Aashish

    2015-01-01

    The last decade has witnessed a heightened interest in making buildings more sustainable, which has been fueled largely by the relative increase in energy costs and advancements in manufacturing technology. Lighting consumes a substantial amount of the building energy consumption, making it necessary to look for alternative technology that depends more on natural lighting. A structural element for facades called the Translucent Concrete (TC) panel has been developed for capturing and deliveri...

  10. Optimal shaping and positioning of energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Barović Dušan D.

    2017-01-01

    Full Text Available Due to the number of variables and the complexity of objective functions, optimal design of an energy-efficient building is hard combinatorial problem of multi-objective optimisation. Therefore, it is necessary to describe structure and its position in surroundings precisely but by as few variables as possible. This paper presents methodology for finding adequate methodology for defining geometry and orientation of a given building, as well as its elements of importance for energy-efficiency analysis.

  11. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  12. Low-energy buildings: Bioclimatic improvements appropriate to Belgrade

    Directory of Open Access Journals (Sweden)

    MiloradoviĆ Nenad

    2006-01-01

    Full Text Available Buildings consume around 40% of the total world energy and bioclimatic architecture may achieve energy savings for heating and air conditioning purposes. The geometric shape of a building membrane, its compactness aerodynamics and orientation, building aggregation, the level of isolation as well as the layout and size of windows are all determining for the energy performance of a building. In this paper it is presented an optimized configuration for the low-energy construction basis of a building, which reduces energy exchange with surroundings. Such layout, with specific south-eastern orientation (because of "košava" wind influence is suitable for Belgrade constructions. Here is also presented an example of dense structures, which can be developed in urban areas. Above all, the advantage of such layout of the base is in its compactness, whereas south-eastern orientation allows for opportune heating of a building in the morning hours it increases its aerodynamics (by which it reduces ventilation loss for heating, and represents a compromise solution for winter and summer energy requirements.

  13. The energetic concept in the administration building of the Federal Environmental Agency in Dessau. Technical innovation for a sustainable operation; Das energetische Konzept im Dienstgebaeude des Umweltbundesamtes in Dessau. Technische Innovationen fuer einen nachhaltigen Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The new office building of the Federal Environmental Agency (Dessau-Rosslau, Federal Republic of Germany) was implemented as a pilot project for environmentally sustainable construction with high-energy targets. In order to reduce the consumption of fossil fuels significantly, the building should have a very low power consumption and enable a sustainable operation. A mostly compact form of the building and a highly insulated building envelope are a first prerequisite.

  14. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  15. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  16. Indoor air quality in energy efficient buildings. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Berge, Magnar

    2012-07-01

    There is currently a major focus on measures to reduce global warming. Several international studies show that the energy efficiency of buildings is the easiest and most cost-effective climate action. Passive houses are characterized of that the buildings are more airtight, have more insulation and has balanced mechanical ventilation with heat recovery. This report discusses about this one-sided focus on energy conservation, and if {sup c}hange{sup }in building methods can have a negative impact on indoor air quality and people's health. (Author)

  17. Main Street Zero Energy Buildings: The Zero Energy Method in Concept and Practice: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P.; Pless, S.; Lobato, C.; Hootman, T.

    2010-07-01

    Ongoing work at the National Renewable Energy Laboratory indicates that net-zero energy building (NZEB) status is both achievable and repeatable today. This paper presents a definition framework for classifying NZEBs and a real-life example that demonstrates how a large-scale office building can cost-effectively achieve net-zero energy.

  18. Energy Performance Evaluation of a Low-Energy Academic Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.

    2005-10-01

    This paper considers the energy performance analyses conducted to document and verify progress toward the building's design objectives. The authors present and discuss energy performance data and draw lessons that can be applied to improve the design of this and future low-energy buildings.

  19. Building a Road from Light to Energy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Anton; Bilby, David; Barito, Adam; Vyletel, Brenda

    2013-07-18

    Representing the Center for Solar and Thermal Energy Conversion (CSTEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of the Center for Solar and Thermal Energy Conversion (CSTEC) is to design and to synthesize new materials for high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new fundamental insights into equilibrium and non-equilibrium processes, including quantum phenomena, that occur in materials over various spatial and temporal scales.

  20. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...... of draught risk during a whole year, giving building designers a tool for the design stage of a building. The tool uses simple one-at-a-time calculations of flow elements and assesses the uncertainty of the result by counting the number of overlapping flow elements. The calculation time is low, making...... it usable in the early design stage to optimise the building layout. The tool provides an overview of the general draught pattern over a period, e.g. a whole year, and of how often there is a draught risk....

  1. The European Energy Policy: Building New Perspectives

    International Nuclear Information System (INIS)

    Maisonneuve, Cecile

    2014-04-01

    The origins of Europe's severe energy policy problems lie in a failed economic approach, which itself can be partly explained by political and ideological causes. This study seeks to address these political issues. Energy is not an exclusively economic issue, far from it. Since taxation and diplomacy are key aspects, energy is necessarily a political issue that policy-makers must handle. From this point of view, 2014 has to be seen as a political opportunity: it needs to be a year for re-founding a common policy fundamentally, based on two principles. First is the principle of realism, which implies re-situating energy policy in its international environment and putting the issue of costs back into the heart of political decision-making. The second principle is solidarity, in other words the clear restatement that there is a European general interest... which is not the sum of 28 national interests, but also that energy should be viewed as a system, and not as a collection of local policies and interests. Europe's common energy policy must retain its long term goal of ensuring the energy transition, but it must review the path to achieving this. This transition cannot be a technical, economic and geopolitical bet, which is presently the case. It has to be a controlled undertaking, implying governance and instruments. More generally, the transition requires a very different state of mind (Section III), compared to today's technocratic and non-cooperative approach (Section II), which has led to the prevailing state of energy chaos in Europe (Section I)

  2. Survey and Analysis of Weather Data for Building Energy Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL; New, Joshua Ryan [ORNL

    2012-01-01

    In recent years, calibrated energy modeling of residential and commercial buildings has gained importance in a retrofit-dominated market. Accurate weather data plays an important role in this calibration process and projected energy savings. It would be ideal to measure weather data at the building location to capture relevant microclimate variation but this is generally considered cost-prohibitive. There are data sources publicly available with high temporal sampling rates but at relatively poor geospatial sampling locations. To overcome this limitation, there are a growing number of service providers that claim to provide real time and historical weather data for 20-35 km2 grid across the globe. Unfortunately, there is limited documentation from 3rd-party sources attesting to the accuracy of this data. This paper compares provided weather characteristics with data collected from a weather station inaccessible to the service providers. Monthly average dry bulb temperature; relative humidity; direct, diffuse and horizontal solar radiation; and wind speed are statistically compared. Moreover, we ascertain the relative contributions of each weather variable and its impact on building loads. Annual simulations are calculated for three different building types, including a closely monitored and automated energy efficient research building. The comparison shows that the difference for an individual variable can be as high as 90%. In addition, annual building energy consumption can vary by 7% while monthly building loads can vary by 40% as a function of the provided location s weather data.

  3. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  4. A history of the Building Energy Standards Program

    Energy Technology Data Exchange (ETDEWEB)

    Shankle, D.L.; Merrick, J.A.; Gilbride, T.L.

    1994-02-01

    This report describes the history of the Pacific Northwest Laboratory`s (PNL`s) work in development of energy standards for commercial and residential construction in the United States. PNL`s standards development efforts are concentrated in the Building Energy Standards Program (the Program), which PNL conducts for the U.S. Department of Energy (DOE) Office of Codes and Standards. The Program has worked with DOE, the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), and other building codes and standards organizations to develop, evaluate, and promulgate energy standards in all sectors of the building industry. This report describes the recent history of U.S. code development and PNL`s contributions through the 1980s and early 1990s, up to the passage of the Energy Policy Act of 1992. Impacts to standards development resulting from the passage of this act will be described in other reports.

