WorldWideScience

Sample records for energy accelerator components

  1. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    Science.gov (United States)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  2. Impedance of accelerator components

    International Nuclear Information System (INIS)

    Corlett, J.N.

    1996-05-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed

  3. Accelerators for energy

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  4. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  5. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  6. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  7. Accelerator for amplification of energy

    International Nuclear Information System (INIS)

    Mori, Yoshiharu

    1998-01-01

    As a forming method of new nuclear energy, an energy amplification system using accelerator driven subcritical reactor is focussed. In order to realize amplification of energy driven by accelerator, development of an accelerator with excellent electric power efficiency is one of the most important problems. The necessary beam power of accelerator is 10 MW, and when reducing used electric power of the accelerator to under 25% of total power generation, more than 30% of electric power efficiency is required for the accelerator. Therefore, an accelerator with excellent electric power efficiency without experiencing before now is required to realize such an aim. A prominent candidate of the accelerator is FFAG (Fixed Field Alternating Gradient) synchrotron (may be called ring synchrotron). In this paper, some simple considerations of electric power efficiency of accelerators and basic parameter of FFAG synchrotron were described. (G.K.)

  8. Energy Innovation Acceleration Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfson, Johanna [Fraunhofer USA Inc., Center for Sustainable Energy Systems, Boston, MA (United States)

    2015-06-15

    The Energy Innovation Acceleration Program (IAP) – also called U-Launch – has had a significant impact on early stage clean energy companies in the Northeast and on the clean energy economy in the Northeast, not only during program execution (2010-2014), but continuing into the future. Key results include: Leverage ratio of 105:1; $105M in follow-on funding (upon $1M investment by EERE); At least 19 commercial products launched; At least 17 new industry partnerships formed; At least $6.5M in revenue generated; >140 jobs created; 60% of assisted companies received follow-on funding within 1 year of program completion; In addition to the direct measurable program results summarized above, two primary lessons emerged from our work executing Energy IAP:; Validation and demonstration awards have an outsized, ‘tipping-point’ effect for startups looking to secure investments and strategic partnerships. An ecosystem approach is valuable, but an approach that evaluates the needs of individual companies and then draws from diverse ecosystem resources to fill them, is most valuable of all.

  9. Proposal for the Award of Two Contracts for the Technical Services for Work on Components of CERN Particle Accelerators and High Energy Physics Experiments

    CERN Document Server

    2003-01-01

    This document concerns the award of two contracts for the technical services for work on components of CERN particle accelerators and high energy physics experiments. Following a market survey carried out among 73 firms in fourteen Member States, a call for tenders (IT-3156/SPL) was sent on 4 November 2002 to three consortia in four Member States. By the closing date, CERN had received tenders from the three consortia. The Finance Committee is invited to agree to the negotiation of two contracts with: 1) the consortium SERCO FACILITIES MANAGEMENT (NL) - GERARD PERRIER INDUSTRIE (FR) - INEO ALPES (FR), the lowest bidder, for approximately 55% of the technical services for work on components of CERN particle accelerators and high energy physics experiments, for an initial period of five years and for a total amount not exceeding 37 435 270 euros (54 902 500 Swiss francs), subject to revision for inflation from 1 January 2005. The contract will include options for two one-year extensions beyond the initial five-...

  10. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  11. Computational needs for modelling accelerator components

    International Nuclear Information System (INIS)

    Hanerfeld, H.

    1985-06-01

    The particle-in-cell MASK is being used to model several different electron accelerator components. These studies are being used both to design new devices and to understand particle behavior within existing structures. Studies include the injector for the Stanford Linear Collider and the 50 megawatt klystron currently being built at SLAC. MASK is a 2D electromagnetic code which is being used by SLAC both on our own IBM 3081 and on the CRAY X-MP at the NMFECC. Our experience with running MASK illustrates the need for supercomputers to continue work of the kind described. 3 refs., 2 figs

  12. Expected dose rates from component activation in the APT accelerator

    International Nuclear Information System (INIS)

    Fikani, M.M.; Pitcher, E.J.

    1998-01-01

    At the heart of the APT is the concept of using accelerator-based technology to reliably produce tritium in sufficient quantity for maintaining the US strategic arsenal. The proposed accelerator for this project will provide a proton beam with an energy of 1700 MeV/particle, a current of 100 mA, and an on-target rectangular cross section of 19 x 190 cm. The spallation neutron source in the target chamber (configured in 13 ladders) produces a prodigious amount of neutrons and is enclosed on five sides by a number of regions (decouplers, production modules, and reflectors) that capture a portion of this flux for producing tritium. As with any large-scale accelerator, its complexity dictates a thorough understanding of the radiation environment it will produce. For an operational production level accelerator such as is needed for the APT, performance, reliability, and safety are of paramount importance. In order to meet production goals, downtime must be minimized. Inspection, maintenance, and/or replacement of accelerator components must be done in a timely fashion and on schedule. This requirement does not supersede safety considerations, however. In the design of the APT accelerator, several mechanisms for producing an ambient radiation field in the accelerator tunnel have been looked at. Analyses of these mechanisms and the radiation environments they produce then give us guidance in the design and may bound certain aspects in the operation of the accelerator. The authors discuss one such mechanism, that is, component activation from a continuous beam spill. Since this will be present at some level during all hours of normal beam operation, it is likely to be the dominant contributor to the dose rate that personnel working in the tunnel will receive. A continuous beam spill will activate all nearby accelerator components, as well as the concrete tunnel structure itself. Thus, in order for personnel to enter the accelerator tunnel as soon as possible after beam

  13. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  14. Low energy demonstration accelerator technical area 53

    International Nuclear Information System (INIS)

    1996-01-01

    As part of the Department of Energy's (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation's nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice

  15. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  16. Ultra Accelerated Testing of PV Module Components

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

    1998-10-28

    Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

  17. Acceleration of polarized proton in high energy accelerators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. The author analyzes the effects of snake resonances, snake imperfections, and overlapping resonances on spin depolarization. He discusses also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators

  18. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  19. Design and development of RF components for linear accelerator

    International Nuclear Information System (INIS)

    Kumar, Girish; Mathur, Pratigya; Joshi, Gopal; Kumar, Rajesh; Ramarao, B.V.

    2013-01-01

    Low Energy High Intensity Proton Accelerator (LEHIPA) project is presently under development at BARC. It requires several RF components around 150 MHz, 350 MHz and 2.45 GHz. We have been working on the design and development of various RF components, which are useful for LEHIPA project. To start with, it requires high power RF sources, which were built for many decades using electron tubes and klystrons, while the solid-state technology had been used for low power amplifiers. The advancement in the high power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) allowed us to design and develop a few hundreds of watts of amplifier modules. Eight such power amplifier modules have been combined using 8-way power combiner and divider. Total power amplifier has been tested up to 1.8 kW at 350 MHz. Special precautions had to be taken for thermal management using heat sink and water cooling at various stages of the amplifier

  20. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  1. Acceleration of Polarized Protons to High Energy

    International Nuclear Information System (INIS)

    Roser, T.

    1999-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian Snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian Snakes and polarimeters are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  2. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  3. Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator

    CERN Multimedia

    2004-01-01

    Officials of the U.S. Department of Energy's Fermi National Accelerator Laboratory and Lawrence Berkeley National Laboratory announced yesterday the completion of a key component of the U.S. contribution to the Large Hadron Collider, a particle accelerator under construction at CERN, in Geneva, Switzerland

  4. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  5. Operating Characteristics of the low energy accelerator

    International Nuclear Information System (INIS)

    Abd El-Baki, M.M.; Abd El-Rahman, M.M.

    2000-01-01

    The main purpose of this work is to describe the construction and operation of low energy accelerator with energy in the range from (zero to 100 KeV.). This accelerator includes an ion source of the cold cathode penning type (with pierce geometry for ion beam extraction), an accelerating tube (with 8 electrodes) and faraday cup for measuring ion current. A vacuum system which gives vacuum of the order 3.0 x 10 8 torr is used. A palladium tube is used to supply the source with pure hydrogen atoms. It was possible to operate this accelerator with an energy 50 KeV. at minimum hydrogen pressure. 6.3 x 10 6 torr. The total resistance applied between the accelerating electrodes R T = 31.5 M OMEGA. These data includes the influence of the pressure in the accelerating tube, the magnetic field of the ion source, the extraction potential and the accelerating potential on the collector ion current. It was possible to accelerate protons with an energy 50 KeV with current about 100 MU A at pressure 6.3 x 10 6 Torr, the source magnetic field + 1100 gauss (I B = 2A), the current = 0.4 A and the extraction potential = 10 K. V

  6. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community

  7. Turbulent energy generated by accelerations and shocks

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1986-01-01

    The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs

  8. Energy Balance in an Electrostatic Accelerator

    OpenAIRE

    Zolotorev, Max S.; McDonald, Kirk T.

    2000-01-01

    The principle of an electrostatic accelerator is that when a charge e escapes from a conducting plane that supports a uniform electric field of strength E_0, then the charge gains energy e E_0 d as it moves distance d from the plane. Where does this energy come from? We that the mechanical energy gain of the electron is balanced by the decrease in the electrostatic field energy of the system.

  9. On cosmic acceleration without dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W.; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI; Matarrese, S.; /Padua U. /INFN, Padua; Riotto, A.; /INFN, Padua

    2005-06-01

    We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behavior of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate from the backreaction of cosmological perturbations on observable scales.

  10. Present and future of high energy accelerators

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1976-01-01

    The field of high energy accelerators has been changing rapidly during the last few years. In proton machines, future developments can be expected to involve superconducting magnet rings as well as storage rings to obtain higher cm energies. In heavy ion machines, the trend is towards developing higher current medium energy machines with higher intensities than the present ones. In the region of medium energy physics (proton machines, Ep less than 1 GeV) a number of circular and linear machines are commencing operation whose main advantage over the old fm cyclotrons is primarily the higher intensity. In high energy electron accelerators, the main trend is at present to use the existing machines as injectors for electron-positron colliding ringsminosity and energy are being increased to satisfy the needs of physics research programs. Some years in the future there are plans for electron--proton colliding rings (PEP) at energies around 70 GeV. In the lower energy range of electron machines there is considerable development of medical accelerators underway as sources of pions, neutrons, or x-rays, the last being the conventional use. The electron storage rings of the physics machines are also in use as sources of synchrotron radiation, for physical and biological research in the far ultraviolet and soft x-ray region. The main developments in the next five years in accelerator construction are in the direction of using superconducting magnets for circular machines and superconducting cavities for linear accelerators. Fixed target machines will be used as injectors for colliding beam storage rings. A number of heavy ion machines will be constructed capable of accelerating all ions up to uranium

  11. High-energy accelerators in medicine

    CERN Document Server

    Mandrillon, Pierre

    1992-05-04

    The treatment of tumours with charged particles, ranging from protons to "light ions" ( Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the high energy accelerators and the beam delivery systems are presented in these two lectures.

  12. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  13. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  14. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  15. The high energy accelerator program in Japan

    International Nuclear Information System (INIS)

    Ozaki, S.

    1987-01-01

    The author observes that in order to survey the intentions of Japanese high energy physicists and to make a recommendation to the High Energy Committee on future plans for high energy physics in Japan, including accelerators after TRISTAN, international collaboration projects and non-accelerator physics, a subcommittee of fifteen members is formed. The committee recommendation reads: A) For a new energy frontier, 1. Immediate initiation of R/D efforts for an e/sup +/e/sup -/ linear collider of TeV class, constructs a possible home-based facility, 2. Promotes international collaborative experiments using the SSC for the hadron sector, B) As projects of immediate concern: 1. The energy of the TRISTAN main ring increases further makes a possible low energy, high luminosity e/sup +/e/sup -/ collider operation in the TRISTAN complex, 2. The intensity of the 12 GeV PS at KEK increases, 3. Experiments in non-accelerator particle physics are promoted. In this contribution, the current status of the TRISTAN project and some of the R/D program on accelerator technology are reported

  16. Measuring and aligning accelerator components to the nanometre scale

    CERN Document Server

    Catalán Lasheras, N; Modena, M

    2014-01-01

    First tests have shown that the precision and accuracy required for linear colliders and other future accelerators of 10 micrometers is costly and lengthy with a process based on independent fiducializations of single components. Indeed, the systematic and random errors at each step add up during the process with the final accuracy of each component center well above the target. A new EC-funded training network named PACMAN (a study on Particle Accelerator Components Metrology and Alignment to the Nanometer scale) will propose and develop an alternative solution integrating all the alignment steps and a large number of technologies at the same time and location, in order to gain the required precision and accuracy. The network composed of seven industrial partners and nine universities and research centers will be based at CERN where ten doctoral students will explore the technology limitations of metrology. They will develop new techniques to measure magnetic and microwave fields, optical and non-contact sen...

  17. Energy considerations in accelerating rapid shear granular flows

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2009-05-01

    Full Text Available We present a complete expression for the total energy associated with a rapid frictional granular shear flow down an inclined surface. This expression reduces to the often used energy for a non-accelerating flow of an isotropic, ideal fluid in a horizontal channel, or to the energy for a vertically falling mass. We utilize thickness-averaged mass and momentum conservation laws written in a slope-defined coordinate system. Both the enhanced gravity and friction are taken into account in addition to the bulk motion and deformation. The total energy of the flow at a given spatial position and time is defined as the sum of four energy components: the kinetic energy, gravity, pressure and the friction energy. Total energy is conserved for stationary flow, but for non-stationary flow the non-conservative force induced by the free-surface gradient means that energy is not conserved. Simulations and experimental results are used to sketch the total energy of non-stationary flows. Comparison between the total energy and the sum of the kinetic and pressure energy shows that the contribution due to gravity acceleration and frictional resistance can be of the same order of magnitude, and that the geometric deformation plays an important role in the total energy budget of the cascading mass. Relative importance of the different constituents in the total energy expression is explored. We also introduce an extended Froude number that takes into account the apparent potential energy induced by gravity and pressure.

  18. ACCELERATION FOR A HIGH ENERGY MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S

    2000-04-07

    The authors describe a method for designing the acceleration systems for a muon collider, with particular application and examples for a high energy muon collider. This paper primarily concentrates on design considerations coming from longitudinal motion, but some transverse issues are briefly discussed.

  19. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  20. Three Component Velocity and Acceleration Measurement Using FLEET

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  1. Design and development of R.F. LINAC accelerator components

    International Nuclear Information System (INIS)

    Abhay Kumar; Guha, S.; Balasubramaniam, R.; Jawale, S.B.

    2003-01-01

    Full text: Radio frequency linear accelerator, a high power electron LINAC technology, is being developed at BARC. These accelerators are considered to be the most compact and effective for a given power capacity. Important application areas of this LINAC include medical sterilization, food preservation, pollution control, semiconductor industries, radiation therapy and material science. Center for Design and Manufacture (CDM), BARC has been entrusted with the design, development and manufacturing of various mechanical components of the accelerator. Most critical and precision components out of them are Diagnostic chamber, Faraday cup, Drift tube and R.F. cavities. This paper deals with the design aspects in respect of Ultra high vacuum compatibility and the mechanism of operation. Also this paper discusses the state-of-art technology for machining of intricate contour using specially designed poly crystalline diamond tool and the inspection methodology developed to minimize the measurement errors on the machined contour. Silver brazing technique employed to join the LINAC cavities is also described in detail

  2. Dark energy and the accelerating universe: progress, problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2012-07-01

    Full text: A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed by nearly 1/3 of matter (baryonic + dark) and 2/3 of an exotic component with large negative pressure, usually named Dark Energy. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, baryon acoustic oscillations (BAO) and X-ray data from galaxy clusters. Within the general relativity, the simplest explanation for dark energy is the cosmological constant associated with the zero-point energy density of all quantum fields present in the Universe. However, all estimates for its value are many orders-of-magnitude too large. Many alternative ideas include more exotic candidates for dark energy among them an extremely light scalar field. However, some possible explanations for the present accelerating stage also invokes gravitational physics beyond general relativity. In this way, several observations using satellites and ground-based telescopes are in operation or being planned to test whether dark energy is the cosmological constant or something more exotic, as well as to decide whether or not the standard general relativity can explain cosmic acceleration. In the current view, dark energy is an interesting example of new physics, and, certainly, its possible existence is one of the most profound mysteries of modern physics. In this talk we present a simplified picture of the main results and discuss briefly the difficulties underlying the dark energy paradigm and some of its possible alternatives. (author)

  3. Main physical problems of superhigh energy accelerators

    International Nuclear Information System (INIS)

    Lapidus, L.I.

    1979-01-01

    A survey is given of the state and prospects for the scientific researches to be carried out at the largest charged particle accelerators now under construction. The fundamental problems of the elementary particle physics are considered which can be solved on the base of experiments at high-energy accelerators. The problems to be solved involve development of the theory of various quark number, accurate determination of the charged and neutral intermediate vector boson masses in the Weinberg-Salam theory, the problem of production of t-quark, W -+ - and Z deg bosons, Higgs mesons and investigation of their interactions, examination of quark and lepton spectra, studies on the effects of strong interactions. As a result of the investigations on hadrons at maximum momentum transfers, the data on space-time structure at short distances can be obtained. It is emphasized that there are no engineering barriers to the construction of such accelerators. The main problem lies in financial investment. A conclusion is drawn that the next generation of accelerators will be developed on the base of cooperation between many countries [ru

  4. Very high pulse-energy accelerators

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1989-01-01

    The dominant trend in the development of pulsed power accelerator technology over the last decade has been towards higher power and shorter pulse widths. Limitations in high voltage, high current switch performance, and in power flow through vacuum insulator housings led to the development of highly modular designs. This modular approach requires precise synchronization of the various modules and efficient methods of combining the power from these modules to drive a common load. The need to drive very low impedance loads led to effective ways to combine these modules in parallel. The Particle Beam Fusion Accelerator I (PBFA I) and Saturn are representative of these designs. Hermes III represent a new approach towards the efficient generation of higher voltages. It is designed to drive a 22-MV, 730-kA, 40-ns electron beam diode and combines conventional, modular pulsed power technology with linear induction accelerator concepts. High-power induction accelerator cavities are combined with voltage addition along a MITL to generate the desired output. This design differs from a conventional linac in that the voltages are added by the MITL flow rather than by a drifting beam that gains kinetic energy at each stage. This design is a major extrapolation of previous state-of-the-art technology represented by the injector module of the Advanced Test Accelerator and has proven to be efficient and reliable. The design and performance of Hermes III are presented together with a discussion of the application of this technology to the light ion beam inertial confinement fusion program. 18 refs., 9 figs

  5. Siberian Snakes in high-energy accelerators

    International Nuclear Information System (INIS)

    Mane, S R; Shatunov, Yu M; Yokoya, K

    2005-01-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  6. Initial development of PC software base for the design of electromagnetic component in accelerator

    International Nuclear Information System (INIS)

    Zhang Tianjue; Fan Mingwu; Zhang Manhuai; Huang Jijie; Dai Xiaoming; Chu Chengjie

    2000-01-01

    The initial development of PC software base for the design of electromagnetic component in accelerator is described. The developing studies include the transplantation and development of POISSON/SUPERFISH, RELAX 3D, TRANSPORT, RAYTRACE, MAD and PARMELA, and the modification of software DE2D, DE3D, CYCCAE and CYCCEN, which are developed in China Institute of Atomic Energy. Some application in the actual engineering is also introduced

  7. DC and RF ion accelerators for MeV energies

    International Nuclear Information System (INIS)

    Urbanus, W.H.

    1990-01-01

    This thesis deals with the transport and acceleration of intense ion beams in single-ended Van de Graaff accelerators and the multiple beam rf accelerator MEQALAC (Multiple Electrostatic Quadrupole Array Linear Accelerator). Ch. 2 discusses several beam-envelope calculation techniques and describes the ion-optical components of a 1 MV, high-current, heavy-ion implantation facility and a 2 MV facility for analyzing purposes. The X-ray level of these accelerators is kept low, such that no shielding is needed, by keeping the energy of the secondary electrons sufficiently low, which is accomplished by a suppression system of small permanent magnets built in the acceleration tubes (ch. 3). Ch.'s 4,5 and 6 cover various aspects of stage II of the MEQALAC project. This stage deals with the parallel acceleration of four high-current N + beams from 40 keV to 1 MeV. Acceleration takes place in 32 rf gaps which are part of a modified interdigital H-resonator. In between the accelerating gaps, small electrostatic quadrupoles are mounted, which oppose the space charge forces of the intense ion beams. The lenses are arranged in a periodic focusing structure. A bucket-type plasma ion source is used, which produces both N + and N 2 + ions. In between the ion source and the MEQALAC section, a Low Energy Beam Transport (LEBT) section is mounted which provides for the drift space for a buncher. The latter device transforms the extracted dc beams into bunched beams which are accepted by the MEQALAC section. In ch. 4 the transport of ion beams that contain both N + and N 2 + ions, so-called mixed beams, through the LEBT section is discussed and equations for the current limit of a mixed beam are derived. Bunching of mixed N + , N 2 + beams is discussed in ch. 5. Multichannel acceleration of N + ions with the MEQALAC is discussed in ch. 6. (author). 122 refs.; 67 figs.; 1 tab

  8. Cosmological acceleration. Dark energy or modified gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bludman, S.

    2006-05-15

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  9. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  10. Supernovae, dark energy and the accelerating universe

    CERN Multimedia

    Perlmutter, Saul

    1999-01-01

    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  11. Accelerator activities at the Variable Energy Cyclotron Centre, Kolkata

    International Nuclear Information System (INIS)

    Srivastava, D.K.

    2013-01-01

    The Variable Energy Cyclotron Centre (VECC) at Kolkata indigenously developed the first large accelerator in the country, the room temperature cyclotron K-130 during seventies which is still delivering ions beams to the users spread all over the country for research in nuclear science and applied physics. VECC, with its vast experience and expertise in accelerator technology, took up the challenging task of constructing the first superconducting cyclotron in the country the K500 superconducting cyclotron. It has also been commissioned with internal beam. The problems associated with getting the external beam are analysed in detail since last one year and some of them are fixed. Efforts are on to get external beam from the K500 cyclotron and it is expected that soon it will also deliver beams to the users. In order to study structure of unstable nuclei that are very neutron rich or proton rich, an ISOL based RIB facility is under-development at VECC. Several components of this facility have already been tested and installed. VECC is also working on to build a world class national accelerator facility called ANURIB (Advanced National facility for Unstable and Rare Isotope Beams) at the new campus in Kolkata. This facility will serve a wide user community in nuclear and material sciences. VECC is also setting up a medical cyclotron to produce proton beam with energy up to 30 MeV and current up to 350 μA, to produce various isotopes for medical applications. This cyclotron will also be used for R and D in material science and to settle the various problems related with handling of high beam current on ADS related components. Apart from these main facilities VECC is also involved in the R and D activities related with accelerators such as studies on using cyclotrons to achieve high power proton beam, development and testing of superconducting cavities, development of superconducting magnets for FAIR project etc. (author)

  12. Accelerating access to energy services: Way forward

    Directory of Open Access Journals (Sweden)

    Ibrahim Hafeezur Rehman

    2017-03-01

    Full Text Available As nearly a fifth of the world's population still lives without access to electricity and double that number with no access to modern cooking technologies, both public and private sector players have invested resources in developing infrastructure to address this energy gap. While there have been exceptional cases like China, Vietnam and Brazil, where the public sector led grid expansion achieved incredible gains in expanding access as to electricity, the general trend over the years in most developing countries has demonstrated that both public and private led approaches have been unsuccessful in independently yielding the desired acceleration and continuity to deliver universal energy access. Despite the inherent benefits of both public and private sector led initiatives, typical systemic inefficiencies and inadequate capacities in both approaches prevent them from fully addressing the principal objective of facilitating energy access for the poor in the long term. Also, even if required investments were adequately capitalized, with the current population growth rate continually outpacing the rate of interventions, the number of people who remained energy poor 15 years hence, would still be the same. Thus, not only is there is a need for providing energy access to the existing population mass, but an equal need to do it fast enough to truly reduce the number of energy poor across the globe. An alternative approach therefore needs to be explored that juxtaposes the social welfare objectives of public sector led initiatives with the enterprise development and growth objectives of the private sector, to support the creation of an enabling ecosystem and a viable value chain that successfully and effectively delivers energy solutions to the last mile. Such a pro-poor hybrid model will essentially address the inefficiencies and inadequacies of both public and private approaches and capitalize on their strengths through a complementary mix of social

  13. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  14. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  15. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  16. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  17. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology; FINAL

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  18. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  19. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  20. Radiation Fields in High Energy Accelerators and their impact on Single Event Effects

    CERN Document Server

    García Alía, Rubén; Wrobel, Frédéric; Brugger, Markus

    Including calculation models and measurements for a variety of electronic components and their concerned radiation environments, this thesis describes the complex radiation field present in the surrounding of a high-energy hadron accelerator and assesses the risks related to it in terms of Single Event Effects (SEE). It is shown that this poses not only a serious threat to the respective operation of modern accelerators but also highlights the impact on other high-energy radiation environments such as those for ground and avionics applications. Different LHC-like radiation environments are described in terms of their hadron composition and energy spectra. They are compared with other environments relevant for electronic component operation such as the ground-level, avionics or proton belt. The main characteristic of the high-energy accelerator radiation field is its mixed nature, both in terms of hadron types and energy interval. The threat to electronics ranges from neutrons of thermal energies to GeV hadron...

  1. Radiological impact of high-energy accelerators on the environment

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1978-08-01

    The potential radiological impact of high-energy, high-intensity accelerators in the environment is discussed. It is shown that there are three sources of radiation exposure to the general public resulting from the operation of high-energy accelerators. In order of importance these are (a) the prompt radiation field, produced when the accelerator is operating; (b) the release of radionuclides and aerosols into the atmosphere; and (c) the production of radionuclides in the groundwater system around the accelerator. Of these three sources, (a) is dominant and typically exceeds (b) by about an order of magnitude. To date, experience at many accelerator laboratories has shown that the quantity of accelerator-produced radionuclides released to nearby groundwater systems (c) is either extremely small or immeasurable. The population dose equivalent resulting from the operation of several large high-energy facilities is compared

  2. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  3. Accelerated lifetime testing of energy storage capacitors used in particle accelerators power converters

    CERN Document Server

    AUTHOR|(SzGeCERN)679542; Genton, Charles-Mathieu

    2015-01-01

    Energy storage capacitors are used in large quantities in high power converters for particle accelerators. In this application capacitors see neither a DC nor an AC voltage but a combination of the two. The paper presents a new power converter explicitly designed to perform accelerated testing on these capacitors and the results of the tests.

  4. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  5. Separated-orbit bisected energy-recovered linear accelerator

    Science.gov (United States)

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  6. Acceleration of low energy charged particles by gravitational waves

    OpenAIRE

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2005-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  7. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  8. High Energy Density Physics and Exotic Acceleration Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Katsouleas, T.

    2004-10-11

    The reported results and discussions in the Working Group on High Energy Density Physics and Exotic Acceleration Concepts are summarized. The working group focused largely on laser-generated proton and ion beams from solid targets, but also considered laser vacuum acceleration results, active media accelerator proposals, ferroelectric-based accelerator technology advances and beam conditioning concepts for free electron lasers. The charge to the working group was to develop a laser-based proton injector exceeding current capabilities in at least one important parameter.

  9. Biological assessments for the low energy demonstration accelerator, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  10. The international atomic energy agency's programme on utilization of accelerators

    Science.gov (United States)

    Dytlewski, Nikolai; Mank, Günter; Rosengard, Ulf; Bamford, Samuel; Markowicz, Andrzej; Wegrzynek, Dariusz

    2006-06-01

    Low-energy accelerators have in the past produced a major part of our current knowledge of nuclear physics. Today they are mainly used for applied research and industrial applications. In view of this, the International Atomic Energy Agency (IAEA) has during recent years initiated several Coordinated Research Projects (CRPs) concerning Ion Beam Analysis of Materials, Accelerator Mass Spectrometry and Nuclear Microprobe Techniques. The CRPs involve laboratories from developing as well as developed Member States, networking on a common topic coordinated by the IAEA. In order to facilitate networking, the IAEA has recently published the "World Survey of Accelerator Based Analytical Techniques" available on the Internet and as a CD-ROM. The IAEA maintains also a beamline at a 6 MV Van de Graaff accelerator in the Ru đjer Bo\\vsković Institute, Zagreb, Croatia. Small and medium power accelerator driven spallation neutron sources will become more important as many small neutron producing research reactors are approaching the end of their useful working life. The IAEA has, within its Department for Nuclear Sciences and Applications, a programme on the Effective Utilization of Accelerators. This programme helps Member States, in particular developing Member States, in finding new areas of applications for their low and medium energy accelerators through increased participation in activities such as Coordinated Research Projects, Technical Meetings and Conferences. This paper describes the IAEA's current programme on accelerator utilization and proposed future activities.

  11. A practical guide to modern high energy particle accelerators

    International Nuclear Information System (INIS)

    Holmes, S.D.

    1987-10-01

    The purpose of these lectures is to convey an understanding of how particle accelerators work and why they look the way they do. The approach taken is physically intuitive rather than mathematically rigorous. The emphasis is on the description of proton circular accelerators and colliders. Linear accelerators are mentioned only in passing as sources of protons for higher energy rings. Electron accelerators/storage rings and antiproton sources are discussed only by way of brief descriptions of the features which distinguish them from proton accelerators. The basics of how generic accelerators work are discussed, focusing on descriptions of what sets the overall scale, single particle dynamics and stability, and descriptions of the phase space of the particle beam, the information thus presented is then used to go through the exercise of designing a Superconducting Super Collider

  12. Impact of thermal and intermediate energy neutrons on the semiconductor memories for the CERN accelerators

    CERN Document Server

    Cecchetto, Matteo; Gerardin, Simone

    A wide quantity of SRAM memories are employed along the Large Hadron Collider (LHC), the main CERN accelerator, and they are subjected to high levels of ionizing radiations which compromise the reliability of these devices. The Single Event Effect (SEE) qualification for components to be used in the complex high-energy accelerator at CERN relies on the characterization of two cross sections: 200-MeV protons and thermal neutrons. However, due to cost and time constraints, it is not always possible to characterize the SEE response of components to thermal neutrons, which is often regarded as negligible for components without borophosphosilicate glass (BPSG). Nevertheless, as recent studies show, the sensitivity of deep sub-micron technologies to thermal neutrons has increased owing to the presence of Boron 10 as a dopant and contact contaminant. The very large thermal neutron fluxes relative to high-energy hadron fluxes in some of the heavily shielded accelerator areas imply that even comparatively small therm...

  13. Radiation protection and dosimetry problems around medium energy accelerators

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.; Markovic, S.; Boreli, F.

    1995-01-01

    In the Institute of Nuclear Sciences 'VINCA', the Accelerator Installation 'TESLA', which is an ion accelerator facility consisting of an isochronous cyclotron 'VINCY', a heavy ion source, a D - / H - ion source, three low energy and five high energy experimental channels is now under construction. The Tesla Accelerator Installation should by the principal facility for basic and applied research in physics, chemistry, biology, and material science, as well as for production of radioisotopes, medical diagnostics and therapy with radioisotopes and accelerated particle beams. Some problems in defining radiation protection and safety programme, particularly problems in construction appropriate shielding barriers at the Accelerator Installation 'TESLA' are discussed in this paper. (author) 1 fig., 9 refs

  14. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V. [Oak Ridge National Lab., TN (United States); Handel, S. [Tennessee Univ., Knoxville, TN (United States). Dept. of Psychology

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.

  15. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF's) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition

  16. Electromagnetic Simulation of CERN accelerator Components and Experimental Applications

    CERN Document Server

    Zannini, Carlo; Rumolo, Giovanni

    Wakes and impedances of single accelerator elements can be obtained by means of theoretical calculation, electromagnetic (EM) simulations or bench measurements. Since theoretical calculations apply only to simple structures and bench measurements have some intrinsic limitations, EM simulations are used as a reliable tool to determine wakes and impedances. This thesis will focus on the use of time domain 3D CST Particle Studio EM simulations to calculate wakes and/or impedances. First, the results of the EM simulations are compared with known analytical solutions and other codes. In this exercise, the driving and the detuning terms of the wakes/impedances, in the transverse plane, are disentangled for both symmetric and asymmetric geometries. The sensitivity of the simulation results to the numerical parameters is discussed, as well as the limits of the validity of the wake formalism and its extension to the nonlinear regime. Using the CST Wakefield Solver, the SPS kicker impedance contribution is then estima...

