Low-energy neutral current phenomenology and grand unified theories
International Nuclear Information System (INIS)
Del Aguila, F.; Mendez, A.
1981-01-01
We derive necessary and sufficient conditions to be satisfied by any expanded electroweak gauge model in order to reproduce the standard model low-energy neutral current predictions. These conditions imply several constraints on the neutral gauge boson masses and the quantum number assignments for the ordinary fermions. Using these conditions, we prove that the popular grand unified theories based on the gauge groups SO(10) and E6 can only accommodate trivial extensions of the standard model. As a consequence, if any of these grand unified models works at some energy scale, present low-energy neutral current phenomenology implies that the Z-boson must be produced with the expected mass and couplings to the ordinary fermions. Any additional neutral gauge boson (with the possible exception of very heavy ones) could only be produced in hadronic collisions and it would not decay in e + e - . (orig.)
Neutrinos: Theory and Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Parke, Stephen
2013-10-22
The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.
Transversity: Theory and phenomenology
Energy Technology Data Exchange (ETDEWEB)
D' Alesio, Umberto [Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, and Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C. P. 170, I-09042 Monserrato (Italy)
2013-04-15
The distribution of transversely polarized quarks inside a transversely polarized nucleon, known as transversity, encodes a basic piece of information on the nucleon structure, sharing the same status with the more familiar unpolarized and helicity distributions. I will review its properties and discuss different ways to access it, with highlights and limitations. Recent phenomenological extractions and perspectives are also presented.
Transversity: Theory and phenomenology
International Nuclear Information System (INIS)
D'Alesio, Umberto
2013-01-01
The distribution of transversely polarized quarks inside a transversely polarized nucleon, known as transversity, encodes a basic piece of information on the nucleon structure, sharing the same status with the more familiar unpolarized and helicity distributions. I will review its properties and discuss different ways to access it, with highlights and limitations. Recent phenomenological extractions and perspectives are also presented.
Phenomenological aspects of unified theories
International Nuclear Information System (INIS)
Peccei, R.D.
1987-01-01
The author briefly discusses two new phenomena of recent interest, the 5/sup th/ force and variant axions. The former, for its elucidation, will require further gravitational experiments, but the author concludes that variant axions are now definitely rules out experimentally. Various aspects of superstring phenomenology are then addressed, including some of the generic predictions of superstrings and some of its generic problems. In particular, he discusses some of the phenomenological consequences of having an extra Z 0 boson and the circumstances under which this excitation is a genuine prediction of superstrings. Since it is likely that a more reliable relic of superstrings will be provided by the presence of superpartners at low energy (≤ TeV), he discusses some of the bounds for squarks and gluinos obtained at the SppS collider and the expectations for their production at the Tevatron. As a final topic, he touches upon some of the consequences that result from having the Fermi scale arise from an underlying theory. Some aspects of the composite Higgs model and of the strongly coupled standard model are briefly reviewed
Phenomenology of unified gauge theories
International Nuclear Information System (INIS)
Ellis, J.
1983-01-01
Part I of these lectures treats the standard Glashow-Weinberg-Salam model of weak and electromagnetic interactions, discussing in turn its basic structure and weak neutral currents, charged currents, mixing angles and CP violation, and the phenomenology of weak vector and Higgs bosons. Part II of the lectures discusses the structure of theories of dynamical symmetry breaking such as technicolour, phenomenological consequences, frustrations and alternatives. The third part of these lectures offers the standard menu of grand unified theories (GUTs) of the strong, weak and electromagnetic interactions, including an hors d'oeuvre of constraints on the parameters of the standard model, a main course of baryon number violating processes, and desserts which violate lepton number and CP. The fourth and final part goes through different attempts to remedy the inadequacies of previous theories by invoking supersymmetry and reaching out towards gravitation. (orig./HSI)
Phenomenology and theory of confinement
International Nuclear Information System (INIS)
Pervushin, V.N.
1987-01-01
Phenomenological and theoretical arguments of the separation of the hadronization dynamics from confinement and the idea of the ''kinematic'' confinement are discussed. The recent theory contains results which point out that the Wilson criterion and the confinement potentials are not sufficient for explaining the phenomenological confinement in the sense of zero color amplitudes or Green functions. However, these potentials well explain the hadron spectrum and spontaneous breaking of chiral symmetry, i.e., the hadronization dynamics. The ''kinematic'' confinement can be explained by the topological degeneration of all color-particle physical states in QCD. This degeneration arises if the theory is quantized by explicitly solving the gauge and dynamic constraints: all color states are defined up to gauge(phase) factors describing the map of the three-dimensional space onto SU(3) c -group (π 3 (SU(3) c =Z). The total probability of the color particle generation is equal to zero due to the destructive interference of these phase factors. As a result, in QCD there remains only a hadron sector used in the phenomenology
Phenomenology of dark energy: exploring the space of theories with future redshift surveys
International Nuclear Information System (INIS)
Piazza, Federico; Steigerwald, Heinrich; Marinoni, Christian
2014-01-01
We use the effective field theory of dark energy to explore the space of modified gravity models which are capable of driving the present cosmic acceleration. We identify five universal functions of cosmic time that are enough to describe a wide range of theories containing a single scalar degree of freedom in addition to the metric. The first function (the effective equation of state) uniquely controls the expansion history of the universe. The remaining four functions appear in the linear cosmological perturbation equations, but only three of them regulate the growth history of large scale structures. We propose a specific parameterization of such functions in terms of characteristic coefficients that serve as coordinates in the space of modified gravity theories and can be effectively constrained by the next generation of cosmological experiments. We address in full generality the problem of the soundness of the theory against ghost-like and gradient instabilities and show how the space of non-pathological models shrinks when a more negative equation of state parameter is considered. This analysis allows us to locate a large class of stable theories that violate the null energy condition (i.e. super-acceleration models) and to recover, as particular subsets, various models considered so far. Finally, under the assumption that the true underlying cosmological model is the Λ Cold Dark Matter (ΛCDM) scenario, and relying on the figure of merit of EUCLID-like observations, we demonstrate that the theoretical requirement of stability significantly narrows the empirical likelihood, increasing the discriminatory power of data. We also find that the vast majority of these non-pathological theories generating the same expansion history as the ΛCDM model predict a different, lower, growth rate of cosmic structures
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Bugrij, G.V.; Jenkovszky, L.L.
2001-01-01
The subject of 'New Trends in High-Energy Physics' conference has been gradually extended (the number of participants still remain limited), now including: elastic and diffractive scattering of hadrons and nuclei, deep inelastic scattering and multiparticle dynamics, collective properties of the strongly interacting matter, heavy flavours and hadron spectroscopy, duality, strings and confinement, the standard model (and beyond), advances in quantum field theory, as well as new physics at future colliders
Low-energy phenomenological chiral Lagrangians
International Nuclear Information System (INIS)
Cavopol, A.V.
1987-01-01
We develop a phenomenological Lagrangian that satisfies the requirements of the so called alternative schemes designed to model low energy meson phenomenology. Linear and nonlinear σ type Lagrangians and symmetry breaking schemes are used to describe pions that exhibit masses proportional to the square of the symmetry breaking term's coefficient, ε. (m π 2 ∼ 0(ε 2 )). The invariance of the theory under coordinate dependent transformations is achieved by introducing gauge fields for both linear and nonlinear Lagrangians. Finally, analogies between the minimal symmetry breaking terms in Quantum Electrodynamics and in our phenomenological lagrangians are used to generate a discussion of the quark-pion mass dependence indicated by the model
Unusual high-energy phenomenology of Lorentz-invariant noncommutative field theories
International Nuclear Information System (INIS)
Carone, Christopher D.; Kwee, Herry J.
2006-01-01
It has been suggested that one may construct a Lorentz-invariant noncommutative field theory by extending the coordinate algebra to additional, fictitious coordinates that transform nontrivially under the Lorentz group. Integration over these coordinates in the action produces a four-dimensional effective theory with Lorentz invariance intact. Previous applications of this approach, in particular, to a specific construction of noncommutative QED, have been studied only in a low-momentum approximation. Here we discuss Lorentz-invariant field theories in which the relevant physics can be studied without requiring an expansion in the inverse scale of noncommutativity. Qualitatively, we find that tree-level scattering cross sections are dramatically suppressed as the center-of-mass energy exceeds the scale of noncommutativity, that cross sections that are isotropic in the commutative limit can develop a pronounced angular dependence, and that nonrelativistic potentials (for example, the Coloumb potential) become nonsingular at the origin. We consider a number of processes in noncommutative QED that may be studied at a future linear collider. We also give an example of scattering via a four-fermion operator in which the noncommutative modifications of the interaction can unitarize the tree-level amplitude, without requiring any other new physics in the ultraviolet
Astroparticle physics theory and phenomenology
Sigl, Günter
2017-01-01
This books aims at giving an overview over theoretical and phenomenological aspects of particle astrophysics and particle cosmology. To be of interest for both students and researchers in neighboring fields of physics, it keeps a balance between well established foundations that will not significantly change in the future and a more in-depth treatment of selected subfields in which significant new developments have been taking place recently. These include high energy particle astrophysics, such as cosmic high energy neutrinos, the interplay between detection techniques of dark matter in the laboratory and in high energy cosmic radiation, axion-like particles, and relics of the early Universe such as primordial magnetic fields and gravitational waves. It also contains exercises and thus will be suitable for both introductory and advanced courses in astroparticle physics.
Schmid, C
1972-01-01
The following topics are discussed: theoretical tools; models; Pade approximants; theoretical predictions of pi pi S-waves; pi pi phase shifts from K/sub e4/; Chew Low extrapolation in pi p to pi /sup -/ pi /sup +/n; the KK cusp in pi pi to pi pi ; K pi phase shifts. (25 refs) . For pt. I see ibid., 265. The following topics are discussed: patterns of resonance couplings from exchange degeneracy; Reggeon couplings; clash of t and s channel structure in pole model; B/sub 4/ phenomenology; Odorico zeros; Barrelet zeros and phase shift ambiguities. (29 refs).
Theory and phenomenology of strong and weak interaction high energy physics
International Nuclear Information System (INIS)
1989-01-01
This paper reviews research done on theoretical high energy physics. Areas of discussion are: chiral symmetry; quantum chromodynamics; quark-gluon plasma; particle decay of kaons; photonuclear reactions from cosmic ray showers; symmetry breaking and other related topics
International Nuclear Information System (INIS)
Dymski, T.C.
1976-01-01
For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature
Low energy supersymmetry phenomenology
International Nuclear Information System (INIS)
Baer, H.; Chen, C.H.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.
1995-04-01
The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e + e - , p bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e + e - machines for a comprehensive study of low energy supersymmetry
Low energy supersymmetry phenomenology
Baer, H.; Chen, C.H.; Eberl, H.; Feng, J.L.; Fujii, K.; Gunion, John F.; Kamon, T.; Kao, C.; Lopez, J.L.; Majerotto, W.; McIntyre, P.; Munroe, Ray B.; Murayama, H.; Paige, F.; Porod, W.; Sender, J.; Sopczak, A.; Tata, X.; Tsukamoto, T.; White, J.
1996-01-01
We summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, we evaluate the capabilities of various e^+e^-, p\\bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, we discuss capabilities of future facilities to dis-entangle the anticipated spectrum of super-particles and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. We comment upon the complementarity of proposed hadron and e^+e^- machines for a comprehensive study of low energy supersymmetry.
Phenomenological theory of superfluidity and superconductivity
International Nuclear Information System (INIS)
Rabinowitz, M.
1994-01-01
Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperatures T c of superfluid 3 He and 4 He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors. T c for atomic H is estimated. T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths
International Nuclear Information System (INIS)
Carruthers, P.; Thews, R.L.
1988-01-01
This paper contains progress information on the following topics in High Energy Physics: strong, electromagnetic, and weak interactions; aspects of quark-gluon models for hadronic interactions, decays, and structure; the dynamical generation of a mass gap and the role and truthfulness of perturbation theory; statistical and dynamical aspects of hadronic multiparticle production; and realization of chiral symmetry and temperature effects in supersymmetric theories
Phenomenology of noncommutative field theories
International Nuclear Information System (INIS)
Carone, C D
2006-01-01
Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Jenkovszky, L.L.
2000-01-01
The subject of 'New Trends in High-Energy Physics' conference has been gradually extended now including: elastic and diffractive scattering of hadrons and nuclei, deep inelastic scattering and multiparticle dynamics, collective properties of the strongly interacting matter, heavy flavours and hadron spectroscopy, duality, strings an confinement, the standard model (and beyond), advances in quantum field theory, as well as new physics at future colliders
Disoriented chiral condensate: Theory and phenomenology
International Nuclear Information System (INIS)
Bjorken, J.D.
1997-12-01
These notes are an abbreviated version of lectures given at the 1997 Zakopane School. They contain two topics. The first is a description in elementary terms of the basic ideas underlying the speculative hypothesis that pieces of strong-interaction vacuum with a rotated chiral order parameter, disoriented chiral condensate or DCC, might be produced in high energy elementary particle collisions. The second topic is a discussion of the phenomenological techniques which may be applied to data in order to experimentally search for the existence of DCC
Energy Technology Data Exchange (ETDEWEB)
Marquet, C
2006-09-15
When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)
Pi-nucleon phenomenology at high energies
International Nuclear Information System (INIS)
Kogitz, S.
1973-01-01
A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)
The Theory and Phenomenology of Love
Directory of Open Access Journals (Sweden)
Paolo Borsa
2017-05-01
Full Text Available This second issue of Interfaces: A Journal fo Medieval European Literatures addresses the subject of "The Theory and Phenomenology of Love." It brings together readings of medieval representations and explanations of love as an affection, passion, sentiment, attraction, or tension, with work on the connections between literary discourses of love and the history both of emotions and gender roles. Approaching the subject of the nature of love, and the ways it manifests itself, the authors create links between scientific and poetic discourse and highlight the relationship between the experiences of love, described and treated in literary texts, and the specific historical, cultural, and social environments in which those texts were produced. Not only do the articles reach original results within their fields; taken as a whole, the dossier, ranging as it does from the Late Antiquity to the fifteenth century, and across a Europe situated within a wider Eurasian space, offers deep insights into social history, the history of emotions, and the study of gender and sexuality.
Theory and Phenomenology of the Elementary Goldstone Higgs
DEFF Research Database (Denmark)
Gertov, Helene; Meroni, Aurora; Molinaro, Emiliano
2015-01-01
We show, via a careful analytical and numerical analysis, that a pseudo Goldstone nature of the Higgs is naturally embodied by an elementary realization that also serves as ultraviolet completion. Renormalizability married to perturbation theory allows to precisely determine the quantum corrections...... of the theory while permitting to explore the underlying parameter space. By characterising the available parameter space of the extended Higgs sector we discover that the preferred electroweak alignment angle is centred around $\\theta \\simeq 0.02$, corresponding to the Higgs chiral symmetry breaking scale $ f...... \\simeq 14~$TeV. The latter is almost 60 times higher than the Standard Model electroweak scale. However, due to the perturbative nature of the theory, the spectrum of the enlarged Higgs sector remains in the few TeV energy range. We also analyse precision constraints and the relevant phenomenological...
Phenomenological theory of synergistic effects in plasma-wall interaction
International Nuclear Information System (INIS)
Itoh, N.; Hasebe, Y.
1986-01-01
A phenomenological theory for synergistic effects under multi-species particle bombardement has been developed. The theory is based on a model in which two free-energy minima are assumed to be overcome under actions of radiation for a process to be completed. The synergistic factor, the ratio of the yield of the process under irradiation with two species of particles to the summation of the yields of the process under irradiation with each of two component species, is obtained as a function of the beam flux for several parameters relevant to thermodynamic and radiation-enhanced processes. The criterion for the synergistic effect is obtained. The theory has been shown to be able to explain the yield-flux relation obtained by Haasz et al. for hydrogen-induced methane formation from graphite. (orig.)
Nucleon-nucleon theory and phenomenology
International Nuclear Information System (INIS)
Signell, P.
1981-03-01
This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers
String theory and applications to phenomenology and cosmology
International Nuclear Information System (INIS)
Florakis, I.G.
2011-07-01
This thesis treats applications of String Theory to problems of cosmology and high energy phenomenology. In particular, we investigate problems related to the description of the initial state of the universe, using the methods of perturbative String Theory. After a review of the string-theoretic tools that will be employed, we discuss a novel degeneracy symmetry between the bosonic and fermionic massive towers of states (MSDS symmetry), living at particular points of moduli space. We study the marginal deformations of MSDS vacua and exhibit their natural thermal interpretation, in connection with the resolution of the Hagedorn divergences of string thermodynamics. The cosmological evolution of a special, 2-dimensional thermal 'Hybrid' model is presented and the correct implementation of the full stringy degrees of freedom leads to the absence of gravitational singularities, within a fully perturbative treatment. (author)
Violations of Einstein's Relativity: Motivations, Theory, and Phenomenology
International Nuclear Information System (INIS)
Lehnert, Ralf
2011-01-01
One of the most difficult questions in present-day physics concerns a fundamental theory of space, time, and matter that incorporates a consistent quantum description of gravity. There are various theoretical approaches to such a quantum-gravity theory. Nevertheless, experimental progress is hampered in this research field because many models predict deviations from established physics that are suppressed by some power of the Planck scale, which currently appears to be immeasurably small. However, tests of relativity theory provide one promising avenue to overcome this phenomeno-logical obstacle: many models for underlying physics can accommodate a small breakdown of Lorentz symmetry, and numerous feasible Lorentz-symmetry tests have Planck reach. Such mild violations of Einstein's relativity have therefore become the focus of recent research efforts. This mini course provides a brief survey of the key ideas in this research field and is geared at both experimentalists and theorists. In particular, several theoretical mechanisms leading to deviations from relativity theory are presented; the standard theoretical framework for relativity violations at currently accessible energy scales (i.e., the SME) is reviewed, and various present and near-future experimental efforts within this field are discussed.
Phenomenological Theory for Pseudogap States in High Tc Cuprate
Directory of Open Access Journals (Sweden)
Zhang Fuchun
2012-03-01
Full Text Available Pseudogap phase in the underdoped region of high-Tc cuprate is one of the challenging issues in condensed matter physics. In this talk, I will describe a phenomenological theory for this phase, based on analogies to the approach to Mott localization at weak coupling in lower dimensional systems. I will make comparisons of the theory to a series of the experiments, including angle resolved photoemission spectroscope, scanning tunneling microscope.
Inductive approach towards a phenomenologically more satisfactory unififed field theory
International Nuclear Information System (INIS)
Rayski, J.; Rayski, J.M. Jnr.
1985-01-01
A unified field theory constituting a fusion of the ideas of supersymmetries with general relativity and gauge theory is investigated. A Lagrangian formalism is constructed step by step; the last step consists in a marriage with Kaluza's idea of a multidimensional space-time. Our aim is not to achieve a full local supersymmetry in eleven dimensions, but rather to attain a compromise with the symmetries of the fundamental interactions either known phenomenologically, or only suspected to exist in nature
International Nuclear Information System (INIS)
Thews, R.L.
1986-01-01
The research reported includes: low energy quark-hadron dynamics; quark-gluon models for hadronic interactions, decays and structure; mathematical and physical properties of nonlinear sigma models, Yang-Mills theories, and Coulomb gases, which are of interest in both particle physics and condensed matter physics; statistical and dynamical aspects of hadronic multiparticle production. 28 refs
UHECR theory and phenomenology: Summary and outlook
Directory of Open Access Journals (Sweden)
Olinto Angela V.
2013-06-01
Full Text Available Theorists and phenomenologists have contributed significantly to the development of the field of ultrahigh energy cosmic rays (UHECRs. Great progress has been achieved in modeling hadronic interactions, developing precise propagation codes, understanding the role of different backgrounds and magnetic fields in the propagation of ultrahigh energy protons and nuclei, predicting the flux of secondary neutrinos and photons, modeling astrophysical sources and their acceleration mechanisms, developing new techniques to test anisotropies in the sky distribution, proposing new physics phenomena that can be tested at ultrahigh energy, and sharpening the distinction between astrophysical interpretations of unexpected trends (such as the composition at the highest energies and new physics at play in hadronic interactions at energies well beyond the reach of terrestrial laboratories. Better developed models when combined with recent data have framed current open questions. 1. Is the spectral feature at the highest energies the GZK cutoff or the effect of Emax? 2. Is the composition of primaries changing at the highest energies or are new interactions responsible for the change in behavior of extensive air showers? 3. At what energy and sensitivity will sources be observed? 4. At what energies cosmic rays transition from being Galactic to becoming extragalactic? And the most basic question remains, 5. what are the sources (and the acceleration mechanism of ultrahigh energy cosmic rays? To answer these questions more observations are needed. Chief among the theorists’ wish list is the increase in statistics at the highest energies and the second wish is for full sky coverage. These efforts should lead to the localization of a source (or sources in the sky which would revolutionize the field. Another avenue for major progress would be the detection of neutrino and photon secondaries, especially at ultrahigh energies. More immediate progress can be reached
Phenomenology with F-theory S U (5 )
Leontaris, George K.; Shafi, Qaisar
2017-09-01
We explore the low-energy phenomenology of an F-theory-based S U (5 ) model which, in addition to the known quarks and leptons, contains Standard Model (SM) singlets and vectorlike color triplets and S U (2 ) doublets. Depending on their masses and couplings, some of these new particles may be observed at the LHC and future colliders. We discuss the restrictions by Cabibbo-Kobayashi-Maskawa matrix constraints on their mixing with the ordinary down quarks of the three chiral families. The model is consistent with gauge coupling unification at the usual supersymmetric GUT scale; dimension-five proton decay is adequately suppressed, while dimension-six decay mediated by the superheavy gauge bosons is enhanced by a factor of 5-7. The third generation charged fermion Yukawa couplings yield the corresponding low-energy masses in reasonable agreement with observations. The hierarchical nature of the masses of lighter generations is accounted for via nonrenormalizable interactions, with the perturbative vacuum expectation values (VEVs) of the SM singlet fields playing an essential role.
A phenomenological theory of transient creep
International Nuclear Information System (INIS)
Ajaja, O.; Ardell, A.J.
1979-01-01
A new creep theory is proposed which takes into account the strain generated during the annihilation of dislocations. This contribution is found to be very significant when recovery is appreciable, and is mainly responsible for the decreasing creep rate associated with the normal primary creep of class II materials. The theory provides excellent semiquantitative rationalization for the types of creep curves presented in the preceding paper. In particular, the theory predicts a change in the shape of the primary creep curve from normal to inverted as recovery becomes less important, i.e. as the applied stress and/or temperature decrease(s). It also predicts a minimum creep rate under certain circumstances, hence pseudo-tertiary behaviour. These different types of creep curves are predicted even though the net dislocation density decreases monotonically with time in all cases. Qualitative rationalization is presented for the inverted transient which always follows a stress drop in class II materials, as well as for the inverted primary and sigmoidal creep behaviour of class I solid solutions. (author)
A phenomenological theory of the pseudogap state
International Nuclear Information System (INIS)
Rice, T.M.; Yang Kaiyu; Zhang Fuchun
2007-01-01
An ansatz is proposed for the coherent part of the single particle Green's function in a doped resonant valence bond (RVB) state by analogy with the form derived by Konik and coworkers for an array of 2-leg Hubbard ladders near half-filling. The parameters of the RVB state are taken from the renormalized mean field theory of Zhang and coworkers for underdoped cuprates. The ansatz shows good agreement with recent angle resolved photoemission on underdoped cuprates and resolves an apparent disagreement with the Luttinger sum rule
Phenomenology of muon number violation in spontaneously broken gauge theories
International Nuclear Information System (INIS)
Shanker, O.U.
1980-01-01
The phenomenology of muon number violation in gauge theories of weak and electromagnetic interactions is studied. In the first chapter a brief introduction to the concept of muon number and to spontaneously broken gauge theories is given. A review of the phenomenology and experimental situation regarding different muon number violating processes is made in the second chapter. A detailed phenomenological study of the μe conversion process μ - + (A,Z) → e - + (A,Z) is given in the third chapter. In the fourth chapter some specific gauge theories incorporating spontaneously broken horizontal gauge symmetries between different fermion generations are discussed with special reference to muon number violation in the theories. The μe conversion process seems to be a good process to search for muon number violation if it occurs. The K/sub L/-K/sub S/ mass difference is likely to constrain muon number violating rates to lie far below present experimental limits unless strangeness changing neutral currents changing strangeness by two units are suppressed
Phenomenological rate process theory for the storage of atomic H in solid Hsub(2)sup(*)
International Nuclear Information System (INIS)
Rosen, G.
1976-01-01
A phenomenological rate process theory is developed for the storage and rapid recombination of atomic hydrogen fuel radical in a crystalline molecular hydrogen solid at temperatures in the range o.1K(<=)T(<=K. It is shown that such a theory can account quantitatively for the recently observed dependence of the storage time on the storage temperature, for the maximum concentration of trapped H atom, and for the time duration of the energy release in the tritium decay experiments of Webeler
Broken flavor symmetries in high energy particle phenomenology
International Nuclear Information System (INIS)
Antaramian, A.
1995-01-01
Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino oscillation results for solar neutrinos. We, then, examine the basis for extremely strict limits placed on flavor changing interactions which also break lepton- and/or baryon-number. These limits are derived from cosmological considerations. Finally, we embark on an extended analysis of proton decay in supersymmetric SO(10) grand unified theories. In such theories, the dominant decay diagrams involve the Yukawa couplings of a heavy triplet superfield. We argue that past calculations of proton decay which were based on the minimal supersymmetric SU(5) model require reexamination because the Yukawa couplings of that theory are known to be wrong
Horizontal unification as the phenomenology of the theory of 'everything'
International Nuclear Information System (INIS)
Sakharov, A.S.; Khlopov, M.Yu.
1994-01-01
It is shown that the extension of the standard electroweak model and QCD, which contains the spontaneously broken horizontal local gauge symmetry, provides quantatively definite phenomenological descriprion for all the phenomena of particle physics and cosmology. The model connects the predictions of the standard model with the description of the mass spectrum and mixing of quarks and leptons, with the predictions of neutrino mass spectrum and with parameters of invisible axion. It provides quantatively definite physical basis for the theory of inflation, baryosynthesis and dark matter of the Universe. 34 refs
TOPICAL PROBLEMS: The phenomenological theory of world population growth
Kapitza, Sergei P.
1996-01-01
Of all global problems world population growth is the most significant. Demographic data describe this process in a concise and quantitative way in its past and present. Analysing this development it is possible by applying the concepts of systems analysis and synergetics, to work out a mathematical model for a phenomenological description of the global demographic process and to project its trends into the future. Assuming self-similarity as the dynamic principle of development, growth can be described practically over the whole of human history, assuming the growth rate to be proportional to the square of the number of people. The large parameter of the theory and the effective size of a coherent population group is of the order of 105 and the microscopic parameter of the phenomenology is the human lifespan. The demographic transition — a transition to a stabilised world population of some 14 billion in a foreseeable future — is a systemic singularity and is determined by the inherent pattern of growth of an open system, rather than by the lack of resources. The development of a quantitative nonlinear theory of the world population is of interest for interdisciplinary research in anthropology and demography, history and sociology, for population genetics and epidemiology, for studies in evolution of humankind and the origin of man. The model also provides insight into the stability of growth and the present predicament of humankind, and provides a setting for discussing the main global problems.
Ibáñez, Luis E
2015-01-01
This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.
Method development at Nordic School of Public Health NHV: Phenomenology and Grounded Theory.
Strandmark, Margaretha
2015-08-01
Qualitative methods such as phenomenology and grounded theory have been valuable tools in studying public health problems. A description and comparison of these methods. Phenomenology emphasises an inside perspective in form of consciousness and subjectively lived experiences, whereas grounded theory emanates from the idea that interactions between people create new insights and knowledge. Fundamental aspects of phenomenology include life world, consciousness, phenomenological reduction and essence. Significant elements in grounded theory are coding, categories and core categories, which develop a theory. There are differences in the philosophical approach, the name of the concept and the systematic tools between the methods. Thus, the phenomenological method is appropriate when studying emotional and existential research problems, and grounded theory is a method more suited to investigate processes. © 2015 the Nordic Societies of Public Health.
High energy physics: Experimental, theoretical and phenomenology institute
International Nuclear Information System (INIS)
Barger, V.; Camerini, U.; Carlsmith, D.; Durand, B.; Durand, L.; Erwin, A.; Fry, W.; Goebel, C.; Halzen, F.; Loveless, R.; March, R.; Morse, R.; Olsson, M.; Pondrom, L.; Prepost, R.; Reeder, D.; Sheaff, M.; Smith, W.; Thompson, M.; Wu, S.L.
1991-01-01
This report discusses research in the following task: hadron physics at Fermilab; Lepton hadron scattering; electromagnetic ampersand weak interactions at the Stanford Linear Accelerator Center - SLAC; hyperon beam program - hadroproduction of heavy beam flavors at Fermilab; ultra high energy colliding beam physics; Institute for high energy physics phenomenology; weak ampersand electromagnetic interactions using PETRA at DESY ampersand LEP at CERN; theoretical high energy physics; DUMAND; study of ultra high energy gamma rays; data analysis facility; and R ampersand D for major subsystems for the SSC detectors
Theory and phenomenology of the MSSM with heavy scalars
International Nuclear Information System (INIS)
Bernal Hernandez, N.
2008-09-01
This work is dedicated to the study of different phenomenological aspects of supersymmetry with on one hand the physics of the Minimal Supersymmetric Standard Model (MSSM) in the case of heavy scalar superparticles and its implications at the LHC and on the other hand the characteristics of black matter particles and their detection in colliders and in astro-particle experiments. The first chapter presents the Standard Model, the supersymmetry theory and how the supersymmetric extension of the Standard Model can solve some concerns of the Standard Model. In the second chapter we present the MSSM with heavy scalars. In this model all the scalar particles have masses beyond the TeV and consequently even next generations of colliders will not be able to detect them. We recall why heavy scalars are necessary. In the third chapter we present the construction of MSSM parameters with heavy scalars and we show that the future ILC (International Linear Collider) will be able to set the value of these parameters with a satisfactory accuracy. The last chapter deals with dark matter particles like WIMPS, their detection sensitivity in the XENON experiment and the reconstruction of their masses will be analyzed. We have also studied the direct detection of WIMPS via the observation of some products of their annihilation
Theory, phenomenology, and prospects for detection of supersymmetric dark matter
International Nuclear Information System (INIS)
Diehl, E.; Kane, G.L.; Kolda, C.; Wells, J.D.
1995-01-01
One of the great attractions of minimal superunified supersymmetric models is the prediction of a massive, stable, weakly interacting particle [the lightest supersymmetric partner (LSP)] which can have the right relic abundance to be a cold dark matter candidate. In this paper we investigate the identity, mass, and properties of the LSP after requiring gauge coupling unification, proper electroweak symmetry breaking, and numerous phenomenological constraints. We then discuss the prospects for detecting the LSP. The experiments which we investigate are (1) space annihilations into positrons, antiprotons, and γ rays, (2) large underground arrays to detect upward-going muons arising from LSP capture and annihilation in the sun and earth, (3) elastic collisions on matter in a table top apparatus, and (4) production of LSP's or decays into LSP's at high energy colliders. Our conclusions are that space annihilation experiments and large underground detectors are of limited help in initially detecting the LSP although perhaps they could provide confirmation of a signal seen in other experiments, while table top detectors have considerable discovery potential. Colliders such as the CERN LEP II, an upgraded Fermilab, and the CERN LHC might be the best dark matter detectors of all. This paper improves on most previous analyses in the literature by (a) only considering parameters not already excluded by several physics constraints listed above, (b) presenting results that are independent of (usually untenable) parameter choices, (c) comparing opportunities to study the same cold dark matter, and (d) including minor technical improvements
Greenwald, Jared
Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.
Theory of low energy collisions
International Nuclear Information System (INIS)
Sparenberg, J.M.
2007-01-01
The basic notions of low-energy quantum scattering theory are introduced (cross sections, phase shifts, resonances,... ), in particular for positively-charged particles, in view of nuclear physics applications. An introduction to the reaction-matrix (or R-matrix) method is then proposed, as a tool to both solve the Schroedinger equation describing collisions and fit experimental data phenomenologically. Most results are established without proof but with a particular emphasis on their intuitive understanding and their possible analogs in classical mechanics. Several choices are made consequently: (i) the text starts with a detailed reminder of classical scattering theory, (ii) the concepts are first introduced in ideal theoretical cases before going to the more complicated formalism allowing the description of realistic experimental situations, (iii) a single example is used throughout nearly the whole text, (iv) all concepts are established for the elastic scattering of spinless particles, with only a brief mention of their multichannel generalization at the end of the text. (author)
From field theory to phenomenology: the history of dispersion relations
International Nuclear Information System (INIS)
Pickering, A.
1989-01-01
The authors chart the history of quantum field theory (QFT) in the 1950s with reference to the ideas of dispersion relations. QFT failed to explain strong interaction physics and so was discarded. Connections are drawn between a central group of particle theorists working on applying Kramers-Kronig light scattering relations to high energy particle scattering and the way physics developed. The concepts of single and double dispersion relations and Regge poles, when connected with the large quantity of empirical data from the large particle accelerators of the 1950s, could not be embodied within QFT, which then fell into decline. (UK)
Interplay of Higgs phenomenology and new physics in supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Patel, Shruti
2017-10-15
Supersymmetric (SUSY) theories such as the Minimal Supersymmetric Standard Model (MSSM) predict a new particle spectrum, including an extended Higgs sector, in order to address fundamental questions that remain unanswered with the results obtained at the Large Hadron Collider (LHC) so far. Despite an extensive programme to search for additional Higgs bosons at the LHC, no new Higgs-like particles have been observed beyond the discovered signal at 125 GeV. Such searches have not taken into account CP-violating effects in the Higgs sector, which are well-motivated in the light of the perceived baryon asymmetry in the universe, and which can induce significant deviations in the phenomenology of the Higgs bosons. The search for additional Higgs bosons should therefore account for the possibility that they may not necessarily be CP-eigenstates. In the most general case where the MSSM parameters can be complex, the three neutral Higgs bosons of the theory are the loop-corrected mass eigenstates {h_1,h_2,h_3}, which are admixtures of the tree-level CP-even and CP-odd Higgs states. This thesis focusses on the effects of complex parameters on the production cross sections of these Higgs bosons and the interference occurring between nearly mass-degenerate Higgs states. In the first part of this thesis, we discuss higher-order corrections in the Higgs sector which give rise to CP-violating mixing between the tree-level mass eigenstates, and present a computation of inclusive cross sections for the production of the CP-admixed Higgs bosons through gluon fusion and bottom-quark annihilation. The predictions for the gluon-fusion process are based on an explicit calculation of the leading-order cross section for the general case of arbitrary complex parameters, supplemented by various higher-order corrections. The cross sections for the bottom-quark annihilation process are treated with a simple re-weighting procedure. In the next part, we describe the implementation of our
Interplay of Higgs phenomenology and new physics in supersymmetric theories
International Nuclear Information System (INIS)
Patel, Shruti
2017-10-01
Supersymmetric (SUSY) theories such as the Minimal Supersymmetric Standard Model (MSSM) predict a new particle spectrum, including an extended Higgs sector, in order to address fundamental questions that remain unanswered with the results obtained at the Large Hadron Collider (LHC) so far. Despite an extensive programme to search for additional Higgs bosons at the LHC, no new Higgs-like particles have been observed beyond the discovered signal at 125 GeV. Such searches have not taken into account CP-violating effects in the Higgs sector, which are well-motivated in the light of the perceived baryon asymmetry in the universe, and which can induce significant deviations in the phenomenology of the Higgs bosons. The search for additional Higgs bosons should therefore account for the possibility that they may not necessarily be CP-eigenstates. In the most general case where the MSSM parameters can be complex, the three neutral Higgs bosons of the theory are the loop-corrected mass eigenstates {h 1 ,h 2 ,h 3 }, which are admixtures of the tree-level CP-even and CP-odd Higgs states. This thesis focusses on the effects of complex parameters on the production cross sections of these Higgs bosons and the interference occurring between nearly mass-degenerate Higgs states. In the first part of this thesis, we discuss higher-order corrections in the Higgs sector which give rise to CP-violating mixing between the tree-level mass eigenstates, and present a computation of inclusive cross sections for the production of the CP-admixed Higgs bosons through gluon fusion and bottom-quark annihilation. The predictions for the gluon-fusion process are based on an explicit calculation of the leading-order cross section for the general case of arbitrary complex parameters, supplemented by various higher-order corrections. The cross sections for the bottom-quark annihilation process are treated with a simple re-weighting procedure. In the next part, we describe the implementation of our
The theory and phenomenology of coloured quark models
Close, F E
1975-01-01
A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3)- Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for psi phenomenology-the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (40 refs).