  5. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  6. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    International Nuclear Information System (INIS)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon

    2014-01-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO 2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13–22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement. - Highlights: • We assessed long-term impacts of building codes and climate policy using GCAM. • Building energy codes would reduce Chinese building energy use by 13–22%. • The impacts of codes on building energy use vary by climate region and sub-sector

  7. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    Science.gov (United States)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  8. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  9. Environmental issues in planning building energy efficiency R and D

    International Nuclear Information System (INIS)

    Farhar, B.C.

    1990-01-01

    The US Department of Energy's Office of Building Technologies (OBT) has initiated analyses on the relationship and impact of buildings energy conservation on the environment. A plethora of activities involving DOE, its national laboratories and other organizations are addressing various aspects of global climate change, acid rain, stratospheric ozone depletion, and indoor air quality. Elements of the current task include (1) a literature review of buildings' contribution to these problems; (2) inventories of OBT studies directly and indirectly related to these environmental problems, and other germane DOE and non-DOE projects; (3) identifying OBT projects that should be done; and (4) analyzing differential impacts on the environment of alternative OBT planning strategies and varying National Energy Strategy scenarios. The success of this project relies, at least in part, on suggestions from the buildings research community on information sources, literature, and ideas that OBT should consider

  10. Commercial building design and energy conservation: a preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, A.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titlted windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given. (MCW)

  11. Building-owners energy-education program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The objectives of the program are to develop and test market a cogent education program aimed specifically at building owners to help them be more decisive and knowledgeable, and to motivate them to direct their managers and professionals to implement a rational plan for achieving energy conservation in their commercial office buildings and to establish a plan, sponsored by the Building Owners and Managers Association International (BOMA) to implement this educational program on a nation-wide basis. San Francisco, Chicago, and Atlanta were chosen for test marketing a model program. The procedure used in making the energy survey is described. Energy survey results of participating buildings in San Francisco, Chicago, and Atlanta are summarized. (MCW)

  12. A Buildings Module for the Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  13. Distributed DC-UPS for energy smart buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Munoz, A.; Pallares-Lopez, V.; Real-Calvo, R.J.; Gil-de-Castro, A. [Universidad de Cordoba, Area de Electronica, Dpto. Arquitectura de Computadores, Electronica y Tecnologia Electronica, Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); De la Rosa, Juan Jose Gonzalez [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202 Algeciras-Cadiz (Spain)

    2011-01-15

    Energy efficiency (EE) improvement is one of the most important targets to be achieved on every society as a whole and in buildings in particular. Energy Smart Building aims to accelerate the uptake of EE, healthy buildings that by integrating smart technology and solutions consume radically little resources while enhancing the quality of life. This paper addresses how uninterruptible power supply (UPS), particularly when configured in distributed DC mode, can become an Energy Efficient (EE) solution in high tech buildings, especially when integrated with complimentary Power Quality (PQ) measures. The paper is based upon PQ audits conducted at different IT-intensive modern building. Some of the mayor objectives of the PQ studies were: detecting the main involved disturbances by PQ monitoring, identifying the power disturbances root causes, characterizing the electromagnetic compatibility level of equipments and installation and providing guidelines for implementing energy-efficiency solutions. It was found that the main problems for the equipment installed were harmonics and voltage sag (dip). Finally, this paper demonstrates the impacts of generalized electronic devices on the PQ of the buildings and the implications on energy uses. (author)

  14. Energy absorption and exposure build-up factors in teeth

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Rudraswamy, B.

    2010-01-01

    Full text: Gamma and X-radiation are widely used in medical imaging and radiation therapy. The user of radioisotopes must have knowledge about how radiation interacts with matter, especially with the human body, because when photons enter the medium/body, they degrade their energy and build up in the medium, giving rise to secondary radiation which can be estimated by a factor which is called the 'build-up factor'. It is essential to study the exposure build up factor in radiation dosimetry. G.P. fitting method has been used to compute energy absorption and exposure build-up factor of teeth (enamel outer surface (EOS), enamel middle (EM), enamel dentin junction towards enamel (EDJE), enamel dentin junction towards dentin (EDJD), dentin middle (DM) and dentin inner surface (DIS)) for wide energy range (0.015 MeV-15 MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption and exposure build up factor on incident photon energy, Penetration depth and effective atomic number has also been assessed. The relative dose distribution at a distance r from the point source is also estimated. The computed exposure and absorption build-up factors are useful to estimate the gamma and Bremsstrahlung radiation dose distribution teeth which is useful in clinical dosimetry

  15. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2015-11-01

    Full Text Available Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria. Measurements of indoor parameters (climate, chemical pollutants and biological contaminants were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  16. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    Science.gov (United States)

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  17. The Strategic Plan of the Nuclear Energy Agency, 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The OECD has been engaged in the past few years in a process of reform to take account of the impact of globalization on its Members' economies, and to allow for proper refocusing of its work, notably on the subject of sustainable development. These developments are having an impact on the Nuclear Energy Agency (NEA). The group on the future role of the NEA delivered its report at the end of January 1998 and one key recommendation is the elaboration of a strategic plan for the Agency. The recommendations made in the report served to stimulate a review of NEA goals, priorities, methods of work and products. This review has taken account of the recommendations in the report. The review served as the basis for this Strategic Plan for the NEA, which has been developed to provide guidance to the Agency in planning its activities and implementing its programmes over a five-year period. The report contains detailed description of the following topics:Mission of NEA: Strategic arenas of work, including sectorial arenas, Data bank, Information and communication; Interactions; Relations with non-member countries; Role of the Steering Committee for Nuclear Energy; Working methods; Resources. (R.P.)

  18. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  19. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    potential of the energy saving in the society it is very important to address the decisive involvement of the end-users. The human behaviour is the factor that affects the most the energy use in low-energy buildings and should be included in energy simulations. The results can then be linked to programs...... simulating the energy supply system in order to support the design of CO2-free communities. The cases considered, although referring to the Danish tradition in the construction sector and to the Danish climate, have a general value and are adaptable to other situations and countries. The results demonstrate...... that there is a large potential for distributing energy in areas with energy efficient buildings. As a measure for the feasibility of district heating, the linear heat density can be used as a representative value, and the results show that it is possible to supply heat with low-energy district heating networks...

  20. Energy efficiency in nonprofit agencies: Creating effective program models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Prindle, B.; Scherr, M.I.; White, D.L.

    1990-08-01

    Nonprofit agencies are a critical component of the health and human services system in the US. It has been clearly demonstrated by programs that offer energy efficiency services to nonprofits that, with minimal investment, they can educe their energy consumption by ten to thirty percent. This energy conservation potential motivated the Department of Energy and Oak Ridge National Laboratory to conceive a project to help states develop energy efficiency programs for nonprofits. The purpose of the project was two-fold: (1) to analyze existing programs to determine which design and delivery mechanisms are particularly effective, and (2) to create model programs for states to follow in tailoring their own plans for helping nonprofits with energy efficiency programs. Twelve existing programs were reviewed, and three model programs were devised and put into operation. The model programs provide various forms of financial assistance to nonprofits and serve as a source of information on energy efficiency as well. After examining the results from the model programs (which are still on-going) and from the existing programs, several replicability factors'' were developed for use in the implementation of programs by other states. These factors -- some concrete and practical, others more generalized -- serve as guidelines for states devising program based on their own particular needs and resources.

  1. Commercial Building Energy Asset Rating Program -- Market Research

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  2. Solar Energy for Pacific Northwest Buildings.

    Science.gov (United States)

    Reynolds, John S.

