WorldWideScience

Sample records for energi vaegval foer

  1. Energy Choices. Choices for the future energy use; Vaegval Energi. Vaegval foer framtidens energianvaendning

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Kenneth; Fjaellman, Ted; Sjoegren, Helena (eds.)

    2009-03-15

    The primary objective of this energy project is to prepare data for decision-makers to show what practical measures can be taken to reduce emissions of greenhouse gases. Energy users play a key role in this task. It is the users who pay for and directly or indirectly choose how much and which energy we are using. We should be using energy in an efficient way in order to develop both our society and our industry. With regard to transport we see great potential for increased efficiency in plug-in hybrids and electric cars. But logistics also play an important role. In this area there is, among other things, a need for purchasers and sellers to jointly plan their requirements and deliveries. This would mean that more energy efficient forms of goods transport, such as the railways, could be used to a greater extent than is currently the case. In order to achieve increased efficiency in industry with high energy consumption, we are proposing that the Programme for Energy Efficiency be expanded to also include heating and new policy instruments that target the most energy-consuming processes. Low-energy buildings constitute systems of different technical solutions which have to work in unison to ensure that the effects of the energy saving subsystems are not lost. At the same time, a low-energy building has to function together with energy systems to supply surplus power to the electricity network. Private individuals, too, need to widen their system boundaries in their everyday life when it comes to choosing the services or products they buy, so that greater consideration is given to total energy consumption during the manufacture and active lifetime of the product or service in question. For society to become more energy efficient, analyses and measures need to take an overarching approach and ensure that subsystems work together to avoid sub optimisations. More than individual technical solutions are required to meet future challenges concerning the energy sector. It

  2. Energy Choices. Choices for future technology development; Vaegval Energi. Vaegval foer framtidens teknikutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Billfalk, Lennart; Haegermark, Harald (eds.)

    2009-03-15

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO{sub 2} target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large

  3. Energy Choices. Energy markets; Vaegval Energi. Energimarknader

    Energy Technology Data Exchange (ETDEWEB)

    Damsgaard, Niclas (Econ Poeyry AB, Stockholm (Sweden))

    2008-12-15

    Each of the major energy markets for oil, coal, natural gas, biofuels and electricity has its own character. But markets are dependent on each other in an often complicated way. This interconnection has become even more complex since the market for emissions trading began in Europe in 2005. This report describes the current situation of the different energy markets but also the relationships between them, and some possible future scenarios. The oil market is global, but is dominated by a few producing countries. Coal is traded on the international market with good competition and over time probably a stable price. Other markets are more regional or even local. One example is the natural gas market. In the current situation of natural gas is not particularly important for Sweden's energy supply, but very much so in a European perspective. There may be repercussions also in Sweden. The gas price ups and downs are important for the price of emission rights and electricity. Biofuel markets ranging from global markets, such as ethanol, to regional or local markets, depending on processing. Only with the creation of a single trading venue, Nordpool was a common pricing of electricity possible in the Nordic region. In the near future we will have a common electricity market covering at least the Nordic region and northwestern Europe. This does not mean that prices will become equalized, for that further expansion of the transmission capacity is needed. It is possible to imagine several scenarios for future energy markets, but the interaction between the different markets will persist. To develop appropriate instruments is of great importance to achieve the political objectives in the energy field the next decade

  4. Energy Choices. A North European Energy Map; Vaegval Energi. Nordeuropeisk Energikarta

    Energy Technology Data Exchange (ETDEWEB)

    Groenkvist, Stefan; Stenkvist, Maria; Paradis, Hanna

    2008-11-15

    Oil, coal and natural gas dominate the energy consumption in Northern Europe, as well as in the world at large. The energy supply mix varies between the countries of the region. For example, a large proportion of biomass and waste in Finland and Latvia (Norway) and Sweden use a high proportion of hydroelectric power, while Poland has a very high proportion of coal in their energy mix. Energy use per person in Northern Europe is more than twice as high compared with the average global - but lower than the average in the OECD. In Northern Europe, there are three separate networks for energy transfer: natural gas, electricity and heating. The expansion of the natural gas network has been strong since 1970. Gas pipelines today covers large parts of Europe and new pipelines are planned. The electricity grids and their transmission capacity has grown. Electricity began to be transferred between the Nordic countries during the 1960s. Today, the North European countries are linked with a number of high capacity cables. While the networks for district heating has grown, these systems are separate for individual cities. In recent years, the region's net imports of oil rose, as (Norway's oil production has declined since the early 2000s. On the other hand, the North European countries in 2007 became, for the first time, net exporters of natural gas. As the energy systems expand, trade in energy increases - both within the region and with the rest of Europe and the rest of the world. Several new energy projects are planned in Northern Europe for expanded capacity in oil refineries and new pipelines for natural gas and transmission lines for electricity. The energy integration in the region is therefore expected to increase further. In the long term, climate policy will be of greater importance, both for the region's use of primary energy and for the look of the region's future energy map

  5. Energy Choices. Efficient Energy Use - possibilities and barriers; Vaegval Energi. Energieffektivisering - moejligheter och hinder

    Energy Technology Data Exchange (ETDEWEB)

    Jagemar, Lennart (CIT Energy Management AB, Goeteborg (Sweden)); Pettersson, Bertil (Chalmers EnergiCentrum, CEC, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    Sweden's total energy supply in 2006 amounted to a total of 624 TWh and was dominated by crude oil, nuclear fuels, biofuels and hydropower. Different types of losses in the system accounts for one third of the energy. The final energy consumption, i.e. delivery minus losses, was divided in the following way: industry 157 TWh, the habitat of 145 TWh (of which 19 TWh relates to Agriculture, Forestry, Fishery and other service and secondary homes) and transport of 101 TWh. For the transport sector, studies show that combinations of various efficiency measures ideally can achieve an reduction in energy use by between 60 and 75 percent. The Governmental Energy Efficiency Inquiry (EnEff - 2008) estimated that the domestic transport techno-economic efficiency potential up to 2016 is 13 TWh (mainly fuel) of the total delivered energy is 87 TWh under EnEff. The potential about 5 TWh is expected to be completed by current instruments. The study assesses that despite the increased need for transport in 2016 the sector's energy use can remain at the same level or even be reduced. Buildings have a large technical and economic energy efficiency potential. According to EnEff's assessment, the streamlining potential is 33 TWh of which 8 TWh can implemented in 2016 with today's instruments. This compares with the total delivered energy is 151 TWh under EnEff. The total energy efficiency potential for buildings by 2020 is considered to be substantially higher, about 41 TWh, and affect the use of district heating, fuel and electricity. New powerful tools must be implemented for the building sector in order to realize the potential energy efficiency measures. Industry's total energy potential is assessed to be around 13 TWh by 2016. Industry's total energy use is 155 TWh according to EnEff. Only 2 TWh can realistically be saved up to 2016 taking into account a reasonable acceptance factor. The beneficiaries of the carbon emissions trade account for about

  6. Energy Choices. Global Energy Trends and Problems to Supply the Energy Demand; Vaegval Energi. Globala energitrender och problem att tillgodose energibehoven

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian (Luleaa Univ. of Technology, Luleaa (Sweden))

    2008-09-15

    Although the use of renewable fuels is increasing, oil and other fossil fuels still dominate the global energy supply the next decades, as shown by a review of energy sector development from 1990 to today and projections up to 2030. Nothing indicates that the supplies of oil or any other fossil fuel will be depleted during the coming decades. Resource Nationalism has long characterized the oil market. OPEC has since 1970 successfully controlled the supply and price of oil for its producing member countries. The cartel's grip on the oil market has been strengthened in the 2000s commodity boom, not least as a result of improved production discipline among member countries. At the same time, the long-term trend in the world's great centers of consumption is towards a lower degree of self-sufficiency in energy. The EU dependence on import of oil is expected to rise to over ninety per cent by year 2030. In order to secure a stable energy supply, clear strategies in the oil-importing countries are needed. Tools include diversified import, storage and securing supplies through futures trading on commodity exchanges. Energy policy has long been focused on supply. But the environmental aspects of energy production and use has grown in importance and now the climate issue dominates the energy policy. So far, however, the policy measures to curb the effects of climate change has been both limited and cost-ineffective. The cost to seriously limit emissions of greenhouse gases will be high. To carry out serious climate measures will annually take at least one percent of global GDP, according to an estimate by the British economist Nicholas Stern. This can be compared to the additional cost of approximately five percent of global GDP as energy consumers had to absorb between 2005 and 2008 because of rising prices for fossil fuels

  7. The five roads. Main report from the project Energy Crossroads; The roads to a sustainable energy system; De fem vaegvalen. Huvudrapport fraan projektet Vaegval energi

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-15

    The energy policy of the future should be based on carbon tax and emissions trading. These can be complemented by market-intervention control mechanisms, but it is important that the start and end dates for such control mechanisms are made clear in advance. Improving energy efficiency is a cost-effective way of achieving lower greenhouse gas emissions. There are many opportunities for greater efficiency in buildings throughout Sweden. Investing in renewable energy is one way of reducing greenhouse gas emissions. But it is important to aim for a reasonable level to get the most climate benefits for the money. Sweden already has the largest percentage of renewable energy in Europe - around 40 percent. The Government's goal is to increase the percentage of renewable energy to 50 percent by 2020. Plans to achieve these goals include expanding wind power up to 30 TWh. This would require Swedish electricity consumers to subsidise the expansion by SEK 10-15 billion per year through the electricity certificate system. It is unlikely, however, that wind power will be expanded to the extent planned, but instead as and when reserve power and the power grid are expanded. A reasonable expansion of wind power would mean using more resources for measures with a better climate effect, e.g. the introduction of electric vehicles. We also want to highlight the renewable energy potential offered in the form of hydropower and bioenergy. Energy tax is high; the Swedish government collects SEK 68 billion on oil and SEK 40 billion on electricity every year. One question to ask the politicians is if, and in such a case how, they will make up for the reduction in tax revenues from oil as we move into a fossil-free society. In addition to reducing the impact on climate change, there are clearly several other factors shaping Sweden's energy and climate policies. The transition to a sustainable society involves significant opportunities, both for manufacturing and service sector

  8. Indicators and calculation methods for monitoring policy for energy efficiency; Indikatorer och beraekningsmetoder foer att foelja upp politik foer energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    Energy efficiency objectives can be absolute or relative. With absolute objectives the energy use of a given year should be at a certain level, for example, 80 percent of today's energy use. With a relatively objective energy use should be related to something else such as gross domestic production (GDP) or gross national income (GNI). Depending on how the goals are formulated the requirements of the policy instruments introduced to contribute to the achievement of objectives will vary. In addition to the Energy Services Directive objective (Directive 2006/32/EC) an objective has been set for the EU which means that energy consumption in 2020 will be 20 percent more efficient compared to a reference scenario. Estimates of the impact analysis of the EU Action Plan for energy efficiency 2011 indicates that the EU's energy input for energy purposes should be a maximum of 1474 Mtoe. The savings compared to the energy use reference scenario which are projected to be 1842 Mtoe will thus amount to 368 Mtoe in 2020. There are reasons to pay attention to the definition of key terms. Energy conservation and energy efficiency for example are used in a number of non synonymous ways even in EU documents. It has consequences including the interpretation of the objective. Sweden has set an objective to reduce energy intensity in terms of energy input in relation to GDP by 20 percent by the year 2020 with 2008 as base year. Sweden's intensity objective takes, unlike the EU's energy efficiency objective, account of the actual economic development. EU's energy efficiency objective is based on a forecast of the economic development. Sweden also has an objective of energy consumption per square meter of residential and commercial buildings. It should be reduced by 20 percent by 2020 and by 50 percent by 2050. Furthermore, there is a focus that energy efficiency in transport must improve in order to contribute to the environmental objective of reduced climate

  9. Opportunity and potential for fuel cell systems for energy in buildings; Moejlighet och potential foer braenslecellsystem foer energifoersoerjning i byggnader

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin (Catator AB (Sweden))

    2011-04-15

    While planning for new sustainable and environmentally friendly communities in Sweden, discussions on using fuel cells for small-scale power and heat production (mCHP) are today on-going. Examples of such communities are Sege Park in Malmoe and Norra Djurgardsstaden in Stockholm, where several members of the Swedish Construction Industry's Organisation for Research and Development (SBUF) are participating in the development. The status and the potential of using fuel cell based mCHP compared to conventional heat and power production technology and other mCHP-technologies (Internal combustion engine (ICE), Stirling) is today therefore a very interesting question for both the energy and the building sector, who also ask for more knowledge within the field. This work focuses on this purpose. The main goals of this report are: 1. To give an overall description of different existing fuel cell technologies and necessary belonging system components. The fuel cell systems are discussed and evaluated based on parameters such as efficiencies, fuel flexibility, life-time, complexity, maturity and cost. The systems are compared to mCHPs based on small heat engines (Internal combustion, Stirling). 2. To give a state-of-the-art report on fuel cell based mCHPs and to describe possibilities and risks related to different technologies. 3. To guideline for future choices of system solutions suitable for different building constructions and different geographical placements. The work is limited to systems suitable for small houses (< 5 kWe) and larger residential buildings (< 50 kWe) situated in population centres/cities where infra-structures for natural gas/biogas and the national grid are available. The project has been performed by Catator AB on the request of SBUF with support from the Swedish Gas Centre (SGC AB), Skanska and Catator. The study is based on the open literature, the information given by leading fuel cell system suppliers and Catator's own knowledge and

  10. Indirect Energy for Road and Railway Transportation in Sweden; Indirekt energi foer svenska vaeg- och jaernvaegstransporter

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Daniel K.

    2005-02-01

    Besides energy for propulsion, there are a number of considerable indirect energy categories in the life-cycle of transport systems, e.g. construction and maintenance of infrastructure, and manufacture and service of vehicles. Indirect energy represents 64-66% of the total amount of energy used in the railway sector, while the corresponding share in the road sector is 42-45%. Consequently, decision-making and planning processes regarding transport infrastructure and environmental impacts should also consider indirect energy-use. Two energy case studies have been carried through; the railroad project Botniabanan in the north of Sweden, and the motorway tunnel Soedra Laenken in Stockholm. The result for Botniabanan corresponds with the Swedish railroad average, but Botniabanan contributes to decreased energy use in the transport sector as a whole. The infra structural energy use for Soedra Laenken is considerably higher than the Swedish road average. Soedra Laenken also contributes to an increase of the energy use in the transport sector as a whole.

  11. Policy Instruments for an Increased Supply of Energy Crops; Styrmedel foer ett utoekat utbud av biobraensle

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, Maria; Widmark, Annika; Wiklund, Sven-Erik; Liljeblad, Anna

    2009-05-15

    At present, energy crops are not commonly used as fuel for heat and power production in Sweden, but as a result of increased competition for biomass, the interest for agricultural fuels such as willow, straw, reed canary grass and hemp increases. The purpose of this study is through a qualitative study that includes a literature study as well as case studies carried out by interviews, with respondents in the agriculture- and energy sectors highlight the conditions for increased production and use of energy crops. The main objective is to propose relevant policy instruments that could increase the production and use of energy crops. The purpose with the proposed policy instruments is that they should serve as a basis for discussions with politicians and authorities regarding the supply of bio fuels through the use of energy crops. The result of the study indicates that the main obstacle for increasing the production and use of energy crops is that the cultivation of energy crops today is unprofitable. To reduce the production costs it is necessary to improve the competitiveness of energy crops, primarily in relation to wood chips. The study shows that there is a potential for reduction of production costs through development of the logistics chain. Policy measures promoting the use of bio fuels exists today, but are not fully used to increase the share of energy crops in the bio fuel energy mix. The reason for this is that they are generally not as cost efficient as alternative bio fuels. It is important that competition issues are addressed, both regarding competition issues between different bio fuels, but also competition issues between various energy crops that exists today. Further obstacles to accelerate the introduction of energy crops at the market are high investment costs for establishment of some of the energy crops. From the analysis in this study, the following policy instruments are suggested in order to increase the production and the use of energy

  12. Energy statistics of apartment buildings in 2012; Energistatistik foer flerbostadshus 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents data regarding energy used for heating and hot water in Swedish apartment buildings (2012) in terms of heated floor area, use of energy (totals and averages) and use of fuels (totals and averages) for the total population and for various subDivs.

  13. Energy Balance of Bio-ethanol - A Review; Energibalans foer bioetanol - en kunskapsoeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2006-03-15

    This review presents a synthesis of various Swedish and international studies on the bio-ethanol energy balance, and an analysis of how and why their results differ. Other methods, such as exergy- and emergy analysis, are discussed and compared with the energy analysis method. Finally, potential improvements of the energy efficiency in bio-ethanol production are discussed. The energy balance is here expressed as the ratio of the energy content of the fuel to the primary energy input for the entire production cycle of the fuel. The energy balance of ethanol from cereals is, on average, 1.6, and varies between 0.7 and 2.8. Corresponding average figures for ethanol from corn, sugar beets and lignocellulosic biomass (e.g. energy forest) are 1.4, 1.8 and 3.2, respectively. There are several reasons why the energy balances differ between the different studies, even where the feedstock is identical. The sources of differences can be divided between those related to differences in local and geographical conditions, and those related to differences in the methodological approach applied. Depending on the definition of the system that is studied (systems boundaries), and how the energy input is divided between the ethanol and the by-products generated in the process (allocation methods), the energy balance may differ by a factor of 5. Thus, it is impossible to make reliable and fair comparisons between different studies unless all assumptions are clearly presented and defined. Results from exergy- and emergy analysis of bio-ethanol often show significantly different results from those presented in energy analyses. It is, however, not useful to compare these different results since the various methods have different focuses and are answering different questions. The energy balance of cereal-based ethanol can be improved by more efficient cultivation methods, but mainly by improved conversion processes. One possibility is by using bio-refineries where not only ethanol but also

  14. Energy statistics for non-residential premises 2012; Energistatistik foer lokaler 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents data on a number of non-residential premises, heated floor area, use of energy (totals and averages) and use of fuels (totals and averages) for the total population and for various subDivs.