The theory and phenomenology of coloured quark models
International Nuclear Information System (INIS)
Close, F.E.
1975-01-01
A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3) - Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for PSI phenomenology - the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (author)
A review of the theory and phenomenology of lepton pair production
International Nuclear Information System (INIS)
Hwa, R.C.
1978-05-01
Recent experimental data and theoretical developments on the production of lepton pairs in hadron collisions are reviewed. With emphasis on the interplay between theory and experiment, the relevance of theoretical calculations to the data available at present energies is critically examined. The Drell-Yan mechanism is found to be phenomenologically dominant provided that the parton distribution functions contain effects of gluon radiation in a narrow cone. Explicit QCD perturbative calculations of the non-Drell-Yan type yield results that are apparently important at large transverse momenta, but are contradicted by subsequent data at 400 GeV and below. A consistent picture in the parton model is sketched. Further experiments to probe the basic mechanism are suggested. (author)
Supersymmetry and Superstring Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K; Gaillard, Mary K.; Zumino, Bruno
2008-05-05
We briefly cover the early history of supersymmetry, describe the relation of SUSY quantum field theories to superstring theories and explain why they are considered a likely tool to describe the phenomenology of high energy particle theory beyond the Standard Model.
Minimal anomalous U(1) theories and collider phenomenology
Ekstedt, Andreas; Enberg, Rikard; Ingelman, Gunnar; Löfgren, Johan; Mandal, Tanumoy
2018-02-01
We study the collider phenomenology of a neutral gauge boson Z ' arising in minimal but anomalous U(1) extensions of the Standard Model (SM). To retain gauge invariance of physical observables, we consider cancellation of gauge anomalies through the Green-Schwarz mechanism. We categorize a wide class of U(1) extensions in terms of the new U(1) charges of the left-handed quarks and leptons and the Higgs doublet. We derive constraints on some benchmark models using electroweak precision constraints and the latest 13 TeV LHC dilepton and dijet resonance search data. We calculate the decay rates of the exotic and rare one-loop Z ' decays to ZZ and Z-photon modes, which are the unique signatures of our framework. If observed, these decays could hint at anomaly cancellation through the Green-Schwarz mechanism. We also discuss the possible observation of such signatures at the LHC and at future ILC colliders.
Rosen, Steven M
2017-12-01
This paper carries forward the author's contribution to PBMP's previous special issue on Integral Biomathics (Rosen 2015). In the earlier paper, the crisis in contemporary theoretical physics was described and it was demonstrated that the problem can be addressed effectively only by shifting the foundations of physics from objectivist Cartesian philosophy to phenomenological philosophy. To that end, a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current presentation takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a deep connection between the Klein bottle, which is crucial to the theory, and the Ho-t'u, an old Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the curious psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature's fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory is guided by the dialectical interplay between symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper
A phenomenological theory of world population growth and global problems
Kapitza, Sergei P
1996-01-01
Of all global problems world population growth is the most significant one. To describe this process in its past and project it into the future a mathematical model is worked out. It treats the world population as an entity, seen as an open and evolv The approach is phenomenological and growth over very many generations is assumed to be selfsimilar and described by scaling. In terms of kinetics, the growth rate is proportional to the square of the total number of people and the nonlinear hyperbol of all mechanisms that contribute to our development in a collective interactive process. The model gives an estimate of the beginning of human evolution c.a. 4.4 million years ago and of the total number of people who ever lived c.a. 100 billion. In the scope of the model large scale cycles defined by history and anthropology are shown to be uniformly spaced in time on a logarithmic scale, expressing and inherent periodicity. As we approach the present, this progression of cycles is now termo transition. This is a s...
Impact of phenomenological theory of turbulence on pragmatic approach to fluvial hydraulics
Ali, Sk Zeeshan; Dey, Subhasish
2018-04-01
The phenomenological theory of turbulence (PTT) remains a long-standing and fascinating theory in turbulence research. In this review article, we highlight the state-of-the-science of the impact of the PTT on the pragmatic approach to fluvial hydraulics, explored over recent decades, discussing the salient and the subtle roles that the turbulence plays in governing many physical processes. To acquire a theoretical explanation of this pragmatic approach necessitates an intuitive thought that can bring together the background mechanisms of all the physical processes under one law—a thought that is capable of finding their inextricable links with the turbulent energy spectrum. We begin here with emphasizing the spectral and the co-spectral origin of the well-recognized laws of the wall, the resistance equation, and the turbulence intensities by portraying the typical momentum transfer mechanism of eddies in a turbulent flow. Next, we focus on the scaling laws of key fluvial processes derived from the perspective of the PTT, enlightening their physical insight and ability to judge how far the so-called empirical formulas can be used with confidence. The PTT has been able to disclose the origin of several primeval empirical formulas that have been used over many years without having any theoretical clarification and confirmation. Finally, we make an effort to describe some unsolved issues to be resolved as a future scope of research.
Grand Unification as a Bridge Between String Theory and Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Pati, Jogesh C.
2006-06-09
In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Grand Unification as a Bridge Between String Theory and Phenomenology
Pati, Jogesh C.
In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Grand Unification as a Bridge Between String Theory and Phenomenology
International Nuclear Information System (INIS)
Pati, J
2006-01-01
In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2) L x SU(2) R x SU(4) c or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism
Nucleon-nucleon theory and phenomenology. Progress report and renewal proposal
International Nuclear Information System (INIS)
Signell, P.
1981-01-01
Progress is outlined on five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction with the new dramatically altered ππ s-wave interaction and using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly, and determining which phases are given by theory at which energies; (4) the introduction of our K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated and verified permanent nucleon-nucleon data bank in the 0 to 1200 MeV range that can be used by all nucleon-nucleon researchers (or anyone else) via Telenet dial-in and by means of a published compendium
Space-Time, Phenomenology, and the Picture Theory of Language
Grelland, Hans Herlof
To estimate Minkowski's introduction of space-time in relativity, the case is made for the view that abstract language and mathematics carries meaning not only by its connections with observation but as pictures of facts. This view is contrasted to the more traditional intuitionism of Hume, Mach, and Husserl. Einstein's attempt at a conceptual reconstruction of space and time as well as Husserl's analysis of the loss of meaning in science through increasing abstraction is analysed. Wittgenstein's picture theory of language is used to explain how meaning is conveyed by abstract expressions, with the Minkowski space as a case.
Phenomenological aspects of theories for baryon and lepton number violation
International Nuclear Information System (INIS)
Duerr, Michael
2013-01-01
The renormalizable couplings of the Standard Model are invariant under two accidental global symmetries, which correspond to conserved baryon and lepton numbers. In this thesis, we discuss possible roles of these symmetries in extension of the Standard Model. Two approaches are considered: explicit violation of lepton number by two units in the renormalizable couplings of the Lagrangian, and promotion of the global symmetries to local gauge symmetries that are spontaneously broken. The former approach directly leads to Majorana neutrino masses and neutrinoless double beta decay. We discuss the interplay of the contributions to this decay in a one-loop neutrino mass model, the colored seesaw mechanism. We find that, depending on the parameters of the model, both the light Majorana neutrino exchange and the contribution of the new colored particles may be dominant. Additionally, an experimental test is presented, which allows for a discrimination of neutrinoless double beta decay from unknown nuclear background using only one isotope. In the latter approach, fascinating implications originate from the attempt to write down an anomaly-free and spontaneously broken gauge theory for baryon and lepton numbers, such as an automatically stable dark matter candidate. When gauging the symmetries in a left-right symmetric setup, the same fields that allow for an anomaly-free theory generate neutrino masses via the type III seesaw mechanism.
A phenomenological theory for polarization flop in spiral multiferroic ...
Indian Academy of Sciences (India)
found to be in good agreement with the experiment. This could be an ... DM energy and a com- petition between DM interaction and other interactions results in polarization flop. ... In the case of soft or amorphous materials character- ized by a ...
Study of theory and phenomenology of some classes of family symmetry and unification models
International Nuclear Information System (INIS)
Kane, Gordon L.; King, Steve F.; Peddie, Iain N.R.; Velasco-Sevilla, Liliana
2005-01-01
We review and compare theoretically and phenomenologically a number of possible family symmetries, which when combined with unification, could be important in explaining quark, lepton and neutrino masses and mixings, providing new results in several cases. Theoretical possibilities include abelian or non-abelian, symmetric or non symmetric Yukawa matrices, Grand Unification or not. Our main focus is on anomaly-free U(1) family symmetry combined with SU(5) unification, although we also discuss other possibilities. We provide a detailed phenomenological fit of the fermion masses and mixings for several examples, and discuss the supersymmetric flavour issues in such theories, including a detailed analysis of lepton flavour violation. We show that it is not possible to quantitatively and decisively discriminate between these different theoretical possibilities at the present time
FIFTY YEARS OF YANG-MILLS THEORIES: A Phenomenological Point of View
de Rújula, Alvaro
On the occasion of the celebration of the first half-century of Yang-Mills theories, I am contributing a personal recollection of how the subject, in its early times, confronted physical reality, that is, its "phenomenology". There is nothing original in this work, except, perhaps, my own points of view. But I hope that the older practitioners of the field will find here grounds form nostalgia, or good reasons to disagree with me. Younger addicts may learn that history does not resemble at all what is reflected in current textbooks: it was orders of magnitude more fascinating.
Fifty years of Yang-Mills Theories: a phenomenological point of view
De Rújula, Alvaro
2005-01-01
On the occasion of the celebration of the first half-century of Yang--Mills theories, I am contributing a personal recollection of how the subject, in its early times, confronted physical reality, that is, its "phenomenology". There is nothing original in this work, except, perhaps, my own points of view. But I hope that the older practitioners of the field will find here grounds for nostalgia, or good reasons to disagree with me. Younger addicts may learn that history does not resemble at all what is reflected in current textbooks: it was orders of magnitude more fascinating.
Review Essay: "To Go to the Body." Advances in Phenomenological-sociological Identity Theory
Directory of Open Access Journals (Sweden)
Thorsten Berndt
2003-09-01
Full Text Available Starting with a critique of conventional research on identity, which neglects the body as a fundamental entity of identity, GUGUTZER develops a theoretical framework from the works of PLESSNER, MERLEAU-PONTY, SCHMITZ and BOURDIEU. From this framework GUGUTZER has carried out an empirical study on the relationship between identity on the one hand, and "to have a body" ("Körper"/ "being a body" ("Leib" on the other, which is PLESSNER's basic differentiation. The study employs the methodology of Grounded Theory. Interviews were conducted with ballet dancers, monks and nuns, grounded and supplemented with observations. The results bring the complex of "being a body" ("Leib" and bodily sensation into a central relationship to identity, in which the use of the body is seen under the aspect of self-evaluation, memory, control and borderline situations. GUGUTZER's book is an important contribution to the phenomenological-sociological theory of identity. URN: urn:nbn:de:0114-fqs0303101
Khattar, Randa
What do the new sciences of complex relationality offer education? This work draws on complexity theory, neurological understandings of biology and phenomenology, and attentiveness to study what the new sciences might offer education and the possibilities of a pedagogical understanding of embodied knowing. Complexity theory provides understandings of local-global relationality, self-organization, far-from-equilibrium conditions, and emergent dynamics that are important for describing pedagogical relationality. In itself, however, complexity theory is lacking an attention to issues of embodiment that respond directly to an ethical understanding of relationality. Phenomenology provides important views on the human experience of perception, for example, Merleau-Ponty's, whose research opens up possibilities for embodiment and attentiveness. At the level of pedagogical practice, I will pose, following biologists Humberto Maturana and Francisco Varela's autopoietic self-making understanding of life, that attentiveness perspectives, which have been largely absent from western pedagogical theory and practice, are crucial to promoting embodied knowing for education. Maturana and Varela's autopoietic perspective offers an embodied understanding of living---and therefore education---which opens up necessary attentive spaces to listen to one another in non judgmental awareness in the present moment of experience. I offer insights into a relationally complex conception of education drawing on this biological and autopoietically-grounded framework. These insights are framed in the context of five clusters of relations: (1) emergence, far-from-equilibrium, and local-global relationality; (2) autopoietic autonomy, structural determination and sensory-motor coupling; (3) triggering perturbations, structural plasticity, and autopoietic organization; (4) knowing as adequate action, domains of interaction, and blind spots; and (5) attentiveness and responsive relationality. Four
International Nuclear Information System (INIS)
Slowinski, B.
1987-01-01
A description of a simple phenomenological model of electromagnetic cascade process (ECP) initiated by high-energy gamma quanta in heavy absorbents is given. Within this model spatial structure and fluctuations of ionization losses of shower electrons and positrons are described. Concrete formulae have been obtained as a result of statistical analysis of experimental data from the xenon bubble chamber of ITEP (Moscow)
Soft gluon resummation of Drell-Yan rapidity distributions: Theory and phenomenology
International Nuclear Information System (INIS)
Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni
2011-01-01
We examine critically the theoretical underpinnings and phenomenological implications of soft gluon (threshold) resummation of rapidity distributions at a hadron collider, taking Drell-Yan production at the Tevatron and the LHC as a reference test case. First, we show that in perturbative QCD soft gluon resummation is necessary whenever the partonic (rather the hadronic) center-of-mass energy is close enough to threshold, and we provide tools to assess when resummation is relevant for a given process. Then, we compare different prescriptions for handling the divergent nature of the series of resummed perturbative corrections, specifically the minimal and Borel prescriptions. We assess the intrinsic ambiguities of resummed results, both due to the asymptotic nature of their perturbative expansion, and to the treatment of subleading terms. Turning to phenomenology, we introduce a fast and accurate method for the implementation of resummation with the minimal and Borel prescriptions using an expansion on a basis of Chebyshev polynomials. We then present results for W and Z production as well as both high- and low-mass dilepton pairs at the LHC, and show that soft gluon resummation effects are generally comparable in size to NNLO corrections, but sometimes affected by substantial ambiguities.
Low-energy phenomenology of a realistic composite model
International Nuclear Information System (INIS)
Korpa, C.; Ryzak, Z.
1986-01-01
The low-energy limit of the strongly coupled standard model (Abbott-Farhi composite model) is analyzed. The effects of the excited W isotriplet and isoscalar bosons are investigated and compared with experimental data. As a result, constraints on parameters (masses, coupling constants, etc.) of these vector bosons are obtained. They are not severe enough (certain cancellations are possible) to exclude the model on experimental basis
Phenomenology of the squeezed hadronic correlations at RHIC energies
International Nuclear Information System (INIS)
Padula, Sandra S.; Dudek, Danuce M.; Socolowski, Otavio Jr.
2012-01-01
We briefly review the basic theoretical results on bosonic back-to-back correlations (bBBC) and compare our predictions with the first experimental search for squeezed correlations of K + K - pairs, performed by PHENIX. The hadronic squeezed correlations are very sensitive to the functional form of the time emission distribution. The comparison is made for three different kaon time distributions. From such comparison we show that the outcome of the experimental search may still be inconclusive but it does not exclude the existence of squeezing effects on hadrons with in-medium modified masses already at RHIC energies. (author)
Phenomenological consequences of supersymmetry
International Nuclear Information System (INIS)
Hinchliffe, I.; Littenberg, L.
1982-01-01
This paper deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. The paper represents the work of a subgroup at the meeting. The authors are concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/K-bar/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed
Energy Technology Data Exchange (ETDEWEB)
Andronic, Anton
2014-07-15
This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.
International Nuclear Information System (INIS)
Andronic, Anton
2014-07-01
This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.
Theory of low energy collisions; Theorie des collisions a basse energie
Energy Technology Data Exchange (ETDEWEB)
Sparenberg, J.M. [Universite Libre de Bruxelles, Bruxelles (Belgium)
2007-07-01
The basic notions of low-energy quantum scattering theory are introduced (cross sections, phase shifts, resonances,... ), in particular for positively-charged particles, in view of nuclear physics applications. An introduction to the reaction-matrix (or R-matrix) method is then proposed, as a tool to both solve the Schroedinger equation describing collisions and fit experimental data phenomenologically. Most results are established without proof but with a particular emphasis on their intuitive understanding and their possible analogs in classical mechanics. Several choices are made consequently: (i) the text starts with a detailed reminder of classical scattering theory, (ii) the concepts are first introduced in ideal theoretical cases before going to the more complicated formalism allowing the description of realistic experimental situations, (iii) a single example is used throughout nearly the whole text, (iv) all concepts are established for the elastic scattering of spinless particles, with only a brief mention of their multichannel generalization at the end of the text. (author)
Horizontal unification as the phenomenology of the theory of open-quotes everythingclose quotes
International Nuclear Information System (INIS)
Sakharov, A.S.; Khlopov, M.Yu.
1994-01-01
It is shown that the extension of the standard model of electroweak interaction and QCD, which includes spontaneously broken horizontal local gauge symmetry, provides a quantitatively definite phenomenological description for almost all phenomena in particle physics and modern cosmology. In this model, the predictions of the standard model are combined with a description of the mass spectrum and mixing of quarks and leptons, and with the predictions of the neutrino mass spectrum and parameters of an invisible axion. This model also gives a quantitatively definite physical basis for the theory of inflation, baryosynthesis, and dark matter of the Universe. A complex analysis of physical, cosmological, and astrophysical predictions of the model singles out a narrow range of allowed values of parameters corresponding to the open-quotes effectiveclose quotes mixed cold-hot version of the theory describing the formation of the structure of the Universe. The combination of experimental and astronomical tests of the model that ensure its unambiguous verification is indicated. 34 refs
Developments in high energy theory
Indian Academy of Sciences (India)
journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).
Liao, Y
2003-01-01
A framework was recently proposed for doing perturbation theory on non-commutative (NC) spacetime. It preserves the unitarity of the S matrix and differs from the naive, popular approach already at the lowest order in perturbation when time does not commute with space. In this work, we investigate its phenomenological implications at linear colliders, especially the TESLA at DESY, through the processes of e sup + e sup --> mu sup +mu sup - ,H sup + H sup - ,H sup 0 H sup 0. We find that some NC effects computed previously are now modified and that there are new processes which now exhibit NC effects. Indeed, the first two processes get corrected at tree level as opposed to the null result in the naive approach, while the third one coincides with the naive result only in the low energy limit. The impact of the earth's rotation is incorporated. The NC signals are generally significant when the NC scale is comparable to the collider energy. If this is not the case, the non-trivial azimuthal angle distribution an...
3D phenomenological constitutive modeling of shape memory alloys based on microplane theory
International Nuclear Information System (INIS)
Mehrabi, R; Kadkhodaei, M
2013-01-01
This paper concerns 3D phenomenological modeling of shape memory alloys using microplane theory. In the proposed approach, transformation is assumed to be the only source of inelastic strain in 1D constitutive laws considered for any generic plane passing through a material point. 3D constitutive equations are derived by generalizing the 1D equations using a homogenization technique. In the developed model, inelastic strain is explicitly stated in terms of the martensite volume fraction. To compare this approach with incremental constitutive models, such an available model is applied in its 1D integral form to the microplane formulation, and it is shown that both the approaches produce similar results for different uniaxial loadings. A nonproportional loading is then studied, and the results are compared with those obtained from an available model in which the inelastic strain is divided into two separate portions for transformation and reorientation. A good agreement is seen between the results of the two approaches, indicating the capability of the proposed microplane formulation in predicting reorientation phenomena in shape memory alloys. The results of the model are compared with available experimental results for a nonproportional loading path, and a good agreement is seen between the findings. (paper)
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Meurice, Yannick L [Univ. of Iowa, Iowa City, IA (United States); Reno, Mary Hall [Univ. of Iowa, Iowa City, IA (United States)
2016-06-23
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments and to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
International Nuclear Information System (INIS)
Meurice, Yannick L; Reno, Mary Hall
2016-01-01
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments and to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.
Contribution to the phenomenological study of meson-baryon reactions at high energy
International Nuclear Information System (INIS)
Girardi, Georges.
The report is divided into two sections corresponding to the two approaches used in the study of 2-body reactions. Part one is devoted to the building of a new phenomenological model, calling on a wide range of theoretical concepts such as duality, quark diagrams, SU(3) symmetry etc... The model thus established is compared with experimental results and seems to resolve certain difficulties which other models cannot avoid. In part two the approach adopted is more typically phenomenological, involving analyses in amplitudes which amounts to the consultation of experience, avoiding, as far as possible, the use of over-specific theoretical concepts. The various results obtained certain regularities in the amplitudes, evidence of underlaying physical laws as yet little understood. From this study an empirical relationship is proposed for two-body scattering amplitudes. This relationship, which considerably simplifies the formulation of phenomenological models, has already been used successfully to study certain processes. The results of these two approaches are shown to agree, which points up the relevance of the physical images used and helps in the understanding of high-energy hadron interactions [fr
Superstring inspired models and phenomenology
International Nuclear Information System (INIS)
Ross, G.G.
1987-01-01
An investigation of the effective low-energy theory resulting from the superstring is given. The possible light gauge and chiral super-multiplet structure is considered and a specific model leading to a SU(3)xSU(2)xU(1) gauge group is presented. Phenomenological implications for such models are briefly discussed
Carena, M S; Herfurth, F; Ames, F; Audi, G; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Kuckein, M; Lunney, M D; Moore, R B; Oinonen, M; Rodríguez, D; Sauvan, E; Scheidenberger, C
2003-01-01
Precision electroweak data presently-favors a weakly-coupled Higgs sector as the mechanism responsible for electroweak symmetry breaking. Low-energy supersymmetry provides a natural framework for weakly-coupled elementary scalars. In this review, we summarize the theoretical properties of the Standard Model (SM) Higgs boson and the Higgs sector of the minimal super-symmetric extension of the Standard Model (MSSM). We then survey the phenomenology of the SM and MSSM Higgs bosons at the Tevatron, LHC and a future e**+e**- linear collider. We focus on the Higgs discovery potential of present and future colliders and stress the importance of precision measurements of Higgs boson properties. 459 Refs.31 The Penning trap mass spectrometer ISOLTRAP is a facility for high- precision mass measurements of short-lived radioactive nuclei installed at ISOLDE/CERN in Geneva. More than 200 masses have been measured with relative uncertainties of 1 multiplied by 10**-**7 or even close to 1 multiplied by 10**-**8 in special c...
Exact vacuum energy of orbifold lattice theories
International Nuclear Information System (INIS)
Matsuura, So
2007-01-01
We investigate the orbifold lattice theories constructed from supersymmetric Yang-Mills matrix theories (mother theories) with four and eight supercharges. We show that the vacuum energy of these theories does not receive any quantum correction perturbatively
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-01-01
Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)
New theory of radiative energy transfer in free electromagnetic fields
International Nuclear Information System (INIS)
Wolf, E.
1976-01-01
A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon
Phenomenological theory of size effects in ultrafine ferroelectric particles (PbTiO3-type)
International Nuclear Information System (INIS)
Jiang, B.; Bursill, L.A.
1998-01-01
A new phenomenological model is proposed and discussed to study the size effects on phase transitions in PbTiO 3 -type ferroelectric particles. This model, by taking size effects on the phenomenological Landau-Ginzburg-Devonshire coefficients into consideration, can successfully explain the size effects on Curie temperature, c/a ratio, thermal and dielectric properties of lead-titanate-type ferroelectric particles. Theoretical and experimental results for PbTiO 3 fine particles are also compared and discussed. The relationship between the current model and the model of Zhong et al (Phys. Rev. B 50, 698 (1994)) is also presented. (authors)
International Nuclear Information System (INIS)
Chun, Moon-Hyun; Ahn, Kwang-Il
1991-01-01
Fuzzy set theory provides a formal framework for dealing with the imprecision and vagueness inherent in the expert judgement, and therefore it can be used for more effective analysis of accident progression of PRA where experts opinion is a major means for quantifying some event probabilities and uncertainties. In this paper, an example application of the fuzzy set theory is first made to a simple portion of a given accident progression event tree with typical qualitative fuzzy input data, and thereby computational algorithms suitable for application of the fuzzy set theory to the accident progression event tree analysis are identified and illustrated with example applications. Then the procedure used in the simple example is extended to extremely complex accident progression event trees with a number of phenomenological uncertainty issues, i.e., a typical plant damage state 'SEC' of the Zion Nuclear Power Plant risk assessment. The results show that the fuzzy averages of the fuzzy outcomes are very close to the mean values obtained by current methods. The main purpose of this paper is to provide a formal procedure for application of the fuzzy set theory to accident progression event trees with imprecise and qualitative branch probabilities and/or with a number of phenomenological uncertainty issues. (author)
USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY
International Nuclear Information System (INIS)
Chen Yun; Zhu Zonghong; Alcaniz, J. S.; Gong Yungui
2010-01-01
By assuming a phenomenological form for the ratio of the dark energy and matter densities ρ X ∝ ρ m a ξ , we discuss the cosmic coincidence problem in light of current observational data. Here, ξ is a key parameter to denote the severity of the coincidence problem. In this scenario, ξ = 3 and ξ = 0 correspond to ΛCDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 X = 0, where ω X is the equation of state of the dark energy component, whereas the inequality ξ + 3ω X ≠ 0 represents non-standard cosmology. We place observational constraints on the parameters (Ω X,0 , ω X , ξ) of this model, where Ω X,0 is the present value of density parameter of dark energy Ω X , by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get Ω X,0 = 0.72 ± 0.02, ω X = -0.98 ± 0.07, and ξ = 3.06 ± 0.35 at 68.3% confidence level. The result shows that the ΛCDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.
Energy Technology Data Exchange (ETDEWEB)
Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina
2005-03-03
The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).
International Nuclear Information System (INIS)
Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina
2005-01-01
The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B)
Pomeron in perturbative QCD - its elementary theory and possible phenomenology at HERA
International Nuclear Information System (INIS)
Kwiecinski, J.
1992-04-01
Theoretical ideas concerning the Pomeron in perturbative QCD are reviewed. The Lipatov equation with asymptotic freedom effects taken into account is recalled and the corresponding spectrum of eigenvalues controlling the bare Pomeron intercept analysed. Possible phenomenological implications of the perturbative QCD Pomeron for deep inelastic scattering at the HERA ep collider are briefly discussed. 9 figs., 49 refs. (author)
Hong, Sungwoo
Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy
Froggatt-Nielsen meets Mordell-Weil: a phenomenological survey of global F-theory GUTs with U(1)s
International Nuclear Information System (INIS)
Krippendorf, Sven; Schäfer-Nameki, Sakura; Wong, Jin-Mann
2015-01-01
In F-theory, U(1) gauge symmetries are encoded in rational sections, which generate the Mordell-Weil group of the elliptic fibration of the compactification space. Recently the possible U(1) charges for global SU(5) F-theory GUTs with smooth rational sections were classified http://dx.doi.org/10.1007/JHEP09(2015)144. In this paper we utilize this classification to probe global F-theory models for their phenomenological viability. After imposing an exotic-free MSSM spectrum, anomaly cancellation (related to hypercharge flux GUT breaking in the presence of U(1) gauge symmetries), absence of dimension four and five proton decay operators and other R-parity violating couplings, and the presence of at least the third generation top Yukawa coupling, we generate the remaining quark and lepton Yukawa textures by a Froggatt-Nielsen mechanism. In this process we require that the dangerous couplings are forbidden at leading order, and when re-generated by singlet vevs, lie within the experimental bounds. We scan over all possible configurations, and show that only a small class of U(1) charge assignments and matter distributions satisfy all the requirements. The solutions give rise to the exact MSSM spectrum with realistic quark and lepton Yukawa textures, which are consistent with the CKM and PMNS mixing matrices. We also discuss the geometric realization of these models, and provide pointers to the class of elliptic fibrations with good phenomenological properties.
Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei
International Nuclear Information System (INIS)
Gyulassy, M.
1993-01-01
Progress in the areas of pQCD radiative processes in dense matter, QCD transport theories to describe the evolution of nonequilibrium phenomena in dense matter, and the development and testing of phenomenological models of high-energy nuclear collisions is summarized. The evolution of the total energy density of quarks and gluons with minijet initial conditions at RHIC energy is shown for Au+Au
International Nuclear Information System (INIS)
Casten, R.F.; Zamfir, N.V.
1992-01-01
Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples
Directory of Open Access Journals (Sweden)
Forbes Dorothy
2009-05-01
Full Text Available Abstract Background As an inherently human process fraught with subjectivity, dynamic interaction, and change, social interaction knowledge translation (KT invites implementation scientists to explore what might be learned from adopting the academic tradition of social constructivism and an interpretive research approach. This paper presents phenomenological investigation of the second cycle of a participatory action KT intervention in the home care sector to answer the question: What is the nature of the process of implementing KT through social interaction? Methods Social phenomenology was selected to capture how the social processes of the KT intervention were experienced, with the aim of representing these as typical socially-constituted patterns. Participants (n = 203, including service providers, case managers, administrators, and researchers organized into nine geographically-determined multi-disciplinary action groups, purposefully selected and audiotaped three meetings per group to capture their enactment of the KT process at early, middle, and end-of-cycle timeframes. Data, comprised of 36 hours of transcribed audiotapes augmented by researchers' field notes, were analyzed using social phenomenology strategies and authenticated through member checking and peer review. Results Four patterns of social interaction representing organization, team, and individual interests were identified: overcoming barriers and optimizing facilitators; integrating 'science push' and 'demand pull' approaches within the social interaction process; synthesizing the research evidence with tacit professional craft and experiential knowledge; and integrating knowledge creation, transfer, and uptake throughout everyday work. Achieved through relational transformative leadership constituted simultaneously by both structure and agency, in keeping with social phenomenology analysis approaches, these four patterns are represented holistically in a typical
Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Sakai, Hironori; Matsuda, Tatsuma D.; Yamamoto, Etsuji
2017-07-01
We have carried out an analysis of magnetic data in 69 uranium, 7 neptunium, and 4 plutonium ferromagnets with the spin fluctuation theory developed by Takahashi [Y. Takahashi, J. Phys. Soc. Jpn. 55, 3553 (1986), 10.1143/JPSJ.55.3553]. The basic and spin fluctuation parameters of the actinide ferromagnets are determined and the applicability of the spin fluctuation theory to actinide 5 f system has been discussed. Itinerant ferromagnets of the 3 d transition metals and their intermetallics follow a generalized Rhodes-Wohlfarth relation between peff/ps and TC/T0 , viz., peff/ps∝(TC/T0) -3 /2 . Here, ps, peff, TC, and T0 are the spontaneous and effective magnetic moments, the Curie temperature, and the width of spin fluctuation spectrum in energy space, respectively. The same relation is satisfied for TC/T0uranium and neptunium ferromagnets below (TC/T0)kink=0.32 ±0.02 , where a kink structure appears in relation between the two quantities. ps increases more weakly above (TC/T0)kink. A possible interpretation with the TC/T0 dependence of ps is given.
International Nuclear Information System (INIS)
Laidet, J.
2013-01-01
As the value of the longitudinal momentum carried by partons in a ultra-relativistic hadron becomes small, one observes a growth of their density. When the parton density becomes close to a value of order 1/α s , it does not grow any longer, it saturates. These high density effects seem to be well described by the Color Glass Condensate effective field theory. On the experimental side, the LHC provides the best tool ever for reaching the saturated phase of hadronic matter. For this reason saturation physics is a very active branch of QCD during these past and coming years since saturation theories and experimental data can be compared. I first deal with the phenomenology of the proton-lead collisions performed in winter 2013 at the LHC and whose data are about to be available. I compute the di-gluon production cross-section which provides the simplest observable for funding quantitative evidences of saturation in the kinematic range of the LHC. I also discuss the limit of the strongly correlated final state at large transverse momenta and by the way, generalize parton distribution to dense regime. The second main topic is the quantum evolution of the quark and gluon spectra in nucleus-nucleus collisions having in mind the proof of its universal character. This result is already known for gluons and here I detail the calculation carefully. For quarks universality has not been proved yet but I derive an intermediate leading order to next-to leading order recursion relation which is a crucial step for extracting the quantum evolution. Finally I briefly present an independent work in group theory. I detail a method I used for computing traces involving an arbitrary number of group generators, a situation often encountered in QCD calculations. (author) [fr
Phenomenology of SU(5 low-energy realizations: The diphoton excess and Higgs flavor violation
Directory of Open Access Journals (Sweden)
Andrea Di Iura
2016-10-01
Full Text Available We discuss different SU(5 low-energy realizations and illustrate their use with the diphoton excess and Higgs flavor violation, which require new physics at the TeV scale. In particular, we study two scenarios for a 750 GeV resonance: in the first one the resonance belongs to the adjoint of SU(5, being either an SU(2L singlet or a triplet, while in the second case the signal is due to the CP-even and CP-odd states of a new SU(2L Higgs doublet belonging to a 45H or a 70H representations, giving rise to a two-Higgs doublet model at low energies. We study the fine-tuning needed for the desired members of the multiplets to be light enough, while having the rest at the GUT scale. In these scenarios, the production and decay into photons of the new resonance are mediated by the leptoquarks (LQ present in these large SU(5 representations. We analyze the phenomenology of such scenarios, focusing on the most relevant predictions that can help to disentangle the different models, like decays into gauge bosons, Standard Model (SM fermions and LQs pair production. In the case of the 45H (the Georgi–Jarlskog model, we also study the possibility to have Higgs flavor violation. We find that Bs mixing limits (in addition to τ→μγ always imply that Br(h→τμ,bs≲10−5.
