Sample records for energikrav byggesystem skalmurede

  1. Adjustment of Energy requirements in TEK; TEK= Technical Regulations under the Norwegian Planning and Building Act; Justering av energikrav i TEK

    Energy Technology Data Exchange (ETDEWEB)

    Thyholt, Marit; Dokka, Tor Helge; Schild, Peter; Grini, Catherine; Mysen, Mads; Sartori, Igor


    The National Office of Building Technology and Administration (BE) desired to review the consequences of different levels of ambition for requirements for heat gaining from vent air, as well as a possible requirement for energy efficient design of building fronts. In addition the energy scope in the regulation (TEK2007) should be adjusted according to the final establishment of a new calculation standard (Norwegian Standard - NS 3031:2007). A statement on these subjects has been carried out at SINTEF Byggforsk, and is described in this report. Adjustments of framework regulations.There are only minor differences between adjusted calculations according to NS 3031 and the original energy framework calculations, i.e. the difference for net energy need amounts to the size of 0 to 6 percent. Heat gain.The report shows that it is possible - both from techical and financial considerations - to increase the requirement level for heat gain from vent air for most categories of buildings. This implies a sharpening of the annual median temperature efficiency from 70 % to 80 %, for all building categories, except from hospitals, institutions and light industry/workshops. A possible sharpening of regulations for heat gain in houses has not been evaluated. Depending on building category a sharpening of regulations for heat gain from vent air will imply that net energy need will be reduced on a scale of 20 to 30 kWh/m2 per annum. The report demonstrates that despite a possible sharpening of the requirements on energy efficiency for heat recovery devices does not prevent the use of large areas of windows and window panes. Vulnerability analyses show that deviations from the prerequisites in the basis for the energy framework concerning air quantities and air temperatures give the possibility of weakening the building's heating characteristics. Building fronts. Different methods for added requirements for building fronts have been examined. The aim has been to find methods and level of requirements, in order to counter the negative effects which the front may cause on the indoor air. Cold down draught from windows and sunshine both contribute to a higher need for heating and cooling than the calculated need for energy. The most suitable methods found in this elucidation are: When the aim is to limit the need for heating. Introduce minimum requirements (maximum values) for the average U-value for building fronts and that the requirement levels are calculated for the specific building. The possibility of achieving the required level will thus be the same for different building categories and building designs. Which minimum level one should arrive at concerning the average U-value depends on what limitations the regulations should put on a maximum area for windows, window panes (and doors). Such limitations will of course have an important influence on the building's architecture. How 'stringent' and excact this regulation should be, is not to be discussed here. Still it would probably be suitable to base the minimum requirement on a level closer to TEK 8-21 a) Energy actions - than TEK 8-21 c) Minimum levels. When the aim is to limit the need for cooling. Introduce minimum requirements (maximum values) to the product of glass area/sun charged floor area and the system sun factor, and that the requirement level is set at 0,03 for all categories of buildings, except for small buildings which should be excempted from this requirement. Both methods should be assessed for introduction in TEK. The combination of building fronts and heat regain. A sharpening of requirements to energy efficiency alone is not sufficient when it comes to limit the building fronts contribution to cold air flow and overheating. Combined with the ensuing energy need for heating and cooling it would be suitable to supplement with the mentioned types of requirements to more sturdy building fronts. (EW)

  2. Experimental building with new types of building envelope structures. Part 1: Structures/systems. Building system: Brick walls; Forsoegshus med nye typer klimaskaermskonstruktioner. Del 1: Konstruktioner/systemer - Byggesystem: Fuldmuret

    Energy Technology Data Exchange (ETDEWEB)



    The house described in this report is one of several experimental houses forming part of the project 'Experimental buildings with new types of building envelope structures'. One purpose of the project is to demonstrate that it is possible to build typical single-family houses with an energy consumption that meets expected increased building regulations. Furthermore, it is important that the houses can be made securely as regards construction technology and within reasonable financial limits. Thus, the purpose is also to contribute to strengthen the development of improved building envelope structures. Another purpose is to carry out detailed measurements of energy consumption in order to validate thermal performance of future building envelope structures. The report describes the constructive design and energy systems of the house plus heat loss calculations and expected energy consumption. (BA)

  3. Energikravene i BR15

    DEFF Research Database (Denmark)

    Kragh, Jesper; Aggerholm, Søren


    Bygningsreglement 2015 – BR15 – gælder fra 1. januar 2016 med en overgangsfase frem til 1. juli 2016. Det bygger videre på BR10 og de tidligere udmeldte krav til nybyggeriet frem mod 2020. I denne kvikguide får du hurtigt overblik over, hvordan du sikrer, at de bygninger, du er med til at opføre...... eller renovere, lever op til BR15’s energikrav. Disse krav findes primært i reglementets kapitel 7 om energiforbrug og i kapitel 8 om installationer samt i kapitel 6 om indeklima....

  4. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude


    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....