  15. Laws for local energy systems. A review; Lagar foer lokala energisystem. En oeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Bylund, S I [Bygginfo AB, Stockholm (Sweden); Moe, N; Bjoerk, J [Swedish National Board for Industrial and Technical Development (NUTEK), Stockholm (Sweden); Goethe, S; Froste, H [Swedish Environmental Protection Agency, Solna (Sweden); Larsen, B; Gyberg, A [Boverket, Karlskrona (Sweden)

    1996-10-01

    This report gives a popular descriptive orientation of existing laws regarding the establishment of small-scale energy technology, like wind power plants, heat pumps, solar heating and others, and also of more efficient power generation. In the first part of the report 11 different local energy systems are described, together with their environmental impact. The second part gives a review of more than 20 laws. The central content of the laws are described, not the complete text

  16. Biomass-based energy carriers in the transportation sector; Biomassebaserade energibaerare foer transportsektorn

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO{sub 2} emission reduction per unit arable and forest land used for biomass production (kg CO{sub 2}/ha,year) and costs for CO{sub 2} emission reduction (SEK/kg CO{sub 2}) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO{sub 2} emission reduction. In a medium long perspective, the costs for CO{sub 2} emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  17. Demonstration Platform for near-zero energy buildings - small houses; Demonstrationsplattform foer naeranollenergibyggnader - smaahus

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Svein; Fahlen, Per; Axell, Monica; Kovacs, Peter; Ylmen, Peter; Staahl, Fredrik

    2011-07-01

    On behalf of the Swedish Energy Agency, SP has investigated and recommended how one could form a platform for demonstration of single family houses as nearly zero energy houses. SP suggests that TMF, the national trade and employers' association of the wood processing and furniture industry in Sweden, should administrate this platform. The reason being that members of TMF produce almost 80% of all single family houses in Sweden. TMF also has the capacity to launch a demonstration platform in a reasonable short time. SP has also compiled a set on technical criteria regarding properties related to energy use that should be met by demonstration projects within the platform. One presumption has been that a house that meets the criteria in the south of Sweden also should meet the criteria in the north of Sweden. The reason being to promote an industrialized and cost effective building process. Another ambition has been not to disfavor smaller single family houses. The main criteria are on very energy efficient building envelopes and very efficient building services systems. The criteria are therefore more detailed than the current Swedish building regulations

  18. Energy Balance and Performance Indices for Kraft Recovery Boilers; Standardmetod foer beraekning av energibalans oever sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders

    2007-09-15

    It has been recognized that different rules exist in calculating energy flows to and from a Recovery boiler. In this report definitions are given with the intention that the branch should adopt a common position in reporting power production for the Swedish system with charge on emission of nitrogen oxides, for the EU Emissions Trading Scheme and for the electricity certificate system. Legislation and guidelines are described as also different standards for determination of boiler efficiency. The definition of the liquor heating value is discussed as also the different ways in which an energy balance could be set up. For the Emissions Trading Scheme a literature survey of interpretations made in other countries has been made. The recommendation is to define the heat input as the product of the virgin liquor flow and the net calorific value of virgin liquor. A net calorific value as defined in SS-ISO 1928 is determined in an environment with excess of oxygen and is consequently named net calorific value in oxidizing condition. In a Recovery boiler part of that heat is required for reduction of sulfur and a net calorific value in reducing condition are therefore defined in a branch specific way. The flow of liquor could be calculated using a heat balance based on steam generation. The envelope for that heat balance could be selected as to fit each individual installation; however some general recommendations are given. In reporting energy flow for the EU Emissions Trading Scheme and to EPA it is recommended to use the net calorific value in oxidizing condition. This definition should also be good for reporting to Statistics Sweden, Swedish Forest Industries Federation and for internal use. For reporting to the electricity certificate system the part of the total power production with origin from biofuel should be stated. The heat of reduction is not available for power production and consequently the recommendation is to use the net calorific value in reducing

  19. Energy statistics for multi-dwelling buildings in 2008; Energistatistik foer flerbostadshus 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-15

    82 percent of the total heated area in multi-dwelling buildings in 2008 was heated by district heating. District heating was also used in combination with other types of heating to heat another 3 percent of the area. The percentage of area that is only heated by oil is approximately 1 percent, a slight decrease compared to 2007. Oil is also used in combination with other types of heating for approximately 1 percent of the area. The use of heating oil has decreased from 75 000 m3 in 2007 to 51 000 m3 in 2008. Natural gas and gasworks' gas consumption has decreased compared to 2007. The total water consumption was 278 millions m3. The average use was 1 698 litres per m2. Average usage of energy in 2008: 17.7 litres or (176.1 kWh) of oil per for multi-dwelling buildings in 2008, 148 kWh district heating per m2, 123 kWh electricity per m2 Total usage of energy in 2008 25.7 TWh was the total consumption of energy for heating and hot water in multi dwelling buildings in 2008

  20. Demonstration program for small-scale straw fuel systems. Pre-study for the Swedish Energy Agency; Demonstrationsprogram foer smaaskaliga straabraenslesystem. Foerstudie foer Energimyndigheten

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne (Swedish Environmental Research Institute Ltd., Stockholm (Sweden)); Wahlberg, Cecilia (Hushaallningssaellskapet, Stockholm (Sweden)); Arkeloev, Olof (LRF Konsult, Stockholm (Sweden))

    2008-02-15

    Energy crops from arable land is still an almost entirely untapped potential as a fuel for heating. Canary grass, straw and hemp could eventually form an important part of the raw-material from agriculture. For this production to increase and become a viable alternative to conventional farming it is required, however, that the whole production chain from cultivation to end-use is developed. The aim of this pilot study has been to make suggestions for the design of a Demonstration project of small-scale fuel straw-crops. The programme's vision is to within 6 years build up a number of demonstration plants for small-scale briquetting/pelletizing of straw fuels in different parts of the country. In addition, potential producers of raw materials and other actors in the programme will be made aware what opportunities and conditions there are to process the agro-fuels in small-scale production facilities. The overall objective of the programme is to increase knowledge about how straw fuels and/or residues can be used as raw material in small-scale production of briquettes/pellets, and enhance the understanding of how producers take part in different business models. In the short term, the objective of the programme to build up a network of pellets and briquettes producing demonstration. Within the activities of the programme it is proposed that demonstration is built up of at least 7 different places in the country. This is in order to be able to gain experience on the basis of local and regional conditions. Demonstration refers both to demonstrate the entire chain with existing proven technology, and to improve technologies, reduce costs and make the production and user experience. On the other hand, the intention may be to test the new technology. Demonstration refers to smaller installations and with a production capacity of plants should vary from about 100 to 500 kg/h produced fuel. Operations are limited to the supply of raw material, cultivation and harvest

  1. Energy statistics for one- and two-dwelling buildings in 2008; Energistatistik foer smaahus 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-15

    The survey of energy statistics in 2008 on one- and two-dwelling buildings, including agricultural one- and two-dwelling buildings, is based on a sample of 6 852 buildings. The survey was carried out as a mail survey in June 2008. The non-response rate was 39 percent. The presentation provides data on energy use, number of one- and two-dwelling buildings, and heated floor areas for the total population and for various subdivisions. During the last two years the number one- and two-dwelling buildings heated solely by district heating has greatly increased. The total use of district heating has increased by 32 percent. The use of oil for hot water and heating of one- and two dwelling buildings has decreased by 21 percent compared to 2007, and by 75 percent during the last five-year period. Nearly 40 percent of one- and two-dwelling buildings are heated completely or partially with a heat pump. However, the sharp increase in the number of heat pumps during the last five-year period has nearly come to a standstill in the last two years. About 42 percent of all one- and two-dwelling buildings in Sweden are heated by electricity as the only source of heat, including houses that are heated by heat pumps. Combined heating with electricity and biomass fuel is the second most common heating method, followed by heating with solely biomass fuel. 17 100 kWh electricity per household in one- and two-dwelling buildings heated by direct electricity exclusively and 18 800 kWh in one- and two dwelling buildings heated by water-borne electricity exclusively or 130 kWh per square metre of heated surface area (incl. electricity for household purposes). 2.5 cubic metres of oil per household in one- and two-dwelling buildings heated by oil exclusively or 18.7 litres of oil per square metre of heated surface area. 12.7 TWh electricity for households in one- and two-dwelling buildings, including the electricity used in combinations with other types of heating, but excluding electricity for

  2. Energy statistics for one- and two-dwelling buildings in 2007; Energistatistik foer smaahus 2007

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-15

    The survey of energy statistics in 2007 on one- and two-dwelling buildings, including agricultural one- and two-dwelling buildings, is based on a sample of 6,849 buildings. The survey was carried out as a mail survey in June 2007. The non-response rate was 37 percent. The presentation provides data on energy use, number of one- and two-dwelling buildings, and heated floor areas for the total population and for various subdivisions. The use of oil for hot water and heating of one- and two-dwelling buildings has decreased by 23 percent compared to 2006, and by 71 percent the last 5 years. The number of air heat pumps increased by 41 per cent compared to 2006 and the total number of heat pumps increased from over 500 000 to over 650 000. More than 45 percent of the one- and two-dwelling buildings are heated by electricity exclusively, including buildings heated by air heat pump. About 20 percent are heated by a combination of bio fuel and electricity and about 3 percent are heated by oil exclusively. 17,200 kWh electricity per household in one- and two-dwelling buildings heated by direct electricity exclusively and 20,300 kWh in one- and two-dwelling buildings heated by water-borne electricity exclusively or 132 kWh per square metre of heated surface area (incl. electricity for household purposes). 2.8 cubic metres of oil per household in one- and two-dwelling buildings heated by oil exclusively or 19.9 litres of oil per square metre of heated surface area. 13.5 TWh electricity for households in one- and two-dwelling buildings, including the electricity used in combinations with other types of heating, but excluding electricity for household purposes which is estimated to 10,4 TWh. 258,000 cubic metres of oil (about 2.6 TWh) for households in one- and two-dwelling buildings. This includes mixed heating. 6.6 millions cubic metres of firewood in one- and two-dwelling buildings, 975,000 cubic metres of wood chips and 461,000 tons of pellets. This amount corresponds to 11

  3. Energy and Security: future-oriented studies for the Swedish Armed Forces; Energi och saekerhet: framtidsinriktade omvaerldsanalyser foer Foersvarsmakten

    Energy Technology Data Exchange (ETDEWEB)

    Oestensson, Malin; Jonsson, Daniel K.; Magnusson, Roger; Dreborg, Karl Henrik

    2009-01-15

    The report provides a basis for the Armed Forces long-term planning, and how changes in the global energy supply may mean new challenges and threats, as well as the advantages and disadvantages that can be associated with different future energy solutions for Armed Forces own activities, primarily relating to fuel and power during operation. One conclusion is that the potential conflict between energy security and climate-security can lead to far-reaching security implications and that continued global fossil dependency contributes to increased safety of political and military focus on a number of potential conflicts. A new such area may be the Arctic, as in the wake of climate change will become available for exploitation. Large scale global renewable energy can bring greater geographical spread - and reduced pressure on existing 'hot-spots'. Nuclear power is unlikely to be influential in the overall global energy security, but security problems associated with the production of nuclear materials can spread and be strengthened. Furthermore, the energy problems of connected to gaps between rich and poor, which may lead to social friction and conflict. The trend toward increased nationalisation and politicization of the energy is in contrast to free trade and market liberalism and may lead to further militarization of energy resources. Bilateral energy contracts may result in division within the EU and create a hindrance to joint positions and actions, such as in international efforts. As for Armed Forces own future energy solutions, the knowledge of alternative fuels (eg alcohols, diesel variants, gaseous fuels) and energy converters (eg hybrid vehicles, fuel cells) is reviewed. The following alternative principle solutions fuel and power are discussed: 1. Power from small-scale electricity generation via solar cells and small wind farms and power stations with liquid fuel as a supplement. Transport with plug-in hybrid vehicles, i.e. liquid propellants in

  4. The energy logistic model for analyses of transportation- and energy systems; Energilogistikmodell foer systemberaekningar av transport- och energifoersoerjningssystem

    Energy Technology Data Exchange (ETDEWEB)

    Blinge, M

    1995-05-01

    The Energy Logistic Model has been improved to become a tool for analysis of all production processes, transportation systems and systems including several energy users and several fuels. Two cases were studied. The first case deals with terminal equipment for inter modal transport systems and the second case deals with diesel fuelled trucks, cranes and machines in the Goeteborg area. In both cases, the environmental improvements of the city air quality are analyzed when natural gas is substituted for diesel oil. The comparison between inter modal transport and road haulage shows that the environmental impacts from the operations at the terminal are limited, and that the potential for environmental benefits when using inter modal transport is improving with the transportation distance. The choice of electricity production system is of great importance when calculating the environmental impact from railway traffic in the total analysis of the transportation system. 13 refs, 27 tabs

  5. Energy for Road Transport - Prospects towards year 2020 and later; Energi foer Vaegtransporter - utsikter mot 2020 och daerefter

    Energy Technology Data Exchange (ETDEWEB)

    Aahman, Max

    2009-02-15

    The last few years, production of alternative fuels has grown significantly. The driving force can be primarily attributed to a growing interest in protecting the climate and the policy initiatives resulting from this, rising oil prices and industrial and agricultural interests. However, the debate has increasingly begun to question the usefulness and impact of a continued expansion of biofuels. The report provides an overview of our knowledge with respect to climate benefits, and economic potential for the 1st generation of ethanol and biodiesel, 2nd generation biofuels and electricity via e.g. plug-in hybrids. The report also provides various scenarios of how Sweden can meet the adopted EU directive on renewable energy in the transport sector to 2020. The substitution of fuels in the transport sector has only just begun. Driving forces, including those visible in the criteria of the EU Directive, however, will aim for more climate-effective fuels based on waste and forest raw material compared to today's efforts. Effective grain based fuels can still retain a relatively large niche even in the longer term, since the investment is justified by several reasons, including agricultural policy. Electric vehicles are expected to be launched in the not too distant future. But it will take a long time before electricity consumption via eg plug-in hybrids is visible in the statistics. Increased demands on energy efficiency can drive a trend towards more expensive vehicles and also to change forms of ownership and use of vehicles, including increased car pooling

  6. Energy Efficiency and Conservation for Households - an Internet Site; Energispartips och energitester foer hushaall - en Internet hemsida

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    This Internet site gives advice for energy conservation in households e.g. on space heating, lighting et cetera. You can also find energy tests of electric appliances, energy impacts of life styles, contact information for your local energy advisor and other information

  7. Are there barriers to competition on the market for energy services?; Finns det konkurrenshinder paa marknaden foer energitjaenster?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Under orders from the Government, offices of Swedish Energy Authority conduct an in-depth analysis of the competitive conditions in various segments of the energy services market. In particular, the competitive relationship between energy suppliers and on the other hand, other companies providing energy services. Also the relationship between municipal-owned companies and other companies providing energy services should be analyzed. The institutional framework is already known, as well as much of the activity in the market. However, there still seems to be perspective on actors' own perceptions of market conditions that should be clarified. For this reason, the starting point for this investigation was the companies' own statements and comments, which were obtained partly through a questionnaire and interviews. A basic assumption has been that the opinions and beliefs also guide companies actions. This means that the actors' own voices form a kind of recurring theme in the study and contributes to a deeper understanding of the actors' motivations. It should be noted that Energy Agency does not necessarily share the views that emerge in this context.

  8. Process for increased biogas production and energy efficient hygienisation of sludge; Process foer oekad biogasproduktion och energieffektiv hygienisering av slam

    Energy Technology Data Exchange (ETDEWEB)

    Rogstrand, Gustav; Olsson, Henrik; Andersson Chan, Anneli; Johansson, Niklas; Edstroem, Mats

    2012-07-01

    In Sweden there is a need to increase biogas production to meet the rising demand for biomethane as vehicle fuel but the amount of domestically available biomass to digest is limited. One way to help meet current and future demand for methane is to enhance the digestion of the substrates that are currently utilized. Vaexjoe municipality in southern Sweden is in the process of upgrading their facilities for biogas production at the Sundet waste water treatment plant. Their aim is to produce more biogas in order to meet the demand from an increasing methane-based local transit fleet. This is the backdrop to a joint project between JTI and Vaexjoe municipality where JTI's mobile pilot plant was used to study the possibility of extracting more biogas from the existing sewage sludge. In the future, Vaexjoe municipality also plans to co-digest source separated municipal organics with the sewage sludge, which will likely result in stricter demands in terms of hygienization of all utilized substrates. The goal of the project at hand was to demonstrate the possibility to produce more than enough additional biogas from existing sewage sludge to yield a net energy profit even with the added energy demand of ensuring the hygienic quality of the digestate through conventional pasteurization. Although the project was focused on the conditions at Sundet waste water treatment plant, the issues dealt with are general and the results are relevant to many waste water treatment plants in Sweden. The research, conducted between June 2011 and January 2012 were divided into two trials. The two trials, described schematically in Figure 1, represented two possible process configurations designed to reach the goal stated above. The key component of both process configurations is the addition of a post-digestion step to the existing single-step digestion process. In trial 1 the additional feature of dewatering between the two digestion steps served to reduce energy demand for pasteurization

  9. Process for increased biogas production and energy efficient hygienisation of sludge; Process foer oekad biogasproduktion och energieffektiv hygienisering av slam

    Energy Technology Data Exchange (ETDEWEB)

    Rogstrand, Gustav; Olsson, Henrik; Andersson Chan, Anneli; Johansson, Niklas; Edstroem, Mats

    2012-07-01

    In Sweden there is a need to increase biogas production to meet the rising demand for biomethane as vehicle fuel but the amount of domestically available biomass to digest is limited. One way to help meet current and future demand for methane is to enhance the digestion of the substrates that are currently utilized. Vaexjoe municipality in southern Sweden is in the process of upgrading their facilities for biogas production at the Sundet waste water treatment plant. Their aim is to produce more biogas in order to meet the demand from an increasing methane-based local transit fleet. This is the backdrop to a joint project between JTI and Vaexjoe municipality where JTI's mobile pilot plant was used to study the possibility of extracting more biogas from the existing sewage sludge. In the future, Vaexjoe municipality also plans to co-digest source separated municipal organics with the sewage sludge, which will likely result in stricter demands in terms of hygienization of all utilized substrates. The goal of the project at hand was to demonstrate the possibility to produce more than enough additional biogas from existing sewage sludge to yield a net energy profit even with the added energy demand of ensuring the hygienic quality of the digestate through conventional pasteurization. Although the project was focused on the conditions at Sundet waste water treatment plant, the issues dealt with are general and the results are relevant to many waste water treatment plants in Sweden. The research, conducted between June 2011 and January 2012 were divided into two trials. The two trials, described schematically in Figure 1, represented two possible process configurations designed to reach the goal stated above. The key component of both process configurations is the addition of a post-digestion step to the existing single-step digestion process. In trial 1 the additional feature of dewatering between the two digestion steps served to reduce energy demand for