International Nuclear Information System (INIS)
Ziino, G.
1989-01-01
We assume a strictly invariant definition of the Dirac parity operator under fermion ↔ antifermion exchange. We see that the opposite-intrinsic-parity condition then requires two opposite-mass Dirac equations for the fermion and the antifermion. This leads us to introduce an asymptotically left-handed (fermion) and right-handed (antifermion) chiral field, as just an alternative basis in the internal space spanned by the new pair of charge-conjugate Dirac fields. Hence a dual intrinsic model of a spin - 1/2 massive fermion is drawn: it predicts the coexistence of two anticommuting general varieties of conserved charges, namely a scalar variety, responsible for parity-invariant phenomenology, plus a pseudoscalar one, responsible for chiral phenomenology. In this light, CP-symmetry is seen to be nothing but P-symmetry; and a spontaneous CP-violation mechanism is also derived, that should work in any single process occurring via both scalar-and pseudoscalar-charge interactions. We show, at last, that our scheme automatically yields Weyl's one for a merely left-handed neutrino and a merely right-handed antineutrino, further assigning them the special meaning of pure pseudoscalar-charge objects. Some general consequences as regards magnetic monopoles are briefly discussed too
Phenomenological aspects of mirage mediation
Energy Technology Data Exchange (ETDEWEB)
Loewen, Valeri
2009-07-15
We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)
Phenomenological aspects of mirage mediation
International Nuclear Information System (INIS)
Loewen, Valeri
2009-07-01
We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)
Willis, Danny G; Grace, Pamela J
2011-01-01
This article uses an exemplar of phenomenological research of middle school boys, experiences of being bullied as applied philosophy and science to illuminate the intersection of the moral and scientific realms for theory-oriented research and practice. As a consequence, a clear foundation for advancing nursing science and envisioning innovative nursing practice with boys who experience being bullied is provided. Included is a weaving together of phenomenological perspective for research and practice, Roger's (nursing) Science of Unitary Human Beings (SUHB), and SUHB-derived middle range theories of self-transcendence and power.
A phenomenological study of γγ→π+π- at low energies
International Nuclear Information System (INIS)
Seddiki, A.
1991-10-01
A phenomenological study of the mesonic resonance production in photon-photon scattering is proposed. The various theoretical cross-section models for the charged-pion reaction (γγ →π + π - ) are evaluated and compared with recent experimental data from the TPC/2γ Collaboration. Fixed-t dispersion relations are used in the resonance dominance approximation, where the resonances are expressed by Breit-Wigner formalism. In this study, that relates to the low-energy range (up to the f 2 (1270)), the validity of the Vector Meson Dominance hypothesis is tested through its implementation to provide missing data on the b 1 -meson in our bid to evaluate the crossed-channel process (γπ +- →γπ +- ) contribution to the direct channel. The unitary concept and its application are estimated and discussed as well. New predictions of the partial decay width Γ(f 2 →γγ) are thus proposed as a means of gauging the adequacy of the various cross-section models to describe satisfactorily the experimental data on (γγ→π + π - ). (author)
Reid, Katherine; Alberti, Hugh
2018-04-23
The ageing population and push to community care has significantly increased the workload of General Practitioners (GPs) in the UK and internationally. In an attempt to tackle this, NHS England has promised 5000 more GPs by 2020/21; however, recruitment is in crisis with GP training posts remaining unfilled. Little research has been carried out to assess the fundamental questions of what medical students' perceptions of General Practice are and what shapes their perceptions at medical school. We aimed to explore medical students' conceptualisations of being a GP and specifically the role of the medical school in shaping their perceptions. Two focus groups of year one and year four medical students were undertaken using an interpretive phenomenological approach. Our study has revealed that medical students perceive General Practice to lack prestige and challenge. These perceptions come, at least in part, from a process of socialisation within medical school, whereby medical students internalise and adopt their role models' perceptions and values, and the values portrayed by the hidden curriculum in their medical school culture. Perceived external pressures to pursue a career in General Practice can have a negative influence and medical schools should be made aware of this.
An alternative treatment of phenomenological higher-order strain-gradient plasticity theory
DEFF Research Database (Denmark)
Kuroda, Mitsutoshi; Tvergaard, Viggo
2010-01-01
strain is discussed, applying a dislocation theory-based consideration. Then, a differential equation for the equivalent plastic strain-gradient is introduced as an additional governing equation. Its weak form makes it possible to deduce and impose extra boundary conditions for the equivalent plastic...... strain. A connection between the present treatment and strain-gradient theories based on an extended virtual work principle is discussed. Furthermore, a numerical implementation and analysis of constrained simple shear of a thin strip are presented....
Energy in the Einstein-aether theory
International Nuclear Information System (INIS)
Eling, Christopher
2006-01-01
We investigate the energy of a theory with a unit vector field (the aether) coupled to gravity. Both the Weinberg and Einstein type energy-momentum pseudotensors are employed. In the linearized theory we find expressions for the energy density of the 5 wave modes. The requirement that the modes have positive energy is then used to constrain the theory. In the fully nonlinear theory we compute the total energy of an asymptotically flat spacetime. The resulting energy expression is modified by the presence of the aether due to the nonzero value of the unit vector at infinity and its 1/r falloff. The question of nonlinear energy positivity is also discussed, but not resolved
Theory and phenomenology of Planckian interacting massive particles as dark matter
DEFF Research Database (Denmark)
Garny, Mathias; Palessandro, Andrea; Sandora, McCullen
2018-01-01
, independent of the spin of the PIDM. We also consider the specific realisation of the PIDM as the Kaluza-Klein excitation of the graviton in orbifold compactifications of string theory, as well as in models of monodromy inflation and in Higgs inflation. Finally we discuss the possibility of indirect detection...
LENUS (Irish Health Repository)
Flood, Anne
2012-01-31
Phenomenology is a philosophic attitude and research approach. Its primary position is that the most basic human truths are accessible only through inner subjectivity, and that the person is integral to the environment. This paper discusses the theoretical perspectives related to phenomenology, and includes a discussion of the methods adopted in phenomenological research.
The orbifolder: A tool to study the low energy effective theory of heterotic orbifolds
International Nuclear Information System (INIS)
Nilles, H.P.; Wingerter, A.
2011-10-01
The orbifolder is a program developed in C ++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum-configurations. (orig.)
The orbifolder. A tool to study the low energy effective theory of heterotic orbifolds
Energy Technology Data Exchange (ETDEWEB)
Nilles, H P [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, S [Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico). Dept. of Theoretical Physics; Vaudrevange, P K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Technische Univ. Muenchen, Garching (Germany). Physik-Department; Arnold-Sommerfeld-Center for Theoretical Physics, Muenchen (Germany); Wingerter, A [CNRS/IN2P3, INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie
2011-10-15
The orbifolder is a program developed in C{sup ++} that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum-configurations. (orig.)
Paths to dark energy theory and observation
Valtonen, Mauri; Chernin, Arthur D; Byrd, Gene
2012-01-01
This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensivewith rigorous mathematical theory and relevant astronomical observations discussed in context.The book treats the background and history starting with the new-found importance of Einstein's cosmological constant (proposed long ago for the opposite purpose) in dark energy formulation, as well as the frontiers of dark energy.
International Nuclear Information System (INIS)
Brevik, I.
1983-01-01
The canonical quantum theory for an electromagnetic field within an isotropic nondispersive medium, whose permittivity, epsilon, and permeability μ satisfy the condition epsilonμ=1, is developed. This condition is found to simplify the electromagnetic formalism considerably and is of interest not only to quantum electrodynamics (QED) but also to quantum chromodynamics (QDC) in view of the formal analogy existing between these two theories to the zero-order in the gauge coupling constant. After giving a survey of the general formalism, this paper discusses appropriate modifications of known experiments in optics: the Ashkin-Dziedzic pressure experiment (1973), the Barlow experiment (1912), and the levitation experiment of Ashkin (1970) and others. Finally, a calculation is given of Casimir (i.e., zero-point) surface force acting on one of two spherical interfaces separating three media from each other, under certain simplifying conditions
Theory of coherent resonance energy transfer
International Nuclear Information System (INIS)
Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.
2008-01-01
A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.
A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.
Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S
2017-06-01
The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were
Phenomenology of Baryon Resonances
Energy Technology Data Exchange (ETDEWEB)
Doring, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Landay, Justin [George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Molina, Raquel [Univ. of Sao Paulo (Brazil); Ronchen, Deborah [Univ. of Bonn (Germany)
2018-04-01
Results for light baryon spectroscopy by different collaborations and the state of the art in the subfield is reviewed. Highlights contain common efforts of different phenomenology groups and the impact of recent high-precision data from ELSA, JLab, MAMI, and other facilities. Questions will be addressed, on one side, of how to proceed to reach conclusive answers in baryon spectroscopy, and, on the other side, how phenomenology can be connected to theory in a meaningful way.
Anatomy and phenomenology of flavor and CP violation in supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Altmannshofer, Wolfgang
2010-07-20
The main subject of this PhD thesis is a comprehensive and systematic analysis of flavor and CP violating low energy processes in the framework of the MSSM, the minimal supersymmetric extension of the Standard Model. Supersymmetric (SUSY) models are among the best motivated and most thoroughly analyzed New Physics (NP) models. The new degrees of freedom predicted by Supersymmetry are expected to have masses of the order of the TeV scale and the direct search for these particles is one of the major goals at the LHC. A complementary strategy to probe the MSSM is given by the analysis of low energy high-precision observables, that can be modified through virtual effects of the new degrees of freedom. Of particular importance in this respect are so-called Flavor Changing Neutral Current (FCNC) processes that, forbidden in the Standard Model at the tree level, are highly sensitive probes of the flavor structure of NP models. We first analyze model independently low energy processes that show high sensitivity to the new sources of flavor and CP violation contained in the MSSM. Next, we discuss in detail the rich flavor structure of the MSSM and the implied SUSY contributions to FCNC and CP violating observables both in the low and high tan {beta} regime. In fact, well measured low energy observables lead to remarkably strong constraints on the MSSM parameter space, which is often referred to as the SUSY flavor problem. We outline possibilities to control dangerously large SUSY effects in such observables and analyze the implied predictions for those low energy processes that are not measured with high precision, yet. We consider both the Minimal Flavor Violating MSSM and SUSY models based on abelian and non-abelian flavor symmetries that show representative flavor structures in the soft SUSY breaking terms. We identify the distinctive patterns of SUSY effects in the low energy observables, focussing in particular on CP violation in the b {yields} s{gamma} transition, the
Anatomy and phenomenology of flavor and CP violation in supersymmetric theories
International Nuclear Information System (INIS)
Altmannshofer, Wolfgang
2010-01-01
The main subject of this PhD thesis is a comprehensive and systematic analysis of flavor and CP violating low energy processes in the framework of the MSSM, the minimal supersymmetric extension of the Standard Model. Supersymmetric (SUSY) models are among the best motivated and most thoroughly analyzed New Physics (NP) models. The new degrees of freedom predicted by Supersymmetry are expected to have masses of the order of the TeV scale and the direct search for these particles is one of the major goals at the LHC. A complementary strategy to probe the MSSM is given by the analysis of low energy high-precision observables, that can be modified through virtual effects of the new degrees of freedom. Of particular importance in this respect are so-called Flavor Changing Neutral Current (FCNC) processes that, forbidden in the Standard Model at the tree level, are highly sensitive probes of the flavor structure of NP models. We first analyze model independently low energy processes that show high sensitivity to the new sources of flavor and CP violation contained in the MSSM. Next, we discuss in detail the rich flavor structure of the MSSM and the implied SUSY contributions to FCNC and CP violating observables both in the low and high tan β regime. In fact, well measured low energy observables lead to remarkably strong constraints on the MSSM parameter space, which is often referred to as the SUSY flavor problem. We outline possibilities to control dangerously large SUSY effects in such observables and analyze the implied predictions for those low energy processes that are not measured with high precision, yet. We consider both the Minimal Flavor Violating MSSM and SUSY models based on abelian and non-abelian flavor symmetries that show representative flavor structures in the soft SUSY breaking terms. We identify the distinctive patterns of SUSY effects in the low energy observables, focussing in particular on CP violation in the b → sγ transition, the B s mixing
Low-energy meson physics (chiral theory)
International Nuclear Information System (INIS)
Volkov, M.K.; Pervushin, V.N.
1976-01-01
A quantum chiral theory which allows to obtain low-energy expansions of various hadron processes without introducing arbitrary parameters into the theory with the exception of hadron masses and interaction constants is presented. A hypothesis about the dynamic symmetry of strong interactions is suggested. The interaction lagrangian is derived which satisfies conditions of the dynamic symmetry. Examples of the use of the quantum chiral theory for describing low-energy processes of meson interaction are given. It is noted that the results obtained reproduce the actual qualitative pattern of various physical processes and in most cases result in good quantitative agreement with experiments
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
Orzalesi, C.A.
1975-01-01
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt
Advances in energy deposition theory
International Nuclear Information System (INIS)
Paretzke, H.G.
1980-01-01
In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations
International Nuclear Information System (INIS)
Signell, P.
1981-01-01
This project has involved five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the πN and ππ physical regions of the N anti N → ππ amplitude (with signifantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 meV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 1-1200 MeV range that can be used by all nucleon-nucleon researchers
Phenomenological consequences of supersymmetry
International Nuclear Information System (INIS)
Hinchliffe, I.; Littenberg, L.
1982-01-01
This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6
DEFF Research Database (Denmark)
Aggerholm, Kenneth; Moltke Martiny, Kristian
Phenomenological research is in traditional terms a matter of going 'back to the things themselves', as Husserl famously stated. But if phenomenology is to renew itself in creative ways and reveal new aspects of human experience it is of value to look for a certain kind of phenomena: exceptions. ...
High energy behaviour of nonabelian gauge theories
International Nuclear Information System (INIS)
Bartels, J.
1979-10-01
The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed. After a general remark concerning the question to what extent the Regge limit can be approached within perturbation theory, we first review the reggeization of elementary particles within nonabelian gauge theories. Then the derivation of a unitary high energy description of a massive (= spontaneously broken) nonabelian gauge model is described, which results in a complete reggeon calculus. There is strong evidence that the zero mass limit of this reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-Mills theories (QCD) can be reached in this way. In the final part of these lectures two possible strategies for solving this reggeon calculus (both for the massive and the massless case) are outlined. One of them leads to a geometrical picture in which the distribution of the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory and predicts that QCD in the high energy limit is described by critical reggeon field theory. (orig.)
International Nuclear Information System (INIS)
Mukhamedshin, Rauf
2009-01-01
Simulations show that a phenomenon of coplanarity of most energetic subcores of γ-ray-hadron families found in mountain-based and stratospheric X-ray-emulsion chamber experiments requires to introduce a coplanar particle generation with large transverse momenta in hadron interactions at superhigh energies. Some physical mechanisms are considered. A phenomenological model, which makes it possible to simulate the coplanar particle generation, is presented. Different versions of this model are considered, their features are described and compared with those of models applied by the CORSIKA package. Cosmic-ray experimental data and simulated results are compared. Conclusion on features of hadron interactions at superhigh energies and some predictions with respect to LHC experiments are made. (orig.) 3
International Nuclear Information System (INIS)
Han Yinlu; Liang Haiying; Guo Hairui; Shen Qingbiao; Xu Yongli
2010-01-01
A set of new global phenomenological optical model potential parameters for the actinide region with incident nucleon energies from 1 keV up to 300 MeV is obtained. They are based on a smooth, unique functional form for the energy dependence of the potential depths and on physically constrained geometry parameters. The available experimental data including the neutron total cross sections, nonelastic cross sections, elastic scattering cross sections, elastic scattering angular distributions, and proton reaction cross sections and elastic scattering angular distributions of 232 Th and 238 U are used. The new nucleon global optical model potential parameters obtained are analyzed and used to analyze the experimental data of nucleon-actinide reactions. It is found that the present form of the global optical model potential could reproduce both the neutron and the proton experimental data.
Updating energy security and environmental policy: Energy security theories revisited.
Proskuryakova, L
2018-06-18
The energy security theories are based on the premises of sufficient and reliable supply of fossil fuels at affordable prices in centralized supply systems. Policy-makers and company chief executives develop energy security strategies based on the energy security theories and definitions that dominate in the research and policy discourse. It is therefore of utmost importance that scientists revisit these theories in line with the latest changes in the energy industry: the rapid advancement of renewables and smart grid, decentralization of energy systems, new environmental and climate challenges. The study examines the classic energy security concepts (neorealism, neoliberalism, constructivism and international political economy) and assesses if energy technology changes are taken into consideration. This is done through integrative literature review, comparative analysis, identification of 'international relations' and 'energy' research discourse with the use of big data, and case studies of Germany, China, and Russia. The paper offers suggestions for revision of energy security concepts through integration of future technology considerations. Copyright © 2018 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Weinberg, S.
1979-01-01
The author presents an argument that phenomenological Lagrangians can be used not only to reproduce the soft pion results of current algebra, but also to justify these results, without any use of operator algebra, and shows how phenomenological Lagrangians can be used to calculate corrections to the leading soft pion results to any desired order in external momenta. The renormalization group is used to elucidate the structure of these corrections. Corrections due to the finite mass of the pion are treated and speculations are made about another possible application of phenomenological Lagrangians. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Crespillo, M.L., E-mail: mcrespil@utk.edu [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Agulló-López, F., E-mail: fal@uam.es [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Zucchiatti, A. [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain)
2017-03-01
Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO{sub 3} crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.
Fitting theories of nuclear binding energies
International Nuclear Information System (INIS)
Bertsch, G.F.; Sabbey, B.; Uusnaekki, M.
2005-01-01
In developing theories of nuclear binding energy such as density-functional theory, the effort required to make a fit can be daunting because of the large number of parameters that may be in the theory and the large number of nuclei in the mass table. For theories based on the Skyrme interaction, the effort can be reduced considerably by using the singular value decomposition to reduce the size of the parameter space. We find that the sensitive parameters define a space of dimension four or so, and within this space a linear refit is adequate for a number of Skyrme parameters sets from the literature. We find no marked differences in the quality of the fit among the SLy4, the BSk4, and SkP parameter sets. The root-mean-square residual error in even-even nuclei is about 1.5 MeV, half the value of the liquid drop model. We also discuss an alternative norm for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases with the largest discrepancies between theory and experiment. We show how it works with the liquid drop model and make some applications to models based on Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new experimental data than the root-mean-square norm. The method also has the advantage that candidate improvements to the theories can be assessed with computations on smaller sets of nuclei
The Theory of High Energy Collision Processes - Final Report DOE/ER/40158-1
Energy Technology Data Exchange (ETDEWEB)
Wu, Tai, T.
2011-09-15
In 1984, DOE awarded Harvard University a new Grant DE-FG02-84ER40158 to continue their support of Tai Tsun Wu as Principal Investigator of research on the theory of high energy collision processes. This Grant was renewed and remained active continuously from June 1, 1984 through November 30, 2007. Topics of interest during the 23-year duration of this Grant include: the theory and phenomenology of collision and production processes at ever higher energies; helicity methods of QED and QCD; neutrino oscillations and masses; Yang-Mills gauge theory; Beamstrahlung; Fermi pseudopotentials; magnetic monopoles and dyons; cosmology; classical confinement; mass relations; Bose-Einstein condensation; and large-momentum-transfer scattering processes. This Final Report describes the research carried out on Grant DE-FG02-84ER40158 for the period June 1, 1984 through November 30, 2007. Two books resulted from this project and a total of 125 publications.
Gaussian-3 theory using scaled energies
International Nuclear Information System (INIS)
Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.; Pople, John A.
2000-01-01
A modification of Guassian-3 (G3) theory using multiplicative scale factors, instead of the additive higher level correction, is presented. In this method, referred to as G3S, the correlation energy is scaled by five parameters and the Hartree-Fock energy by one parameter. The six parameters are fitted to the G2/97 test set of 299 energies and the resulting mean absolute deviation from experiment is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. The G3S method has the advantage compared to G3 theory in that it can be used for studying potential energy surfaces where the products and reactants have a different number of paired electrons. In addition, versions of the computationally less intensive G3(MP3) and G3(MP2) methods that use scaled energies are also presented. These methods, referred to as G3S(MP3) and G3S(MP2), have mean absolute deviations of 1.16 and 1.35 kcal/mol, respectively. (c) 2000 American Institute of Physics
The effective QCD theory at low energy; La theorie effective de QCD a basse energie
Energy Technology Data Exchange (ETDEWEB)
Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
1995-12-31
Quantum chromodynamics is studied here in the range of low energies. The Chiral perturbation theory is presented, this theory is based on a thorough study of QCD symmetry, of general field theory principles and of S-matrices. Ward identities are defined within the scope of current algebras and by using functional method. Their consequences on Chiral structure of QCD emptiness and on strong interaction at low energies are studied. The pion-pion diffusion at low energies is treated as an example. (A.C.) 70 refs.
The type IIB string axiverse and its low-energy phenomenology
International Nuclear Information System (INIS)
Cicoli, Michele; Goodsell, Mark D.; Ringwald, Andreas
2012-06-01
We study closed string axions in type IIB orientifold compactifications. We show that for natural values of the background fluxes the moduli stabilisation mechanism of the LARGE Volume Scenario (LVS) gives rise to an axiverse characterised by the presence of a QCD axion plus many light axion-like particles whose masses are logarithmically hierarchical. We study the phenomenological features of the LVS axiverse, deriving the masses of the axions and their couplings to matter and gauge fields. We also determine when closed string axions can solve the strong CP problem, and analyse the first explicit examples of semi-realistic models with stable moduli and a QCD axion candidate which is not eaten by an anomalous Abelian gauge boson. We discuss the impact of the choice of inflationary scenario on the LVS axiverse, and summarise the astrophysical, cosmological and experimental constraints upon it. Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.
The type IIB string axiverse and its low-energy phenomenology
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); INFN, Sezione di Trieste (Italy); Goodsell, Mark D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-06-15
We study closed string axions in type IIB orientifold compactifications. We show that for natural values of the background fluxes the moduli stabilisation mechanism of the LARGE Volume Scenario (LVS) gives rise to an axiverse characterised by the presence of a QCD axion plus many light axion-like particles whose masses are logarithmically hierarchical. We study the phenomenological features of the LVS axiverse, deriving the masses of the axions and their couplings to matter and gauge fields. We also determine when closed string axions can solve the strong CP problem, and analyse the first explicit examples of semi-realistic models with stable moduli and a QCD axion candidate which is not eaten by an anomalous Abelian gauge boson. We discuss the impact of the choice of inflationary scenario on the LVS axiverse, and summarise the astrophysical, cosmological and experimental constraints upon it. Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.
Dark energy properties in DBI theory
International Nuclear Information System (INIS)
Ahn, Changrim; Kim, Chanju; Linder, Eric V.
2009-01-01
The Dirac-Born-Infeld (DBI) action from string theory provides several new classes of dark energy behavior beyond quintessence due to its relativistic kinematics. We constrain parameters of natural potentials and brane tensions with cosmological observations as well as showing how to design these functions for a desired expansion history. We enlarge the attractor solutions, including new ways of obtaining cosmological constant behavior, to the case of generalized DBI theory with multiple branes. An interesting novel signature of DBI attractors is that the sound speed is driven to zero, unlike for quintessence where it is the speed of light.
Generalized uncertainty principle and quantum gravity phenomenology
Bosso, Pasquale
The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.
Directory of Open Access Journals (Sweden)
G. A. Ummarino
2010-01-01
Full Text Available The s-wave three-band Eliashberg theory can simultaneously reproduce the experimental critical temperatures and the gap values of the superconducting materials LaFeAsO0.9F0.1, Ba0.6K0.4Fe2As2 and SmFeAsO0.8F0.2 as exponent of the more important families of iron pnictides. In this model the dominant role is played by interband interactions and the order parameter undergoes a sign reversal between hole and electron bands (±-wave symmetry. The values of all the gaps (with the exact experimental critical temperature can be obtained by using high values of the electron-boson coupling constants and small typical boson energies (in agreement with experiments.
Directory of Open Access Journals (Sweden)
Robert Gugutzer
2004-01-01
Full Text Available In this Comment I praise Thorsten BERNDT's review of "To Go to the Body." At the same time I "defend" my identity model, connecting identity and to have a body ("Körper" / being a body ("Leib", in relation to the following five points: 1 identity research in the social sciences neglects the body as a fundamental entity of identity development; 2 MEAD's identity concept has a social cognitive bias; 3 interactionist identity theories need a phenomenological addition of "to have a body"/"being a body," because all interactions are bodily; 4 GOFFMAN talked explicitly about the body, but he never developed an identity theory; 5 gender identity development is as a matter of course seen as based on experiences of difference/diversity. URN: urn:nbn:de:0114-fqs040147
International Nuclear Information System (INIS)
Anikin, I. V.; Besse, A.; Ivanov, D. Yu.; Pire, B.; Szymanowski, L.; Wallon, S.
2011-01-01
We apply a previously developed scheme to consistently include the twist-3 distribution amplitudes for transversely polarized ρ mesons in order to evaluate, in the framework of k T factorization, the helicity amplitudes for exclusive leptoproduction of a light vector meson, at leading order in α s . We compare our results with high energy experimental data for the ratios of helicity amplitudes T 11 /T 00 and T 01 /T 00 and get a good description of the data.
Dark energy in scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Moeller, J.
2007-12-15
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Dark energy in scalar-tensor theories
International Nuclear Information System (INIS)
Moeller, J.
2007-12-01
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
DEFF Research Database (Denmark)
Gahrn-Andersen, Rasmus; Cowley, Stephen
2017-01-01
Although cognitive science has recently asked how human sociality is constituted, there is no clear and consistent account of the emergence of human style social agency. Previously, we have critiqued views based on 'participatory sense-making' by arguing that agency requires a distinctive kind...... of phenomenology that enables a diachronic social experience. In advancing the positive argument, we link developmental psychology to phenomenological insights by focusing on child-caregiver dynamics around the middle of the second year. Having developed very basic social skills, an infant comes to feel normative....... Developmental events thus transform the child's experience and drive the emergence of social agency. Once the child has successfully dealt with the environment’s normative perturbations she is able to develop the skills of a fully-fledged human social agent....
International Nuclear Information System (INIS)
Ecker, Jill
2016-01-01
In this doctoral thesis, various aspects of string model building and phenomenology are investigated within the framework of Type IIA string theory on the T"6/(Z_2 x Z_6 x ΩR) orbifold with discrete torsion. The aim is the reproduction of supersymmetric versions of well-known particle physics models using intersecting rigid D6-branes wrapped on fractional three-cycles. The models analyzed include the minimal supersymmetric Standard Model as well as supersymmetric Pati-Salam models, left-right symmetric models and SU(5) models. Systematic computer scans test numerous combinations of intersecting D6-branes in order to detect those that give rise to the correct chiral particle content of the considered models. For each type of the afore mentioned models, concrete examples will be found which satisfy the constraints on the particle spectrum and fulfill all consistency conditions. Finally, the thesis focuses on phenomenological aspects of the particle physics models found, including the detection of massless U(1) combinations, discrete Z_n-symmetries and cubic couplings such as the Yukawa couplings.
Social energy exchange theory for postpartum depression.
Posmontier, Bobbie; Waite, Roberta
2011-01-01
Postpartum depression (PPD), a significant health problem affecting about 19.4% of postpartum women worldwide, may result in long-term cognitive and behavior problems in children, spousal depression, widespread family dysfunction, and chronic and increasingly severe maternal depression. Although current theoretical frameworks provide a rich context for studying PPD,none provides a framework that specifically addresses the dynamic relationship of the inner personal experience with the social and cultural context of PPD. The authors propose the social energy exchange theory for postpartum depression to understand how PPD impedes this dynamic relationship and suggest it as a theoretical framework for the study of interventions that would target intra- and interpersonal disturbance within the social and cultural context.
Strong moduli stabilization and phenomenology
Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A
2013-01-01
We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).
International Nuclear Information System (INIS)
Majhi, S.K.; Mukhopadhyay, A.; Ward, B.F.L.; Yost, S.A.
2014-01-01
We present a phenomenological study of the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. We discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix-element matched parton shower MC’s in the Herwig6.5 environment as determined by comparison to recent LHC experimental observations on single heavy gauge boson production and decay. The level of agreement between the new theory and the data continues to be a reason for optimism. In the spirit of completeness, we discuss as well other approaches to the same theoretical predictions that we make here from the standpoint of physical precision with an eye toward the (sub-)1% QCD⊗EW total theoretical precision regime for LHC physics. - Highlights: • Using LHC data, we show that IR-improved DGLAP-CS kernels with exact NLO Shower/ME matching improves MC precision. • We discuss other possible approaches in comparison with ours. • We propose experimental tests to discriminate between competing approaches
Energy Technology Data Exchange (ETDEWEB)
Majhi, S.K., E-mail: tpskm@iacs.res.in [Indian Association for the Cultivation of Science, Kolkata (India); Mukhopadhyay, A., E-mail: aditi_mukhopadhyay@baylor.edu [Baylor University, Waco, TX (United States); Ward, B.F.L., E-mail: bfl_ward@baylor.edu [Baylor University, Waco, TX (United States); Yost, S.A., E-mail: scott.yost@citadel.edu [The Citadel, Charleston, SC (United States)
2014-11-15
We present a phenomenological study of the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. We discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix-element matched parton shower MC’s in the Herwig6.5 environment as determined by comparison to recent LHC experimental observations on single heavy gauge boson production and decay. The level of agreement between the new theory and the data continues to be a reason for optimism. In the spirit of completeness, we discuss as well other approaches to the same theoretical predictions that we make here from the standpoint of physical precision with an eye toward the (sub-)1% QCD⊗EW total theoretical precision regime for LHC physics. - Highlights: • Using LHC data, we show that IR-improved DGLAP-CS kernels with exact NLO Shower/ME matching improves MC precision. • We discuss other possible approaches in comparison with ours. • We propose experimental tests to discriminate between competing approaches.
International Nuclear Information System (INIS)
Majhi, S.K.; Mukhopadhyay, A.; Ward, B.F.L.; Yost, S.A.
2013-01-01
We present the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. In this ongoing program of research, we discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix element matched parton shower MC's in the Herwig6.5 environment in relation to recent LHC experimental observations. There continues to be reason for optimism in the attendant comparison of theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Majhi, S.K., E-mail: tpskm@iacs.res.in [Indian Association for the Cultivation of Science, Kolkata (India); Mukhopadhyay, A., E-mail: aditi_mukhopadhyay@baylor.edu [Baylor University, Waco, TX (United States); Ward, B.F.L., E-mail: bfl_ward@baylor.edu [Baylor University, Waco, TX (United States); Yost, S.A., E-mail: scott.yost@citadel.edu [The Citadel, Charleston, SC (United States)
2013-02-26
We present the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. In this ongoing program of research, we discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix element matched parton shower MC's in the Herwig6.5 environment in relation to recent LHC experimental observations. There continues to be reason for optimism in the attendant comparison of theory and experiment.
High-energy symmetries of string theory
International Nuclear Information System (INIS)
Lee Jenchi.
1990-01-01
The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation
The economic theory contribution to the energy discussions
International Nuclear Information System (INIS)
Percebois, J.
1999-01-01
How useful is the energy theory to manage and to forecast the energy policy? The author answers this question in words of energy and development, energy tariffs, energy transportation and distribution and relation with the government policy. (A.L.B.)
Dual topological unitarization -- phenomenological aspect
International Nuclear Information System (INIS)
Tan, C.I.
1978-01-01
An assessment is provided on the viability of dual topological unitarization as a practical scheme for organizing and interpreting hadronic phenomena at current machine energies. Previous detailed reviews are complemented, with emphasis on phenomenological aspects and more recent developments. Diffraction scattering, a test of P--f identity hypothesis, the flavor model, the P--f identity versus the Veneziano two-jet picture, and an illustration of the new phenomenology are included. 24 references
Cosmological string theory with thermal energy
International Nuclear Information System (INIS)
Shiraishi, Kiyoshi.
1988-09-01
An attempt to construct a cosmological scenario directly from string theory is made. Cosmological string theory was presented by Antoniadis, Bachas, Ellis and Nanopoulos. They also expect loop effects on cosmological string theory. In this paper, we point out the other importance of the one-loop effect, the finite temperature effect. The equations of motion for background geometry at finite temperature is given. We address a problem on derivation of the effective action at non-zero temperature. (author)
Energy momentum tensor in local causal perturbation theory
International Nuclear Information System (INIS)
Prange, D.
2001-01-01
We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)
Dynamic Theory: some shock wave and energy implications
International Nuclear Information System (INIS)
Williams, P.E.
1981-02-01
The Dynamic Theory, a unifying five-dimensional theory of space, time, and matter, is examined. The theory predicts an observed discrepancy between shock wave viscosity measurements at low and high pressures in aluminum, a limiting mass-to-energy conversion rate consistent with the available data, and reduced pressures in electromagneticaly contained controlled-fusion plasmas
Phenomenology of chromostatics
International Nuclear Information System (INIS)
Pervushin, V.N.; Kallies, W.; Sarikov, N.A.
1988-01-01
For the description of hadrons as bound states the physical perturbation theory (PPT) on the spatial components of the gluon field over the exact solution, defined by the temporal one, is proposed. A quntization method is used, which in each order of the PPT is relativistic-covariant, and an elimination of the infrared divergences with the help of the phenomenological redefinition of the Coulomb potential. The main elements of the PPT: the Green functions of quarks and gluons, the effective coupling constant are found; and the functional, unifying the meson spectroscopy, dual amplitudes and chiral Lagrangians, is constructed
Palatini actions and quantum gravity phenomenology
International Nuclear Information System (INIS)
Olmo, Gonzalo J.
2011-01-01
We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce
Palatini actions and quantum gravity phenomenology
Energy Technology Data Exchange (ETDEWEB)
Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain)
2011-10-01
We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.
High-energy behavior of non-Abelian gauge theories
International Nuclear Information System (INIS)
Nieh, H.T.; Yao, Y.
1976-01-01
This paper is a detailed account of a study in perturbation theory of the high-energy behavior of non-Abelian gauge theories. The fermion-fermion scattering amplitude is calculated up to sixth order in the coupling constant in the high-energy limit s → infinity with fixed t, in the approximation of keeping only the leading logarithmic terms. Results indicate that the high-energy behavior of non-Abelian gauge theories are complicated, and quite different from the known behaviors of other field theories studied so far
Wave Energy and Actor-Network Theory: The Irish Case
Cunningham, William
2013-01-01
This paper examines the role of the wave energy sector in Ireland using theories from the field of Science and Technology Studies (STS). Theoretical divisions within the field of STS are examined, particularly the Sociology of Scientific Knowledge (SSK) and Actor-Network Theory (ANT). Any conflicts which these two theories present to each other are examined through the empirical findings of the Irish wave energy sector. In particular, ANT s rejection of macro and micro distinctions when analy...
Optimization theory for ballistic energy conversion
Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.
2016-01-01
The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and
Introduction to the theory of low-energy electron diffraction
International Nuclear Information System (INIS)
Fingerland, A.; Tomasek, M.