  17. Development of Power System for Medium Energy Accelerator

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Seol, Kyung Tae; Jang, Ji Ho; Cho, Yong Sub; Hong, In Seok; Kim, Kyung Ryul

    2008-05-01

    The main goal of the studies are to develop a power supply system used for 100MeV proton accelerator and to operate 20MeV accelerator which has been installed in KAERI site. The 100MeV proton accelerator uses RF cavity to accelerate beams and need RF amplifier, klystron. To operate the klystron, a high power pulse power supply is required and the power supply system should have high quality because the reliability of the power supply has critical impact on the overall reliability of accelerator system. Therefore, high power pulse power system and related technology development are inevitable for 100MeV accelerator system development. 20MeV accelerator system has been developed and installed in KAERI site, which will be used as an injector for 100MeV accelerator and supply 20MeV beam to users. A study on the 20MeV accelerator characteristics should be performed to operate the machine efficiently. In addition, this machine can be used as a test bench for developing the 100MeV accelerator components. Therefore, not only the hardware so called 'high voltage power supply', but the related technology of the high quality high voltage power system and man power can be obtained from the results of this studies. The test results of the 20MeV accelerator can be utilized as a basis for efficient operation of 100MeV accelerator and these are the ultimate objective and necessities of the study

  18. Future Accelerator Challenges in Support of High-Energy Physics

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Zisman, M.S.

    2008-01-01

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision

  19. Detecting Energy Modulation in a Dielectric Laser Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lukaczyk, Louis [Univ. of Virginia, Charlottesville, VA (United States)

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  20. Compilation of radiation damage test data part III: materials used around high-energy accelerators

    CERN Document Server

    Beynel, P; Schönbacher, H; CERN. Geneva

    1982-01-01

    For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

  1. Shielding calculation for treatment rooms of high energy linear accelerator

    International Nuclear Information System (INIS)

    Elleithy, M.A.

    2006-01-01

    A review of German Institute of Standardization (DIN) scheme of the shielding calculation and the essential data required has been done for X-rays and electron beam in the energy range from 1 MeV to 50 MeV. Shielding calculation was done for primary and secondary radiations generated during X-ray operation of Linac. In addition, shielding was done against X-rays generated (Bremsstrahlung) by useful electron beams. The calculations also covered the neutrons generated from the interactions of useful X-rays (at energies above 8 MeV) with the surrounding. The present application involved the computation of shielding against the double scattered components of X-rays and neutrons in the maze area and the thickness of the paraffin wax of the room door. A new developed computer program was designed to assist shielding thickness calculations for a new Linac installation or in replacing an existing machine. The program used a combination of published tables and figures in computing the shielding thickness at different locations for all possible radiation situations. The DIN published data of 40 MeV accelerator room was compared with the program calculations. It was found that there is good agreement between both calculations. The developed program improved the accuracy and speed of calculation

  2. Green Peace: Can Biofuels Accelerate Energy Security

    Science.gov (United States)

    2013-02-14

    stored in feedstock plants comes from fossil fuels in the form of nitrogen fertilizers and pesticides , energy for tilling, harvesting and transport, and...water, agrichemicals and other farming resources. About 40 percent of the corn grown in America today is used to produce ethanol as a gasoline...needs – would require unsustainable levels of water and fossil fuel-based energy and fertilizer .50 Current technologies require between 3.15 and

  3. Safety in design and operation of low energy particle accelerators

    International Nuclear Information System (INIS)

    Badawy, I.

    1991-01-01

    This paper studies the safety in design and operation of low energy accelerators which produce beams of accelerated charged particles and radiations. As radiation sources, the accelerators are widely used in scientific research, industry, food and medical applications. The risks to human and environment are considered. The safety in accelerators is discussed-particularly-the shielding against ionizing radiations, overexposure to RF radiation fire hazards and power failures. Also the paper studies the emergency response at incidents. Emergency procedures are recommended for each type of emergency. Reporting to the competent Authority is also recommended to be prepared for each incident. The basic principles of regulatory control, licensing and inspections for accelerator facilities are discussed. The relation with the competent authority is pointed out. 4 fig

  4. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  5. A MEMS Energy Harvesting Device for Vibration with Low Acceleration

    DEFF Research Database (Denmark)

    Triches, Marco; Wang, Fei; Crovetto, Andrea

    2012-01-01

    We propose a polymer electret based energy harvesting device in order to extract energy from vibration sources with low acceleration. With MEMS technology, a silicon structure is fabricated which can resonate in 2D directions. Thanks to the excellent mechanical properties of the silicon material...

  6. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Science.gov (United States)

    2012-09-05

    .... competitiveness, create jobs, and reduce harmful air pollution. In doing so, they shall engage States, industrial... energy costs, free up future capital for businesses to invest, reduce air pollution, and create jobs... Part IV The President Executive Order 13624--Accelerating Investment in Industrial Energy Efficiency...

  7. Landscape of Future Accelerators at the Energy and Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M. J. [Northern Illinois U.; Chattopadhyay, S. [Northern Illinois U.

    2016-11-21

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW level intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.

  8. Air-born contamination caused in a high-energy proton accelerator room

    International Nuclear Information System (INIS)

    Masumoto, K.; Toyoda, A.; Matsumura, H.; Kunifuda, T.

    2013-01-01

    Surface contamination caused during the operation of 12-GeV proton synchrotron, KEK have been studied by gamma-ray spectrometry and imaging plate technique. The surface of accelerator component was wiped with the filter paper. PSL value of imaging plate contacted on the filter paper decreased according to the half-life of 2 weeks. Therefore, it was assumed that 32 P might be produced from Ar by the high-energy protons and neutrons and deposited on the accelerator components. (author)

  9. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Alexandr; Vainio, Rami [Department of Physics, University of Helsinki, P.O. Box 64, Helsinki FI-00014 (Finland); Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), University of Oulu, Oulu FI-90014 (Finland)

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  10. rf quadrupole linac: a new low-energy accelerator

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Fuller, C.W.

    1980-01-01

    A new concept in low-energy particle accelerators, the radio-frequency quadrupole (RFQ) linac, is currently being developed at the Los Alamos National Scientific Laboratory. In this new linear accelerating structure both the focusing and accelerating forces are produced by the rf fields. It can accept a high-current, low-velocity dc ion beam and bunch it with a high capture efficiency. The performance of this structure as a low-energy linear accelerator has been verified with the successful construction of a proton RFQ linac. This test structure has accelerated 38 mA of protons from 100 keV to 640 keV in 1.1 meters with a capture efficiency greater than 80%. In this paper a general description of the RFQ linac and an outline of the basic RFQ linac design procedure are presented in addition to the experimental results from the test accelerator. Finally, several applications of this new accelerator are discussed

  11. Study of the heat flux generated by accelerated electrons on the components near the plasma

    International Nuclear Information System (INIS)

    Laugier, J.

    2003-01-01

    Experimental data have shown that a heat flux appears on components situated near the wave guide of the lower hybrid antenna of Tore-Supra. This heat flux is due to the energy release during collisions that occur between the component surface and the electrons accelerated by the high frequency field generated by the antenna. Simulations show that the electrons may reach an energy of 2-3 keV and that the heat flux generated in the shield may reach 10 MW/m 2 . In this work a correlation has been established between the local heat flux due to electron impact and the mean electrical field near the antenna: Φ (W/m 2 ) = 4.10 -4 x E -6 (10 5 V/m). It is also shown that the ratio of electrons that reach the shield is roughly not dependent on the value of the mean electrical field. In the hypothesis of a Gaussian distribution of electron initial velocities this ratio is 10%. (A.C.)

  12. High Energy Density Physics and Exotic Acceleration Schemes

    International Nuclear Information System (INIS)

    Cowan, T.; Colby, E.

    2005-01-01

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  13. Lower-Energy Energy Storage System (LEESS) Component Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Shi, Y.; Saxon, A.; Pesaran, A.

    2014-10-01

    Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to traditional battery storage systems. If such lower-energy ESS (LEESS) devices can also be shown to maintain high HEV fuel savings, future HEVs designed with these devices could have an increased value proposition relative to conventional vehicles. NREL's vehicle test platform is helping validate the in-vehicle performance capability of alternative LEESS devices and identify unforeseen issues. NREL created the Ford Fusion Hybrid test platform for in-vehicle evaluation of such alternative LEESS devices, bench testing of the initial LIC pack, integration and testing of the LIC pack in the test vehicle, and bench testing and installation of an EDLC module pack. EDLC pack testing will continue in FY15. The in-vehicle LIC testing results suggest technical viability of LEESS devices to support HEV operation. Several LIC configurations tested demonstrated equivalent fuel economy and acceleration performance as the production nickel-metal-hydride ESS configuration across all tests conducted. The lowest energy LIC scenario demonstrated equivalent performance over several tests, although slightly higher fuel consumption on the US06 cycle and slightly slower acceleration performance. More extensive vehicle-level calibration may be able to reduce or eliminate these performance differences. The overall results indicate that as long as critical attributes such as engine start under worst case conditions can be retained, considerable ESS downsizing may minimally impact HEV fuel savings.

  14. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  15. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    Science.gov (United States)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  16. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  17. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Science.gov (United States)

    van Hees, Vincent T; Gorzelniak, Lukas; Dean León, Emmanuel Carlos; Eder, Martin; Pias, Marcelo; Taherian, Salman; Ekelund, Ulf; Renström, Frida; Franks, Paul W; Horsch, Alexander; Brage, Søren

    2013-01-01

    Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr), and wrist in 63 women (20-35 yr) in whom daily activity-related energy expenditure (PAEE) was available. In the robot experiment, HFEN+ had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in

  18. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Directory of Open Access Journals (Sweden)

    Vincent T van Hees

    Full Text Available INTRODUCTION: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. METHODS: An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+] were derived for each experimental condition and compared against the reference acceleration (forward kinematics of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr, and wrist in 63 women (20-35 yr in whom daily activity-related energy expenditure (PAEE was available. RESULTS: In the robot experiment, HFEN+ had lowest error during (vertical plane rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively. ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN. CONCLUSION: In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice

  19. The RF system for the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at Los Alamos

    International Nuclear Information System (INIS)

    Lynch, M.T.; Rees, D.; Tallerico, P.; Regan, A.

    1996-01-01

    To develop and demonstrate the crucial front end of the APT accelerator and some of the critical components for APT, Los Alamos is building a CW proton accelerator (LEDA) to provide 100 mA at up to 40 MeV. LEDA will be installed where the SDI-sponsored Ground Test Accelerator was located. The first accelerating structure for LEDA is a 7-MeV RFQ operating at 350 MHz, followed by several stages of a coupled-cavity Drift Tube Linac (CCDTL) operating at 700 MHz. The first stage of LEDA will go to 12 MeV. Higher energies, up to 40 MeV, come later in the program. Three 1.2-MW CW RF systems will be used to power the RFQ. This paper describes the RF systems being assembled for LEDA, including the 350 and 700-MHz klystrons, the High Voltage Power Supplies, transmitters, RF transport, window/coupler assemblies, and controls. Some of the limitations imposed by the schedule and the building itself are addressed

  20. The solutions and thermodynamic dark energy in the accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, E. C. Günay [Çanakkale Onsekiz Mart University, Çanakkale (Turkey)

    2016-03-25

    Recently, Tachyonic matter expressed in terms of scalar field is suggested to be the reason of acceleration of the universe as dark energy [1]-[3]. In this study, dynamic solutions and thermodynamic properties of matters such as Tachyonic matters were investigated.

  1. The neutronics of an Accelerator-Driven Energy Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.; Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    1995-10-01

    This study has been focused on an Accelerator-Driven Energy Amplifier, based on the concept proposed by the CERN-group. To analyze the performance of this system the extensive optimization of the core lattice was done, the temperature coefficients of reactivity were investigated, reactivity budget and power distribution were estimated.

  2. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  3. Overview of the low energy accelerator scanning system

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Muhamad Zahidee Taat; Abu Bakar Ghazali; Mohd Rizal Ibrahim; Mohd Rizal Chulan Md Chulan; Azaman Ahmad; Abdul Halim Baijan; Rokiah Mohd Sabri

    2009-01-01

    This paper describes the specification of the low energy accelerator (Baby-EBM; Electron Beam Machine) scanning system. It comprises a discussion of coil inductance measurement, power supply design and the test results. The scanning horn system was completely assembled and tested; it was found that the system is able to scan the beam across the scanning window with a required beam profile. (Author)

  4. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    published in the internationally leading journal Physical Review Letters. We continued to progress this pionee 15.  SUBJECT TERMS ion therapy, heavy ion ...Thomson parabola spectrometer: To separate and provide a measurement of the charge -to-mass ratio and energy spectrum of the different ion species...AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE

  5. On the analysis of the beam energy stabilization in the Van de Graaff accelerator 'Lech'

    International Nuclear Information System (INIS)

    Bienkowski, A.; Jaskola, M.; Zemlo, L.

    1977-01-01

    In the Van de Graaff accelerator LECH the deviation of the beam energy from the desired value is detected by the standard analysing system consisting of the 90 0 bending magnet followed by a pair of slits. The amplified error signal from that slits is used to correct the high voltage at the terminal. Corrections of the fast component of the voltage instability are made via the corona-triode and for the slow component via adjustment of the belt charging current. In order to determine the maximum gain factors providing the stable operating conditions a definite transfer function has been adopted for the aforementioned two loop stabilizer. Next this function has been applied to the analysis of the stability of the feedback system. Although the calculation was made for parameters of the accelerator LECH, the same method is easily applicable to other Van de Graaff accelerators

  6. Experimental evaluation of 350 MHz RF accelerator windows for the low energy demonstration accelerator

    International Nuclear Information System (INIS)

    Cummings, K.; Rees, D.; Roybal, W.

    1997-01-01

    Radio frequency (RF) windows are historically a point where failure occurs in input power couplers for accelerators. To obtain a reliable, high-power, 350 MHz RF window for the Low Energy Demonstration Accelerator (LEDA) project of the Accelerator Production of Tritium program, RF windows prototypes from different vendors were tested. Experiments were performed to evaluate the RF windows by the vendors to select a window for the LEDA project. The Communications and Power, Inc. (CPI) windows were conditioned to 445 kW in roughly 15 hours. At 445 kW a window failed, and the cause of the failure will be presented. The English Electronic Valve, Inc. (EEV) windows were conditioned to 944 kW in 26 hours and then tested at 944 kW for 4 hours with no indication of problems

  7. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose

  8. Qt based control system software for Low Energy Accelerator Facility

    International Nuclear Information System (INIS)

    Basu, A.; Singh, S.; Nagraju, S.B.V.; Gupta, S.; Singh, P.

    2012-01-01

    Qt based control system software for Low Energy Accelerating Facility (LEAF) is operational at Bhabha Atomic Research Centre (BARC), Trombay, Mumbai. LEAF is a 50 keV negative ion electrostatic accelerator based on SNICS ion source. Control system uses Nokia Trolltech's QT 4.x API for control system software. Ni 6008 USB based multifunction cards has been used for control and read back field equipments such as power supplies, pumps, valves etc. Control system architecture is designed to be client server. Qt is chosen for its excellent GUI capability and platform independent nature. Control system follows client server architecture. The paper will describe the control system. (author)

  9. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  10. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years.

  11. Accelerator physics and nuclear energy education in INRNE-BAS

    International Nuclear Information System (INIS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2015-01-01

    Presently Bulgaria has no research nuclear facility, neither a research reactor, nor an accelerator. With the new cyclotron laboratory in Sofia the Institute for Nuclear Research and Nuclear Energy at the Bulgarian Academy of Sciences will restart the experimental research program not only in the fi eld of nuclear physics, but also in many interdisciplinary fields related to nuclear physics. The cornerstone of the cyclotron laboratory is a cyclotron TR24, which provides a proton beam with a variable energy between 15 and 24 MeV and current of up to 0.4 mA. The TR24 accelerator allows for the production of a large variety of radioisotopes for medical applications and development of radiopharmaceuticals. The new cyclotron facility will be used for research in radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including especially nuclear energy. Keywords: Cyclotron, PET/CT, radiopharmacy

  12. Design and test results of the Low Energy Demonstration Accelerator (LEDA) RF systems

    International Nuclear Information System (INIS)

    Rees, D.; Bradley, J. III; Cummings, K.; Lynch, M.; Regan, A.; Rohlev, T.; Roybal, W.; Wang, Y.M.

    1998-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos will serve as the prototype for the low energy section of the Accelerator Production of Tritium (APT) accelerator. The APT accelerator requires over 200 RF systems each with a continuous wave output power of 1 MW. The reliability and availability of these RF systems is critical to the successful operation of the APT plant and prototypes of these systems are being developed and demonstrated on LEDA. The RF system design for LEDA includes three, 1.2 MW, 350 MHz continuous wave (CW), RF systems driving a radio frequency quadrupole (RFQ) and one, 1.0 MW, CW, RF system driving a coupled-cavity drift tube linac (CCDTL). This paper presents the design and test results for these RF systems including the klystrons, cathode power supply, circulators, RF vacuum windows, accelerator field and resonance control system, and RF transmission components. The three RF systems driving the RFQ use the accelerating structure as a power combiner, and this places some unique requirements on the RF system. These requirements and corresponding operational implications will be discussed

  13. Momentum and energy transport in the accelerated fully rough turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, H.W.

    1976-06-01

    The behavior of the fully rough turbulent boundary layer subjected to favorable pressure gradients was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity, mean temperature and the components of the Reynolds stress tensor are reported for both unblown and blown layers. Stanton numbers were determined from energy balances on the test surface and skin friction coefficients from measurements of the Reynolds shear stress and mean velocity. A new acceleration parameter, K/sub r/, for fully rough layers is defined and shown to be dependent on a characteristic roughness dimension but independent of molecular viscosity. For fully rough turbulent flow, acceleration causes an increase in Stanton number compared to zero pressure gradient values at the same enthalpy thickness, Reynold number, or position. The fully rough Stanton number behavior observed in this study is contrary to that previously reported for unblown accelerated smooth wall layers. Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (for F equal zero) compared to zero pressure gradient fully rough layers. Increasing values of roughness Reynolds number with acceleration indicate that the fully rough layer does not tend toward the transitionally rough or smooth wall state when accelerated.

  14. Acceleration of ultrahigh-energy cosmic rays in starburst superwinds

    Science.gov (United States)

    Anchordoqui, Luis Alfredo

    2018-03-01

    The sources of ultrahigh-energy cosmic rays (UHECRs) have been stubbornly elusive. However, the latest report of the Pierre Auger Observatory provides a compelling indication for a possible correlation between the arrival directions of UHECRs and nearby starburst galaxies. We argue that if starbursts are sources of UHECRs, then particle acceleration in the large-scale terminal shock of the superwind that flows from the starburst engine represents the best known concept model in the market. We investigate new constraints on the model and readjust free parameters accordingly. We show that UHECR acceleration above about 1 011 GeV remains consistent with observation. We also show that the model could accommodate hard source spectra as required by Auger data. We demonstrate how neutrino emission can be used as a discriminator among acceleration models.

  15. Regional warming of hot extremes accelerated by surface energy fluxes

    Science.gov (United States)

    Donat, M. G.; Pitman, A. J.; Seneviratne, S. I.

    2017-07-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hot spots of accelerated warming of model-simulated hot extremes in Europe, North America, South America, and Southeast China. These hot spots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most Coupled Model Intercomparison Project Phase 5 models. Exploring the conditions on the specific day when the hot extreme occurs demonstrates that the hot spots are explained by changes in the surface energy fluxes consistent with drying soils. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a reevaluation of how climate models resolve the relevant terrestrial processes.

  16. Spatial correlation for horizontal and vertical components of acceleration from northern Iran seismic events

    Science.gov (United States)

    Garakaninezhad, Alireza; Bastami, Morteza; Soghrat, Mohammad Reza

    2017-11-01

    The evaluation of seismic risk of spatially distributed systems requires the spatial correlation model for ground motion intensity measures. This study investigates the spatial correlation of four earthquakes recorded in northern Iran. The intra-event spatial correlation for both horizontal and vertical components of spectral acceleration at eight periods in the range of 0.0-3.0 s is estimated using geostatistical tools. An exponential form is chosen to fit experimental semivariograms, and the correlation ranges of spectral accelerations as a function of period are derived. The results show similar trend of correlation ranges for both components. It should be mentioned that the ranges for the vertical component, in general, are higher than those observed for the horizontal one. For both components, the correlation ranges as a function of period are divided into three segments. The first and the third one are increasing while the second one is decreasing with increasing period.

  17. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the U.S., therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the U.S., in particular, the various aspects of the production and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the U.S., and will compare and examine the existing infrastructure in other countries for this purpose. The nature of the U.S. decisions to address many of the above-mentioned issues and an eventual plan of attack to resolve them are bound to have a world-wide impact in the radioisotope user communities. These will be discussed with a view to evaluating the best possible solutions in order to eliminate the shortage in the future supply of radioisotopes produced in high energy accelerators. (author)

  18. Calibration in energy of the Tandem Van De Graaff Accelerator

    International Nuclear Information System (INIS)

    Ramirez T, J.J.; Lopez M, J.; Villasenor S, P.; Aspiazu F, J.A.; Linarte B, G.; Garcia R, B.

    2002-01-01

    The resonance at E R = 4.808 ± 0.005 MeV in the elastic scattering 12 C (p,p) C 12 was reproduced for determining the new curvature radius of the beam after realignment the acceleration line (r= 102.633 ± 0.076 cm) and new tables of energy-frequency for protons and deuterons were made. (Author)

  19. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  20. Application of Plasma Waveguides to High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  1. Accelerating Energy and Environmental Transition in Europe through digital

    International Nuclear Information System (INIS)

    Reinaud, Julia; Clinckx, Nicolas; Faraggi, Paul

    2017-01-01

    Digitalization is becoming ubiquitous in the energy sector, enabling a more decentralized energy system and blurring the traditional energy sector boundaries, with more integration with buildings, mobility solutions and industry. Digitalization is accelerating the pace of the energy transition, mainly thanks to three levers: 1) enhancing customer interaction with the energy system, 2) optimizing operations, and 3) enabling new business models for traditional energy actors as well as opening up space for new entrants from other sectors and energy start-ups. Digital technologies are also facilitating a cost-effective, clean energy transition, mainly by increasing energy efficiency and flexibility, as well as enabling the integration of renewable electricity into smart(er) grids and developing low-carbon solutions. This article gives a brief overview of the digitally-enabled innovations in Europe's energy markets and how various players are positioning themselves to take advantage of these opportunities. It concludes by highlighting some of the policy issues this transformation raises and the challenges ahead for European businesses to reap the benefits

  2. Increasing the energy of the Fermilab Tevatron accelerator

    International Nuclear Information System (INIS)

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R ampersand D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented

  3. An accelerator-driven reactor for meeting future energy demand

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel

  4. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    International Nuclear Information System (INIS)

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S.; Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H.

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ''drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology

  5. Technology and Components of Accelerator-driven Systems. Second International Workshop Proceedings, Nantes, France, 21-23 May 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The accelerator-driven system (ADS) is a potential transmutation system option as part of partitioning and transmutation strategies for radioactive waste in advanced nuclear fuel cycles. Following the success of the workshop series on the utilisation and reliability of the High Power Proton Accelerators (HPPA), the scope of this new workshop series on Technology and Components of Accelerator-driven Systems has been extended to cover subcritical systems as well as the use of neutron sources. The workshop organised by the OECD Nuclear Energy Agency provided experts with a forum to present and discuss state-of-the-art developments in the field of ADS and neutron sources. A total of 40 papers were presented during the oral and poster sessions. Four technical sessions were organised addressing ADS experiments and test facilities, accelerators, simulation, safety, data, neutron sources that were opportunity to present the status of projects like the MYRRHA facility, the MEGAPIE target, FREYA and GUINEVERE experiments, the KIPT neutron source, and the FAIR linac. These proceedings include all the papers presented at the workshop

  6. Effects of an accelerated liberalization. Consequences of accelerated liberalization for the competitiveness of Dutch energy companies

    International Nuclear Information System (INIS)

    Kaal, M.B.T.

    2001-08-01

    One of the conclusions of the Dutch Energy Report, published at the end of 1999, was that it would be feasible to speed up the pace of liberalization in the Netherlands. This conclusion will lead to the liberalization of the retail customers in 2004 and the market for renewable energy in 2001. This will be an incentive to more competition and put a greater pressure on energy companies to concentrate in order to benefit from economies of scale. Less preparation time implies also that there will be less layers of isolation against cost leaders and hence a more intense (price-based) competition. The central question in this report is whether and to what extent the effects of policy, in particular the accelerated liberalization, affect the strategic behavior and competitiveness of the Dutch Regional Electricity Companies (RECs). To address this question four face-to-face interviews have been held with experts from the four major RECs. In these interviews the experts gave their opinion about the Dutch policy regarding the accelerated liberalization and the rate and extent of the privatization. Subsequently, their perspective on the impact of the policy on their competitiveness and their analysis of the Dutch energy market was recorded. After that, the experts exposed their outlook on the future energy market and the ambition and most likely direction of their companies. The data collection was complemented with numerous relevant public interviews of experts derived from various newspapers and energy magazines. The data thus collected were analyzed by means of a theoretical framework consisting of the insights of Porter, Prahalad and Hamel and at a more detailed level marketing theories regarding positioning and branding. This resulted in an overview of the current market position of the Dutch RECs and an outlook for the years to come. 27 refs

  7. Report on the Workshop on Accelerated Nuclear Energy Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    King, Wayne E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Arsenlis, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bench, Graham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bulatov, Vasily [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fluss, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klein, Richard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMahon, Donn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Middleton, Carolin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morley, Maureen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pasamehmetoglu, Kemal [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Patrice [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2010-05-11

    This document reports on the Office of Nuclear Energy’s (NE’s) Workshop on Accelerated Nuclear Energy Materials Development held May 11, 2010, in Washington, DC. The purpose of the workshop was twofold: (1) to provide feedback on an initiative to use uncertainty quantification (UQ) to integrate theory, simulation, and modeling with accelerated experimentation to predict the behavior of materials and fuels in an irradiation environment and thereby accelerate the lengthy materials design and qualification process; and (2) to provide feedback on and refinement to five topical areas to develop predictive models for fuels and cladding and new radiation-tolerant materials. The goal of the workshop was to gather technical feedback with respect to the Office of Nuclear Energy’s research and development while also identifying and highlighting crosscutting capability and applicability of the initiative to other federal offices, including the Department of Energy’s (DOE’s) National Nuclear Security Administration (NNSA), Nuclear Regulatory Commission (NRC), DOE Office of Basic Energy Sciences (BES), DOE Office of Fusion Energy Sciences (FES), and Naval Reactors. The goals of the initiative are twofold: (1) develop time- and length-scale transcending models that predict material properties using UQ to effectively integrate theory, simulation, and modeling with accelerated experiments; and (2) design and develop new radiation-tolerant materials using the knowledge gained and methodologies created to shorten the development and qualification time and reduce cost. The initiative is crosscutting and has synergy with industry and other federal offices including Naval Reactors, NRC, FES, BES, and the Office of Advanced Scientific Computing Research (ASCR). It is distinguished by its use of uncertainty quantification to effectively integrate theory, simulation, and modeling with high-dose experimental capabilities. The initiative aims to bring the methodology that is being

  8. Cost analysis of low energy electron accelerator for film curing

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Low energy electron accelerators are recognized as one of the advanced curing means of converting processes for films and papers. In the last three years the price of the accelerator equipment has been greatly reduced. The targeted application areas are mainly processes of curing inks, coatings, and adhesives to make packaging materials. The operating cost analyses were made for electron beam (EB) processes over the conventional ones without EB. Then three new proposals for cost reduction of EB processes are introduced. Also being developed are new EB chemistries such as coatings, laminating adhesives and inks. EB processes give instantaneous cure and EB chemistries are basically non solvent causing less VOC emission to the environment. These developments of both equipment and chemistries might have a potential to change conventional packaging film industries. (author)

  9. High power components fabrication for 100MeV proton accelerator

    International Nuclear Information System (INIS)

    Cho, Han Sung; Kwon, Hyeok Jung; Jang, Ji Ho; Cho, Yong Sub

    2012-01-01

    Proton Engineering Frontier Project (PEFP) is developing a 100 MeV proton linear accelerator, which consists of ion injector, 3 MeV RFQ, 100 MeV DTL, for basic science research and industrial applications. The design duty factor of the accelerator is as high as 24% up to 20 MeV section and 9% for 100 MeV section. Therefore high heat load is anticipated. The proper cooling of the accelerator components is essential for stable operation of the accelerator. Especially for DTL, many slug tuners are used for frequency tuning and field profile control purpose and active water cooling is required. To control the field profile stability through resonant coupling method, we use several post couplers and these post coupler requires water cooling to remove RF heat load. In addition, we designed and fabricated the vacuum grills with water cooling because wall current should flow through the vacuum grill. The high power RF coupler is a ridge loaded waveguide type iris coupler. The length of the coupler for 100 MeV DTL is reduced to about quarter wavelength from half wavelength one used for 20 MeV DTL. In this paper, a brief introduction and fabrication status of the high power components for the DTL such as slug tuners, post couplers, vacuum grills and high power RF couplers are presented

  10. Department of Energy. Jobs and Innovation Accelerator Challenge (JIAC) Program

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Jon [National Center for Manufacturing Sciences, Ann Arbor, MI (United States)

    2016-05-05

    local large manufacturers (OEMs) who could provide pull to encourage SMMs (current and future suppliers) to participate. Central to this entire effort was the opportunity that this Final Report documents corresponding to the specific tasks associated with the U.S. Department of Energy (DOE) funded component of the InnoState Jobs Innovation Accelerator Challenge (JIAC) Program.

  11. The two-component virial theorem and the acceleration-discrepancy relation

    Science.gov (United States)

    Dantas, Christine C.; Ribeiro, André L. B.; Capelato, Hugo V.

    2018-02-01

    We revisit the `two-component virial theorem' (2VT) in the light of recent theoretical and observational results related to the `dark matter problem'. This modification of the virial theorem offers a physically meaningful framework to investigate possible dynamical couplings between the baryonic and dark matter components of extragalactic systems. In particular, we examine the predictions of the 2VT with respect to the `acceleration-discrepancy relation' (ADR). Considering the combined data (composed of systems supported by rotation and by velocity dispersion), we find the following: (i) The overall behaviour of the 2VT is consistent with the ADR. (ii) The 2VT predicts a nearly constant behaviour in the lower acceleration regime, as suggested in recent data on dwarf spheroidals. We also briefly comment on possible differentiations between the 2VT and some modified gravity theories.

  12. Neutron double differential distributions, dose rates and specific activities from accelerator components irradiated by 50-400 MeV protons

    International Nuclear Information System (INIS)

    Cerutti, F.; Charitonidis, N.; Silari, M.; Charitonidis, N.

    2010-01-01

    Systematic Monte Carlo simulations with the FLUKA code were performed to estimate the induced radioactivity in five materials commonly used in particle accelerator structures: boron nitride and carbon (dumps and collimators), copper (RF cavities, coils and vacuum chambers), iron and stainless steel (magnets and vacuum chambers). Using a simplified geometry set-up, the five materials were bombarded with protons in the energy range from 50 to 400 MeV. This energy range is typical of intermediate-energy proton accelerators used as injectors to higher-energy machines, as research accelerators for nuclear physics, and in hadron therapy. Ambient dose equivalent rates were calculated at distances up to one meter around the target, for seven cooling times up to six months. A complete inventory of the radionuclides present in the target was calculated for all combinations of target, beam energy and cooling time. The influence of the target size and of self-absorption was investigated. The energy and angular distributions of neutrons escaping from the target were also scored for all materials and beam energies. The influence on the neutron spectra of the presence of concrete walls (the accelerator tunnel) around the target was also estimated. The results of the present study provide a simple database to be used for a first, approximate estimate of the radiological risk to be expected when intervening on activated accelerator components. (authors)

  13. Concept of an Accelerator-Driven Advanced Nuclear Energy System

    Directory of Open Access Journals (Sweden)

    Xuesong Yan

    2017-07-01

    Full Text Available The utilization of clean energy is a matter of primary importance for sustainable development as well as a vital approach for solving worldwide energy-related issues. If the low utilization rate of nuclear fuel, nuclear proliferation, and insufficient nuclear safety can be solved, nuclear fission energy could be used as a sustainable and low-carbon clean energy form for thousands of years, providing steady and base-load electrical resources. To address these challenges, we propose an accelerator-driven advanced nuclear energy system (ADANES, consisting of a burner system and a fuel recycle system. In ADANES, the ideal utilization rate of nuclear fuel will be >95%, and the final disposal of nuclear waste will be minimized. The design of a high-temperature ceramic reactor makes the burner system safer. Part of fission products (FPs are removed during the simple reprocessing in the fuel recycle system, significantly reducing the risks of nuclear proliferation of nuclear technology and materials. The ADANES concept integrates nuclear waste transmutation, nuclear fuel breeding, and safety power production, with an ideal closed loop operation of nuclear fission energy, constituting a major innovation of great potential interest for future energy applications.