    Data presented in this report indicate that solar space and water heating are possible in the Pacific Northwest. The first section of the report contains solar records from several stations in the region illustrating space heating needs that could be met, on an average daily basis, by solar energy. The data are summarized, and some preliminary…

  3. The Cost of Enforcing Building Energy Codes: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-15

    The purpose of this study is to present key findings regarding costs associated with enforcing building energy code compliance–primarily focusing on costs borne by local government. Building codes, if complied with, have the ability to save a significant amount of energy. However, energy code compliance rates have been significantly lower than 100%. Renewed interest in building energy codes has focused efforts on increasing compliance, particularly as a result of the 2009 American Recovery and Reinvestment Act (ARRA) requirement that in order for states to receive additional energy grants, they must have “a plan for the jurisdiction achieving compliance with the building energy code…in at least 90 percent of new and renovated residential and commercial building space” by 2017 (Public Law 111-5, Section 410(2)(C)). One study by the Institute for Market Transformation (IMT) estimated the costs associated with reaching 90% compliance to be $810 million, or $610 million in additional funding over existing expenditures, a non-trivial value. [Majersik & Stellberg 2010] In this context, Lawrence Berkeley National Laboratory (LBNL) conducted a study to better pinpoint the costs of enforcement through a two-phase process.

  4. Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2015-07-01

    Full Text Available A Net Zero Energy Building (NZEB considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB, the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC/Energy in Buildings and Communities Programme (EBC Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

  5. International Atomic Energy Agency Publications. Catalogue 1980-1995

    International Nuclear Information System (INIS)

    1996-08-01

    This catalogue lists all sales publications of the International Atomic Energy Agency issued from 1980 up to the end of 1995 an still available. Some earlier titles which form part of an established series or are still considered of importance have been included. Most Agency publications are issued in English, though some are also available in Chinese, French, Russian or Spanish. This is noted as C for Chinese, E for English, F for French, R for Russian and S For Spanish by the relevant ISBN number. Proceedings of conferences, symposia, seminars and panels, of experts contain papers in their original language (English, French, Russian or Spanish) with abstracts in English and in the original language

  6. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  7. Energy optimization of office buildings; Energioptimering af kontorbyggeri

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Place Hansen, E.J. de (Statens Byggeforskningsinstitut (SBi), Hoersholm (Denmark)); Radisch, N.H.; Treldal, J. (Ramboell A/S, Koebenhavn (Denmark))

    2011-07-01

    The project analysed two main office building types - high-rises and low-rises - and calculated a number of parameters, using the simulation program BSim. Calculations showed that the overall building design and orientation effect is moderate compared with, for instance, use of daylight control and low-energy lighting, computers, etc. Considerable energy savings can be achieved by use of natural ventilation in the summer, thus only using mechanical ventilation with heat recovery during the day in the winter. Open-plan offices result in a better indoor climate and lower energy consumption than cubicle offices. (LN)

  8. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  9. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...

  10. Scheduling home appliances for energy efficient buildings

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Kardaras, Georgios; Iversen, Villy Bæk

    2010-01-01

    appliances is proposed and analyzed. The main concept behind this approach is the aggregation of home appliances into priority classes and the definition of a maximum power consumption threshold, which is not allowed to be exceeded during peak hours. The scenario simulated describes a modern household, where...... the electrical devices are classified into low and high priority groups. The high priority devices are always granted power in order to operate normally. On the contrary, the low priority devices are granted or denied access to electrical power according to; their energy consumption and the available margin....... This can become beneficial for both energy companies and users. The electricity suppliers companies will be capable of regulating power generation during demand peaks. Moreover, users can be granted lower electricity bill rates for accepting delaying the operation of some of their appliances. To analyze...

  11. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  12. International Atomic Energy Agency. Highlights of activities. September 1993

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1993-09-01

    This document describes the most important activities of the International Atomic Energy Agency during the period September 1992 - September 1993, in particular in the following areas: (i) nuclear power; (ii) nuclear fuel cycle; (iii) radioactive waste management; (iv) comparative assessment of energy sources; (v) IAEA laboratory activities; (vi) nuclear applications in the food industry and in agriculture; (vii) human health applications of nuclear techniques, especially in the treatment and prevention of diseases and in the analysis of health problems related to the environment; (viii) industry and earth sciences; (ix) physical and chemical sciences; (x) radiation protection; (xi) safety of nuclear installations; (xii) safeguards and non-proliferation activities; (xiii) activities in the area of public and technical information such as the International Nuclear Information System (INIS) and other IAEA computerized databases and reference systems, the publication Nuclear Fusion, a monthly scientific journal of articles on thermonuclear fusion research and development, and the organization of meetings on atomic energy; and (xiv) a description of the Agency's technical assistance activities, including financial data

  13. Safety Culture Implementation in Indonesian Nuclear Energy Regulatory Agency (BAPETEN)

    International Nuclear Information System (INIS)

    Nurwidi Astuti, Y.H.; Dewanto, P.

    2016-01-01

    The Indonesia Nuclear Energy Act no. 10 of 1997 clearly stated that Nuclear Energy Regulatory Agency (BAPETEN) is the Nuclear Regulatory Body. This is the legal basis of BAPETEN to perform regulatory functions on the use of nuclear energy in Indonesia, including regulation, authorisation, inspection and enforcement. The Independent regulatory functions are stipulated in Article 4 and Article 14 of the Nuclear Energy Act no. 10 (1997) which require the government to establish regulatory body that is reporting directly to the president and has responsibility to control of the use of nuclear energy. BAPETEN has been start fully its functioning on January 4, 1999. In it roles as a regulatory body, the main aspect that continues and always to be developed is the safety culture. One of the objectives of regulatory functions is “to increase legal awareness of nuclear energy of the user to develop safety culture” (Article 15, point d), while in the elucidation of article 15 it is stipulated that “safety culture is that of characteristics and attitudes in organizations and individual that emphasise the importance of safety”.

  14. Building change: Effects of professional culture and organizational context on energy efficiency adoption in buildings

    Science.gov (United States)

    Janda, Kathryn Bess

    1998-12-01

    Despite the apparent benefits of energy-efficient buildings, energy efficiency measures have not been widely adopted by the building industry. My dissertation addresses the question "If energy efficiency is such a good idea, why isn't there more of it?" by studying the two professional groups that have the most influence over building design: architects and engineers. My hypothesis is that the professional cultures and organizational contexts of building designers can and do influence the achievable potential for energy efficiency in buildings. "Professional culture" describes what architects and engineers are generally taught (both directly and indirectly) to want in a building. "Organizational context" refers to where and how an individual architect or engineer does his or her work. Two utility-funded demand-side management projects provide data for this effort. I use technologies, designers, and decisions from these projects to explore the effects of engineering-economic information, professional culture, and organizational context on energy efficiency adoption. My results show that even in situations where cost and information barriers are overcome, professional culture and organizational contexts affect energy efficiency adoption. My conclusions recommend treating energy efficiency in the built environment as a socio-technical problem, not an engineering-economic one. To improve energy efficiency adoption in the short term, efficiency advocates should focus on organizational context, matching efficient technologies with the firm types most likely to adopt them. To generate market transformation in the long term, efficiency advocates should focus on educating future generations of designers to include efficiency in their professional cultures.

  15. 76 FR 62055 - Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission, Public Service...

    Science.gov (United States)

    2011-10-06

    ... Energy Regulatory Commission Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission, Public Service Commission of Yazoo City, Arkansas Electric Cooperative Corporation, South Mississippi... Agency, Clarksdale Public Utilities Commission of the City of Clarksdale, Mississippi, Public Service...