1975-01-01
An elementary introduction to the basic principles of the theory of low-energy electron diffraction is presented. General scattering theory is used to classify the hitherto known approaches to the problem (optical potential and one-electron approximation; formal scattering theory: Born expansion and multiple scattering; translational symmetry: Ewald construction; classification of LEED theories by means of the T matrix; pseudokinematical theory for crystal with clean surface and with an adsorbed monomolecular layer; dynamical theory; inclusion of inelastic collisions; discussion of a simple example by means of the band-structure approach)
Energy Technology Data Exchange (ETDEWEB)
Cohen-Tannoudji, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-07-01
A phenomenological model suited for the description of arbitrary two-body reactions at high energies is presented and applied to the analysis of {pi} - nucleon, K - nucleon, et K-bar - nucleon scattering.The idea is that the Regge-pole model does not take into account the whole content of the unitarity relation and has to be modified, as is currently done in one-particle exchange models, so that it may include absorptive corrections.In terms of a rather economical set of free parameters,we obtain a satisfactory agreement with all available data, including the recent evidence for a nonvanishing polarization in {pi}{sup -} p {pi}{sup 0} n reaction. We then reinterpret our parametrization of the amplitudes in terms of poles and branch points in the complex angular-momentum plane for the crossed channel. (author) [French] Un modele phenomenologique adapte a la description des reactions a deux corps a haute energie est presente et applique a l'analyse des diffusions {pi} - nucleon, K - nucleon, et K-bar - nucleon. L'idee essentielle est que le modele d'echange de poles de Regge ne tient pas compte du contenu total de la relation d'unitarite et doit etre modifie, comme cela a ete propose dans le cas de l'echange de particules, de facon a tenir compte de corrections de type absortif. Au moyen d'un ensemble relativement economique de parametres libres nous obtenons un accord satisfaisant avec tous les resultats disponibles, y compris l'existence recemment mise en evidence d'une polarisation non nulle dans la reaction {pi}{sup -} p {pi}{sup 0} n. Nous interpretons notre fa n d'ecrire les amplitudes au moyen de poles et de points de branchement dans le plan complexe du moment angulaire pour la voie croisee. (auteur)
The free-energy principle: a unified brain theory?
Friston, Karl
2010-02-01
A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories - optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.
Problem of energy-momentum and theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy
Style as a Symptom: A Phenomenological Perspective.
Gregorc, Anthony F.
1984-01-01
Findings from early and current phenomenological studies indicate that stylistic characteristics are indicators of psychological forces that guide interactions with the world. Implications of how this theory relates to learning and teaching styles are discussed. (DF)
Quantum mechanical theory behind "dark energy"?
Colin Johnson, R
2007-01-01
"The mysterious increase in the acceleration of the universe, when intuition says it should be slowing down, is postulated to be caused by dark energy - "dark" because it is undetected. Now a group of scientists in the international collaboration Essence has suggested that a quantum mechanical interpretation of Einstein's proposed "cosmological constant" is the simplest explanation for dark energy. The group measured dark energy to within 10 percent." (1,5 page)
High energy nuclear collisions: Theory overview
Indian Academy of Sciences (India)
1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies. At the relativistic heavy-ion collider (RHIC), nuclei as heavy as gold are accelerated to an energy of 100 GeV per nucleon. A total energy of 40 TeV is available in the collision of.
Highlights on SUSY phenomenology
International Nuclear Information System (INIS)
Masiero, Antonio
2004-01-01
In spite of the extraordinary success of the Standard Model (SM) supplemented with massive neutrinos in accounting for the whole huge bulk of phenomenology which has been accumulating in the last three decades, there exist strong theoretical reasons in particle physics and significant 'observational' hints in astroparticle physics for new physics beyond it. My lecture is devoted to a critical assessment of our belief in such new physics at the electroweak scale, in particular identifying it with low-energy supersymmetric extensions of the SM. I'll explain why we have concrete hopes that this decade will shed definite light on what stands behind the phenomenon of electroweak symmetry breaking
Supersymmetric theories of neutrino dark energy
International Nuclear Information System (INIS)
Fardon, Rob; Nelson, Ann E.; Weiner, Neal
2006-01-01
We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos
Superconductivity: Phenomenology
International Nuclear Information System (INIS)
Falicov, L.M.
1988-08-01
This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect
The energy-momentum problem and gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
Low energy effective Lagrangians in open superstring theory
International Nuclear Information System (INIS)
Medina, Ricardo
2008-01-01
The low energy effective Lagrangian describes the interactions of the massless modes of String Theory. Present work is being done to obtain all alpha' 3 terms (bosonic and fermionic) by means of the known 5-point amplitudes and SUSY
A statistical theory of cell killing by radiation of varying linear energy transfer
International Nuclear Information System (INIS)
Hawkins, R.B.
1994-01-01
A theory is presented that provides an explanation for the observed features of the survival of cultured cells after exposure to densely ionizing high-linear energy transfer (LET) radiation. It starts from a phenomenological postulate based on the linear-quadratic form of cell survival observed for low-LET radiation and uses principles of statistics and fluctuation theory to demonstrate that the effect of varying LET on cell survival can be attributed to random variation of dose to small volumes contained within the nucleus. A simple relation is presented for surviving fraction of cells after exposure to radiation of varying LET that depends on the α and β parameters for the same cells in the limit of low-LET radiation. This relation implies that the value of β is independent of LET. Agreement of the theory with selected observations of cell survival from the literature is demonstrated. A relation is presented that gives relative biological effectiveness (RBE) as a function of the α and β parameters for low-LET radiation. Measurements from microdosimetry are used to estimate the size of the subnuclear volume to which the fluctuation pertains. 11 refs., 4 figs., 2 tabs
Energy-momentum complex in Moeller's tetrad theory of gravitation
International Nuclear Information System (INIS)
Mikhail, F.I.; Lashin, E.I.
1991-08-01
Moeller's tetrad theory of gravitation is examined with regard to the energy-momentum complex. The energy-momentum complex as well as the superpotential associated with Moeller's theory are derived. Moeller's field equations are solved in the case of ''general'' spherical symmetry. Two different solutions, giving rise to the same metric, are obtained. The energy associated with one solution is found to be twice the energy associated with the other. An avenue out of this inconsistency is suggested. (author). 20 refs, 1 tab
Low-energy limit of two-scale field theories
International Nuclear Information System (INIS)
Leon, J.; Perez-Mercader, J.; Sanchez, M.F.
1991-01-01
We present a full and self-contained discussion of the decoupling theorem applied to several general models in four-dimensional field theory. We compute in each case the low-energy effective action and show the explicit one-loop expressions for each of the effective parameters. We find that for suitable conditions one can always build an effective low-energy theory where the conditions of the decoupling theorem are satisfied
The applied theory of energy substitution in production
International Nuclear Information System (INIS)
Thompson, Henry
2006-01-01
This paper reviews the applied theory of energy cross price partial elasticities of substitution, and presents it in a transparent fashion. It uses log linear and translog production and cost functions due to their economic properties and convenient estimating forms, but the theory applies other functional forms. The objective is to encourage increased empirical research that would deepen understanding and appreciation of energy substitution. (author)
Phenomenology of atmospheric neutrinos
Directory of Open Access Journals (Sweden)
Fedynitch Anatoli
2016-01-01
Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.
The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds
Nilles, H. P.; Ramos-Sánchez, S.; Vaudrevange, P. K. S.; Wingerter, A.
2012-06-01
The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations. Program summaryProgram title: orbifolder Catalogue identifier: AELR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 145 572 No. of bytes in distributed program, including test data, etc.: 930 517 Distribution format: tar.gz Programming language:C++ Computer: Personal computer Operating system: Tested on Linux (Fedora 15, Ubuntu 11, SuSE 11) Word size: 32 bits or 64 bits Classification: 11.1 External routines: Boost (http://www.boost.org/), GSL (http://www.gnu.org/software/gsl/) Nature of problem: Calculating the low-energy spectrum of heterotic orbifold compactifications. Solution method: Quadratic equations on a lattice; representation theory; polynomial algebra. Running time: Less than a second per model.
Research program in elementary-particle theory, 1981. Progress report
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Ne'eman, Y.
1981-01-01
Progress is reported for research in the physics of ultra high energies and cosmology, the phenomenology of particle physics, composite models of particles and quantum field theory, quantum mechanics, geometric formulations, fiber bundles, and other algebraic models
On gravitational wave energy in Einstein gravitational theory
International Nuclear Information System (INIS)
Folomeshkin, V.N.; Vlasov, A.A.
1978-01-01
By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory
Low-energy operators in effective theories
International Nuclear Information System (INIS)
Felline, C.; Piekarewicz, J.; Mehta, N.P.; Shepard, J.R.
2003-01-01
Modern effective-theory techniques are applied to the nuclear many-body problem. A novel approach is proposed for the renormalization of operators in a manner consistent with the construction of the effective potential. To test this approach, a one-dimensional, yet realistic, nucleon-nucleon potential is introduced. An effective potential is then constructed by tuning its parameters to reproduce the exact effective-range expansion and a variety of bare operators are renormalized in a fashion compatible with this construction. Predictions for the expectation values of these effective operators in the ground state reproduce the results of the exact theory with remarkable accuracy (at the 0.5% level). This represents a marked improvement over a widely practiced approach that uses effective interactions but retains bare operators. Further, it is shown that this improvement is more impressive as the operator becomes more sensitive to the short-range structure of the potential. We illustrate the main ideas of this work using the elastic form factor of the deuteron as an example
Phenomenological supersymmetry
International Nuclear Information System (INIS)
Zwirner, F.
1992-01-01
The motivations for low-energy supersymmetry and the main features of the minimal supersymmetric extension of the Standard Model are reviewed. Possible non-minimal models and the issue of gauge coupling unification are also discussed. Theoretical results relevant for supersymmetric particle searches at present and future accelerators are presented. In particular, recent results on radiative corrections to supersymmetric Higgs boson masses and couplings are summarized, and their implications for experimental searches are discussed in some detail. (author). 87 refs, 9 figs
Plasma thermal energy transport: theory and experiments
International Nuclear Information System (INIS)
Coppi, B.
Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature
Phenomenology of cosmic phase transitions
International Nuclear Information System (INIS)
Kaempfer, B.; Lukacs, B.; Paal, G.
1989-11-01
The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs
R-parity breaking phenomenology
International Nuclear Information System (INIS)
Vissani, F.
1996-02-01
We review various features of the R-parity breaking phenomenology, with particular attention to the low energy observables, and to the patterns of the R-parity breaking interactions that arise in Grand Unified models. (author). 22 refs, 1 fig., 3 tabs
Nucleon self-energy in the relativistic Brueckner theory
Energy Technology Data Exchange (ETDEWEB)
Waindzoch, T; Fuchs, C; Faessler, A [Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany)
1998-06-01
The self-energy of the nucleon in nuclear matter is calculated in the relativistic Brueckner theory. We solve the Thompson equation for the two nucleon scattering in the medium using different Bonn potentials. The self-energy has a rather strong momentum dependence while the equation of state compares well with previous calculations. (orig.)
Nucleon self-energy in the relativistic Brueckner theory
International Nuclear Information System (INIS)
Waindzoch, T.; Fuchs, C.; Faessler, A.
1998-01-01
The self-energy of the nucleon in nuclear matter is calculated in the relativistic Brueckner theory. We solve the Thompson equation for the two nucleon scattering in the medium using different Bonn potentials. The self-energy has a rather strong momentum dependence while the equation of state compares well with previous calculations. (orig.)
Theory Summary: Very High Energy Cosmic Rays
Directory of Open Access Journals (Sweden)
Sarkar Subir
2013-06-01
Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.
Negative energy in string theory and cosmic censorship violation
International Nuclear Information System (INIS)
Hertog, Thomas; Horowitz, Gary T.; Maeda, Kengo
2004-01-01
We find asymptotically anti-de Sitter solutions in N=8 supergravity which have a negative total energy. This is possible since the boundary conditions required for the positive energy theorem are stronger than those required for a finite mass (and allowed by string theory). But the stability of the anti-de Sitter vacuum is still ensured by the positivity of a modified energy, which includes an extra surface term. Some of the negative energy solutions describe the classical evolution of nonsingular initial data to naked singularities. Since there is an open set of such solutions, cosmic censorship is violated generically in supergravity. Using the dual field theory description, we argue that these naked singularities will be resolved in the full string theory
Energy momentum tensor in theories with scalar field
International Nuclear Information System (INIS)
Joglekar, S.D.
1992-01-01
The renormalization of energy momentum tensor in theories with scalar fields and two coupling constants is considered. The need for addition of an improvement term is shown. Two possible forms for the improvement term are: (i) One in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities), (ii) One in which the improvement coefficient is a finite quantity, i.e. finite function of the renormalized quantities are considered. Four possible model of such theories are (i) Scalar Q.E.D. (ii) Non-Abelian theory with scalars, (iii) Yukawa theory, (iv) A model with two scalars. In all these theories a negative conclusion is established: neither forms for the improvement terms lead to a finite energy momentum tensor. Physically this means that when interaction with external gravity is incorporated in such a model, additional experimental input in the form of root mean square mass radius must be given to specify the theory completely, and the flat space parameters are insufficient. (author). 12 refs
Institute of Scientific and Technical Information of China (English)
XIONG Wen-Yuan; HU Zhao-Hui; WANG Xin-Wen; ZHOU Li-Juan; XIA Li-Xin; MA Wei-Xing
2008-01-01
Based on analysis of scattering matrix S, and its properties such as analyticity, unitarity, Lorentz invariance, and crossing symmetry relation, the Regge theory was proposed to describe hadron-hadron scattering at high energies before the advent of QCD, and correspondingly a Reggeon concept was born as a mediator of strongly interaction. This theory serves as a successful approach and has explained a great number of experimental data successfully, which proves that the Regge theory can be regarded as a basic theory of hadron interaction at high energies and its validity in many applications. However, as new experimental data come out, we have some difficulties in explaining the data. The new experimental total cross section violates the predictions of Regge theory, which shows that Regge formalism is limited in its applications to high energy data. To understand new experimental measurements, a new exchange theory was consequently born and its mediator is called Pomeron, which has vacuum quantum numbers. The new theory named as Pomeron exchange theory which reproduces the new experimental data of diffractive processes successfully. There are two exchange mediators: Reggeon and Pomeron. Reggeon exchange theory can only produce data at the relatively lower energy region, while Pomeron exchange theory fits the data only at higher-energy region, separately. In order to explain the data in the whole energy region, we propose a Reggeon-Pomeron model to describe high-energy hadron-hadron scattering and other diffractive processes. Although the Reggeon-Pomeron model is successful in describing high-energy hadron-hadron interaction in the whole energy region, it is a phenomenological model After the advent of QCD, people try to reveal the mystery of the phenomenological theory from QCD since hadron-hadron processes is a strong interaction, which is believed to be described by QCD. According to this point of view, we study the QCD nature of Reggeon and Pomeron. We claim
High energy nuclear collisions: theory review
International Nuclear Information System (INIS)
Fries, Rainer J.
2009-01-01
Full text: High Energy Nuclear Collisions are studied at the Relativistic Heavy Ion Collider (RHIC) and, starting next year, also at the Large Hadron Collider (LHC) to study the formation and properties of quark gluon plasma (QGP). This effort is driven by the prediction that above a certain critical temperature quarks and gluons are deconfined. For the past ten years of running RHIC has performed marvelously. Data from RHIC has answered many initial questions, but it has also provided new, more challenging problems to understand the nature of quark gluon plasma and the dynamics of heavy ion collisions. In this talk I review some of the basic concepts of high energy nuclear collisions and quark gluon plasma formation. We also discuss some of the novel and open questions that we are faced with. We discuss recent predictions on properties of hot quantum chromodynamics, emerging signatures for the color glass condensate, the fascinating idea of local P and CP violation in QCD, as well as ongoing research on hard probes and electromagnetic signatures
Cravey, Kristopher J.
Notable performance differences exist between nuclear and fossil power generation plants in areas such as safety, outage duration efficiency, and capacity factor. This study explored the relationship of organizational culture and implicit leadership theory to these performance differences. A mixed methods approach consisting of quantitative instruments, namely the Organizational Culture Assessment Instrument and the GLOBE Leadership Scales, and qualitative interviews were used in this study. Subjects were operations middle managers in a U.S. energy company that serves nuclear or fossil power plants. Results from the quantitative instruments revealed no differences between nuclear and fossil groups in regards to organizational culture types and implicit leadership theories. However, the qualitative results did reveal divergence between the two groups in regards to what is valued in the organization and how that drives behaviors and decision making. These organizational phenomenological differences seem to explain why performance differences exist between nuclear and fossil plants because, ultimately, they affect how the organization functions.
Phenomenological three center model
Poenaru, D N; Gherghescu, R A; Nagame, Y; Hamilton, J H; Ramayya, A V
2001-01-01
Experimental results on ternary fission of sup 2 sup 5 sup 2 Cf suggest the existence of a short-lived quasi-molecular state. We present a three-center phenomenological model able to explain such a state by producing a new minimum in the deformation energy at a separation distance very close to the touching point. The shape parametrization chosen by us allows to describe the essential geometry of the systems in terms of one independent coordinate, namely, the distance between the heavy fragment centers. The shell correction (also treated phenomenologically) only produces quantitative effects; qualitatively it is not essential for the new minimum. Half-lives of some quasi-molecular states which could be formed in sup 1 sup 0 B accompanied fission of sup 2 sup 3 sup 6 U, sup 2 sup 3 sup 6 Pu, sup 2 sup 4 sup 6 Cm, sup 2 sup 5 sup 2 Cf, sup 2 sup 5 sup 2 sup , sup 2 sup 5 sup 6 Fm, sup 2 sup 5 sup 6 sup , sup 2 sup 6 sup 0 No, and sup 2 sup 6 sup 2 Rf are roughly estimated. (authors)
International Nuclear Information System (INIS)
Chivukula, R. Sekhar; Christensen, Neil D.; Simmons, Elizabeth H.
2008-01-01
We discuss the properties of a model incorporating both a scalar electroweak Higgs doublet and an electroweak Higgs triplet. We construct the low-energy effective theory for the light Higgs doublet in the limit of small (but nonzero) deviations in the ρ parameter from one, a limit in which the triplet states become heavy. For Δρ>0, perturbative unitarity of WW scattering breaks down at a scale inversely proportional to the renormalized vacuum expectation value of the triplet field (or, equivalently, inversely proportional to the square root of Δρ). This result imposes an upper limit on the mass scale of the heavy triplet bosons in a perturbative theory; we show that this upper bound is consistent with dimensional analysis in the low-energy effective theory. Recent articles have shown that the triplet bosons do not decouple, in the sense that deviations in the ρ parameter from one do not necessarily vanish at one-loop in the limit of large triplet mass. We clarify that, despite the nondecoupling behavior of the Higgs triplet, this model does not violate the decoupling theorem since it incorporates a large dimensionful coupling. Nonetheless, we show that if the triplet-Higgs boson masses are of order the grand unified theory scale, perturbative consistency of the theory requires the (properly renormalized) Higgs-triplet vacuum expectation value to be so small as to be irrelevant for electroweak phenomenology
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Stability of boundary layer flow based on energy gradient theory
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
Phenomenology of the Higgs boson
International Nuclear Information System (INIS)
Ali, A.
1981-09-01
The phenomenology of the standard Weinberg-Salam Higgs boson is reviewed with particular emphasis on production mechanisms in high energy e + e - and hadron-hadron collisions. The production processes relevant for the ISABELLE and TEVATRON energies are discussed and their backgrounds estimated. It is argued that the toponium production and radiative decay provides the most hopeful reaction to detect a Higgs in both the e + e - and the hadron-hadron machines. (orig.)
Light front quantum chromodynamics: Towards phenomenology
Indian Academy of Sciences (India)
Light front dynamics; quantum chromodynamics; deep inelastic scattering. PACS Nos 11.10. ... What makes light front dynamics appealing from high energy phenomenology point of view? .... given in terms of Poincarй generators by. MВ = W P ...
Energy flow in non-equilibrium conformal field theory
Bernard, Denis; Doyon, Benjamin
2012-09-01
We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.
The low-energy effective theory of QCD at small quark masses in a finite volume
Energy Technology Data Exchange (ETDEWEB)
Lehner, Christoph
2010-01-15
At low energies the theory of quantum chromodynamics (QCD) can be described effectively in terms of the lightest particles of the theory, the pions. This approximation is valid for temperatures well below the mass difference of the pions to the next heavier particles. We study the low-energy effective theory at very small quark masses in a finite volume V. The corresponding perturbative expansion in 1/{radical}(V) is called {epsilon} expansion. At each order of this expansion a finite number of low-energy constants completely determine the effective theory. These low-energy constants are of great phenomenological importance. In the leading order of the {epsilon} expansion, called {epsilon} regime, the theory becomes zero-dimensional and is therefore described by random matrix theory (RMT). The dimensionless quantities of RMT are mapped to dimensionful quantities of the low-energy effective theory using the leading-order lowenergy constants {sigma} and F. In this way {sigma} and F can be obtained from lattice QCD simulations in the '' regime by a fit to RMT predictions. For typical volumes of state-of-the-art lattice QCD simulations, finite-volume corrections to the RMT prediction cannot be neglected. These corrections can be calculated in higher orders of the {epsilon} expansion. We calculate the finite-volume corrections to {sigma} and F at next-to-next-to-leading order in the {epsilon} expansion. We also discuss non-universal modifications of the theory due to the finite volume. These results are then applied to lattice QCD simulations, and we extract {sigma} and F from eigenvalue correlation functions of the Dirac operator. As a side result, we provide a proof of equivalence between the parametrization of the partially quenched low-energy effective theory without singlet particle and that of the super-Riemannian manifold used earlier in the literature. Furthermore, we calculate a special version of the massless sunset diagram at finite volume without
A SIMPLIFIED FORMULATION OF SPACE-ENERGY CELL THEORY
Energy Technology Data Exchange (ETDEWEB)
Cady, K. B.; MacVean, C. R.
1963-11-15
A simple formulation of polyenergetic thermal utilization theory for heterogeneous lattices is proposed. The main ideas are those of Leslie, who postulated an infinite moderator region with a fictitious, energy dependent absorption which includes all heterogeneous properties of the lattice, and those of Amouyal, Benoist, and Horowitz who postulated absorption rates in terms of fuel and moderator escape probabilities. Simple approximations to energy dependent escape probabilities are discussed and lattice spectra are calculated for several light water lattices. (auth)
On the problem of vacuum energy in brane theories
International Nuclear Information System (INIS)
Gurwich, Ilya; Rubin, Shimon; Davidson, Aharon
2009-01-01
We point out that modern brane theories suffer from a severe vacuum energy problem. To be specific, the Casimir energy associated with the matter fields confined to the brane, is stemming from the one and the same localization mechanism which forms the brane itself, and is thus generically unavoidable. Possible practical solutions are discussed, including in particular spontaneously broken supersymmetry, and quantum mechanically induced brane tension.
Energy-momentum tensor in the quantum field theory
International Nuclear Information System (INIS)
Azakov, S.I.
1977-01-01
An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor
Linking material and energy flow analyses and social theory
Energy Technology Data Exchange (ETDEWEB)
Schiller, Frank [The Open University, Faculty of Maths, Computing and Technology, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)
2009-04-15
The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)
Linking material and energy flow analyses and social theory
International Nuclear Information System (INIS)
Schiller, Frank
2009-01-01
The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)
Phenomenological approaches of dissipative heavy ion collisions
International Nuclear Information System (INIS)
Ngo, C.
1983-09-01
These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr
High Energy Physics: Report of research accomplishments and future goals, FY 1983
Energy Technology Data Exchange (ETDEWEB)
Barish, B C
1983-12-31
Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC, FERMILAB, and DESY.
High Energy Physics: Report of research accomplishments and furture goals, FY1983
Energy Technology Data Exchange (ETDEWEB)
Barish, B C
1981-05-08
Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC and FERMILAB.
Remarks on high energy stability and renormalizability of gravity theory
International Nuclear Information System (INIS)
Salam, A.; Strathdee, J.
1978-02-01
Arguing that high-energy (Froissart) boundedness of gravitational cross-sections may make it necessary to supplement Einstein's Lagrangian with terms containing R 2 and Rsup(μν)Rsub(μν), criteria are suggested which, if satisfied, could make the tensor ghost in such a theory innocuous
Rotating gravity currents. Part 1. Energy loss theory
Martin, J. R.; Lane-Serff, G. F.
2005-01-01
A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.
Whitmarsh, Tom
2013-07-01
There is a great overlap between the way of seeing the world in clinical homeopathy and in the technical philosophical system known as phenomenology. A knowledge of phenomenologic principles reveals Hahnemann to have been an unwitting phenomenologist. The ideas of phenomenology as applied to medicine show that homeopathy is the ideal medical system to fulfill the goals of coming ever closer to true patient concerns and experience of illness. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Alsmiller, F.S.; Alsmiller, R.G. Jr.; Gabriel, T.A.; Lillie, R.A.; Barish, J.
1981-03-01
A fission channel has been added to the intranuclear-cascade-evaporation model of nuclear reactions so that this model may be used to obtain the differential particle production data that are needed to study the transport of medium-energy nucleons and pions through fissionable material. The earlier work of Hahn and Bertini on the incorporation of fission-evaporation competition into the intranuclear-cascade-evaporation model has been retained, and the statistical model of fission has been utilized to predict particle production from the fission process. Approximate empirically derived kinetic energies and deformation energies are used in the statistical model. The calculated number of emitted neutrons and residual nuclei distributions are in reasonable agreement with experimental data, but the number of emitted neutrons at the higher incident nucleon energies (approx. > 500 MeV) are sensitive to the level density parameter used. 9 figures, 2 tables
Implicit ligand theory for relative binding free energies
Nguyen, Trung Hai; Minh, David D. L.
2018-03-01
Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.
Phenomenology and hermeneutics - poles apart?
DEFF Research Database (Denmark)
Keller, Kurt Dauer; Feilberg, Casper
A key dispute within qualitative methodology is the choice between top-down (deductive) and bottom-up (inductive) research approaches. Abduction, on the other hand, has received little attention, even though it would often seem to be a more promising methodology. The phenomenological tradition is...... to qualitative methodology. Thus, like abductive approaches, Ricoeur argues for the necessity of an interplay between explanatory theory and description of the lived understanding of the informant in the development of interpretation....... is marked by a similar dichotomy, whereas hermeneutical phenomenologists argue for the necessity of preunderstanding and theorethical perspectives (van Manen), Husserlian phenomenologists insist on the importance of the epoché together with reduction. The existential phenomenology of Heidegger and Merleau...
Household energy studies: the gap between theory and method
Energy Technology Data Exchange (ETDEWEB)
Crosbie, T.
2006-09-15
At the level of theory it is now widely accepted that energy consumption patterns are a complex technical and socio-cultural phenomenon and to understand this phenomenon, it must be viewed from both engineering and social science perspectives. However, the methodological approaches taken in household energy studies lag behind the theoretical advances made in the last ten or fifteen years. The quantitative research methods traditionally used within the fields of building science, economics, and psychology continue to dominate household energy studies, while the qualitative ethnographic approaches to examining social and cultural phenomena traditionally used within anthropology and sociology are most frequently overlooked. This paper offers a critical review of the research methods used in household energy studies which illustrates the scope and limitations of both qualitative and quantitative research methods in this area of study. In doing so it demonstrates that qualitative research methods are essential to designing effective energy efficiency interventions. [Author].
Interacting ghost dark energy in Brans-Dicke theory
International Nuclear Information System (INIS)
Ebrahimi, Esmaeil; Sheykhi, Ahmad
2011-01-01
We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (w D =-1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of w D to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.
Market Mechanism Design for Renewable Energy based on Risk Theory
Yang, Wu; Bo, Wang; Jichun, Liu; Wenjiao, Zai; Pingliang, Zeng; Haobo, Shi
2018-02-01
Generation trading between renewable energy and thermal power is an efficient market means for transforming supply structure of electric power into sustainable development pattern. But the trading is hampered by the output fluctuations of renewable energy and the cost differences between renewable energy and thermal power at present. In this paper, the external environmental cost (EEC) is defined and the EEC is introduced into the generation cost. At same time, the incentive functions of renewable energy and low-emission thermal power are designed, which are decreasing functions of EEC. On these bases, for the market risks caused by the random variability of EEC, the decision-making model of generation trading between renewable energy and thermal power is constructed according to the risk theory. The feasibility and effectiveness of the proposed model are verified by simulation results.
Research program in elementary particle theory: Progress report, January 1, 1988-December 1988
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Dicus, D.A.
1988-08-01
This report discusses progress in the following areas: Mathematical Physics, Strings and Gauge Theories; Quantum Optics; High Energy Phenomenology; Angular Momentum, QCD Sum Rules; and Application of Particle Physics to Astrophysics
From Husserl to van Manen. A review of different phenomenological approaches.
Dowling, Maura
2007-01-01
This paper traces the development of phenomenology as a philosophy originating from the writings of Husserl to its use in phenomenological research and theory development in nursing. The key issues of phenomenological reduction and bracketing are also discussed as they play a pivotal role in the how phenomenological research studies are approached. What has become to be known as "new" phenomenology is also explored and the key differences between it and "traditional" phenomenology are discussed. van Manen's phenomenology is also considered in light of its contemporary popularity among nurse researchers.
A phenomenological study of the π- p → π0 n charge exchange reaction at high energy
International Nuclear Information System (INIS)
Michaud, Y.
1995-01-01
The aim of the study was to examine the behaviour of the proton-proton elastic scattering, for mass center energies around 10 GeV, and more especially to study the charge exchange reaction π - p → π 0 n for mass center energies between 3 and 20 GeV. A formalism based on the Glauber model has been used, and a Regge trajectory exchange term was introduced in the model in order to enable the description of the lower energy domain (inferior to 10 GeV) that is characterized by a large contribution of meson exchanges at the scattering amplitude. The Glauber model is then applied to the charge exchange reaction and the differential cross section is analyzed for a center mass energy comprised between 3 and 20 GeV, together with the polarization at 40 GeV/c. The approach is then validated through the study of the π - p → η n reaction. The size of the kernel of proton and pion components implied in the π - p → π 0 n reaction, is also investigated. 90 refs., 48 figs., 4 tabs., 5 appends
Phenomenological realism, superconductivity and quantum mechanics
International Nuclear Information System (INIS)
Shomar, T.L.E.
1998-01-01
The central aim of this thesis is to present a new kind of realism that is driven not from the traditional realism/anti-realism debate but from the practice of physicists. The usual debate focuses on discussions about the truth of theories and their fit with nature, while the real practices of the scientists are forgotten. The position I shall defend is called 'phenomenological realism': theories are merely tools to construct other theories and models, including phenomenological models; phenomenological models are the vehicles of representation. The realist doctrine was recently undermined by the argument from the pessimistic meta-induction, also known as the argument from scientific revolutions. I argue that phenomenological realism is a new kind of scientific realism which can overcome the problem generated by the argument from scientific revolutions, and which depend on the scientific practice. The realist tried to overcome this problem by suggesting various types of theory dichotomy. I claim that different types of dichotomy presented by realists did not overcome the problem, these dichotomies cut through theory vertically. I argue for a different kind of dichotomy between high level theoretical abstractions and low-level theoretical representations. I claim that theoretical work in physics have two distinct types depending on the way they are built these are: theoretical models which built depending on a top-down approach and phenomenological models which are built depending on a bottom-up approach, this dichotomy cuts the division along a horizontal line between low and high level theory. I present two case studies. One from superconductivity where I contrast the BCS theory of superconductivity with the phenomenological model of Landau and Ginzburg. I show how in that field of physics the historical developments favoured phenomenological models over high-level theoretical abstraction. I show how the BCS theory of superconductivity was constructed, and why it
International Nuclear Information System (INIS)
Sethna, J.P.; Krumhansl, J.A.
1994-01-01
We have identified tweed precursors to martensitic phase transformations as a spin glass phase due to composition variations, and used simulations and exact replica theory predictions to predict diffraction peaks and model phase diagrams, and provide real space data for comparison to transmission electron micrograph images. We have used symmetry principles to derive the crack growth laws for mixed-mode brittle fracture, explaining the results for two-dimensional fracture and deriving the growth laws in three dimensions. We have used recent advances in dynamical critical phenomena to study hysteresis in disordered systems, explaining the return-point-memory effect, predicting distributions for Barkhausen noise, and elucidating the transition from athermal to burst behavior in martensites. From a nonlinear lattice-dynamical model of a first-order transition using simulations, finite-size scaling, and transfer matrix methods, it is shown that heterophase transformation precursors cannot occur in a pure homogeneous system, thus emphasizing the role of disorder in real materials. Full integration of nonlinear Landau-Ginzburg continuum theory with experimental neutron-scattering data and first-principles calculations has been carried out to compute semi-quantitative values of the energy and thickness of twin boundaries in InTl and FePd martensites
Errasti-Ibarrondo, Begoña; Jordán, José Antonio; Díez-Del-Corral, Mercedes P; Arantzamendi, María
2018-03-15
To offer a complete outlook in a readable easy way of van Manen's hermeneutic-phenomenological method to nurses interested in undertaking phenomenological research. Phenomenology, as research methodology, involves a certain degree of complexity. It is difficult to identify a single article or author which sets out the didactic guidelines that specifically guide research of this kind. In this context, the theoretical-practical view of Max van Manen's Phenomenology of Practice may be seen as a rigorous guide and directive on which researchers may find support to undertake phenomenological research. Discussion paper. This discussion paper is based on our own experiences and supported by literature and theory. Our central sources of data have been the books and writings of Max van Manen and his website "Phenomenologyonline". The principal methods of the hermeneutic-phenomenological method are addressed and explained providing an enriching overview of phenomenology of practice. A proposal is made for the way the suggestions made by van Manen might be organized for use with the methods involved in Phenomenology of Practice: Social sciences, philosophical and philological methods. Thereby, nurse researchers interested in conducting phenomenological research may find a global outlook and support to understand and conduct this type of inquiry which draws on the art. The approach in this article may help nurse scholars and researchers reach an overall, encompassing perspective of the main methods and activities involved in doing phenomenological research. Nurses interested in doing phenomenology of practice are expected to commit with reflection and writing. © 2018 John Wiley & Sons Ltd.
Esakova, Nataliya
2012-01-01
Nataliya Esakova performs an analysis of the interdependencies and the nature of cooperation between energy producing, consuming and transit countries focusing on the gas sector. For the analysis the theoretical framework of the interdependence theory by Robert O. Keohane and Joseph S. Nye and the international regime theory are applied to the recent developments within the gas relationship between the European Union and Russia in the last decade. The objective of the analysis is to determine, whether a fundamental regime change in terms of international regime theory is taking place, and, if so, which regime change explanation model in terms of interdependence theory is likely to apply.