  10. The pulverization and handling of soft plastics for energy recovery; Soenderdelning och hantering av mjuka plaster foer energiutvinning

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Sven-Erik

    2000-10-01

    The purpose of the project has primarily been to investigate suitable equipment (mills, crushers, shredders) for the pulverization of different types of soft plastics from the agricultural sector (large sacks and silage plastic) and the peat extraction industry (plastic covers) with the aim of being able to use the plastic material as fuel in conventional solid waste-fired plants. Many of the mills that are used for pulverizing different types of biofuel have proved not to be particularly suitable for soft plastics. The project has comprised the following: * Contact with a number of plant owners with different types of plants (grate, CFB and BFB boilers) for a review of existing fuel handling and fuel feed equipment as well as the demands they make on the fuel that is to be fired. * Contact with Trio Plast concerning previous tests carried out in connection with the collection, baling, handling, pulverization and combustion of plastics from the agricultural sector. * Contact with mill suppliers for participation in the tests and for feedback on experience gained in connection with the pulverization of soft plastics. * Choice of a suitable plant for practical trials based on contact with the above plant owners as a reference group. * Practical trials in 5 mills with the pulverization of soft plastics from agriculture (silage plastic and large sacks) as well as plastic from peat extraction (plastic covers) and * Evaluation of technical, economic, energy-related and environmental preconditions. Following contact with several owners of solid waste-fired combustion plants, and after hearing their opinions, it became clear that many of them were doubtful about the combustion of plastic. They are primarily afraid of tripping superheaters, etc. Consequently, two plants without superheaters, one in Oestersund and the other in Malmoe, were chosen for the tests. The mills that were tested were: * A SIM mill from WahIkvist, Oedeshoeg Plant - a mobile slow-action pulverizer for

  11. Enzymatic pretreatment of wood chips for energy reductions in TMP production. A method for ranking of enzymes; Enzymatisk foerbehandling av flis foer energibesparing vid TMP tillverkning. Metod foer rankning av enzymer

    Energy Technology Data Exchange (ETDEWEB)

    Viforr, Silvia

    2010-11-15

    The production of thermomechanical pulp (TMP) demands high levels of energy. This, together with current expensive energy prices of nowadays results in significant costs, which is the reason why there is a demand for processes that require less energy. One way of reducing energy consumption in TMP refining could be to pretreat the wood chips with enzymes before the subsequent refining step. However, enzymes molecules are relatively large, which limits the impregnation process, and so the pores in the fibre walls are not large enough to fit the size of the enzymes. By mechanically pretreating wood chips in a screw feeder and press equipment, this opens the wood structure significantly which increases enzyme penetration. If enzymes are used for reducing energy consumption in TMP processes, it is necessary to optimise the enzymatic effect during the pretreatment of wood chips. It is very expensive to evaluate completely the effect of enzymes in large scale refining. Thus there is a need for other relevant methods for rapidly and effectively evaluating the energy saving effects when it comes to refining enzymatic pretreated wood chips. The aim of this project was to find a method for ranking of enzymes for pretreatment of chips for energy savings at TMP production. This method was to be independent of the type of enzyme used and of the type of pretreated wood chips involved. In order to asses the method for ranking enzymes being used in the pretreatment of chips to reduce energy input during refining, a comparison between the method and a mill trial was carried out in the mill trial. A known chemical pretreatment was used; here it was sulphonation of the wood chips before refining with low sulphite levels. Further, a laboratory wing refiner was used as an evaluation equipment. The trial started with the running conditions for a wing refiner that the best correspond with industrial refining. An evaluation was made on the effect of enzymatic pretreatment on energy

  12. Report on the Swedish National Energy Administration's program for energy efficiency 1998-2001; Redovisning av Energimyndighetens insatser foer energieffektivisering aaren 1998-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    Support for raising energy efficiency is reported for the following five areas during 1998-2001: 1. Fuel-based energy systems with the sub-areas: Sustainable production of biofuels, including ash recycling; Cogeneration; and Large scale heat production. 2. Transport with two sub-areas: Internal combustion engines; and Electric drive-lines. 3. Power production/Power technology with the sub-areas: Hydropower; Wind power; Power transmission and distribution; and Photovoltaic solar cells. 4. Industry with the sub-areas: Processes; and Support systems in industry. 5. Buildings with the sub-areas: Heating, cooling and climatic shields; and Components and support systems. In total, 1,800 M SEK (about 180 M USD) was contributed by the Energy Administration during this period. An overview of the projects is presented in this report.

  13. Nuclear Energy, Geothermal Energy and the Environment. Reports to the Energy Commission's Expertgroup for Safety and Environment. Kaernenergi, geotermisk energi och miljoe. Underlagsrapporter till rapport om miljoeeffekter och risker vid utnyttjandet av energi fraan Expertgruppen foer saekerhet och miljoe

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume contains reports on uranium mining, working conditions in the different stages of the nuclear fuel cycle, risks at storage of spent fuel elements, environmental impact of future reactor technology, effects of waste heat disposal and risks at geothermal energy extraction in Sweden. These reports have been use by the expert group to produce their final paper.

  14. Energy statistics for single-family houses, apartment buildings and non-residential premises in 2012; Energistatistik foer smaahus, flerbostadshus och lokaler 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents a summary of energy use and heating method in Swedish buildings (2012). The report covers basically three surveys - energy use in houses, in apartment buildings and premises. These three studies are first published separately. The results are then processed further, with the aim to provide a comprehensive picture of energy use in permanently occupied dwellings (houses and apartments) and commercial buildings (excluding industrial premises). This report presents the results of these operations.

  15. Residential energy efficiency: changes in household chores for women and men; Energieffektivisering i bostaden. Foeraendringar i hushaallsarbete foer kvinnor och maen

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson-Kanyama, Annika; Wulff, Petter [Swedish Defence Research Agency, Stockholm (Sweden); Linden, Anna-Lisa [Lund Univ. (Sweden)

    2005-12-15

    A substantial amount of energy is used in the residential sector. Many of the measures that residents can apply by themselves to save energy demand a change in behaviour, and thus everyday life is altered. It is common for women and men to take on different responsibilities in the household when they live together. Women spend more time on household chores and take the main responsibility for washing and cooking. In this study, we investigated how behaviour changed when women and men took part in various types of energy-saving campaigns. The data were obtained through 30 interviews in four different locations in Sweden. The results showed substantial adaptation and changes in behaviour. Examples included lowering room temperatures during the night, avoiding the use of tumble-dryers, replacing baths with showers, turning off lights, using energy-saving light bulbs, cooking and washing during hours when electricity is cheap and refitting the house for higher energy efficiency. The changes needed for this adaptation imply that women take on new responsibilities in areas that are their traditional territory, including many tasks carried out on a daily basis such as washing and drying clothes. Men often take on new responsibilities within the sphere of their traditional territory, such as building alterations or installing new equipment. These tasks are typically carried out during short periods and are mainly relevant in owner-occupied residences.

  16. Guidelines for calculating impacts on the Swedish environmental objectives from altered energy use; Vaegledning foer att beraekna paaverkan fraan foeraendrad energianvaendning paa de svenska miljoemaalen

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Rebecka; Gode, Jenny; Axelsson, Ulrik

    2009-01-15

    The guidelines in this report have been developed by IVL Swedish Environmental Research Institute, within a project financed by the Environmental Objectives Council, the Swedish Energy Agency and the Swedish Environmental Protection Agency. The idea originated from an earlier project for the Swedish Energy Agency and the Swedish Environmental Protection Agency, where the potential of a business model for energy efficiency (Energy Performance Contracting, EPC) to contribute to fulfil the national environmental objectives was studied. When environmental impacts from the studied EPC projects was to be calculated, it was evident how many difficult methodological choices one is faced with when trying to follow up the environmental impacts from projects changing the energy use. A second project was then performed to further analyse the issues involved. The result is this guideline report. The guidelines are on the first hand directed at companies and municipalities performing projects with effects on the energy use, that want to calculate impacts from these on the Swedish environmental objectives. The guidelines can also be useful for county administrations, central authorities and other actors with interest in the issues. A starting point for the recommendations is the Swedish environmental objectives, with focus on those of special interest in relation to energy use and airborne emissions. These are Reduced climate impact, Clean air, Natural acidification only, Zero eutrophication and A good built environment. The environmental objectives are mainly concentrated on what affects the Swedish environment. However, not only emissions in Sweden cause such effects, but also emissions in other countries can be transported by air and fall down and cause impacts in Sweden. Thus, the guidelines focus on Sweden, but include to a certain extent also emissions in other countries. Another starting point is that the guidelines are developed to follow up effects from individual

  17. Energy savings in dust collector plants of bag house filter type. Phase 1 - Literature study; Energieffektivisering av anlaeggningar foer stoftrening med slangfilter. Etapp 1-Litteraturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lars; Wikman, Karin; Berg, Magnus [AaF-Energi and Miljoe AB, Stockholm (Sweden)

    2004-01-01

    The largest energy demands in connection with the operation of bag house filters are the electric energy consumption for the fans, securing the flow of flue gas through the filter, and the electric energy consumption when producing the pressurized air (compressors or high pressure fans). Considering the significantly increased fan work when having a non-optimised cleaning of the filters, it seems justified to investigate the possibilities to minimise the unnecessary pressure drop. There is also a saving potential in the filter cleaning process, which otherwise may cost an unacceptable amount of pressurized air or other energy. The main purpose of this work is to develop methods to optimize the operation of bag house filters, which is started up with this report containing a follow-up of what has been done in Denmark and a confirmation of the technology status. In the next step, a case study where two-three plants are examined more in detail is suggested followed by a potential study to estimate the total energy saving potential in Sweden. Dust precipitation with bag house filters is basically a rather simple technique, which has existed in flue gas cleaning for about 50 years. From the literature study it can be established that there has been no revolutionary development in the field, but there are some work being done mainly to introduce new filter material but also to optimise the use of bag house filters with new computer based control systems. The largest potential of energy saving prevails if the filter from the beginning is overloaded, which usually is the case. The reason for overload may be a too large volume flow in relation to the filter area, that the dust has penetrated and blocked the filter, a defective filter cleaning process or that wrong filter material has been chosen. In Denmark a study has been made with the purpose to investigate the possibilities to optimise the energy consumption for bag house filters. For the three plants studied, an

  18. Ecology and physiology of reed. A literature study for evaluation of reed as an energy source. Vassens Ekologi och Fysiologi. Litteraturstudie foer Bedoerfrung au Vass som Energiraavaren

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndahl, G.; Egnens, H.

    1980-01-01

    The potentials of reed as an energy source are evaluated. The following subjects are discussed: The structure and life-cycle of reed; Primary production and photosynthesis; Important environmental factors for the production; Genetic variation; Competition, succession and parasitism; Human influence like cultivation, harvesting, etc. An extensive list of references is given.

  19. Mechanical pre-treatment for enzymatically enhanced energy efficient TMP; Mekanisk foerbehandling av flis foer effektiv enzymatisk paaverkan vid energieffektiv TMP tillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Viforr, Silvia

    2008-11-15

    Thermomechanical pulp (TMP) processes are high energy demanding. This together with the high energy prices of nowadays results in significant costs, why less energy demanding processes are wished. This project has evaluated the potential for energy reductions in a TMP process by a mechanical pre-treatment of the wood chips combined with an enzymatic modification based on a cellulase mixture. The structure of the wood was opened up by the mechanical pre-treatment making it easier for the enzymes to penetrate into the pre-treated wood material. The enzymatic treatment was then run at optimum standard conditions. The EU project - Ecotarget 2004-2008 (www.ecotarget.com) have studied different types of enzymes that could be used for pre-treatment of wood chips in order to save energy during TMP processes. Based on these studies cellulose enzyme was recommended to be used at pre-treatment experiment performed by the Vaermeforsk project. Due to the fact that the Ecotarget-project has also been run during 2008 with activities involving enzymes, the steering board of the Vaermeforsk project took the decision to co-ordinate the experiments from both of the projects. This co-operation increased the funds and also the number of experiments for both of the projects. The experimental results from this project showed that energy reductions at a given tensile index could be achieved if gently mechanical pre-treated wood chips were enzymatically treated. An intensive mechanical pre-treatment gave negative effects on both fibre length and tear index while the light scattering coefficient was promoted, probably due to the fibre shortening. Enzymatic modification of mechanically pre-treated chips showed a favourable modification of the fibres, even regarding the fibre shortening, if compared to mechanical pre-treated chips only. The effects of cellulases was however not as expected, why a high amount of cellulases was used. Other types of enzymes which could attack the primary wall of

  20. Possible consequences of climate change on the Swedish energy sector - impacts, vulnerability and adaptation; Taenkbara konsekvenser foer energisektorn av klimatfoeraendringar. Effekter, saarbarhet och anpassning

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Axelsson, Johan; Eriksson, Sara; Holmgren, Kristina; Hovsenius, Gunnar; Kjellstroem, Erik; Larsson, Per; Lundstroem, Love; Persson, Gunn

    2007-06-15

    The events of recent years clearly demonstrate the far-reaching consequences of extreme weather situations on the energy system, particularly in the case of severe damage to transmission lines in connection with violent storms. Many climate researchers predict an increase in extreme weather events. Against this background, in 2005 Elforsk initiated this project where the aim has been to examine how climate change can affect plant operation, production conditions and energy usage patterns, how undesirable consequences can be predicted and what long-term measures may be necessary. Another central objective has been to bring about a dialogue between climate researchers, energy consultants/engineers and buyers for the energy industry. The inclusion of both positive and negative consequences has been an important ambition of the project. One key aspect of the project has been to develop climate scenarios for the next 20-25 years that describe possible changes in climate variables with relevance for the energy system. Based on these and literature studies, contact with experts and internal assessments, an analysis has been made of the possible impacts on hydropower, wind power, biofuel supply, natural gas supply, the power transmission network and energy usage. The project findings, which have also been discussed at a workshop with representatives from the energy industry, did not reveal any acute need for adaptation aside from those measures already being taken, for example to make the transmission system less vulnerable to weather conditions. Furthermore, the results indicate increased production potential for both hydropower and wind power. The production potential for hydropower stations from the Dalaelven River northwards would appear to increase by 2-10%. Estimates for the southern watercourses are less certain, but the production potential may decrease. Since around 80% of the country's hydropower is produced in the northern watercourses, this indicates an

  1. Analysis of consequences of different incentives and tax-models for the Swedish energy system; Konsekvensanalyser av olika framtida styrmedels- och skattemodeller foer det svenska energisystemet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Six different incentives and tax scenarios were used to study the short range (2004) and long range (2010) effects on the Swedish energy system. The competitive effects for Biofuels, Natural gas, District heating and Electric space heating analyzed. Four of the six models come from governmental enquiries that have not yet been published, the other two are the actual situation year 2002 and year 2003. A defined set of suppositions of the fuel prices were used for all scenarios: Wood chips: 145 SEK/MWh, Biofuel pellets: 225 SEK/MWh, Natural gas: 160 SEK/MWh, Light/heavy fuel oil: 170/145 SEK/MWh, Electricity: 230 SEK/MWh (1 USD {approx} 8 SEK). In a sensitivity analysis, variations on the prices were analyzed, together with variations in the price of electricity certificates and CO2 emissions. For all scenarios, biofuels are dominating the district heating and cogeneration sectors. It is uncertain if, under the scenarios studied, any of the three branches prepared for expansion: Biofuels, Natural gas and District heating will have a dramatic growth. However, there seem to be room for a moderate growth of all three sectors.

  2. Energy- and carbondioxide intensities for 319 products and services - examples of analyses using a tool for analysis of environmental impacts of consumption; Energi- och koldioxidintensiteter foer 319 varor och tjaenster - exempel paa analyser med ett verktyg foer analys av miljoepaaverkan av konsumtion

    Energy Technology Data Exchange (ETDEWEB)

    Raety, Riitta; Carlsson-Kanyama, Annika

    2007-03-15

    This report presents calculations of energy use and carbondioxide emissions for different products and services. The calculations have been done with a computer program called EAP, that calculates the so called energy and carbon dioxide intensity for products and services. The calculations take into account the whole life cycle of the product including raw materials, production, transportation, sales, and recycling. These data can then be combined with expenditure surveys to investigate some of the environmental impacts of household consumption patterns.

  3. Operators tool to control fibre quality in the production of CTMP/TMP in an energy efficient way. New view shows a potential to reduce energy input; Operatoersverktyg foer styrning av fiberkvalitet vid tillverkning av CTMP/TMP paa ett energieffektivt saett. Ny syn visar paa potential foer energibesparing

    Energy Technology Data Exchange (ETDEWEB)

    Ferritsius, Olof; Johansson, Ola; Ferritsius, Rita

    2011-10-15

    The main objective of the project was to provide operators in the two factories the opportunity to more actively identify causes of variations in energy efficiency in the production of TMP and CTMP. To achieve this, it was done in collaboration with the Umeaa Inst. of Design at Umeaa Univ., new types of operator interfaces that clearly demonstrate when changes are about to occur in the process variables respectively quality variables. In addition, a method was developed to calculate the energy efficiency on-line with regard to quality.

  4. Consequences of the quota requirement for energy efficiency. Can a Swedish quota obligation systems give less energy usage?; Konsekvenser av kvotplikt foer energieffektivisering. Kan ett svenskt kvotpliktssystem ge mindre energianvaendning?

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkroth, Sara; Bladh, Mats; Holmberg, Rurik; Lock, Anna; Naderi, Ronak; Widerstroem, Glenn

    2012-11-01

    The Agency has on behalf of the government investigated what the consequences would be of the introduction of a compulsory quota system in Sweden. Under the proposed new EU directive on energy efficiency, all Member States should introduce a compulsory quota system, where energy companies actively initiate measures for energy efficiency among end users. In Sweden, a quota obligation system of this kind would mean energy efficiency of about 3 TWh per year, which can be difficult to achieve. The Swedish Energy Agency suggests that if a compulsory quota system is introduced, the quota obligation should be placed on the network companies. If not, there is a risk of complications in the Swedish and Nordic electricity market. The Energy Markets Inspectorate consider that the quota obligation can not be on the network companies because of their function as regulated monopoly. The Swedish Energy Agency suggests that efficiency measures can be implemented in all sectors, including transport.