  14. Some advances in medical applications of low energy accelerators

    Science.gov (United States)

    Valković, V.; Moschini, G.

    1991-05-01

    Medical applications of low energy accelerators include: the use of nuclear analytical methods and procedures for laboratory studies and routine measurements; material productions and modifications to meet special requirements; radioisotope productions and their applications in radiopharmaceuticals as well as in positron emission tomography; and radiotherapy with ions, based on improved understanding of the interaction of charged particles with living tissue. Some of the recent advances in these fields are critically summarized. The plan for an improved charged particle facility in a hospital environment dedicated to applications in biology and medicine is presented.

  15. Future of high intensity accelerators in nuclear energy

    International Nuclear Information System (INIS)

    Schriber, S.O.; Fraser, J.S.; Tunnicliffe, P.R.

    1977-08-01

    A possible application for a high mean current, intermediate-energy proton linear accelerator is the ''electrical breeding'' of fuel for nuclear electrical power stations. The possible role of the spallation breeder in the context of a Canadian nuclear power economy and its relationship to nuclear fuel resources are discussed. The production of fissile material using the spallation process in a target containing actinide elements appears desirable and feasible from engineering and economic considerations. Current development work in Canada and some of the outstanding problems are discussed. (author)

  16. ACCELERATING THE ADOPTION PROCESS OF RENEWABLE ENERGY SOURCES AMONG SMES

    Directory of Open Access Journals (Sweden)

    Mirjam Leloux

    2015-07-01

    solar panel installation, heat pumps and wind energy, generating electricity. We have a two-track approach: development of a tool to support SMEs in their decision making process about suitable and appropriate technologies and solutions, and research to understand the barriers and obstacles that hinder adoption and implementation of sustainable energy solutions. In this paper we introduce a tool which aims to support SMEs in their decision making process on renewable energy applications in the expectation that this will accelerate that process.

  17. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  18. Renewable: A key component of our global energy future

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  19. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  20. Radiation processing of liquid with low energy electron accelerator

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2003-01-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by γ-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with γ-ray should be carried out. (author)

  1. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  2. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Arent, Douglas J. [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Locklin, Ken [Impax Asset Management Group (United Kingdom)

    2016-04-01

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort is needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.

  3. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  4. Computational Support for the Selection of Energy Saving Building Components

    NARCIS (Netherlands)

    De Wilde, P.J.C.J.

    2004-01-01

    Buildings use energy for heating, cooling and lighting, contributing to the problems of exhaustion of fossil fuel supplies and environmental pollution. In order to make buildings more energy-efficient an extensive set of âenergy saving building componentsâ has been developed that contributes to

  5. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  6. Accelerating the market penetration of renewable energy technologies in South Africa

    International Nuclear Information System (INIS)

    Martens, J.W.; De Lange, T.J.; Cloin, J.; Szewczuk, S.; Morris, R.; Zak, J.

    2001-03-01

    There exists a large potential for renewable energy technologies in South Africa and despite the fact that rapid growth of the application of renewable energy takes place in many parts of the world, the current installed renewable capacity in South Africa is negligible. The objective of this study is to address this gap by analysing ways to accelerate the market penetration of renewable energy technologies in South Africa. The activities undertaken in this study comprise two major components: a thorough analysis of South Africa's specific constraints and barriers to renewable energy implementation, and a review of the lessons learnt from Member States of the European Union (EU) on the promotion of renewable energy development. The focus of the study was restricted to the analysis of electricity generating technologies, in particular solar energy, biomass, wind power and mini-hydro renewable energy technologies. Recommendations to stimulate the market penetration of renewable energy technologies in South Africa are formulated. They are structured in: actions to enhance the policy framework for renewable power generation, actions to enhance the policy framework for off-grid renewable energy, and recommendations to stimulate renewable energy project development. 44 refs

  7. How to fill a narrow 27 KM long tube with a huge number of accelerator components?

    CERN Document Server

    Muttoni, Y; Valbuena, R

    2005-01-01

    As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies. This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available. It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled.

  8. Induction acceleration scenario from an extremely low energy in the KEK all-ion accelerator

    International Nuclear Information System (INIS)

    Dixit, Tanuja S.; Iwashita, Taiki; Takayama, Ken

    2009-01-01

    An all-ion accelerator (AIA)-capable of accelerating all ions of any possible charge state and mass-based on the induction synchrotron concept is under study. This concept was demonstrated in 2006, wherein confinement and acceleration of a proton bunch was independently carried out by the induction cells. In the induction synchrotron based systems, unlike RF synchrotron, the operation frequency of an induction cell is not a limitation, since it generates acceleration voltage by generating trigger signals in synchronization with the bunch signal from the monitors. For the proof of principle experiment of AIA, argon ions is planned to be accelerated in the KEK-PS booster ring (KEK-BR). KEK-BR, operated as a rapid cycle synchrotron at 20 Hz frequency, requires a dynamic acceleration voltage throughout acceleration period. The acceleration voltage pulse provided by the induction cells is fixed in amplitude; therefore a new acceleration scheme using fixed output voltage from the induction acceleration cells is worked out using simulations. This paper discusses the new acceleration scheme for the AIA, its simulation results and a new induction cell giving long acceleration voltage pulse required for AIA. Then various issues are discussed from the practical point of view.

  9. Accelerating the deployment of energy efficient and renewable energy technologies in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Shickman, Kurt [Trust for Conservation Innovation, San Francisco, CA (United States). Global Cool Cities Alliance (GCCA)

    2017-02-13

    Purpose of the project was to accelerate the deployment of energy efficient and renewable energy technologies in South Africa. Activities were undertaken to reduce barriers to deployment by improving product awareness for the South African market; market and policy intelligence for U.S. manufacturers; product/service availability; local technical capacity at the workforce, policymaker and expert levels; and ease of conducting business for these technologies/services in the South African market.

  10. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  11. Boronic Acid Accelerated Three-Component Reaction for the Synthesis of α-Sulfanyl-Substituted Indole-3-acetic Acids.

    Science.gov (United States)

    Das, Amrita; Watanabe, Kenji; Morimoto, Hiroyuki; Ohshima, Takashi

    2017-11-03

    Boronic acid was used to accelerate a three-component reaction of indoles, thiols, and glyoxylic acids for the synthesis of α-sulfanyl-substituted indole-3-acetic acids. Boronic acid catalysis to activate the α-hydroxy group in α-hydroxycarboxylic acid intermediates and intramolecular assistance by free carboxylic acid were the keys to accelerating the product formation.

  12. University Programs of the U.S. Department of Energy Advanced Accelerator Applications Program

    International Nuclear Information System (INIS)

    Beller, Denis E.; Ward, Thomas E.; Bresee, James C.

    2002-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21. Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R and D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R and D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs. (authors)

  13. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  14. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants.

    Science.gov (United States)

    Stothart, Mason R; Elliott, Kyle H; Wood, Thomas; Hatch, Scott A; Speakman, John R

    2016-07-15

    The integral of the dynamic component of acceleration over time has been proposed as a measure of energy expenditure in wild animals. We tested that idea by attaching accelerometers to the tails of free-ranging pelagic cormorants (Phalacrocorax pelagicus) and simultaneously estimating energy expenditure using doubly labelled water. Two different formulations of dynamic body acceleration, [vectorial and overall DBA (VeDBA and ODBA)], correlated with mass-specific energy expenditure (both R(2)=0.91). VeDBA models combining and separately parameterizing flying, diving, activity on land and surface swimming were consistently considered more parsimonious than time budget models and showed less variability in model fit. Additionally, we observed evidence for the presence of hypometabolic processes (i.e. reduced heart rate and body temperature; shunting of blood away from non-essential organs) that suppressed metabolism in cormorants while diving, which was the most metabolically important activity. We concluded that a combination of VeDBA and physiological processes accurately measured energy expenditure for cormorants. © 2016. Published by The Company of Biologists Ltd.

  15. International Atomic Energy Agency programme and activity on the utilization of low energy accelerators

    International Nuclear Information System (INIS)

    Shalnov, A.V.; Whetstone, S.L.

    1974-01-01

    One of the chief missions of the Agency is as intermediary between the more highly developed of its member states and the less developed. This involves transmittal of needs of the latter to the former and, where possible, in response to the needs, an appropriate transfer of information and technical assistance. The physics section of the IAEA has recently encouraged and supported requests for technical assistance for programs based on neutron activation studies or pedagogic neutron physics experiments for institutes entering the nuclear field. Neutron generator laboratories have been set up with IAEA-assistance most recently in Burma, Hong Kong, Lebanon. Other recent technical assistance projects involving low-energy accelerators include: (1) consultation on the future program for the accelerator laboratory in Algeria; (2) equipment and experts to assist the nuclear physics program at the Van de Graaff in Bangladesh; (3) expert assistance and equipment in support of the installation of an electron linear accelerator in Egypt; and (4) expert assistance for nuclear physics studies at the cyclotron in Chile. A large number of young scientists, particularly from S.E. Europe, but also from the Middle East and South America, have received training in nuclear physics experimentation by advanced countries at low energy accelerator laboratories under the IAEA fellowship program

  16. Radiation environment in the tunnel of a high-energy proton accelerator at energies near 1 TeV

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Sun, R.K.S.; Swanson, W.P.

    1987-12-01

    Neutron energy spectra, fluence distributions and rates in the FNAL Tevatron tunnel are summarized. This work has application to radiation damage to electronics and research equipment at high energy accelerators, as well as to radiological protection. 7 refs., 4 figs

  17. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  18. How to Fill a Narrow 27 km Long Tube with a Huge Number of Accelerator Components?

    CERN Document Server

    Muttoni, Yvon; Valbuena, Roger

    2005-01-01

    As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies.This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available.It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled.

  19. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    ). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...... evaluated where it is defined. Outside this region an algorithm is introduced, so the model iterates back to the feasible region. It is shown how this can be done for four different model of energy system component models: turbine constant, gasifier, heat exchanger effectiveness, and heat exchanger heat......During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI...

  20. Six policy actions for accelerated deployment of renewable energy. READy Renewable Energy Action on Deployment. Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    The READy book presents a kaleidoscope of policy options that have proven to accelerate the deployment of renewable energy technologies, based on experiences around the world at the local and national levels. Lessons learned from successful cases are distilled into six essential action points. Together these categories of policy actions compose the ACTION Star, a guide for taking action now while preparing for growth over the long term.

  1. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  2. Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Sawaya, Geof; Chen, Yixing; Taylor-Lange, Sarah C.

    2015-01-01

    Small and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback. - Highlights: • A DEEP (database of energy efficiency performance) supports building retrofit. • DEEP is an SQL database with pre-simulated results from 10 million EnergyPlus runs. • DEEP covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • DEEP accelerates retrofit of small commercial buildings to save energy use and cost. • DEEP can be expanded and integrated with third-party energy software tools.

  3. Permanent magnets in accelerators can save energy, space and cost

    DEFF Research Database (Denmark)

    Bødker, F.; Baandrup, L.O.; Hauge, N.

    2013-01-01

    has been delivered to ETH Zurich for testing in a compact accelerator mass spectrometer facility. Permanent NdFeB magnets generate a fixed magnetic field without using electrical power in the 90° bending magnet. Thermal drift of the permanent magnets is passively compensated. Small air cooled trim...... Magnet technology in other accelerator systems like synchrotron light sources and transfer beamlines....

  4. Design, construction and installation of the electromechanical components of the current control of filament of the Pelletron Electron Accelerator

    International Nuclear Information System (INIS)

    Aguilar J, R.A.; Valdovinos A, M.; Lopez V, H.

    1985-01-01

    For the operation of the Pelletron electron accelerator is required to have control of the filament current. For it was designed, built and installed an electromechanical system located in the Acceleration Unit inside the Accelerator tank and operated from the Control console. All the components located inside the tank operated under the following conditions: Pressure: until 7.03 Kg/cm 2 ; High voltage: 10 6 V (only the insulating arrow); Atmosphere: mixture of N 2 and CO 2 or SF 6 . (Author)

  5. An introduction to the Physics of High Energy Accelerators

    CERN Document Server

    Edwards, Donald A

    1993-01-01

    The first half deals with the motion of a single particle under the influence of electronic and magnetic fields. The basic language of linear and circular accelerators is developed. The principle of phase stability is introduced along with phase oscillations in linear accelerators and synchrotrons. Presents a treatment of betatron oscillations followed by an excursion into nonlinear dynamics and its application to accelerators. The second half discusses intensity dependent effects, particularly space charge and coherent instabilities. Includes tables of parameters for a selection of accelerato

  6. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  7. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7–13 MeV) and the 1.0-cm (13–20 MeV) R{sub 90} spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R{sub 80–20} decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. Conclusions: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6–20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.

  8. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.

  9. High energy particle acceleration by relativistic plasma waves

    International Nuclear Information System (INIS)

    Amiranoff, F.; Jacquet, F.; Mora, P.; Matthieussent, G.

    1991-01-01

    Accelerating schemes using plasmas, lasers or electron beams are proposed and compared to electron bunches in dielectric media or laser propagation through a slow wave structure made of liquid droplets. (L.C.J.A.). 33 refs, 20 figs

  10. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    Science.gov (United States)

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Radiation protection challenges in the management of radioactive waste from high-energy accelerators

    International Nuclear Information System (INIS)

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-01-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. (authors)

  12. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  13. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  14. Development and applications of super high energy collider accelerators. Vol. 1

    International Nuclear Information System (INIS)

    Abdelaziz, E.M.

    1996-01-01

    This paper presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evaluation of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab, and the large harden collider (LHD) which is now planned as a 14-TeV machine in the 27 Kilometer tunnel of the large electron positron (LEP) collider at CERN. Then presentation is given of the superconducting supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 Kilometers in circumference under the country surrounding Waxahachile in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particles. 12 figs., 1 tab

  15. Unlimited Energy Gain in the Laser-Driven Radiation Pressure Dominant Acceleration of Ions

    OpenAIRE

    Bulanov, S. V.; Echkina, E. Yu.; Esirkepov, T. Zh.; Inovenkov, I. N.; Kando, M.; Pegoraro, F.; Korn, G.

    2009-01-01

    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of remaining ions. In the relativistic limit, the ions become phase-locked with respect to the electromagnetic wave resulting in the unlimited ion energy gain. This effect and the ...

  16. Development of compact low energy election beam accelerator

    International Nuclear Information System (INIS)

    Katsura, Ichiro

    1996-01-01

    Sumitomo Heavy Industries has developed new compact accelerator jointly with its affiliated company RPC industries and some of which have already been in use in industries. Named WIPL, or WIP, which stands for Wire Ion Plasma, this accelerator is almost half the size of existing accelerators yet with performance as high as well enough to cope with industrial requirements. Background of our determination to develop such accelerator was that there prevails fairly good numbers of small laboratory units but only small numbers of production machines are in use. The main reason which brought such environment was that those production units were husky and costly. To overcome such problem and to turn situation in favor we launched the development programme and eventually succeeded to complete WIPL. Unique feature of WIPL was materialized by adopting special method of generating electrons. Unlike existing accelerators which use heated filaments WIPL utilizes the system using electron emission by bombardment of cathode plate by helium ions as electron source. Electrons are to be generated in following manner. 1) Thin helium gas is introduced in plasma chamber in which wire(s) for applying electric power. When power is supplied helium gas is turned into helium plasma by electric field. 2) Being energized by separate high voltage power source cathode plate is charged minus simultaneously. 3) Plus charged helium ions in plasma are then accelerated toward cathode plate and hit the surface. 4) Cathode plate emits electrons by bombardment and emitted electrons are compelled by the field and accelerated to the direction which helium ion came. Since such system no longer requires insulated transformers and control system for controlling electron beam current used in filament type machines equipment becomes remarkably small and economical. We really hope that this machine is accepted widely and contributes for exploiting the new horizon of electron beam market. (author)

  17. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  18. Mid-infrared lasers for energy frontier plasma accelerators

    Directory of Open Access Journals (Sweden)

    I. V. Pogorelsky

    2016-09-01

    Full Text Available Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO_{2} lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO_{2} laser technology.

  19. Mid-infrared lasers for energy frontier plasma accelerators

    Science.gov (United States)

    Pogorelsky, I. V.; Polyanskiy, M. N.; Kimura, W. D.

    2016-09-01

    Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO2 lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO2 laser technology.

  20. Practical aspects of estimating energy components in rodents

    Directory of Open Access Journals (Sweden)

    Jan Bert evan Klinken

    2013-05-01

    Full Text Available Recently there has been an increasing interest in exploiting computational and statistical techniques for the purpose of component analysis of indirect calorimetry data. Using these methods it becomes possible to dissect daily energy expenditure into its components and to assess the dynamic response of the resting metabolic rate to nutritional and pharmacological manipulations. To perform robust component analysis, however, is not straightforward and typically requires the tuning of parameters and the preprocessing of data. Moreover the degree of accuracy that can be attained by these methods depends on the configuration of the system, which must be properly taken into account when setting up experimental studies. Here, we review the methods of Kalman filtering, linear and penalised spline regression, and minimal energy expenditure estimation in the context of component analysis and discuss their results on high resolution datasets from mice and rats. In addition, we investigate the effect of the sample time, the accuracy of the activity sensor, and the washout time of the chamber on the estimation accuracy. We found that on the high resolution data there was a strong correlation between the results of Kalman filtering and P-spline regression, except for the activity respiratory quotient. For low resolution data the basal metabolic rate and resting respiratory quotient could still be estimated accurately with P-spline regression, having a strong correlation with the high resolution estimate (R2 > 0.997; sample time of 9 min. In contrast, the thermic effect of food and activity related energy expenditure were more sensitive to a reduction in the sample rate (R2 > 0.97.In conclusion, for component analysis on data generated by single channel systems with continuous data acquisition both Kalman filtering and P-spline regression can be used, while for low resolution data from multichannel systems P-spline regression gives more robust results.

  1. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  2. A study on application of monochromatic dual energy CT algorithm to polychromatic energy and its acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sung Ho

    2010-02-15

    Micro CT has been used widely in research fields of specimens and small animals for its ability of non-destructive or in vivo imaging. Micro CT with dual energy options has become particularly important in the preclinical studies such as obesity. In this study a simple post-reconstruction dual energy CT method is proposed. A dual energy CT algorithm for monochromatic x-rays was adopted and applied to the dual energy CT of poly-chromatic x-rays. The algorithm for monochromatic x-rays was implemented and tested with a mathematical phantom. In order to test the sensitivity of this algorithm to errors of x-ray energies values a simulation study was performed with the mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single energy, mean energy of the normalized spectrum and equivalent energy were used as representative energy of polychromatic x-ray. The proposed method was experimentally tested with two different micro CT scanners and a test phantom made of PMMA, water and graphite. CT scans were taken at 40 kV{sub p}, 50 kV{sub p}, 60 kV{sub p}, 70 kV{sub p} and 80 kV{sub p} of energy. The dual energy calculations to extract the effective atomic number (Z{sub eff}) and the electron density information of the phantom materials were carried out with CT images of all energy pairs. The effective atomic number and the electron density values obtained from the proposed method were compared with the theoretical values. The results showed that, using the mean energy to represent a polychromatic spectrum, errors less than 6.0 % in the extracted values can be achieved. Computation acceleration techniques, such as OpenMP and CUDA, were used for fast computation. These techniques reduced computation timeup to a few hundred times. The proposed method showed the simplicity of calculation, practicality and thus the feasibility to use with a general polychromatic CT.

  3. Low-energy, high-current proton accelerators at CRNL

    International Nuclear Information System (INIS)

    de Jong, M.S.; Brown, J.C.; Chidley, B.G.; Hansborough, L.D.; Hutcheon, R.M.; McMichael, G.E.; Schriber, S.O.; Shubaly, M.R.

    1983-01-01

    During development studies leading to operation of a 300 mA, 10 MeV proton linac in 1990 (the first stage of an accelerator breeder) several 100% duty cycle proton linacs will be built and tested to determine design limitations and operating characteristics. Presently a 750 kV injector and a 270 MHz drift-tube linac are being used to accelerate several mA of protons to 3 MeV in tests of high power operation. The first of the new linacs will be a 75 mA, 600 keV radiofrequency quadrupole structure. After initial operation an improved drift-tube linac will be added to accelerate the beam to 2.5 MeV. All of these 100% duty cycle proton linacs will have beams that could be used for radiation damage, beam diagnostic development, high-current beam-loss damage, beam dump design and transmission studies. The accelerator development program will be described as well as the possible practical uses for the proton beams

  4. Constraining sources of ultrahigh energy cosmic rays and shear acceleration mechanism of particles in relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruoyu

    2015-06-10

    Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.

  5. Advance of accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Kamitubo, Hiromichi

    1987-08-01

    At first, accelerators were developed for the research on atomic nuclei, but as the research on the components of natural world advanced, they were made larger so as to reach higher energy, and developed so that diverse particles can be accelerated. The energy attainable with accelerators has increased to ten times in six years. To the advance of accelerators, the development of acceleration principle due to new idea or the development of the technology related to accelerators accompanied without exception. In particular, as accelerators became large scale, and their construction requires large amount of money, attention is paid to the technical development required for the construction of new accelerators as the extending effect which brings forth the technical innovation in the society. In this paper, the technical advance which is common to accelerators is outlined. As the components indispensable to accelerators, there are charged particle generators, accelerating electric field generators, vaccumizing facilities, control system, diagnostic system and so on. As to new accelerating principles, the materialization of collision type rings and beam cooling is worthy of special mention. The research on computer-aided accelerators and the techniques of accelerating electric field generation, vaccumizing, electromagnets, ion sources and others are reported. (Kako, I.).

  6. The application analysis of high energy electron accelerator in food irradiation processing

    International Nuclear Information System (INIS)

    Deng Wenmin; Chen Hao; Feng Lei; Zhang Yaqun; Chen Xun; Li Wenjun; Xiang Chengfen; Pei Ying; Wang Zhidong

    2012-01-01

    Irradiation technology of high energy electron accelerator has been highly concerned in food processing industry with its fast development, especially in the field of food irradiation processing. In this paper, equipment and research situation of high energy electron accelerator were collected, meanwhile, the similarities and differences between high energy electron beam and 60 Co γ-rays were discussed. In order to provide more references of high energy electron beam irradiation, the usages of high energy electron in food irradiation processing was prospected. These information would promote the development of domestic food irradiation industry and give a useful message to irradiation enterprises and researchers. (authors)

  7. High energy nucleonic component of cosmic rays at mountain altitudes

    CERN Document Server

    Stora, Raymond Félix

    The diffusion equations describing the unidimensional propagation of .the high energy nucleonic component of cosmic rays throughout the atmosphere are sol"V'ed under two assumptions: (l) The nucleon-nucleon collisions are described according to Fermi's therlnOdynamical model involving completely inelastic pion and.nucleon-antinucleon pair production. (2) A somewhat opposite assumption is made assuming partially elastic collisions without nucleon-anti.nucleon pair production. Due to the present inaccuracy of experiments, we are able to derive only tentati v.e conclusions. The values computed under both hypotheses for the absorption mean free path and the charged to neutral particles ratio are found in acceptable ranges when compared to experimental data. The diffeential energy spectrum at a given depth is always found steeper than the primary, and steeper than indicated by experimental values if the primary is taken proportional to the 2.5 inverse power of energy.

  8. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1989-05-01

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  9. Linear accelerators for high energies. A report on the 1962 conference at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, John P.

    1963-01-01

    The linear accelerator was invented very early in the history of particle accelerators, but it has been one of the latest accelerators to be exploited. This is principally because of the very large quantities of radio-frequency power required to attain respectable energies in a reasonable distance. Radar developments during World War II resulted in production of the necessary megawatt oscillators or amplifiers, and linear accelerators, both for electrons and positive ions, are now operating in several centers. The electron linear accelerator has been extended to billion-volt energies, and in the Stanford two-mile version it will soon set new energy records between 20 and 40 BeV. The proton linear accelerator has had a less spectacular history. The highest energy yet achieved in a proton linac is about 70 MeV (at the University of Minnesota). Smaller proton linacs are in use as injectors for proton-synchrotrons, but no machine has been built or is under construction for the range above 100 MeV. This is because synchro-cyclotrons for this energy range are much cheaper and have been preferred for this reason, in spite of the fact that the beam from a synchro-cyclotron cannot be nearly as intense or as well collimated as the beam from a linear accelerator.

  10. Choice of theoretical model for beam scattering at accelerator output foil for particle energy determination

    International Nuclear Information System (INIS)

    Balagyra, V.S.; Ryabka, P.M.

    1999-01-01

    For measuring the charged particle energy calculations of mean square angles of electron beam multiple Coulomb scattering at output combined accelerator target were undertaken according to seven theoretical models. Mollier method showed the best agreement with experiments

  11. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    CERN Document Server

    AUTHOR|(CDS)2067931

    2016-01-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic flu...

  12. Concept of an Accelerator-Driven Advanced Nuclear Energy System

    OpenAIRE

    Xuesong Yan; Lei Yang; Xunchao Zhang; Wenlong Zhan

    2017-01-01

    The utilization of clean energy is a matter of primary importance for sustainable development as well as a vital approach for solving worldwide energy-related issues. If the low utilization rate of nuclear fuel, nuclear proliferation, and insufficient nuclear safety can be solved, nuclear fission energy could be used as a sustainable and low-carbon clean energy form for thousands of years, providing steady and base-load electrical resources. To address these challenges, we propose an accelera...

  13. The energy spectra of solar flare hydrogen, helium, oxygen, and iron - Evidence for stochastic acceleration

    Science.gov (United States)

    Mazur, J. E.; Mason, G. M.; Klecker, B.; Mcguire, R. E.

    1992-01-01

    The time-integrated differential energy spectra of H, He, O, and Fe measured in 10 large flare events observed at 1 AU over the energy range of 0.3-80 MeV/nucleon showed consistent patterns in their spectral shapes: particles with larger mean mass-to-charge ratios were generally less abundant at higher energies. A steady state model of stochastic particle acceleration with rigidity-dependent diffusion coefficients fit the spectra best; spectra representative of diffusive shock acceleration also described the spectra of some events with the same number of free parameters, but often fell off faster in energy above 30 MeV per nucleon than the observations. The two model predictions differed most at energies near 0.1 MeV per nucleon, below the lowest energies observed in this study. The stochastic model quantitatively described the observed spectral ordering with less efficient acceleration of species with larger mean mass-to-charge ratios.

  14. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  15. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  16. The generation of high fields for particle acceleration to very high energies

    International Nuclear Information System (INIS)

    1985-01-01

    A Workshop organised by the CERN Accelerator School, the European Committee for Future Accelerators and the Istituto Nazionale di Fisica Nucleare was held at the Frascati laboratory of INFN during the last week of September 1984. Its purpose was to bring together an inter-disciplinary group of physicists to review ideas for the acceleration of particles to energies beyond those attainable in machines whose construction is underway, or is currently contemplated. These proceedings contain some of the material presented and discussed at the Workshop, comprising papers on topics such as: the free-electron-laser, the lasertron, wakefield accelerators, the laser excitation of droplet arrays, a switched-power linac, plasma beat-wave accelerators and the choice of basic parameters for linear colliders intended for the TeV energy region. (orig.)

  17. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  18. Dietary carbohydrates, components of energy balance, and associated health outcomes.

    Science.gov (United States)

    Smith, Harry A; Gonzalez, Javier T; Thompson, Dylan; Betts, James A

    2017-10-01

    The role of dietary carbohydrates in the development of obesity and associated metabolic dysfunction has recently been questioned. Within the last decade, the Scientific Advisory Committee on Nutrition carried out a comprehensive evaluation of the role of dietary carbohydrates in human health. The current review aims to complement and extend this report by providing specific consideration of the effects of the component parts of energy balance, their interactions, and their culmination on energy storage and health. PubMed was searched for all published trials that had a minimum follow-up period of 3 months and were designed to manipulate dietary carbohydrate intake, irrespective of resultant differences in absolute carbohydrate dose (grams per day). Dietary carbohydrate manipulation has little effect on the individual components of energy balance that have been assessed. However, the role of dietary carbohydrates in influencing physical activity has yet to be assessed using gold-standard measurement tools. Moreover, adherence to a diet of modified carbohydrate content has not been found to result in a consistent pattern of changes in weight or indirect measures of metabolic health. However, certain markers of cardiovascular disease risk (ie, blood triglycerides and high-density lipoprotein cholesterol) may respond positively to a reduction in dietary carbohydrates. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Pulsed ion hall accelerator for investigation of reactions between light nuclei in the astrophysical energy range

    Science.gov (United States)

    Bystritsky, V. M.; Bystritsky, Vit. M.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.

    2017-07-01

    The factors defining the constraints on the current characteristics of the magnetically insulated ion diode (IDM) are considered. The specific current parameters close to the maximum possible ones are obtained for the particular IDM-40 design assigned for acceleration of light ions and investigation of nuclear reactions with small cross sections in the astrophysical energy range (2-40 keV) in the entrance channel. It is experimentally demonstrated that the chosen optimal operation conditions for IDM-40 units provide high stability of the parameters (energy distribution and composition of accelerated particle beams, degree of neutralization) of the accelerated particle flux, which increases during the working pulse.

  20. ARPA-E: Accelerating U.S. Energy Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Manser, Joseph S.; Rollin, Joseph A.; Brown, Kristen E.; Rohlfing, Eric A.

    2016-11-11

    ARPA-E is charged with addressing the most pressing issues facing the U.S. energy sector today, as well as those projected to impact national energy security in the future. The agency’s mission is clearly elucidated in its authorizing statute:2 “To overcome long-term and high-risk technological barriers in the development of energy technologies.” The three principal thrusts of the agency’s mission are (i) reducing energy imports, (ii) reducing energy-related emissions and greenhouse gases, and (iii) improving energy efficiency in all sectors of the U.S. economy. Meeting these ambitious challenges requires focused, interdisciplinary effort on a national scale that will help ensure the United States maintains a competitive lead in developing and deploying advanced energy technologies.

  1. Multi-component Self-Consistent Nuclear Energy System: On proliferation resistance aspect

    International Nuclear Information System (INIS)

    Shmelev, A.; Saito, M; Artisyuk, V.

    2000-01-01

    Self-Consistent Nuclear Energy System (SCNES) that simultaneously meets four requirements: energy production, fuel production, burning of radionuclides and safety is targeted at harmonization of nuclear energy technology with human environment. The main bulk of SCNES studies focus on a potential of fast reactor (FR) in generating neutron excess to keep suitable neutron balance. Proliferation resistance was implicitly anticipated in a fuel cycle with co-processing of Pu, minor actinides (MA) and some relatively short-lived fission products (FP). In a contrast to such a mono-component system, the present paper advertises advantage of incorporating accelerator and fusion driven neutron sources which could drastically improve characteristics of nuclear waste incineration. What important is that they could help in creating advanced Np and Pa containing fuels with double protection against uncontrolled proliferation. The first level of protection deals with possibility to approach long life core (LLC) in fission reactors. Extending the core life-time to reactor-time is beneficial from the proliferation resistance viewpoint since LLC would not necessarily require fuel management at energy producing site, with potential advantage of being moved to vendor site for spent fuel refabrication. Second level is provided by the presence of substantial amounts of 238 Pu and 232 U in these fuels that makes fissile nuclides in them isotopically protected. All this reveals an important advantage of a multi-component SCNES that could draw in developing countries without elaborated technological infrastructure. (author)

  2. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  3. Radiation vulcanization of natural rubber latex with low energy accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Emdadul; Makuuchi, Keizo; Ikeda, Kenichi; Yoshii, Fumio; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan)

    2001-03-01

    The radiation vulcanization of natural rubber latex (RVNRL) with the recently installed electron beam (EB) pilot plant at Takasaki Radiation Chemistry Research Establishment, Takasaki, Japan has been discussed. The accelerating voltage and beam current of the plant are 250 kV and 10 mA respectively. The plant has a reaction vessel with the capacity of 18 liters latex to irradiate at a time. In order to obtain a suitable setting of experimental for RVNRL under EB of the plant the parameters such as irradiation time, defoamer concentration, volume of latex, beam current etc. are being optimized by varying the individual parameter at a constant set of the other variables. (author)

  4. Atomic Energy of Canada Limited applications of accelerators

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Ungrin, J.