  16. Guidelines for Energy Simulation of Commercial Buildings: Final.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Michael; Caner, Phoebe

    1992-03-01

    This report distills the experience gained from intensive computer building simulation work for the Energy Edge project. The purpose of this report is twofold: to use that experience to guide conservation program managers in their use of modeling, and to improve the accuracy of design-phase computer models. Though the main emphasis of the report is on new commercial construction, it also addresses modeling as it pertains to retrofit construction. To achieve these purposes, this report will: (1) discuss the value of modeling for energy conservation programs; (2) discuss strengths and weaknesses of computer models; (3) provide specific guidelines for model input; (4) discuss input topics that are unusually large drivers of energy use and model inaccuracy; (5) provide guidelines for developing baseline models; (6) discuss types of energy conservation measures (ECMs) and building operation that are not suitable to modeling and present possible alternatives to modeling for analysis; and (7) provide basic requirements for model documentation. This project was initiated to determine whether commercial buildings can be designed and constructed to use at least 30% less energy than if they were designed and built to meet the current regional model energy code, the Model Conservation Standards (MCS) developed by the Pacific Northwest Electric Power and Conservation Planning Council. Secondary objectives of the project are to determine the incremental energy savings of a wide variety of ECMs and to compare the predictive accuracy of design-phase models with models that are carefully tuned to monitored building data.

  17. Analysis of alternative strategies for energy conservation in new buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Tawil, J.J.

    1980-12-01

    Building Energy Performance Standards (BEPS) were mandated by the Energy Conservation Standards for New Buildings Act of 1976 (Title III of Energy Conservation and Production Act) to promote energy efficiency and the use of renewable resources in new buildings. The report analyzes alternative Federal strategies and their component policy instruments and recommends a strategy for achieving the goals of the Act. The concern is limited to space conditioning (heating, cooling, and lighting) and water heating. The policy instruments considered include greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are then described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) BEPS with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings. (MCW)

  18. Energy consumption in buildings and female thermal demand

    Science.gov (United States)

    Kingma, Boris; van Marken Lichtenbelt, Wouter

    2015-12-01

    Energy consumption of residential buildings and offices adds up to about 30% of total carbon dioxide emissions; and occupant behaviour contributes to 80% of the variation in energy consumption. Indoor climate regulations are based on an empirical thermal comfort model that was developed in the 1960s (ref. ). Standard values for one of its primary variables--metabolic rate--are based on an average male, and may overestimate female metabolic rate by up to 35% (ref. ). This may cause buildings to be intrinsically non-energy-efficient in providing comfort to females. Therefore, we make a case to use actual metabolic rates. Moreover, with a biophysical analysis we illustrate the effect of miscalculating metabolic rate on female thermal demand. The approach is fundamentally different from current empirical thermal comfort models and builds up predictions from the physical and physiological constraints, rather than statistical association to thermal comfort. It provides a substantiation of the thermal comfort standard on the population level and adds flexibility to predict thermal demand of subpopulations and individuals. Ultimately, an accurate representation of thermal demand of all occupants leads to actual energy consumption predictions and real energy savings of buildings that are designed and operated by the buildings services community.

  19. Safeguards and legal matters 1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all currently valid sales publications of the International Atomic Energy Agency dealing with Safeguards and Legal Matters. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all of these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  20. Earth sciences 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists sales publications of the International Atomic Energy Agency dealing with Earth Sciences issued during the period 1969-1994. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  1. R and D programs of the International Energy Agency

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1989-01-01

    This paper provides a description of the collaborative research program of the International Energy Agency. Focusing on the organization of the program, rather than attempting to cover the technical content of the research, the discussion conveys how its operation is facilitated through a framework that takes account of the interests of participating governments as well as technical objectives. Some Canadian activities in the IEA program are briefly described as illustration and a list of current IEA Research Agreements and associated activities is presented in an Appendix

  2. A roadmap for navigating voluntary and mandated programs for building energy efficiency

    International Nuclear Information System (INIS)

    Peterman, Andrew; Kourula, Arno; Levitt, Raymond

    2012-01-01

    Commercial building owners and managers often face the challenge of selecting the appropriate combination of voluntary and mandated programs for commercial building energy efficiency. Using a mixed-method, both quantitative and qualitative approach, this study finds that barriers to energy efficiency can be interpreted as strategic drivers for the emergence of five forms of voluntary and mandated program forms. We argue that the links between energy efficiency programs in commercial buildings should be conceptualized in a comprehensive manner by evaluating the strategic drivers that have ultimately led to the emergence of the principal forms of voluntary programs: economic incentives; certifications; alliances and partnerships; and internal company programs. We develop a conceptual framework that helps building owners and managers: identify the primary drivers for energy efficiency efforts; assess the efficacy and limitations of available program forms; apply each program form strategically in conjunction with a number of other program forms; and, ultimately, predict the emergence of new program forms. In addition to United States Department of Energy survey data, this study draws upon data collected through semi-structured interviews with experts at major U.S.-based corporations, federally funded laboratories, government agencies, and non-governmental organizations. - Highlights: ► Distills a complex system of energy efficiency programs into a single framework. ► Classify drivers, emerging forms, and shortcomings of each voluntary program form. ► Present survey and interview data from retail, real estate, and hospital experts. ► None of these programs alone meet organizational needs for energy efficiency. ► Entrepreneurs will play a key role by capitalizing on broken agency challenges.

  3. Opportunities of energy saving in lighting systems for public buildings

    Directory of Open Access Journals (Sweden)

    Ayman Abd El-khalek

    2017-03-01

    Full Text Available The lighting system provides many options for cost-effective energy saving with low or no inconvenience. Lighting improvements are excellent investments in most public buildings, it is usually cost-effective to address because lighting improvements are often easier to make than many process upgrades.For public buildings, the easy no and low cost options to help save money and improve the energy performance are:Understand energy use.Identify optionsPrioritize actionsMake the changes and measure the savings.Continue managing energy efficiency.The challenge is to retrofit traditional lamps with LED lamps of good quality. The benefits of LED light bulbs are long-lasting, durable, cool, mercury free, more efficient, and cost effective.The light Emitting Diode (LED bulb uses a semiconductor as its light source, and is currently one of the most energy efficient and quickly developing types of bulbs for lighting. LEDs increasingly are being purchased to replace traditional bulbs. LEDs are relatively more expensive than other types of bulbs, but are very cost-effective because they use only a fraction of electricity of traditional lighting methods nd can last for longer.Benchmarking guides decision makers to policies aimed at the energy sector through better understanding of energy consumption trends nationwide, e.g.: energy price, moderating, peak demand, and encouraging sectors, low energy expansions.The “Improving Energy Efficiency Project of Lighting and Appliances” carried out energy audits and implemented opportunities of energy saving in lighting for different type of public buildings.To rationalize the use of energy by giving guidelines to consumers, the IEEL&A project prepared some brochures.This paper leads with the results of case studies as energy audits, opportunities in lighting systems, energy saving and CO2 reduction.

  4. BUILDING TRIBAL CAPABILITIES IN ENERGY RESOURCE TRIBES

    Energy Technology Data Exchange (ETDEWEB)

    Mary Lopez

    2003-04-01

    The CERT Tribal Internship Program is part of the education and training opportunities provided by CERT to accelerate the development of American Indian technical professionals available to serve Tribes and expand the pool of these professionals. Tribes are severely impacted by the inadequate number of Indian professionals available to serve and facilitate Tribal participation and support of the energy future of Tribes,and subsequently the energy future of the nation. By providing interns with hands-on work experience in their field of study two goals are accomplished: (1) the intern is provided opportunities for professional enhancement; and (2) The pool of Indian professionals available to meet the needs of Tribal government and Tribal communities in general is increased. As of January 17, 2003, Lance M Wyatt successfully completed his internship with the Interagency Working Group on Environmental Justice on the Task Force that specifically focuses their work on Tribal nations. While working as an intern with the National Transportation Program, Albuquerque operations, Jacqueline Agnew received an offer to work for the Alaska Native Health Board in Anchorage, Alaska. This was an opportunity that Ms. Agnew did not feel she could afford to forego and she left her internship position in February 2003. At present, CERT is in the process of finding another qualified individual to replace the internship position vacated by Ms. Agnew. Mr. Wyatt's and Ms. Agnew's final comments are given.