  5. Towards higher transparency and efficiency in energy taxation. Energy taxation and environmental policy in a small open economy; Foer oekad transparens och effektivitet i energibeskattningen. Energibeskattning och miljoepolitik i en liten oeppen ekonomi

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Goeran (and others)

    2002-11-01

    The accrual of energy taxation has led to a complex structure of taxes and charges that are characterized by instability and low efficiency. Other reasons for analyzing the system is the pressure from our contractual responsibilities within the European Union and the raised ambitions in the environmental policy. The report leads to the conclusion that it would be motivated to separate fiscal energy taxation from measures to internalize environmental costs that the market does not register. This separation would make it possible to create a more transparent and rational energy taxation. The fiscal energy taxation ought to be a broad, value-based tax, equal for all energy sources. Value-based means, besides the energy content in kWh, also properties such as conversion and distribution costs. Two alternatives are suggested for the fiscal energy taxation: A separate consumption tax on energy. Such a tax would amount to 48% to produce the same income as the fiscal elements of today's energy taxes. Another alternative would be to include the fiscal energy tax in the value added tax. This would raise the standard VAT level to 30%, if the lower VAT levels are kept unchanged. With this model, consumption of energy would be treated as any other consumption. The environmental policy measures against greenhouse gases should be delt with through a system with international trade with emission quotas for such gases. Measures against other external effects from energy use are not suggested in this report, except for the opinion that economic incentives are preferable to regulations. The initial allocation of quotas ought to be done through an auction, since this method would give lower national costs than the alternatives. The system should cover all greenhouse gases and (almost) all sources which indicates that an upstream solution would be best with low administrative costs. A safety vent should be considered, so that extreme costs for CO{sub 2}-emissions are avoided, if e

  6. Decision support system on line to minimize the NO{sub x} emission. Results from Oerebro Energi; Beslutsstoed on line foer minimering av NO{sub x}. Resultat fraan Oerebro Energi

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, B G; Liao, B; Sieurin, J [EuroSim AB, Nykoeping (Sweden)

    1996-05-01

    A Decision Support System to reduce NO{sub x} emission from combustion processes with SNCR system have been developed and tested in full scale at Oerebro Energy. The boiler is a 165 MWh{sub th} CFB and have been fired with a mixture of biomass, peat and coal. The results proves that the EuroSim method works to calculate the derivative included in the Decision Support System. The Decision Support System is a tool for the operator of the plant, he will be informed of the advantage of making an increase or decrease of the ammonia flow or excess air. The trend curves that are presented to the operator includes information about the economic value to make an adjustment of the ammonia flow. The derivative dNO{sub x}/dO{sub 2} shows the advantage of making a reduction in the excess air level, concerning the fee for NO{sub x}. In this case it is important to take into consideration the risk for understoichiometric combustion and corrosion. The results from the full scale test in the Oerebro Plant shows that during some time periods it is economical to shut off the ammonia flow. The derivative dNO{sub x}/dAF is under the profitability limit. This indicate that the cost for the ammonia is higher than the fee for the NO{sub x} emission. If the ammonia flow is added in excess, the emission of ammonia and N{sub 2}O will increase. During other time periods the Decision Support System shows that it is profitable to increase the ammonia flow, the derivative is lower than -0,2. The derivative dNO{sub x}/dO{sub 2} is normally between 10 and 20 (ppm/%). This indicate that it is a great potential to reduce the NO{sub x} fee by decreasing the excess air level in the boiler. 3 refs, 23 figs

  7. Potential utilization of biomass in production of electricity, heat and transportation fuels including energy combines - Regional analyses and examples; Potentiell avsaettning av biomassa foer produktion av el, vaerme och drivmedel inklusive energikombinat - Regionala analyser och raekneexempel

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Karin; Boerjesson, Paal

    2008-01-15

    The objective of this study is to analyse how the use of biomass may increase in the next 10-20 years in production of heat, electricity and transportation fuels in Sweden. In these analyses, the biomass is assumed to be used in a resource and cost efficient way. This means for example that the demand for heat determines the potential use of biomass in co-generation of heat and electricity and in energy combines, and that the markets for by-products determine the use of biomass in production of certain transportation fuels. The economic conditions are not analysed in this study. In the heat and electricity production sector, we make regional analyses of the potential use of biomass in production of small-scale heat, district heat, process heat in the forest industry and electricity produced in co-generation with heat in the district heating systems and forest industry. These analyses show that the use of biomass in heat and electricity production could increase from 87 TWh (the use in 2004/2005, excluding small-scale heat production with firewood) to between 113 TWh and 134 TWh, depending on the future expansion of the district heating systems. Geographically, the Stockholm province accounts for a large part of the potential increase owing to the great opportunities for increasing the use of biomass in production of district heat and CHP in this region. In the sector of transportation fuels we applied a partly different approach since we consider the market for biomass-based transportation fuels to be 'unconstrained' within the next 10-20 years. Factors that constrain the production of these fuels are instead the availability of biomass feedstock and the local conditions required for achieving effective production systems. Among the first generation biofuels this report focuses on RME and ethanol from cereals. We estimate that the domestic production of RME and ethanol could amount to up to 1.4 TWh/y and 0.7-3.8 TWh/y, respectively, where the higher figure

  8. Steam slaking of lime - kinetics and technology. New energy effective lime slaking technology in kraft pulping; Aangslaeckning av kalk - kinetik och teknik. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2008-06-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional lime burning and slaking methods are that heat recovery is bad and heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant, and to recover heat at higher temperatures. The forecasted method means that lime is slaked with water vapour, for example combined with an indirect heated lime mud drier and a lime kiln. This project is a follow-up to pilot tests performed in a specific machine equipment at year 2006. The target group is pulp and paper industry using the kraft process. The owner of this new project is Carnot AB and the project is performed inside the Vaermeforsk Program for Pulp and Paper Industry 2006-2008. Partners and advisers in project group have been KTH Energy Processes, CTH Energy and Environment, LTH Chemical Technology, SMA Mineral AB, and reference group from STORA Enso Skoghall, Sodra Cell, M-Real Husum and SCA Packaging Piteaa. The task in this stage has included market investigations and laboratory tests. Contacts have been made with suppliers, preliminary dimensioning of process equipment and budget offers are received. Economic calculations have been made out of the offers. The laboratory tests are done as an examination paper at KTH Energiprocesser on the reactivity of burned lime from kraft lime kiln when it is slaked with water vapour instead of green liquor. The vapour intended to be used is at atmospheric pressure or even down to 0,2 atm. Complementary addition to these laboratory

  9. Calculation methodology for economic comparison between different land uses. With focus on comparisons between energy crops and traditional crops; Kalkylmetodik foer loensamhetsjaemfoerelser mellan olika markanvaendning. Med fokus paa jaemfoerelser mellan energigroedor och traditionella groedor

    Energy Technology Data Exchange (ETDEWEB)

    Rosenqvist, Haakan

    2010-02-15

    There are two main objectives to this report. The first is to describe a calculation method for both short- and long-term analysis of crops, as well as present the basis and reasoning around it. Another objective is to create an approach that lay-people can use to compare energy crops with traditional crops in a sufficiently straight-forward and believable manner. The report describes, discusses and develops the technical aspects to the calculation questions around the analysis of crops that are grown only on small area of land today, but have the potential to be grown on much larger areas in the future. The variable costing calculation approach is used in agriculture as decision-support for what should be produced. The present variable costing calculation approach has been reworked and redeveloped in order to be more applicable as a decision-support tool. This includes its use to decide which crop should be grown in both short- and long-term perspectives, as well as for perennial energy crops. A number of items that impact growing economy and how they can be interpreted in the growing calculations are discussed. Some of the examples are: Fertilization effects; Sales commissions/product prices; Storage/reestablishment; Fertilization of P and K; Crop insurance; Labor costs; Machine costs; Timeliness costs; New production chains and unutilized resources; Interest rates; Land costs; Over overhead costs; and Costs which not are annual. The main objective of this report is a methodological question and not to show the absolute profitability for each particular land use alternative. But even though the calculations have been improved for different land uses, there is material that that can even be used for profitability analyses. This has been performed to a smaller degree in this report. The profitability of Salix growing has been studied for a variety of different conditions. For part of the studies have used the entire growing period of 22 years, part with

  10. Policy instruments for offshore wind power; Styrmedel foer havsbaserad vindkraft

    Energy Technology Data Exchange (ETDEWEB)

    Soederholm, Patrik (Luleaa Technical Univ., Luleaa (Sweden))

    2009-10-15

    The future economic potential for offshore wind power is considered to be very good, and there is a strong interest in European wind power industry to improve the technology and generate additional experience. To enable such technology and a market introduction of offshore wind power it is believed that a supplementary or an alternative support for the offshore wind energy is required. This report aims to analyze conditions of different financial instruments to effectively support the rollout of offshore wind power in Sweden. Our mandate does not include an analysis whether any funding is economically justified or not, but a discussion about the objectives of such instruments is necessary for the second stage in order to discuss the instrument characteristics and design. The report takes up a number of different arguments in order to target a specific support for any single technology. An important message from this part of the analysis is that the strongest argument that can be used to extend a special generous support for offshore wind power is that its socio-economic costs may be lower, in the long run, than those which currently apply to established power production lines (e.g. on-shore wind). Any funding should be considered primarily as a means of political action, i.e. a measure not to meet today's short-term goals (eg quota requirement of certificate system) but to cut costs in order to reach the future (long term) goals. The offshore wind energy can be a very interesting candidate for such support, not least because of the favorable wind conditions that exist at sea. For these cost reductions to be realized, it is important to establish niche markets for the turbines and construction work that will be necessary. Such a technology policy presupposes a real development and not solely R and D and D projects. The report presents the results of previous research that supports this assumption, but it makes no attempt to assess whether the relevant effects

  11. Changed market conditions for biogas production; Foeraendrade marknadsvillkor foer biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Colnerud Granstroem, Sigrid; Gaaverud, Henrik; Glimhall, Alexandra

    2010-10-15

    longer term, it is not obvious that such a change would be beneficial for biogas as such a change could have long term adverse effects on the competitiveness of natural gas against other energy sources. The Energy Market Inspectorate has decided, therefore, not as desirable for the network owner to have responsibility for treatment or network connection. EI therefore considers that it is reasonable that the responsibility for propane spiking is imposed on the network operators. Network owner may then also able to refrain from propane spiking of the biogas and instead lower the heating value of the Danish natural gas - an attractive alternative if natural gas imports from other countries would be under consideration

  12. Microbiologic handbook for biogas plants; Mikrobiologisk handbok foer biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Aasa; Schnuerer, Anna

    2009-05-15

    There is today great interest in the biogas process. The reason for interest is that this process offers an opportunity to stabilize and reduce various types of organic waste, while also generating clean renewable energy in the form of biogas. Purified biogas is a good alternative to gasoline and diesel as motor fuel and can also be used for heating and electricity production. Behind efficient biogas production lies a complex microbiological process. For biogas to be formed many different species of microorganisms have to be active. A disturbance of this teamwork leads to a reduction in biogas production or in the worst case that the process stops. In order to operate a biogas process in an efficient manner, it is necessary to have knowledge of the underlying microbiology and how microorganisms function. Today Swedish biogas plants have personnel with great technical knowledge, while the biological knowledge often is more limited. It has been difficult to find appropriate Swedish language literature in the field. This handbook aims to increase the microbiological expertise of staff at the biogas plants and thus to facilitate the stable operation and optimization of gas production

  13. Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)

    2011-08-15

    This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.

  14. Solutions for future pellet burning technologies - Pellet systems with active control with combined CO/O2 sensors - Pellet system with energy measuring and monitoring; Loesningar foer framtidens pelletsteknik - Pelletssystem med aktiv styrning med CO/O2-sensorer - Pelletssystem med energimaetning och fjaerroevervakning

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Ryde, Daniel; Roennbaeck, Marie

    2011-07-01

    To meet the consumer demands and the upcoming environmental regulations for the future Swedish heating system, development and improvement of the existing methods for combustion of fuel pellets are urged. In this study, two potential concepts - to be considered as important for the continued state-of-the-art improvement - for monitoring of the combustion process, have been demonstrated and evaluated. Within the project, SP Technical Research Institute of Sweden has, in co-operation with SenSiC, tested a new type of combined CO/O2 sensor. The sensor has been adapted to real combustion environment in a Jan Fire furnace, to which its control capacity has been verified. Moreover, a system for measuring the use of energy, EnergySaver, has, in co-operation with Effecta, been tested in a field study at the premises of a fuel pellet consumer. The SenSiC combined CO/O2 sensor has during the study progressively been developed and the resulting conclusion states that the product version FEI300-2 now is ready for further tests and market introduction. The trials show that the sensor reacts to an increase in emission levels, where after it manages to control the combustion process back to optimal level. The field study of the Effecta Energy Saver system shows that it, to a large part, is ready for commercial introduction. According to the fuel pellet consumer, the Effecta system increases the interest/awareness of energy saving.

  15. Methodology - evaluation of strategies -and the system for taking care of spent nuclear fuel; Metodval - utvaerdering av strategier och system foer att ta hand om anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    This report deals with the question of how the Swedish spent nuclear fuel is to be disposed of. What are the requirements? What are the alternatives? In the main chapter of the report, an evaluation is made of the KBS-3 method compared with other strategies and systems for final disposal of spent nuclear fuel. An appendix to the report presents in general terms how the KBS-3 method has developed from the end of the 1970s up to today. The report is one of a number of supporting documents for SKB's applications for construction and operation of the final repository for spent nuclear fuel. In parallel with and as a basis for the present report, SKB has prepared the reports 'Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle' ('Principles, strategies and systems for final disposal of spent nuclear fuel') /Grundfelt 2010a/, 'Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutlig foervaring av anvaent kaernbraensle' ('Comparison between the KBS-3 method and deposition in deep boreholes for final disposal of spent nuclear fuel') /Grundfelt 2010b/ and 'Utvecklingen av KBS-3-metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete' ('Development of the KBS-3 method. Review of research programmes, safety assessments, regulatory reviews and SKB's international research cooperation') /SKB 2010a/. The reports are in Swedish, but contain summaries in English. The first report is an update of the comprehensive account of alternative methods presented by SKB in 2000. The second report presents a comparison between the KBS-3 method and the Deep Boreholes concept, plus a status report on research and development in the area of Deep Boreholes. The last report describes how the KBS-3 method has been developed from the end of the 1970s up to today. It further describes how the

  16. Program description for the program Demonstration program for electric vehicles 2011-2015; Programbeskrivning foer programmet Demonstrationsprogram foer elfordon 2011-2015

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    The program's efforts aim at, firstly, from a user perspective identify and possibly eliminate barriers for large-scale introduction of electric vehicles on the Swedish market. Through various research activities based in the real environment experience may be drawn from both vehicle use and different types of behavior. Infrastructure tests on a sufficient scale give the combined effect of real-life test environments for the combination of vehicles and charging environments as well as a base for experiences of softer issues around electric vehicles. Precisely these behavioral experiences are difficult to reach via the related but more technically focused programs such as, FFI (Vehicle strategic research and innovation) and Energy efficient road vehicles. Several systems for electrification of vehicles exist today, and further initiatives for solutions are on the way. It is therefore very important to examine which systems give the highest total energy efficiency. It is also relevant for these different systems in a real environment to explore the potentials and difficulties that may arise in larger implementations

  17. Preconditions for the development of land-based infrastructure for liquefied natural gas (LNG / LBG); Foerutsaettningar foer utbyggnad av landbaserad infrastruktur foer flytande gas (LNG/LBG)

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, Maria; Paradis, Hanna; Haraldsson, Kristina; Beijer, Ronja; Stensson, Peter (AaF Industry AB(Sweden))

    2011-06-15

    The conversion potential to replace oil in the energy intensive industries and diesel in heavy transport is estimated in the study to 6.8 TWh and 10 TWh per year, respectively. Several alternative fuels compete for this conversion potential. What fuels will take market share depends on several factors such as price, availability of fuel, availability of process technology and vehicles, technology development and possible future technological advances. For liquid methane to compete a new infrastructure is required that in a cost effective manner makes it possible to distribute the liquid methane to the regions where the need is the greatest. With today's distribution system, including truck delivery from import terminals in Nynaeshamn and Fredrikstad, virtually the entire southern Sweden is within reach of LNG deliveries. The study points out three nodes, Gaevle, Sundsvall and Luleaa, which is suitable for distribution of liquid methane to the central and northern Sweden. The three hubs are suitable for freight transfer to trucks as well as rail and shipping. A strategic nationwide network of refueling stations is also proposed, with a total of 18 new stations, in addition to the filling stations in southern and central Sweden that are already planned or in operation. Both the availability and use of liquid methane in Sweden today is limited. Liquid natural gas, LNG (liquefied natural gas), is primarily used as a backup to biogas plants, in a few industries and as supply for a few filling stations for compressed gas. The availability of LNG and also liquid biogas (LBG liquefied biogas), will increase in coming years. In 2011, two new LNG import terminals are put into operation in Nynaeshamn and Fredrikstad in Norway and two additional import terminals are planned in Gothenburg and Lysekil. Furthermore, two production plants for liquid biogas production have started, and four additional plants are planned, which together will produce around 0.5 TWh LBG annually

  18. Conditions for new biofuel raw materials. Systems for small scale briquetting and pelletizing; Foerutsaettningar foer nya biobraensleraavaror. System foer smaaskalig brikettering och pelletering

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Holmgren, Kristina (The Swedish Environmental Research Institute Ltd., Stockholm (Sweden)); Rosenqvist, Haakan; Boerjesson, Paal (Environmental and Energy Systems Studies, Lund Inst. of Technology, Lund (Sweden))

    2009-01-15

    The increasing demand for biomass has driven exploitation of the most easily available and cheapest biomass resources such as sawmill waste and logging residues. More knowledge is needed about exploitation and production of potential new biomass resources, currently not used for energy production (or only to a very small extent), in order to meet the future demands from various biomass users. The project aimed to examine the conditions for use of 'new' biomass materials for heat production from technical, economic and other perspectives (price trends, attitudes etc.). More specifically, the study looked at which biomass raw materials have the best characteristics for processing into briquettes and pellets in small-scale production plants (1 000 - 10 000 tonnes fuel produced per year) situated close to the source of the raw material. The study includes a comprehensive analysis of the appropriateness of the different raw materials and a case study including cost estimates for the entire production chain for production of briquettes from reed canary grass on a chosen farm (Laattra gaard). The raw materials judged to have potential to supplement the current biomass range for heat production are willow (and to a certain extent other fast-growing hardwoods), straw and reed canary grass. In the future, other perennial grasses may be of interest. Other forestry products that may help to meet in creasing demand include logging residues, stumps and wood from thinning and precommercial thinning. The study shows that the prerequisites for processing these raw materials into briquettes and pellets in small-scale production plants are relatively good from several aspects (technology, economics, market) but are limited by the types of end user that can use that form of biomass. The study concluded that straw has a low production cost and good prerequisites as a raw material for production of fuel briquettes, fuel pellets and horse bedding pellets. However, use is

  19. Guidelines for water and steam adapted to Swedish energy plants; Riktvaerden foer vatten och aanga anpassade till svenska energianlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Mats [Hellman Vatten AB, Haegersten (Sweden)

    2006-02-15

    The project summons a revision of the Swedish Cycle Chemistry Guidelines with the purpose to create guidelines that are more explicit and thereby easier to adapt to in daily operations. The objective in general has not been to tighten the limiting values; some are stricter but some others are less strict. The boilers of today are usually fed with demineralised water as make-up water which has been reflected in the guidelines. In this project consideration has been taken upon the fact that many boilers, mostly industrial, have been in operation for many years according to old guidelines, without problems. In these cases the boilers may very well continue to operate without any costly reinvestments due to the new guidelines. The most important revisions in the guidelines are: Action levels have been introduced for the core parameters in the water-steam cycle. With action levels the operators will have some guidance to correct deviations in the cycle chemistry. The action levels are progressive in the sense that the more serious deviation from the guidelines, the shorter time to correct the problem. Guidelines for boilers up to 6.0 MPa operating on softened make-up water have been adjusted slightly and introduced with action levels. New guidelines for boilers with demineralised make-up water have been compiled. Within the project group there is a consensus that demineralised make-up water is preferable even for low pressure boilers. Varying chemistry regimes are used in the industry today. This report gives guidelines for the three dominating in Sweden; All Volatile Treatment (AVT), Caustic Treatment and Phosphate Treatment. Cation conductivity is a core parameter for supervision of steam quality for turbine operation, and in all international guidelines cation conductivity is included. However, the cation conductivity can rise above limits if organic dosing agents are used. This may be accepted as long as the pH-value is within the specifications and it can be shown that the high cation conductivity is not caused by excessive levels of aggressive salts.