Energy Technology Data Exchange (ETDEWEB)
Esakova, Nataliya
2012-07-01
Nataliya Esakova performs an analysis of the interdependencies and the nature of cooperation between energy producing, consuming and transit countries focusing on the gas sector. For the analysis the theoretical framework of the interdependence theory by Robert O. Keohane and Joseph S. Nye and the international regime theory are applied to the recent developments within the gas relationship between the European Union and Russia in the last decade. The objective of the analysis is to determine, whether a fundamental regime change in terms of international regime theory is taking place, and, if so, which regime change explanation model in terms of interdependence theory is likely to apply. (orig.)
Phenomenology and Meaning Attribution
African Journals Online (AJOL)
John Paley. (2017). Phenomenology as Qualitative Research: A Critical Analysis of Meaning Attribution. ... basic philosophical nature of phenomenological meaning and inquiry, and that he not ... In keeping with the title of my book, Researching. Lived Experience ...... a quantitative social science that can make generalizing.
Hanich, Julian; Ferencz-Flatz, Christian
2016-01-01
In this article Christian Ferencz-Flatz and I try to give an answer to the question what film phenomenology actually is. We proceed in three steps. First, we provide a survey of five different research practices within current film phenomenological writing: We call them excavation, explanation,
Phenomenological Hints from a Class of String Motivated Model Constructions
Directory of Open Access Journals (Sweden)
Hans Peter Nilles
2015-01-01
Full Text Available We use string theory constructions towards the generalisation of the supersymmetric standard model of strong and electroweak interactions. Properties of the models depend crucially on the location of fields in extradimensional compact space. This allows us to extract some generic lessons for the phenomenological properties of the low energy effective action. Within this scheme we present a compelling model based on local grand unification and mirage mediation of supersymmetry breakdown. We analyse the properties of the specific model towards its possible tests at the LHC and the complementarity to direct dark matter searches.
Deuteron stripping reactions using dirac phenomenology
Hawk, E. A.; McNeil, J. A.
2001-04-01
In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.
Relaxation of vacuum energy in q-theory
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
Descriptions of carbon isotopes within the energy density functional theory
Energy Technology Data Exchange (ETDEWEB)
Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Descriptions of carbon isotopes within the energy density functional theory
International Nuclear Information System (INIS)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.
2014-01-01
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in 15 C, 17 C and 19 C, and the two-neutron halo structures in 16 C and 22 C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations
Late forming dark matter in theories of neutrino dark energy
International Nuclear Information System (INIS)
Das, Subinoy; Weiner, Neal
2011-01-01
We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.
The accuracy of QCD perturbation theory at high energies
Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2016-01-01
We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Is the effective field theory of dark energy effective?
Energy Technology Data Exchange (ETDEWEB)
Linder, Eric V. [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, New Campbell Hall 341, Berkeley, CA, 94720 (United States); Sengör, Gizem; Watson, Scott, E-mail: evlinder@lbl.gov, E-mail: gsengor@syr.edu, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244 (United States)
2016-05-01
The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions —assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H ( z ) or dark energy equation of state w ( z ) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.
Opportunities for discovery: Theory and computation in Basic Energy Sciences
Energy Technology Data Exchange (ETDEWEB)
Harmon, Bruce; Kirby, Kate; McCurdy, C. William
2005-01-11
New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.
Needs for experiment and theory in intermediate energy reactions
International Nuclear Information System (INIS)
Blann, M.
1991-01-01
We summarize several reasons intermediate energy data are needed in both basic and applied science. The status of the data base at energies up to 2 GeV is cursorily reviewed. Experimental excitation functions, single and double differential cross sections are compared with predictions of the nuclear model code ALICE. The strengths and weaknesses of the code to reproduce data are summarized. Opinions are given as to areas where data are too few or totally lacking, yet are needed for the verification of models and theories. (author). 25 refs, 22 figs
Approximate theory the electromagnetic energy of solenoid in special relativity
International Nuclear Information System (INIS)
Prastyaningrum, I; Kartikaningsih, S.
2017-01-01
Solenoid is a device that is often used in electronic devices. A solenoid is electrified will cause a magnetic field. In our analysis, we just focus on the electromagnetic energy for solenoid form. We purpose to analyze by the theoretical approach in special relativity. Our approach is begun on the Biot Savart law and Lorentz force. Special theory relativity can be derived from the Biot Savart law, and for the energy can be derived from Lorentz for, by first determining the momentum equation. We choose the solenoid form with the goal of the future can be used to improve the efficiency of the electrical motor. (paper)
Inflation and dark energy from the Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Artymowski, Michał [Institute of Physics, Jagiellonian UniversityŁojasiewicza 11, 30-348 Kraków (Poland); Lalak, Zygmunt; Lewicki, Marek [Institute of Theoretical Physics, Faculty of Physics, University of Warsawul. Pasteura 5, 02-093 Warszawa (Poland)
2015-06-17
We consider the Brans-Dicke theory motivated by the f(R)=R+αR{sup n}−βR{sup 2−n} model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.
Energy-momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Fujikawa, K.
1981-01-01
The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise
Complexity vs energy: theory of computation and theoretical physics
International Nuclear Information System (INIS)
Manin, Y I
2014-01-01
This paper is a survey based upon the talk at the satellite QQQ conference to ECM6, 3Quantum: Algebra Geometry Information, Tallinn, July 2012. It is dedicated to the analogy between the notions of complexity in theoretical computer science and energy in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.
Theories of Variable Mass Particles and Low Energy Nuclear Phenomena
Davidson, Mark
2014-02-01
Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.
Lower Bound on the Energy Density in Classical and Quantum Field Theories.
Wall, Aron C
2017-04-14
A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.
Recent Trends in Superstring Phenomenology
Bianchi, Massimo
2009-01-01
We review for non-experts possible phenomenological scenari in String Theory. In particular we focus on vacuum configurations with intersecting and/or magnetized unoriented D-branes. We will show how a TeV scale tension may be compatible with the existence of Large Extra Dimensions and how anomalous U(1)'s can give rise to interesting signatures at LHC or in cosmic rays. Finally, we discuss unoriented D-brane instantons as a source of non-perturbative effects that can contribute to moduli stabilization and susy braking in combination with fluxes. We conclude with an outlook and directions for future work.
Quantum theory of noncommutative fields
International Nuclear Information System (INIS)
Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.
2003-01-01
Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)
Zero-point energy in early quantum theory
International Nuclear Information System (INIS)
Milonni, P.W.; Shih, M.-L.
1991-01-01
In modern physics the vacuum is not a tranquil void but a quantum state with fluctuations having observable consequences. The present concept of the vacuum has its roots in the zero-point energy of harmonic oscillators and the electromagnetic field, and arose before the development of the formalism of quantum mechanics. This article discusses these roots in the blackbody research of Planck and Einstein in 1912--1913, and the relation to Bose--Einstein statistics and the first indication of wave--particle duality uncovered by Einstein's fluctuation formula. Also considered are the Einstein--Stern theory of specific heats, which invoked zero-point energy in a way which turned out to be incorrect, and the experimental implications of zero-point energy recognized by Mulliken and Debye in vibrational spectroscopy and x-ray diffraction
Gyrokinetic theory for particle and energy transport in fusion plasmas
Falessi, Matteo Valerio; Zonca, Fulvio
2018-03-01
A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.
Large Hadron Collider (LHC) phenomenology, operational challenges and theoretical predictions
Gilles, Abelin R
2013-01-01
The Large Hadron Collider (LHC) is the highest-energy particle collider ever constructed and is considered "one of the great engineering milestones of mankind." It was built by the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the aim of allowing physicists to test the predictions of different theories of particle physics and high-energy physics, and particularly prove or disprove the existence of the theorized Higgs boson and of the large family of new particles predicted by supersymmetric theories. In this book, the authors study the phenomenology, operational challenges and theoretical predictions of LHC. Topics discussed include neutral and charged black hole remnants at the LHC; the modified statistics approach for the thermodynamical model of multiparticle production; and astroparticle physics and cosmology in the LHC era.
Weak interactions at high energies
International Nuclear Information System (INIS)
Ellis, J.
1978-08-01
Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references
International Nuclear Information System (INIS)
Schwarz, J.H.
1985-01-01
Dual string theories, initially developed as phenomenological models of hadrons, now appear more promising as candidates for a unified theory of fundamental interactions. Type I superstring theory (SST I), is a ten-dimensional theory of interacting open and closed strings, with one supersymmetry, that is free from ghosts and tachyons. It requires that an SO(eta) or Sp(2eta) gauge group be used. A light-cone-gauge string action with space-time supersymmetry automatically incorporates the superstring restrictions and leads to the discovery of type II superstring theory (SST II). SST II is an interacting theory of closed strings only, with two D=10 supersymmetries, that is also free from ghosts and tachyons. By taking six of the spatial dimensions to form a compact space, it becomes possible to reconcile the models with our four-dimensional perception of spacetime and to define low-energy limits in which SST I reduces to N=4, D=4 super Yang-Mills theory and SST II reduces to N=8, D=4 supergravity theory. The superstring theories can be described by a light-cone-gauge action principle based on fields that are functionals of string coordinates. With this formalism any physical quantity should be calculable. There is some evidence that, unlike any conventional field theory, the superstring theories provide perturbatively renormalizable (SST I) or finite (SST II) unifications of gravity with other interactions
Subjectivity and intersubjectivity between semiotics and phenomenology
Directory of Open Access Journals (Sweden)
Francesco Marsciani
2014-12-01
Full Text Available A semiotic theory of subjectivity cannot prescind from a radical consideration of the intersubjective dimension, which, from the phenomenological perspective, represents the constitutive instance of the meaning of the world. The theory of signification has yet to come to terms with this fundamental option: the theory of enunciation, for example, is still tied to the alternative between an egological perception of the production of meaning and a truly intersubjective conception. A radically intersubjective understanding of the constitution of meaning must, in the theory of enunciation, include an authentic theory of alterity in which the production of communicative intentions can be described based on a more fundamental transcendental intentionality.
Modified weak energy condition for the energy momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Latorre, J.
1998-01-01
The weak energy condition is known to fail in general when applied to expectation values of the energy momentum tensor in flat space quantum field theory. It is shown how the usual counter arguments against its validity are no longer applicable if the states vertical stroke ψ right angle for which the expectation value is considered are restricted to a suitably defined subspace. A possible natural restriction on vertical stroke ψ right angle is suggested and illustrated by two quantum mechanical examples based on a simple perturbed harmonic oscillator Hamiltonian. The proposed alternative quantum weak energy condition is applied to states formed by the action of the scalar, vector and the energy momentum tensor operators on the vacuum. We assume conformal invariance in order to determine almost uniquely three-point functions involving the energy momentum tensor in terms of a few parameters. The positivity conditions lead to non-trivial inequalities for these parameters. They are satisfied in free field theories, except in one case for dimensions close to two. Further restrictions on vertical stroke ψ right angle are suggested which remove this problem. The inequalities which follow from considering the state formed by applying the energy momentum tensor to the vacuum are shown to imply that the coefficient of the topological term in the expectation value of the trace of the energy momentum tensor in an arbitrary curved space background is positive, in accord with calculations in free field theories. (orig.)
Nuclear energy technology: theory and practice of commercial nuclear power
International Nuclear Information System (INIS)
Knief, R.A.
1982-01-01
Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)
A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence
McComb, W. D.; Yoffe, S. R.
2017-09-01
A statistical closure of the Navier-Stokes hierarchy which leads to equations for the two-point, two-time covariance of the velocity field for stationary, homogeneous isotropic turbulence is presented. It is a generalisation of the self-consistent field method due to Edwards (1964) for the stationary, single-time velocity covariance. The probability distribution functional P≤ft[\\mathbf{u},t\\right] is obtained, in the form of a series, from the Liouville equation by means of a perturbation expansion about a Gaussian distribution, which is chosen to give the exact two-point, two-time covariance. The triple moment is calculated in terms of an ensemble-averaged infinitesimal velocity-field propagator, and shown to yield the Edwards result as a special case. The use of a Gaussian zero-order distribution has been found to justify the introduction of a fluctuation-response relation, which is in accord with modern dynamical theories. In a sense this work completes the analogy drawn by Edwards between turbulence and Brownian motion. Originally Edwards had shown that the noise input was determined by the correlation of the velocity field with the externally applied stirring forces but was unable to determine the system response. Now we find that the system response is determined by the correlation of the velocity field with internal quasi-entropic forces. This analysis is valid to all orders of perturbation theory, and allows the recovery of the local energy transfer (LET) theory, which had previously been derived by more heuristical methods. The LET theory is known to be in good agreement with experimental results. It is also unique among two-point statistical closures in displaying an acceptable (i.e. non-Markovian) relationship between the transfer spectrum and the system response, in accordance with experimental results. As a result of the latter property, it is compatible with the Kolmogorov (K41) spectral phenomenology. In memory of Professor Sir Sam Edwards F
High energy instanton induced processes in electroweak theory
International Nuclear Information System (INIS)
McLerran, L.
1992-01-01
It is well known that in electroweak theory, baryon plus lepton number is conserved by the classical equations of motion. This is of course consistent with the lack of experimental observation of such processes. It is a little less well known that when quantum corrections are included in electroweak theory, baryon plus lepton number is not conserved. This was first discovered as a consequence of the Adler-Bardeen-Bell-Jackiw triangle anomaly. It is perhaps most easily understood as a consequence of vacuum degeneracy, fermion energy level crossing and filling of the negative energy Dirac sea upon second quantization. To understand how baryon plus lepton number is not conserved upon second quantization, consider the situation shown in the energy of the system is shown as a function of a parameter which characterizes the gauge fields, the Chern-Simons charge. The Chern-Simons charge is a function only of the gauge fields, and the B + L change is equal to the change in Chern-Simons charge, ΔQ B+L = ΔQ CS
Determination of partial molar volumes from free energy perturbation theory.
Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L
2015-04-07
Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.
Dynamical black holes in low-energy string theory
Energy Technology Data Exchange (ETDEWEB)
Aniceto, Pedro [Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Rocha, Jorge V. [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)
2017-05-08
We investigate time-dependent spherically symmetric solutions of the four-dimensional Einstein-Maxwell-axion-dilaton system, with the dilaton coupling that occurs in low-energy effective heterotic string theory. A class of dilaton-electrovacuum radiating solutions with a trivial axion, previously found by Güven and Yörük, is re-derived in a simpler manner and its causal structure is clarified. It is shown that such dynamical spacetimes featuring apparent horizons do not possess a regular light-like past null infinity or future null infinity, depending on whether they are radiating or accreting. These solutions are then extended in two ways. First we consider a Vaidya-like generalisation, which introduces a null dust source. Such spacetimes are used to test the status of cosmic censorship in the context of low-energy string theory. We prove that — within this family of solutions — regular black holes cannot evolve into naked singularities by accreting null dust, unless standard energy conditions are violated. Secondly, we employ S-duality to derive new time-dependent dyon solutions with a nontrivial axion turned on. Although they share the same causal structure as their Einstein-Maxwell-dilaton counterparts, these solutions possess both electric and magnetic charges.
Folk Phenomenology and the Offering of Teaching
Rocha, Samuel D.
2016-01-01
This article will move in five parts. It begins with some priming notes on the relationship between philosophy of education and curriculum theory. Then it rehearses a collage of selected passages from a recent book, "Folk Phenomenology: Education, Study, and the Human Person" (Rocha, 2015a). Then the author works in a more speculative…
Energy-momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Fujikawa, Kazuo.
1980-12-01
The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)
Determination of the low energy spectra in the superstring theory
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
1990-01-01
There is one solution to the superstring theory in 10 dimensions (SO(32) ou E8xE8) but in a 4-dimensions space, there are plenty of solutions, so a classification is necessary. The author has used a formulation named fermionic, where the solution is easy to build and he has developed a program in terms of formal calculation (REDUCE). In a first time, this program verifies the constraints induced by the modular invariance and then reproduces the low energy spectra
Criticality problems in energy dependent neutron transport theory
International Nuclear Information System (INIS)
Victory, H.D. Jr.
1979-01-01
The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed
General theory for environmental effects on (vertical) electronic excitation energies.
Schwabe, Tobias
2016-10-21
Almost 70 years ago, the first theoretical model for environmental effects on electronic excitation energies has been derived. Since then, several different interpretations and refined models have been proposed for the perichromic shift of a chromophore due to its surrounding medium. Some of these models are contradictory. Here, the contributing terms are derived within the framework of long-range perturbation theory with the least approximations so far. The derivation is based on a state-specific interpretation of the interaction energies and all terms can be identified with individual properties of either the chromophore or the surroundings, respectively. Further, the much debated contribution due to transition moments coupled to the environment can be verified in the form of a non-resonant excitonic coupling to the dynamic polarizabilities in the environment. These general insights should clarify discussions and interpretations of environmental effects on electronic excitations and should foster the development of new models for the computation of these effects.
Inflation and dark energy from the Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Artymowski, Michał [Institute of Physics, Jagiellonian University Łojasiewicza 11, 30-348 Kraków (Poland); Lalak, Zygmunt; Lewicki, Marek, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Zygmunt.Lalak@fuw.edu.pl, E-mail: Marek.Lewicki@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warszawa (Poland)
2015-06-01
We consider the Brans-Dicke theory motivated by the f(R) = R + α R{sup n} − β R{sup 2−n} model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.
Calculating Casimir energies in renormalizable quantum field theory
International Nuclear Information System (INIS)
Milton, Kimball A.
2003-01-01
Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges were studied by several authors. Quite recently, Graham et al. have reexamined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well known that in two space dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general spatial dimension D not equal to an even integer the corresponding Casimir energy arising from massless fields interior and exterior to a hyperspherical shell is finite. It has also long been recognized that the Casimir energy for massive fields is divergent for curved boundaries. These conclusions are reinforced by a calculation of the relevant leading Feynman diagram in D and in three dimensions. There is therefore no doubt of the validity of the conventional finite Casimir calculations
Rydberg energies using excited state density functional theory
International Nuclear Information System (INIS)
Cheng, C.-L.; Wu Qin; Van Voorhis, Troy
2008-01-01
We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.
Heidegger’s phenomenology of the invisible
Directory of Open Access Journals (Sweden)
Andrzej SERAFIN
2016-12-01
Full Text Available Martin Heidegger has retrospectively characterized his philosophy as “phenomenology of the invisible”. This paradoxical formula suggests that the aim of his thinking was to examine the origin of the phenomena. Furthermore, Heidegger has also stated that his philosophy is ultimately motivated by a theological interest, namely the question of God’s absence. Following the guiding thread of those remarks, this essay analyzes the essential traits of Heidegger’s thought by interpreting them as an attempt to develop a phenomenology of the invisible. Heidegger’s attitude towards physics and metaphysics, his theory of truth, his reading of Aristotle, his concept of Dasein, his understanding of nothingness are all situated within the problematic context of the relation between the invisible and the revealed. Heidegger’s thought is thereby posited at the point of intersection of phenomenology, ontology, and theology.
Creativity in phenomenological methodology
DEFF Research Database (Denmark)
Dreyer, Pia; Martinsen, Bente; Norlyk, Annelise
2014-01-01
on the methodologies of van Manen, Dahlberg, Lindseth & Norberg, the aim of this paper is to argue that the increased focus on creativity and arts in research methodology is valuable to gain a deeper insight into lived experiences. We illustrate this point through examples from empirical nursing studies, and discuss......Nursing research is often concerned with lived experiences in human life using phenomenological and hermeneutic approaches. These empirical studies may use different creative expressions and art-forms to describe and enhance an embodied and personalised understanding of lived experiences. Drawing...... may support a respectful renewal of phenomenological research traditions in nursing research....
Could quantum gravity phenomenology be tested with high intensity lasers?
International Nuclear Information System (INIS)
Magueijo, Joao
2006-01-01
In phenomenological quantum gravity theories, Planckian behavior is triggered by the energy of elementary particles approaching the Planck energy, E P , but it is also possible that anomalous behavior strikes systems of particles with total energy near E P . This is usually perceived to be pathological and has been labeled 'the soccer ball problem'. We point out that there is no obvious contradiction with experiment if coherent collections of particles with bulk energy of order E P do indeed display Planckian behavior, a possibility that would open a new experimental window. Unfortunately, field theory realizations of 'doubly' (or deformed) special relativity never exhibit a soccer ball problem; we present several formulations where this is undeniably true. Upon closer scrutiny we discover that the only chance for Planckian behavior to be triggered by large coherent energies involves the details of second quantization. We find a formulation where the quanta have their energy-momentum (mass-shell) relations deformed as a function of the bulk energy of the coherent packet to which they belong, rather than the frequency. Given ongoing developments in laser technology, such a possibility would be of great experimental interest
Phenomenological structure functions and Gribov-Lipatov relation
International Nuclear Information System (INIS)
Choudhary, D.K.; Misra, A.K.
1987-01-01
An analysis of the Giribov-Lipatov relation using the phenomenological forms of the structure function F 2 ep is made. The analysis indicate breakdown of the relation at PETRA energies. Plausible reasons of the breakdown of Gribov-Lipatov relation are discussed together with its phenomenological form. 33 refs., 6 figures. (author)
Cross section recondensation method via generalized energy condensation theory
International Nuclear Information System (INIS)
Douglass, Steven; Rahnema, Farzad
2011-01-01
Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development
Origin and phenomenology of weak-doublet spin-1 bosons
International Nuclear Information System (INIS)
Chizhov, M.V.; Dvali, Gia
2011-01-01
We study phenomenological consequences of the Standard Model extension by the new spin-1 fields with the internal quantum numbers of the electroweak Higgs doublets. We show, that there are at least three different classes of theories, all motivated by the hierarchy problem, which predict appearance of such vector weak-doublets not far from the weak scale. The common feature for all the models is the existence of an SU(3) W gauge extension of the weak SU(2) W group, which is broken down to the latter at some energy scale around TeV. The Higgs doublet then emerges as either a pseudo-Nambu-Goldstone boson of a global remnant of SU(3) W , or as a symmetry partner of the true eaten-up Goldstone boson. In the third class, the Higgs is a scalar component of a high-dimensional SU(3) W gauge field. The common phenomenological feature of these theories is the existence of the electroweak doublet vectors (Z * ,W * ), which in contrast to well-known Z ' and W ' bosons posses only anomalous (magnetic moment type) couplings with ordinary light fermions. This fact leads to some unique signatures for their detection at the hadron colliders.
Cyberbullying Victimization among College Students: An Interpretive Phenomenological Analysis
Rivituso, Jack
2014-01-01
This interpretive phenomenological analysis explored the lived experiences and the psychological impact of victimization from cyberbullying among college students. Two theories, Bandura's Theory of Triadic Reciprocal Determinism and the General Strain Theory, guided the primary research questions used for this exploration. Each of these…
Amelino-Camelia, Giovanni
2003-01-01
Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"
The Phenomenology of Democracy
Shaw, Robert
2009-01-01
Human beings originate votes, and democracy constitutes decisions. This is the essence of democracy. A phenomenological analysis of the vote and of the decision reveals for us the inherent strength of democracy and its deficiencies. Alexis de Tocqueville pioneered this form of enquiry into democracy and produced positive results from it.…
Superstring inspired phenomenology
International Nuclear Information System (INIS)
Binetruy, P.
1988-01-01
Recent progress in superstring model building is reviewed with an emphasis on the general features of the models obtained. The problems associated with supersymmetry breaking and intermediate gauge symmetry breaking (M W I GUT ) are described. Finally, the phenomenology of these models is summarized, with a discussion of the role that new experimental results could play to help clearing up the above difficulties
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.; Nitta, Muneto; Veldhuis, T. ter; Xiong, C.
2009-01-01
Local oscillations of the brane world are manifested as massive vector fields. Their coupling to the Standard Model can be obtained using the method of nonlinear realizations of the spontaneously broken higher-dimensional space-time symmetries, and to an extent, are model independent. Phenomenological limits on these vector field parameters are obtained using LEP collider data and dark matter constraints
Weak interactions at high energies. [Lectures, review
Energy Technology Data Exchange (ETDEWEB)
Ellis, J.
1978-08-01
Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)
Inference with minimal Gibbs free energy in information field theory
International Nuclear Information System (INIS)
Ensslin, Torsten A.; Weig, Cornelius
2010-01-01
Non-linear and non-Gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the Gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from Poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a Gaussian signal with unknown spectrum, and (iii) inference of a Poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how Gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-Gaussian posterior.
Light Higgs bosons in phenomenological NMSSM
Energy Technology Data Exchange (ETDEWEB)
Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.
2010-12-15
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)
Light Higgs bosons in phenomenological NMSSM
International Nuclear Information System (INIS)
Mahmoudi, F.; Rathsman, J.; Zeune, L.; Goettingen Univ.
2010-12-01
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)
International Nuclear Information System (INIS)
Murygin, I.V.; Chebotin, V.N.
1979-01-01
The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface
Quantum supergravity, supergravity anomalies and string phenomenology
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K., E-mail: mkgaillard@lbl.gov
2016-11-15
I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.
Neutron relativistic phenomenological and microscopic optical potential
International Nuclear Information System (INIS)
Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong
1991-01-01
In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested
International Nuclear Information System (INIS)
Gebremariam, B.; Bogner, S.K.; Duguet, T.
2011-01-01
The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyrme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in (arXiv:0910.4979) by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N 2 LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A link to a downloadable Mathematica notebook containing the novel density-dependent couplings is provided.
Horn, Paul R; Head-Gordon, Martin
2016-02-28
In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.
Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?
Gasbarro, Andrew
2018-03-01
In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.
Phenomenology in Its Original Sense.
van Manen, Max
2017-05-01
In this article, I try to think through the question, "What distinguishes phenomenology in its original sense?" My intent is to focus on the project and methodology of phenomenology in a manner that is not overly technical and that may help others to further elaborate on or question the singular features that make phenomenology into a unique qualitative form of inquiry. I pay special attention to the notion of "lived" in the phenomenological term "lived experience" to demonstrate its critical role and significance for understanding phenomenological reflection, meaning, analysis, and insights. I also attend to the kind of experiential material that is needed to focus on a genuine phenomenological question that should guide any specific research project. Heidegger, van den Berg, and Marion provide some poignant exemplars of the use of narrative "examples" in phenomenological explorations of the phenomena of "boredom," "conversation," and "the meaningful look in eye-contact." Only what is given or what gives itself in lived experience (or conscious awareness) are proper phenomenological "data" or "givens," but these givens are not to be confused with data material that can be coded, sorted, abstracted, and accordingly analyzed in some "systematic" manner. The latter approach to experiential research may be appropriate and worthwhile for various types of qualitative inquiry but not for phenomenology in its original sense. Finally, I use the mythical figure of Kairos to show that the famous phenomenological couplet of the epoché-reduction aims for phenomenological insights that require experiential analysis and attentive (but serendipitous) methodical inquiry practices.
Resonant diphoton phenomenology simplified
International Nuclear Information System (INIS)
Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea
2016-01-01
A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.
Theory of the low-energy pion-nucleon interaction
International Nuclear Information System (INIS)
Banerjee, M.K.; Cammarata, J.B.
1978-01-01
A once-subtracted form of the Low equation for the pion-nucleon scattering amplitude is derived, with partial conservation of axial-vector current used to define the amplitude when one pion is off the mass shell. The static approximation is not made and both the seagull terms and the antinucleon contribution (z graphs) are retained. The theory is applied to calculate the S-wave amplitudes in the elastic scattering region. Good agreement is found with the phase shift fits to the data when we use vertical-barg/sub π/(4M 2 ) vertical-bar = 11.69 and 25.5 MeV for the πN sigma commutator. The implications of this work for the analysis of low-energy elastic scattering of pions form nuclei are discussed. In particular, we point out how this work establishes the presence of a Laplacian term in the pion-nucleus optical potential with a magnitude that is fixed from the value of the sigma commutator
A field theory description of constrained energy-dissipation processes
International Nuclear Information System (INIS)
Mandzhavidze, I.D.; Sisakyan, A.N.
2002-01-01
A field theory description of dissipation processes constrained by a high-symmetry group is given. The formalism is presented in the example of the multiple-hadron production processes, where the transition to the thermodynamic equilibrium results from the kinetic energy of colliding particles dissipating into hadron masses. The dynamics of these processes is restricted because the constraints responsible for the colour charge confinement must be taken into account. We develop a more general S-matrix formulation of the thermodynamics of nonequilibrium dissipative processes and find a necessary and sufficient condition for the validity of this description; this condition is similar to the correlation relaxation condition, which, according to Bogolyubov, must apply as the system approaches equilibrium. This situation must physically occur in processes with an extremely high multiplicity, at least if the hadron mass is nonzero. We also describe a new strong-coupling perturbation scheme, which is useful for taking symmetry restrictions on the dynamics of dissipation processes into account. We review the literature devoted to this problem
Model building and phenomenology in supersymmetry
International Nuclear Information System (INIS)
Kim, Jong Soo
2008-09-01
Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)
Model building and phenomenology in supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Kim Jong Soo
2008-09-15
Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)
Nasri, M.; Dhahri, E.; Hlil, E. K.
2018-06-01
In this paper, magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 oxides have been investigated. The composite samples were prepared using the conventional solid-state reaction method. The second-order phase transition can be testified with the positive slope in Arrott plots. An excellent agreement has been found between the -ΔSM values estimated by Landau theory and those obtained using the classical Maxwell relation. The field dependence of the magnetic entropy change analysis shows a power law dependence,|ΔSM|≈Hn , with n(TC) = 0.65. Moreover, the scaling analysis of magnetic entropy change exhibits that ΔSM(T) curves collapse into a single universal curve, indicating that the observed paramagnetic to ferromagnetic phase transition is an authentic second-order phase transition. The maximum value of magnetic entropy change of composites is found to decrease slightly with the further increasing of Sb2O3 concentration. A phenomenological model was used to predict magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 composites. The theoretical calculations are compared with the available experimental data.
Four Generations in Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Kribs, Graham D. [Department of Physics, University of Oregon, Eugene, OR 97403 (United States); Plehn, Tilman [SUPA, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (HCP speaker) (United Kingdom); Spannowsky, Michael [ASC, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 80333 Muenchen (Germany); Tait, Tim M.P. [HEP Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, IL 60439 (United States)
2008-03-15
In four-generation models Higgs masses of 115-315 GeV are perfectly allowed by electroweak precision data. In this mass range we find dramatic effects on Higgs phenomenology at hadron colliders: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, Higgs pairs can be observed, and Higgs decays to Majorana neutrinos can lead to exotic signals.
Effective Theory of Dark Energy at Redshift Survey Scales
Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo
2016-01-01
We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with $\\Lambda$CDM as fiducial model and a specific choice for the time dependence of our effective functions, we perform a Fisher matrix analysis and find that the unmarginalized $68\\%$ CL errors on the parameters describing the modifications of gravity are of order $\\sigma\\sim10^{-2}$--$10^{-3}$. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravit...
Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo
2012-01-01
In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations
Dreaming Consciousness: A Contribution from Phenomenology
Directory of Open Access Journals (Sweden)
Nicola Zippel
2016-08-01
Full Text Available The central aim of this paper is to offer a historical reconstruction of phenomenological studies on dreaming and to put forward a draft for a phenomenological theory of the dream state. Prominent phenomenologists have offered an extremely valuable interpretation of the dream as an intentional process, stressing its relevance in understanding the complexity of the mental life of subject, the continuous interplay between reality and unreality, and the possibility of building parallel spheres of experience influencing the development of personal identity. Taking into consideration the main characteristics of dream experience emphasized by these scholars, in the final part of the paper I propose to elaborate a new phenomenology of dreaming, which should be able to offer a theoretical description of dream states. My sketched proposal is based on Eugen Fink’s notion of the dream as “presentification”. By combining the past and the present of phenomenological investigation, I aim at suggesting a philosophical framework to explain the intentional features of dreaming as Erlebnis.
Phenomenology with supersymmetric flipped SU(6)
Energy Technology Data Exchange (ETDEWEB)
Shafi, Qaisar E-mail: shafi@bartol.udel.edu; Tavartkiladze, Zurab E-mail: tavzur@axpfe1.fe.infn.it
1999-07-12
The supersymmetric flipped SU(6) x U(1) gauge symmetry can arise through compactification of the ten-dimensional E{sub 8} x E{sub 8} superstring theory. We show how realistic phenomenology can emerge from this theory by supplementing it with the symmetry R x U(1), where R denotes a discrete 'R'-symmetry. The well-known doublet-triplet splitting problem is resolved to 'all orders' via the pseudo-Goldstone mechanism, and the GUT scale arises from an interplay of the Planck and supersymmetry breaking scales. The symmetry R x U(1) is also important for understanding the fermion mass hierarchies as well as the magnitudes of the CKM matrix elements. Furthermore, the well-known MSSM parameter tan {beta} is estimated to be of order unity, while the proton lifetime ({tau}{sub p} {approx} 10{sup 2}{tau}{sub pSU(5)}) is consistent with observations. Depending on some parameters, p {yields} K{mu}{sup +} can be the dominant decay mode. Finally, the observed solar and atmospheric neutrino 'anomalies' requir us to introduce a 'sterile' neutrino state. Remarkably, the R x U(1) symmetry protects it from becoming heavy, so that maximal angle {nu}{sub {mu}} oscillations into a sterile state can explain the atmospheric anomaly, while the solar neutrino puzzle is resolved via the small angle {nu}{sub e} - {nu}{sub {tau}} MSW oscillations. The existence of some ({approx} 15-20% of critical energy density) neutrino hot dark matter is also predicted.
A new method for finding vacua in string phenomenology
Energy Technology Data Exchange (ETDEWEB)
Gray, James [Institut d' Astrophysique de Paris and APC, Universite de Paris 7, 98 bis, Bd. Arago 75014, Paris (France); He, Yang-Hui [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)]|[Merton College, Oxford, OX1 4JD and Mathematical Institute, Oxford University, Oxford (United Kingdom); Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)
2007-05-15
One of the central problems of string-phenomenology is to find stable vacua in the four dimensional effective theories which result from compactification. We present an algorithmic method to find all of the vacua of any given string-phenomenological system in a huge class. In particular, this paper reviews and then extends hep-th/0606122 to include various nonperturbative effects. These include gaugino condensation and instantonic contributions to the superpotential. (authors)
Renewable energy policy and public perceptions of renewable energy. A cultural theory approach
International Nuclear Information System (INIS)
West, J.; Bailey, I.; Winter, M.