  5. KEY ASPECTS OF ENSURING ENERGY EFFICIENCY OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    S.G. Abramyan

    2017-06-01

    Full Text Available The paper is based on the review of the foreign and national academic literature and intended to emphasize the issues of ensuring energy efficiency of buildings and structures applicable to all the countries as for reconstruction of existing buildings as for erection of new ones . The author highlights the key aspects of the provision of energy efficiency of buildings and structures in some foreign countries. The conclusion is made that the studies are mainly aimed at discovering new heat insulation materials, whereby polystyrene insulation is found to be the most widespread wall insulation material in a number of countries. At the same time, it is observed that the ongoing research is focused on solutions to optimize the structure of walling systems in terms of both insulant thickness and the number and sequence of insulation layers in the walling structure. A conclusion is made that hyper insulation of external walls leads to considerable expenses arising due to cooling during the summer season. The use of prefabricated vacuum panels as a heat insulation layer and off-the-shelf single-layer structures, subject to their heat insulation characteristics, appears a more constructive way to meet the energy efficiency requirements, as the arrangement of ideal air space in multilayered walls proves a significant challenge today. One of the most promising ways to ensure energy efficiency is the use of multifunctional polyvalent walls and provision of polyvalent heat supply from renewable energy sources. Since energy efficiency depends on the spatial arrangement of buildings, construction must ensure a minimum ratio of the area of enclosing structures to the overall building volume (by adding on new facilities in case of reconstruction. It is noted that a systemic approach to ensuring energy efficiency of buildings is impossible without proper regard to the environmental parameters of heat insulation materials.

  6. Enforcing Building Energy Codes in China: Progress and Comparative Lessons

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Halverson, Mark A.; Delgado, Alison

    2010-08-15

    From 1995 to 2005, building energy use in China increased more rapidly than the world average. China has been adding 0.4 to 1.6 billion square meters of floor space annually , making it the world’s largest market for new construction. In fact, by 2020, China is expected to comprise half of all new construction. In response to this, China has begun to make important steps towards achieving building energy efficiency, including the implementation of building energy standards that requires new buildings to be 65% more efficient than buildings from the early 1980s. Making progress on reducing building energy use requires both a comprehensive code and a robust enforcement system. The latter – the enforcement system – is a particularly critical component for assuring that a building code has an effect. China has dramatically enhanced its enforcement system in the past two years, with more detailed requirements for ensuring enforcement and new penalties for non-compliance. We believe that the U.S. and other developed countries could benefit from learning about the multiple checks and the documentation required in China. Similarly, some of the more user-friendly enforcement approaches developed in the U.S. and elsewhere may be useful for China as it strives to improve enforcement in rural and smaller communities. In this article, we provide context to China’s building codes enforcement system by comparing it to the U.S. Among some of the enforcement mechanisms we look at are testing and rating procedures, compliance software, and training and public information.

  7. Building energy efficiency and its effect on the frost insulation

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    The energy efficiency of new buildings has improved significantly and is still improving. As the thermal insulation of the building envelope increases other properties and 'thumb' values might also change. Especially when the thermal transmittance (U-value) of the slab on the ground decreases, the frost insulation should also be reconsidered. The aim of this study is to find out how the frost insulation changes when the base floor and foundation insulation change. (orig.)

  8. A SCADA System for Energy Management in Intelligent Buildings

    OpenAIRE

    Figueiredo, Joao; Sá da Costa, Jose

    2012-01-01

    This paper develops an energy management platform for intelligent buildings using a SCADA system (Supervisory Control And Data Acquisition). This SCADA system integrates different types of information coming from the several technologies present in modern buildings (control of ventilation, temperature, illumination, etc.). The developed control strategy implements an hierarchical cascade controller where inner loops are performed by local PLCs (Programmable Logic Controller), and the outer...

  9. Capacity building in renewable energy technologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, Ingvar

    2010-09-15

    The renewable energy sources are expected to provide 20-40% of the world primary energy in 2050, depending on scenarios. A key element in the mitigation of climate change is capacity building in renewable energy technologies in the developing countries, where the main energy use growth is expected. An innovative training programme for geothermal energy professionals developed in Iceland is an example of how this can be done effectively. In 1979-2009, 424 scientists/engineers from 44 developing countries have completed the 6 month courses. In many countries in Africa, Asia, C-America, and E-Europe, UNU-GTP Fellows are among the leading geothermal specialists.

  10. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    DEFF Research Database (Denmark)

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    The focus on reducing buildings energy consumption is gradually increasing, and the optimization of a building’s performance and maximizing its potential leads to great challenges between architects and engineers. In this study, we collaborate with a group of architects on a design project of a new...... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  11. Building climate energy management in smart thermal grids via aquifer thermal energy storage systems

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Jaxa-Rozen, M.; Bloemendal, J.M.; Keviczky, T.; Ask, M; Bruckman, V; Juhlin, C; Kempka, Th; Kühn, M

    2016-01-01

    This paper proposes a building energy management framework, described by mixed logical dynamical systems due to operating constraints and logic rules, together with an aquifer thermal energy storage (ATES) model. We develop a deterministic model predictive control strategy to meet building

  12. Distributed energy resources at naval base ventura county building 1512

    International Nuclear Information System (INIS)

    Bailey, Owen C.; Marnay, Chris

    2004-01-01

    This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year

  13. Model code for energy conservation in new building construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    In response to the recognized lack of existing consensus standards directed to the conservation of energy in building design and operation, the preparation and publication of such a standard was accomplished with the issuance of ASHRAE Standard 90-75 ''Energy Conservation in New Building Design,'' by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., in 1975. This standard addressed itself to recommended practices for energy conservation, using both depletable and non-depletable sources. A model code for energy conservation in building construction has been developed, setting forth the minimum regulations found necessary to mandate such conservation. The code addresses itself to the administration, design criteria, systems elements, controls, service water heating and electrical distribution and use, both for depletable and non-depletable energy sources. The technical provisions of the document are based on ASHRAE 90-75 and it is intended for use by state and local building officials in the implementation of a statewide energy conservation program.

  14. Energy in the urban environment: the role of energy use and energy efficiency in buildings; Final

    International Nuclear Information System (INIS)

    Levine, Mark D.; Meier, Alan K.

    1999-01-01

    A century ago, the world had many cities of which the greatest were magnificent centers of culture and commerce. However, even in the most industrialized countries at the time, only a tiny fraction of the people lived in these cities. Most people lived in rural areas, in small towns, in villages, and on farms. Visits to a great city were, for most of the population, uncommon events often of great fascination. The world has changed dramatically in the intervening years. Now most of the industrial world lives in urban areas in close proximity to large cities. Industry is often located in these vast urban areas. As the urbanized zones grow in extent, they begin to approach one another, as on the East Coast of the United States. The phenomenon of urbanization has moved to developing countries as well. There has been a flood of migrants who have left impoverished rural areas to seek economic opportunities in urban areas throughout the developing world. This movement from the countryside to cities has changed the entire landscape and economies of developing nations. Importantly, the growth of cities places very great demands on infrastructure. Transportation systems are needed to assure that a concentrated population can receive food from the countryside without fail. They are needed to assure personal and work-related travel. Water supplies must be created, water must be purified and maintained pure, and this water must be made available to a large population. Medical services - and a host of other vital services - must be provided to the population. Energy is a vital underpinning of all these activities, and must be supplied to the city in large quantities. Energy is, in many ways, the enabler of all the other services on which the maintenance of urban life depends. In this paper, we will discuss the evolution of energy use in residential and commercial buildings. This topic goes beyond urban energy use, as buildings exist in both urban and non-urban areas. The topic

  15. Proposal for the International Atomic Energy Agency Training Course

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1994-06-01

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O'Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site

  16. Energy consumption of buildings depends on the daylight

    Directory of Open Access Journals (Sweden)

    Piotrowska Ewa

    2017-01-01

    Full Text Available In order to reduce energy consumption in heated buildings and thus fossil fuels, there is a need for proper modernization of existing buildings and new construction with reduced energy demand. The size and the insulation of windows have a decisive influence on the amount of heat loss. The study looks into the impact of decreased power consumption through optimal use of sunlight through the selection of the size of windows, type of windows, and adjusting the light intensity using an automatic control of lighting according to the amount of sunlight reaching the room. The research related to the differences between the six types of windows in relations to the energy consumption of the building.