    1988-01-01

    Accelerators have been tools in the physicist's arsenal since the early 1930's, and the requirements of the research laboratory have spawned most of the significant advances in the technology. The characteristics needed in medical and industrial applications frequently differ from those needed by researchers. The authors review a variety of applications in medical therapy; medical isotope production; sterilization of medical supplies, food and water; the production of synthetic materials; industrial radiography; borehole logging; gemstone colour changes; the production of micropore filters; material modifications; long-wavelength radiation generation; sewage treatment; stack gas cleaning; electronuclear breeding; laser weaponry; and rock spalling and tunneling

  5. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Brian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elchinger, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardison, R. [Winrock International, Little Rock, AR (United States); Karsiwulan, D. [Winrock International, Little Rock, AR (United States); Castermans, B. [Winrock International, Little Rock, AR (United States)

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  6. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  7. Methodology for predicting the life of waste-package materials, and components using multifactor accelerated life tests

    International Nuclear Information System (INIS)

    Accelerated life tests are essential for estimating the service life of waste-package materials and components. A recommended methodology for generating accelerated life tests is described in this report. The objective of the methodology is to define an accelerated life test program that is scientifically and statistically defensible. The methodology is carried out using a select team of scientists and usually requires 4 to 12 man-months of effort. Specific agendas for the successive meetings of the team are included in the report for use by the team manager. The agendas include assignments for the team scientists and a different set of assignments for the team statistician. The report also includes descriptions of factorial tables, hierarchical trees, and associated mathematical models that are proposed as technical tools to guide the efforts of the design team

  8. Covariant generalized holographic dark energy and accelerating universe

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, S.D.

    2017-01-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  9. Covariant generalized holographic dark energy and accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya (Japan); Odintsov, S.D. [ICREA, Barcelona (Spain); Institute of Space Sciences (IEEC-CSIC), Barcelona (Spain); National Research Tomsk State University, Tomsk (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2017-08-15

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  10. An energy recovery electron accelerator for DIS at the LHC

    CERN Document Server

    Schulte, Daniel; Jensen, Erk; Valloni, Alessandra; Zimmermann, Frank; Klein, Max

    2014-01-01

    The Large Hadron Electron Collider (LHeC) is a proposed faci lity which will exploit the LHC beams for electron–proton/nucleus scattering, using a new 60 GeV electron accelerator. Following the release of its detailed conceptual design report last ye ar, the configuration of a linac with racetrack shape has been chosen for its default design. Furt her work has been pursued in order to adapt the electron and high luminosity beam optics, to desig n an LHeC Test Facility at CERN and to maximise the ep luminosity to achieve values close to 10 34 cm − 2 s − 1 as is desirable for precision Higgs physics with the LHeC. The talk presents an overview on the design, recent activities and an outlook for further developments

  11. Accelerating the deployment of offshore renewable energy technologies. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Mott

    2011-02-15

    Offshore wind energy and ocean energy (i.e. wave and tidal) are at different stages of technology development and deployment, and, as such, they require different approaches for successful deployment. However, regardless of their deployment stage, these technologies may face common hurdles in their way to market competitiveness. IEA-RETD has completed a study with the overall objective to assist policy makers and project developers in a better understanding of these barriers and the specifics of offshore renewable energy and to give them practical guidelines. These include an offshore energy deployment framework, substantiated by evidence-based analyses, and recommendations for future policies design, including best practices for allocation of seafloor rights.

  12. Present status of intermediate energy data evaluation for accelerator-based transmutation of radioactive waste

    International Nuclear Information System (INIS)

    Koning, A.J.

    1994-05-01

    The recent developments in the field of nuclear data evaluation for energies above 20 MeV are outlined. As a particularly interesting application we consider accelerator-based transmutation of radioactive waste. The most urgent data needs for accelerator-based transmutation have been prioritized and translated in terms of intermediate-energy data libraries. Priorities are assigned to the materials relevant to an incineration system and to the most important associated nuclear reactions (notably reactions involving nucleons). In this contribution, the proposed actions as indicated in previous work are further discussed and a sample intermediate-energy ''starter'' data file is presented. (orig.)

  13. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  14. A system for measuring the energy spread of an accelerated beam

    International Nuclear Information System (INIS)

    Wilkerson, J.F.; Ludwig, E.J.; Clegg, T.B.; Anderson, R.E.

    1987-01-01

    A system has been implemented to monitor directly the energy spread of analyzed beams from a tandem electrostatic accelerator. The dispersion of a deflection magnet in the beam handling system is used to transform the energy distribution into a spatial distribution, which then is measured by electrostatically sweeping the spatially extended beam across a narrow slit. (orig.)

  15. Toward a national plan for the accelerated commercialization of solar energy: guidelines for regional planning

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.; Bennington, G.; Bohannon, M.; Gerstein, R.; Kannan, N.; Page, A.; Rebibo, K.; Shulman, M.; Swepak, P.; Taul, J.

    1980-01-01

    This document provides data and guidelines for the development of regional programs for the accelerated commercialization of solar energy. It estimates the solar potential for individual regions based on the solar resources, competing costs of energy, and specific regional characteristics. It also points out the primary decision makers, technology distributors, and potential barriers that should be addressed by a commercialization program.

  16. The use of low energy electron accelerator for processing of liquid matter in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2003-01-01

    Activities of radiation processing in Indonesia covering various fields are reviewed. The low and medium energy electron accelerator specially designed for radiation processing of liquid materials is introduced. P3TIR-BATAN is mostly engaged in radiation processing in general with Co-60 source and electron accelerators (300 keV, 50 mA and 2 MeV, 10 mA). A private company, Gajah Tunggal, has an accelerator of 500 keV, 20 mA. The use of low energy electron accelerator to irradiate liquid matter matter such as natural rubber latex, polysaccharides, starch, chitosan and other natural polymers in Indonesia are reported and future program of national research cooperation between government institutions and private companies are described. (S. Ohno)

  17. Radiation vulcanization of natural rubber latex (NRL) using low energy electron beam accelerator

    International Nuclear Information System (INIS)

    Feroza Akhtar; Keizo Makuuchi; Fumio Yoshii

    1996-01-01

    The electron beam induced vulcanization of natural rubber latex has been studied using low energy Electron Beam (EB) accelerators of 300, 250 and 175 keV ne latex was irradiated in a special type stainless steel reaction reactor with a stirrer at the bottom of the reactor. From the results it was found that 300 and 250 keV accelerators could effectively vulcanize NRL. But accelerator of 175 keV is too low energy to vulcanize the latex. At the same time a drum type irradiator where thin layer of NRL was irradiated by accelerator, was used for vulcanization of NRL. This type of irradiator also showed good physical properties of vulcanized latex. The effects of beam current and stirrer speed on vulcanization were studied

  18. Uses of low-energy electrons accelerators in paints and varnishes: general aspects

    International Nuclear Information System (INIS)

    Yamasaki, M.C.R.

    1992-01-01

    The author presents a brief overview of the applications of low-energy beam accelerators in surface coating curing of paints and varnishes. The process, based on radiation-induced polymerization is described with particular reference to the more salient problems involved: the use of ultraviolet or electron beam as source of radiation; types of industrial accelerators; irradiation dose; dose rates and the best materials to be cured. Several practical radiation curing uses are also reported. (B.C.A.)

  19. Report of the Subpanel on Accelerator Research and Development of the High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    1980-06-01

    Accelerator R and D in the US High Energy Physics (HEP) program is reviewed. As a result of this study, some shift in priority, particularly as regards long-range accelerator R and D, is suggested to best serve the future needs of the US HEP program. Some specific new directions for the US R and D effort are set forth. 18 figures, 5 tables

  20. Report of the Subpanel on Accelerator Research and Development of the High Energy Physics Advisory Panel

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Accelerator R and D in the US High Energy Physics (HEP) program is reviewed. As a result of this study, some shift in priority, particularly as regards long-range accelerator R and D, is suggested to best serve the future needs of the US HEP program. Some specific new directions for the US R and D effort are set forth. 18 figures, 5 tables. (RWR)

  1. A method for measuring the high voltage of a low energy Van de Graaff accelerator

    Science.gov (United States)

    Andrade, E.; Zironi, E. P.

    1988-12-01

    A simple method for measuring the operating high voltage of a small positive ion Van de Graaff accelerator was developed. It is based on the determination of the end-point energy obtained from the X-ray radiation spectra. The accuracy of the proposed method is better than 1%. Most of these accelerators have an associated magnetic beam analyzer and/or generator voltmeter gauges that require calibration. The proposed method can be used to calibrate these instruments.

  2. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    Science.gov (United States)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  3. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  4. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    International Nuclear Information System (INIS)

    Tung, L.S.; Barr, W.L.; Lowder, R.S.; Post, R.F.

    1996-01-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20 Ne and 22 Ne are extracted from a ribbon beam of neon that is originally composed of 20 Ne: 22 Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. The Solitron is envisioned to have broad applications

  5. Do energy drinks contain active components other than caffeine?

    Science.gov (United States)

    McLellan, Tom M; Lieberman, Harris R

    2012-12-01

    Energy drinks (EDs) contain caffeine and are a new, popular category of beverage. It has been suggested that EDs enhance physical and cognitive performance; however, it is unclear whether the claimed benefits are attributable to components other than caffeine. A typical 235 mL ED provides between 40 and 250 mg of caffeine, equating to doses that improve cognitive and, at the higher levels, physical performance. EDs often contain taurine, guaraná, ginseng, glucuronolactone, B-vitamins, and other compounds. A literature search using PubMed, Psych Info, and Google Scholar identified 32 articles that examined the effects of ED ingredients alone and/or in combination with caffeine on physical or cognitive performance. A systematic evaluation of the evidence-based findings in these articles was then conducted. With the exception of some weak evidence for glucose and guaraná extract, there is an overwhelming lack of evidence to substantiate claims that components of EDs, other than caffeine, contribute to the enhancement of physical or cognitive performance. Additional well-designed, randomized, placebo-controlled studies replicated across laboratories are needed in order to assess claims made for these products. © 2012 International Life Sciences Institute.

  6. Tests of an environmental and personnel safe cleaning process for BNL accelerator and storage ring components

    International Nuclear Information System (INIS)

    Foerster, C.L.; Lanni, C.; Lee, R.; Mitchell, G.; Quade, W.

    1996-10-01

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its UHV components during and after construction. A new UHV cleaning process, which had to be environmentally and personnel safe, was needed to replace the harsh, unfriendly process which was still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on Photon Stimulated Desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel and oxygen free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 ev. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 10 22 and 10 23 photons per meter for a PSD measurement. Desorption yields for H 2 , CO, CO 2 , CH 4 and H 2 O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories

  7. Accelerate!

    Science.gov (United States)

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  8. Analysis of requirements for accelerating the development of geothermal energy resources in California

    Science.gov (United States)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  9. Fossil AGN jets as ultra high energy particle accelerators

    OpenAIRE

    Benford, Gregory; Protheroe, R. J.

    2007-01-01

    Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of...

  10. First accelerator test of vacuum components with laser-engineered surfaces for electron-cloud mitigation

    Science.gov (United States)

    Calatroni, Sergio; Garcia-Tabares Valdivieso, Elisa; Neupert, Holger; Nistor, Valentin; Perez Fontenla, Ana Teresa; Taborelli, Mauro; Chiggiato, Paolo; Malyshev, Oleg; Valizadeh, Reza; Wackerow, Stefan; Zolotovskaya, Svetlana A.; Gillespie, W. Allan; Abdolvand, Amin

    2017-11-01

    Electron cloud mitigation is an essential requirement for high-intensity proton circular accelerators. Among other solutions, laser engineered surface structures (LESS) present the advantages of having potentially a very low secondary electron yield (SEY) and allowing simple scalability for mass production. Two copper liners with LESS have been manufactured and successfully tested by monitoring the electron cloud current in a dipole magnet in the SPS accelerator at CERN during the 2016 run. In this paper we report on these results as well as the detailed experiments carried out on samples—such as the SEY and topography studies—which led to an optimized treatment in view of the SPS test and future possible use in the HL-LHC.

  11. First Assessment of Reliability Data for the LHC Accelerator and Detector Cryogenic System Components

    CERN Document Server

    Perinic, G; Alonso-Canella, I; Balle, C; Barth, K; Bel, J F; Benda, V; Bremer, J; Brodzinski, K; Casas-Cubillos, J; Cuccuru, G; Cugnet, M; Delikaris, D; Delruelle, N; Dufay-Chanat, L; Fabre, C; Ferlin, G; Fluder, C; Gavard, E; Girardot, R; Haug, F; Herblin, L; Junker, S; Klabi , T; Knoops, S; Lamboy, J P; Legrand, D; Metselaar, J; Park, A; Perin, A; Pezzetti, M; Penacoba-Fernandez, G; Pirotte, O; Rogez, E; Suraci, A; Stewart, L; Tavian, L J; Tovar-Gonzalez, A; Van Weelderen, R; Vauthier, N; Vullierme, B; Wagner, U

    2012-01-01

    The Large Hadron Collider (LHC) cryogenic system comprises eight independent refrigeration and distribution systems that supply the eight 3.3 km long accelerator sectors with cryogenic refrigeration power as well as four refrigeration systems for the needs of the detectors ATLAS and CMS. In order to ensure the highest possible reliability of the installations, it is important to apply a reliability centred approach for the maintenance. Even though large scale cryogenic refrigeration exists since the mid 20th century, very little third party reliability data is available today. CERN has started to collect data with its computer aided maintenance management system (CAMMS) in 2009, when the accelerator has gone into normal operation. This paper presents the reliability observations from the operation and the maintenance side, as well as statistical data collected by the means of the CAMMS system.

  12. Critical system issues and modeling requirements - the problem of beam energy sweep in an electron linear induction accelerator

    International Nuclear Information System (INIS)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1991-01-01

    In this paper the authors attempt to motivate the development of modeling tools for linear induction accelerator components by giving examples of performance limitations related to energy sweep. The most pressing issues is the development of an accurate model of the switching behavior of large magnetic cores at high dB/dt in the accelerator and magnetic compression modulators. Ideally one would like to have a model with as few parameters as possible that allows the user to choose the core geometry and magnetic material and perhaps a few parameters characterizing the switch model. Beyond this, the critical modeling tasks are: simulation of a magnetic compression modulator, modeling the reset dynamics of a magnetic compression modulator, modeling the loading characteristics of a linear induction accelerator cell, and modeling the electron injector current including the dynamics of feedback modulation and beam loading in an accelerator cell. Of course in the development of these models care should be given to benchmarking them against data from experimental systems. Beyond that one should aim for tools that have predictive power so that they can be used as design tools and not merely to replicate existing data

  13. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    International Nuclear Information System (INIS)

    Casey, R.; Collins, J.; Haas, E.; Hseuh, H.; Jobe, R.; Kane, S.; Ladd, P.; Lessard, E.; Sharma, S.; Oils, D.; Pushka, D.; Toter, W.

    2008-01-01

    inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements

  14. Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Groza, Voicu; Isleifsson, Fridrik Rafn

    2012-01-01

    Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads......Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads...

  15. Radiation protection system installation for the accelerator production of tritium/low energy demonstration accelerator project (APT/LEDA)

    CERN Document Server

    Wilmarth, J E; Tomei, T L

    2000-01-01

    The APT/LEDA personnel radiation protection system installation was accomplished using a flexible, modular proven system which satisfied regulatory orders, project design criteria, operational modes, and facility requirements. The goal of providing exclusion and safe access of personnel to areas where prompt radiation in the LEDA facility is produced was achieved with the installation of a DOE-approved Personnel Access Control System (PACS). To satisfy the facility configuration design, the PACS, a major component of the overall radiation safety system, conveniently provided five independent areas of personnel access control. Because of its flexibility and adaptability the Los-Alamos Neutron- Science-Center-(LANSCE)-designed Radiation Security System (RSS) was efficiently configured to provide the desired operational modes and satisfy the APT/LEDA project design criteria. The Backbone Beam Enable (BBE) system based on the LANSCE RSS provided the accelerator beam control functions with redundant, hardwired, ta...

  16. Accelerator-driven thermal fission systems may provide energy supply advantages

    International Nuclear Information System (INIS)

    Linford, R.K.

    1992-01-01

    This presentation discusses the energy supply advantages of using accelerator-driven thermal fission systems. Energy supply issues as related to cost, fuel supply stability, environmental impact, and safety are reviewed. It is concluded that the Los Alamos Accelerator Transmutation of Waste (ATW) concept, discussed here, has the following advantages: improved safety in the form of low inventory and subcriticality; reduced high-level radioactive waste management timescales for both fission products and actinides; and a very long-term fuel supply requiring no enrichment

  17. A new design for the low-energy optics of the Lund pelletron accelerator

    International Nuclear Information System (INIS)

    Hellborg, R.; Hakansson, K.; Skog, G.

    1990-01-01

    Several improvements have been implemented on the low-energy side of the Lund 3UDH Pelletron tandem accelerator. We report on the use of an ANIS sputtering source, the installation of a new injector with two legs and the rebuilding of the low-energy optics between sources and accelerator. New lenses have been placed at optimum positions which, together with a higher pump capacity, increased the beam transmission. Angular misalignment of the beam has been minimized by repositioning steerers and profile monitors. (orig.)

  18. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  19. Energy dissipation on ion-accelerator grids during high-voltage breakdown

    International Nuclear Information System (INIS)

    Menon, M.M.; Ponte, N.S.

    1981-01-01

    The effects of stored energy in the system capacitance across the accelerator grids during high voltage vacuum breakdown are examined. Measurements were made of the current flow and the energy deposition on the grids during breakdown. It is shown that only a portion (less than or equal to 40 J) of the total stored energy (congruent to 100 J) is actually dissipated on the grids. Most of the energy is released during the formation phase of the vacuum arc and is deposited primarily on the most positive grid. Certain abnormal situations led to energy depositions of about 200 J on the grid, but the ion accelerator endured them without exhibiting any deterioration in performance

  20. Physics with high energy accelerators in the future

    International Nuclear Information System (INIS)

    Shimizu, Y.

    1984-01-01

    Phenomena expected in the energy region of 10-100 TeV are discussed. The grand unified theory based on SU(5) is used as the standard model for the present discussion. Since no new particles appear in the energy region higher than 0.1 TeV, the only way to test the theory is to measure the magnitude and the variation of the coupling constants with a mass scale. Three of them αsub(S), αsub(L) and αsub(1) correspond to colar SU(3), strength, and SU(2)sub(L) x U(1) electro-weak interactions, respectively. The lowest order renormalization group equations for these are presented. Values of the constants can be evaluated. As the next example for the theory, the model based on the orthogonal group O(14) is considered. The advantage of this group over SU(5) is due to the fact that it predicts four generations in total. Each fermion is accompanied by its conjugate. Then, the model contains (8 x 4) x 2 = 64 fermions in total. The phenomenology of this model was examined. Though only 8 x 3 fermions are known, a very rich particle spectrum is expected. Values of the constants are obtained, and are different from those obtained from SU(5), since the number of fermions is doubld. To construct a model of composite quarks and leptons, it is, in general, needed to assume that the scale parameter is larger than 100 TeV to account for various experimental limits on the rare decays. Discussions on the magnitude of the parameter are presented. (Kato, T.)

  1. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    Science.gov (United States)

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Measuring localized nonlinear components in a circular accelerator with a nonlinear tune response matrix

    Directory of Open Access Journals (Sweden)

    G. Franchetti

    2008-09-01

    Full Text Available In this paper we present a method for measuring the nonlinear errors in a circular accelerator by taking advantage of the feed-down effect of high order multipoles when the closed orbit is globally deformed. We devise a nonlinear tune response matrix in which the response to a closed orbit deformation is obtained in terms of change of machine tune and correlated with the strength of the local multipoles. A numerical example and a proof of principle experiment to validate the theoretical methods are presented and discussed.

  3. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Carl Stern; Martin Lee

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  4. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  5. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    Science.gov (United States)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  6. Potential of cyclotron based accelerators for energy production and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Stammbach, T.; Adam, S.; Fitze, H.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  7. A cigarette component acrolein induces accelerated senescence in human diploid fibroblast IMR-90 cells.

    Science.gov (United States)

    Luo, Cheng; Li, Yan; Yang, Liang; Feng, Zhihui; Li, Yuan; Long, Jiangang; Liu, Jiankang

    2013-10-01

    Cigarette smoking causes various diseases, including lung cancer and cardiovascular disease, and reduces life span, though the mechanisms are not well understood. We hypothesize that smoking may cause cellular mitochondrial dysfunction and oxidative stress, leading to aging acceleration. In the present study, we tested the effects of acrolein, a major representative smoking toxicant, on human lung fibroblast IMR-90 cells with regard to cellular senescence, oxidative stress, and mitochondrial function. The results showed that subacute treatment with low dose of acrolein induces the following events compared to the control cells: cell senescence demonstrated by increases in the activity of β-galactosidase, the higher expression of p53 and p21, decreases in DNA synthesis, Sirt1 expression, and telomere length; oxidative stress occurred as the increases in the production of reactive oxygen species, DNA damage, and protein oxidation; and mitochondrial dysfunction shown as decreases in the mitochondrial membrane potential, mitochondrial biogenesis regulator PGC-1 alpha and mitochondria complex I, II, III, and V. These results suggest that acrolein may accelerate aging through the mechanism of increasing oxidative stress and mitochondrial dysfunction.

  8. Assessment of the adequacy of US accelerator technology for Department of Energy missions

    International Nuclear Information System (INIS)

    Gerry, E.T.; Mani, S.A.

    1983-01-01

    In this report, we review the applications of accelerators in areas other than high energy and nuclear physics. The list of applications that are considered includes such diverse fields as nuclear medicine; diagnostics for the hostile environments of advanced fossil fuel reactors; production of complex integrated circuitry; radiation processing of food and other materials; ion implantation for material processing; and advanced areas such as free electron lasers; inertial fusion drivers etc. The commonalities underlying accelerator technology requirements for the different applications were found and enabled us to propose a set of recommendations on areas where accelerator R and D would enable many energy related applications of interest to DOE. These are discussed in the suggested R and D programs

  9. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the ...

  10. Establishing KEK in Japan and Fermilab in the US: internationalism, nationalism and high energy accelerators

    International Nuclear Information System (INIS)

    Hoddeson, L.; Illinois Univ., Urbana

    1983-01-01

    Comparison of the prehistories of the Fermi National Accelerator Laboratory (Fermilab) in the US, and Ko-bar Enerugii Butsurigaku Kenkyusho (KEK) in Japan, reveals the working of both internationalism and nationalism in high energy physics. International communication and competition helped to create a number of structural parallels from the 1930s to the 1960s; for example, in the postwar period both countries formed their first inter-university government-supported accelerator laboratories; at the turn of the 1960s nuclear physicists in both countries debated about the choice of design for their next higher energy accelerator; and both chose proton synchrotron designs traceable to a common conceptual root. Although Fermilab and KEK progressed through analogous stages in 1960-65, national circumstances caused these developments to diverge in the late 1960s, resulting in a sizeable cut in scale and costly delays in the establishment of KEK. (author)

  11. Estimates of emittance dilution and stability in high-energy linear accelerators

    Directory of Open Access Journals (Sweden)

    T. O. Raubenheimer

    2000-12-01

    Full Text Available In this paper, we present a series of analytic expressions to predict the beam dynamics in a long linear accelerator. These expressions can be used to model the linac optics, calculate the magnitude of the wakefields, estimate the emittance dilution due to misaligned accelerator components, and estimate the stability and jitter limitations. The analytic expressions are based on the results of simple physics models and are useful to understand the parameter sensitivities. They are also useful when using simple codes or spreadsheets to optimize a linac system.

  12. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  13. Accelerating the commercialization on new technologies. [free market operation of federal alternate energy sources programs

    Science.gov (United States)

    Kuehn, T. J.; Nawrocki, P. M.

    1978-01-01

    It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.

  14. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  15. Restriction of cosmic-ray acceleration, mechanisms by high-energy Be7/Be data

    International Nuclear Information System (INIS)

    Orth, C.D.; Buffington, A.; Mast, T.S.

    1979-01-01

    New high-energy cosmic-ray Be data indicate that the ratio Be 7 /Be drops by approximately a factor of two between 200 and 1500 MeV/nucleon. This result may provide a severe constraint for theories of cosmic-ray acceleration

  16. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  17. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    International Nuclear Information System (INIS)

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle

  18. Energy loss corrections for MeV ions in tandem accelerator stripping

    Science.gov (United States)

    Arrale, A. M.; Matteson, S.; McDaniel, F. D.; Duggan, J. L.

    1991-05-01

    Ion energy losses occur during passage of an ion through the stripping gas or foil in the terminal of a tandem accelerator. The energy loss is frequently ignored. For accelerator mass spectrometry (AMS) [J.M. Anthony et al., Nucl. Instr. and Meth. B50 (1990) 262], the energy loss, if not properly accounted for, may result in significant reductions in ion transmission. We have obtained an approximate expression for the energy loss of 1-4 MeV ions in nitrogen gas and carbon foils for all ions. By using the scaling theory of Lindhard, Scharff, and Schiott (LSS) [K. Dan Vidensk. Selsk. Mat. Fys. Medd. 33 (1963) no. 14] a semi-empirical formula is found for the energy loss as a function of the reduced energy ɛ. Calculated energy losses of all ions as a function of atomic mass are plotted for each energy, and the result is compared to experimental data measured in an AMS system. Other effects such as kinematic energy loss during electron stripping and relativistic corrections to the energy are also evaluated and discussed.

  19. Performance of solenoids vs. quadrupoles in focusing and energy selection of laser accelerated protons

    OpenAIRE

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length ap...

  20. Industrial Production of Superconducting 1.3 GHz Accelerator Modules and components for FEL application

    CERN Document Server

    Pekeler, Michael; Vom Stein, P

    2004-01-01

    Daresbury Laboratory contracted ACCEL in April for the delivery of two superconducting 1.3 GHz modules for the R&D phase of their 4GLS project. The modules are delivered with guaranteed performance on cavity voltage and cryogenic losses. The modules contain 2 TESLA type cavities each and are of the design developed at Forschungszentrum Rossendorf. To investigate the capabilities of our cavity treatment and preparation techniques, our infrastructure was further upgraded to allow chemical treatment and high pressure rinsing of TESLA cavities. First test results on TESLA cavities produced for BESSY are very encouraging. 23 MV/m accelerating gradient were achieved in the cold vertical test. In addition 12 power couplers of the TTF III type were produced for DESY and BESSY. The conditioning of those couplers was performed at DESY in a very short time of approximately 50 hours demonstrating our high quality surface treatment capabilities.

  1. Accelerated testing of fuel cell components in 2 x 2 inch fuel cells

    International Nuclear Information System (INIS)

    Coleman, A.J.; Adams, A.A.; Joebstl, J.A.; Walker, G.W.

    1981-01-01

    A description is presented of diagnostic procedures which can be used to predict failure modes and assess the effects of these failures on fuel cell performance. Some straightforward diagnostic techniques have been used to evaluate fuel cells assembled with a variety of matrix and electrode combinations. These techniques included accelerated on-off cycling, thermal cycling with H2/CO mixtures, and automatic polarization measurements. Information has been obtained concerning the effects of electrolyte management and catalyst poisoning on performance and lifetime characteristics of 2 x 2 in. single cells. The use of on-off cycling has shown that short-term fuel cell performance is generally unaffected by load changes and cycle sequence in 2 x 2 in. cells when electrolyte management is adequate. Dynamic polarization curves can be used instead of point by point steady-state plots without any loss in accuracy

  2. Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, H.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)

    2015-03-15

    In this paper, the effect of a stationary inhomogeneous magnetic field on the electron acceleration by a high intensity Gaussian laser pulse is investigated. A focused TEM (0,0) laser mode with linear polarization in the transverse x-direction that propagates along the z-axis is considered. The magnetic field is assumed to be stationary in time, but varies longitudinally in space. A linear spatial profile for the magnetic field is adopted. In other words, the axial magnetic field increases linearly in the z-direction up to an optimum point z{sub m} and then becomes constant with magnitude equal to that at z{sub m}. Three-dimensional single-particle simulations are performed to find the energy and trajectory of the electron. The electron rotates around and stays near the z-axis. It is shown that with a proper choice of the magnetic field parameters, the electron will be trapped at the focus of the laser pulse. Because of the cyclotron resonance, the electron receives enough energy from the laser fields to be accelerated to relativistic energies. Using numerical simulations, the criteria for optimum regime of the acceleration mechanism is found. With the optimized parameters, an electron initially at rest located at the origin achieves final energy of γ=802. The dynamics of a distribution of off-axis electrons are also investigated in which shows that high energy electrons with small energy and spatial spread can be obtained.

  3. Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Chan [Univ. of California, Los Angeles, CA (United States); Mori, W. [Univ. of California, Los Angeles, CA (United States)

    2013-10-21

    This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasks listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.

  4. Neutron dose measurements with the GSI ball at high energy accelerators

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Gutermuth, F.; Radon, T.; Kozlova, E.

    2005-01-01

    Full text: At high energy particle accelerators the production of neutron radiation dominates radiation protection. For the radiation survey at accelerators there is a need for reliable detection systems (passive radiation monitors), which can measure the dose for a wide range of neutron energies independently on the beam pulse structure of the produced radiation. In this work a passive neutron dosemeter for the measurement of the ambient dose equivalent is presented. The dosemeter is suitable for measurements of the emerging neutron radiation at accelerators for the whole energy range up to about 10 GeV. The dosemeter consists of a polyethylene sphere, TL elements (pairs of TLD600/700) and an additional lead layer (PE/Pb) in neutron fields at high energy accelerators is investigated in this work. Results of dose measurements which were performed in realistic neutron fields at the high energy accelerator SPS at CERN (CERF facility) and in Cave A at the heavy ion synchrotron SIS at GSI are presented. The results of these measurements are compared with the expected dose values from the neutron spectra determined for the measurement positions at CERF and in Cave A (FLUKA) and with the dosemeter response derived by the calculated response functions (FLUKA) folded with the neutron spectra. The comparisons show that the additional lead layer in the PE/Pb-sphere improves significantly the response of the dosemeter. The response of the PE/Pb-sphere is 40 to 50 % higher at CERF and Cave A in comparison to the bare PE-sphere. At CERF the dose values of the PE/Pb-sphere is about 25 % lower than the expected dose value, whilst for Cave A, a rather good agreement was found (2 % deviation). (author)

  5. The fractional virial potential energy in two-component systems

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2008-01-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, φ = φ(y, m, characterized (for assigned values of the fractional mass, m = Mj /Mi by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of m is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the (Oyφ plane, where the fractional truncation radius along a selected direction is y = Rj /Ri , and the fractional virial potential energy is φ = (Eji vir /(Eij vir . Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of N = 16 elliptical galaxies (EGs on the (Oyφ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, m, and equal scaled truncation radius, or concentration, Ξu = Ru /r† , u = i, j, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, y, or fractional scaling radii, y† = r† /r† , deduced from sample objects.

  6. ENERGY EFFICIENCY – COMPONENT OF THE SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Roxana PĂTRAŞCU

    2011-11-01

    Full Text Available Energy efficiency has become an economic necessity, expressed by the condition of focused energy cost reduction in the share of total production costs. Estimated potential energy savings for various industrial sectors is in the range of 1050%. In this paper has explained the meaning and importance of energy efficiency and has reviewed its growth potential in various industrial sectors and the main directions of increasing energy efficiency. Most packages of measures to increase energy efficiency have the immediate result and reduce environmental impact. The essence of the right energy policy is to achieve a balance between energy supply and demand conditions of the economically affordable, socially and environmentally. It was also presented the legal framework to support actions to promote energy efficiency

  7. Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Suprotim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Raje, Sanyukta [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenberg, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – September 2015) and Phase 2 (October 2015 – September 2016).

  8. A novel small compound accelerates dermal wound healing by modifying infiltration, proliferation and migration of distinct cellular components in mice.

    Science.gov (United States)

    Yamaoka, Hanako; Sumiyoshi, Hideaki; Higashi, Kiyoshi; Nakao, Sachie; Minakawa, Kaori; Sumida, Kayo; Saito, Koichi; Ikoma, Norihiro; Mabuchi, Tomotaka; Ozawa, Akira; Inagaki, Yutaka

    2014-06-01

    Impaired wound healing in skin ulcer is one of the major medical issues in the aged society. Wound healing is a complex process orchestrated by a number of humoral factors and cellular components. TGF-β is known to stimulate collagen production in dermal fibroblasts while inhibiting proliferation of epidermal keratinocyte. A screening of small compounds that suppress type I collagen production in fibroblasts has identified HSc025 that antagonizes the TGF-β/Smad signal. We examined the effects of HSc025 on dermal wound healing and elucidated the underlying mechanisms. Effects of HSc025 on the wound closure process were evaluated in a murine full-thickness excisional wound healing model. Cell proliferation and migration were estimated using primary cultures of human keratinocytes and fibroblasts. Comprehensive analyses of gene expression profiles were performed using untreated and HSc025-treated fibroblasts. Oral HSc025 administration suppressed macrophage infiltration and accelerated wound closure as early as at day 2 after the dermal excision. Treatment of cultured keratinocytes with HSc025 counteracted the inhibitory effects of TGF-β on cell proliferation and migration. On the other hand, HSc025 stimulated migration, but not proliferation, of dermal fibroblasts independently of TGF-β. Experiments using an artificial dermis graft revealed that HSc025 stimulated migration of collagen-producing cells into the graft tissue. A cDNA microarray analysis of untreated and HSc025-treated fibroblasts identified pirin as a critical mediator accelerating fibroblast migration. HSc025 accelerates wound healing by modifying infiltration, proliferation and migration of distinct cellular components, which provides a novel insight into the therapy for intractable skin ulcer. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  10. CAS - CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs

    CERN Document Server

    2018-01-01

    These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELsand ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic HamburgEmporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductorylectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators andthe process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamicsand controls issues.