2010-01-01
Public opposition to the siting of renewable energy (RE) facilities and public reluctance to invest in RE remain key obstacles to the expansion of the renewables sector in the UK and a number of other European countries. Although there is a growing body of qualitative research on factors that inform public attitudes towards RE, the majority of studies have tended to be quantitative and to view 'the public' and 'public opinion' as homogeneous wholes. This study uses a cultural theory framework and focus groups conducted in the South West UK to develop deeper understandings of how individuals' worldviews can inform opinions and behaviour in relation to RE. These findings are used to explore ways in which government policies on RE might be tailored to engender greater public support and participation. Issues discussed include the provision of economic incentives, information on climate change and RE, linking renewables to overall energy behaviour, and landscape aesthetics. (author)
International Nuclear Information System (INIS)
Harada, Masayasu
2009-01-01
Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti Malta, Pedro
2017-06-27
It is well known that the Standard Model is not complete and many of the theories that seek to extend it predict new phenomena that may be accessible in low-energy settings. This thesis deals with some of these, namely, novel spin-dependent interparticle potentials, axion-like particles and Lorentz-symmetry violation. In Part I we discuss the spin-dependent potentials that arise due to the exchange of a topologically massive mediator, and also pursue a comparative study between spin-1/2 and spin-1 sources. In Part II we treat massive axion-like particles that may be copiously produced in core-collapse supernovae, thus leading to a non-standard flux of gamma rays. Using SN 1987A and the fact that after its observation no extra gamma-ray signal was detected, we are able to set robust limits on the parameter space of axion-like particles with masses in the 10 keV - 100 MeV range. Finally, in Part III we investigate the effects of Lorentz-breaking backgrounds in QED. We discuss two scenarios: a modification in the Maxwell sector via the Carroll-Field-Jackiw term and a new non-minimal coupling between electrons and photons. We are able to set upper limits on the coefficients of the backgrounds by using laboratory-based measurements.
69th Scottish Universities Summer School in Physics: LHC phenomenology
Glover, Nigel; Robson, Aidan; SUSSP69
2015-01-01
This book covers a very broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model, to detailed studies of Quantum Chromodynamics, the B-physics sectors and the properties of hadronic matter at high energy density as realised in heavy-ion collisions. Starting with a basic introduction to the Standard Model and its most likely extensions, the opening section of the book presents an overview of the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics. In part II, discussion of the theory is supplemented by chapters on the detector capabilities and search strategies, as well as an overview of the main detector components, the initial calibration procedures and physics samples, and early LHC results. Part III completes the volume with a description of the physics behind Monte Carlo event generators, and a broad introduction to the main statistical methods use...
Energy aspect of the correspondence principle in gravitation theory
International Nuclear Information System (INIS)
Mitskevich, N.V.; Nesterov, A.I.
1976-01-01
The correspondence of different definitions of invariant values in the general relativity theory with the Newton theory is considered. The analysis is carried out in the system of reference of a single Fermi-observer. It turns out that of the values considered the Papapetru pseudotensor only satisfies the correspondence principle
High Energy Theory: Task B and Task L. Progress report
International Nuclear Information System (INIS)
1994-01-01
Research areas briefly covered in this report include semi-leptonic and non-leptonic B- and D-decays, CP violation, lattice gauge theory, light cone field theory, supersymmetry, fermion mass matrices, superstrings derived SUSY GUTs, neutrino physics and cosmology
Directory of Open Access Journals (Sweden)
Georgii Chuzhyk
2017-02-01
Full Text Available We offer an evolutionary and alternative solution to the problem of the Universe. The theory involves the formation of the Universe by means of all the sequences of energies and energy of consciousness with gradual structural wrapping by energy shells recording and accumulating them; formation of the core dispatch centers performing energetic and informational communication with a single rhythm among all space objects that form civilizations. We outline a way of human consciousness formation. The theory explains how the first objectively appeared sparks of human consciousness energy were evolving, accumulating and being recorded, formed the Earth’s noosphere in its core dispatch center. The consciousness energy structure has not yet been discovered and that inhibits the science, which is wary of those who define it as a stream of multi-super large reflection objectively reflecting the highest degree of manifestation of civilization collective creativity, named by John Wheeler as a substance of the information — “It from Bit.” Core dispatching centers of all cosmic objects consciousness energies such as the Earth are combined into the Universe core dispatcher center of which called the Cosmic Consciousness. Many hundreds of billions of years the Cosmic Consciousness absorbed and only recorded the sequences, experience of which ended strictly following the laws of nature, formed a unique quality — for each new sequence by its energetic and informational signal it can highlight, express from its archive the evolution of similar Roadmap, which had been already passed by a similar sequence. The Cosmic Consciousness indirectly provides the most important thing in the Universe — not interfering, it retains all its evolutionary integrity and harmony. All of them constantly and continuously follow and check it through bioinformational communication, without deviation move toward their goal. Life of the Earth civilization is also moving
Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien
2018-06-01
A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.
A dynamic elastic and inelastic scattering theory of high-energy electrons
International Nuclear Information System (INIS)
Wang Zhonglin
1990-01-01
A review is given on the applications of elastic multislice theory for simulating the images and diffractions of reflection electron microscopy. The limitation of this theory is illustrated according to some experimental observations. A generalized elastic and inelastic multislice theory is then introduced from quantum mechanics; its applications for approaching inelastic plasmon excitation and phonon excitation (or thermal diffuse scattering) are discussed. The energy-filtered inelastic high resolution images can be simulated based on this theory
Hartimo, Mirja
2010-01-01
During Edmund Husserl,s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl,s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schroder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Godel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl,s phenomenology offers also a systematically rich but little researched area of investigation.
Scanning the phenomenological MSSM
Wuerzinger, Jonas
2017-01-01
A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\
International Nuclear Information System (INIS)
1990-01-01
This report discusses progress in experimental and theoretical High Energy Physics at Florida State University. Fixed target experiments, collider experiments, computing, networking, VAX upgrade, SSC preparation, detector development, and particle theory are some of the areas covered
Energy shocks, crises and the policy process: A review of theory and application
International Nuclear Information System (INIS)
Grossman, Peter Z.
2015-01-01
What motivates changes in energy policy? Typically, the process begins with a notable exogenous event, a shock. Often, the shock leads to what is perceived to be a crisis. This review essay surveys theories of crisis policymaking from the social science literature and considers their application to changes in energy policy. Two cases — one from the U.S., the other from Germany — are examined in more detail from the standpoint of the theories discussed. Suggestions are made for improving energy policy analysis in the future. - Highlights: • An analysis of the idea of “crisis” and its application to energy. • A review of theories and models of the policy process and of policy change. • Theory applied to two energy cases. • Suggestion as to how the analysis of energy policymaking might be approached in the future
Theory of ion-atom collisions at high energy, I
International Nuclear Information System (INIS)
Watanabe, T.; Hino, K.
1985-01-01
Electron capture process by an ion from a neutral atom is one of the fundamental problems in the theory of atomic collision physics. Here a brief review is given mainly on the processes of non-radiative and radiative electron capture (charge transfer and REC). The main mechanism which govern the charge transfer process is introduced and the characteristic feature which is predicted by the theory is explained. As for the radiative electron capture process, after introducting the present theories, the full-quantum mechanical theoretical treatment is introduced. The theory leads a result which includes some inconsistency with formulae obtained by guage transformation. The relativistic quantum mechanical treatment is being tried in order to remove this inconsistency. The some results including mass and velocity dependence are reported and discussed. (author)
Phenomenology and Neuroaesthetics
Directory of Open Access Journals (Sweden)
Elio Franzini
2015-05-01
Full Text Available Phenomenology is not the simple description of a fact, but rather the description of an intentional immanent moment, and it presents itself as a science of essences, and not of matter of facts. The Leib, the lived body of the phenomenological tradition, is not a generic corporeal reality, but rather an intentional subject, a transcendental reference point, on the base of which the connections between physical body and psychic body should be grasped. So, the reduction of empathy to mirror neurons amounts to an “objectivisation”, with the consequent absolutisation of a process that is a function of the Leib as intentional subject, not as a physical reality. The main task of the philosophical research, bracketed by the new “neuro” researches, thus emphasizing their theoretical limits as soon as they depart from experimental enquiries, is then to understand the conditions of possibility of cognitive procedures, that is to say, in other words, the genesis of consciousness, that in aesthetics becomes “the genesis of aesthetic consciousness”. Interdisciplinarity is already an ancient and out of fashion word, now it is the time of “dialogue”, being aware however that the “logoi” not always require synthesis, and that the unity of the corporeal reality implies, as Husserl emphasizes, very different descriptive behaviours.
Black, Joshua A.; Knowles, Peter J.
2018-06-01
The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.
Phenomenological Study of Youth Lifestyles in Tehran
Directory of Open Access Journals (Sweden)
Mehdi Fallah
2014-12-01
Full Text Available This study has tried to investigate and reconstruct the meaning of life style in a phenomenological approach among young people in Tehran city. Most research done on this issue has been described by adopting deductive strategy and underlying prefabricated theories.While the phenomenological method focuses on how humans meant their experiences and transform them to collective and personal form of their consciousness. It also requires a methodologicalunderstandingthat how humans experience these phenomena. Researcher to collect such data is necessary to engage in-depth interviews with people who have directly experienced the phenomenon of interest that means they have Lived experience that is in contrast with second order experience and the operating variables that derived from metanarratives. Thus, we have distinguished four major lifestyles of young people’s lives in Tehran according to Husserl’s epoche manner and meet schutz’s typification criteria that contain; pleasure seeking - aesthetic lifestyle, functionalistic, subcultural and passive.
Research program in elementary particle theory: Progress report, January 1, 1987-December 1987
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Dicus, D.A.
1987-08-01
Progress is reported in the areas of: strings and gauge theories, mathematical physics and quantum optics, high energy physics phenomenology, quantum chromodynamic sum rules, and application of particle physics to astrophysics. Titles of DOE reports resulting from this research are listed, and the research histories of the scientific staff of the Center for Particle Theory are given
Oasis in the desert: weakly broken parity in grand unified theories
International Nuclear Information System (INIS)
Senjanovic, G.
1981-07-01
A discussion of low energy parity restoration in simple grand unified theories, such as SO(10), is presented. The consistency of phenomenological requirements and unification constraints is emphasized and various predictions of the theory are stressed, in particular: substantially lighter W and Z bosons than in the standard model and increased stability of the proton with tau/sub p/ approx. = 10 38 years
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs
Why natural science needs phenomenological philosophy.
Rosen, Steven M
2015-12-01
Through an exploration of theoretical physics, this paper suggests the need for regrounding natural science in phenomenological philosophy. To begin, the philosophical roots of the prevailing scientific paradigm are traced to the thinking of Plato, Descartes, and Newton. The crisis in modern science is then investigated, tracking developments in physics, science's premier discipline. Einsteinian special relativity is interpreted as a response to the threat of discontinuity implied by the Michelson-Morley experiment, a challenge to classical objectivism that Einstein sought to counteract. We see that Einstein's efforts to banish discontinuity ultimately fall into the "black hole" predicted in his general theory of relativity. The unavoidable discontinuity that haunts Einstein's theory is also central to quantum mechanics. Here too the attempt has been made to manage discontinuity, only to have this strategy thwarted in the end by the intractable problem of quantum gravity. The irrepressible discontinuity manifested in the phenomena of modern physics proves to be linked to a merging of subject and object that flies in the face of Cartesian philosophy. To accommodate these radically non-classical phenomena, a new philosophical foundation is called for: phenomenology. Phenomenological philosophy is elaborated through Merleau-Ponty's concept of depth and is then brought into focus for use in theoretical physics via qualitative work with topology and hypercomplex numbers. In the final part of this paper, a detailed summary is offered of the specific application of topological phenomenology to quantum gravity that was systematically articulated in The Self-Evolving Cosmos (Rosen, 2008a). Copyright © 2015. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen
2008-01-01
We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD
Microscopically Based Nuclear Energy Functionals
International Nuclear Information System (INIS)
Bogner, S. K.
2009-01-01
A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.
The promise of 'sporting bodies' in phenomenological thinking
DEFF Research Database (Denmark)
Ravn, Susanne; Høffding, Simon
2017-01-01
phenomenology to empirically investigate the domain of sport and exercise, phenomenologists employ empirical data to substantiate their claims concerning foundational conditions of our being-in-the-world. In this article, we suggest a way to enhance the collaboration between the two fields by pointing out......For decades, qualitative researchers have used phenomenological thinking to advance reflections on particular kinds of lifeworlds. As emphasised by Allen-Collinson phenomenology offers a continuing promise of ‘bringing the body back in’ to theories on sport and physical activity. Turning...... and giving examples of the resource of ‘the factual variation.’ Coined by Shaun Gallagher and developed from the Husserlian eidetic variation, the factual variation uses exceptional cases, normally from pathology, to shed new light on foundational phenomenological concepts. Drawing on our research of sports...
Negative Emotional Energy: A Theory of the “Dark-Side” of Interaction Ritual Chains
Directory of Open Access Journals (Sweden)
David Boyns
2015-02-01
Full Text Available Randall Collins’ theory of interaction ritual chains is widely cited, but has been subject to little theoretical elaboration. One reason for the modest expansion of the theory is the underdevelopment of the concept of emotional energy. This paper examines emotional energy, related particularly to the dynamics of negative experiences. It asks whether or not negative emotions produce emotional energies that are qualitatively distinct from their positive counterparts. The analysis begins by tracing the development of Interaction Ritual Theory, and summarizes its core propositions. Next, it moves to a conceptualization of a “valenced” emotional energy and describes both “positive” and “negative” dimensions. Six propositions outline the central dynamics of negative emotional energy. The role of groups in the formation of positive and negative emotional energy are considered, as well as how these energies are significant sources of sociological motivation.
Does the source energy change when gravitaion waves are emitted in the einstein's gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
It is shown that in the Einstein's gravitation theory the total ''energy'' of a plane gravitational wave calculated with any pseudotensor is equal to zero. The known Einstein's result, according to which the energy of a sourceis decreased when plane weak gravitational waves are emitted, have no place in the Einstein's gravitational theory. The examples are given of exact wave solutions for which the pseudotensor is strictly equal to zero. The energy-momentum of any weak gravitational waves is always equal to zero in the Einstein's gravitation theory. When such waves are emitted the energy of the source cannot change, although these waves are real curvature waves. By the means in the Einstein's gravitation theory the energy, e, is in essenc generated from nothing
Postmodernism, phenomenology and afriphenomenology | Francis ...
African Journals Online (AJOL)
In this paper, I aimed to study the relationship between postmodernism and phenomenology. In the study, I established that postmodernism and phenomenology bear similar ontological marking, which base their concepts and methodologies on an individualistic framework. On the basis of such ontological framework, ...
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
Energy Technology Data Exchange (ETDEWEB)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-11-07
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
International Nuclear Information System (INIS)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-01-01
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
DEFF Research Database (Denmark)
Eiserhardt, Wolf L.; Bjorholm, Stine; Svenning, J.-C.
2011-01-01
Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water–energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the fir...
Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)
International Nuclear Information System (INIS)
Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James
2001-01-01
At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.
Phenomenological theory of collective decision-making
DEFF Research Database (Denmark)
Zafeiris, Anna; Koman, Zsombor; Mones, Enys
2017-01-01
An essential task of groups is to provide efficient solutions for the complex problems they face. Indeed, considerable efforts have been devoted to the question of collective decision-making related to problems involving a single dominant feature. Here we introduce a quantitative formalism...... for finding the optimal distribution of the group membersâ€™ competences in the more typical case when the underlying problem is complex, i.e., multidimensional. Thus, we consider teams that are aiming at obtaining the best possible answer to a problem having a number of independent sub-problems. Our approach...... is based on a generic scheme for the process of evaluating the proposed solutions (i.e., negotiation). We demonstrate that the best performing groups have at least one specialist for each sub-problem â€” but a far less intuitive result is that finding the optimal solution by the interacting group members...
Phenomenology of strongly coupled chiral gauge theories
International Nuclear Information System (INIS)
Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.
2016-01-01
A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.
On the phenomenological theory of magnetic storms
Directory of Open Access Journals (Sweden)
Guglielmi A.V.
2016-06-01
Full Text Available This article addresses methodical issues concerning the modeling of the Dst variation in a geomagnetic storm. We describe the so-called RBM (Russell — Burton — McPherron model representing an ordinary differential equation with solutions simulating the relation between the Dst variation and the azimuthal component of the interplanetary electric field. Special attention is paid to the threshold nature of Dst variation excitation. We would like to emphasize the necessity of stochastic extension of the RBM model by taking into account fluctuations inherent to any physical system. The integral representation of a Dst variation bifurcation diagram is given. It enables us to account for the effect of fluctuations that eliminate the diagram root singularity and cause a threshold point shift. The Dst variation is shown to be typical of the wide class of threshold phenomena similar to second-order phase transitions. We draw an analogy with threshold phenomena in Earth’s magnetosphere, atmosphere, and lithosphere. In addition, we briefly discuss the issue about soft and hard passages through the threshold, as well as about explosive instability in geophysical media.
Robust Energy Hub Management Using Information Gap Decision Theory
DEFF Research Database (Denmark)
Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.
2017-01-01
This paper proposes a robust optimization framework for energy hub management. It is well known that the operation of energy systems can be negatively affected by uncertain parameters, such as stochastic load demand or generation. In this regard, it is of high significance to propose efficient...... tools in order to deal with uncertainties and to provide reliable operating conditions. On a broader scale, an energy hub includes diverse energy sources for supplying both electrical load and heating/cooling demands with stochastic behaviors. Therefore, this paper utilizes the Information Decision Gap...
Fitting the Phenomenological MSSM
AbdusSalam, S S; Quevedo, F; Feroz, F; Hobson, M
2010-01-01
We perform a global Bayesian fit of the phenomenological minimal supersymmetric standard model (pMSSM) to current indirect collider and dark matter data. The pMSSM contains the most relevant 25 weak-scale MSSM parameters, which are simultaneously fit using `nested sampling' Monte Carlo techniques in more than 15 years of CPU time. We calculate the Bayesian evidence for the pMSSM and constrain its parameters and observables in the context of two widely different, but reasonable, priors to determine which inferences are robust. We make inferences about sparticle masses, the sign of the $\\mu$ parameter, the amount of fine tuning, dark matter properties and the prospects for direct dark matter detection without assuming a restrictive high-scale supersymmetry breaking model. We find the inferred lightest CP-even Higgs boson mass as an example of an approximately prior independent observable. This analysis constitutes the first statistically convergent pMSSM global fit to all current data.
An Energy Model for Viewing Embodied Human Capital Theory
Kaufman, Neil A.; Geroy, Gary D.
2007-01-01
Human capital development is one of the emerging areas of study with regard to social science theory, practice, and research. A relatively new concept, human capital is described in terms of individual knowledge skills and experience. It is currently expressed as a function of education as well as a measure of economic activity. Little theory…
Explaining the energy efficiency gap - expected utility theory versus cumulative prospect theory
Häckel, Björn; Pfosser, Stefan; Tränkler, Timm
2017-01-01
Energy efficiency is one of the key factors in mitigating the impact of climate change and preserving non-renewable resources. Although environmental and economic justifications for energy efficiency investments are compelling, there is a gap between the observable and some notion of optimized energy consumption - the so-called energy efficiency gap. Behavioral biases in individual decision making have been resonated by environmental research to explain this gap. To analyze the influence of b...
Effective interactions for self-energy. I. Theory
International Nuclear Information System (INIS)
Ng, T.K.; Singwi, K.S.
1986-01-01
A systematic way of deriving effective interactions for self-energy calculations in Fermi-liquid systems is presented. The self-energy expression contains effects of density and spin fluctuations and also multiple scattering between particles. Results for arbitrarily polarized one-component Fermi-liquid systems and unpolarized two-component systems are explicitly given
Theory and applications of the dual energy technique
International Nuclear Information System (INIS)
Chuang, K.S.K.
1986-01-01
Three important principles in the dual energy technique applied to radiography are studied in this dissertation: the decomposition method, x-ray scatter consideration, and the selection of an optimal energy pair. First, two new methods namely, iso-transmission lines and sub-region direct approximation methods, are proposed for dual energy decomposition calculation. These two methods are compared with two other conventional techniques, i.e. nonlinear equations and direct approximation. The accuracy, efficiency, and smoothness are used as indices for comparison. The authors conclude that the two new proposed methods, iso-transmission lines and sub-region, are superior than the nonlinear equations and direct approximation methods. In this dissertation, a method to perform scatter correction based on the knowledge of scatter primary ratio is presented. First, the relation between scatter primary ratio and attenuation coefficient is determined by a Monte Carlo simulation. The selection of an optimal energy pair for a dual energy system is described in this dissertation. The selection is based on the calculation of an optimum factor which takes into consideration of the noise in the high and low energy images, the radiation dose to the patient, as well as the error produced during the dual energy decomposition process. The calculation of this optimum factor is obtained using monoenergetic radiation sources on various sizes of water phantom. In addition to these three aspects, this dissertation also addresses some clinical applications of the dual energy techniques and shows some of the results
Energy expressions in density-functional theory using line integrals.
van Leeuwen, R.; Baerends, E.J.
1995-01-01
In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along
Interacting holographic dark energy in Brans-Dicke theory
International Nuclear Information System (INIS)
Sheykhi, Ahmad
2009-01-01
We study cosmological application of interacting holographic energy density in the framework of Brans-Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t). We find that the combination of Brans-Dicke field and holographic dark energy can accommodate w D =-1 crossing for the equation of state of noninteracting holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of w D to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.
Random Matrix Theory Approach to Indonesia Energy Portfolio Analysis
Mahardhika, Alifian; Purqon, Acep
2017-07-01
In a few years, Indonesia experienced difficulties in maintaining energy security, the problem is the decline in oil production from 1.6 million barrels per day to 861 thousand barrels per day in 2012. However, there is a difference condition in 2015 until the third week in 2016, world oil prices actually fell at the lowest price level since last 12 years. The decline in oil prices due to oversupply of oil by oil-producing countries of the world due to the instability of the world economy. Wave of layoffs in Indonesia is a response to the decline in oil prices, this led to the energy and mines portfolios Indonesia feared would not be more advantageous than the portfolio in other countries. In this research, portfolio analysis will be done on energy and mining in Indonesia by using stock price data of energy and mines in the period 26 November 2010 until April 1, 2016. It was found that the results have a wide effect of the market potential is high in the determination of the return on the portfolio energy and mines. Later, it was found that there are eight of the thirty stocks in the energy and mining portfolio of Indonesia which have a high probability of return relative to the average return of stocks in a portfolio of energy and mines.
Energy Technology Data Exchange (ETDEWEB)
Percebois, J
1999-11-01
This paper proposes a brief overview of the contributions of the micro- and macro-economic theory to the answer of the following four main questions: 1 - how will change the world energy demand with respect to the economic activity and what will be the determining factors of this demand, globally and per energy source? What are the respective roles of energy prices and technological innovations? How will change the petroleum price and what will be the share of economical and political weight in this change? 2 - how passing on this price to the end-user taking into consideration the national preferences? Is there an optimum price when the energy producing, transporting and distributing company is a monopoly? 3 - what is the optimal structure of a network industry? 4 - how to integrate the local and global externalities characteristic of the energy sector in the economical calculus? (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Percebois, J.
1999-11-01
This paper proposes a brief overview of the contributions of the micro- and macro-economic theory to the answer of the following four main questions: 1 - how will change the world energy demand with respect to the economic activity and what will be the determining factors of this demand, globally and per energy source? What are the respective roles of energy prices and technological innovations? How will change the petroleum price and what will be the share of economical and political weight in this change? 2 - how passing on this price to the end-user taking into consideration the national preferences? Is there an optimum price when the energy producing, transporting and distributing company is a monopoly? 3 - what is the optimal structure of a network industry? 4 - how to integrate the local and global externalities characteristic of the energy sector in the economical calculus? (J.S.)
Non-static local string in Brans–Dicke theory
Indian Academy of Sciences (India)
Abstract. A recent investigation showed that a local gauge string with a phenomenological energy momentum tensor, as prescribed by Vilenkin, is inconsistent in Brans–Dicke theory. In this work it has been shown that such a string is indeed consistent if one introduces time dependences in the metric. A set of solutions of full ...
Research program in elementary-particle theory, 1983. Progress report
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Ne'eman, Y.
1983-08-01
Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed
Research program in elementary-particle theory, 1983. Progress report
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E C.G.; Ne& #x27; eman, Y
1983-08-01
Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed. (WHK)
Fluctuation properties of nuclear energy levels and widths: comparison of theory with experiment
International Nuclear Information System (INIS)
Bohigas, O.; Haq, R.U.; Pandey, A.
1982-09-01
We analyze the fluctuation properties of nuclear energy levels and widths with new spectrally averaged measures. A remarkably close agreement between the predictions of random-matrix theories and experiment is found
Swart, M.; Sola, M.; Bickelhaupt, F.M.
2007-01-01
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (S
Comments on the interaction between theory and experiment in high energy physics
International Nuclear Information System (INIS)
Derrick, M.
1990-01-01
This paper discusses work being conducted in High Energy Physics and Nuclear Physics where theory and experiment go hand in hand. Pion capture, proton-antiproton interactions, kaon-pion interactions and hypernuclei decay are discussed as examples
Gaussian-3 theory using density functional geometries and zero-point energies
International Nuclear Information System (INIS)
Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.
1999-01-01
A variation of Gaussian-3 (G3) theory is presented in which the geometries and zero-point energies are obtained from B3LYP density functional theory [B3LYP/6-31G(d)] instead of geometries from second-order perturbation theory [MP2(FU)/6-31G(d)] and zero-point energies from Hartree - Fock theory [HF/6-31G(d)]. This variation, referred to as G3//B3LYP, is assessed on 299 energies (enthalpies of formation, ionization potentials, electron affinities, proton affinities) from the G2/97 test set [J. Chem. Phys. 109, 42 (1998)]. The G3//B3LYP average absolute deviation from experiment for the 299 energies is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. Generally, the results from the two methods are similar, with some exceptions. G3//B3LYP theory gives significantly improved results for several cases for which MP2 theory is deficient for optimized geometries, such as CN and O 2 + . However, G3//B3LYP does poorly for ionization potentials that involve a Jahn - Teller distortion in the cation (CH 4 + , BF 3 + , BCl 3 + ) because of the B3LYP/6-31G(d) geometries. The G3(MP2) method is also modified to use B3LYP/6-31G(d) geometries and zero-point energies. This variation, referred to as G3(MP2)//B3LYP, has an average absolute deviation of 1.25 kcal/mol compared to 1.30 kcal/mol for G3(MP2) theory. Thus, use of density functional geometries and zero-point energies in G3 and G3(MP2) theories is a useful alternative to MP2 geometries and HF zero-point energies. copyright 1999 American Institute of Physics
Polarization correction in the theory of energy losses by charged particles
Energy Technology Data Exchange (ETDEWEB)
Makarov, D. N., E-mail: makarovd0608@yandex.ru; Matveev, V. I. [Lomonosov Northern (Arctic) Federal University (Russian Federation)
2015-05-15
A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.
Kalkani, Efrossini C.; Boussiakou, Iris K.; Boussiakou, Leda G.
2004-01-01
The primary objective of this paper is to apply the educational theories of Kolb's experiential learning and Bloom's educational taxonomy in restructuring the course "Renewable energy engineering". The steps of the research procedure investigate the application of learning theories to the restructuring of the course and the introduction of…
Energy and angular-momentum non-conservation in four-dimensional gauge theories
International Nuclear Information System (INIS)
Manohar, A.
1985-01-01
We study energy and angular-momentum non-conservation on four-dimensional chiral gauge theories using Landau levels. These effects are physical manifestations of the usual gauge anomaly, and enable us to understand in a semi-classical approximation why anomaly cancellation is required for a consistent field theory. (orig.)
On the formulation of the positive-energy theorem in Kaluza--Klein theories
International Nuclear Information System (INIS)
Moreschi, O.M.; Sparling, G.A.J.
1986-01-01
The positive-energy theorem is formulated in the context of Kaluza--Klein theories. Different cases are considered, including the situation in which no symmetry is assumed. This work offers a new technique for stability considerations in Kaluza--Klein theories
K-theory and phase transitions at high energies
Directory of Open Access Journals (Sweden)
T. V. Obikhod
2016-06-01
Full Text Available The duality between E8xE8 heteritic string on manifold K3xT2 and Type IIA string compactified on a Calabi-Yau manifold induces a correspondence between vector bundles on K3xT2 and Calabi-Yau manifolds. Vector bundles over compact base space K3xT2 form the set of isomorphism classes, which is a semi-ring under the operation of Whitney sum and tensor product. The construction of semi-ring V ect X of isomorphism classes of complex vector bundles over X leads to the ring KX = K(V ect X, called Grothendieck group. As K3 has no isometries and no non-trivial one-cycles, so vector bundle winding modes arise from the T2 compactification. Since we have focused on supergravity in d = 11, there exist solutions in d = 10 for which space-time is Minkowski space and extra dimensions are K3xT2. The complete set of soliton solutions of supergravity theory is characterized by RR charges, identified by K-theory. Toric presentation of Calabi-Yau through Batyrev's toric approximation enables us to connect transitions between Calabi-Yau manifolds, classified by enhanced symmetry group, with K-theory classification.
International Nuclear Information System (INIS)
Gyulassy, M.
1994-01-01
This report summarizes the progress made during the second year of the three year DOE agreement DE-FG02-93ER40764 on theoretical nuclear physics research performed at the Columbia University and presents a detailed budget adjustment for the third year period December 15, 1994 to December 14, 1995. Sections 1.1 to 1.8 highlight the technical progress made on the following general areas: Multiple scattering and radiative processes in QCD; the quark-gluon plasma transition in nuclear matter; QCD transport theory and dissipative mechanism in dense matter; phenomenological models of high energy interactions involving nuclei; signatures of quark-gluon plasma formation in A+A; neurocomputation theory. Section 2 contains a bibliography of published papers and invited conference papers. Section 3 lists the Columbia nuclear theory members for the December 15, 1994 to December 14, 1995 period. Finally, the budget adjustment requesting $319,830 for the third year relative to the original $320,000 is presented in section 6. Copies of the research papers accompany this report
Energy Technology Data Exchange (ETDEWEB)
Gyulassy, M.
1994-09-12
This report summarizes the progress made during the second year of the three year DOE agreement DE-FG02-93ER40764 on theoretical nuclear physics research performed at the Columbia University and presents a detailed budget adjustment for the third year period December 15, 1994 to December 14, 1995. Sections 1.1 to 1.8 highlight the technical progress made on the following general areas: Multiple scattering and radiative processes in QCD; the quark-gluon plasma transition in nuclear matter; QCD transport theory and dissipative mechanism in dense matter; phenomenological models of high energy interactions involving nuclei; signatures of quark-gluon plasma formation in A+A; neurocomputation theory. Section 2 contains a bibliography of published papers and invited conference papers. Section 3 lists the Columbia nuclear theory members for the December 15, 1994 to December 14, 1995 period. Finally, the budget adjustment requesting $319,830 for the third year relative to the original $320,000 is presented in section 6. Copies of the research papers accompany this report.
Relativistic theory of the Lamb shift based on self energy
International Nuclear Information System (INIS)
Barut, A.O.; Salamin, Y.I.
1987-07-01
A study is made to evaluate the Lamb shift to all orders in (Zα) using relativistic Dirac Coulomb wavefunctions and without resorting to the dipole approximation. Use is made of the angular integrals and spins sums performed elsewhere exactly. A regularization procedure is given that makes the sum over the positive and negative energy states finite. Finally, the energy shift ΔE n LS is given in terms of an integral that may be done numerically. (author). 19 refs
Intermediate-energy nuclear theory. Final report, July 1, 1976-August 31, 1984
International Nuclear Information System (INIS)
Bryan, R.A.
1985-02-01
We summarize the research accomplishments of the Texas A and M Medium-Energy Theory Group which was funded by the Department of Energy from July 1976 through August 1984. Our research was mainly in the area of nucleon-nucleon and NNπ theory and data analysis, although some effort was also devoted to the elementary-particle aspects of these hadrons in order to better understand the NN force. Publications and reports are listed
Making humor together: phenomenology and interracial humor
Directory of Open Access Journals (Sweden)
Michael D. Barber
2016-01-01
Full Text Available This paper explains humor through phenomenological concepts and methods. The three major theories of humor: Superiority, Relief, and Incongruity depend on the thwarting of intentional expectations. Since one experiences an incongruity between what is intended and what is actually experienced, the incongruity theory affords the best explanation, but intentionality remains fundamental for all theories. Theorists of humor rightly insist that the enjoyment of humorous incongruity completes the definition of humor, but such enjoyment also depends on a special epoché, usually elicited by the cues of an interlocutor who invites the listener to leap together into the humorous finite province of meaning. In this province, actions and statements, hurtful in everyday life, such as a pie thrown at someone who ducks as the pie hits another, produce laughter. This comic epoché resembles the phenomenological epoché in its distancing from everyday life, and, like the phenomenological epoché, it opens everyday experience to reflection. Although one often experiences and enjoys humor alone, humor is thoroughly intersubjective and more frequently occurs when two persons participate in the humorous epoché together. The opportunities for making humor together are enhanced to the extent the partners differ in their expectations and responses to situations. Those differences, including bodily differences, often result from the complex intersubjective networks, including culture. As in the case of a seemingly solitary activity like reflection, which one learns from others and exercises on one’s own autonomously, one internalizes others’ styles of humor and discovers such internalization through reflection on one’s «because motives». On the basis of these features – intentionality, epoché, and intersubjectivity, the paper concludes by briefly examining an example of interracial humor. Despite the racist character of much interracial humor, the example
Energy momentum tensor and marginal deformations in open string field theory
International Nuclear Information System (INIS)
Sen, Ashoke
2004-01-01
Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)
International Nuclear Information System (INIS)
Belov, Pavel
2013-06-01
A combination is presented of the inclusive neutral current e ± p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E p of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV 2 ≤ Q 2 ≤ 110 GeV 2 , small values of Bjorken-x, 2.8.10 -5 ≤ x ≤ 1.5.10 -2 , and high inelasticity y ≤ 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F L is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F L is improved at medium Q 2 compared to the published results of the H1 collaboration.
Energy Technology Data Exchange (ETDEWEB)
Belov, Pavel
2013-06-15
A combination is presented of the inclusive neutral current e{sup {+-}}p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E{sub p} of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV{sup 2} {<=} Q{sup 2} {<=} 110 GeV{sup 2}, small values of Bjorken-x, 2.8.10{sup -5} {<=} x {<=} 1.5.10{sup -2}, and high inelasticity y {<=} 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F{sub L} is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F{sub L} is improved at medium Q{sup 2} compared to the published results of the H1 collaboration.
Theory of energy level and its application in water-loop heat pump system
International Nuclear Information System (INIS)
Yu, Qi Dong
2017-01-01
Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.
Melanie Klein's metapsychology: phenomenological and mechanistic perspective.
Mackay, N
1981-01-01
Freud's metapsychology is the subject of an important debate. This is over whether psychoanalysis is best construed as a science of the natural science type or as a special human science. The same debate applies to Melanie Klein's work. In Klein's metapsychology are two different and incompatible models of explanation. One is taken over from Freud's structural theory and appears to be similarly mechanistic. The other is clinically based and phenomenological. These two are discussed with special reference to the concepts of "phantasy" and "internal object".
A phenomenological model for nuclear multifragmentation
International Nuclear Information System (INIS)
Souza, S.R.; Leray, S.; Paula, L. de; Nemeth, J.; Ngo, C.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette; Ngo, H.