  17. Enhancing energy efficiency in public buildings: The role of local energy audit programmes

    International Nuclear Information System (INIS)

    Annunziata, Eleonora; Rizzi, Francesco; Frey, Marco

    2014-01-01

    In the objective of reaching the “nearly zero-energy buildings” target set by the European Union, municipalities cover a crucial role in advocating and implementing energy-efficient measures on a local scale. Based on a dataset of 322 municipalities in Northern Italy, we carried out a statistical analysis to investigate which factors influence the adoption of energy efficiency in municipal buildings. In particular, the analysis focuses on four categories of factors: (i) capacity building for energy efficiency, (ii) existing structure and competences for energy efficiency, (iii) technical and economic support for energy efficiency, and (iv) spill-over effect caused by adoption of “easier” energy-efficient measures. Our results show that capacity building through training courses and technical support provided by energy audits affect positively the adoption of energy efficiency in municipal buildings. The size of the municipal authority, the setting of local energy policies for residential buildings and funding for energy audits are not correlated with energy efficiency in public buildings, where the “plucking of low hanging fruit” often prevails over more cost-effective but long-term strategies. Finally, our results call for the need to promote an efficient knowledge management and a revision of the Stability and Growth Pact. - Highlights: • Public procurement supports the deployment of the energy efficiency of buildings. • Energy audits and other factors influence energy efficiency in public buildings. • Econometric analysis applied to data from 322 municipalities in Northern Italy. • Municipalities need to overtake the “plucking of low-hanging fruit”. • Knowledge management should be associated with removal of budget constraints

  18. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  19. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    appears to have the largest impact on thermal flexibility. The importance of window design, namely the size, U-value and orientation, is underlined due to its critical influence on solar gains and heat losses. It is eventually observed that thermal mass has a secondary influence on the evaluated......This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal...... flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heating power peak creation. Under the conditions of this study, the thermal transmittance of the envelope...

  20. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  1. Exploring new techniques for displaying complex building energy consumption data

    Energy Technology Data Exchange (ETDEWEB)

    Haberl, J. [Energy Systems Lab., Texas Engineering Experiment Station, Texas A and M Univ. System, College Station, TX (United States); Sparks, R. [Energy Systems Lab., Texas Engineering Experiment Station, Texas A and M Univ. System, College Station, TX (United States); Culp, C. [Emerson Electric Advanced Development Center, Copeland Corp., Sydney, OH (United States)

    1996-12-01

    This paper explores advanced data displays which may help building operators better understand complex energy data by enhancing the display of the data with animation (or time-sequencing). Animated displays such as the ones developed in this paper enhance the usefulness of static graphic displays because time and temperature dependent trends can be immediately seen. This is particularly useful for buildings because many of the energy consuming loads are schedule and temperature dependent. There is an increasing need for new display paradigms that can help building operators visually diagnose complex problems that may otherwise not be detected by efficient energy management and control system (EMCS) algorithms. This need becomes even more important during times of a shrinking labor pool as building operators are being asked to perform more complex control and monitoring tasks. In this paper animated displays have been developed specifically for use in viewing building energy data. Several examples are provided from a large engineering center in central Texas where the animated displays make a faulty flow meter easier to diagnose and allow the operator to visually detect simultaneous heating and cooling. (orig.)

  2. Impact of Weather and Occupancy on Energy Flexibility Potential of a Low-energy Building

    DEFF Research Database (Denmark)

    Zilio, Emanuele; Foteinaki, Kyriaki; Gianniou, Panagiota

    The introduction of renewable energy sources in the energy market leads to instability of the energy system itself; therefore, new solutions to increase its flexibility will become more common in the coming years. In this context the implementation of energy flexibility in buildings is evaluated...... solar radiation and the outdoor temperature appeared to have the larger impact on the thermal flexibility of the building. Specifically, the energy flexibility potential of the examined apartment can ensure its thermal autonomy up to 200 h in a typical sunny winter day......., using heat storage in the building mass. This study focuses on the influence of weather conditions and internal gains on the energy flexibility potential of a nearly-zero-energy building in Denmark. A specific six hours heating program is used to reach the scope. The main findings showed that the direct...

  3. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  4. Deep Energy Retrofit Guidance for the Building America Solutions Center

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services and miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs. They are intended for inclusion in the online resource the Building America Solutions Center (BASC). This document is an assemblage of multiple entries in the BASC, each of which addresses a specific aspect of Deep Energy Retrofit best practices for projects targeting at least 50% energy reductions. The contents are based upon a review of actual DERs in the U.S., as well as a mixture of engineering judgment, published guidance from DOE research in technologies and DERs, simulations of cost-optimal DERs, Energy Star and Consortium for Energy Efficiency (CEE) product criteria, and energy codes.

  5. Technical Support Document: 50% Energy Savings for Small Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  6. Ultra high benefits system for electric energy saving and management of lighting energy in buildings

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Presenting a novel multi channel smart system to manage lighting energy in buildings. • Saving considerable electric energy which is converted to lighting in buildings. • Providing desired constant and adjustable luminance for each location in buildings. • Capability of working with all AC electric power sources. • To automatically control and manage lighting energy in buildings. - Abstract: This paper presents a smart system, including a multi channel dimmer and a central process unit (CPU) together with an exact multi channel feedback mechanism, which automatically regulates and manages lighting in buildings. Based on a multi channel luminance feedback, a high benefits technique is utilized to convert the electric energy to lighting energy. Saving a lot of the electric energy which should be converted to lighting energy in buildings, managing the lighting energy in buildings, providing desired constant and adjustable luminance for each room (location), and the capability of working with all AC electric power sources regardless of frequency and voltage amplitude are some advantages of using the proposed system and technique, thus it will be widely used in buildings. An experimental prototype of the proposed smart system has been constructed to validate the theoretical results and to carry out the experimental tests. Experimental results earned by utilizing the proposed smart system in a sample building are presented to prove the benefits of using the system. The experimental results explicitly show a considerable electric energy saving (about 27%) in the sample building while the proposed system has provided desired constant and adjustable luminance for each location of the building

  7. The International Atomic Energy Agency: activities and relationship with Mexico

    International Nuclear Information System (INIS)

    Abud Osuna, Javier.

    1987-01-01

    Legal and political studies on the activities of the IAEA infer that the pacific uses of nuclear energy become more significant every day in the ambit of international relationships. The studies analyze as a whole relationships among member states. The first part is divided into four chapters, starting with the background and creation of the agency, its structure, statutes, amendments and the performance of its main organisms. It continues to describe mechanisms and programmes carried out, including cooperation agreements between the IAEA and other specialized organizations in the United Nations. It ends up with the IAEA performance resulting from different treaties. The second part examines Mexican norms on nuclear matter as well as relationships between Mexico and the IAEA. It demonstrates that achievements in the Agency have been possible because of the establishment of an international cooperation basis, which avoids duplicity of actions. The conclusions recommend joint efforts from both the developed and the developing countries in the following: a) to imbue public opinion with the goodness of nuclear energy; b) to discourage the construction and operation of nuclear installations; c) to unify national standards on nuclear safety and control; d) to decrease export restrictions, based on safeguards; e) to promote internal nuclear research in Mexico or throught regional integration agreements, with technical assistance and support from the IAEA. (author)