  11. Program for Plasma-Based Concepts for Future High Energy Accelerators

    International Nuclear Information System (INIS)

    Katsouleas, Thomas C.; Muggli, Patric

    2003-01-01

    OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period

  12. Improved two-loop beam energy stabilizer for an FN tandem accelerator

    International Nuclear Information System (INIS)

    Trainor, T.A.

    1981-01-01

    A detailed analysis of the properties of various elements in a two-loop voltage regulator for a tandem accelerator enabled design of an optimum system which reduces effective accelerating voltage noise below 100 V. Essential features of the new system are high-quality slit preamplifiers, careful attention to removal of extraneous noise sources, and proper shaping of frequency responses to maximize stable gains and ensure compatibility of the two control loops. The resultant beam energy stabilizer system is easy to operate, has well defined indicators for proper adjustment of operating parameters, and recovers reliably from beam interruptions

  13. Radiosensitivity of chlorella after medium energy accelerated electron irradiation; Radiosensibilite des chlorelles aux electrons acceleres de moyenne energie

    Energy Technology Data Exchange (ETDEWEB)

    Roux, J.C. [commissariat a L' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-06-01

    The survival curves (capability of multiplication) of chlorella pyrenoidosa after irradiations can be used for soft electrons (0.65 and 1 MeV), hence penetrating into only 2 to 4 millimeters of water: the algae are laying on porous membranes and the doses are calculated from the power of the electron beam measured by the electric current on a metallic target or by Fricke's dosimetry. With these techniques, it is showed and discussed the part of anoxia in the radioprotection (magnitude or reduction of the dose calculated from the slope of survival curves: 2.5 ) that is more important than the restoration studied by the fractionation of the dose. The 0.65 and 1 MeV electrons have a biologic effect lesser than 180 keV X-rays (RBE - relative biological efficiency - calculated on the slope of survival curves is 0.92 in aerated irradiation, 0.56 in the deoxygenated irradiation). (author) [French] Les courbes de survie clonale (capacite de multiplication) de chlorella pyrenoidosa apres irradiation sont realisables meme avec des electrons peu energetiques (0.65 et 1 MeV), donc peu penetrants, par l'irradiation d'algues deposees sur membrane filtrante et grace au calcul de la dose a partir de l'energie du faisceau mesure par le courant que celui-ci cree dans une cible metallique ou par dosimetrie de Fricke. Par ces techniques, on a montre et discute le role de l'anoxie dans la radioprotection des chlorelles (facteur de reduction de la dose calcule sur la pente des courbes de survie de 2.5) qui est plus important que le pouvoir de restauration etudie par le fractionnement de la dose. Les electrons utilises ont un effet biologique moins grand que les rayons X de 180 keV (l'efficacite biologique relative - EBR - calculee sur la pente des courbes de survie est de 0.9 en presence d'air, 0.6 en presence d'azote)

  14. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  15. Energy Effciency of Particle Accelerators - A Networking Effort within the EUCARD2 Program

    CERN Document Server

    Stadlmann, J; Gehring, R; Jensen, E; Parker, T; Seidel, M

    2014-01-01

    EuCARD is an Integrating Activity Project for coordinated Research and Development on Particle Accelerators, co-funded by the European Commission under the FP7 Capacities Programme. Within the network EnEfficient [1] we address topics around energy efficiency of research accelerators. The ambitious scientific research goals of modern accelerator facilities lead to high requirements in beam power and beam quality for those research accelerators. In conjunction with the user’s needs the power consumption and environmental impact of the research facilities becomes a major factor in the perception of both funding agencies and the general public. In this Network we combine and focus the R&D done individually at different research centers into a series of workshops. We cover the topics “Energy recovery from cooling circuits “, “Higher electronic efficiency RF power generation“, “Short term energy storage systems”, “Virtual power plants” and “Beam transfer channels with low power consumption�...

  16. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    Science.gov (United States)

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  17. An instability of the standard model of cosmology creates the anomalous acceleration without dark energy

    Science.gov (United States)

    Smoller, Joel; Temple, Blake; Vogler, Zeke

    2017-11-01

    We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p=0. In this phase portrait, the critical k=0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.

  18. An instability of the standard model of cosmology creates the anomalous acceleration without dark energy.

    Science.gov (United States)

    Smoller, Joel; Temple, Blake; Vogler, Zeke

    2017-11-01

    We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p =0. In this phase portrait, the critical k =0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.

  19. Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source

    International Nuclear Information System (INIS)

    Bowman, C.D.; Arthur, E.D.; Lisowski, P.W.; Lawrence, G.P.; Jensen, R.J.; Anderson, J.L.; Blind, B.; Cappiello, M.; Davidson, J.W.; England, T.R.; Engel, L.N.; Haight, R.C.; Hughes, H.G. III; Ireland, J.R.; Krakowski, R.A.; LaBauve, R.J.; Letellier, B.C.; Perry, R.T.; Russell, G.J.; Staudhammer, K.P.; Versamis, G.; Wilson, W.B.

    1992-01-01

    We describe a new approach for commercial nuclear energy production without a long-term high-level waste stream and for transmutation of both fission product and higher actinide commercial nuclear waste using a thermal flux of accelerator-produced neutrons in the 10 16 n/cm 2 s range. Continuous neutron fluxes at this intensity, which is approximately 100 times larger than is typically available in a large scale thermal reactor, appear practical, owing to recent advances in proton linear accelerator technology and to the spallation target-moderator design presented here. This large flux of thermal neutrons makes possible a waste inventory in the transmutation system which is smaller by about a factor of 100 than competing concepts. The accelerator allows the system to operate well below criticality so that the possibility for a criticality accident is eliminated. No control rods are required. The successful implementation of this new method for energy generation and waste transmutation would eliminate the need for nuclear waste storage on a geologic time scale. The production of nuclear energy from 232 Th or 238 U is used to illustrate the general principles of commercial nuclear energy, production without long-term high-level waste. There appears to be sufficient thorium to meet the world's energy needs for many millenia. (orig.)

  20. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    Science.gov (United States)

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  1. Monte Carlo analysis of accelerator-driven systems studies on spallation neutron yield and energy gain

    CERN Document Server

    Hashemi-Nezhad, S R; Westmeier, W; Bamblevski, V P; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Wan, J S; Odoj, R

    2001-01-01

    The neutron yield in the interaction of protons with lead and uranium targets has been studied using the LAHET code system. The dependence of the neutron multiplicity on target dimensions and proton energy has been calculated and the dependence of the energy amplification on the proton energy has been investigated in an accelerator-driven system of a given effective multiplication coefficient. Some of the results are compared with experimental findings and with similar calculations by the DCM/CEM code of Dubna and the FLUKA code system used in CERN. (14 refs).

  2. Energy efficiency of electric pulse installation based on a high-current plasma accelerator

    Directory of Open Access Journals (Sweden)

    Shanenkov I.I.

    2014-01-01

    Full Text Available The energy efficiency of electric pulse installation based on a high-current plasma accelerator was investigated. A series of experiments with different central electrodes was carried out. The system based on carbon electrodes has a greater value of the charge energy conversion into the energy of arc discharge and the less discharge current level in comparison with other electrode systems. The power consumption value for producing 1 gram of powdered product was estimated and it was found this value is comparable to the work of the LED light bulb for 1 hour.

  3. The Fractional Virial Potential Energy in Two-Component Systems

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-12-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, $phi=phi(y,m$, characterized (for assigned values of the fractional mass, $m=M_j/ M_i$ by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of $m$ is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the $({sf O}yphi$ plane, where the fractional truncation radius along a selected direction is $y=R_j/R_i$, and the fractional virial potential energy is $phi=(E_{ji}_mathrm{vir}/(E_{ij}_mathrm{vir}$. Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of $N=16$ elliptical galaxies (EGs on the $({sf O}yphi$ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, $m$, and equal scaled truncation radius, or concentration, $Xi_u=R_u/r_u^dagger$, $u=i,j$, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, $y$, or fractional scaling radii, $y^dagger=r_j^dagger/r_i^dagger$, deduced from sample objects.

  4. Fusion: A necessary component of US energy policy

    International Nuclear Information System (INIS)

    Correll, D.L. Jr.

    1989-01-01

    US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs

  5. Measurement of changes in linear accelerator photon energy through flatness variation using an ion chamber array

    International Nuclear Information System (INIS)

    Gao Song; Balter, Peter A.; Rose, Mark; Simon, William E.

    2013-01-01

    Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to ±15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F DN ), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3 × 3 cm 2 and 10 × 10 cm 2 fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F DN was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F DN was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.

  6. Membrane support of accelerated fuel capsules for inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Petzoldt, R.W.; Moir, R.W.

    1993-01-01

    The use of a thin membrane to suspend an (inertial fusion energy) fuel capsule in a holder for injection into a reactor chamber is investigated. Capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. This information is used to calculate maximum target accelerations. Membranes must be thin (perhaps of order one micron) to minimize their effect on capsule implosion symmetry. For example, a 5 μm thick cryogenic mylar membrane is calculated to allow 1,000 m/s 2 acceleration of a 3 mm radius, 100 mg capsule. Vibration analysis (for a single membrane support) shows that if membrane vibration is not deliberately minimized, allowed acceleration may be reduced by a factor of four. A two membrane alternative geometry would allow several times greater acceleration. Therefore, alternative membrane geometry's should be used to provide greater target acceleration potential and reduce capsule displacement within the holder (for a given membrane thickness)

  7. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    Science.gov (United States)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  8. Beam Dynamics Studies of the ISOLDE Post-accelerator for the High Intensity and Energy Upgrade

    CERN Document Server

    Fraser, Matthew Alexander; Pasini, M

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  9. A measurement of long-term energy stability of proton beam produced by Pelletron accelerator

    International Nuclear Information System (INIS)

    Takeda, Naoto; Hasegawa, Masataka; Kudo, Katsuhisa; Shimada, Makoto

    1997-01-01

    A 4 MV single-ended Van de Graaff ion accelerator (4UH-HC Pelletron from National Electrostatics Corp., USA) installed in 1982 has been used for various research fields of monoenergetic neutron fluence standards, creation and modification of new materials and material structure diagnostics by using ion beams. The accelerator was equipped with tank liner voltages stabilizer in 1993 in order to improve the terminal voltage stability to 0.01% for the ripple at 3 MV terminal voltage. Recently the power supply for an analyzing magnet located between the accelerator and a neutron producing target was replaced to obtain the better energy stability of 10 -6 . In this study, a long-term stability of proton energy, which is mainly affected by the drift of terminal voltage and the change of proton beam track from the ion source to the target, has been evaluated by measuring the change of neutron yield on the steeply changing lower energy portion of the resonance peak at 2.961 MeV from the Sc(p,n)Ti reaction. The result shows the energy spread (FWHM) to be less than 1.7 keV over 3 hour operation. (author)

  10. Beam dynamics studies of the ISOLDE post-accelerator for the high intensity and energy upgrade

    CERN Document Server

    Fraser, M A

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  11. Nuclear power component in foresight on energy in Poland

    International Nuclear Information System (INIS)

    Szczurek, J.; Chwaszczewski, S.; Czerski, P.; Luszcz, M.

    2007-01-01

    On behalf of Ministry of Science and Higher Education, the first technology foresight study on future developments in the energy sector is being conducted in Poland. The study aimed to identify energy-related technologies, scenarios, and a mix of energy sources and infrastructure developments that will ensure security of energy supply for Poland. This paper provides a short description of the methodology applied as well as preliminary results and findings of all subtasks of the foresight study referring to the perspective of nuclear power option in Poland, embracing a time horizon of 24 years. (author)

  12. Linearization of the Principal Component Analysis method for radiative transfer acceleration: Application to retrieval algorithms and sensitivity studies

    International Nuclear Information System (INIS)

    Spurr, R.; Natraj, V.; Lerot, C.; Van Roozendael, M.; Loyola, D.

    2013-01-01

    Principal Component Analysis (PCA) is a promising tool for enhancing radiative transfer (RT) performance. When applied to binned optical property data sets, PCA exploits redundancy in the optical data, and restricts the number of full multiple-scatter calculations to those optical states corresponding to the most important principal components, yet still maintaining high accuracy in the radiance approximations. We show that the entire PCA RT enhancement process is analytically differentiable with respect to any atmospheric or surface parameter, thus allowing for accurate and fast approximations of Jacobian matrices, in addition to radiances. This linearization greatly extends the power and scope of the PCA method to many remote sensing retrieval applications and sensitivity studies. In the first example, we examine accuracy for PCA-derived UV-backscatter radiance and Jacobian fields over a 290–340 nm window. In a second application, we show that performance for UV-based total ozone column retrieval is considerably improved without compromising the accuracy. -- Highlights: •Principal Component Analysis (PCA) of spectrally-binned atmospheric optical properties. •PCA-based accelerated radiative transfer with 2-stream model for fast multiple-scatter. •Atmospheric and surface property linearization of this PCA performance enhancement. •Accuracy of PCA enhancement for radiances and bulk-property Jacobians, 290–340 nm. •Application of PCA speed enhancement to UV backscatter total ozone retrievals

  13. Why do some emerging economies proactively accelerate the adoption of renewable energy?

    International Nuclear Information System (INIS)

    Salim, Ruhul A.; Rafiq, Shuddhasattwa

    2012-01-01

    This article analyses the determinants of renewable energy consumption in a panel of six major emerging economies, namely Brazil, China, India, Indonesia, Philippines and Turkey that are proactively accelerating the adoption of renewable energy. Using Fully modified ordinary least square (FMOLS), Dynamic ordinary least square (DOLS), and Granger causality methods this paper finds that in the long-run, renewable energy consumption is significantly determined by income and pollutant emission in Brazil, China, India and Indonesia while mainly by income in Philippines and Turkey. Causal link between renewable energy and income; and between renewable energy and pollutant emission are found to be bidirectional in the short-run. These results suggest that the appropriateness of the efforts undertaken by emerging countries to reduce the carbon intensity by increasing the energy efficiency and substantially increasing the share of renewable in the overall energy mix. - Highlights: ► Fully modified ordinary least square, dynamic ordinary least square, and Granger causality methods are used. ► Income and pollutant emission determine renewable energy consumption in Brazil, China, India and Indonesia. ► While income alone determines renewable energy consumption in Philippines and Turkey. ► Bi-directional causality runs between renewable energy and income and between renewable energy and pollutant emission.

  14. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  15. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  16. Introduction to the study of particle accelerators. Atomic, nuclear and high energy physics for engineers

    International Nuclear Information System (INIS)

    Warnecke, R.R.

    1975-01-01

    This book is destined for engineers taking part in the design building and running of nuclear physics and high-energy physics particle accelerators. It starts with some notions on the theory of relativity, analytical and statistical mechanics and quantum mechanics. An outline of the properties of atomic nuclei, the collision theory and the elements of gaseous plasma physics is followed by a discussion on elementary particles: characteristic parameters, properties, interactions, classification [fr

  17. Coincidence set-up with a high duty-cycle, high energy electron accelerator

    International Nuclear Information System (INIS)

    Leconte, P.

    1981-01-01

    Important studies are now undertaken to develop continuous wave electron accelerators with energy ranging from 1 to 4 Gev. So very important effort must be now put on the development of the experimental set-up matching the performances expected from the electron beam. Major steps in the understanding of the nuclear systems will come from more and more exclusive experiments where well defined mechanisms will be selected

  18. FLUKA Monte Carlo for Basic Dosimetric Studies of Dual Energy Medical Linear Accelerator

    Directory of Open Access Journals (Sweden)

    K. Abdul Haneefa

    2014-01-01

    Full Text Available General purpose Monte Carlo code for simulation of particle transport is used to study the basic dosimetric parameters like percentage depth dose and dose profiles and compared with the experimental measurements from commercial dual energy medical linear accelerator. Varian Clinac iX medical linear accelerator with dual energy photon beams (6 and 15 MV is simulated using FLUKA. FLAIR is used to visualize and edit the geometry. Experimental measurements are taken for 100 cm source-to-surface (SSD in 50 × 50 × 50 cm3 PTW water phantom using 0.12 cc cylindrical ionization chamber. Percentage depth dose for standard square field sizes and dose profiles for various depths are studied in detail. The analysis was carried out using ROOT (a DATA analysis frame work developed at CERN system. Simulation result shows good agreement in percentage depth dose and beam profiles with the experimental measurements for Varian Clinac iX dual energy medical linear accelerator.

  19. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Cliver, E. W. [National Solar Observatory, Boulder, CO (United States)

    2016-12-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10{sup 5}) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10{sup 3}, similar to those of comparably sized well-connected (W20–W90) SEP events.

  20. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  1. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    Kanamori, T.; Sukita, T.

    1995-01-01

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  2. Phantom dark energy with varying-mass dark matter particles: Acceleration and cosmic coincidence problem

    International Nuclear Information System (INIS)

    Leon, Genly; Saridakis, Emmanuel N.

    2010-01-01

    We investigate several varying-mass dark matter particle models in the framework of phantom cosmology. We examine whether there exist late-time cosmological solutions, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. Imposing exponential or power-law potentials and exponential or power-law mass dependence, we conclude that the coincidence problem cannot be solved or even alleviated. Thus, if dark energy is attributed to the phantom paradigm, varying-mass dark matter models cannot fulfill the basic requirement that led to their construction.

  3. Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B B; Ross, J S; Tynan, G R; Divol, L; Glenzer, S H; Leurent, V; Palastro, J P; Ralph, J E; Froula, D H; Clayton, C E; Marsh, K A; Pak, A E; Wang, T L; Joshi, C

    2009-04-24

    Laser Wakefield Acceleration (LWFA) experiments have been performed at the Jupiter Laser Facility, Lawrence Livermore National Laboratory. In order to unambiguously determine the output electron beam energy and deflection angle at the plasma exit, we have implemented a two-screen electron spectrometer. This system is comprised of a dipole magnet followed by two image plates. By measuring the electron beam deviation from the laser axis on each plate, both the energy and deflection angle at the plasma exit are determined through the relativistic equation of motion.

  4. Discretization of space and time: mass-energy relation, accelerating expansion of the Universe, Hubble constant

    OpenAIRE

    Roatta, Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the gravitational potential energy that at large distance coincides with the Newtonian. In very precise circumstances it coincides with the relativistic mass-energy relation: this shows that the Universe is a black hole in which all bodies are subjected to an acceleration toward the border of the Universe itself. Since the Universe is a black hole with a fixed radius, we can obtain the density of the Unive...

  5. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    International Nuclear Information System (INIS)

    1990-01-01

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee's review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues

  6. Multibeam electron-ion accelerator with the energy of up to 1.5 MeV/charge

    International Nuclear Information System (INIS)

    Baranov, I.A.; Devyatko, N.N.; Obnorskij, V.V.; Trofimenko, S.M.; Shilov, V.P.; Ehjsmont, V.P.; Auslender, V.L.; Lazarev, V.N.; Panfilov, A.D.; Polyakov, V.A.

    1979-01-01

    Basic design peculiarities and parameters of multi-beam pulse linear accelerator for using as ion synchrotron injector, and simultaneously, as electron accelerator for radiation investigations are given. Cylindrical steel container, inside of which a coaxial resonator with a drift tube is placed, is the basis of the accelerator. Maximum energy of protons amounts to 1.5 MeV. Beam intensities of accelerated nucleus from carbon to argon are in the range of 10 11 -10 10 particles, accordingly. Main parameters of accelerated particle beam are the following: the energy - 0.2-1.3 MeV, m - 1current A,0m- 1 mean power W,0-12 kW- 1 beam diameter cm. The accelerator is equipped with a system of quasi-circular scanning for homogeneous irradiation of object surfaces [ru

  7. Leakage of the Siemens 160 MLC multileaf collimator on a dual energy linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Klueter, Sebastian; Sroka-Perez, Gabriele; Schubert, Kai; Debus, Juergen, E-mail: sebastian.klueter@med.uni-heidelberg.de [Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg (Germany)

    2011-01-21

    Multileaf collimators (MLCs) have been in clinical use for many years and meanwhile are commonly used to deliver intensity-modulated radiotherapy (IMRT) beams. For this purpose it is important to know their dosimetric properties precisely, one of them being inter- and intraleaf leakage. The Siemens 160 MLC features a single focus design with flat-sided and tilted leaves instead of tongue-and-groove. The leakage performance of the 160 MLC was investigated on a dual energy linear accelerator Siemens ARTISTE with 6 MV and 18 MV photon energies. While the intraleaf leakage amounted to nearly the same dose for 6 and for 18 MV, a much higher interleaf leakage for 6 MV was measured. It could be reduced by simply rotating the collimator, and also by changing the voltage applied to the beam steering coils. The leakage of the 160 MLC is shown to be sensitive to beam alignment. This is of special interest for dual energy accelerators, as the two focal spots of both energies, neither in position nor in shape, do not necessarily always coincide. As a consequence of that, a higher leakage can be expected for one out of two energies for the 160 MLC. (note)

  8. Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

    Directory of Open Access Journals (Sweden)

    Di Vece Marcel

    2015-12-01

    Full Text Available The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

  9. Energy condensed packaged systems. The selection of oxidizer components

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2014-12-01

    Full Text Available The influence of the ammonium nitrate-based oxidizer composition on the technological and detonation parameters of the emulsion energy condensed systems for mining industry has been considered. It is shown that the use of sodium nitrate as a part of oxidizer is limited by its solubility and decreasing of detonation characteristics of energy condensed systems. It is found that for obtaining of highly efficient packaged systems an aqueous solution of ammonium or calcium nitrate with water content 7…10 % by weight should be used as oxidizer. It is shown that with decreasing of water content in the system by 1 % by weight the detonation velocity of energy condensed systems increases by 100…150 m/s.

  10. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  11. Determinants of Trade with Solar Energy Technology Components: Evidence on the Porter Hypothesis?

    OpenAIRE

    Felix Groba

    2011-01-01

    Studies analyzing renewable energy market development usually investigate additional capacity or investment. Characteristics, roles and determinants of cross border trade with renewable energy system components remain blurred. Environmental regulation and renewable energy policies are important in promoting renewable energy use. Yet, the effect of respective policies on determining exports remains ambiguous. The Porter hypothesis and the lead market literature argue that environmental regulat...

  12. An overview of the Low Energy Demonstration Accelerator (LEDA) project RF (radio frequency) systems

    International Nuclear Information System (INIS)

    Bradley, J. III; Cummings, K.; Lynch, M.; Rees, D.; Roybal, W.; Tallerico, P.; Toole, L.

    1997-01-01

    Successful operation of the Accelerator Production of Tritium (APT) plant will require that accelerator downtime be kept to an absolute minimum. Over 230 separate 1 MW RF systems are expected to be used in the APT plant, making the efficiency and reliability of these systems two of the most critical factors in plant operation. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for APT. The design of the RF systems used in LEDA has been driven by the need for high efficiency and extremely high system reliability. The authors present details of the high voltage power supply and transmitter systems as well as detailed descriptions of the waveguide layout between the klystrons and the accelerating cavities. The first stage of LEDA operations will use four 1.2 MW klystrons to test the RFQ and supply power to one test stand. The RFQ will serve as a power combiner for multiple RF systems. They present some of the unique challenges expected in the use of this concept

  13. The Ability of American Football Helmets to Manage Linear Acceleration With Repeated High-Energy Impacts.

    Science.gov (United States)

    Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine

    2016-03-01

    Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.

  14. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.

    Science.gov (United States)

    Rothney, Megan P; Neumann, Megan; Béziat, Ashley; Chen, Kong Y

    2007-10-01

    Accelerometers are a promising tool for characterizing physical activity patterns in free living. The major limitation in their widespread use to date has been a lack of precision in estimating energy expenditure (EE), which may be attributed to the oversimplified time-integrated acceleration signals and subsequent use of linear regression models for EE estimation. In this study, we collected biaxial raw (32 Hz) acceleration signals at the hip to develop a relationship between acceleration and minute-to-minute EE in 102 healthy adults using EE data collected for nearly 24 h in a room calorimeter as the reference standard. From each 1 min of acceleration data, we extracted 10 signal characteristics (features) that we felt had the potential to characterize EE intensity. Using these data, we developed a feed-forward/back-propagation artificial neural network (ANN) model with one hidden layer (12 x 20 x 1 nodes). Results of the ANN were compared with estimations using the ActiGraph monitor, a uniaxial accelerometer, and the IDEEA monitor, an array of five accelerometers. After training and validation (leave-one-subject out) were completed, the ANN showed significantly reduced mean absolute errors (0.29 +/- 0.10 kcal/min), mean squared errors (0.23 +/- 0.14 kcal(2)/min(2)), and difference in total EE (21 +/- 115 kcal/day), compared with both the IDEEA (P types under free-living conditions.

  15. Durability of future energy-efficient building components

    DEFF Research Database (Denmark)

    Lauritsen, Diana

    carried out based on the proposed method: an example of a long-lasting window and flat roofs with drying-out potential. The proposed window solution was a triple glazed non-sealed unit which included an air filter and drying remedy to avoid moisture and dust accumulation in the cavities. Analysis showed...... that it was possible to develop a long-lasting window solution that meets future energy requirements based on the calculated energy contribution. Further analysis was made to investigate the optimum glass-combination for distribution of outer condensation and transparency. It was concluded that future-proof glazing...

  16. Stationary battery storage of energy transition a central component

    International Nuclear Information System (INIS)

    Vetter, Matthias; Lux, Stephan

    2017-01-01

    In a regenerative energy system with strong fluctuations in electricity production, the importance of short-term storage is increasing - on the one hand, in order to optimal need-oriented use of the energy supply, on the other hand, at any time to ensure a high network quality. The present overview of stationary battery storage shows how important it will be especially in the area of larger storage facilities with direct link to regenerative power plants, as a district storage or in the industry. [de

  17. Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard.

    Science.gov (United States)

    Livorati, André L P; Caldas, Iberê L; Leonel, Edson D

    2012-06-01

    The behavior of the average energy for an ensemble of non-interacting particles is studied using scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the system is described by a four dimensional nonlinear mapping. The dissipation is introduced via inelastic collisions between the particles and the moving boundary. For different combinations of initial velocities and damping coefficients, the long time dynamics of the particles leads them to reach different states of final energy and to visit different attractors, which change as the dissipation is varied. The decay of the average energy of the particles, which is observed for a large range of restitution coefficients and different initial velocities, is described using scaling arguments. Since this system exhibits unlimited energy growth in the absence of dissipation, our results for the dissipative case give support to the principle that Fermi acceleration seems not to be a robust phenomenon.

  18. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  19. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  20. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  1. Design study of low energy beam transport line for ion beams of the post-accelerator at RAON

    Science.gov (United States)

    Lee, Yumi; Kim, Eun-San

    2015-07-01

    Low-energy ions produced by the ion source pass through the focusing and acceleration sections. During this process, the ions accumulate energy and are finally transported to the apparatus that utilizes them for a specific purpose. Thus, in order to increase the transmission efficiency of the ion beams, the low energy beam transport (LEBT) system must minimize the beam loss and the emittance growth. The LEBT system is designed and optimized to transmit 132Sn16+ and 58Ni8+ beams of the post-accelerator at RAON that is the accelerator complex for the rare isotope science. The post-accelerator LEBT line comprises solenoids and electrostatic quadrupoles for transverse focusing and a multi-harmonic buncher for longitudinal focusing. This paper presents the results of the optical design and beam tracking for the post-accelerator LEBT obtained by using TraceWIN and TRACK codes.

  2. Additional dose assessment from the activation of high-energy linear accelerators used in radiation therapy

    Directory of Open Access Journals (Sweden)

    Ateia Embarka

    2008-01-01

    Full Text Available It is well known that medical linear accelerators generate activation products when operated above certain electron (photon energies. The aim of the present work is to assess the activation behavior of a medium-energy radiotherapy linear accelerator by applying in situ gamma-ray spectrometry and dose measurements, and to estimate the additional dose to radiotherapy staff on the basis of these results. Spectral analysis was performed parallel to dose rate measurements in the isocenter of the linear accelerator, immediately after the termination of irradiation. The following radioisotopes were detected by spectral analysis: 28Al, 62Cu, 56Mn, 64Cu, 187W, and 57Ni. The short-lived isotopes such as 28Al and 62Cu are the most important factors of the clinical routine, while the contribution to the radiation dose of medium-lived isotopes such as 56Mn, 57Ni, 64Cu, and 187W increases during the working day. Measured dose rates at the isocenter ranged from 2.2 µSv/h to 10 µSv/h in various measuring points of interest for the members of the radiotherapy staff. Within the period of 10 minutes, the dose rate decreased to values of 0.8 µSv/h. According to actual workloads in radiotherapy departments, a realistic exposure scenario was set, resulting in a maximal additional annual whole body dose to the radiotherapy staff of about 3.5 mSv.

  3. Low - energy Accelerator - based Nuclear Biotechnology for Applications in Agriculture and Biomedicine

    International Nuclear Information System (INIS)

    Yu, L.D.; Anuntalabhochai, S.; Phanchaisri, B.; Wongkham, W.; Vilaithong, T.

    2014-01-01

    A novel biotechnology based on low-energy-accelerator nuclear technology has recently been rapidly developed internationally. Low-energy ion beams with energy in a range of 10-100 keV generated from ion accelerators bombard plant seeds or tissues for mutation induction and plant or mammalian cells for gene transfection induction to benefit to agriculture and biomedicine. In Thailand, centered at Chiang Mai University, this so-called low-energy ion beam biotechnology has been explored and developed for more than a decade. Bioengineering-specialized ion implanters have been constructed and utilized for both research and applications. Certain Thai local rice mutants have been induced and achieved with improved characters of dwarf, photo-insensitivity, enriched nutrients and higher yields. Mutants of other plants such as flowers, vegetables and microorganisms have also been induced with improved properties. DNA transfer into bacterial and mammalian cells has been induced by ion beams. Particularly, ion-beam-induced gene transfection into human cells succeeded to initiate a new non-viral gene transfection method for potential gene therapy.

  4. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  5. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  6. Survey and alignment of high energy physics accelerators and transport lines

    International Nuclear Information System (INIS)

    Ruland, R.E.

    1992-11-01

    This talk summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are revisited and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step by step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations

  7. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  8. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  9. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ouk

    2005-10-15

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements.

  10. Low energy ions in co-rotating interaction regions at 1 AU: evidence for statistical ion acceleration

    International Nuclear Information System (INIS)

    Richardson, I.G.

    1985-01-01

    The possibility of the statistical acceleration of solar wind ions to energies above 10 keV in the vicinity of co-rotating high speed solar wind streams by scattering from hydromagnetic waves is considered. It was found that this process may occur only in the compressed fast stream plasma within the interaction region between the stream interface and the trailing edge, and may account for the energetic ion enhancements observed in this region by Richardson and Zwickl. When statistical acceleration occurs in the outer heliosphere, the accelerated ions may provide a source population for acceleration at the co-rotating reverse shock. (author)

  11. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Kreitzer, B R; Houck, T L; Luchterhand, O C

    2011-07-19

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic

  12. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    International Nuclear Information System (INIS)

    Kreitzer, B.R.; Houck, T.L.; Luchterhand, O.C.

    2011-01-01

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of ∼1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm 3 liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by ∼0.4 C which produces a 0.7% change in resistance. The typical cooling rate is ∼0.4 C per minute which results in ∼0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still

  13. Accelerating the Pace of Change in Energy Technologies Through an Integrated Federal Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-11-01

    In this report, the President’s Council of Advisors on Science and Technology (PCAST) calls for the development of a coordinated government-wide Federal energy policy. This will be a major undertaking, given the large number of Federal policies that affect the development, implementation, and use of energy technologies. For that reason, we recommend that the Administration initiate a process analogous to the Quadrennial Defense Review undertaken every four years by the Department of Defense

  14. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  15. Potential energy curves and collision integrals of air components

    Science.gov (United States)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  16. Is there a temperature? conceptual challenges at high energy, acceleration and complexity

    CERN Document Server

    Sándor Biró, Tamás

    2011-01-01

    Physical bodies can be hot or cold, moving or standing,simple or complex. In all such cases one assumes that their respective temperature is a well defined attribute.  What if, however, the ordinary measurement of temperature by direct body contact is not possible?  One conjectures its value, and yes, its very existence, by reasoning based on basic principles of thermodynamics. Is There a Temperature?  Conceptual Challenges at High Energy, Acceleration and Complexity, by Dr. Tamás Sándor Bíró, begins by asking the questions “Do we understand and can we explain in a unified framework the temperature of distant radiation sources, including event horizons, and that of the quark matter produced in high energy accelerator experiments? Or the astounding fluctuations on financial markets?” The book reviews the concept of temperature from its beginnings through the evolution of classical thermodynamics and atomic statistical physics through contemporary models of high energy particle matter.  Based on the...