  20. Controlling of processes for producing energy carriers by means of biotechnique. Reglering av processer foer att producera energibaerare med bioteknik

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F

    1987-01-01

    The most suitable parameter to reducing production cost is controlling of sugar content when converting sulfite lye or cellulose hydrolysate to ethanol. By keeping the sugar content low in the end product the yield and productivity are improved. A sensor for ethanol in the yeast tank has been developed and the continous analysis of glucose has been performed by means of an analyser for enzymes.

  1. Production conditions of bioenergy in Swedish agriculture; Produktionsfoerutsaettningar foer biobraenslen inom svenskt jordbruk

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2007-05-15

    The overall aim of this report is to analyse and describe the production conditions of bioenergy in Swedish agriculture and how these conditions can vary due to different factors. The conclusion is that the potential for producing bioenergy in Swedish agriculture will vary significantly depending on which energy crops are cultivated, which type of agricultural land is utilised and the geographical location of the production. Furthermore, different crop residues and other by-products from agriculture, utilised for energy purposes, will affect the bioenergy potential. To which extent this physical/biological potential will be utilised in the future depends mainly on economic conditions and financial considerations. These aspects are not included in this study. The report starts with a description of current crop production in Sweden, expressed in energy terms, the energy needed for this production and the regional variation in crop yields. The local variations in cultivation conditions are also analysed, as well as variations over the area of a single farm. Another aspect discussed is the production conditions of energy crops on previous farm land not currently utilised. The report includes an analysis of the potential supply of crop residues and other by-products for energy purposes, such as straw, tops and leaves of sugar beets, manure etc, as well as the regional variation of these residues and by-products. A similar analysis is made of the regional production conditions and potential biomass yields of traditional crops and new energy crops. These analyses also include energy balance calculations showing the energy input needed for different production systems in relation to the harvested biomass yield, and the potential for increased biomass yields in the future. Based on the findings of these various analyses, calculations are made showing some examples of how much bioenergy Swedish agriculture can deliver, depending on how much agricultural land is utilised for

  2. Practical implementation of joint projects for offshore wind; Praktiskt genomfoerande av gemensamma projekt foer havsbaserad vindkraft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    Cooperation mechanisms are part of the renewable s directive and aims to member countries to cooperate on renewable energy to meet their national targets a cost effective way. The Energy Agency has in previous assignments analyzed the possibilities and limitations of cooperation mechanisms and other countries' interest in the cooperation mechanisms. In the Appropriation Directions for 2013, the Energy Agency has been asked to contribute to the continued analysis and practical preparations for a possible cooperation with other member countries. The assignment covers several different types of cooperation. This report represents the Agency's accounting of the part of the commission on cooperation through joint projects. This part include, in consultation with the industry to develop a proposal for the practical use for the implementation of possible joint projects for offshore wind power. The mission aims to create greater clarity and facilitate the possible implementation of joint projects.

  3. Policy instruments for development of wind power in Sweden; Styrmedel foer vindkraftens utveckling i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Aastrand, Kerstin; Neij, Lena

    2003-07-01

    It is often believed that energy policy and policy instruments can play a significant role in the transition towards sustainable energy by stimulating and accelerating the development and deployment of new energy technologies. However, despite the known need for, and benefits of, new energy technologies their market introduction and expansion is often slow. Wind power has been on the political agenda since the 1970s in several European countries as well as in other countries throughout the world. However, the technology and market development of wind power has been very different in these countries. Despite three decades of policy intervention the installed capacity in Sweden was only 265 MW in 2000, compared with 6,107 MW in Germany, 2,836 MW in Spain and 2,341 MW in Denmark. This report analyses the effects of policy instruments on wind power development in Sweden and identifies possible reasons why wind power has not been installed to a greater extent. The analysis is based on an empirical example of a socio technological system-based approach to evaluation of technology and market development for new energy technologies; i.e. an approach focused on the technological system including the actors, institutions and organizations that build, drive and utilise it and the economic and legal framework that regulates it. The aim is to assess the impact on technology and market development and to discuss the relatively late and slow wind power development in Sweden. The report also examines the achievement of governmental energy policy goals. Using the socio-technological systems approach we analyse Swedish policy programmes and wind power development between 1975 and 2000. The political and economic framework is identified. The discussion of the political and economic frameworks is limited to public policy goals and policy instruments. The policy focus is set to policy instruments aimed for technology and market development of wind power, such as research and

  4. Analysis of markets for biofuels - Theme: Vehicle gas market; Analys av marknaderna foer biodrivmedel - Tema: Fordonsgasmarknaden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In 2011 the Energy Agency was given an annual mission, which involved analyzing the current and future markets for ethanol and bio diesel. The mission resulted in a report that did a thorough analysis of price and market mechanisms in the Swedish and international market. This year's report aims to provide a situation analysis of the markets for ethanol and bio diesel, both first and second generation, with additional focus on certain market issues. This time, the Agency has also been asked to consider the market for vehicle gas, something that was not part of the original mandate from 2011. Regarding ethanol and bio diesel so have indentations made primarily on European protection duties.

  5. Electric vehicle batteries. Development status for the promising candidates; Elbilsbatterier. Utvecklingsstatus foer de fraemsta kandidaterna

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Johansson, Arne [Catella Generics AB, Jaerfaella (Sweden)

    2000-04-01

    One driver for the EV and HEV programme of KFB is to study the effects of a large scale introduction of electric vehicles in the future. Catella Generics was contracted to investigate and report on the development status for EV batteries and the success potential for the different candidates, their development obstacles and alternative usage and on the links between different players. The batteries studied in greater detail have been evaluated according to special criteria like performance, cost, ruggedness, resource efficiency, safety and environmental impact and how that will influence their likely success. Models for the evaluation of EV batteries have been developed by the car manufacturers and authorities. We have based our investigation on the criteria established by USABC and the modifications made by PNGV for the energy storage in hybrid electric vehicles. Some basic conclusions reported as a result of this investigation are listed below: Lead-acid may have a role as energy storage in HEVs. Ni/Cd batteries are attractive from a technical standpoint, but questioned based on the environmental concern for cadmium. Ni/MH batteries are attracting a great attention in the medium term. Na/NiCl{sub 2} batteries have been successful in the German demonstration programme. Lithium batteries have a great potential in the long term. Metal/air batteries have been operated without problems, however there need for a special infrastructure is a major draw-back. Fuel cells and ultra capacitors are new alternative power sources for propulsion of EVs, however these are not included in this report.

  6. Pretreatment of different waste streams for improvement in biogas production; Foerbehandlingsteknikers betydelse foer oekat biogasutbyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarvari Horvath, Ilona (Hoegskolan i Boraas (Sweden)); del Pilar Castillo, Maria (JTI (Sweden)); Loren, Anders; Brive, Lena; Ekendahl, Susanne; Nordman, Roger (SP, Boraas (Sweden)); Kanerot, Mija (Boraas Energi och Miljoe AB (Sweden))

    2010-07-01

    Biological breakdown of organic municipal and industrial waste to biogas is already in use today. The technology is of outmost importance to attain the environmental goals that our society has set regarding to sustainable development. Of decisive economic importance is the ability to obtain an increased amount of biogas from the same amount of substrate. Alternative resources for biogas production are at the same time of great interest in order to enable a large expansion of biogas production. The goal of applying a suitable pre-treatment step before anaerobic digestion is to open up the molecular structure of inaccessible biopolymers in order to facilitate access to the carbon for microorganisms involved in biological breakdown and fermentation to biogas. Our study shows that introducing a pretreatment step opens new perspectives for biogas production. Treatment of paper residuals by steam explosion increased methane production up to 400 Nm3/ton dry matter, to a double amount of methane yield compared to that of untreated paper. A novel method for pretreatment with an environment-friendly solvent N-methylmorpholine-N-oxide (NMMO) was also tested on lignocellulose-rich waste fractions from forest and agricultural. The NMMO-treatment increased the methane yields of spruce chips and triticale straw by 25 times (250 Nm3/ton dry matter), and by 6 times (200 Nm3/ton dry matter), respectively, compared to that of the untreated materials. Keratin-rich feather waste yielded around 200 Nm3 methane/ton dry matter, which could be increased to 450 Nm3/ton after enzymatic treatment and to 360 Nm3/ton after either chemical treatment with lime, or after biological treatment with a recombinant bacterial strain of Bacillus megaterium. However, the gain in increased amount of methane after a pretreatment step should be weighted against a possible increase in energy usage generated by the pretreatment. We have therefore performed a case study in which the energy balance for a biogas

  7. Survey of biological processes for odor reduction; Kartlaeggning och studie av biologiska processer foer luktreduktion

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, Karine; Rosell, Lars [SP Technical Research Inst. of Sweden, Boraas (Sweden); Hall, Gunnar [SIK Swedish Inst. for Food and Biotechnology, Gothenburg (Sweden)

    2009-09-15

    This project aims to characterize chemical and subsequently odor emissions from a digester plant located closed to Boraas in Sweden (Boraas Energi och Miljoe AB). The digestion produces mainly 2 by-products, biogas and high quality organic biofertilizer. Biogas is a renewable source of electrical and heat energy and subsequently digester have a promising future. Unfortunately, release of unpleasant odours is one of the problems that may limit development of the technique as odours strongly influence the level of acceptance of the neighbours. The number of complaints due to odours depends mostly, upon the degree of odour release, the weather condition and plant environment (which influence the risks for spreading out), and the tolerance of the neighbours. These parameters are strongly variable. Many processes inside the plant distributed on a large surface may contribute to odour release. Chemical emissions were studied, in this project, by extensive sampling inside the plant. Results were then evaluated regarding risk for odour releases. The goal was to suggest controls and routines to limit releases. The conditions leading to the higher risks for odour emissions were studied by performing sampling at different periods of the year and subsequently different weather conditions. At first, places for measurement were chosen together with personal of the plant. Three zones are considered to mainly contribute to the odour emissions: the landfill region, the cisterns region and the leaching lake region. Totally 13 places were studied with regard to odour and chemical emissions under 2008-2009 at different weather conditions. Some results from a previous project (2007) are also presented here. Results show that the spreading out of can be maintained to an acceptable level as long as the plant is functioning without disturbances. The early stages of the treatment of waste should be confined in locals with closed doors to avoid spreading out of odours. Through controlled

  8. Systems for apartment buildings heat pumps. Final report; System foer fastighetsvaermepumpar. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Aakervall, Daniel (WSP Environmental, Stockholm (Sweden)); Rogstam, Joergen; Grotherus, Maarten (Sveriges Energi- och Kylcentrum, Katrineholm (Sweden))

    2009-05-15

    A fast growing segment of the heat pump business is the apartment building applications. Historically the experience base related to such installations is limited. However, this application is more complex than the much more widely spread domestic applications. The core idea of the project was to generate and collect information to avoid mistakes and to encourage the heat pump technology. By interviewing the 'market' and compiling the information good recommendations has been achieved. It is of great importance to convey the best available recommendations to the installers on the market to avoid pit holes and highlight the opportunities for installers and end consumers. A website has been design and built, www.sfvp.se, which contains useful tools for installers and potential system customers. A number of calculation tools to estimate heat requirement, cost of different heating systems, primary energy need, LCC, etc. are all available. The core of the site is the database containing heat pump installations with related data of importance. The data available is such key data as performance figures, cost of installation, etc. Today 104 system installations are collected in the database and these are marked in a colour coding to indicate the quality of the input data. Installations verified with measurement are given higher significance. It has been an unexpected challenge to find documented systems, so one of the conclusions of the project is that there is a great need for further measurement on the field. More information should be directed to the customers to request such equipment when systems are installed. The database enables statistical analysis of the key figures and it can be seen that the average seasonal COP is 3.2 and there are small differences between exhaust air and ground source heat pumps. It should be emphasised that the number of installations do not give statistical confidence for all kinds of analysis yet. Field measurements in apartment

  9. Regulations for storage and transport of biofuels; Regler foer foervaring och transport av biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Elmefors, Elin; Karlsson, Emelie

    2012-07-01

    The trend towards a fossil-free agriculture is of great importance. Partly due to the fossil fuel energy is finite but also because of the importance of agriculture to reduce the environmental impact of food production. There are also an economic aspect. It is likely that in the near future will be economically burdensome being limited to fossil fuels. Therefore, it is important that agriculture is well prepared to move towards alternative biofuels. The introduction of alternative fuels in agriculture as a substitute for diesel has proven more difficult than in other industrial sectors, depending on both the specific technical conditions and a regulatory framework that may not have been written with agriculture as target. LRF, Farmers' Association, has instructed the JTI, Swedish Institute of Agricultural and Environmental Engineering, identifying which rules, laws and regulations that will affect farmers at the farm level that for their own use stores and manages one of the most likely future biofuels for agricultural tractors.

  10. Robust on-line monitoring of biogas processes; Robusta maettekniker on-line foer optimerad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aake; Hansson, Mikael; Kanerot, Mija; Krozer, Anatol; Loefving, Bjoern; Sahlin, Eskil

    2010-03-15

    Although demand for biomethane in Sweden is higher than ever, many Swedish codigestion plants are presently operated below their designed capacity. Efforts must be taken to increase the loading rate and guarantee stable operation and high availability of the plants. There are currently no commercial systems for on-line monitoring, and due to the characteristics of the material, including corrosion and tearing, robust applications have to be developed. The objective of this project was to identify and study different monitoring technologies with potential for on-line monitoring of both substrate mixtures and anaerobic digester content. Based on the prerequisites and demands at Boraas Energi och Miljoe AB's (BEMAB, the municipal energy and waste utility in the city of Boraas, Sweden) biogas plant, the extent of the problems, measurement variables and possible ways of managing these issues have been identified and prioritized. The substrate mixtures in question have a high viscosity and are inhomogeneous with variation in composition, which calls for further homogenization, dilution and filtration to achieve high precision in the necessary analyses. Studies of using different mixers and mills showed that the particle size (800 mum) needed for on-line COD measurement could not be achieved. The problem of homogenization can be avoided if indirect measurement methods are used. Laboratory tests with NIR (near-infra red spectroscopy) showed that VS can be predicted (R2=0,78) in the interval of 2-9% VS. Furthermore, impedance can give a measurement of soluble components. However, impedance is not sensitive enough to give a good measurement of total TS. Microwave technology was installed at the production plant and showed a faster response to changes in TS than the existing TS-sensor. However, due to technical problems, the evaluation only could be done during a limited period of ten days. BEMAB will continue the measurements and evaluation of the instrument. The

  11. Artificial neural networks for monitoring the gas turbine; Artificiella neuronnaet foer gasturbinoevervakning

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Magnus; Thern, Marcus [Inst. foer Energivetenskaper, Lunds Univ. (Sweden)

    2011-10-15

    Through available historical operational data from gas turbines, fast, accurate, easy to use and reliable models can be developed. These models can be used for monitoring of gas turbines and assist in the transition from today's time-based maintenance to condition based maintenance. For the end user this means that, because only operational data is needed, they can easily develop their own tools independent of the manufacturer. Traditionally these types of models are constructed with physical relations for e.g., mass, energy and momentum. To develop a model with physical relations is often laborious and requires classified information which the end user does not have access to. Research has shown that by producing models using operational data a very high model precision can be achieved. When implementing these models in a power plant computer system the gas turbine's performance can be monitored in real time. This can facilitate fault detection at an early stage, and if necessary, stop the gas turbine before major damage occurs. For the power plant owner, this means that the gas turbine reliability is increased since the need for maintenance is minimized and the downtime is reduced. It also means that a measure of the gas turbine's overall status is continuously available, with respect to e.g. degradation, which helps in the planning of service intervals. The tool used is called artificial neural networks (ANN), a collective name for a number of algorithms for information processing that attempts to mimic the nerve cell function. Just like real networks of neurons in a brain, these artificial neural networks have the ability to learn. In this case, neural networks are trained to mimic the behavior of gas turbines by introducing them to data from real gas turbines. After a neural network is trained it represents a very accurate model of the gas turbine that it is trained to emulate.