1992-01-01
A phenomenological model for nuclear multifragmentation is presented. It is made up of two complementary parts: molecular dynamics and restructured aggregation. It is applied to study the multifragmentation of 16 O+ 80 Br system at several bombarding energies. The results turn out to be in good agreement with available emulsion data. The production of charged particles and IMF as a function of the bombarding energy is also studied. The results seem to agree quite well with experimental observations and with previous results of other model calculations. (author) 19 refs.; 5 figs.; 1 tab
Formation energies of rutile metal dioxides using density functional theory
DEFF Research Database (Denmark)
Martinez, Jose Ignacio; Hansen, Heine Anton; Rossmeisl, Jan
2009-01-01
We apply standard density functional theory at the generalized gradient approximation (GGA) level to study the stability of rutile metal oxides. It is well known that standard GGA exchange and correlation in some cases is not sufficient to address reduction and oxidation reactions. Especially...... and due to a more accurate description of exchange for this particular GGA functional compared to PBE. Furthermore, we would expect the self-interaction problem to be largest for the most localized d orbitals; that means the late 3d metals and since Co, Fe, Ni, and Cu do not form rutile oxides...
Theory and application of maximum magnetic energy in toroidal plasmas
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q'/q (as in reverse field pinches and spheromaks) to have the same α in all its force-free regions and with a positive q'/q (as in tokamaks) to have centrally peaked α's
Dark Energy from Violation of Energy Conservation.
Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel
2017-01-13
In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation-nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale-and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.
Architecture and Phenomenology: Introduction
Directory of Open Access Journals (Sweden)
Brendan O’ Byrne
2014-07-01
Full Text Available The implications of philosophical aesthetics in the consideration of architecture have been relatively slight. Part of the reason is the neglect of architecture in the work of Baumgarten, Burke and Kant. Within the discourse of architecture the questions raised for philosophical consideration arising out of practice restricted the area of reflection and investigation. The dominant positions were to become either a version of neo-Kantianism, or a direct re-working of Hegel’s Lectures on Aesthetics. The significance of Kant’s distinction between ‘free’ and ‘dependent beauty’ is analysed, and in consequence the need to philosophically question again the relation of architecture to buiding, to dwelling and space. For this the question of accessibility as raised in the phenomenological enquiry, in the work of Brentano, Sartre, Bachelard, Merleau-Ponty, and especially Heidegger points to a different route for the appraisal of philosophical and architectural relations which are exhibited in the contributions of the 10 authors to this issue of Footprint.
Architecture and Phenomenology: Introduction
Directory of Open Access Journals (Sweden)
Brendan O’ Byrne
2008-10-01
Full Text Available The implications of philosophical aesthetics in the consideration of architecture have been relatively slight. Part of the reason is the neglect of architecture in the work of Baumgarten, Burke and Kant. Within the discourse of architecture the questions raised for philosophical consideration arising out of practice restricted the area of reflection and investigation. The dominant positions were to become either a version of neo-Kantianism, or a direct re-working of Hegel’s Lectures on Aesthetics. The significance of Kant’s distinction between ‘free’ and ‘dependent beauty’ is analysed, and in consequence the need to philosophically question again the relation of architecture to building, to dwelling and space. For this the question of accessibility as raised in the phenomenological enquiry, in the work of Brentano, Sartre, Bachelard, Merleau-Ponty, and especially Heidegger points to a different route for the appraisal of philosophical and architectural relations which are exhibited in the contributions of the 10 authors to this issue of Footprint.
Pringuey, Dominique
2011-10-01
A phenomenology of dreams searches for meaning, with the aim not only of explaining but also of understanding the experience. What and who is it for? And what about the nearly forgotten dream among the moderns, the banal returning to the nightmare, sleepiness, or dreamlike reverie. Nostalgia for the dream, where we saw a very early state of light, not a ordinaire qu duel. Regret for the dreamlike splendor exceeded by the modeling power of modern aesthetics--film and the explosion of virtual imaging technologies. Disappointment at the discovery of a cognitive permanence throughout sleep and a unique fit with the real upon awaking? An excess of methodological rigor where we validate the logic of the dream, correlating the clinical improvement in psychotherapy and the ability to interpret one's own dreams. The dangerous psychological access when the dream primarily is mine, viewed as a veiled expression of an unspoken desire, or when the dream reveals to me, in an existential conception of man, through time and space, my daily life, my freedom beyond my needs. Might its ultimate sense also mean its abolition? From the story of a famous forgotten dream, based on unexpected scientific data emerges the question: do we dream to forget? The main thing would not be consciousness but confidence, when " the sleeping man, his regard extinguished, dead to himself seizes the light in the night " (Heraclitus).
GCPSO in cooperation with graph theory to distribution network reconfiguration for energy saving
International Nuclear Information System (INIS)
Assadian, Mehdi; Farsangi, Malihe M.; Nezamabadi-pour, Hossein
2010-01-01
Network reconfiguration for loss reduction in distribution system is an important way to save energy. This paper investigates the ability of guaranteed convergence particle swarm optimization (GCPSO) and particle swarm optimization (PSO) in cooperation with graph theory for network reconfiguration to reduce the power loss and enhancement of voltage profile of distribution systems. Numerical results of three distribution systems are presented which illustrate the feasibility of the proposed method by GCPSO and PSO using the graph theory. To validate the obtained results, genetic algorithm (GA) using graph theory is also applied and is compared with the proposed GCPSO and PSO using graph theory.
Jenkins-Tate, Marnishia Laverne
This dissertation addresses the need for a body of human communication theory that can be useful toward advancing personal and social transformation. Of the humanistic genre, it suggests that there is a need to promote humanism, healing, and personal transformation in the non-clinical settings of everyday living. Three questions guide the effort. First, it asks: what kind of human communication theory might describe some of the underlying dynamics of human interaction, while also suggesting ways to improve the quality of interactions of any related philosophical theory be grounded by some scientific discipline? Then finally, it asks: how might these proposed concepts be captured in a manner that can be useful to human beings in everyday human interaction? Extending the work of modern physics to the realm of human communication, the theory integrates conceptual aspects of quantum theory, relativity theory, communication accommodation theory, and various nonverbal communication theory. Then, it proposes the philosophical framework for a new body of theory which it calls the energy-exchange theory of human communication. Treating human beings as living forms of matter, it suggests that ``energy'' is the life-force that sustains all human beings, and that ``consciousness'' is that qualitative level of development at which energy manifests itself in the human experience. It proposes that human beings have the capacity to exchange energy and influence consciousness during the human communication process, and that these interactions can advance humanism, healing, and transformation-which it proposes are the higher states and levels of human consciousness. Thus, this research effort sought to know and to describe a phenomenon that is the interactive human being; and to suggest useful ways that this volitional being can know and transform itself through human interaction. With verisimilitude as a driving factor in describing human beings as communicators, the research is
Bilevel programming problems theory, algorithms and applications to energy networks
Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya
2015-01-01
This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.
Indian Academy of Sciences (India)
Introduction. The hierarchy problem is a strong motivation for the beyond the standard model (BSM) physics. ... However, these new terms add arbitrariness to the theory. Recently new ..... may need to be supersymmetrized. On the other hand ...
Determination of low-energy constants of Wilson chiral perturbation theory
International Nuclear Information System (INIS)
Herdoiza, Gregorio; Univ. Autonoma de Madrid, Contoblanco; Univ. Autonoma de Madrid; Jansen, Karl; Univ. Cyprus, Nicosia; Michael, Chris; Ottnad, Konstantin; Urbach, Carsten; Univ. Bonn
2013-03-01
By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W 6 ' , W 8 ' and their linear combination c 2 . We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.
Phenomenologies of Higgs messenger models
Energy Technology Data Exchange (ETDEWEB)
Zheng Sibo; Yu Yao; Wu Xinggang [Department of Physics, Chongqing University, Chongqing 401331 (China)
2011-08-11
In this Letter, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop {mu} and two-loop B{mu} terms.
A theory of low energy π-3He elastic scattering
International Nuclear Information System (INIS)
Geffen, F.M.M. van.
1991-01-01
The main aim of this work is the construction of a first-order optical potential for the scattering of pions by 3 He at low energy with as few approximations as possible. In particular the Fermi motion is treated extremely carefully by using microscopic 3 He wave functions and by performing the complete Fermi-integral. Differential cross-sections and analyzing powers have been calculated. In a detailed comparison between the first-order optical with one which results from using the semi-factored approximation, it became clear that the latter has the following shortcomings: 1. the dependence of the subenergy on the pion-nucleus scattering angle, and 2. the independence of this energy on the relative motion of the spectator nucleons. (author). 101 refs.; 15 figs.; 3 tabs
Medical radiation dosimetry theory of charged particle collision energy loss
McParland, Brian J
2014-01-01
Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. Each year, about one-third of the worl...
Particles and energy fluxes from a conformal field theory perspective
International Nuclear Information System (INIS)
Fabbri, A.; Navarro-Salas, J.; Olmo, G.J.
2004-01-01
We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogoliubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy
Energy momentum tensor and operator product expansion in local causal perturbation theory
International Nuclear Information System (INIS)
Prange, D.
2000-09-01
We derive new examples for algebraic relations of interacting fields in local perturbative quantum field theory. The fundamental building blocks in this approach are time ordered products of free (composed) fields. We give explicit formulas for the construction of Poincare covariant ones, which were already known to exist through cohomological arguments. For a large class of theories the canonical energy momentum tensor is shown to be conserved. Classical theories without dimensionful couplings admit an improved tensor that is additionally traceless. On the example of φ 4 -theory we discuss the improved tensor in the quantum theory. Its trace receives an anomalous contribution due to its conservation. Moreover, we define an interacting bilocal normal product for scalar theories. This leads to an operator product expansion of two time ordered fields. (orig.) [de
Inequalities for magnetic-flux free energies and confinement in lattice gauge theories
International Nuclear Information System (INIS)
Yoneya, T.
1982-01-01
Rigorous inequalities among magnetic-flux free energies of tori with varying diameters are derived in lattice gauge theories. From the inequalities, it follows that if the magnetic-flux free energy vanishes in the limit of large uniform dilatation of a torus, the free energy must always decrease exponentially with the area of the cross section of the torus. The latter property is known to be sufficient for permanent confinement of static quarks. As a consequence of this property, a lower bound V(R) >= const x R for the static quark-antiquark potential is obtained in three-dimensional U(n) lattice gauge theory for sufficiently large R. (orig.)
Theory and application of deterministic multidimensional pointwise energy lattice physics methods
International Nuclear Information System (INIS)
Zerkle, M.L.
1999-01-01
The theory and application of deterministic, multidimensional, pointwise energy lattice physics methods are discussed. These methods may be used to solve the neutron transport equation in multidimensional geometries using near-continuous energy detail to calculate equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is described which reduces the computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem
Theory and application of the RAZOR two-dimensional continuous energy lattice physics code
International Nuclear Information System (INIS)
Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.
1997-01-01
The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem
The lacuna in positivist-phenomenology | Nnaji | Sophia: An African ...
African Journals Online (AJOL)
This work maintains the thesis that the positivist phenomenology, its observation methods and theories which imply that anything which cannot empirically observable does not exist, create a lacuna or an error in human reasoning. This thesis is justified by the fact that micro-molecular biology, Quantum physics and ...
Problems of phenomenological simulation of the Dst variation
International Nuclear Information System (INIS)
Gul'el'mi, A.V.
1988-01-01
Stochastic generalization of RBM model, describing the D st -variation is suggested. The corresponding Fokker-Planck equation contains a new phenomenological parameter enabling to obtain the interval estimation of D st forecast. The structure of sources and sinks forming the D st -variation is considered from the viewpoint of critical phenomenon theory
Exploring the Phenomenology of Whiteness in a Swedish Preschool Class
Schwarz, Eva; Lindqvist, Beatriz
2018-01-01
This article explores how constructions of identity, race and difference permeate and are challenged in a Swedish preschool class. The study is informed by theories of phenomenology and critical whiteness. Data are drawn from a larger ethnographic study conducted in an ethnically diverse preschool. The purpose of the study was to explore how…
Phenomenology dependent timescales
International Nuclear Information System (INIS)
Ouzounian, G.
2002-01-01
As required by the French act, Dec. 1991, construction projects for disposing of radioactive wastes have to be submitted to the Parliament by 2006. One of the most important points to allow for a decision at this time will be to gain confidence. The major difficulty in such a technical and societal project is to be able to carry out a demonstration of the safety ver timescales which are out of the scope of any experiment. Among the arguments involved for the safety case are a series of simulations which objective is to assess the level of safety which can be reached, and its robustness to various internal defects (construction of the drifts, welding of canisters...) or external events (intrusion with deep boreholes, climate change, faulting...). Confidence in the simulations can be achieved if they are transparent, based on well understood processes. However, the complexity of the disposal system is such that temptation was great by the past to simplify the models, with a poor level of reporting on justifications, thus leading to what has been described as black-box models. In the frame of the demonstration to be brought out for 2006, ANDRA has developed an approach consisting first to describe and analyse all the processes occurring over time and space in the repository. Once this type of information has been gathered in a structured way, then further analyses leading to abstractions, simplifications can be performed in order to facilitate simulations as required for the safety demonstration. The first stage of the approach has been called the phenomenological analysis of the repository situations PARS). This work gives rise to a reference book in which our knowledge has been reported before being used for the safety demonstration. If also represent a reference for all technical and scientific knowledge based applications, such as digital modeling which is the basis for simulations, the repository design, the reversibility study, including the definition of a
International Nuclear Information System (INIS)
Moffat, J.W.; Svoboda, T.
1991-01-01
The stress-energy tensor for a a general spherically symmetric matter distribution in the nonsymmetric gravitational theory (NGT) is determined using a heuristic argument. Using this tensor and the NGT field equations, it is shown that a wormhole threaded with matter must necessarily have a radial tension greater than the mass-energy density in the throat region. Hence, as in general relativity, a traversible wormhole in NGT must contain matter with a negative stress energy
Dispersion relations for the self-energy in noncommutative field theories
International Nuclear Information System (INIS)
Brandt, F.T.; Das, Ashok; Frenkel, J.
2002-01-01
We study the IR-UV connection in noncommutative φ 3 theory as well as in noncommutative QED from the point of view of the dispersion relation for self-energy. We show that, although the imaginary part of the self-energy is well behaved as the parameter of noncommutativity vanishes, the real part becomes divergent as a consequence of the high energy behavior of the dispersion integral. Some other interesting features that arise from this analysis are also briefly discussed
Anomalous energy exchange in the gBL and quasilinear theories
International Nuclear Information System (INIS)
Mynick, H.E.
1992-02-01
The rate of turbulence-induced energy exchange W o between species is computed in the framework of the quasilinear and gBL transport theories, and the relationship between these two theories, and the relationship between these two similar theories is thereby elucidated. For both theories, general formal expressions for W o are developed, and then applied to the trapped electron mode for illustration. The general expressions for W o in the two theories are formally closely related, but can yield predictions of very different magnitude in concrete applications. The fact that quasilinear theory is not valid for saturated steady-state turbulence gives rise to certain peculiarities in its predictions for this normal experimental situation, such as permitting energy to flow from the cooler to the hotter species, even in the limit of thermal equilibrium, where real-space gradients vanish. The gBL theory may be viewed as a modification of quasilinear theory to be valid for steady-state turbulence, keeping extra terms due to the self-consistent back reaction of particles on the fluctuations, which are just such as to eliminate these peculiarities
Rodriguez, A.; Ayers, P.W.; Gotz, A.W.; Castillo-Alvarado, F.L.
2009-01-01
A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic
Effective gravitational wave stress-energy tensor in alternative theories of gravity
International Nuclear Information System (INIS)
Stein, Leo C.; Yunes, Nicolas
2011-01-01
The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.
Resonance energy transfer: The unified theory via vector spherical harmonics
Energy Technology Data Exchange (ETDEWEB)
Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2016-08-21
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.
Theory of the chemical effects of high-energy electrons
International Nuclear Information System (INIS)
Magee, J.L.; Chatterjee, A.
1978-01-01
The general nature of radiation chemical yields arising from electron irradiations is examined. A relationship between the G value of an arbitrary radiation product and the initial electron energy (greater than 20 keV) in the form of an integro-differential equation is derived. G values for the water decomposition products in acid solution are obtained by numerical solution of the equation and the use of a model. A differential equation equivalent to the integro-differential equation for the case of Rutherford scattering is introduced and an approximate analytical solution is found (eq 10). The latter turns out to be in agreement with the numerical solution of the integro-differential equation obtained with the more accurate Moeller cross section. Experimental data for ferrous sulfate oxidation (Fricke dosimeter) are examined and found to be in agreement with the relationships obtained here. Primary yields of the water decomposition products are also given. 4 figures, 2 tables, 35 references
Theory of minimum dissipation of energy for the steady state
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space
Many-body theory and Energy Density Functionals
Energy Technology Data Exchange (ETDEWEB)
Baldo, M. [INFN, Catania (Italy)
2016-07-15
In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach. (orig.)
Nonstationary signals phase-energy approach-theory and simulations
Klein, R; Braun, S; 10.1006/mssp.2001.1398
2001-01-01
Modern time-frequency methods are intended to deal with a variety of nonstationary signals. One specific class, prevalent in the area of rotating machines, is that of harmonic signals of varying frequencies and amplitude. This paper presents a new adaptive phase-energy (APE) approach for time-frequency representation of varying harmonic signals. It is based on the concept of phase (frequency) paths and the instantaneous power spectral density (PSD). It is this path which represents the dynamic behaviour of the system generating the observed signal. The proposed method utilises dynamic filters based on an extended Nyquist theorem, enabling extraction of signal components with optimal signal-to-noise ratio. The APE detects the most energetic harmonic components (frequency paths) in the analysed signal. Tests on simulated signals show the superiority of the APE in resolution and resolving power as compared to STFT and wavelets wave- packet decomposition. The dynamic filters also enable the reconstruction of the ...
Directory of Open Access Journals (Sweden)
Christos-Spyridon Karavas
2017-11-01
Full Text Available Energy management systems are essential and indispensable for the secure and optimal operation of autonomous polygeneration microgrids which include distributed energy technologies and multiple electrical loads. In this paper, a multi-agent decentralized energy management system was designed. In particular, the devices of the microgrid under study were controlled as interactive agents. The energy management problem was formulated here through the application of game theory, in order to model the set of strategies between two players/agents, as a non-cooperative power control game or a cooperative one, according to the level of the energy produced by the renewable energy sources and the energy stored in the battery bank, for the purpose of accomplishing optimal energy management and control of the microgrid operation. The Nash equilibrium was used to compromise the possible diverging goals of the agents by maximizing their preferences. The proposed energy management system was then compared with a multi-agent decentralized energy management system where all the agents were assumed to be cooperative and employed agent coordination through Fuzzy Cognitive Maps. The results obtained from this comparison, demonstrate that the application of game theory based control, in autonomous polygeneration microgrids, can ensure operational and financial benefits over known energy management approaches incorporating distributed intelligence.
Four-point correlation function of stress-energy tensors in N=4 superconformal theories
Korchemsky, G P
2015-01-01
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.
International Nuclear Information System (INIS)
Schuermann, B.; Malfliet, R.; Mies, S.; Zwermann, W.
1984-01-01
Foundations of the transport theory for studying K + , K - , π - and light fragment production in nucleus-nucleus interactions at high energies are given. Inclusive production of protons, K + and π - in the Ne+NaF reaction at 400 MeV and 21 GeV/nucleon is consdered, their differential cross sections are caculated. Differential cross sections of K - and π - production in Si+Si → K + +X and Ne+NaF → π - +X reactions at the energy of 2.1 GeV/nucleon, their energy dependence are estimated. Comparison of the calculated and experimental data is graphically presented. The model of the transport theory is shown to successfully reproduce inclusive spectra of different particles (p, d, π, K + , K - ) in a wide energy range of incident particles (from 400 MeV to 2 GeV/nucleon). This approach can be generalized for lower energies by generating a mean nuclear potentiasl field
A practice-theory approach of homeowners’ energy retrofits in four European areas
DEFF Research Database (Denmark)
Bartiaux, Franise Bartiaux; Gram-Hanssen, Kirsten; Fonseca, Paula
2014-01-01
This article examines whether and how energy retrofitting of owner-occupied dwellings can be understood within the framework of social practice theories. Practice theories help to shift the focus towards more collective approaches and practices, rather than towards individuals. In addressing...... this question, energy retrofits are described and their variability compared in four European areas: Denmark, Latvia, the Coimbra area in Portugal and Wallonia in Belgium. Although these areas have different geographical, cultural and housing contexts, the Energy Performance of Buildings Directive (EPBD......) provides a common form of regulation. As a policy, its main underlying intention is to promote the opportunities for energy retrofitting. Based on an analysis of 60 in-depth interviews with homeowners, it is found that energy retrofitting is not an integrative practice in 2010, despite the EPBD and other...
Self energies of the electron and photon in the unified space field theory
International Nuclear Information System (INIS)
Duong Van Phi, Nguyen Mong Giao.
1981-01-01
Self energies of the electron and photon are calculated in the second approximation of perturbation theory. The formalism of the field theory of interaction in the unified 8-dimensional space is used. The calculations are free of divergence the unitary condition is fulfilled. It is shown that the ''naked'' and physical masses of a free electron are identical. A similar result is obtained for a free photon. Some other effects are discussed [ru
Low energy dynamics of monopoles in supersymmetric Yang-Mills theories with hypermultiplets
International Nuclear Information System (INIS)
Kim, Chanju
2006-01-01
We derive the low energy dynamics of monopoles and dyons in N = 2 supersymmetric Yang-Mills theories with hypermultiplets in arbitrary representations by utilizing a collective coordinate expansion. We consider the most general case that Higgs fields both in the vector multiplet and in the hypermultiplets have nonzero vacuum expectation values. The resulting theory is a supersymmetric quantum mechanics which has been obtained by a nontrivial dimensional reduction of two-dimensional (4,0) supersymmetric sigma models with potentials
High-energy behaviour in a non-abelian gauge theory. Pt. 3
International Nuclear Information System (INIS)
Bartels, J.
1991-07-01
The high energy limit (Regge limit) of a spontaneously broken SU(2) gauge theory is studied beyond the leading-lns approximation. Calculations are based upon the analytic structure of scattering amplitudes in generalized Regge limits, and the resulting amplitudes satisfy reggeon unitarity in the t-channel as well as unitarity in the s-channel. The calculations lead to a systematic construction of a reggeon field theory. (orig.)
Eikonal propagators and high-energy parton-parton scattering in gauge theories
International Nuclear Information System (INIS)
Meggiolaro, Enrico
2001-01-01
In this paper we consider 'soft' high-energy parton-parton scattering processes in gauge theories, i.e., elastic scattering processes involving partons at very high squared energies s in the center of mass and small squared transferred momentum t (s→∞, t 2 ). By a direct resummation of perturbation theory in the limit we are considering, we derive expressions for the truncated-connected quark (antiquark) propagator in an external gluon field, as well as for the residue at the pole of the full unrenormalized propagator, both for scalar and fermion gauge theories. These are the basic ingredients to derive high-energy parton-parton scattering amplitudes, using the LSZ reduction formulae and a functional integral approach. The above procedure is also extended to include the case in which at least one of the partons is a gluon. The meaning and the validity of the results are discussed
Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude
Nielsen, H. B.; Ninomiya, M.
2018-02-01
We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.
International Nuclear Information System (INIS)
Frusciante, Noemi; Papadomanolakis, Georgios; Silvestri, Alessandra
2016-01-01
We present a generalization of the effective field theory (EFT) formalism for dark energy and modified gravity models to include operators with higher order spatial derivatives. This allows the extension of the EFT framework to a wider class of gravity theories such as Hořava gravity. We present the corresponding extended action, both in the EFT and the Arnowitt-Deser-Misner (ADM) formalism, and proceed to work out a convenient mapping between the two, providing a self contained and general procedure to translate a given model of gravity into the EFT language at the basis of the Einstein-Boltzmann solver EFTCAMB. Putting this mapping at work, we illustrate, for several interesting models of dark energy and modified gravity, how to express them in the ADM notation and then map them into the EFT formalism. We also provide for the first time, the full mapping of GLPV models into the EFT framework. We next perform a thorough analysis of the physical stability of the generalized EFT action, in absence of matter components. We work out viability conditions that correspond to the absence of ghosts and modes that propagate with a negative speed of sound in the scalar and tensor sector, as well as the absence of tachyonic modes in the scalar sector. Finally, we extend and generalize the phenomenological basis in terms of α-functions introduced to parametrize Horndeski models, to cover all theories with higher order spatial derivatives included in our extended action. We elaborate on the impact of the additional functions on physical quantities, such as the kinetic term and the speeds of propagation for scalar and tensor modes.
Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory
International Nuclear Information System (INIS)
Pons, Josep M.
2011-01-01
In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.
An interface energy density-based theory considering the coherent interface effect in nanomaterials
Yao, Yin; Chen, Shaohua; Fang, Daining
2017-02-01
To characterize the coherent interface effect conveniently and feasibly in nanomaterials, a continuum theory is proposed that is based on the concept of the interface free energy density, which is a dominant factor affecting the mechanical properties of the coherent interface in materials of all scales. The effect of the residual strain caused by self-relaxation and the lattice misfit of nanomaterials, as well as that due to the interface deformation induced by an external load on the interface free energy density is considered. In contrast to the existing theories, the stress discontinuity at the interface is characterized by the interface free energy density through an interface-induced traction. As a result, the interface elastic constant introduced in previous theories, which is not easy to determine precisely, is avoided in the present theory. Only the surface energy density of the bulk materials forming the interface, the relaxation parameter induced by surface relaxation, and the mismatch parameter for forming a coherent interface between the two surfaces are involved. All the related parameters are far easier to determine than the interface elastic constants. The effective bulk and shear moduli of a nanoparticle-reinforced nanocomposite are predicted using the proposed theory. Closed-form solutions are achieved, demonstrating the feasibility and convenience of the proposed model for predicting the interface effect in nanomaterials.
International Nuclear Information System (INIS)
Decerprit, G.
2010-09-01
The field of Ultra-High Energy Cosmic Rays (UHECRs) is full of puzzling mysteries. The present state of the field is first outlined, as well as the contribution and prospects brought in by the Pierre Auger Observatory. The latter actually provided physicists with several key results: the measurement of the energy spectrum above a few EeV and the high-energy cutoff at a high significance level, the measurement of composition-sensitive variables that indicate the UHECRs are getting heavier with energy (though we can not rule out that it might be due to a significant modification of the hadronic physics around 100 TeV scale), and the measurement of a weak anisotropy signal except in a small region of the sky where an excess of events is observed, centered on an important source that might not being involved in this excess, Centaurus A. The second part of the thesis deals with UHECRs propagation in the extra-galactic medium and originating from their source. We study the implications of the composition at the sources and the acceleration parameters on the shape of propagated spectra at the Earth. We demonstrate the feasibility of an astrophysical model, the so-called low-Emax scenario, that fits both the spectrum and composition. A numerical code embedding protons and nuclei propagation, including magnetic fields, is also detailed in this section. In the fourth part, we present an independent study of the constraints brought in by the angular data of Auger on the effective density of UHECRs sources and the typical magnetic deflections they undergo. A percolation tool used to perform a direct data analysis (isotropy test) and demonstrating the weak anisotropy signal, is also presented. A whole part of the thesis is dedicated to a critical secondary particle: the photon. We discuss its extra-galactic propagation and its related numerical tool that was entirely developed during the thesis and incorporated in the existing proton/nuclei code. This leads to a global
International Nuclear Information System (INIS)
Ruben, A.; Maerten, H.; Seeliger, D.
1990-01-01
A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs
High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 1
International Nuclear Information System (INIS)
Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA
1987-01-01
Relativistic quantum field theories may give us useful guidance to understanding high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, we study the ladder diagrams in φ 3 theory. In this paper, some of the necessary techniques are developed and applied to the simplest cases of the fourth- and sixth-order ladder diagrams. (orig.)
Discussion of electron capture theories for ion-atom collisions at high energies
Energy Technology Data Exchange (ETDEWEB)
Miraglia, J E [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Piacentini, R D [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Rivarola, R D [Rosario Univ. Nacional (Argentina). Dept. de Fisica; Salin, A [Bordeaux-1 Univ., 33 - Talence (France)
1981-03-14
Different theories of charge exchange processes in ion-atom collisions at high energies for the H/sup +/-H system are considered. Large discrepancies are found in the differential cross sections obtained from the various models. The validity of Dettmann's peaking approximation is analysed by comparison with exact values for the first- and second-order Oppenheimer-Brinkman-Kramers (OBK 1 and OBK 2) theories. It is also shown that for energies up to a few MeV the OBK 2 differential cross sections are higher than the corresponding OBK 1 ones. Total cross sections in the OBK 2 approximation are given.
Phenomenological signatures of additional scalar bosons at the LHC
Energy Technology Data Exchange (ETDEWEB)
Buddenbrock, Stefan von; Kar, Deepak; Mellado, Bruce; Reed, Robert G.; Ruan, Xifeng [University of the Witwatersrand, School of Physics, Johannesburg, Wits (South Africa); Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup [Harish-Chandra Research Institute, Regional Centre for Accelerator-Based Particle Physics, Jhunsi, Allahabad (India); Cornell, Alan S.; Kumar, Mukesh [University of the Witwatersrand, National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, Johannesburg, Wits (South Africa); Mandal, Tanumoy [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)
2016-10-15
We investigate the search prospects for new scalars beyond the standard model at the large hadron collider (LHC). In these studies two real scalars S and χ have been introduced in a two Higgs-doublet model (2HDM), where S is a portal to dark matter (DM) through its interaction with χ, a DM candidate and a possible source of missing transverse energy (E{sub T}{sup miss}). Previous studies focussed on a heavy scalar H decay mode H → hχχ, which was studied using an effective theory in order to explain a distortion in the Higgs boson (h) transverse momentum spectrum (von Buddenbrock et al. in arXiv:1506.00612 [hep-ph], 2015). In this work, the effective decay is understood more deeply by including a mediator S, and the focus is changed to H → hS, SS with S → χχ. Phenomenological signatures of all the new scalars in the proposed 2HDM are discussed in the energy regime of the LHC, and their mass bounds have been set accordingly. Additionally, we have performed several analyses with final states including leptons and E{sub T}{sup miss}, with H → 4W, t(t)H → 6 W and A → ZH channels, in order to understand the impact these scalars have on current searches. (orig.)
Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory
Directory of Open Access Journals (Sweden)
Murat Korunur
2012-01-01
Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.
Modeling of a piezoelectric/piezomagnetic nano energy harvester based on two dimensional theory
Yan, Zhi
2018-01-01
This work presents a two dimensional theory for a piezoelectric/piezomagnetic bilayer nanoplate in coupled extensional and flexural vibrations with both flexoelectric and surface effects. The magneto-electro-elastic (MEE) coupling equations are derived from three-dimensional equations and Kirchhoff plate theory. Based on the developed theory, a piezoelectric/piezomagnetic nano energy harvester is proposed, which can generate electricity under time-harmonic applied magnetic field. The approximate solutions for the mechanical responses and voltage of the energy harvester are obtained using the weighted residual method. Results show that the properties of the proposed energy harvester are size-dependent due to the flexoelectric and surface effects, and such effects are more pronounced when the bilayer thickness is reduced to dozens of nanometers. It is also found that the magnetoelectric coupling coefficient and power density of the energy harvester are sensitive to the load resistance, the thickness fraction of the piezoelectric or the piezomagnetic layer and damping ratios. Moreover, results indicate that the flexoelectric effect could be made use to build a dielectric/piezomagnetic nano energy harvester. This work provides modeling techniques and numerical methods for investigating the size-dependent properties of MEE nanoplate-based energy harvester and could be helpful for designing nano energy harvesters using the principle of flexoelectricity.
Fragmentation Energy-Saving Theory of Full Face Rock Tunnel Boring Machine Disc Cutters
Zhang, Zhao-Huang; Gong, Guo-Fang; Gao, Qing-Feng; Sun, Fei
2017-07-01
Attempts to minimize energy consumption of a tunnel boring machine disc cutter during the process of fragmentation have largely focused on optimizing disc-cutter spacing, as determined by the minimum specific energy required for fragmentation; however, indentation tests showed that rock deforms plastically beneath the cutters. Equations for thrust were developed for both the traditional, popularly employed disc cutter and anew design based on three-dimensional theory. The respective energy consumption for penetration, rolling, and side-slip fragmentations were obtained. A change in disc-cutter fragmentation angles resulted in a change in the nature of the interaction between the cutter and rock, which lowered the specific energy of fragmentation. During actual field excavations to the same penetration length, the combined energy consumption for fragmentation using the newly designed cutters was 15% lower than that when using the traditional design. This paper presents a theory for energy saving in tunnel boring machines. Investigation results showed that the disc cutters designed using this theory were more durable than traditional designs, and effectively lowered the energy consumption.
Theory of elementary particles and accelerator theory: Task C: Experimental high energy physics
International Nuclear Information System (INIS)
Brau, J.E.
1992-01-01
The experimental high energy physics group at the University of Oregon broadened its effort during the past year. The SLD effort extends from maintaining and operating the SLD luminosity monitor which was built at Oregon, to significant responsibility in physics analysis, such as event selection and background analysis for the left-right asymmetry measurement. The OPAL work focussed on the luminosity monitor upgrade to a silicon-tungsten calorimeter. Building on the work done at Oregon for SLD, the tungsten for this upgrade was machined by the Oregon shops and shipped to CERN for assembly. The Oregon GEM effort now concentrates on tracking, specifically silicon tracking. Oregon also has developed a silicon strip preradiator prototype, and tested it in a Brookhaven beam
A Phenomenology of Expert Musicianship
DEFF Research Database (Denmark)
Høffding, Simon
This dissertation develops a phenomenology of expert musicianship through an interdisciplinary approach that integrates qualitative interviews with the Danish String Quartet with philosophical analyses drawing on ideas and theses found in phenomenology, philosophy of mind, cognitive science...... and psychology of music. The dissertation is structured through the asking, analyzing and answering of three primary questions, namely: 1) What is it like to be an expert? 2) What is the general phenomenology of expert musicianship? 3) What happens to the self in deep musical absorption? The first question...... targets a central debate in philosophy and psychology on whether reflection is conducive for, or detrimental to, skillful performance. My analyses show that the concepts assumed in the literature on this question are poorly defined and gloss over more important features of expertise. The second question...
Phenomenology of heavy quarkonia and quantum chromodynamics
International Nuclear Information System (INIS)
Schmitz, S.J.A.
1986-01-01
Heavy quarkonia, the c anti c, b anti b, and soon to be discovered t anti t families of states, are studied in the framework of potential theory. The earlier proposed, flavor independent Riverside potential is fit to masses of c anti c and b anti b states and their electronic widths are calculated. An unusual feature of the potential is the use of a parameter b which controls the small r or asymptotic freedom behavior and which can be related to the QCD scale parameters Λ/MS. This parameter b is virtually undetermined by the c anti c and b anti b spectra, merely excluding the range b < 4 or Λ/MS ≤ 120 MeV and slightly favoring Λ/MS ≅ 250 MeV. It is shown how even minimal information on the t anti t states will restrict the Λ/MS value to a range of the order of 50 MeV. A recent Lattice Gauge potential shows a remarkable closeness to the phenomenological approach. In view of the approximations involved, the difference between the two potentials is small. This difference is investigated in terms of the strong coupling constant α which can be extracted from both potentials. In the main r regime the Lattice Gauge α is markedly smaller than the phenomenological one. It is shown that the absence of intermediate, virtual quark loops in the Lattice Gauge calculation, i.e. the so-called quenched approximation, accounts for at least some and possibly most of that difference. Overall, the phenomenology of heavy quarkonia as studied in this work is in no conflict with QCD
Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies
D'Amico, Guido; Kaloper, Nemanja
2016-11-28
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.