  17. Origins of plateau formation in ion energy spectra under target normal sheath acceleration

    Science.gov (United States)

    DuBois, Timothy C.; Siminos, Evangelos; Ferri, Julien; Gremillet, Laurent; Fülöp, Tünde

    2017-12-01

    Target normal sheath acceleration (TNSA) is a method employed in laser-matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regions in their ion energy spectra when shooting on thin foil targets with thicknesses of the order of 10 μm. In this paper, we identify a mechanism which explains this phenomenon using one-dimensional particle-in-cell simulations. Fast electrons generated from the laser interaction recirculate back and forth through the target, giving rise to time-oscillating charge and current densities at the target backside. Periodic decreases in the electron density lead to transient disruptions of the TNSA sheath field: peaks in the ion spectra form as a result, which are then spread in energy from a modified potential driven by further electron recirculation. The ratio between the laser pulse duration and the recirculation period (dependent on the target thickness, including the portion of the pre-plasma which is denser than the critical density) determines if a plateau forms in the energy spectra.

  18. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    Directory of Open Access Journals (Sweden)

    Ronghao Hu

    2016-09-01

    Full Text Available The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0  μm. The results present a very promising way to drive coherent x-ray sources.

  19. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  20. Radioistopes to Solar to High Energy Accelerators – Chip-Scale Energy Sources

    International Nuclear Information System (INIS)

    Lal, Amit

    2013-01-01

    This talk will present MEMS based power sources that utilize radioisotopes, solar energy, and potentially nuclear energy through advancements in integration of new structures and materials within MEMS. Micro power harvesters can harness power from vibration, radioisotopes, light, sound, and biology may provide pathways to minimize or even eliminate batteries in sensor nodes. In this talk work on radioisotope thin films for MEMS will be include the self-reciprocating cantilever, betavoltaic cells, and high DC voltages. The self-reciprocating cantilever energy harvester allows small commercially viable amounts of radioisotopes to generate mW to Watts of power so that very reliable power sources that last 100s of years are possible. The tradeoffs between reliability and potential stigma with radioisotopes allow one to span a useful design space with reliability as a key parameter. These power sources provide pulsed power at three different time scales using mechanical, RF, and static extraction of energy from collected charge. Multi-use capability, both harvesting radioisotope power and local vibration energy extends the reliability of micro-power sources further

  1. Accelerated Expansion of the Universe: Dark Energy or modifications to the theory of gravity to Einstein?

    International Nuclear Information System (INIS)

    Quiros, I.

    2008-01-01

    Full text: An overview of the state of the art in modern astrophysics and cosmology is given, emphasizing the 'Dark Energy Problem', one of the fundamental problems of theoretical physics at present. In particular is analyzed the possibility that the universe could be a three-dimensional membrane embedded in a higher dimensional space. These models known as 'brane worlds' can explain the present accelerated expansion of the Universe as dissipation due to gravity at cosmological scales extra or limit space infrared (IR). However there are many other problems to solve, including the problem of 'ghost' modes that are inevitable in any IR modification of gravity. (author)

  2. A z-pinch plasma lens for focusing high-energy particles in an accelerator

    International Nuclear Information System (INIS)

    Autin, B.; Gundel, H.; Riege, H.; Bauer, H.; Boggasch, E.; Christiansen, J.; Frank, K.; Tkotz, R.; de Menna, L.; Miano, G.; Dothan, F.

    1988-01-01

    The azimuthal magnetic field of a current-carrying plasma column, created in a z-pinch discharge, can be used to collect high-energy charged particles in accelerators. This powerful linear lens is superior to conventional focusing devices, owing to its high field gradient and lack of absorption. The plasma dynamics is studied with magnetic-field measurements, streak photography, and model computations. In this paper, the results of the measurement and those of the long-term behavior of a prototype lens designed for antiproton collection at the new CERN Antiproton Collector are presented

  3. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  4. Science for Today's Energy Challenges: Accelerating Progress for a Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    With a growing population and energy demand in the world, there is a pressing need for research to create secure and accessible energy options with greatly reduced emissions of greenhouse gases. While we work to deploy the clean and efficient technologies that we already have--which will be urgent for the coming decades--we must also work to develop the science for the technologies of the future. This brochure gives examples of some of the most promising developments, and it provides 'snapshots' of cutting edge work of scientists in the field. The areas of greatest promise include biochemistry, nanotechnology, supraconductivity, electrophysics and computing. There are many others.

  5. Position-dependent energy-level shifts of an accelerated atom in the presence of a boundary

    International Nuclear Information System (INIS)

    Zhu Zhiying; Yu Hongwei

    2010-01-01

    We consider a uniformly accelerated atom interacting with a vacuum electromagnetic field in the presence of an infinite conducting plane boundary and calculate separately the contributions of vacuum fluctuations and radiation reaction to the atomic energy-level shift. We analyze in detail the behavior of the total energy shift in three different regimes of the distance in both the low-acceleration and high-acceleration limits. Our results show that, in general, an accelerated atom does not behave as if immersed in a thermal bath at the Unruh temperature in terms of the atomic energy-level shifts, and the effect of the acceleration on the atomic energy-level shifts may in principle become appreciable in certain circumstances, although it may not be realistic for actual experimental measurements. We also examine the effects of the acceleration on the level shifts when the acceleration is of the order of the transition frequency of the atom and we find some features which differ from what was obtained in the existing literature.

  6. Present state and problems of radiological protection monitoring for high energy electron accelerator facilities in SPring-8

    International Nuclear Information System (INIS)

    Miyamoto, Yukihiro; Harada, Yasunori; Ueda, Hisao

    1998-09-01

    The present state and problems of the radiological protection monitoring for the high-energy electron accelerator are summarized. In the radiological protection monitoring for SPring-8, a third generation synchrotron radiation facility, there are many problems specific to the high-energy electron accelerator. This report describes the monitoring technique of pulsed radiation, high-energy radiation and low-energy radiation, and their problems. The management of induced radioactivity and the effects of electro-magnetic noise to monitoring instruments are also discussed. (author)

  7. Component-oriented approach to the development and use of numerical models in high energy physics

    International Nuclear Information System (INIS)

    Amelin, N.S.; Komogorov, M.Eh.

    2002-01-01

    We discuss the main concepts of a component approach to the development and use of numerical models in high energy physics. This approach is realized as the NiMax software system. The discussed concepts are illustrated by numerous examples of the system user session. In appendix chapter we describe physics and numerical algorithms of the model components to perform simulation of hadronic and nuclear collisions at high energies. These components are members of hadronic application modules that have been developed with the help of the NiMax system. Given report is served as an early release of the NiMax manual mainly for model component users

  8. Detailed experimental results for high-trapping efficiency and narrow energy spread in a laser-driven accelerator

    Directory of Open Access Journals (Sweden)

    W. D. Kimura

    2004-09-01

    Full Text Available Presented are details of the staged electron laser acceleration (STELLA experiment, which demonstrated high-trapping efficiency and narrow energy spread in a staged laser-driven accelerator. Trapping efficiencies of up to 80% and energy spreads down to 0.36% (1σ were demonstrated. The experiment validated an approach that may be suitable for the basic design of a laser-driven accelerator system. In this approach, a laser-driven modulator together with a chicane creates a train of microbunches spaced apart by the laser wavelength. These microbunches are sent into a second laser-driven accelerator designed to efficiently trap the microbunches in the ponderomotive potential well of the laser electric field while maintaining a narrow energy spread. The STELLA scientific apparatus and procedures are described in detail. In-depth comparisons between the data and model are given including the predicted energy spectrum, energy-phase plot, and microbunch length profile. Data and model comparisons as a function of the phase delay between the microbunches and the accelerating wave are presented. The model is exercised to reveal how the high-trapping efficiency process evolves during the acceleration process.

  9. Particle size of radioactive aerosols generated during machine operation in high-energy proton accelerators

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kanda, Yukio; Kondo, Kenjiro; Endo, Akira

    2000-01-01

    In high-energy accelerators, non-radioactive aerosols are abundantly generated due to high radiation doses during machine operation. Under such a condition, radioactive atoms, which are produced through various nuclear reactions in the air of accelerator tunnels, form radioactive aerosols. These aerosols might be inhaled by workers who enter the tunnel just after the beam stop. Their particle size is very important information for estimation of internal exposure doses. In this work, focusing on typical radionuclides such as 7 Be and 24 Na, their particle size distributions are studied. An aluminum chamber was placed in the EP2 beam line of the 12-GeV proton synchrotron at High Energy Accelerator Research Organization (KEK). Aerosol-free air was introduced to the chamber, and aerosols formed in the chamber were sampled during machine operation. A screen-type diffusion battery was employed in the aerosol-size analysis. Assuming that the aerosols have log-normal size distributions, their size distributions were obtained from the radioactivity concentrations at the entrance and exit of the diffusion battery. Radioactivity of the aerosols was measured with Ge detector system, and concentrations of non-radioactive aerosols were obtained using condensation particle counter (CPC). The aerosol size (radius) for 7 Be and 24 Na was found to be 0.01-0.04 μm, and was always larger than that for non-radioactive aerosols. The concentration of non-radioactive aerosols was found to be 10 6 - 10 7 particles/cm 3 . The size for radioactive aerosols was much smaller than ordinary atmospheric aerosols. Internal doses due to inhalation of the radioactive aerosols were estimated, based on the respiratory tract model of ICRP Pub. 66. (author)

  10. Mechanical engineering of a 75-keV proton injector for the Low Energy Demonstration Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hodgkins, D.J.; Meyer, E.A.; Schneider, J.D.; Sherman, J.D.; Stevens, R.R. Jr.; Zaugg, T.J.

    1997-10-01

    A dc injector capable of 75-keV, 110-mA proton beam operation is under development for the Low Energy Demonstration Accelerator (LEDA) project at Los Alamos. The injector uses a dc microwave proton source which has demonstrated 98% beam availability while operating at design parameters. A high-voltage isolation transformer is avoided by locating all ion source power supplies and controls at ground potential. The low-energy beam transport system (LEBT) uses two solenoid focusing and two steering magnets for beam matching and centroid control at the RFQ matchpoint. This paper will discuss proton source microwave window design, H{sub 2} gas flow control, vacuum considerations, LEBT design, and an iris for beam current control.

  11. Theoretical Challenges in Acceleration and Transport of Ultra High Energy Cosmic Rays: A Review

    CERN Document Server

    Blasi, Pasquale

    2012-01-01

    The wealth of data collected in the last few years thanks to the Pierre Auger Observatory and recently to the Telescope Array made the problem of the origin of ultra high energy cosmic rays a genuinely experimental/observational one. The apparently contradictory results provided by these experiments in terms of spectrum, chemical composition and anisotropies do not allow to reach any final conclusions as yet. Here I will discuss some of the theoretical challenges imposed by these data: in particular I will discuss some issues related to the transition from Galactic to extragalactic cosmic rays and how the different models confront our understanding of Galactic cosmic rays in terms of supernova remnants paradigm. I will also discuss the status of theories aiming at describing acceleration of cosmic rays to the highest energies in relativistic shocks and unipolar inductors.

  12. An ECR ion source-based low-energy ion accelerator: development and performance

    Science.gov (United States)

    Agnihotri, A. N.; Kelkar, A. H.; Kasthurirangan, S.; Thulasiram, K. V.; Desai, C. A.; Fernandez, W. A.; Tribedi, L. C.

    2011-06-01

    Electron cyclotron resonance (ECR) ion sources produce low-energy, highly charged ions. A new 14.5 GHz ECR-based low-energy ion accelerator facility has been developed. The ion source involves a plasma chamber ('supernanogan') surrounded by permanent magnets that provide a suitable magnetic field. The entire assembly including the ion source and the analyzing magnet is mounted on a 400 kV deck. A LabVIEW-based command and control system has been developed for the beamline. In addition, wireless communication has been installed to operate the machine in high voltage. The charge state distribution of several ions (He, N2, O2, Ne, Ar and Xe) has been measured. For Ar and Xe, the maximum charge states measured were 16+ and 29+, respectively. A direct x-ray measurement for plasma diagnostics was also initiated.

  13. An ECR ion source-based low-energy ion accelerator: development and performance

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, A N; Kelkar, A H; Kasthurirangan, S; Thulasiram, K V; Desai, C A; Fernandez, W A; Tribedi, L C, E-mail: lokesh@tifr.res.in [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2011-06-15

    Electron cyclotron resonance (ECR) ion sources produce low-energy, highly charged ions. A new 14.5 GHz ECR-based low-energy ion accelerator facility has been developed. The ion source involves a plasma chamber ('supernanogan') surrounded by permanent magnets that provide a suitable magnetic field. The entire assembly including the ion source and the analyzing magnet is mounted on a 400 kV deck. A LabVIEW-based command and control system has been developed for the beamline. In addition, wireless communication has been installed to operate the machine in high voltage. The charge state distribution of several ions (He, N{sub 2}, O{sub 2}, Ne, Ar and Xe) has been measured. For Ar and Xe, the maximum charge states measured were 16{sup +} and 29{sup +}, respectively. A direct x-ray measurement for plasma diagnostics was also initiated.

  14. National plan for the accelerated commercialization of solar energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    After a brief profile of the Mid-American region and characterization of the residential and commercial markets and the industry of the region, a short description is given of a regional planning meeting held for the purpose of preparing input for the Mid-American section of the National Program for the Accelerated Commercialization of Solar Energy (NPAC) Implementation plans. For each of thirty-eight programs, the objective, rationale, task statement/description, evaluation measures, and implementor are given. The programs are in these areas: public education/awareness; education/training; legislative/regulatory; performance/analysis; design/planning;demonstrations; state interface; technology; information dissemination; legal and regulatory; analysis and assessment; and regional coordination. Two policy statements are included - one on cratering a solar society and the other recommending the expansion of the commercialization to encompass and include the concepts of utilization and popularization in the plan for the advancement of solar energy. (LEW)

  15. Physics of high energy particle accelerators. AIP conference proceedings No. 127

    International Nuclear Information System (INIS)

    Month, M.; Dahl, P.F.; Dienes, M.

    1985-01-01

    Topics covered in this workshop include accelerator physics, particle physics, and new acceleration methods. Eighteen lectures were presented. Individual abstracts were prepared separately for the data base

  16. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  17. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Abanades, A.; Garcia, C.; Garcia, L.; Escriva, A.; Perez-Navarro, A.; Rosales, J.

    2011-01-01

    Highlights: → Utilization of Accelerator Driven System (ADS) for Hydrogen production. → Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. → Application of the Sulfur-Iodine thermochemical process to subcritical systems. → Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  18. Trends in radiological and environmental protection at high energy accelerator laboratories

    International Nuclear Information System (INIS)

    Perry, D.R.; Shaw, K.B.; Stapleton, G.B.; Thomas, R.H.

    1991-03-01

    The serious study of high-energy particle accelerator radiological protection began in the early 1950s and has continued since then. This paper treats the subject in seven stages, and begins by briefly reviewing the work done until the 80s, which comprises the first five stages. These are, observation of high radiation levels, shielding studies, dosimetry, induced activity and the environmental effects. The sixth stage, control by legislation and regulation, is discussed in detail. Over the past twenty years there have been significant additions to radiological protection standards: from a scientifically based estimate of risk to a social desire to reduce exposure to levels determined only by the ''best practical means (BPM)'' or as it is currently understood in the United States of America ''best available technology (BAT)''. The implications of this trend are explored, and the success with which changing standards have been followed is studied with the aid of data derived from personnel doses. The last stage is the decommissioning or disposal of high energy accelerators. (author)

  19. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  20. Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G; Althouse, W; Amanullah, R; Annis, J; Astier, P; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergstrom, L; Bernstein, G; Bester, M; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Commins, E; Craig, W; Day, C; DeJongh, F; Deustua, S; Diehl, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Fouchez, D; Frieman, J; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Fevre, OL; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marriner, J; Marshall, P; Massey, R; Mazure, A; McKay, T; McKee, S; Miquel, R; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nugent, P; Oluseyi, H; Pain, R; Palaio, N; Pankow, D; Peoples, J; Perlmutter, S; Prieto, E; Rabinowitz, D; Refregier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Sholl, M; Smadja, G; Smith, RM; Smoot, G; Snyder, J; Spadafora, A; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Lippe, HVD; Walder, J-P; Wang, G; Wester, W

    2004-05-12

    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

  1. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  2. Acceleration factor for propagation of a stationary wave in its wave medium: movement of energy in the 3-D space

    International Nuclear Information System (INIS)

    Nagao, Shigeto

    2013-01-01

    According to the formerly reported 4-D spherical model of the time and universe, any energy in the 3-dimensional space is a vibration of the intrinsic space energy. There is a special frame stationary to the space energy and the principle of relativity is no longer valid. Accordingly, abandonment of the Special Relativity and then introduction of a factor of acceleration for energy in the 3-D space are proposed.

  3. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculations - results

    Science.gov (United States)

    Esposito, A.; Frasciello, O.; Pelliccioni, M.

    2017-09-01

    ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  4. Radiation effects at a high power accelerator and applications to advanced energy sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Garner, F.A.; Brown, R.D.; Wechsler, M.S.

    1989-01-01

    Many materials are exposed to atom-displacing radiation at high-power accelerators such as the Los Alamos Meson Physics Facility (LAMPF). Beam current densities in the 800-MeV proton beam vary from 12.5 mA cm -2 (8 x 10 16 p/cm 2 s) on graphite targets to 20-μA cm -2 (1.3 x 10 14 p/cm 2 s) on metal-alloy windows. High-level radiation damage results from these particle fluxes. As a consequence of secondary-particle generation in targets and windows and low-level beam losses that lead to particle interactions with structural material, various components are exposed to low-level proton fluxes, gamma radiation, and neutron fluxes of 10 6 --10 10 n/cm 2 s. These include vacuum seals and vacuum chambers of stainless steel and aluminum alloys, solid-state devices for control, diagnostic, and data acquisition electronics, closed-loop cooling-water systems, and insulators. Properties of these materials are degraded by the radiation exposure. Studies of LAMPF and other accelerators, however, have produced solutions to materials problems, allowing the machines to operate for acceptable times without failure. Nevertheless, additional improvements are being investigated in order to further improve operational reliability and safety. 25 refs., 3 figs., 3 tabs

  5. Energy calibration of a 5. 5 MV Van de Graaff accelerator using a time-of-flight technique

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E.; Feregrino, M.; Zavala, E.P.; Pineda, J.C.; Jimenez, R.; Jaidar, A. (Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Fisica (Mexico))

    1990-02-01

    Energy calibration of the analysing magnet for the University of Mexico 5.5 MV Van de Graaff accelerator has been carried out using a time-of-flight method. The pulsed and bunched beam produced by the accelerator was used to deduce the energy E of the beam particles from the transit time between a coaxial pickup and a charged particle detector separated by 1.5 m. The measured FWHM energy resolution of this system was about 20 keV. (orig.).

  6. Energy calibration of a 5.5 MV Van de Graaff accelerator using a time-of-flight technique

    Science.gov (United States)

    Andrade, E.; Feregrino, M.; Zavala, E. P.; Pineda, J. C.; Jiménez, R.; Jaidar, A.

    1990-02-01

    Energy calibration of the analysing magnet for the University of México 5.5 MV Van de Graaff accelerator has been carried out using a time-of-flight method. The pulsed and bunched beam produced by the accelerator was used to deduce the energy E of the beam particles from the transit time between a coaxial pickup and a charged particle detector separated by 1.5 m. The measured FWHM energy resolution of this system was about 20 keV.

  7. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    International Nuclear Information System (INIS)

    Lehew, J.G.; Bradford, J.D.; Cabbil, C.C.

    2006-01-01

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  8. Estimation of the energy ratio between primary and ambience components in stereo audio data

    NARCIS (Netherlands)

    Harma, A.S.

    2011-01-01

    Stereo audio signal is often modeled as a mixture of instantaneously mixed primary components and uncorrelated ambience components. This paper focuses on the estimation of the primary-to-ambience energy ratio, PAR. This measure is useful for signal decomposition in stereo and multichannel audio

  9. Energy Limits of Electron Acceleration in the Plasma Sheet During Substorms: A Case Study with the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Clemmons, J. H.; Mauk, B. H.; Cohen, I. J.; Jaynes, A. N.; Craft, J. V.; Wilder, F. D.; Baker, D. N.; hide

    2016-01-01

    We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASAs Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at approx. 7-9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increases, in this case from approx. 130 keV to >500 keV, with each depolarization/injection during sustained activity. We also present a simple model accounting for these energy limits that reveals that electron energization is dominated by betatron acceleration.

  10. Cosmic acceleration in a dust only universe via energy-momentum powered gravity

    Science.gov (United States)

    Akarsu, Özgür; Katırcı, Nihan; Kumar, Suresh

    2018-01-01

    We propose a modified theory of gravitation constructed by the addition of the term f (Tμ νTμ ν) to the Einstein-Hilbert action, and elaborate a particular case f (Tμ νTμ ν)=α (Tμ νTμ ν)η, where α and η are real constants, dubbed energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG, especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters (α ,η ) on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that η =0 corresponds to the Λ CDM model, whereas η ≠0 leads to a w CDM -type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as ρ ∝a-3 with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the Λ CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.

  11. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    Science.gov (United States)

    Singh, C. P.; Srivastava, Milan

    2018-03-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.

  12. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    Science.gov (United States)

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  13. The low-energy electron accelerator lea for pilot scale operations

    Science.gov (United States)

    Mehnert, R.; Klenert, P.

    An electron processor equipped with a linear cathode has been developed for use in pilot scale radiation processing. It can provide electron beam powers up to 6 kW at energies between 150 and 200 keV. The design of some components of the processor system and first results of its operation as part of a pilot unit for curing of furniture elements will be discussed.

  14. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  15. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Science.gov (United States)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  16. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M., E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Håkansson, K.; Possnert, G. [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Wacker, L.; Synal, H.-A. [Ion Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 (Switzerland)

    2016-03-15

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV {sup 14,13,12}C{sup 3+} ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the {sup 14}C/{sup 12}C and the {sup 13}C/{sup 12}C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  17. SRAM-Based Passive Dosimeter for High-Energy Accelerator Environments

    CERN Document Server

    Makowski, D R; Napieralski, A; Swiercz, B P

    2005-01-01

    This paper reports a novel NVRAM-based neutron dose monitor (REM counter). The principle of this device is based on the radiation effect initiating the Single Event Upset SEU in high density microelectronic memories. Several batches of Non-Volatile memories from different manufactures were examined in various radiation environments, i.e. 241Am-Be (alpha,n) and Linear accelerators produced radiation fields. A suitable moderator was used to enhance the detector sensitivity. Further experiments were carried out in Linear Accelerators: Linac II, TTF2 and Beam Loss Environment of various Experimental Facilities at DESY Research Centre in Hamburg. A separate batch of SRAM was irradiated with 60Co-gamma rays up to a dose of about 60 Gy. No Single Event Upset (SEU) was registered. This validates, that gamma radiation has a negligible effect to trigger SEU in the SRAM. The proposed detector could be ideal for a neutron dose measurement produced by a high-energy electron linac, including synchrotron and Free Electron L...

  18. High energy physics advisory panel's composite subpanel for the assessment of the status of accelerator physics and technology

    International Nuclear Information System (INIS)

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation's scientific research, and it has significantly enhanced the nation's biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE's OER programs and the DOE's predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation

  19. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  20. Influence of Energy Input on Degradation Behavior of Plastic Components Manufactured by Selective Laser Melting

    Science.gov (United States)

    Drummer, Dietmar; Wudy, Katrin; Drexler, Maximilian

    Additive manufacturing techniques, such as selective laser melting of plastics, generate components directly from a CAD data set without using a specific mold. High building chamber temperatures in combination with long building times lead to physical and chemical degradation of the surrounding powder and the manufactured component in the case of selective laser melting of polyamide 12 (PA12). Thus the following investigations show the influence of energy densities on mechanical properties as well as on the aging behavior of the manufactured components. Therefore several building processes with varying energy densities will be conducted. Aged polymer components were analyzed with physical, thermo analytical and mechanical methods with regards to their process relevant material properties. Considered material properties for example are phase transition temperatures, melting viscosity or molecular weight. The basic understanding of the influence of energy input on material properties will lead to new process strategies with minimized polymer degradation.

  1. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  2. Quantum mechanics, high energy physics and accelerators selected papers of John S Bell (with commentary)

    CERN Document Server

    Bell, John Stewart; Gottfried, Kurt; Veltman, Martinus J G

    1994-01-01

    The scientific career of John Stewart Bell was distinguished by its breadth and its quality. He made several very important contributions to scientific fields as diverse as accelerator physics, high energy physics and the foundations of quantum mechanics. This book contains a large part of J S Bell's publications, including those that are recognized as his most important achievements, as well as others that are for no good reason less well known. The selection was made by Mary Bell, Martinus Veltman and Kurt Gottfried, all of whom were involved with John Bell both personally and professionally throughout a large part of his life. An introductory chapter has been written to help place the selected papers in a historical context and to review their significance. This book comprises an impressive collection of outstanding scientific work of one of the greatest scientists of the recent past, and it will remain important and influential for a long time to come.

  3. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  4. Acceleration of Feynman loop integrals in high-energy physics on many core GPUs

    International Nuclear Information System (INIS)

    Yuasa, F; Ishikawa, T; Hamaguchi, N; Koike, T; Nakasato, N

    2013-01-01

    The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards

  5. High energy emission of supernova sn 1987a. Cosmic rays acceleration in mixed shocks

    International Nuclear Information System (INIS)

    Lehoucq, Roland

    1992-01-01

    In its first part, this research thesis reports the study of the high energy emission of the sn 1987 supernova, based on a Monte Carlo simulation of the transfer of γ photons emitted during disintegration of radioactive elements (such as 56 Ni, 56 Co, 57 Co and 44 Ti) produced during the explosion. One of the studied problems is the late evolution (beyond 1200 days) of light curvature which is very different when it is powered by the radiation of a central object or by radioactivity. The second part reports the study of acceleration of cosmic rays in two-fluid shock waves in order to understand the different asymmetries noticed in hot spots of extragalactic radio-sources. This work comprises the resolution of structure equations of a shock made of a conventional fluid and a relativistic one, in presence or absence of a magnetic field [fr

  6. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  7. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Science.gov (United States)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  8. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    Directory of Open Access Journals (Sweden)

    Ingo Hofmann

    2013-04-01

    Full Text Available Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  9. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package.

    Science.gov (United States)

    Mermelstein, Daniel J; Lin, Charles; Nelson, Gard; Kretsch, Rachael; McCammon, J Andrew; Walker, Ross C

    2018-03-12

    Alchemical free energy (AFE) calculations based on molecular dynamics (MD) simulations are key tools in both improving our understanding of a wide variety of biological processes and accelerating the design and optimization of therapeutics for numerous diseases. Computing power and theory have, however, long been insufficient to enable AFE calculations to be routinely applied in early stage drug discovery. One of the major difficulties in performing AFE calculations is the length of time required for calculations to converge to an ensemble average. CPU implementations of MD-based free energy algorithms can effectively only reach tens of nanoseconds per day for systems on the order of 50,000 atoms, even running on massively parallel supercomputers. Therefore, converged free energy calculations on large numbers of potential lead compounds are often untenable, preventing researchers from gaining crucial insight into molecular recognition, potential druggability and other crucial areas of interest. Graphics Processing Units (GPUs) can help address this. We present here a seamless GPU implementation, within the PMEMD module of the AMBER molecular dynamics package, of thermodynamic integration (TI) capable of reaching speeds of >140 ns/day for a 44,907-atom system, with accuracy equivalent to the existing CPU implementation in AMBER. The implementation described here is currently part of the AMBER 18 beta code and will be an integral part of the upcoming version 18 release of AMBER. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Design and implementation of a device for measuring radiation energy of an electron accelerator

    International Nuclear Information System (INIS)

    Salhi, Heythem; Selmi, Samir

    2010-01-01

    Our work is part of a graduation project at the School of Technology and Computing, to obtain a master's degree in electrical engineering specialty industrial computer. Throughout the four-month internship at the National Center for Nuclear Science and Technology (CNSTN), we have learned to practice the knowledge acquired during the formative years and to manage our working time. Our job was to design and implementation of a device for measuring the energy of radiation. Our project meets the needs of users in the radio treatment Unit, which amount to automate measurement of radiation energy from the electron accelerator. This project has been beneficial on several levels: it was an opportunity to achieve better control of printed circuits, especially when they are dual layer and learning a new programming language that is actually BASIC. In human terms, this work has given us the opportunity to learn to manage our time, and learn teamwork. However, we are convinced that this project can be enhanced on various levels. It can be considered as a starting point of a contribution to the real-time measurement of the energy of radiation.

  11. Biological assessments for the low energy demonstration accelerator, 1996 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1998-12-31

    The Department of Energy (DOE) plans to build, install, and operate a Low Energy Demonstration Accelerator (LMA) in Technical Area 53 of the Los Alamos National Laboratory (LANL). LEDA will demonstrate the accelerator technology necessary to produce tritium, but is not designed to produce tritium at LANL. USFWS reviewers of the Biological Assessment prepared for LEDA insisted that the main drainage be monitored to measure and document changes to vegetation, soils, wildlife, and habitats due to LEDA effluent discharges. The Biology Team of ESH-20 (LANL`s Ecology Group) has performed these monitoring activities during 1996 and 1997 to document baseline conditions before LEDA released significant effluent discharges. Quarterly monitoring of the outfall which will discharge LEDA blowdown effluent had one exceedance of permitted parameters, a high chlorine discharge that was quickly remedied. Samples from 12 soil pits in the drainage area contained no hydric indicators, such as organic matter in the upper layers, streaking, organic pans, and oxidized rhizospheres. Vegetation transacts in the meadows that LEDA discharges will flow through contained 44 species of herbaceous plants, all upland taxa. Surveys of resident birds, reptiles, and amphibians documented a fauna typical of local dry canyons. No threatened or endangered species inhabit the project area, but increased effluent releases may make the area more attractive to many wildlife species, an endangered raptor, and several other species of concern. Biological best management practices especially designed for LEDA are discussed, including protection of floodplains, erosion control measures, hazards posed by increased usage of the area by deer and elk and revegetation of disturbed areas.

  12. A Global Review of Incentive Programs to Accelerate Energy-Efficient Appliances and Equipment

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Phadke, Amol; Leventis, Greg; Gopal, Anand

    2013-08-01

    Incentive programs are an essential policy tool to move the market toward energy-efficient products. They offer a favorable complement to mandatory standards and labeling policies by accelerating the market penetration of energy-efficient products above equipment standard requirements and by preparing the market for increased future mandatory requirements. They sway purchase decisions and in some cases production decisions and retail stocking decisions toward energy-efficient products. Incentive programs are structured according to their regulatory environment, the way they are financed, by how the incentive is targeted, and by who administers them. This report categorizes the main elements of incentive programs, using case studies from the Major Economies Forum to illustrate their characteristics. To inform future policy and program design, it seeks to recognize design advantages and disadvantages through a qualitative overview of the variety of programs in use around the globe. Examples range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-Points that reward customers for buying efficient appliances under a government recovery program (Japan). We found that evaluations have demonstrated that financial incentives programs have greater impact when they target highly efficient technologies that have a small market share. We also found that the benefits and drawbacks of different program design aspects depend on the market barriers addressed, the target equipment, and the local market context and that no program design surpasses the others. The key to successful program design and implementation is a thorough understanding of the market and effective identification of the most important local factors hindering the penetration of energy-efficient technologies.

  13. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  14. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2013-05-15

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  15. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    International Nuclear Information System (INIS)

    Li, Yanheng; Ji, Wei

    2013-01-01

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  16. Dependence of the ion energy on the parameters of the laser pulse and target in the radiation-pressure-dominated regime of acceleration

    International Nuclear Information System (INIS)

    Echkina, E. Yu.; Inovenkov, I. N.; Esirkepov, T. Zh.; Pegoraro, F.; Borghesi, M.; Bulanov, S. V.

    2010-01-01

    When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.