  8. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  9. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  10. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for development of advanced energy-efficient building technologies, software, and standards. That investment has helped spawn a $2.4-billion U.S. market for key products-energy-efficient lighting and advanced window coatings-and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 we estimate that the products of that investment will save consumers $16 billion annually. LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. We analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. We develop planning and demand-management methodologies for electric and gas utilities. We identify technologies and analytical methods for improving human comfort and the quality of indoor air. We contribute to the information superhighway. We focus on the special problems and opportunities presented by energy use in the public sector. And we do all these things at the local, national, and international levels. At LBL, we are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. We also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  11. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for energy-efficiency studies of advanced building technologies. That investment has helped spawn a $2.4-billion US market for key products -- energy-efficient lighting and advanced window coatings -- and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 the authors estimate that the products of that investment will save consumers $16 billion annually. But LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. They analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. They develop planning and demand-management methodologies for electric and gas utilities. They identify technologies and analytical methods for improving human comfort and the quality of indoor air. They contribute to the information superhighway. They focus on the special problems and opportunities presented by energy use in the public sector. And they do all these things at the local, national, and international levels. At LBL, they are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. They also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  12. Building a Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  13. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    International Nuclear Information System (INIS)

    Feng Yanping; Wu Yong; Liu Changbin

    2009-01-01

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  14. Building heating and cooling applications thermal energy storage program overview

    Science.gov (United States)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  15. Towards more financing options for energy efficient buildings and houses

    International Nuclear Information System (INIS)

    Vethman, P.; Menkveld, M.

    2012-02-01

    This article offers an impression of the problems related to the limited financial options for energy efficient buildings and dwellings and possible solutions. It is based on a recent ECN study (RE-BIZZ) and several interviews about this topic with financers. There is a need for a more business appreciation of market parties such as financers for energy efficiency in buildings to increase financing options. The market needs the help of the government, which can help to remove barriers and hence make financing more appealing. [nl

  16. Energy conservation in existing office buildings. Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Phase III deals with the constraints and/or the adverse consequences of possible conservation measures and how to overcome any barriers. Further, it develops realistic energy-consumption budgets, if it is determined that this is the proper approach; if not, it proposes an alternate approach; and it indicates applicability to other building types and geographical regions of the US. This report concerns itself with the findings, and conclusions with respect to these issues are given. Also included in the appendix is a revision of Questionnaire No. 2, a uniform building energy information form. (MCW)

  17. Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption

    International Nuclear Information System (INIS)

    Herrando, María; Cambra, David; Navarro, Marcos; Cruz, Lucio de la; Millán, Gema; Zabalza, Ignacio

    2016-01-01

    Highlights: • Most of the Faculty Buildings studied are within the average of CO 2 emissions. • Academic and Research buildings have a similar simulated energy consumption. • Several restrictions found in the official Energy Performance Certification tool. • Average deviation of 30% between estimated and real energy consumption. • Electrical equipment and user behaviour notably increase the energy performance gap. - Abstract: A systematic method has been established to perform and analyse in detail the Energy Performance Certification of 21 Faculty Buildings located at the University of Zaragoza (Spain), according to the transposition of Directive 2010/31/EU. First of all, the problem background and a review of the state-of-the-art of the energy certification in buildings is outlined, regarding both the actual state of the Government regulations and the studies undertaken in several countries to assess the energy performance of different types of buildings, residential and non-residential. A summary of the causes found in other studies for the discrepancies between the estimated (by simulation) and actual energy consumption is shown which is afterwards tested and compared with the results found in the present study. Thereafter, the method followed to undertake the buildings’ Energy Performance Certification is explained, and the main results found together with the discussion are detailed, comparing actual vs. estimated energy consumption in the different case studies and proposing reasons for these deviations. The energy consumption breakdown by uses for several buildings is also analysed, and potential improvements for the simulation software are assessed.

  18. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  19. Conserving energy in new buildings: analysis of nonregulatory policies

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, R.M.; Nieves, L.A.; Mazzucchi, R.P.

    1981-05-01

    The costs and effectiveness of non-regulatory options relative to those of a regulatory approach are analyzed. Nonregulatory program alternatives identified are: information and education programs, tax incentives and disincentives, and mortage and finance programs. Chapter 2 briefly reviews survey data to assess present public awareness of energy issues and energy-efficient building design. Homebuyer and homebuilder surveys are reviewed and conservation motivations are discussed. Chapter 3 examines the provision of technical and economic information to various factors affecting building design decisions. This approach assumes that the economic incentives and technical means to achieve energy conservation goals already exist but that critical information is lacking. Chapter 4 examines how adjustments to the tax structure could enhance economic incentives and counter economic disincentives for energy conservation. Qualifying buildings for tax benefits would almost certainly require certification of design energy consumption. The effectiveness of tax incentives would depend in part on dissemination of public information regarding the incentives. Chapter 5 examines subsidies, such as subsidized mortgages and loan guarantees, which lower the cost of money or other costs but do not change the market structure facing the consumer. Certification that buildings qualify for such treatment would probably be required. Chapter 6 presents recommendations based on the study's findings. (MCW)

  20. Calculation steps. Building integrated energy supply; Beregningsgang. Bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Rasmus L.; Noergaard, J.; Daniels, O.; Justesen, R.O.

    2011-08-15

    In the future, buildings will not only act as consumers of energy but as producers as well. For these ''prosumers'', energy production by use of solar panels, photovoltaics and heat pumps etc will be essential. The objective of this project was to find the most optimal combinations of building insulation and use of renewable energy sources in existing buildings in terms of economics and climate impacts. Five houses were analyzed based on different personal load, consumption profiles, solar orientation and proposed building envelope improvements and use of combinations of renewable energy systems. The analysis was conducted by making a large number of simulations. The present report describes the applied simulation models, and explains the results and computer codes. The parameter variations are described for each house as well as the common calculation steps for each house. The results are presented in case sheets, as performance graphs, and top-50 lists for the best cases regarding CO{sub 2} emission, energy consumption and economics. (ln)

  1. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  2. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  3. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  4. Sustainability in Energy and Buildings : Proceedings of the 3rd International Conference in Sustainability in Energy and Buildings

    CERN Document Server

    Namaane, Aziz; Howlett, Robert; Jain, Lakhmi

    2012-01-01

    Welcome to the proceedings of the Third International Conference on Sustainability in Energy and Buildings, SEB’11, held in Marseilles in France, organised by the Laboratoire des Sciences del'Information et des Systèmes (LSIS) in Marseille, France in partnership with KES International.   SEB'11 formed a welcome opportunity for researchers in subjects related to sustainability, renewable energy technology, and applications in the built environment to mix with other scientists, industrialists and stakeholders in the field.   The conference featured presentations on a range of renewable energy and sustainability related topics. In addition the conference explored two innovative themes: - the application of intelligent sensing, control, optimisation and modelling techniques to sustainability and - the technology of sustainable buildings.  These two themes combine synergetically to address issues relating to The Intelligent Building.   SEB’11 attracted a significant number of submissions from around the w...

  5. Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Sawaya, Geof; Chen, Yixing; Taylor-Lange, Sarah C.

    2015-01-01

    Small and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback. - Highlights: • A DEEP (database of energy efficiency performance) supports building retrofit. • DEEP is an SQL database with pre-simulated results from 10 million EnergyPlus runs. • DEEP covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • DEEP accelerates retrofit of small commercial buildings to save energy use and cost. • DEEP can be expanded and integrated with third-party energy software tools.

  6. Uncertainty assessment in building energy performance with a simplified model

    Directory of Open Access Journals (Sweden)

    Titikpina Fally

    2015-01-01

    Full Text Available To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared to the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of the dynamic and the static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the Guide to the Expression of Measurement Uncertainty (GUM as well as by Bayesian Statistical Theory (BST. Another choice is the use of numerical methods like Monte Carlo Simulation (MCS. In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST is given. Therefore, an office building has been monitored and multiple temperature sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 m2.