  12. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    improvement in components, system and external preconditions. In the future it might be more interesting to use turbine driven heat pumps instead of electric motors. The absorption process is not considered to be an alternative to replace present heat pumps, but there is a certain niche where heat source and driving energy, considering temperature levels, are more suitable for district heating. A technique that seems to be an alternative to the compression cycle is a combination of compression and absorption. Using the media pair water and ammonia might be an interesting solution and should be compared to the alternative using carbon dioxide. A further study is recommended on this subject.

  13. Technology watch of fuel cells for vehicles in 2012; Teknikbevakning av braensleceller foer fordon 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Hans

    2013-03-15

    Emission Vehicle Program, and Clean Fuels Outlet. The latter two are important for the fuel cell vehicle introduction. US Department of Energy delivered a final report covering activities with more than 180 fuel cell vehicles between 2005 and 2011. The vehicles made more than half a million trips and were refuelled more than 33,000 times. The project exceeded the expectations and basically all goals were met. Mercedes-Benz leases about 200 cars to selected users. BMW and Toyota have initiated collaboration covering fuel cell technologies, among others. Toyota has presented a new fuel cell stack, a new concept vehicle and stated a start of deliveries for 2015. The stack can now be placed under the driver's seat. Honda promises a new fuel cell vehicle 2015. Nissan has presented a new stack and a concept car using it. Collaboration with Daimler is discussed. All in all has the situation for fuel cell vehicles not changed very much since previous report. The time until deliveries of fuel cell vehicles shall take place in several thousand units is now only two years and if nothing happens soon on the refuelling infrastructure side it will be difficult both to find buyers of the vehicles and provide fuel to this large volume of vehicles.

  14. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  15. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  16. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  17. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  18. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  19. Energy

    International Nuclear Information System (INIS)

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  20. Energy

    OpenAIRE

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  1. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  2. Gasification for fuel production in large and small scale polygeneration plants; Foergasning foer braensleproduktion i stor- och smaaskaliga energikombinat

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, Jennie; Wennberg, Olle

    2010-09-15

    This report investigates the possibility of integrating biofuel production through gasification with an existing energy production system. Previous work within Vaermeforsk (report 904, 1012) has concluded that gasification for motor fuel production as a part of a polygeneration plant seems promising when looking at the energy efficiency. However, comparable data between different types of integration, energy plants and fuels was found to be needed in order to get a better understanding of how a gasifier would affect an energy system. The systems studied are the heat- and power production of a bigger city (Goeteborg) and a medium sized city (Eskilstuna), and a pulp mill (Soedra Cell Vaeroe). The latter already runs a commercial gasifier for burner gas production, where the gas is used in the lime kiln. The different types of polygeneration plants have been studied by setting up and evaluating mass- and energy balances for each system. The fuel products that are looked upon in this project are DME, methane, methanol and burner gas. The burner gas is used on site. The case studies have been evaluated based on energy efficiency for fuel production, electricity and district heating. The efficiency is foremost calculated for the higher heating value. In the case of the boiler integrated gasifier in Eskilstuna, the efficiencies have been calculated on the marginal fuel. We have also let the district heating remain unchanged

  3. District heating for increased biogas production. Technical and economical evaluation of district heating as heating source in biogas processes; Fjaerrvaerme foer utoekad biogasproduktion. Teknisk och ekonomisk utvaerdering av fjaerrvaerme foer uppvaermning av biogasprocesser

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Per (AaF-Consult AB, Stockholm (Sweden))

    2009-11-15

    This report presents a technical evaluation, the potential and an economical evaluation of the increased net biogas production by using district heating as energy supply for different types of biogas production units. The study presents generalized results for different plant sizes. The district heating is considered as replacement of the heat produced by burning biogas in a hot-water boiler. Hence more biogas could be available for upgrading to fuel-gas quality to be used in vehicles as a renewable fuel. The study is aimed at biogas producers, district heating and combined heat and power (CHP) companies. Biogas has a composition of mostly methane (about 65 %) and carbon dioxide (about 35 %) and small amounts of other gases e.g. sulphur dioxide (H{sub 2}S). Biogas up-grading is a process where the methane content is increased to about 97 % by removing most of the other gases in e.g. an absorption unit. The Swedish biogas is mainly produced in several sewage treatment plants and some co-digestion units but is also collected from dumps. Biogas is produced by anaerobic microorganisms at temperatures of about 36 and 55 deg C which correspond to the thermal optimum for mesophile and thermophile bacteria respectively. Co-digestion of animal material which e.g. is contained in collected organic household waste has to be pasteurized at 70 deg C for 1h according to EU-regulations. Such regulations may also be introduced to the sludge from municipal sewage treatment plants. Due to the fact that the process temperature is higher than the temperature of the substrate (sludge or organic waste material) as well as the outdoor temperature, both heating of the incoming substrate and compensation of heat losses are required. Traditionally most of the biogas has been burnt to generate the necessary heat for the process and premises at the plant. The excess gas has been burnt in a torch. In recent years the biogas produced in Sweden has found increased use as a renewable vehicle fuel

  4. Critical factors for profitable combined production of heat, power and biofuels; Kritiska faktorer foer loensam produktion i bioenergikombinat

    Energy Technology Data Exchange (ETDEWEB)

    Nohlgren, Ingrid; Gunnarsson, Emma; Lundqvist, Per; Stigander, Haakan; Widmark, Annika (AaF, Stockholm (Sweden))

    2012-02-15

    During the last 5-10 years, research and development efforts have been made in the field of polygeneration of heat and power with production of 'other green' products such as transport fuels or wood pellets. The driving force for heat and power producers is the potential of increased profitability through additional sales of heat. The driving force for wood pellet and some transport fuel producers is the potential of low cost process steam or heat. However, in the case of gasification based transport fuel production processes the situation is different. The process generates a surplus of heat, which can benefit from the proximity of a district heating net. In addition, some polygeneration combinations could provide other advantages such as more efficient raw material handling. Together with these driving forces, the EU renewable energy directive (which targets 10 % renewable energy use in the transport sector by 2020), shows that the market for production of renewable transport fuel is expanding. To refine Swedish biomass resources to more highly valuable products such as wood pellets or renewable transport fuels would maintain industry and employment opportunities within Sweden and at the same time fulfils the international and national climate targets. The overall aim with this project is to describe the factors which are crucial for the opportunity for profitable polygeneration of heat, power and wood pellets or renewable transport fuels and how these factors influence the location of such a plant within Sweden. The important factors can be categorized as: (1) Supply of raw material, (2) distribution of raw material and products, (3) Demand of products and (4) Integration between the different plants. In this project, only general aspects are described and should be seen as guidance for the industry (both energy and forest industry) which has an interest in polygeneration. The project gives an overview of different possibilities, opportunities and

  5. After Chernobyl. Consequences for energy policy, nuclear safety, radiation protection and environment protection. Efter Tjernobyl. Konsekvenser foer energipolitik, kaernsaekerhet, straalskydd och miljoeskydd

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The basic problems of the safety of nuclear power have been elucidated. The cause of the Chernobyl accident and its effects are discussed. The impact of this accident on the evaluation of Swedish nuclear safety is dealt with, and recommendations concerning increased safety when nuclear power accidents take place in other countries are presented. The environmental and economic consequences of early decommissioning of the Barsebaeck power plant are discussed as well as the general aspects of nuclear power phaseout in Sweden.

  6. Measuring and heat losses for district heating systems in detached house areas; Maet- och vaermefoerluster foer fjaerrvaermesystem i smaahusomraaden

    Energy Technology Data Exchange (ETDEWEB)

    Cederborg, Frederick; Nordgren, Ola [FVB Sverige ab, Vaesteraas (Sweden)

    2005-07-01

    Within 'low heat load' areas e.g. residential areas, with low energy consumption per individual customer, the resulting relationship between the heat loss and the energy sales is big. For these customers with low energy consumption, in particular during the summer season, concerns have been raised regarding the ability of the heat volume meters to register the true energy consumption. In order to determine the magnitude of the losses, the Swedish District Heating Association, has initiated a measuring project where measurements have been made in two separate residential areas with different system configurations and different temperature control programs. The measurements were performed from May 15, 2003 to September 23, 2004. The main objective for the project was to gather data and to analyse the magnitude of the total losses in the building systems. The relation between the heat losses and the measuring losses was also studied briefly. Two types of systems have been studied, on one hand a conventional district heating area with primary connected houses and on the other hand an area with secondary connected houses with PEX-pipes in Enkoeping. The heat and measuring losses at the area Munksundet in Enkoeping is 17 % at a 'load density' of 0,84. This value is somewhat lower than the accounted annual relative loss of 22-23 % stated in the report 'FVF 1997:11 Fjaerrvaerme till smaahus'. The results show that a secondary connected low temperature system with PEX-pipes is an interesting connection alternative for small houses. Also at the residential area Rotskaer in Skutskaer, the heat and measuring losses are lower than the accounted annual relative loss, about 24 % at a 'load density' of 0,49,which is to be compared with about 33 % annual relative loss according to the report 'FVF 1997:11'. Within this assignment there are difficulties to divide the measuring losses in short circuit flows and errors in the heat

  7. Environmental systems analysis for the beneficial use of ashes in constructions; Miljoesystemanalys foer nyttiggoerande av askor i anlaeggningsbyggande

    Energy Technology Data Exchange (ETDEWEB)

    Kaerrman, Erik; Olsson, Susanna; Magnusson, Ylva; Peterson, Anna [Ecoloop, Stockholm (Sweden)

    2006-02-15

    All building materials have an impact on the environment, conventional materials as well as recycled materials. But, since recycled materials are classified as waste, the use of them is more strongly restricted. The potential of saving natural materials and energy by the use of recycling materials are rarely considered. This report presents a method for environmental systems analysis considering the use of recycled materials in a wide perspective. Various scenarios for beneficial use or disposal of the residuals that occur in a region (province, county or municipality) are analysed. The method considers emissions to air and water as well as conservation of natural resources and energy. Two case studies have been carried out for the Uppsala County in Sweden. Case study 1 dealt with municipal solid waste incineration (MSWI) bottom ash, where scenarios for beneficial use of ashes in 1) drainage layers in covering of landfills and 2) road construction were compared. Also a third scenario was included as a reference where the MSWI bottom ash was landfilled. The result of case study 1 showed that the use of ashes in road construction was the most beneficial alternative in terms of conservation of natural resources and energy, and also in terms leakage of several metals. The leakage of Arsenic and Zink were however more favourable in scenario 1 and the leakage of copper was more favourable in scenario 3. The second alternative where the ashes were used in drainage layer did not save as much natural resources and caused more emissions of heavy metals to water compared to the road construction application. In case study 2 the beneficial use of fly ash from peat combustion was analysed, including 1) the use of peat ash as a construction material in small county roads, 2) the use of peat ash mixed with sewage sludge as a covering material on landfills. Also this case study included a reference scenario in which the peat ash, generated in Uppsala County, was landfilled. The

  8. Process and sensor diagnostic: Data reconciliation for a flue gas channel; Process- och sensordiagnostik: Dataaaterfoerening foer ett roekgastaag

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Christer; Dahlquist, Erik [Maelardalen Univ., Vaesteraas (Sweden). Dept. of Public Technology

    2003-10-01

    The project has shown that model-based data reconciliation can be used in heat and power plants, but it needs support of soft sensors. Generally power plants are not equipped with more sensors than required by control systems, environment and financial reports. Soft sensors are needed to compensate for lack of redundancy in mass-flow sensors. Redundancy makes it possible to isolate gross errors. The smallest error needed to be determined sets the requirement on the process model accuracy. Tools available today from this project are; classification of different process sections with redundancy analysis and gross error detection. Quantification of the errors with the mass balance model has not been successful and this part needs further development. Theoretical comparison of the three different methods presented resulted in favour of data reconciliation based on a mass balance model. The mass balance model has a structure based on physical reality. The searches for gross errors are transparent to the user. It can handle sensor failure. The statistical linear model is preferred for smaller process sections when transparency is not needed and focus is on fast, simple and cheap implementation. Data reconciliation based on steady-state energy balance has the same origin as the mass balance model. Data reconciliation based on energy balance is harder to compute and its sensors difficult to classify. The drawback is complexity, but the strength is that the large number of temperature sensors can be used in the data reconciliation. Large gross errors are detected and quantified for most process mass flows with acceptable accuracy. Performances for small errors are not as good. Performance of the data reconciliation is strongly dependent on precision in the process models. This conclusion is drawn from comparison with other studies that show good performance for laboratory simulations. There are still many parts to develop further as: Soft sensors, tests for identification

  9. Treatment of biofuel ashes for forest recycling; Behandling av aska fraan biobraenslen foer spridning paa skogsmark - etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, H.; Sjoeblom, R. [AaF-Energikonsult, Stockholm (Sweden)

    1997-03-01

    Logging residues are the easiest available fuel for an increased production of energy in Sweden from renewable sources. A consequence of their removal from the forest is that the cycle of mineral nutrients is broken. The purpose of recycling the ash after this fuel to forest land is to compensate for the removal and close again the nutrient cycle. Recycling nutrients and returning the inorganic components of the biomass removed from the forest should be performed in accordance with general principles of environmental protection, health considerations and the good house-keeping of natural resources. The activities should also be carried out in accordance with the needs of the forest and energy plant owners regarding good technology and economy. This implies that functional requirements originating from these principles and needs should be clearly structured and formulated and that such requirements should provide a basis for the continued development work as well as for the implementation of suitable, economical and efficient systems. Returning inorganic constituents implies that the principle of recirculation is followed as well as that nutrients are brought back which improves accretion in the forest. At the same time, the risk of damage to the forest can be assessed as insignificant. Furthermore the risks to human health are also assessed to be insignificant provided that pertinent precautions are taken to avoid dusting. In the present report, technical and economical aspects of importance for the selection of method as well as for the establishment of a system are described and discussed. The need for further development work is identified in the following areas: functional requirements - operational requirements, sampling, testing and quality assurance, granulation, curing processes and drying/sintering. 102 refs, 1 fig, 2 tabs

  10. Market prospects for SNG in Sweden and in Europe; Marknadsfoerutsaettningar foer SNG i Sverige och i Europa

    Energy Technology Data Exchange (ETDEWEB)

    Colmsjoe, Linda; Nilsson, Ronny (Grontmij AB (Sweden))

    2009-06-15

    Gas produced by gasification of biomass can be up-graded to so called SNG (Substitute Natural Gas) that can be jointly distributed in the natural gas grid. Sweden is in a favourable position to develop technology for production of SNG due to vast resources of suitable biofuels and crops. However, the possibilities to distribute SNG in Sweden are limited due to the fact that the natural gas grid is built out only in the Southern parts of the country. The Swedish natural gas grid is anyhow integrated to together with the European natural gas grid, which is essentially integrated over the national borders. A previous study reveals a lack of knowledge concerning means of control for promotion of SNG in other European countries and to what extent they can be used to stimulate the use of SNG and crossborder trade of SNG. Increased use of SNG, by utilisation of the existing infrastructure for natural gas is expected to significantly contribute to the EU targets for increased use of renewable energy, mitigation of greenhouse gases and improvement of supply of energy. The aim of this study is to analyse requirements for distribution of SNG, produced in Sweden, on the European market. The study comprises a comparison of means of control and promotion of renewable energy in other EU-countries influence on conditions for production of SNG in Sweden for use in transport, industry and the energy sector in Denmark, Germany, Netherlands and Great Britain as examples. Of special interest is to illustrate the possibilities to analyse the applicability of so called Green Gas, which is if SNG might be distributed in optional delivery points in the whole of the integrated European natural gas grid, independent of if such gas physically can reach the actual delivery points, as is the fact for Green Electricity. The comparison of the countries shows different conditions, both concerning the markets for gas and the ambitions of the different countries to development and utilisation of

  11. System and market study of bio-methane (SNG) from bio fuels; System- och marknadsstudie foer biometan (SNG) fraan biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Valleskog, Martin (CMV Konsult (Sweden)); Marbe, Aasa; Colmsjoe, Linda (Grontmij AB (Sweden))

    2008-07-01

    This study has examined whether the use of SNG produced from biofuels can constitute an alternative use for biofuel. Gasification technologies are studied: pressurized gasification with oxygen/steam, indirect gasification and hydrogen gasification. The objective of the project is to make a reasonable valuation of the production of SNG and through a market-study see if biofuel-based SNG can be an alternative to competing fuels. The report also discusses the supply and price of biofuels in Sweden. This use was 112 TWh in 2005 and assessed potential in year 2025 is 187 TWh. Biofuel prices show an upward trend and system of incentives affect the development of the biofuels market and price. The main incentives are electricity certificate system, energy and environmental taxes and emissions trading. Current energy and climate policies in Sweden and EU are expected to increase demand for biofuels and thus likely the prices. Increased volumes of waste tend to reduce pressure on the demand for biofuels generally. SNG is compared with natural gas and with other uses for biofuels and other competing fuels, depending on the application. The economic analysis has been conducted for three different cost levels in fuels and incentives, namely the year 2007, scenario in 2012 and scenario in 2020. The economics of SNG is evaluated for the three above-mentioned scenarios, both with respect to its cost of production, and in which market the SNG used (cogeneration, heating, industry and the automotive market). A sensitivity analysis has been conducted on the following parameters: fuel prices, electricity prices, the cost of emissions, taxes and investment. The results show that SNG is not a finished product available on the market today why additional support is required to make SNG competitive so that investment in production is stimulated. The production cost of SNG is between 380 - 410 SEK/MWh and necessary support is estimated to amount to 150 - 200 SEK/MWh on the basis of the

  12. Requirements for drilling and disposal in deep boreholes; Foerutsaettningar foer borrning av och deponering i djupa borrhaal

    Energy Technology Data Exchange (ETDEWEB)

    Oden, Anders [QTOB, Haesselby (Sweden)

    2013-09-15

    In this report experience from drilling at great depth in crystalline rock is compiled based on project descriptions, articles and personal contacts. Rock mechanical effects have been analyzed. The report also describes proposals made by SKB and other agencies regarding the disposal of and closure of deep boreholes. The combination of drilling deep with large diameter in crystalline rocks have mainly occurred in various research projects, such as in the German KTB project. Through these projects and the increased interest in recent years for geothermal energy , today's equipment is expected to be used to drill 5000 m deep holes , with a hole diameter of 445 mm , in crystalline rock. Such holes could be used for the disposal of spent nuclear fuel. With the deposition technique recently described by Sandia National Laboratories in USA, SKB estimates that it might be possible to implement the disposal to 5000 m depth. Considering the actual implementation, drilling and disposal, and the far-reaching requirements on nuclear safety and radiation protection, it is considered an important risk getting stuck with the capsule-string, or part of it, above deposition zone without being able to get it loose. In conclusion, even if the drilling and the deposit would succeed there remains to verify that the drill holes with the deposited canisters meet the initial requirements and is long-term safe.