  17. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  18. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    International Nuclear Information System (INIS)

    Fasso, Alberto

    2011-01-01

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  19. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    Science.gov (United States)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  20. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  1. Understanding nature's particle accelerators using high energy gamma-ray survey instruments

    Science.gov (United States)

    Abeysekara, Anushka Udara

    Nature's particle accelerators, such as Pulsars, Pulsar Wind Nebulae, Active Galactic Nuclei and Supernova Remnants accelerate charged particles to very high energies that then produce high energy photons. The particle acceleration mechanisms and the high energy photon emission mechanisms are poorly understood phenomena. These mechanisms can be understood either by studying individual sources in detail or, alternatively, using the collective properties of a sample of sources. Recent development of GeV survey instruments, such as Fermi-LAT, and TeV survey instruments, such as Milagro, provides a large sample of high energy gamma-ray flux measurements from galactic and extra-galactic sources. In this thesis I provide constraints on GeV and TeV radiation mechanisms using the X-ray-TeV correlations and GeV-TeV correlations. My data sample was obtained from three targeted searches for extragalactic sources and two targeted search for galactic sources, using the existing Milagro sky maps. The first extragalactic candidate list consists of Fermi-LAT GeV extragalactic sources, and the second extragalactic candidate list consists of TeVCat extragalactic sources that have been detected by Imaging Atmospheric Cerenkov Telescopes (IACTs). In both extragalactic candidate lists Markarian 421 was the only source detected by Milagro. A comparison between the Markarian 421 time-averaged flux, measured by Milagro, and the flux measurements of transient states, measured by IACTs, is discussed. The third extragalactic candidate list is a list of potential TeV emitting BL Lac candidates that was synthesized using X-ray observations of BL Lac objects and a Synchrotron Self-Compton model. Milagro's sensitivity was not sufficient to detect any of those candidates. However, the 95% confidence flux upper limits of those sources were above the predicted flux. Therefore, these results provide evidence to conclude that the Synchrotron Self-Compton model for BL Lac objects is still a viable

  2. What makes the Universe accelerate? A review on what dark energy could be and how to test it

    Science.gov (United States)

    Brax, Philippe

    2018-01-01

    Explaining the origin of the acceleration of the expansion of the Universe remains as challenging as ever. In this review, we present different approaches from dark energy to modified gravity. We also emphasize the quantum nature of the problem and the need for an explanation which should violate Weinberg’s no go theorem. This might involve a self-tuning mechanism or the acausal sequestering of the vacuum energy. Laboratory tests of the coupling to matter of nearly massless scalar fields, which could be one of the features required to explain the cosmic acceleration, are also reviewed.

  3. What makes the Universe accelerate? A review on what dark energy could be and how to test it.

    Science.gov (United States)

    Brax, Philippe

    2018-01-01

    Explaining the origin of the acceleration of the expansion of the Universe remains as challenging as ever. In this review, we present different approaches from dark energy to modified gravity. We also emphasize the quantum nature of the problem and the need for an explanation which should violate Weinberg's no go theorem. This might involve a self-tuning mechanism or the acausal sequestering of the vacuum energy. Laboratory tests of the coupling to matter of nearly massless scalar fields, which could be one of the features required to explain the cosmic acceleration, are also reviewed.

  4. THE ENERGY COMPONENT OF THE ENVIRONMENTAL SECURITY: UKRAINE IN THE MIRROR

    Directory of Open Access Journals (Sweden)

    G. Kharlamova

    2015-03-01

    Full Text Available Energy security is important for any state. It is important for the state’s environment and economy. Ukraine is an energy dependent state, as well as an import-energy dependent one. The paper is devoted to the statistical analyses of Ukrainian energy sector from the position of its world representation. The purpose of this research is on the base of statistical analysis of current internal and external trends in the energy sector of Ukraine to consider possible mechanisms to stimulate and accelerate environmental-friendly energy security of Ukraine. Main objectives: to trace the dynamics of world and Ukrainian main energy indicators in the synergy with the state energy security index; to cluster launched efficiency-targeted energy projects in Ukraine in geoindustry aspect. Analyses of dynamics of energetic vs environmental performance of Ukraine in 2000–2014 world ranks shows that being in low segment of world rankings on aspects of energy and environmental security, Ukraine shows positive tendencies to the improvement, however with slow steps. In order to identify the most promising and most attractive sector of the economy in Ukraine to investors we held grouping of current launching energy-efficient projects in the aspect of industries and sectors where energy-efficient technologies operate. The rank analyses depicted that the most popular among economic sectors for energyefficiency investments are enterprises of agriculture and consumer goods industry, and the most attractive regions of Ukraine for implementation of investments in energy efficient technologies are Ivano-Frankivsk, Luhansk and Kherson oblasts.

  5. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    Science.gov (United States)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  6. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  7. Method and apparatus for use in harnessing solar energy to provide initial acceleration and propulsion of devices

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, G.E.

    1983-09-13

    The present invention relates to a method of providing thrust and added lift to a vehicle by accelerating fluid heated by solar energy. The present invention also relates to apparatus for carrying out the aforementioned method. Accordingly, the present invention relates to a method of providing initial acceleration and propulsion or enhancing the initial acceleration and propulsion of a vehicle in an environment having at least some fluid, the vehicle being of the type having at least one member, at least a portion of which is treated for absorbing solar radiation for heating fluid adjacent the member for use in propelling the vehicle through the environment. By use of direct and/or focused solar radiation, fluid is heated, accelerated and deflected away from a vehicle by natural or forced convection to provide thrust and lift of the vehicle.

  8. Effects of energy chirp on bunch length measurement in linear accelerator beams

    Science.gov (United States)

    Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.

    2017-08-01

    The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.

  9. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators

    International Nuclear Information System (INIS)

    Saxena, A. K.; Kaushik, T. C.; Gupta, Satish C.

    2010-01-01

    Two low energy (1.6 and 8 kJ) portable electrically exploding foil accelerators are developed for moderately high pressure shock studies at small laboratory scale. Projectile velocities up to 4.0 km/s have been measured on Kapton flyers of thickness 125 μm and diameter 8 mm, using an in-house developed Fabry-Perot velocimeter. An asymmetric tilt of typically few milliradians has been measured in flyers using fiber optic technique. High pressure impact experiments have been carried out on tantalum, and aluminum targets up to pressures of 27 and 18 GPa, respectively. Peak particle velocities at the target-glass interface as measured by Fabry-Perot velocimeter have been found in good agreement with the reported equation of state data. A one-dimensional hydrodynamic code based on realistic models of equation of state and electrical resistivity has been developed to numerically simulate the flyer velocity profiles. The developed numerical scheme is validated against experimental and simulation data reported in literature on such systems. Numerically computed flyer velocity profiles and final flyer velocities have been found in close agreement with the previously reported experimental results with a significant improvement over reported magnetohydrodynamic simulations. Numerical modeling of low energy systems reported here predicts flyer velocity profiles higher than experimental values, indicating possibility of further improvement to achieve higher shock pressures.

  10. Nested MC-Based Risk Measurement of Complex Portfolios: Acceleration and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Sascha Desmettre

    2016-10-01

    Full Text Available Risk analysis and management currently have a strong presence in financial institutions, where high performance and energy efficiency are key requirements for acceleration systems, especially when it comes to intraday analysis. In this regard, we approach the estimation of the widely-employed portfolio risk metrics value-at-risk (VaR and conditional value-at-risk (cVaR by means of nested Monte Carlo (MC simulations. We do so by combining theory and software/hardware implementation. This allows us for the first time to investigate their performance on heterogeneous compute systems and across different compute platforms, namely central processing unit (CPU, many integrated core (MIC architecture XeonPhi, graphics processing unit (GPU, and field-programmable gate array (FPGA. To this end, the OpenCL framework is employed to generate portable code, and the size of the simulations is scaled in order to evaluate variations in performance. Furthermore, we assess different parallelization schemes, and the targeted platforms are evaluated and compared in terms of runtime and energy efficiency. Our implementation also allowed us to derive a new algorithmic optimization regarding the generation of the required random number sequences. Moreover, we provide specific guidelines on how to properly handle these sequences in portable code, and on how to efficiently implement nested MC-based VaR and cVaR simulations on heterogeneous compute systems.

  11. A novel thermal accelerant for augmentation of microwave energy during image-guided tumor ablation

    Science.gov (United States)

    Park, William K. C.; Maxwell, Aaron W. P.; Frank, Victoria E.; Primmer, Michael P.; Paul, Jarod B.; Susai, Cynthia; Collins, Scott A.; Borjeson, Tiffany M.; Baird, Greyson L.; Lombardo, Kara A.; Dupuy, Damian E.

    2017-02-01

    The greatest challenge in image-guided thermal ablation (IGTA) of liver tumors is a relatively high recurrence rate (ca. 30%) due to incomplete ablation. To meet this challenge, we have developed a novel Thermal Accelerator (TA) to demonstrate its capability to, 1) augment microwave (MW) energy from a distance unattainable by antenna alone; 2) turn into a gel at body temperature; 3) act as a CT or US contrast. We have examined the TA efficiency using in vitro and ex vivo models: microwave power, TA dose, frequencies and TA-to-tip distance were varied, and temperature readings compared with and without TA. Using the in vitro model, it was established that both the rate and magnitude of increase in ablation zone temperature were significantly greater with TA under all tested conditions (pCT, TA density was proportional to dose, with average values ranging from 329 HU to 3071 HU at 10 mg/mL and 1,000mg/mL, respectively. TA can be accurately deposited to a target area using CT or US as image-guidance and augment MW energy effectively so that ablation time is significantly reduced, which will contribute to complete ablation. The preliminary results obtained from in vivo experiments using swine as an animal model are consistent with the observations made in in vitro and en vivo studies.

  12. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    Directory of Open Access Journals (Sweden)

    Vishakha Kaushik

    2015-09-01

    Full Text Available Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

  13. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  14. Study on film resistivity of Energy Conversion Components for MEMS Initiating Explosive Device

    Science.gov (United States)

    Ren, Wei; Zhang, Bin; Zhao, Yulong; Chu, Enyi; Yin, Ming; Li, Hui; Wang, Kexuan

    2018-03-01

    Resistivity of Plane-film Energy Conversion Components is a key parameter to influence its resistance and explosive performance, and also it has important relations with the preparation of thin film technology, scale, structure and etc. In order to improve the design of Energy Conversion Components for MEMS Initiating Explosive Device, and reduce the design deviation of Energy Conversion Components in microscale, guarantee the design resistance and ignition performance of MEMS Initiating Explosive Device, this paper theoretically analyzed the influence factors of film resistivity in microscale, through the preparation of Al film and Ni-Cr film at different thickness with micro/nano, then obtain the film resistivity parameter of the typical metal under different thickness, and reveals the effect rule of the scale to the resistivity in microscale, at the same time we obtain the corresponding inflection point data.

  15. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  16. Powerful accelerators for bremsstrahlung and electron beams generation on the basis of inductive energy-storage elements

    International Nuclear Information System (INIS)

    Diyankov, V.S.; Kovalev, V.P.; Kormilitsin, A.I.; Lavrentev, B.N.

    1996-01-01

    The report summarizes RFNC-VNIITF activities from 1963 till 1995, devoted to the development of pulsed electron accelerators on the basis of inductive energy storage with electroexplosive wires. These accelerators are called IGUR. The activities resulted in the development of a series of generators of powerful radiation being cheap and easy in manufacturing and servicing. The accelerators achieved the following maximum parameters: diode voltage up to 6 MV, diode current up to 80 kA, current of the extracted electron beam 30 kA, density of the extracted electron beam energy 500 J/cm 2 , bremsstrahlung dose 250000 Rads, and bremsstrahlung dose rate 10 13 Rads/sec. (author). 3 tabs., 5 figs., 7 refs

  17. Design of incentive programs for accelerating penetration of energy-efficient appliances

    International Nuclear Information System (INIS)

    Rue du Can de la, Stephane; Leventis, Greg; Phadke, Amol; Gopal, Anand

    2014-01-01

    Incentives are policy tools that sway purchase, retail stocking, and production decisions toward energy-efficient products. Incentives complement mandatory standards and labeling policies by accelerating market penetration of products that are more energy efficient than required by existing standards and by preparing the market for more stringent future mandatory requirements. Incentives can be directed at different points in the appliance's supply chain; one point may be more effective than another depending on the technology's maturity and market penetration. This paper seeks to inform future policy and program design by categorizing the main elements of incentive programs from around the world. We identify advantages and disadvantages of program designs through a qualitative overview of incentive programs worldwide. We find that financial incentive programs have greater impact when they target highly efficient technologies with a small market share, and that program designs depend on the market barriers addressed, the target equipment, and the local market context. No program design is inherently superior to another. The key to successful program design and implementation is a thorough understanding of the market and identification of the most important local obstacles to the penetration of energy-efficient technologies. - Highlights: • We researched incentive programs design and implementation worldwide. • This paper seeks to inform future policy and program design. • We identify design and identify advantages and disadvantages. • We find that incentive programs have greater impact when they target highly efficient products. • Program designs depend on the market barriers addressed and the local market context

  18. The impact for households of a carbon component in the price of fossil energies

    International Nuclear Information System (INIS)

    Simon, Olivier; Thao Khamsing, Willy

    2016-03-01

    A carbon component has been introduced in tax on fossil energies in 2014 in France in order to support energy transition, and resulted in a higher cost of fossil energies for households in their transport and heating expenses. This publication aims at illustrating and commenting these consequences of a carbon component. It shows that expenses increase with the standard of living, that modest households are more affected, notably as far as heating expenses are concerned, that households using domestic fuel for heating and diesel fuel for their vehicles are the most affected, that the additional cost is particularly a burden for single-parent families and singles, and that rural households are more affected. A cross-criterion analysis (household type, location, heating type, fuel type) is proposed to assess the impact of 2016 on the energy bill of typical households. Methodological hypotheses, data origins and calculation method are briefly presented

  19. Low energy spread 100 MeV-1 GeV electron bunches from laser wakefield acceleration at LOASIS

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Esarey, E.; Michel, P.; Nagler, B.; Nakamura, K.; Plateau, G.R.; Schroeder, C.B.; Shadwick, B.A.; Toth, Cs.; Van Tilborg, J.; Leemans, W.P.; Hooker, S.M.; Gonsalves, A.J.; Michel, E.; Cary, J.R.; Bruhwiler, D.

    2006-01-01

    Experiments at the LOASIS laboratory of LBNL recently demonstrated production of 100 MeV electron beams with low energy spread and low divergence from laser wakefield acceleration. The radiation pressure of a 10 TW laser pulse guided over 10 diffraction ranges by a plasma density channel was used to drive an intense plasma wave (wakefield), producing acceleration gradients on the order of 100 GV/m in a mm-scale channel. Beam energy has now been increased from 100 to 1000 MeV by using a cm-scale guiding channel at lower density, driven by a 40TW laser, demonstrating the anticipated scaling to higher beam energies. Particle simulations indicate that the low energy spread beams were produced from self trapped electrons through the interplay of trapping, loading, and dephasing. Other experiments and simulations are also underway to control injection of particles into the wake, and hence improve beam quality and stability further

  20. Tests of an environmental and personnel safe cleaning process for Brookhaven National Laboratory accelerator and storage ring components

    International Nuclear Information System (INIS)

    Foerster, C.L.; Lanni, C.; Lee, R.; Mitchell, G.; Quade, W.

    1997-01-01

    A large measure of the successful operation of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for over a decade can be attributed to the cleaning of its ultrahigh vacuum (UHV) components during and after construction. A new UHV cleaning process, which has to be environmentally and personnel safe, is needed to replace the harsh, unfriendly process which is still in use. Dow Advanced Cleaning Systems was contracted to develop a replacement process without the use of harsh chemicals and which must clean vacuum surfaces as well as the existing process. Acceptance of the replacement process was primarily based on photon stimulated desorption (PSD) measurements of beam tube samples run on NSLS beam line U10B. One meter long beam tube samples were fabricated from aluminum, 304 stainless steel, and oxygen-free copper. Initially, coupon samples were cleaned and passed preliminary testing for the proposed process. Next, beam tube samples of each material were cleaned, and the PSD measured on beam line U10B using white light with a critical energy of 487 eV. Prior to cleaning, the samples were contaminated with a mixture of cutting oils, lubricants, vacuum oils, and vacuum grease. The contaminated samples were then baked. Samples of each material were also cleaned with the existing process after the same preparation. Beam tube samples were exposed to between 10 22 and 10 23 photons per meter for a PSD measurement. Desorption yields for H 2 , CO, CO 2 , CH 4 , and H 2 O are reported for both the existing cleaning and for the replacement cleaning process. Preliminary data, residual gas scans, and PSD results are given and discussed. The new process is also compared with new cleaning methods developed in other laboratories. After modification, the new UHV cleaning process was accepted by BNL

  1. Radiation-energy partition among mixture components: current ideas on an old question

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1988-01-01

    We review the basis of the familiar idea that the energy partition among mixture components in the initial stage would be governed by the total electron fraction. For considerations of many problems in radiation chemistry, it is better to use the valence-electron fraction. We also point out recent developments in more detailed treatments, which indicate limitations of the very concept of the energy partition for the determination of the yields of initial molecular species that appear under irradiation. (author)

  2. Comment on "How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe"

    Science.gov (United States)

    Mazzitelli, Francisco D.; Trombetta, Leonardo G.

    2018-03-01

    In a recent paper [Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D 95, 103504 (2017), 10.1103/PhysRevD.95.103504] it was argued that, due to the fluctuations around its mean value, vacuum energy gravitates differently from what was previously assumed. As a consequence, the Universe would accelerate with a small Hubble expansion rate, solving the cosmological constant and dark energy problems. We point out here that the results depend on the type of cutoff used to evaluate the vacuum energy. In particular, they are not valid when one uses a covariant cutoff such that the zero-point energy density is positive definite.

  3. Development of fast disintegrating compressed tablets using amino acid as disintegration accelerator: evaluation of wetting and disintegration of tablet on the basis of surface free energy.

    Science.gov (United States)

    Fukami, Jinichi; Ozawa, Asuka; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide

    2005-12-01

    A fast disintegrating compressed tablet was formulated using amino acids, such as L-lysine HCl, L-alanine, glycine and L-tyrosine as disintegration accelerator. The tablets having the hardness of about 4 kgf were prepared and the effect of amino acids on the wetting time and disintegration time in the oral cavity of tablets was examined on the basis of surface free energy of amino acids. The wetting time of the tablets increased in the order of L-lysine HCl, L-alanine, glycine and L-tyrosine, whereas the disintegration time in the oral cavity of the tablets increased in the order of L-alanine, glycine, L-lysine HCl and L-tyrosine. These behaviors were well analyzed by the introduction of surface free energy. When the polar component of amino acid was large value or the dispersion component was small value, faster wetting of tablet was observed. When the dispersion component of amino acid was large value or the dispersion component was small value, faster disintegration of tablet was observed, expect of L-tyrosine tablet. The fast disintegration of tablets was explained by the theory presented by Matsumaru.

  4. Industrial and medical applications of accelerators with energies less than 20 MeV

    International Nuclear Information System (INIS)

    Duggan, J.L.

    1983-01-01

    In this paper the medical and industrial application of small accelerators is reviewed. Most of the material is taken from the Seventh Conference on the Application of Accelerators in Research and Industry, which was held in Denton, Texas in November of 1982. The areas covered include medical linacs, cyclotron design and production of medical radioisotopes, radiation processing, ion implantation for the metallurgical and semiconductor industries, oil and mineral exploration, trace, surface and bulk analysis, and unique accelerators for all of the above applications

  5. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  6. Intermediate energy electron cooling for antiproton sources using a Pelletron accelerator

    International Nuclear Information System (INIS)

    Cline, D.B.; Adney, J.; Ferry, J.; Kells, W.; Larson, D.J.; Mills, F.E.; Sundquist, M.

    1983-01-01

    It has been shown at FNAL that the electron cooling of protons is a very efficient method for reaching high luminosity in a proton beam. The emittance of the 120 KeV electron beam used at Fermilab corresponds to a cathode temperature of 0.1 eV. In order to apply cooling techniques to GeV proton beams the electron energies required are in the MeV range. In the experiment reported in this paper the emittance of a 3-MeV Pelletron electron accelerator was measured to determine that its emittance scaled to a value appropriate for electron cooling. The machine tested was jointly owned and operated by the University of California at Santa Barbara and National Electrostatics Corporation for research into free-electron lasers which also require low emittance beams for operation. This paper describes the thermal emittance of the beam to be the area in phase space in which 90% of the beam trajectories lie and goes on to describe the emittance-measurement method both in theory and application

  7. Special aspects on nuclear targets for high-energy heavy-ion accelerator experiments

    International Nuclear Information System (INIS)

    Folger, H.; Hartmann, W.; Klemm, J.; Thalheimer, W.

    1984-07-01

    Important facts about the GSI UNILAC accelerator are reviewed under the special aspects of target and stripper foil applications including general range considerations as seen after the upgrading of the machine to an energy of 20 MeV/u for all ions up to uranium. It is also reported about current works and recent developments in target preparations at GSI divided into four main groups of preparation procedures with sufficient overlap: cold rollings, carbon sublimation-condensations, focussed heavy-ion sputter deposition, and the wide field of high-vacuum evaporation-condensations. Among others, a Ca reduction-distillation procedure is described, a new assembly is shown for sublimation-condensations of uniform C layers of 0.1 to 0.76 mg/cm 2 area densities. A selection of only a few applications of targets at the UNILAC can be given. Improved actinide targets are discussed, in-beam measurements of properties of targets on rotating wheels are explained, and a large-area target wheel with a circumference of nearly one meter is shown. SEM micrographs of damaged targets are given and explained. (orig.)

  8. High energy nuclear reactions ('Spallation') and their application in calculation of the Acceleration Driven Systems (ADS)

    International Nuclear Information System (INIS)

    Rossi, Pedro Carlos Russo

    2011-01-01

    This work presents a study of high energy nuclear reactions which are fundamental to dene the source term in accelerator driven systems. These nuclear reactions, also known as spallation, consist in the interaction of high energetic hadrons with nucleons in the atomic nucleus. The phenomenology of these reactions consist in two step. In the rst, the proton interacts through multiple scattering in a process called intra-nuclear cascade. It is followed by a step in which the excited nucleus, coming from the intranuclear cascade, could either, evaporates particles to achieve a moderate energy state or fission. This process is known as competition between evaporation and fission. In this work the main nuclear models, Bertini and Cugnon are reviewed, since these models are fundamental for design purposes of the source term in ADS, due to lack of evaluated nuclear data for these reactions. The implementation and validation of the calculation methods for the design of the source is carried out to implement the methodology of source design using the program MCNPX (Monte Carlo N-Particle eXtended), devoted to calculation of transport of these particles and the validation performed by an international cooperation together with a Coordinated Research Project (CRP) of the International Atomic Energy Agency and available jobs, in order to qualify the calculations on nuclear reactions and the de-excitation channels involved, providing a state of the art of design and methodology for calculating external sources of spallation for source driven systems. The CRISP, is a brazilian code for the phenomenological description of the reactions involved and the models implemented in the code were reviewed and improved to continue the qualification process. Due to failure of the main models in describing the production of light nuclides, the multifragmentation reaction model was studied. Because the discrepancies in the calculations of production of these nuclides are attributes to the

  9. Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review

    Directory of Open Access Journals (Sweden)

    Adam J. Collin

    2017-11-01

    Full Text Available This paper presents a review of the main electrical components that are expected to be present in marine renewable energy arrays. The review is put in context by appraising the current needs of the industry and identifying the key components required in both device and array-scale developments. For each component, electrical, mechanical and cost considerations are discussed; with quantitative data collected during the review made freely available for use by the community via an open access online repository. This data collection updates previous research and addresses gaps specific to emerging offshore technologies, such as marine and floating wind, and provides a comprehensive resource for the techno-economic assessment of offshore energy arrays.

  10. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  11. Basic research in the East and West: a comparison of the scientific performance of high-energy physics accelerators

    International Nuclear Information System (INIS)

    Irvine, J.; Martin, B.R.

    1985-01-01

    This paper presents the results of a study comparing the past scientific performance of high-energy physics accelerators in the Eastern bloc with that of their main Western counterparts. Output-evaluation indicators are used. After carefully examining the extent to which the output indicators used may be biased against science in the Eastern bloc, various conclusions are drawn about the relative contributions to science made by these accelerators. Where significant differences in performance are apparent, an attempt is made to identify the main factors responsible. (author)

  12. Use of a low energy proton accelerator for calibrating a large NaI(Tl) array in a high energy physics experiment

    International Nuclear Information System (INIS)

    Kirkbride, G.I.; O'Reilly, J.G.; Tompkins, J.C.

    1978-01-01

    The use of a 500 keV Van de Graaff proton accelerator to produce γ-rays in the range 4 - 18 MeV via nuclear reactions for the purpose of calibrating a large NaI(Tl) crystal array is reported. Data analysis indicates an energy calibration to approx. 1% over this range

  13. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays or ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  14. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  15. The Boeing photocathode accelerator magnetic pulse compression and energy recovery experiment

    International Nuclear Information System (INIS)

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-01-01

    An 18 MeV, photocathode accelerator operating at 433 MHz is being commissioned for FEL applications. The accelerator consists of a two-cell RF photocathode imjector followed by four new multicell cavities. The two cell injector has previously been operated at a micropulse repetition frequency of 27 MHz, a micropulse charge of 5 nC and 25% duty factor

  16. High energy particle acceleration by coherent electromagnetic waves propagating across the magnetic field

    International Nuclear Information System (INIS)

    Nishida, Y.; Sugihara, R.

    1985-02-01

    New schemes are proposed for obtaining effective interaction between coherent electromagnetic wave and free electrons, both being traveling across the magnetic field. These schemes use the principle of the Vsub(p) x B acceleration of electrons originally observed in the plasma. Potential applications of the schemes are optical particle accelerators without using plasma. (author)

  17. Possibilities of basic and applied researches using low energy ion beams accelerators

    International Nuclear Information System (INIS)

    Morales, Roberto

    1996-01-01

    Full text: The availability of ion sources that allow to accelerate heavy and light ions, and the new compact accelerators have opened interesting possibilities for using in basic and applied research, Some of the research lines such as material, environmental, archaeology, bio-medicine are shown

  18. A toroidal electrostatic deflector system as injector to the high energy section of a folded tandem accelerator

    International Nuclear Information System (INIS)

    Das, J.J.; Madhavan, N.; Sinha, A.K.

    1997-01-01

    For obtaining beams of higher energies, some of the existing single ended Van de Graaff accelerators have been converted into folded tandem machines. Such a conversion requires a 180 deg bending device at the high-voltage terminal to serve as injector to the high-energy section. Magnetic dipoles are usually employed in such machines despite many serious difficulties. As an alternative, the possibility of an electrostatic deflector has been proposed as a suitable injector to the high energy section of small machines. Such a choice eliminates many of the difficulties and also results in an improved ion optics and beam transmission. (author). 7 refs., 2 figs., 1 tab

  19. Technique for approximate analytical calculating the internuclear cascade initiated by medium-energy nucleons in accelerator shields

    International Nuclear Information System (INIS)

    Kazarnovskij, M.V.; Matushko, G.K.; Matushko, V.L.; Par'ev, Eh.Ya.; Serezhnikov, S.V.

    1981-01-01

    The problem on propagation of the internuclear cascade initiated by nucleons of 0.1-1 GeV energy in accelerator schielding is solved approximately in the analytical form. Analytical expressions for the function of spatial, angular and energy distribution of the flux density of nucleons with the energy above 20 MeV and some functionals from it are obtained. The results of the calculations obtained by the developed methods are compared with calculations obtained by the method of direct simulation. It is shown that at the atomic mass of shielding material [ru

  20. Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.

    Science.gov (United States)

    Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali

    2017-10-05

    Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.

  1. Effects of Balance Control Through Trunk Movement During Square and Semicircular Turns on Gait Velocity, Center of Mass Acceleration, and Energy Expenditure in Older Adults.

    Science.gov (United States)

    Shin, Sun-Shil; An, Duk-Hyun; Yoo, Won-Gyu

    2016-10-01

    Turning during ambulation is a common movement in everyday life, but complex and challenging for older adults. Balance control through trunk movement provides a stable platform during walking, thus it is an essential component of safe and efficient turning during walking in elderly individuals. To investigate the effects of balance control during square turning (ST) and semicircular turning (SCT) on gait velocity, center of mass (COM) acceleration, and energy expenditure in elderly women. Cross-sectional design. Village community center. Twenty community-dwelling elderly women capable of independent walking were enrolled in the study. Participants walked at a self-selected speed along a marked path that included 2 types of turns (the path was divided into 3 segments: straight, turning, and straight return), while fitted with an accelerometer attached over the L3 spinous process. Differences in gait velocity, normalized COM acceleration, and energy expenditure were analyzed using paired t-tests for comparisons between ST and SCT tasks and using a one-way repeated-measures analysis of variance for within tasks. During the ST task, which was characterized by the use of a less-stable balance maintenance strategy, gait velocity and vertical COM acceleration were lower (P velocity during turning stage was the slowest, among the 3 stages, the straight stage was the fastest (P elderly individuals participate in balance and gait training using a variety of turns, including turns requiring medial-lateral and vertical COM balance control, to prevent falls and to improve energy efficiency of walking. IV. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  3. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.

    Science.gov (United States)

    Hu, Junhui; Jong, Januar; Zhao, Chunsheng

    2010-01-01

    To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.

  4. High energy white beam x-ray diffraction studies of residual strains in engineering components

    Science.gov (United States)

    Zhang, S. Y.; Vorster, W.; Jun, T. S.; Song, X.; Golshan, M.; Laundy, D.; Walsh, M. J.; Korsunsky, A. M.

    2008-09-01

    In order to predict the durability of engineering components and improve performance, it is mandatory to understand residual stresses. The last decade has witnessed a significant increase of residual stress evaluation using diffraction of penetrating radiation, such as neutrons or high energy X-rays. They provide a powerful non-destructive method for determining the level of residual stresses in engineering components through precise characterisation of interplanar crystal lattice spacing. The unique non-destructive nature of these measurement techniques is particularly beneficial in the context of engineering design, since it allows the evaluation of a variety of structural and deformational parameters inside real components without material removal, or at worst with minimal interference. However, while most real engineering components have complex shape and are often large in size, leading to measurement and interpretation difficulties, since experimental facilities usually have limited space for mounting the sample, limited sample travel range, limited loading capacity of the sample positioning system, etc. Consequently, samples often have to be sectioned, requiring appropriate corrections on measured data; or facilities must be improved. Our research group has contributed to the development of engineering applications of high-energy X-ray diffraction methods for residual stress evaluation, both at synchrotron sources and in the lab setting, including multiple detector setup, large engineering component manipulation and measurement at the UK Synchrotron Radiation Source (SRS Daresbury), and in our lab at Oxford. A nickel base superalloy combustion casing and a large MIG welded Al alloy plate were successfully studied.

  5. Design and implementation of a Client-Server System for Acquiring Beam Intensity Data from High Energy Accelerators at CERN

    CERN Document Server

    Topaloudis, A; Bellas, N; Jensen, L

    The world’s largest research center in the domain of High Energy Physics (HEP) is the European Organization for Nuclear Research (CERN) whose main goal is to accelerate particles through a sequence of acceleratorsaccelerator complex – and bring them into collision in order to study the fundamental elements of matter and the forces acting between them. For controlling the accelerator complex, CERN needs several diagnostic tools to provide information about the beam’s attributes and one such system is the Fast Beam Current Transformer (FBCT) measuring system that provides bunch-by-bunch and total beam intensity information. The current hardware and firmware of the FBCT system has certain issues and lacks diagnostics as a lot of the calculations are done in an FPGA. In order to improve on this, the firmware was redesigned and simplified in order to increase its capabilities and provide the base of a unified FBCT measuring system that could be installed in several of CERN’s accelerator complex’s pa...

  6. Neutron-induced electronic failures around a high-energy linear accelerator

    International Nuclear Information System (INIS)

    Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.

    2011-01-01

    Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

  7. Mid-IR lasers for energy frontier plasma accelerators and colliders

    Science.gov (United States)

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Kimura, W. D.

    2017-03-01

    Plasma wakefield accelerators driven by solid-state, near-IR lasers have been considered as an alternative to conventional RF accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO2 lasers. We show that the increase in the laser driver wavelength favors the regime of electron acceleration at a low plasma density and high bunch charge. The revealed benefits from spectral diversification of laser drivers for future colliders and offspring applications validate our reported ongoing efforts in advancing the enabling CO2 laser technology.

  8. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Brönnimann, M. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Cardelli, F. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Ficcadenti, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Gallo, A. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Kalt, R. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Lollo, V. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Palumbo, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Piersanti, L., E-mail: luca.piersanti@lnf.infn.it [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Schilcher, T. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2016-11-21

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  9. Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet.