  7. Supervisory Control of Loads and Energy Storage in Next-Generation Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Feitau [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frank, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scheib, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bernal Heredia, Willy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    A zero energy building (ZEB)—also known as a net zero energy or zero net energy building—is a building that exports as much renewable energy as the total energy it imports from other sources on an annual basis (DOE 2015). Large-scale and commercially viable ZEBs are now in the marketplace, and they are expected to become a larger share of the commercial building footprint as government and private sector policies continue to promote the development of buildings that produce more on-site energy than they use. However, the load profiles of ZEBs are currently perceived by electric utilities to be unfavorable and unpredictable. As shown in Figure ES-1, ZEB load profiles can have abrupt changes in magnitude, at times switching rapidly between exporting and importing electricity. This is a challenge for utilities, which are responsible for constantly balancing electricity supply and demand across the grid. Addressing these concerns will require new strategies and tools.

  8. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability

  9. Radon-daughter exposures in energy-efficient buildings

    International Nuclear Information System (INIS)

    Nero, A.V.; Berk, J.V.; Boegel, M.L.; Hollowell, C.D.; Ingersoll, J.G.; Nazaroff, W.W.

    1981-10-01

    A radon concentration of 1 pCi/1 (37 Bq/m 3 ) appears to lie in the range that is typical for air inside US residential buildings. Moreover, some US residences have concentrations higher than 1 pCi/1, sometimes by an order of magnitude, implying significant individual risk to occupants. For typical radon daughter equilibrium ratios, this concentration corresponds to a radon daughter exposure rate of 0.2 working level months (WLM) per year. This exposure rate may account for a significant lung cancer incidence if data on lung cancers per unit exposure in miners are applicable to such low exposures. Reductions in air exchange rates may rise the typical exposure rate and even increase it to unacceptable levels in some cases. Measures that reduce energy use by reducing natural infiltration or mechanical ventilation in new or retrofit buildings are therefore undergoing severe scrutiny. Lawrence Berkeley Laboratory has performed measurements in buildings specifically designed to use energy efficiently or utilize solar heating. In many of these buildings radon concentrations appear to arise primarily from soil underlying the buildings. Measures to control higher levels, e.g., by mechanical ventilation with heat recuperation, appear to be economical. However, to evaluate energy-saving programs adequately requires a much more comprehensive characterization of radon sources (for example, by geographical area) and a much fuller understanding of the dynamics of radon and its daughters indoors than now exist

  10. Demonstration Platform for near-zero energy buildings - small houses; Demonstrationsplattform foer naeranollenergibyggnader - smaahus

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Svein; Fahlen, Per; Axell, Monica; Kovacs, Peter; Ylmen, Peter; Staahl, Fredrik

    2011-07-01

    On behalf of the Swedish Energy Agency, SP has investigated and recommended how one could form a platform for demonstration of single family houses as nearly zero energy houses. SP suggests that TMF, the national trade and employers' association of the wood processing and furniture industry in Sweden, should administrate this platform. The reason being that members of TMF produce almost 80% of all single family houses in Sweden. TMF also has the capacity to launch a demonstration platform in a reasonable short time. SP has also compiled a set on technical criteria regarding properties related to energy use that should be met by demonstration projects within the platform. One presumption has been that a house that meets the criteria in the south of Sweden also should meet the criteria in the north of Sweden. The reason being to promote an industrialized and cost effective building process. Another ambition has been not to disfavor smaller single family houses. The main criteria are on very energy efficient building envelopes and very efficient building services systems. The criteria are therefore more detailed than the current Swedish building regulations

  11. Energy balance evaluation of industrial buildings with an office complex

    Directory of Open Access Journals (Sweden)

    Juozas Bielskus

    2015-10-01

    Full Text Available While evaluating the energy savings potential in buildings of different function we face the energy balance of current situation evaluation problem. Generally the data of energy flows quantities and the nature of their dynamics are agregated and do not reflect the indicators of the achieved microclimate. Therefore this article analyses the energy balance following the example of one-year data collection analysis in a company’s building complex. The investigated problem is evaluated by the system analysis approach, i.e. the analysed object system is divided into separate subsystems which have been simulated individually but considering the subsystems joint relations in the system. The methods applied in this work are heat and mass balance of separate subsystems and statistical analysis method. The statistical analysis was used for the evaluation of the statistical reliability of the accumulated indicators (temperature, relative humidity, etc..

  12. Analysis of alternative strategies for energy conservation in new buildings

    Science.gov (United States)

    Fang, J. M.; Tawil, J.

    1980-12-01

    The policy instruments considered include: greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) Building Energy Performance Standards (BEPS) with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings.

  13. Towards a sustainable aesthetics. Architects constructing energy efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ryghaug, Marianne

    2002-07-01

    This interdisciplinary study discusses challenges in energy economising in Norway as they involve the architect profession and their role in affecting the energy standard in buildings. The main research question is separated into two component research questions. The first is to analyse how the reality orientation of the architect profession is constituted and maintained, and how this in turn influences their values in connection to energy related decisions. How is the architects' professional role conception reflected in the educational system and architect journals, and how is it expressed among the 'green outsiders' of the profession? The second component research question is related to decision-making processes regarding design processes, particularly concerning energy in buildings and the role played by the architects in these processes as they interact with other actors and within institutional frames.

  14. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    Science.gov (United States)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  15. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  16. Implications of life cycle energy assessment of a new school building, regarding the nearly zero Energy Buildings targets in EU: A case of study

    OpenAIRE

    Muñoz, Pedro; Morales, M P (UNIR); Letelier, V; Muñoz, Luis (UNIR); Mora, Daniel

    2017-01-01

    Lately EU has promoted several policies with the aim of reducing buildings energy impact. Despite such policies have successfully contributed to reduce residential buildings (RBs) energy consumption, non-residential buildings (NRBs) have shown an increasing of operational energy demand by 15.7%, during last decade. On the one hand, energy impacts are underestimated since only primary energy consumption (PEC) is considered while other energies, such as those related to the construction phase, ...

  17. International Atomic Energy Agency annual report 2007: 50 years of atoms for peace

    International Nuclear Information System (INIS)

    2008-01-01

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2007 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2007/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  18. Control of energy flow in residential buildings; Energieflussregelung in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martin

    2011-07-01

    Energy systems in residential buildings are changing from monovalent, combustion based systems to multivalent systems containing technologies such as solar collectors, pellet boilers, heat pumps, CHP and multiple storages. Multivalent heat and electricity generation and additional storages raise the number of possible control signals in the system. This creates additional degrees of freedom regarding the choice of the energy converter and the instant of time for energy conversion. New functionality of controllers such as prioritisation of energy producers, optimization of electric self consumption and control of storages and energy feed-in are required. Within the scope of this thesis, new approaches for demand-driven optimal control of energy flows in multivalent building energy systems are developed and evaluated. The approaches are evaluated by means of system energy costs and operating emissions. For parametrisation of the controllers an easily understandable operating concept is developed. The energy flow controllers are implemented as a multi agent system (MAS) and a nonlinear model predictive controller (MPC). Proper functionality and stability are demonstrated in simulations of two example energy systems. In both example systems the MPC controller achieves less energy costs and operating emissions due to system wide global optimization and the more detailed system model within the controller. The multi agent approach turns out to perform better for systems with a huge number of components, e.g. in home automation and energy management systems. Due to the good performance of the reference control strategies, a significant reduction of energy costs and operating emissions is only possible with limitations. Systems for heat generation show only an especially low potential for optimization because of marginal variation ins heat production costs. The adaptation of the operation mode to user priorities, changing utilization characteristics and dynamic energy

  19. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  20. Occupants Influence on the Energy Consumption of Danish Domestic Buildings

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Knudsen, Henrik Nellemose; Kanstrup, Anne Marie

    This report is one of the results from the project “Occupants influence on the energy consumption of Danish domestic buildings – Phase 1”, which is partly funded by EUDP (Journalnr.: 64009-0248, Programområde: Energieffektivisering) The report provides state-of-the-art reviews within the various...... disciplines represented in the project by the project members, which all represent areas that relate to the title on occupants influence on the energy consumption....