  13. Alternative methods for evaluation of airtightness of the building envelope; Alternativa metoder foer utvaerdering av byggnadsskalets lufttaethet

    Energy Technology Data Exchange (ETDEWEB)

    Sikander, Eva; Wahlgren, Paula

    2008-07-01

    Airtightness plays an important role when constructing energy efficient, sustainable and healthy buildings. In order to obtain airtight buildings, the airtightness needs to be evaluated during the construction phase. This enables improvements of the airtightness in an easy and cost-efficient way. During the construction phase, it is difficult to quantify the airtightness. However, detecting and sealing air leakages are good measures to improve the airtightness of the building. Several methods to detect air leakages are presented. A methodology to search for air leakages in buildings during construction has been developed, together with contractors and experts, and the methodology has been used at two building sites. The quantifiable airtightness of a building is determined by measuring the airflow that enters or exits the building at a certain pressure difference over the building envelope. In some cases it is not possible to measure air tightness according to standard. Therefore, a number of alternative methods have been evaluated. These methods include: extrapolation of measured data to a range used in standard measurements, using a buildings ventilation system fans to create a pressure difference over the building envelope, measuring the airtightness of a smaller part of the building (apartment, fire compartment or component) and tracer gas measurements

  14. Combined bio and solar heating system. Handbook for system design; Kombinerade bio- och solvaermesystem. Handbok foer systemutformning

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas

    2008-11-15

    The purpose of this report is to compile the knowledge available concerning combined pellets and solar system in order to support companies in their systems design. This publication deals with experience gained in research on solar and pellet heating, and gives proposals to system design, various technical solutions, and how systems should be controlled. When solar and pellets are combined, there are many possibilities to interconnect the systems. There are different traditions in different countries, which makes the system solutions vary from country to country. A general conclusion is that conventional Swedish boilers with built-in hot water heater are not appropriate for conventional solar systems. It gives rise to complex solutions and it is difficult to achieve good stratification in the water tank. In a solar system, it is important that the tank can be discharged in such a way that sharp stratification is obtained. This means that the tank bottom must be chilled to the temperature of incoming cold water and that the middle part must be cooled to the same temperature as the radiator return. If solar panels even in winter can work to preheat the cold water of 10 to 20 C, a much better efficiency is obtained on collectors than if the radiator return must be preheated, which at best is at a temperature level of between 30 and 40 C. To this end, the radiator return is placed well up from the bottom of the tank and the tap water is preheated in a loop that starts in the tank bottom. Another important parameter in the tank design is that heat losses are kept low, it is important that the solar heat can produce the hot water even during overcast periods in summer and to keep energy consumption low. In modern houses where the tank is placed in the living area, it is important to avoid high temperatures in the room where the tank is placed. To obtain a good isolation one must ensure that there is an airtight layer across the isolation that also closes tightly against

  15. Guidance to regulations on trade with emission permits for carbon dioxide; Vaegledning till lagstiftning om handel med utslaeppsraetter foer koldioxid

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-15

    (NFS 2007:5) and general recommendations on carbon dioxide emission allowances and the Swedish Energy Agency regulations (STEMFS 2004:8) on an emission allowance registry. All these documents can be found at www.utslappshandel.se

  16. Additive for reducing operational problems in waste fired grate boilers; Additiv foer att minska driftproblem vid rostfoerbraenning av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Davidsson, Kent; Hermansson, Sven; Liske, Jesper; Larsson, Erik; Jonsson, Torbjoern; Zhao, Dongmei

    2013-09-01

    The combustion of waste implies a risk for deposits and corrosion in different parts of the combustion facility. In recent years, research and tests have been performed in order to find ways to mitigate these problems in waste-fired plants. Most waste-fired plants in Sweden are grates whereas most of the research has been carried out in fluidized bed plants. The purpose of this project is to examine whether co-firing of sewage sludge and waste can reduce deposition and corrosion also in grate-fired boilers as has been shown in fludised beds. The objective is to determine the deposit growth and its composition as well as describing the initial corrosion attack. Representing sulphur-rich waste, elementary sulphur is also added to the waste and thereby compared with sludge as an additive. The target groups for this project are plant owners, researchers, consultants and authorities. Tests were performed in a 15 MWth waste-fired boiler with moving grate at Gaerstadverket, Tekniska Verken (Linkoeping). The boiler produces saturated steam of 17 bars and 207 deg C, and the normal fuel mixture contains of household and industry waste. The results show that co-firing with as heigh as 20 weight-% SLF (25 energy-%) was possible from an operational point of view, but the deposit rate increased especially at the two warmest positions. Generally the deposit rate was highest in the position closest to the boiler and decreased further downstream. During the tests a lot higher amount of SLF than normal was used (recommended mix is 5-10 % of SLF) this to be able to see effects of the different measures. Up to 23 weight-% of the rather moist sewage sludge was possible to fire when co-firing waste and SLF, without addition of oil. By adding sludge the deposit rate decreased but the increase upon adding SLF to ordinary waste was not totally eliminated. In the tests 'Avfall and SLF' the deposits were rich in chlorine. High concentrations of metal chlorides were found in the

  17. Initial study of a method for IR measurements in boilers; Inledande studie av metod foer IR-maetning i aangpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Martin; Joensson, Magnus; Lundin, Leif [Swedish National Testing and Research Inst., Boraas (Sweden)

    1999-10-01

    The tubes in steam boilers are required to be regularly inspected, in order to find water-side deposits, thinning of walls or material defects. This is for safety, problem-free operation and high availability. No non-destructive method of inspection is available today for finding deposits on the insides of boiler tubes. Nor is there any method that can not only detect deposits on the insides of the tubes but also monitor the tubes' wall thicknesses. A suitable method - reliable, safe, easy to use and cost-efficient - is therefore needed. One such method is to measure the surface temperature of a larger area of the diaphragm wall, using a non-contact method, and from the resulting information to assess the material thickness and possible water-side or steam-side deposits. An IR camera is used for non-contact measurement of the radiated energy from several adjacent surface elements, and thus also of their temperature. The temperature is displayed on the camera's screen to produce a picture of the temperature distribution. This is a well-established method today, and is used in applications such as the steel industry, the electricity industry, electronics and health care. The surface temperatures of the tube walls can be measured by inserting an IR camera on an arm into the combustion chamber, without anyone having to get inside the boiler. The combustion chamber is the part of the boiler that is of main interest for inspection, as it is the easiest to reach. Measurements are facilitated by higher temperatures and thus higher heat fluxes through the tube walls. Diaphragm wall temperatures can be measured quickly and rationally over large areas. Points of interest in inspections include determining where there are water-side deposits in the tubes, where tubes are thin, where flow is obstructed and where there might be material defects. With the exception of material defects, all of these mechanisms result in changes in the surface temperature, which in many

  18. Optimization of the enzyme system for hydrolysis of pretreated lignocellulose substrates; Optimering av enzymsystemet foer hydrolys av foerbehandlade lignocellulosa substrat

    Energy Technology Data Exchange (ETDEWEB)

    Tjerneld, Folke [Lund univ., (Sweden). Dept. of Biochemistry

    2000-06-01

    This project aims to clarify the reasons for the slow and incomplete enzymatic hydrolysis of certain lignocellulose substrates, particularly softwood e.g. spruce. Based on this knowledge we will optimize the enzyme system so that the yield of fermentable sugars is increased as well as the rate of hydrolysis. We will also study methods for recycling of the enzymes in the process by adsorption on fresh substrate. Progress in these areas will lead to improved process economy in an ethanol process. We collaborate with Chemical Engineering on hydrolysis of pretreated lignocellulose substrates and with Analytical Chemistry and Applied Microbiology on analysis of potential inhibitors. Within this main research direction the work at Biochemistry during this project period (since 970701) has been focused on the following areas: (1) Studies of the role of substrate properties in the enzymatic hydrolysis to clarify the reasons for the decrease in the rate of hydrolysis; (2) enzyme adsorption on lignin; (3) studies of recently identified low molecular weight endo glucanases which may be used for more effective penetration of small pores in pretreated substrates (this part is financed by the Nordic Energy Research Program). Central results during the period: In order to study the role of substrate properties for hydrolysis we have initiated investigations on steam pretreated substrates with several techniques. Measurements of pore sizes have been done with probe molecules of known molecular weights. Results show that probe molecules with diameters larger than 50 Aangstroem can more easily penetrate pretreated willow compared with spruce, which can be a part of the explanation for the better hydrolysability of hardwood substrates compared with softwood. We have started studies with electron microscopy of pretreated substrates at different degrees of enzymatic hydrolysis. With scanning electron microscopy (SEM) we can see significant differences in substrate structure in

  19. Development of a dynamic drying model for for a combustion grate; Framtagande av en dynamisk torkmodell foer en foerbraenningsrost

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Ramstroem, Erik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2005-02-01

    Combustion of wet wood fuel at high grate loading requires good control of the burnout position to avoid unacceptably high content of unburnt fuel in the ash. To control the burn-out position, control actions on the grate feeding must be made with sufficient range and anticipation. One way to improve the understanding of the dynamic fuel bed response on changes in control system parameters is mathematical modelling. The research task has been to develop a mathematical model of a drying fuel bed on a moving grate. The model includes a simplified description of drying, pyrolysis and char combustion and also pusher/grate movement and primary air flow/distribution. The objectives of the project have been to establish the most likely mechanism for drying and ignition of a wet fuel bed on a moving grate by the use of mathematical modelling and also to create a tool for simulation of control system step responses. The target group for the project are individuals working in the area of control system development of grate fired boilers. Three different assumptions on drying and ignition front propagation in a bio fuel bed with 50 and 53 % moisture have been modelled: 1. Drying and ignition from an underlying char layer in a co-current primary air flow 2. Drying and ignition from an overlaying char layer in counter-current primary air flow 3. Drying and ignition from both an underlying and overlaying char layer The model with drying and ignition driven by an underlying char layer is the projection, which gives the fastest and time-wise the most similar course to what one normally sees in grate fired boilers. The model with drying and ignition from above is not capable of upholding a stable diffusion controlled burning char layer since too small quantities of heat is transferred into the fuel bed. The model with drying and ignition from both directions results in similar combustion rate as the first model. The similar course of combustion is due to the energy for drying

  20. The EU system for emissions trading after year 2012; EU:s system foer handel med utslaeppsraetter efter 2012

    Energy Technology Data Exchange (ETDEWEB)

    Normand, Mathias; Mjureke, David (eds.)

    2007-01-15

    The Government has instructed the Swedish Energy Agency and the Swedish Environmental Protection Agency to put forward a proposal for how the EU Emissions Trading Scheme (EU ETS) should be developed after 2012, subject to the overall objective of continuing to reduce emissions with the aim of achieving the long-term objectives of the Convention on Climate Change. In its Council Conclusions (7619/1/05) the EU has interpreted the long-term objectives of the Convention on Climate Change as aiming to achieve emission reductions of 15-30 % in the industrialised countries by 2020. According to Council Conclusions (13435/05), the EU has also decided that the Emissions Trading Scheme should continue after 2012. The starting point for this report is that, after 2012, the Scheme will be a key instrument in achieving cost-efficient emission reductions, not only within the EU but also globally, and regardless of whether, with effect from 2013, the Scheme has become a part of an international climate regime, or is serving as a transition to some future new international climate regime. The purpose of this report is to provide a proposal for how the Emissions Trading Scheme should be developed after 2012. The aim is to construct a system that helps to reduce global emissions of greenhouse gases (maintaining climate integrity), that assists measures being taken where they are cheapest (cost efficiency), that is accepted by parties concerned and by the general public (confidence inspiring), and which does not adversely affect the competitiveness of business or industry (competition-neutral). The Agencies recommend that Sweden should adopt the following standpoints concerning development of the EU Emissions Trading Scheme after 2012. (Recommended changes to the system presuppose a harmonised implementation throughout the EU.): In connection with international negotiations, Sweden should press for the Emissions Trading Scheme to be developed in such a way as to make it possible to

  1. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  2. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E.

    2002-02-01

    A review is made about the consequences of the European directive on energy that entered into application in august 2000. It appears that most countries are opening their electricity and gas markets at a faster pace than required by the E.U. directive. European gas imports reached 480 Gm{sup 3} in 2000 and are expected to be over 700 Gm{sup 3} in 2015, so the question of the reliability of the gas suppliers has to be answered at the European level. The current time is marked by an increase of the complexity of the energy market that is due to different factors: 1) the delay in the implementation of European energy directives in France, 2) new arrangement is occurring in United-Kingdom in the energy sector, 3) the lack of a regulating authority in Germany, and 4) the difficulty of inter-connecting the different European energy networks. This transitory period may generate some economic imbalances and competition disturbances by allowing some enterprises to benefit from lower energy prices before others. (A.C.)

  3. Strategies for reducing the emission of carbon dioxide. A study of some Annex 1 countries; Strategier foer att minska koldioxidutslaeppen. En studie av naagra Annex 1 laender

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, M.; Olofsdotter, A.

    2000-07-01

    This report gives an overview of the development of carbon dioxide emissions and the energy systems in a number of countries. The analysis also includes the strategies chosen by the countries to reduce the emissions.

  4. Environmental data book 2011. Estimated emission factors for fuels, electricity, heat and transport in Sweden; Miljoefaktaboken 2011. Uppskattade emissionsfaktorer foer braenslen, el, vaerme och transporter

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Martinsson, Fredrik; Hagberg, Linus; Oeman, Andreas; Hoeglund, Jonas; Palm, David

    2011-04-15

    The environmental data book summarizes current and general emission factors for most fuels and sources of Swedish electricity and heat and to power vehicles. Emission data are compiled for wood fuels, energy crops, bio-oils, waste fuels, fossil fuels and peat, biofuels, wind power, hydro power, nuclear power and solar power

  5. Construction of a flexible pilot dryer for products such as biofuels and iron ore pellets; Uppbyggnad av flexibel pilottork foer produkter som biobraenslen och jaernmalmspellets

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik; Truedsson, Ida; Stenstroem, Stig

    2009-02-15

    Drying of different products is an operation that requires large amounts of energy in Sweden, a compilation from 2006 indicates a total use of over 32 TWh of thermal energy. A more energy efficient drying process can thus result in significant savings of energy for this process. The interest to use biofuels for heating purposes increases with increasing energy prices and thus also the interest to dewater and dry these products. Often an excess of low-value heat (flue gases, warm water etc.) is available and it would be desirable to use these streams for drying of different products. The goal in this project has been to carry out two subtasks: A Rebuild and modernise the old pilot dryer at the department so that it can be used for studies of drying kinetics for different products in a bed or as separate particles. B Perform a number of drying experiments with two representative bio-fuels which can be used for evaluation of different proposals for drying of these products. The results will mainly be of interest for companies handling biofuels in the forestry sector, for LKAB producing iron ore pellets and for manufacturers of industrial dryers. The constructed pilot dryer can be used for studies of drying kinetics of different types of products such as bark, wood chips, materials in the form of pellets such as iron ore pellets or wood pellets and foods. If the drying cell is designed so that fine particulate materials are not entrained with the gas flow, products such as municipal or industrial sludges can also be handled in the dryer. The results indicate specific energy use figures of between 2500 and 3000 kJ/kg evaporated water, both for different fractions of bark and independently if the origin of the bark was Vaeroe or Iggesund. The drying time to reach a dry matter content of 60 % for a bed with a thickness of 20 cm and an air velocity of 1 m/s is about 5000 seconds at an air temperature of 50 deg C. It increases to 15000 seconds to reach a dry matter content

  6. Large scale development of wind power. Consequences for the national grid and the need for load balancing; Storskalig utbyggnad av vindkraft. Konsekvenser foer stamnaetet och behovet av reglerkraft

    Energy Technology Data Exchange (ETDEWEB)

    2008-06-15

    Wind power is expected to growth rapidly in Sweden. The existing certificate system gives economic incentives for development of 17 TWh from renewable energy sources until 2016, compared to the 2002 level. The Swedish Energy Agency estimates that 9 TWh wind power will be built by 2020, given the present certificate system. However, a new planning goal of 30 TWh wind energy by 2020 has been proposed by the Agency. It is very important for Svenska Kraftnaet to follow the development in order to take the right actions to adapt the national grid to the increased share of wind power. The total increased need for balancing power is estimated to be: 1 400-1 800 MW for 10 TWh added wind power, and 4 300-5 300 MW for 30 TWh. About 15% of the increased balancing need must be assigned to automatically frequency regulating generation. The rest can be made up of sources that can be regulated on a minute- or hour-scale. The planned wind power risks to replace generation with regulating capacity, and it is important to continuously analyze if and how this happens, and which the consequences will be for the balancing capacity. The socio-economic effects for the national grid include increased investment cost and increased costs foe balancing and regulating. Massive expansion in North Sweden is the most costly alternative, with a capitalized cost estimated to 25 000 MSEK (about 4 000 MUSD) at an expansion of 30 TWh wind power. This can be compared to the estimated investment cost for the wind power expansion of 150 000 MSEK

  7. Evaluation and optimization of a method for pretreatment of sorted household wastes for biogas production; Utvaerdering och optimering av metod foer foerbehandling av kaellsorterat hushaallsavfall till biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Irene (NSR AB, Helsingborg (Sweden)); Carlsson, My (AnoxKaldnes AB, Lund (Sweden)); Eriksson, Ylva; Holmstroem, David (Lund Univ., Lund (Sweden))

    2010-04-15

    At NSR in Helsingborg, Sweden, organic household waste is digested and converted into biogas and bio-fertiliser. The incoming waste contains a small fraction of non-sorted waste such as plastics, metal and paper. These materials, especially plastics, can cause operational problems in the digester and pollution of the bio-fertiliser. In order to separate these particles from the digestion substrate, the waste requires pre-treatment. For two years, a screw press has been applied for pre-treating the waste at NSR. In the pre-treatment process, food waste is grounded and mixed with water to form a slurry. The slurry is separated into a dry fraction (reject) and a liquid fraction in the press. The liquid fraction is the digestion substrate and is sent to the digester while the reject is sent to combustion. Though, the separation in the screw press is not complete and thus organic, easily degradable matter ends up in the reject. In order to evaluate the efficiency in the screw press and to estimate the loss of easily degradable matter (and thus loss of methane), an assessment of the mass- and energy balances was carried out. The composition of the in- and outgoing fractions was analysed with the purpose of determining the distribution of organic material in the two outgoing fractions. The methane potential in the liquid fraction was compared with the methane potential in the slurry so as to estimate the loss of methane. The results of the mass balances showed that 63 % of the organic material that enters the screw press ends up in the liquid fraction and 37 % ends up in the reject. One ton of waste that enters the pre-treatment facility will eventually result in 1.5 tons of liquid and 0.2 tons of reject. Analysis of the composition was carried out in the slurry, the liquid fraction and the reject. These analyses showed that the liquid fraction contains a higher concentration of easily degradable matter such as fat and protein than the reject. In the incoming material, as