    Science.gov (United States)

    Fujimura, Takuya; Ramasamy, Elamparuthi; Ishida, Yohei; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, Vaidhyanathan

    2016-02-21

    To achieve the goal of energy transfer and subsequent electron transfer across three molecules, a phenomenon often utilized in artificial light harvesting systems, we have assembled a light absorber (that also serves as an energy donor), an energy acceptor (that also serves as an electron donor) and an electron acceptor on the surface of an anionic clay nanosheet. Since neutral organic molecules have no tendency to adsorb onto the anionic surface of clay, a positively charged water-soluble organic capsule was used to hold neutral light absorbers on the above surface. A three-component assembly was prepared by the co-adsorption of a cationic bipyridinium derivative, cationic zinc porphyrin and cationic octaamine encapsulated 2-acetylanthracene on an exfoliated anionic clay surface in water. Energy and electron transfer phenomena were monitored by steady state fluorescence and picosecond time resolved fluorescence decay. The excitation of 2-acetylanthracene in the three-component system resulted in energy transfer from 2-acetylanthracene to zinc porphyrin with 71% efficiency. Very little loss due to electron transfer from 2-acetylanthracene in the cavitand to the bipyridinium derivative was noticed. Energy transfer was followed by electron transfer from the zinc porphyrin to the cationic bipyridinium derivative with 81% efficiency. Analyses of fluorescence decay profiles confirmed the occurrence of energy transfer and subsequent electron transfer. Merging the concepts of supramolecular chemistry and surface chemistry we realized sequential energy and electron transfer between three hydrophobic molecules in water. Exfoliated transparent saponite clay served as a matrix to align the three photoactive molecules at a close distance in aqueous solutions.

  10. Estimating Pakistan’s Time Varying Non-Accelerating Inflation Rate of Unemployment: An Unobserved Component Approach

    Directory of Open Access Journals (Sweden)

    Farzana Shaheen

    2011-01-01

    Full Text Available This paper envisages estimating the Time-Varying Non-Accelerating Inflation Rate of Unemployment (TV-NAIRU as an unobserved stochastic variable for Pakistan over the time period 1973-74 to 2007-08 using Kalman filter. Results of the study are evident that TV-NAIRU increased from 5.3 percent (1990-91 to 8.12 percent (2004-05 and falls to 6.17 percent again in 2007-08 which is above the actual unemployment rate. The results also indicate that the NAIRU is a relevant concept and the unemployment gap should be one of the factors considered when assessing inflationary pressure in Pakistan.

  11. Synthesis of Biologically Active Natural Component 4-Hydroxyderricin Through Water-Accelerated [3,3]-Sigmatropic Rearrangement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sijun; Lee, Jaejun; Yoon, Hyunho; Jun, Jonggab [Hallym Univ., Chuncheon (Korea, Republic of)

    2013-09-15

    We report herein the practical and effective total synthesis of biologically active 4-hydroxyderricin, a poly-phenolic chalcone compound containing m-prenyl group at ring A. The key steps of the synthesis are Claisen-Schmidt condensation of the the two phenolic units 17 and 18 to chalcone 19 and the water-accelerated [3,3]-sigma-tropic rearrangement of 1,1-dimethyl-2-propenyl aryl ether 20 to introduce the m-prenyl unit in 4-hydroxyderricin. Two types of polyphenolic chalcones, 4-hydroxyderricin (1) and xanthoangelol (2), are especially rich in the plant, and the 4-hydroxyderricin exhibited the major responsibility for the various biological activities. Sugamoto reported the synthesis of 4-hydroxy-derricin via [1,3]-sigmatropic rearrangement of chalcone ether using montmorillonite K10 which showed relatively low rearrangement yield (Scheme 1), and this is the only reported total synthesis of 1 as far as we know.

  12. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    International Nuclear Information System (INIS)

    Silva, N.F.; Castro, M.C.; Caldas, L.V.E.; Silva, T.F.; Luz, H. Natal da

    2017-01-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype. (author)

  13. Experiment of printing and dyeing wastewater pretreatment by low-energy accelerator

    International Nuclear Information System (INIS)

    Wang Jianchang; Qian Weiping; Zhu Nankang; He Shijun

    2010-01-01

    Accelerator electron beam treatment of industrial wastewater is an optional way. Purpose of the experiment is to observe separately the use of accelerators and treatment of sewage and then carry out the joint effects of biological treatment. Experimental method is the first of the four types of printing and dyeing wastewater is divided into six sessions with the accelerator electron beam irradiation, after the end of each water sample testing; and then biological treatment of water samples, and then test. Results of the experiment are: accelerator alone CODcr dropped an average of 70.04%, and then through the biological treatment decreased 94.26%, the effect significantly. Conclusion: The combination of electron beam and biotechnology printing and dyeing wastewater treatment experiment results are obvious. (authors)

  14. Renewable Energy, Climate Action and Resilient Societies: Accelerating the Global and Local Paradigm Shift

    International Nuclear Information System (INIS)

    Spencer, Thomas; Levai, David; Wang, Xin

    2017-07-01

    This report has been commissioned by a group of foundations in G20 countries, which have come together under the F20 platform in order to engage with the issue of climate change and sustainability in the context of the G20. The report analyzes the emerging energy transition towards efficient and renewable energy systems at global level and in specific G20 countries. On the basis of this analysis, and of the country specific case-studies that have also been conducted in the report, it provides recommendations for foundations and the G20 aimed at enhancing climate change mitigation and sustainability. Key Messages: 1. The global transition to renewable energy systems is underway and accelerating, driven by a combination of policy interventions, very rapid innovation, particularly the fall in renewable electricity costs, and changing societal priorities in many areas, such as the importance being placed on clean air, green industrial development, and investments in local communities. 2. This transition creates tremendous opportunities for countries and companies to ramp-up a new kind of job creation and economic development based on renewable, efficient energy systems. At the same time, countries and actors, who do not anticipate the shift, could be left behind and lose out economically. The good news is that the necessary tools are there. The main question is whether the social and political will for change can be developed and harnessed at the speed and scope required. 3. An economic shift on the scale and speed required to mitigate climate change cannot be achieved solely from the 'top-down'; it can only be implemented with the buy-in and participation of civil society. Worrying trends of inequality, economic disruption, and the fragmentation and fractiousness of public discourse make obtaining this social buy-in all the more difficult. Civil society must thus be seen as an essential partner of policies to drive a new paradigm of sustainable economic

  15. Tri-Axial Dynamic Acceleration as a Proxy for Animal Energy Expenditure; Should We Be Summing Values or Calculating the Vector?

    Science.gov (United States)

    Qasem, Lama; Cardew, Antonia; Wilson, Alexis; Griffiths, Iwan; Halsey, Lewis G.; Shepard, Emily L. C.; Gleiss, Adrian C.; Wilson, Rory

    2012-01-01

    Dynamic body acceleration (DBA) has been used as a proxy for energy expenditure in logger-equipped animals, with researchers summing the acceleration (overall dynamic body acceleration - ODBA) from the three orthogonal axes of devices. The vector of the dynamic body acceleration (VeDBA) may be a better proxy so this study compared ODBA and VeDBA as proxies for rate of oxygen consumption using humans and 6 other species. Twenty-one humans on a treadmill ran at different speeds while equipped with two loggers, one in a straight orientation and the other skewed, while rate of oxygen consumption () was recorded. Similar data were obtained from animals but using only one (straight) logger. In humans, both ODBA and VeDBA were good proxies for with all r2 values exceeding 0.88, although ODBA accounted for slightly but significantly more of the variation in than did VeDBA (Pacceleration data in a simulated situation of the logger being mounted straight but then becoming skewed (P = 0.744). In the animal study, ODBA and VeDBA were again good proxies for with all r2 values exceeding 0.70 although, again, ODBA accounted for slightly, but significantly, more of the variation in than did VeDBA (P<0.03). The simultaneous contraction of muscles, inserted variously for limb stability, may produce muscle oxygen use that at least partially equates with summing components to derive DBA. Thus, a vectorial summation to derive DBA cannot be assumed to be the more ‘correct’ calculation. However, although within the limitations of our simple study, ODBA appears a marginally better proxy for . In the unusual situation where researchers are unable to guarantee at least reasonably consistent device orientation, they should use VeDBA as a proxy for . PMID:22363576

  16. Use and limitations of learning curves for energy technology policy: A component-learning hypothesis

    International Nuclear Information System (INIS)

    Ferioli, F.; Schoots, K.; Zwaan, B.C.C. van der

    2009-01-01

    In this paper, we investigate the use of learning curves for the description of observed cost reductions for a variety of energy technologies. Starting point of our analysis is the representation of energy processes and technologies as the sum of different components. While we recognize that in many cases 'learning-by-doing' may improve the overall costs or efficiency of a technology, we argue that so far insufficient attention has been devoted to study the effects of single component improvements that together may explain an aggregated form of learning. Indeed, for an entire technology the phenomenon of learning-by-doing may well result from learning of one or a few individual components only. We analyze under what conditions it is possible to combine learning curves for single components to derive one comprehensive learning curve for the total product. The possibility that for certain technologies some components (e.g., the primary natural resources that serve as essential input) do not exhibit cost improvements might account for the apparent time dependence of learning rates reported in several studies (the learning rate might also change considerably over time depending on the data set considered, a crucial issue to be aware of when one uses the learning curve methodology). Such an explanation may have important consequences for the extent to which learning curves can be extrapolated into the future. This argumentation suggests that cost reductions may not continue indefinitely and that well-behaved learning curves do not necessarily exist for every product or technology. In addition, even for diffusing and maturing technologies that display clear learning effects, market and resource constraints can eventually significantly reduce the scope for further improvements in their fabrication or use. It appears likely that some technologies, such as wind turbines and photovoltaic cells, are significantly more amenable than others to industry-wide learning. For such

  17. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    Teng, J.; Gu, Y.Q.; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-01-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  18. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  19. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  20. Independent component analysis: A new possibility for analysing series of electron energy loss spectra

    International Nuclear Information System (INIS)

    Bonnet, Nogl; Nuzillard, Danielle

    2005-01-01

    A complementary approach is proposed for analysing series of electron energy-loss spectra that can be recorded with the spectrum-line technique, across an interface for instance. This approach, called blind source separation (BSS) or independent component analysis (ICA), complements two existing methods: the spatial difference approach and multivariate statistical analysis. The principle of the technique is presented and illustrations are given through one simulated example and one real example

  1. A multi-agent-based component control and energy management system for electric vehicles

    OpenAIRE

    Isermann, Timo

    2016-01-01

    This dissertation introduces a new approach to electric vehicle (EV) energy and power management as well as vehicle component control based on multi-agent technology to solve technologically and historically conditioned challenges of EVs by increasing their usability, flexibility, and resilience. Today’s EVs have reduced driving ranges and comfort fitments compared to similar combustion powered vehicles. Limited battery sizes and capacities, originating from the high costs of the battery syst...

  2. Evaluating energy security of resource-poor economies: A modified principle component analysis approach

    International Nuclear Information System (INIS)

    Li, Yingzhu; Shi, Xunpeng; Yao, Lixia

    2016-01-01

    This study proposes to aggregately measure energy security performance with the principal component analysis. In its application of the methodology to four resource-poor yet economically advanced island economies in East Asia—Singapore, South Korea, Japan, and Taiwan, this study establishes a novel framework to conceptualize energy security. The framework incorporates three dimensions: vulnerability, efficiency, and sustainability, three indicators being allocated to each dimension. The study finds that all the three dimensions are critical for the resource-poor economies but have different weights in each of them. An urgent task for these four economies is to implement energy efficiency and conservation measures. Liberalization of electricity sector can be a helpful tool to reduce energy consumption and increase efficiency. All of them have been committed to promoting renewable energy development, which shall be further expanded in these economies. - Highlights: • Proposes to assess energy security within a three-level framework using PCA. • Applies the method to four resource-poor island economies in East Asia. • Establishes a novel framework to conceptualize energy security. • Dimensions within the framework are vulnerability, efficiency, and sustainability. • Three dimensions are all important but have different weights in different economies.

  3. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Directory of Open Access Journals (Sweden)

    Daniel Vavrik

    2016-11-01

    Full Text Available This work is focused on the inspection of carbon fibre reinforced plastic composites (CFRP combined with metal components. It is well known that the high absorption of metallic parts degrades the quality of radiographic measurements (contrast and causes typical metal artefacts in X-ray computed tomography (CT reconstruction. It will be shown that these problems can be successfully solved utilizing the dual energy CT method (DECT, which is typically used for the material decomposition of complex objects. In other words, DECT can help differentiate object components with a similar overall attenuation or visualise low attenuation components that are next to high attenuation ones. The application of DECT to analyse honeycomb sandwich panels and CFRP parts joined with metal fasteners will be presented in the article.

  4. Calibration in energy of the Tandem Van De Graaff Accelerator; Calibracion en energia del Acelerador Tandem Van De Graaff

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez T, J.J.; Lopez M, J.; Villasenor S, P.; Aspiazu F, J.A.; Linarte B, G.; Garcia R, B. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The resonance at E{sub R} = 4.808 {+-} 0.005 MeV in the elastic scattering {sup 12}C (p,p) C{sup 12} was reproduced for determining the new curvature radius of the beam after realignment the acceleration line (r= 102.633 {+-} 0.076 cm) and new tables of energy-frequency for protons and deuterons were made. (Author)

  5. Magnet design for the splitter/combiner regions of CBETA, the Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Crittendon, J. A. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Burke, D. C. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Fuentes, Y. L.P. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Mayes, C. E. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Smolenski, K. W. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States)

    2017-01-06

    The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams. The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.

  6. Theoretical and numerical study of the expansion of a laser-produced plasma: high energy ion acceleration

    International Nuclear Information System (INIS)

    Grismayer, T.

    2006-12-01

    This work is a theoretical and numerical study on the high energy ion acceleration in laser created plasma expansion. The ion beams produced on the rear side of an irradiated foil reveal some characteristics (low divergence, wide spectra) which distinguish them from the ones coming from the front side. The discovery of these beams has renewed speculation for applications such as proton-therapy or proton radiography. The ion acceleration is performed via a self-consistent electrostatic field due to the charge separation between ions and hot electrons. In the first part of this dissertation, we present the fluid theoretical model and the hybrid code which simulates the plasma expansion. The numerical simulation of a recent experience on the dynamic of the electric field by proton radiography validates the theoretical model. The second part deals with the influence of an initial ion density gradient on the acceleration efficiency. We establish a model which relates the plasma dynamic and more precisely the wave breaking of the ion flow. The numerical results which predict a strong decrease of the ion maximum energy for large gradient length are in agreement with the experimental data. The Boltzmann equilibrium for the electron assumed in the first part has been thrown back into doubt in the third part. We adopt a kinetic description for the electron. The new version of the code can measure the Boltzmann law deviation which does not strongly modify the maximum energy that can reach the ions. (author)

  7. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise

    Directory of Open Access Journals (Sweden)

    Anandarajah Gabrial

    2009-07-01

    Full Text Available Abstract Background This work explores the potential contribution of bioenergy technologies to 60% and 80% carbon reductions in the UK energy system by 2050, by outlining the potential for accelerated technological development of bioenergy chains. The investigation was based on insights from MARKAL modelling, detailed literature reviews and expert consultations. Due to the number and complexity of bioenergy pathways and technologies in the model, three chains and two underpinning technologies were selected for detailed investigation: (1 lignocellulosic hydrolysis for the production of bioethanol, (2 gasification technologies for heat and power, (3 fast pyrolysis of biomass for bio-oil production, (4 biotechnological advances for second generation bioenergy crops, and (5 the development of agro-machinery for growing and harvesting bioenergy crops. Detailed literature searches and expert consultations (looking inter alia at research and development needs and economic projections led to the development of an 'accelerated' dataset of modelling parameters for each of the selected bioenergy pathways, which were included in five different scenario runs with UK-MARKAL (MED. The results of the 'accelerated runs' were compared with a low-carbon (LC-Core scenario, which assesses the cheapest way to decarbonise the energy sector. Results Bioenergy was deployed in larger quantities in the bioenergy accelerated technological development scenario compared with the LC-Core scenario. In the electricity sector, solid biomass was highly utilised for energy crop gasification, displacing some deployment of wind power, and nuclear and marine to a lesser extent. Solid biomass was also deployed for heat in the residential sector from 2040 in much higher quantities in the bioenergy accelerated technological development scenario compared with LC-Core. Although lignocellulosic ethanol increased, overall ethanol decreased in the transport sector in the bioenergy

  8. Calorimetry for dose measurement at electron accelerators in the 80-120 keV energy range

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Miller, A.; Duane, S.

    2005-01-01

    Calorimeters for dose measurement at low-energy electron accelerator energies (80-120 keV) are described. Three calorimeters with different characteristics were designed and their dose response and measurement uncertainties were characterized. The heated air between the beam exit window...... and the calorimeter absorber influences significantly the response of the calorimeter and a thermal model was applied to quantify this effect. All three calorimeters are capable of measuring absolute dose, and can thus be used for calibration of other dosimeters. (C) 2005 Elsevier Ltd. All rights reserved....

  9. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used....... Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  10. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    Science.gov (United States)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  11. Medium energy heavy ion accelerator (14 UD pelletron) facility (BARC-TIFR): report for the period July 1989 - December 1992

    International Nuclear Information System (INIS)

    Eswaran, M.A.; Tandon, P.N.

    1993-01-01

    A medium energy heavy ion accelerator facility has been set up jointly by Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at Bombay. It is based on a 14 MV tandem accelerator (14 UD Pelletron) supplied by Electrostatic International Incorporated, USA. The facility was commissioned in 1988, however the accelerator began to be utilized regularly for experimental programmes from June 1989. Since then a number of research programmes have been undertaken. Some of these are: nuclear structure at high excitations through heavy ion resonances, nuclear structure studies at high angular momentum, elastic and inelastic scattering and transfer reactions, heavy-ion fusion and fusion-fission reactions, hyperfine interaction studies, channeling and blocking studies, and atomic physics studies of highly charged ions. This is the first comprehensive progress report on research and development activities based on the pelletron accelerator facility. It covers the period from June 1989 to December 1992. The report is presented in the form of 82 research papers. (M.G.B.)

  12. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    Science.gov (United States)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  13. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Volk, James; Hansen, Sten; Johnson, Todd; Jostlein, Hans; Kiper, Terry; Shiltsev, Vladimir; Chupyra, Andrei; Kondaurov, Mikhail; Medvedko, Anatoly; Parkhomchuk, Vasily; Singatulin, Shavkat

    2012-01-01

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  14. Time evolution of the spectral break in the high-energy extra component of GRB 090926A

    Science.gov (United States)

    Yassine, M.; Piron, F.; Mochkovitch, R.; Daigne, F.

    2017-10-01

    Aims: The prompt light curve of the long GRB 090926A reveals a short pulse 10 s after the beginning of the burst emission, which has been observed by the Fermi observatory from the keV to the GeV energy domain. During this bright spike, the high-energy emission from GRB 090926A underwent a sudden hardening above 10 MeV in the form of an additional power-law component exhibiting a spectral attenuation at a few hundreds of MeV. This high-energy break has been previously interpreted in terms of gamma-ray opacity to pair creation and has been used to estimate the bulk Lorentz factor of the outflow. In this article, we report on a new time-resolved analysis of the GRB 090926A broadband spectrum during its prompt phase and on its interpretation in the framework of prompt emission models. Methods: We characterized the emission from GRB 090926A at the highest energies with Pass 8 data from the Fermi Large Area Telescope (LAT), which offer a greater sensitivity than any data set used in previous studies of this burst, particularly in the 30-100 MeV energy band. Then, we combined the LAT data with the Fermi Gamma-ray Burst Monitor (GBM) in joint spectral fits to characterize the time evolution of the broadband spectrum from keV to GeV energies. We paid careful attention to the systematic effects that arise from the uncertainties on the LAT response. Finally, we performed a temporal analysis of the light curves and we computed the variability timescales from keV to GeV energies during and after the bright spike. Results: Our analysis confirms and better constrains the spectral break, which has been previously reported during the bright spike. Furthermore, it reveals that the spectral attenuation persists at later times with an increase of the break characteristic energy up to the GeV domain until the end of the prompt phase. We discuss these results in terms of keV-MeV synchroton radiation of electrons accelerated during the dissipation of the jet energy and inverse Compton

  15. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  16. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  17. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  18. Temporal evolution of photon energy emitted from two-component advective flows: origin of time lag

    Science.gov (United States)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri

    2017-12-01

    X-ray time lag of black hole candidates contains important information regarding the emission geometry. Recently, study of time lags from observational data revealed very intriguing properties. To investigate the real cause of this lag behavior with energy and spectral states, we study photon paths inside a two-component advective flow (TCAF) which appears to be a satisfactory model to explain the spectral and timing properties. We employ the Monte Carlo simulation technique to carry out the Comptonization process. We use a relativistic thick disk in Schwarzschild geometry as the CENtrifugal pressure supported BOundary Layer (CENBOL) which is the Compton cloud. In TCAF, this is the post-shock region of the advective component. Keplerian disk on the equatorial plane which is truncated at the inner edge i.e. at the outer boundary of the CENBOL, acts as the soft photon source. Ray-tracing code is employed to track the photons to a distantly located observer. We compute the cumulative time taken by a photon during Comptonization, reflection and following the curved geometry on the way to the observer. Time lags between various hard and soft bands have been calculated. We study the variation of time lags with accretion rates, CENBOL size and inclination angle. Time lags for different energy channels are plotted for different inclination angles. The general trend of variation of time lag with QPO frequency and energy as observed in satellite data is reproduced.

  19. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  20. Application of energy derivative method to determine the structural components' contribution on the deceleration in crashes.

    Science.gov (United States)

    Nagasaka, Kei; Mizuno, Koji; Thomson, Robert

    2018-03-26

    For occupant protection, it is important to understand how a car's deceleration-time history in crashes can be designed using efficient of energy absorption by a car body's structure. In a previous paper, the authors proposed an energy derivative method to determine each structural component's contribution on the longitudinal deceleration of a car passenger compartment in crashes. In this study, this method was extended to two dimensions in order to analyze various crash test conditions. The contribution of each structure estimated from the energy derivative method was compared to that from a conventional finite element (FE) analysis method using cross-sectional forces. A two-dimensional energy derivative method was established. A simple FE model with a structural column connected to a rigid body was used to confirm the validity of this method and to compare with the result of cross-sectional forces determined using conventional analysis. Applying this method to a full-width frontal impact simulation of a car FE model, the contribution and the cross-sectional forces of the front rails were compared. In addition, this method was applied to a pedestrian headform FE simulation in order to determine the influence of the structural and inertia forces of the hood structures on the deceleration of the headform undergoing planar motion. In an oblique impact of the simple column and rigid body model, the sum of the contributions of each part agrees with the rigid body deceleration, which indicates the validity of two-dimensional energy derivative method. Using the energy derivative method, it was observed that each part of the column contributes to the deceleration of the rigid body by collapsing in the sequence from front to rear whereas the cross-section force at the rear of the column cannot detect the continuous collapse. In the full-width impact of a car, the contributions of the front rails estimated in the energy derivative method was smaller than that using the

  1. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    International Nuclear Information System (INIS)

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper

  2. Stored and absorbed energy of fields in lossy chiral single-component metamaterials

    Science.gov (United States)

    Semchenko, I.; Balmakou, A.; Khakhomov, S.; Tretyakov, S.

    2018-01-01

    Here we present theoretical results for estimation of electromagnetic field energy density and absorbed energy in dispersive lossy chiral single-component metamaterials which consist of an ensemble of identical helical resonators as inclusions. The shape of the helical resonator can vary over a wide range, from a straight wire to a flat split ring. An interaction of the inclusions with harmonic circularly polarized electromagnetic plane waves is studied. We focus on how the inclusion shape influences the mentioned metamaterial properties. The derived general solution for the problem is in good agreement with previous partial and alternative solutions obtained for split ring resonators, straight wires, and helices. The study reveals the optimal geometry of helical lossy resonators for their strongest selectivity of interaction with circularly polarized radiation.

  3. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2015-11-01

    Full Text Available We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series. Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs, which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF target [Phys. Plasmas 17, 056303 (2010]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic

  4. [Analysis of volatile components in Qingshanlvshui tea using solid-phase microextraction/accelerated solvent extraction-gas chromatography-mass spectrometry].

    Science.gov (United States)

    Zhan, Jiafen; Lu, Sheming; Meng, Zhaoyu; Xiang, Nengjun; Cao, Qiu'e; Miao, Mingming

    2008-05-01

    The volatile components of Qingshanlvshui Tea were extracted using solid phase micro-extraction (SPME) and accelerated solvent extraction (ASE), and then were identified by gas chromatography-mass spectrometry (GC-MS). It showed that ninety-one compounds were identified, including forty-nine by SPME, fifty-six by ASE, and fourteen by both of them. The main constituents were beta-myrcene, 3,5,5-trimethyl-1,5-heptadiene, L-limonene, alpha-ocimene, beta-ocimene, beta-pinene, 2-methylbenzaldehyde, 5-(hydroxymethyl)-2-furfural. Both SPME and ASE have their advantages. SPME is excellent at simplicity, rapidity, solvent-free, high enrichment, low detection limit, environment friendly etc. ASE has characteristics of time and solvent saving, automation, simplicity, as well as high efficiency.

  5. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?

    Directory of Open Access Journals (Sweden)

    Lama Qasem

    Full Text Available Dynamic body acceleration (DBA has been used as a proxy for energy expenditure in logger-equipped animals, with researchers summing the acceleration (overall dynamic body acceleration--ODBA from the three orthogonal axes of devices. The vector of the dynamic body acceleration (VeDBA may be a better proxy so this study compared ODBA and VeDBA as proxies for rate of oxygen consumption using humans and 6 other species. Twenty-one humans on a treadmill ran at different speeds while equipped with two loggers, one in a straight orientation and the other skewed, while rate of oxygen consumption (VO2 was recorded. Similar data were obtained from animals but using only one (straight logger. In humans, both ODBA and VeDBA were good proxies for VO2 with all r(2 values exceeding 0.88, although ODBA accounted for slightly but significantly more of the variation in VO2 than did VeDBA (P<0.03. There were no significant differences between ODBA and VeDBA in terms of the change in VO2 estimated by the acceleration data in a simulated situation of the logger being mounted straight but then becoming skewed (P = 0.744. In the animal study, ODBA and VeDBA were again good proxies for VO2 with all r(2 values exceeding 0.70 although, again, ODBA accounted for slightly, but significantly, more of the variation in VO2 than did VeDBA (P<0.03. The simultaneous contraction of muscles, inserted variously for limb stability, may produce muscle oxygen use that at least partially equates with summing components to derive DBA. Thus, a vectorial summation to derive DBA cannot be assumed to be the more 'correct' calculation. However, although within the limitations of our simple study, ODBA appears a marginally better proxy for VO2. In the unusual situation where researchers are unable to guarantee at least reasonably consistent device orientation, they should use VeDBA as a proxy for VO2.

  6. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  7. Energy drinks and their component modulate attention, memory, and antioxidant defences in rats.

    Science.gov (United States)

    Valle, M T Costa; Couto-Pereira, N S; Lampert, C; Arcego, D M; Toniazzo, A P; Limberger, R P; Dallegrave, E; Dalmaz, C; Arbo, M D; Leal, M B

    2017-08-12

    This study aimed to evaluate the effects of the subchronic consumption of energy drinks and their constituents (caffeine and taurine) in male Wistar rats using behavioural and oxidative measures. Energy drinks (ED 5, 7.5, and 10 mL/kg) or their constituents, caffeine (3.2 mg/kg) and taurine (40 mg/kg), either separately or in combination, were administered orally to animals for 28 days. Attention was measured though the ox-maze apparatus and the object recognition memory test. Following behavioural analyses, markers of oxidative stress, including SOD, CAT, GPx, thiol content, and free radicals, were measured in the prefrontal cortex, hippocampus, and striatum. The latency time to find the first reward was lower in animals that received caffeine, taurine, or a combination of both (P = 0.003; ANOVA/Bonferroni). In addition, these animals took less time to complete the ox-maze task (P = 0.0001; ANOVA/Bonferroni), and had better short-term memory (P energy drink. This might be related to other components contained in the energy drink, such as vitamins and minerals, which may have altered the ability of caffeine and taurine to modulate memory and attention.

  8. Accelerator-based transmuter-breeder and energy producer from transuranic actinides and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Fedotov, A.P.; Murin, B.P. [Moscow Radiotechnical Institute (Russian Federation)

    1995-10-01

    A concept of an accelerator-driven subcritical blanket with Pb or molten salt (heavy chloride) as the primary target, a graphite moderator-reflector to produce high-density thermal neutron fluxes and a fluid fuel carrying TUA actinides and Th-U, is being studied at MRTI. A driver is CW H{sup +}/H{sup {minus}} linac: 1 GeV, 200 mA, SIU-DTL-D&W structure energized by regotron as RF power supply.

  9. Beam dynamics and error study of the medium energy beam transport line in the Korea Heavy-Ion Medical Accelerator

    Science.gov (United States)

    Kim, Chanmi; Kim, Eun-San; Hahn, Garam

    2016-11-01

    The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.

  10. Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems

    2010-10-12

    A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing

  11. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    Directory of Open Access Journals (Sweden)

    R.B. Spielman

    2017-07-01

    Full Text Available We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks, each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each module consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography. The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density–physics experiments.

  12. Accelerator beam test of the kinematic lightweight energy meter detector prototype for very high energy cosmic ray measurements in space

    CERN Document Server

    Bashindzhagian, G L

    2004-01-01

    The idea of the KLEM (Kinematic Lightweight Energy Meter) detector is to directly measure the elemental energy spectra of very high-energy cosmic rays in space by determining the angular distribution of secondary particles produced in a target. The first test of the simple KLEM prototype was performed at the CERN SPS test-beam with 180 GeV pions. The results of the first test analysis confirm that, using the KLEM method, the energy of 180 GeV pions can be measured with a relative error of about 67%, which is very close to the results of the simulation (65 %).

  13. Application of Overall Dynamic Body Acceleration as a Proxy for Estimating the Energy Expenditure of Grazing Farm Animals: Relationship with Heart Rate

    Science.gov (United States)

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (Panimals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use. PMID:26030931

  14. An accelerator scenario for a hard X-ray free electron laser combined with high energy electron radiography

    Science.gov (United States)

    Wei, Tao; Li, Yiding; Yang, Guojun; Pang, Jian; Li, Yuhui; Li, Peng; Pflueger, Joachim; He, Xiaozhong; Lu, Yaxin; Wang, Ke; Long, Jidong; Zhang, Linwen; Wu, Qiang

    2016-08-01

    In order to study the dynamic response of the material and the physical mechanism of fluid dynamics, an accelerator scenario which can be applied to both hard X-ray free electron laser and high energy electron radiography is proposed. This accelerator is mainly composed of a 12 GeV linac, an undulator branch and an eRad beamline. In order to characterize a sample’s dynamic behavior in situ and real-time with XFEL and eRad simultaneously, the linac should be capable of accelerating the two kinds of beam within the same operation mode. Combining in-vacuum and tapering techniques, the undulator branch can produce more than 1011 photons per pulse in 0.1% bandwidth at 42 keV. Finally, an eRad amplifying beamline with 1:10 ratio is proposed as an important complementary tool for the wider view field and density identification ability. Supported by China Academy of Engineering Physics (2014A0402016) and Institute of Fluid Physics (SFZ20140201)

  15. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.

    Science.gov (United States)

    Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang

    2016-08-01

    For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV

  16. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams

    International Nuclear Information System (INIS)

    Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo

    2016-01-01

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of

  17. Study of component technologies for fuel cell on-site integrated energy systems

    Science.gov (United States)

    Lee, W. D.; Mathias, S.

    1980-01-01

    Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.

  18. Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance

    Science.gov (United States)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-02-01

    To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.

  19. Calculations of the beam transport through the low energy side of the Lund Pelletron accelerator

    International Nuclear Information System (INIS)

    Dymnikov, A.; Hellborg, R.; Pallon, J.; Skog, G.; Yang, C.

    1993-01-01

    A new recursive technique has been used to solve the equations of motion of charged particles in electric and magnetic fields taking into account the effect of space charge. Based on this technique a computer code has been written and calculations have been carried out for the beam optics, from the ion-source to the terminal, stripper of the Lund Pelletron tandem accelerator. The code has been found capable of describing the beam-optics of the existing setup and will in future be used together with a library of typical field descriptions to design new beam lines. (orig.)

  20. Some aspects of the applications of wire chambers in high energy physics experiments at large accelerators

    International Nuclear Information System (INIS)

    Turala, M.

    1982-01-01

    An application of proportional and drift chambers in four large spectrometers at the accelerators of IHEP Serpukhov and CERN Geneva is described. An operation of wire chambers at high intensities and high multiplicities of particles is discussed. The results of investigations of their efficiencies, spatial resolution (for one and two-dimensional readout) and long term stability are presented. Problems of preselection of a given class of events are discussed. The systems for preselection of defined multiplicities or a scattering angle of particles, in which proportional chambers have been used, are described and the results of their application in the real experiments are presented. (author)