Sectors of solutions and minimal energies in classical Liouville theories for strings
International Nuclear Information System (INIS)
Johansson, L.; Kihlberg, A.; Marnelius, R.
1984-01-01
All classical solutions of the Liouville theory for strings having finite stable minimum energies are calculated explicitly together with their minimal energies. Our treatment automatically includes the set of natural solitonlike singularities described by Jorjadze, Pogrebkov, and Polivanov. Since the number of such singularities is preserved in time, a sector of solutions is not only characterized by its boundary conditions but also by its number of singularities. Thus, e.g., the Liouville theory with periodic boundary conditions has three different sectors of solutions with stable minimal energies containing zero, one, and two singularities. (Solutions with more singularities have no stable minimum energy.) It is argued that singular solutions do not make the string singular and therefore may be included in the string quantization
International Nuclear Information System (INIS)
Ecker, G.
1987-01-01
A short survey of the theoretical status of CP violation is presented. The Standart Model is confronted with the present experimental situation. Possible future tests of our notions of CP violation are discussed, concentrating on rare K decays. Other promising reactions such as B decays are briefly reviewed. Among alternative models of CP violation, multi-Higgs extensions of the Standart Model, left-right symmetric gauge theories and minimal SUSY models are discussed. Finally, the relevance of generalized CP invariance is emphasized. 64 refs., 7 figs. (Author)
Determination of low-energy constants of Wilson chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Herdoiza, Gregorio [Mainz Univ. (Germany). Inst fuer Kernphysik, PRISMA Cluster of Excellence; Univ. Autonoma de Madrid, Contoblanco (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Univ. Cyprus, Nicosia (Cyprus). Dept. of Physics; Michael, Chris [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen und Kernphysik; Univ. Bonn (Germany). Bethe Center for Theoretical Physics; Collaboration: European Twisted Mass Collaboration
2013-03-15
By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W{sub 6}{sup '}, W{sub 8}{sup '} and their linear combination c{sub 2}. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.
High Energy Physics Model Database - HEPMDB - Towards decoding the underlying theory at the LHC
International Nuclear Information System (INIS)
Bondarenko, M.; Belyaev, A.; Basso, L.; Boos, E.; Bunichev, V.; Sekhar Chivukula, R.; Christensen, D.; Cox, S.; De Roeck, A.; Moretti, S.; Pukhov, A.; Sekmen, S.; Semenov, A.; Simmons, E.H.; Shepherd-Themistocleus, C.; Speckner, C.
2012-01-01
We present here the first stage of development of the High Energy Physics Model Data-Base (HEPMDB) which is a convenient centralized storage environment for HEP (High Energy Physics) models, and can accommodate, via web interface to the HPC cluster, the validation of models, evaluation of LHC predictions and event generation-simulation chain. The ultimate goal of HEPMDB is to perform an effective LHC data interpretation isolating the most successful theory for explaining LHC observations. (authors)
International Nuclear Information System (INIS)
Lannutti, J.E.
1991-01-01
This report discusses the following research: fixed target experiments; collider experiments; computing, networking and VAX upgrade; SSC preparation, detector development and detector construction; solid argon calorimetry; absorption of CAD system geometries into GEANT for SSC; and particle theory programs
Conclusions for the Xth moriond conference on the phenomenology of hadronic structure
International Nuclear Information System (INIS)
Yokosawa, A.
A summary is presented of the talks presented on the phenomenology of hadronic structure including diffractive, elastic, and diffractive--dissociation data, correlation experiments, multiplicity at large transverse momentum, high and low energy phenomenology, results from the proton synchrotron, psi production, and the np charge-exchange reaction. (U.S.)
On the consistency and high-energy behavior of string theory
International Nuclear Information System (INIS)
Mende, P.F.
1988-01-01
In Part I, it is shown that the heterotic string is free of gauge and gravitational anomalies by showing that (a) unless the gauge group is E S x E S or Spin(32)/Z 2 or a subgroup, the internal sector partition function vanishes so there is no consistent theory; and (b) for E 8 x E 8 and Spin(32)/Z 2 compactifications, the longitudinal modes of the massless gauge particles decouple, as required by gauge invariance. We discuss the geometric interpretation for string theory when the action is invariant under a modular subgroup. In Part II, the high-energy behavior of string scattering amplitudes is studied to all orders in perturbation theory, with the aim of exploring the short-distance structure of string theory. It is shown that the sum over all Riemann surfaces is dominated by a saddle point. Consequently, the high-energy limit is universal and simple to calculate. In this limit the amplitudes fall off much faster than allowed by field theory. The dominant saddle points are identified as coming from world sheets which are Z G+1 symmetric algebraic curves, and their contribution to the scattering amplitude is evaluated for the bosonic to all orders and for the heterotic string to two-loop order. An interesting spacetime picture of the high-energy limit emerges. The issue of summing the perturbation expansion is addressed
International Nuclear Information System (INIS)
Cho, Hyo Sung; WooTae Ho
2016-01-01
Maruhn-Greiner theory is investigated for the low energy nuclear reactions (LENRs) in the aspect of the energy productions. Conventional nuclear reactions could give the hints in another kind of the nuclear theoretical utilizations. The results of simulations show the ranges of the configurations for H-ion to Pd with 10; 000 ions as 10 and 180 keV. The most probable ranges are 30 and 600 nanometers respectively. In the simulation result of broad energy regions, the cutoff energy, 350 keV , is very significant in analyzing the LENR, because the range usually depends on the entering particle, target particle, and energy of the entering particle. Therefore, the 350 keV shows there is priority for hydrogen interaction from the energy. In the analysis, the water (H_2O) has the better possibility in LENR after the 350 keV . Following the simulation for searching LENRs, the possible conditions that include the energy based variables of atomic ranges, Debye length, and reaction time has been investigated for the designed energy productions
International Nuclear Information System (INIS)
Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.
1998-01-01
A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Parkhill, Karen [School of Psychology, Tower Building, Cardiff University, Cardiff, (United Kingdom)
2007-09-15
Although best described as a meta theory addressing the endurance of capitalism, regulation theory can successfully be used to explore not only the economic dimensions, but also the political, socio-cultural and environmental dimensions of particular developmental strategies. Thus, it offers a framework for embedding abstract debates about social attitudes to new technologies within debates about real regulation - the economic, social and cultural relationships operating through particular places. This paper uses regulation theory and qualitative, interview-based data to analyse Scotland's drive for onshore wind energy. This approach teases out how responses to wind farms are bound up with wider debates about how rural spaces are, and should be, regulated; the tensions within and between national political objectives, local political objectives and local communities' dissatisfaction; and the connections between local actors and more formal dimensions of renewable energy policy. (Author)
When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model.
Troost, T.A.; Kooi, B.W.; Kooijman, S.A.L.M.
2005-01-01
In evolutionary history, several events have occurred at which mixotrophs specialized into pure autotrophs and heterotrophs. We studied the conditions under which such events take place, using the Dynamic Energy Budget (DEB) theory for physiological rules of the organisms' metabolism and Adaptive
Using system theory and energy methods to prove existence of non-linear PDE's
Zwart, H.J.
2015-01-01
In this discussion paper we present an idea of combining techniques known from systems theory with energy estimates to show existence for a class of non-linear partial differential equations (PDE's). At the end of the paper a list of research questions with possible approaches is given.
High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation
International Nuclear Information System (INIS)
1993-01-01
This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs
Phenomenological applications of perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Zahir, M.S.Z.
1981-01-01
In this thesis, three diffrent topics in high energy particle physics are investigated each of which is a case of theoretical and phenomenological application of perturbative Quantum Chromodynamics. The first topic is addressed to the structure of nucleons as probed in deep-inelastic lepton-nucleon scattering. Since, at present, meaningful calculations in Quantum Chromodynamics (QCD) can be done only for short distances or large momentum transfers, phenomenological applications of QCD to the full hadronic processes many a time require additional model dependent procedures. In this thesis, the structure functions of the nucleon in the framework of the valon model in which a nucleon is assumed to be a bound state of three valence quark clusters (valons) are analyzed. In the second topic the production of massive dimuons at large transverse momentum in Drell-Yan process is analyzed where it is believed that the dimuons acquire large transverse momentum through the emission or absorption of hard gluons. Following a model independent formalism, in this thesis, the lowest order QCD contributions to the structure functions in lepton-pair production are calculated and it is shown that there exist sum rules connecting the four sructure functions to be satisfied at zero rapidity and large transverse momentum of the muon-pair for similar interacting hadrons. In the third topic a discussion is given on how high energy photons can replace hadrons in new lepton-pair production process
Particle Phenomenology of Compact Extra Dimensions
International Nuclear Information System (INIS)
Melbeus, Henrik
2012-01-01
This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza-Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models
Directory of Open Access Journals (Sweden)
P. B. Lanjewar
2016-06-01
Full Text Available The evaluation and selection of energy technologies involve a large number of attributes whose selection and weighting is decided in accordance with the social, environmental, technical and economic framework. In the present work an integrated multiple attribute decision making methodology is developed by combining graph theory and analytic hierarchy process methods to deal with the evaluation and selection of energy technologies. The energy technology selection attributes digraph enables a quick visual appraisal of the energy technology selection attributes and their interrelationships. The preference index provides a total objective score for comparison of energy technologies alternatives. Application of matrix permanent offers a better appreciation of the considered attributes and helps to analyze the different alternatives from combinatorial viewpoint. The AHP is used to assign relative weights to the attributes. Four examples of evaluation and selection of energy technologies are considered in order to demonstrate and validate the proposed method.
Z-1 perturbation theory applied to the correlation energy problem of atoms
International Nuclear Information System (INIS)
Robinson, B.H.
1975-01-01
Rayleigh--Schroedinger Perturbation Theory is applied to obtain directly exact and explicit analytic formulas for the electron correlation energies of N electron systems in terms of their pairwise interactions through second order in Z -1 , where Z is the nucleus of the atom. It is demonstrated that the second order correlation energy may be expressed as exactly the sum of pairwise correlation energies. In the case of no zeroth order degeneracy, the zeroth and first order terms vanish. The expression for the pairwise energies is an infinite sum, all terms of which are of the same sign. There is no numerical differencing. In the case of zeroth order degeneracy it is shown that the above statement concerning the second order energy still holds, but the expressions are a bit more complicated. It is shown that they ''almost'' reduce to a much simpler form. Also, the computation of the first order correlation energy is considered
Heavy quark free energy in QCD and in gauge theories with gravity duals
Noronha, Jorge
2010-09-01
Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.
Phenomenology of the hierarchical lepton mass spectrum in the flipped SU(5)xU(1) string model
Energy Technology Data Exchange (ETDEWEB)
Leontaris, G.K.; Nanopoulos, D.V.
1988-09-29
A detailed phenomenological analysis of the lepton mass matrices and their implications in the low energy theory are discussed, within the recently proposed SU(5)xU(1) string model. The unification scale is highly constrained while the Yukawa couplings lie in a natural region. The flavour changing decays ..mu.. -> e..gamma.., ..mu.. -> 3e, ..mu.. -> e are highly suppressed while the depletion in the flux of muon neutrinos reported by the Kamiokande is explained through ..nu../sub ..mu../ reversible ..nu../sub tau/ oscillations.
Strong interaction phenomenology
International Nuclear Information System (INIS)
Giffon, M.
1989-01-01
A brief review of high energy hadronic data (Part I)is followed by an introduction to the standard (Weinberg Salam Glashow) model of electroweak interactions and its extension to the hadrons (Part II). Rudiments of QCD and of the parton model area given in Part III together with a quick review of the spectroscopy of heavy flavours whereas Part IV is devoted to the introduction to deep inelastic scattering and to the so-called EMC effects. (author)
Phenomenology and the Empirical Turn
Zwier, Jochem; Blok, Vincent; Lemmens, Pieter
2016-01-01
This paper provides a phenomenological analysis of postphenomenological philosophy of technology. While acknowledging that the results of its analyses are to be recognized as original, insightful, and valuable, we will argue that in its execution of the empirical turn, postphenomenology forfeits
Phenomenology beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Lykken, Joseph D.; /Fermilab
2005-03-01
An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.
New perspectives on phenomenological decoherence
International Nuclear Information System (INIS)
Melo, Fernando Vaz de; Guzzo, Marcelo Moraes; Peres, Orlando Luis Goulart
2001-01-01
Decoherence showed to be a powerful tool in helping to solve the atmospheric Neutrino problem. However a complete analysis was not yet done. In this work we present all the possibilities concerning phenomenological decoherence linked to Neutrino 'problem'. Its possibilities and differences are stressed out in a effort to clarify the whole phenomena. (author)
Phenomenology of colour exotic fermions
International Nuclear Information System (INIS)
Luest, D.
1986-01-01
The authors discuss the phenomenological consequences of a dynamical scenario according to which the electroweak symmetry breaking and generation of fermion masses is due to fermions that transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the spectrum of high colour boundstates. (Auth.)
Interpretive Hermeneutic Phenomenology: Clarifying Understanding ...
African Journals Online (AJOL)
The philosophical orientation of Gadamerian hermeneutic phenomenology is explored in this paper. Gadamer offers a hermeneutics of the humanities that differs significantly from models of the human sciences historically rooted in scientific methodologies. In particular, Gadamer proposes that understanding is first a mode ...
Phenomenological Research Method, Design and Procedure: A ...
African Journals Online (AJOL)
Phenomenological Research Method, Design and Procedure: A Phenomenological Investigation of the Phenomenon of Being-in-Community as Experienced by Two Individuals Who Have Participated in a Community Building Workshop.
Empirical Phenomenology: A Qualitative Research Approach (The ...
African Journals Online (AJOL)
Empirical Phenomenology: A Qualitative Research Approach (The Cologne Seminars) ... and practical application of empirical phenomenology in social research. ... and considers its implications for qualitative methods such as interviewing ...
N-body quantum scattering theory in two Hilbert spaces. VII. Real-energy limits
International Nuclear Information System (INIS)
Chandler, C.; Gibson, A.G.
1994-01-01
A study is made of the real-energy limits of approximate solutions of the Chandler--Gibson equations, as well as the real-energy limits of the approximate equations themselves. It is proved that (1) the approximate time-independent transition operator T π (z) and an auxiliary operator M π (z), when restricted to finite energy intervals, are trace class operators and have limits in trace norm for almost all values of the real energy; (2) the basic dynamical equation that determines the operator M π (z), when restricted to the space of trace class operators, has a real-energy limit in trace norm for almost all values of the real energy; (3) the real-energy limit of M π (z) is a solution of the real-energy limit equation; (4) the diagonal (on-shell) elements of the kernels of the real-energy limit of T π (z) and of all solutions of the real-energy limit equation exactly equal the on-shell transition operator, implying that the real-energy limit equation uniquely determines the physical transition amplitude; and (5) a sequence of approximate on-shell transition operators converges strongly to the exact on-shell transition operator. These mathematically rigorous results are believed to be the most general of their type for nonrelativistic N-body quantum scattering theories
Directory of Open Access Journals (Sweden)
Kaijun Lin
2018-03-01
Full Text Available In this paper, we consider a general model and solution algorithm for the energy management of combined cooling, heating, and power micro energy grid (MEG under the game theory framework. An innovative dynamic leader-follower game strategy is proposed in this paper to balance the interactions between MEG and user. We show that such game between MEG and user has a unique Nash equilibrium (NE, and in order to quantify the user’s expenditure and dissatisfaction, we model them and adopt the fuzzy bi-objective algorithm. For more details in the proposed game model, the MEG leads the game by deciding energy sales prices and optimizing the power, cooling and heating outputs according to the user’s load plan to maximize its own profit. With the prices being released by MEG, user’s adjustment of energy consumption follows and is again fed to MEG. In practice, we initialize simulations with daily loads of a typical community. As the numerical results demonstrate, MEG is proficient in consumption capacity of renewable energy and energy optimization. It also shows that the user achieves his economic optimum with experience of energy usage taken into account.
Baryon chiral perturbation theory extended beyond the low-energy region.
Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang
We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.
Baryon chiral perturbation theory extended beyond the low-energy region
International Nuclear Information System (INIS)
Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang
2015-01-01
We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region. (orig.)
Extension of portfolio theory application to energy planning problem – The Italian case
International Nuclear Information System (INIS)
Arnesano, M.; Carlucci, A.P.; Laforgia, D.
2012-01-01
Energy procurement is a necessity which needs a deep study of both the demand and the generation sources, referred to consumers territorial localization. The study presented in this paper extends and consolidate the Shimon Awerbuch’s study on portfolio theory applied to the energy planning, in order to define a broad generating mix which optimizes one or more objective functions defined for a determined contest. For this purpose the computation model was specialized in energy generation problem and extended with the addition of new cost-risk settings, like renewable energy availability, and Black–Litterman model, which extends Markowitz theory. Energy planning was then contextualized to the territory: the introduction of geographic and climatic features allows to plan energy infrastructures on both global and local (regional, provincial, municipal) scale. The result is an efficient decision making tool to drive the investment on typical energy policy assets. In general the tool allows to analyze several scenarios in support of renewable energy sources, environmental sustainability, costs and risks reduction. In this paper the model was applied to the energy generation in Italy, and the analysis was done: on the actual energy mix; assuming the use of nuclear technology; assuming the verisimilar improvement of several technologies in the future. -- Highlights: ► Extension and consolidation of Shimon Awerbuch’s studies. ► Introduction of aspects connected to realization and utilization of power plants. ► Application of the model on a national, provincial, municipal scale. ► Modification of Energy Portfolio based on subjective previsions (Black–Litterman).
Energy Dependent Divisible Load Theory for Wireless Sensor Network Workload Allocation
Directory of Open Access Journals (Sweden)
Haiyan Shi
2012-01-01
Full Text Available The wireless sensor network (WSN, consisting of a large number of microsensors with wireless communication abilities, has become an indispensable tool for use in monitoring and surveillance applications. Despite its advantages in deployment flexibility and fault tolerance, the WSN is vulnerable to failures due to the depletion of limited onboard battery energy. A major portion of energy consumption is caused by the transmission of sensed results to the master processor. The amount of energy used, in fact, is related to both the duration of sensing and data transmission. Hence, in order to extend the operation lifespan of the WSN, a proper allocation of sensing workload among the sensors is necessary. An assignment scheme is here formulated on the basis of the divisible load theory, namely, the energy dependent divisible load theory (EDDLT for sensing workload allocations. In particular, the amount of residual energies onboard sensors are considered while deciding the workload assigned to each sensor. Sensors with smaller amount of residual energy are assigned lighter workloads, thus, allowing for a reduced energy consumption and the sensor lifespan is extended. Simulation studies are conducted and results have illustrated the effectiveness of the proposed workload allocation method.
Directory of Open Access Journals (Sweden)
M. Ettefagh
2018-03-01
Full Text Available One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.
Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B
2013-05-16
Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.
Learning from Twentieth Century Hermeneutic Phenomenology for ...
African Journals Online (AJOL)
The implications of commonalities in the contributions of five key thinkers in twentieth century phenomenology are discussed in relation to both original aims and contemporary projects. It is argued that, contrary to the claims of Husserl, phenomenology can only operate as hermeneutic phenomenology. Hermeneutics arose ...
Phenomenological evidence for two types of paranoia.
Chadwick, P D J; Trower, P; Juusti-Butler, T-M; Maguire, N
2005-01-01
Two types of paranoia have been identified, namely persecution (or 'Poor Me') paranoia, and punishment (or 'Bad Me') paranoia. This research tests predicted differences in phenomenology--specifically, in person evaluative beliefs, self-esteem, depression, anxiety, and anger. Fifty-three people with current paranoid beliefs were classified as Poor Me, Bad Me, or neither (classification was reliable). Key dependent variables were measured. All predictions were supported, except the one relating to anger, where the two groups did not differ. The Bad Me group had lower self-esteem, more negative self-evaluative thinking, lower negative evaluations about others, higher depression and anxiety. Importantly, the differences in self-esteem and self-evaluations were not fully accounted for by differences in depression. Data support the presence of two distinct topographies of paranoia. Future research is needed to explore the theory further and examine clinical implications. Copyright 2005 S. Karger AG, Basel
Chen, Chung-De
2018-04-01
In this paper, a distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory (RZT) is developed. In this model, the zigzag function is incorporated into the axial displacement, and the zigzag distribution of the displacement between the adjacent layers of the bimorph structure can be considered. The governing equations, including three equations of motions and one equation of circuit, are derived using Hamilton’s principle. The natural frequency, its corresponding modal function and the steady state response of the base excitation motion are given in exact forms. The presented results are benchmarked with the finite element method and two beam theories, the first-order shear deformation theory and the classical beam theory. Comparing examples shows that the RZT provides predictions of output voltage and generated power at high accuracy, especially for the case of a soft middle layer. Variation of the parameters, such as the beam thickness, excitation frequencies and the external electrical loads, is investigated and its effects on the performance of the energy harvesters are studied by using the RZT developed in this paper. Based on this refined theory, analysts and engineers can capture more details on the electromechanical behavior of piezoelectric harvesters.
Dark energy scenario consistent with GW170817 in theories beyond Horndeski gravity
Kase, Ryotaro; Tsujikawa, Shinji
2018-05-01
The Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories up to quartic order are the general scheme of scalar-tensor theories allowing the possibility for realizing the tensor propagation speed ct equivalent to 1 on the isotropic cosmological background. We propose a dark energy model in which the late-time cosmic acceleration occurs by a simple k-essence Lagrangian analogous to the ghost condensate with cubic and quartic Galileons in the framework of GLPV theories. We show that a wide variety of the variation of the dark energy equation of state wDE including the entry to the region wDEequation of state wDE=-2 during the matter era, which is disfavored by observational data, can be avoided by the existence of a quadratic k-essence Lagrangian X2. We study the evolution of nonrelativistic matter perturbations for the model ct2=1 and show that the two quantities μ and Σ , which are related to the Newtonian and weak lensing gravitational potentials respectively, are practically equivalent to each other, such that μ ≃Σ >1 . For the case in which the deviation of wDE from -1 is significant at a later cosmological epoch, the values of μ and Σ tend to be larger at low redshifts. We also find that our dark energy model can be consistent with the bounds on the deviation parameter αH from Horndeski theories arising from the modification of gravitational law inside massive objects.
International Nuclear Information System (INIS)
Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.
1991-01-01
This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology
Magnetized Anisotropic Dark Energy Models in Barber’s Second Self-Creation Theory
Directory of Open Access Journals (Sweden)
D. D. Pawar
2014-01-01
Full Text Available The present paper deals with Bianchi type IX cosmological model with magnetized anisotropic dark energy by using Barber’s self-creation theory. The energy momentum tensor consists of anisotropic fluid with EoS parameter ω and a uniform magnetic field of energy density ρB. In order to obtain the exact solution we have assumed that dark energy components and the components of magnetic field interact minimally and obey the law of conservation of energy momentum tensors. We have also used the special law of variation for the mean generalized Hubble parameter and power law relation between scalar field and scale factor. Some physical and kinematical properties of the models have been discussed.
Phenomenology of a left-right-symmetric model inspired by the trinification model
Energy Technology Data Exchange (ETDEWEB)
Hetzel, Jamil
2015-02-04
The trinification model is an interesting extension of the Standard Model based on the gauge group SU(3){sub C} x SU(3){sub L} x SU(3){sub R}. It naturally explains parity violation as a result of spontaneous symmetry breaking, and the observed fermion masses and mixings can be reproduced using only a few parameters. We study the low-energy phenomenology of the trinification model in order to compare its predictions to experiment. To this end, we construct a low-energy effective field theory, thereby reducing the number of particles and free parameters that need to be studied. We constrain the model parameters using limits from new-particle searches as well as precision measurements. The scalar sector of the model allows for various phenomenological scenarios, such as the presence of a light fermiophobic scalar in addition to a Standard-Model-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We show how a measurement of the Higgs couplings can be used to distinguish such scenarios from the Standard Model. We find that the trinification model predicts that several new scalar particles have masses in the O(100 GeV) range. Moreover, large regions of the parameter space lead to measurable deviations from Standard-Model predictions of the Higgs couplings. Hence the trinification model awaits crucial tests at the Large Hadron Collider in the coming years.
International Nuclear Information System (INIS)
Walsh, T.F.
1980-05-01
The basic idea of these lectures is very simple. Quarks and gluons - the elementary quanta of quantum chromodynamics or QCD - are produced with perturbarively calculable rates in short distance processes. This is because of asymptotic freedom. These quanta produced at short distances are, in a sense, 'visible' as jets of hadrons. (The jets do not contain the colored QCD quanta if - as we will assume - color is confined. The jets contain only colorless hadrons.) The distribution of these jets is the distribution of the original quanta, apart from fluctuations generated in the (long distance) jet formation process. The distribution of the jets can thus thest QCD in a particularly clear way at the parton level, at distance of order 5 x 10 -16 cm (PETRA/PEP energies). (orig.)
Plutonium storage phenomenology
International Nuclear Information System (INIS)
Szempruch, R.
1995-12-01
Plutonium has been produced, handled, and stored at Department of Energy (DOE) facilities since the 1940s. Many changes have occurred during the last 40 years in the sources, production demands, and end uses of plutonium. These have resulted in corresponding changes in the isotopic composition as well as the chemical and physical forms of the processed and stored plutonium. Thousands of ordinary food pack tin cans have been used successfully for many years to handle and store plutonium. Other containers have been used with equal success. This paper addressees the exceptions to this satisfactory experience. To aid in understanding the challenges of handling plutonium for storage or immobilization the lessons learned from past storage experience and the necessary countermeasures to improve storage performance are discussed
The role of material/energy resources and dematerialisation in economic growth theories
Energy Technology Data Exchange (ETDEWEB)
Ayres, R.U. [Center for the Management of Environmental Resources INSEAD, Fountainebleau (France); Van den Bergh, J.C.J.M. [Department of Spatial Economics, Free University, Amsterdam (Netherlands)
2000-06-01
The nature of energy and material resources in an endogenous growth theory framework is clarified. This involves three modifications of the conventional theory. Firstly, multiple feedback mechanisms or 'growth engines' are identified. Secondly, a production function distinguishes between resource use, technical efficiency and value creation. Thirdly, the impact of the cost of production through demand on growth is accounted for. A formal model is analytically solved under a condition of a constant growth rate. Given model complexity, numerical experiments are performed as well, providing relevant insights to the academic and political debates on 'environmental Kuznets curves' and 'dematerialization'. 49 refs.
Four-loop vacuum energy density of the SU(Nc) + adjoint Higgs theory
International Nuclear Information System (INIS)
Kajantie, K.; Rummukainen, K.; Schroder, Y.; Laine, M.
2003-01-01
We compute the dimensionally regularised four-loop vacuum energy density of the SU(N c ) gauge + adjoint Higgs theory, in the disordered phase. 'Scalarisation', or reduction to a small set of master integrals of the type appearing in scalar field theories, is carried out in d dimensions, employing general partial integration identities through an algorithm developed by Laporta, while the remaining scalar integrals are evaluated in d=3-2ε dimensions, by expanding in ε 6 ln(1/g)), O(g 6 ) to the pressure, while the general methods are applicable also to studies of critical phenomena in QED-like statistical physics systems. (author)
Criticality problems for slabs and spheres in energy dependent neutron transport theory
International Nuclear Information System (INIS)
Victory, H.D. Jr.
1980-01-01
The steady-state equation for energy-dependent neutron transport in isotropically scattering slabs and spheres is formulated as an integral equation. The Perron-Frobenius-Jentzsch theory of positive operators is used to analyze criticality problems for transport in slab and spherical media consisting of core and reflector. In addition, with an adroit selection of diffusion-like solutions, this theory is used to obtain an expression relating the critical radius of a homogeneous sphere to a parameter characterizing fission production. 21 refs
Research program in elementary particle theory. Progress report, 1974--1975
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Ne'eman, Y.
1975-01-01
Research on field theory models, phenomenological applications of field theory, strong interaction phenomenology, algebraic approaches to weak interactions, superdense matter, and a few related areas is summarized. Abstracts of AEC reports on this research are included. (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of
Directory of Open Access Journals (Sweden)
Octav-Ionuţ Macovei
2015-08-01
Full Text Available This paper aims to propose and validate a model based on the Theory of Planned Behavior in order to explain consumers’ pro-environmental behaviour regarding energy conservation. The model was constructed using the five variables from Ajzen’s Theory of Planned Behavior (TPB (behaviour, intention, perceived behavioural control, subjective norms and attitude to which a variable adapted from Schwartz’s Norm Activation Theory (NAT was added (“awareness of the consequences and the need” in order to create a unique model adapted for the special case of energy conservation behaviour. Further, a survey was conducted and the data collected were analysed using structural equation modelling. The first step of data analysis confirmed that all the constructs have good reliability, internal consistency and validity. The results of the structural equation analysis validated the proposed model, with all the model fit and quality indices having very good values. In the analysis of consumers’ proenvironmental behaviour regarding energy conservation and their intention to behave in a proenvironmental manner, this model proved to have a strong predictive power. Five of seven hypotheses were validated, the newly introduced variable proving to be a success. The proposed model is unique and will offer companies and organizations a valuable green marketing tool which can be used in the fight for environment protection and energy conservation.
Zero-norm states and high-energy symmetries of string theory
International Nuclear Information System (INIS)
Chan, C.-T.; Lee, J.-C.
2004-01-01
We derive stringy Ward identities from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These Ward identities are valid to all energy α' and all loop orders χ in string perturbation theory. The high-energy limit α'→∞ of these stringy Ward identities can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. As examples, all Ward identities for the mass level M 2 =4,6 are derived, their high-energy limits are calculated and the proportionality constants between scattering amplitudes of different string states are determined. In addition to those identified before, we discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high-energy limits are calculated explicitly for each mass level M 2 =4,6 to justify our results
The low-energy limiting behavior of the pseudofermion dynamical theory
International Nuclear Information System (INIS)
Carmelo, J.M.P.; Martelo, L.M.; Penc, K.
2006-01-01
In this paper we show that the general finite-energy spectral-function expressions provided by the pseudofermion dynamical theory for the one-dimensional Hubbard model lead to the expected low-energy Tomonaga-Luttinger liquid correlation function expressions. Moreover, we use the former general expressions to derive correlation-function asymptotic expansions in space and time which go beyond those obtained by conformal-field theory and bosonization: we derive explicit expressions for the pre-factors of all terms of such expansions and find that they have an universal form, as the corresponding critical exponents. Our results refer to all finite values of the on-site repulsion U and to a chain of length L very large and with periodic boundary conditions for the above model, but are of general nature for many integrable interacting models. The studies of this paper clarify the relation of the low-energy Tomonaga-Luttinger liquid behavior to the scattering mechanisms which control the spectral properties at all energy scales and provide a broader understanding of the unusual properties of quasi-one-dimensional nanostructures, organic conductors, and optical lattices of ultracold fermionic atoms. Furthermore, our results reveal the microscopic mechanisms which are behind the similarities and differences of the low-energy and finite-energy spectral properties of the model metallic phase
UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM
Energy Technology Data Exchange (ETDEWEB)
Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona
2013-07-29
The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
Irvine, J M
1972-01-01
Nuclear Structure Theory provides a guide to nuclear structure theory. The book is comprised of 23 chapters that are organized into four parts; each part covers an aspect of nuclear structure theory. In the first part, the text discusses the experimentally observed phenomena, which nuclear structure theories need to look into and detail the information that supports those theories. The second part of the book deals with the phenomenological nucleon-nucleon potentials derived from phase shift analysis of nucleon-nucleon scattering. Part III talks about the phenomenological parameters used to de
Directory of Open Access Journals (Sweden)
Wolf L Eiserhardt
Full Text Available Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water-energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp., whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water-energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input rather than to abrupt transitions at specific latitudes, such as the occurrence of frost.
Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation
Doremus, R. H.
1982-01-01
It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.
[Social actors and phenomenologic modelling].
Laflamme, Simon
2012-05-01
The phenomenological approach has a quasi-monopoly in the individual and subjectivity analyses in social sciences. However, the conceptual apparatus associated with this approach is very restrictive. The human being has to be understood as rational, conscious, intentional, interested, and autonomous. Because of this, a large dimension of human activity cannot be taken into consideration: all that does not fit into the analytical categories (nonrational, nonconscious, etc.). Moreover, this approach cannot really move toward a relational analysis unless it is between individuals predefined by its conceptual apparatus. This lack of complexity makes difficult the establishment of links between phenomenology and systemic analysis in which relation (and its derivatives such as recursiveness, dialectic, correlation) plays an essential role. This article intends to propose a way for systemic analysis to apprehend the individual with respect to his complexity.
Phenomenological sociology in the framework of contemporary methodological debates
A S Ivanova
2010-01-01
The article provides a review of the pivotal doctrines in the sphere of social sciences and humanities methodology, namely positivism (O. Comte, H. Spenser et al) and antipositivism (W. Dilthey, H. Rickert et al). In terms of E. Husserl's late philosophy as well as the works of M. Merleau-Ponty and A. Schutz the article provides the analysis of one of the prominent schools of the contemporary social theory - phenomenological sociology which is highlighted as the non-classical strategy of the ...
On the generalized eigenvalue method for energies and matrix elements in lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Paris-XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Morte, Michele della [CERN, Geneva (Switzerland). Physics Dept.]|[Mainz Univ. (Germany). Inst. fuer Kernphysik; Hippel, Georg von; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Mendes, Tereza [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Sao Paulo Univ. (Brazil). IFSC
2009-02-15
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E{sub N+1}-E{sub n}) t). The gap E{sub N+1}-E{sub n} can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m{sub b} in HQET. (orig.)
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.
Salim, Shelly; Moh, Sangman
2016-06-30
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks
Directory of Open Access Journals (Sweden)
Shelly Salim
2016-06-01
Full Text Available A cognitive radio sensor network (CRSN is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
High-energy, large-momentum-transfer processes: Ladder diagrams in var-phi 3 theory
International Nuclear Information System (INIS)
Newton, C.L.J.
1990-01-01
Relativistic quantum field theories may help one to understand high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, the author studies ladder diagrams in var-phi 3 theory. He shows that in the limit s much-gt |t| much-gt m 2 , the scattering amplitude for the N-rung ladder diagram takes the form s -1 |t| -N+1 times a homogeneous polynomial of degree 2N - 2 and ln s and ln |t|. This polynomial takes different forms depending on the relation of ln |t| to ln s. More precisely, the asymptotic formula for the N-rung ladder diagram has points of non-analytically when ln |t| = γ ln s for γ = 1/2, 1/3, hor-ellipsis, 1/N-2