  8. Comparison between existing recycle processes for composite materials - a study regarding microwave pyrolysis; Jaemfoerelse av befintliga aatervinningsprocesser foer kompositmaterial - en foerstudie gaellande mikrovaagspyrolys

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Carina; Andreasson, Sune (Stena Metall AB (Sweden)); Skrifvars, Mikael; Aakesson, Dan (Hoegskolan i Boraas (Sweden))

    2009-07-01

    The purpose of this project has been to investigate the possibilities to use recycled composites as energy recycling based on microwave pyrolysis and also to evaluate the microwave pyrolysis technique for the recycling of combined materials, such as composites. Composites can be recycled by mechanically grinding into a material which can be used as a filler in virgin composites. However, several earlier studies have showed that this will give a material with inferior quality, and there is presently no economical viable use of the recycled material. Composites can be incinerated together with other waste materials but the high content of inorganic material results in a material with low energy content. Composites typically contain 40-50 weight-% glass fibres, and in some cases be as high as 60-75 weight-%. Consequently, composites often end up at landfill sites and processes to recycle composites do not exit. Large volumes of composites are produced in Europe and these products will largely end up on landfill site after end-of-life as systems to recycle these products do not exist. These composites represent a large amount of energy which presently is not utilized. Processes and materials to produce composites are being developed continuously. This in addition to the need for light weight materials in the aerospace, windmills and automotive industry spurs the use of composites. It is therefore of outmost importance to develop processes to recycle of composites. Recycling of composites by the use of microwave pyrolysis has been studied in this project. Microwave pyrolysis is a process where the material is heated by microwave in an inert environment. The project has been focusing on the recycling of glass fibre reinforced composites as this type of composite makes the large volume of composites. Pyrolysis of glass fibre reinforce composites will result in two fractions - one oil fraction and one inorganic fraction. The oil fraction was analyzed with calorimetry and

  9. Tools for system validation. Dynamic modelling of the direct condenser at Sandvik II in Vaexjoe; Hjaelpmedel foer systemvalidering. Dynamisk modellering av direktkondensorn paa Sandvik II i Vaexjoe

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin [Dynasim AB, Lund (Sweden); Tuszynski, Jan [Sycon Energikonsult AB, Malmoe (Sweden)

    2002-04-01

    The project reported here aimed to test the suitability of existing computer tools for modelling of energy processes. The suggested use for the models are at the early tests and validations of new, refurbished or modernised thermal plants. The technique presented in this report should be applicable for clarification of the scope of delivery and testing for both the process and tile control system. The validation process can thus be simplified, allowing risk reduction and predictability of the commissioning. The main delays and economical misfortune often occurs during commissioning. This report should prove the feasibility of the purchase routines where purchaser, vendor and quality inspection will use a common model of the process to validate system requirements and specifications. Later on it is used to validate structure and predefine testing. Thanks to agreement on the common model, early tests can be conducted on complex systems, minimizing the investment risks. The modelling reported here concerns the direct condenser at Sandvik 11, power and heating plant owned by Vaexjoe Energi AB in Sweden. We have chosen the direct condenser because it is an existing, well-documented and well-defined subsystem of high complexity in both structure and operation. Heavy transients made commissioning and test runs of similar condensers throughout Sweden costly and troublesome. The work resulted in an open, general, and physically correct model. The model can easily be re-dimensioned through physical parameters of common use. The control system modelled corresponds to the actual control system at the Sandvik II plant. Any improvement or deep validation of the controllers was not included in this work. The suitability is shown through four simulation cases. Three cases are based on a registered plant operation during a turbine trip. The first test case uses present plant data, the second an old steam valve actuator and the third uses the old actuator and an error in level

  10. Combustion tests in a solid fuel boiler to clarify the emissions when co-firing refuse; Proveldning i fastbraenslepanna foer att kartlaegga emissioner vid inblandning av olika avfallsfraktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Lundborg, Rickard; Wrangensten, Lars

    2002-04-01

    In this Vaermeforsk-project tests have been performed in a 60 MW moving grate steam boiler at Tekniska Verken in Linkoeping. The boiler plant has an electrostatic filter for dust reduction and also a flue gas condensing plant with heat recovery. Vaermeforsk has financed the project. During the tests the following fuel fractions have been injected into the reference fuel, a mix of recovered wood chips (70 %) and bark (30 %): Paper/plastic/wood fuel (10 % and 25 % injection on an energy basis); Meat powder (10 % and 25 % injection on an energy basis); Napkin waste (10 % injection on an energy basis); Leather waste (10 % injection on an energy basis). The highest lower heating value was noted for meat powder, approx. 24 MJ/kg with a moisture content of 3,4 %. The heating values for the other fuel fractions were on the same level or just beneath the corresponding heating value for the reference fuel. The highest chlorine content was found in the paper/plastic/wood fraction respectively the leather waste fraction with 1,2 and 1,4 % (weight) of chlorine. The meat powder had the highest nitrogen content but all the fuel mixes had a quite high content of nitrogen with values over 1 % (weight). Analyses of sulphur in the fuels showed that leather waste had the lowest content just over 0, 1 %, considered as a low sulphur level for fuels in general. However, there are problems to get balance between in- and output for sulphur and chlorine based on fuel analysis. Difficulties to take representative fuel samples, especially when it comes to chlorine, can be an explanation. Video camera recordings and flue gas analysis in the furnace showed that the injection of refuse fractions seems to improve the combustion conditions with better local combustion of CO and hydrocarbons. The results from the emission measurements in the chimney can be summarised as follows (emission values at 11 % O{sub 2}): the lowest CO emission was noted with 25 % meat powder injection (<50 mg/nm{sup 3

  11. Harvest and logistics for better profitability from small cultivations of Short Rotation Willow Coppice; Skoerdeteknik och logistik foer baettre loensamhet fraan smaa odlingar av Salix

    Energy Technology Data Exchange (ETDEWEB)

    Baky, Andras; Forsberg, Maya; Rosenqvist, Haakan; Jonsson, Nils; Sundberg, Martin

    2010-06-15

    In Sweden, the political desire to increase the amount of short rotation willow coppice (Salix) plantations has been expressed. However, for various reasons interest from farmers has been low. The hypothesis of this study is that the total area of Salix cultivation can be increased by also cultivating fields smaller than those generally considered economic today. In order to lower production costs, machine systems adapted for harvest of smaller fields are required. The possibility of using farmers' existing tractors and more convenient machines, as well as achieving lower machine costs for smaller fields, may increase farmers' interest. The long-term objective is to achieve large-scale deliveries of willow with small-scale solutions at farm level, as an option and complement to today's more large-scale systems for harvesting willow. Costs, energy use and climatic impact (CO{sub 2} emissions) for two harvest and logistical chains suitable for small fields have been calculated from field to energy plant, and methods for minimizing these costs have been analyzed. Comparison is made with the direct chipping system, the most commonly used in Sweden today. The systems studied comprised: 1. Direct bundling harvest system with a tractor-towed harvester, collection of bundles in the field with a trailer-mounted crane, and storage in a pile before delivery. Chipping is performed at the energy plant. 2. Direct billeting with a tractor-towed harvester accompanied simultaneously by a tractor and trailer for collection, and storage in a pile before delivery. 3. Direct chipping with a self-propelled modified forage harvester accompanied simultaneously by a tractor and container for collection, and direct delivery to plant. Both the billet and bundle systems show higher costs than the direct chipping system, irrespective of field size. The analysis of different scenarios and conditions shows possibilities of lowering the costs through certain measures. Furthermore

  12. Technical development to increase the use of reed canary grass - Full scale demonstration; Teknikutveckling foer oekad etablering och nyttjande av roerflen - Demonstrationsfoersoek i fullskala

    Energy Technology Data Exchange (ETDEWEB)

    Oerberg, Haakan; Skoglund, Nils; Grimm, Alejandro; Bostroem, Dan; Oehman, Marcus

    2010-06-15

    Introducing fuels from agricultural crops into the heat and power sector in Sweden is a desired and needed development, thus it is connected to some obstacles. For the crop producers it is important to use the most efficient handling for harvest, collection, loading and transport technology in order to reach low production costs. For the fuel consumers it is of high importance that these fuels work together with other utilized fuels in mixtures without complications. This includes fuel mixing, fuel feeding, combustion behavior and ash transformation mechanisms. Specifically for the combustion process, gaseous and particle emissions, ash behavior and deposit formation on cooled surfaces should not be negatively effected by mixing in agricultural crops. In this study these aspects of the energy crop reed canary grass (RCG) have been examined. The recommended harvest period for harvesting RCG in Sweden is during springtime when the crop from the year before is collected, called delayed harvest. During this period the grass is very dry and has been harvested in this project with an average water content of 11,3 %. Two major different harvest systems have been tested. One where the energy grass is chopped directly in the field by a chopper connected to a wagon. The other system was based on baling the crop with round balers or big square balers. The chopped or baled material is transported 6 km to a farm center or terminal for unloading. Further transport to CHP (Combined Heat and Power) plant, 12 km, was done with road truck (135 m3). In the case of field chopped RCG the mixing of the other fuels has been easily done since the material was well chopped (40-50 mm). The RCG was mixed into a mixture of peat and wood to a share of 10-12% of the total energy content of the mixture. Also the baled material was transported to a farm centre or terminal for unloading the farm wagon and loading on a road truck (135 m3). In this case an additional procedure is needed for chopping

  13. Assessment of two techniques for drying of easily degradable organic bio-waste; Bedoemning av tvaa tekniker foer torkning av laett nedbrytbart organiskt matavfall

    Energy Technology Data Exchange (ETDEWEB)

    Raaholt, Birgitta; Bergstroem, Birgitta; Broberg, Agneta; Holtz, Emma; Nordberg, Ulf; Del Pilar Castillo, Maria; Baky, Andras

    2011-10-15

    In 2010, all food waste from the Swedish food industry would, according to national environmental goals, be recycled through biological treatment. For food waste from households and food establishments, the corresponding goal is at least 35%. The project aims to explore the potential for reducing costs and energy consumption, as well as decreasing the environmental impact, by decreasing the moisture content of food waste. Dried food waste has a long shelf-life and can be used as a bio fuel substrate together with other material of low dry matter content. It is expected to increase the bio fuel potential by improved possibilities to control the organic load. The storage costs are also reduced, as is the collecting frequency. Additionally, collecting can be done from a larger number of collecting points at the same occasion. Furthermore, the collection vehicle does not need to be equipped with collecting trays for silage effluent from the food waste. Since dried food waste can be stored for a longer period, this results in more optimal use of the energy of the food waste. The dried material requires neither decomposition nor sieving, has a very high purity degree (>99%), and does not result in reject material at treatment. The nutritional content of the dried material was also in principle intact. Composting of food waste from households was performed as a practical reference, in laboratory scale. The results show that rehydrated dried food waste works as good as a conventional compost fraction. However, the material has a tendency to dry out faster than conventional compost. Further rehydration may therefore be needed during the process. In this project, an assessment was made of two possible techniques for drying readily biodegradable organic waste: microwave vacuum drying of waste from food establishments and air-drying of food waste from households. The techniques were compared individually with current systems for handling waste, with respect to quality of the

  14. Utilization of controllable load for system operations services - Potential in the power system; Utnyttjande av styrbara laster foer systemdrifttjaenster - Potential i kraftsystemet

    Energy Technology Data Exchange (ETDEWEB)

    Bojrup, Martin; Petersson, Andreas; Agneholm, Evert

    2013-04-15

    The frequency quality in the synchronized Nordic power system has decreased significantly during the last years. At the same time the procurement costs for frequency control services from the producers has increased dramatically. The decreased frequency quality has also resulted in an increased wear on production units taking part in frequency control. The large scale integration of renewable s, such as wind power, will probably result in a need for more frequency control resources. In order to increase the frequency control resources in the power system and find more cost efficient solutions this project suggests a development of a method for load control based on grid frequency. The suggested load control is applicable on loads fed by a variable-speed drive (VSD) and the purpose is to use energy loads, i.e. loads that not necessary need a constant power. By using the control capacity in these loads the power consumption from these loads can be controlled without causing any notable inconveniences for the customers. In the report the future potential is estimated for different ancillary services. As the installation of new VSDs and exchange of existing VSDs are performed to a large extent every year it is possible, already some years after implementation, to see an impact in the power system.

  15. Knowledge basis concerning the market for electric vehicles and plug-in hybrids (KAMEL); Kunskapsunderlag angaaende marknaden foer elfordon och laddhybrider (KAMEL)

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The Swedish Energy Agency is proposing a four-year demonstration and development program to support the market introduction of electric vehicles and plug-in hybrids (electric vehicle applications). This in light of the uncertainties in the market introduction of vehicles, cost of key components such as batteries, the possibility of industrial development in Sweden and the uncertainty of how to complement to existing charging infrastructure in an socioeconomic way. In addition to this, the more general aid to electric cars and plug-in hybrids is to be reviewed. Today, electric vehicles, hybrids, ethanol vehicles, bio-gas vehicles and fuel-efficient vehicles, are supported by the green car definition and the environmental classification system. Furthermore, ethanol vehicles and biogas vehicles have support through tax reduction for biofuels. Overall, community support for electric vehicles and plug-in hybrids is lower than for the introduction of ethanol vehicles and biogas vehicles which do not reflect the environmental benefits they have. The review of the general subsidies for electric vehicles and the support through a demonstration program represent a concerted strategy to overcome the initially very high additional cost of these vehicles

  16. Dynamic generation of socio-economic scenarios for climate change adaptation: methods, building blocks and examples; Dynamisk generering av socioekonomiska scenarier foer klimatanpassning: metod, byggstenar och exempel

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Henrik; Dreborg, Karl Henrik

    2008-05-15

    There is a need for socio-economic scenarios in climate change adaptation work in order to help planners cope with uncertainty of the long term development of society. The United Nations' Panel of climate change (IPCC) has developed climate scenarios with substantially different climatic characteristics in a hundred years' perspective. However, in a 25-30 years' perspective, which is very long term in societal planning, the difference between the scenarios is small, while society may develop in different directions. Since measures of adaptation to a changing climate may have different impacts depending on future socio-economic conditions, there is a need for scenarios that describe different possible developments. With a time frame of 25 years scenarios are more useful than projections of single factors such as GDP or demography, because scenarios can capture structural changes of society. This report presents results from a first step of the development of a scenario tool for climate adaptation work in municipalities, regions, and sectors of society in Sweden. The tool is to be further developed in regional case studies with the aim to make it adaptable to the specific focus of interest of various planning agencies. Therefore, we primarily concentrate on developing external factors and different possible future states for these, and a methodology for combining them into scenarios. The report presents the main steps of the scenario methodology and building blocks for the scenario construction consisting of socio-economic factors of special importance for climate adaptation work. The 13 socio-economic factors are: Demography; International mitigation policy; International climate change adaptation policy, Swedish economy; Ideology and social cohesion; Climate change perception; Swedish governance; Environmental policy; Global energy paradigm; Swedish energy paradigm; Land use; Built environment; Transportation. For each factor different possible

  17. Biodiversity on mire ecosystems and drained peatlands - a basis for environmental peat harvesting; Biologisk maangfald paa myrar och dikad torvmark - underlag foer ett miljoemaessigt torvbruk

    Energy Technology Data Exchange (ETDEWEB)

    Stedingk, Henrik von (Swedish Biodiversity Centre, Uppsala (Sweden))

    2009-07-01

    The interest of peat harvesting has increased, due to the political ambition to reduce greenhouse gas emissions and to increase the use of local energy sources. Peatlands drained for forestry, a common resource in Sweden, can be a good energy source in terms of greenhouse gas emissions, under certain conditions. The question is what consequences increased peat harvesting would have on biodiversity in the forest landscape. To answer this question this literature study was performed to summarize what is known about the life of a natural and drained mire, and to discuss what conservation values could be found on a drained peatland. The definition of mire is a wetland with active peat accumulation, even if mires also are distinguished based on specific plant communities. A mire often contains several mire types. Some mire taxa are specialized for living on mires, other organisms have other main habitats but utilize the mire for fulfilling their life cycle. The level of knowledge varies for different organisms. The best known groups are vascular plants and bryophytes. They are also used for classifying mires since their abundance is related to gradients of pH, fertility and water level. Arthropods is a diverse group on mires favored by open moist forests and water pools. Poor mires with restricted flora may be good insect habitats. Birds are found in habitats rich in insects. Large mires are richer in wader species thanks to higher heterogeneity and a variety of insect habitats. The microscopic life in peat is rich and the species composition differs from the forest soil, even if the level of knowledge is limited. Drainage leads to species turn over for many groups of organisms and drainage often leads to a decrease in diversity. However, drained peatlands is a collective concept including different peatland types in different succession phases and different intensity of drainage. Therefore in general, drained peatlands cannot be treated as less important for

  18. Technique for compressed bundles for harvest of whole straw willow. Pilot study; Teknik foer komprimerande helskottsskoerd av salix i buntform. Foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Hans (Vaesteraeng Lantbruk AB (Sweden))

    2008-06-15

    The pilot study was initiated by the need of a new technology that has been raised from the problem, and by the specifications of requirements, that has been described from the project 'Salix Maelardalen'. The need has been crystallized by the energy company Maelarenergi AB, Vaesteraas, in their handling of bio fuel, among many other fuels. The company Maelarenergi AB can see a potential in the use of Salix of a considerable volume. There is a special need by the means of the big volume handling of Salix, since the Salix raw material must be able to be delivered under a longer period or for intermediate storage. 8-9 months could be an adequate storage period. The possibility for intermediate storage could do the flow of fuel raw material to the combined power and heating plant is harmonized to the special requirements of fuel. The storage capability in chipped raw Salix chips is very short and that's why chipped Salix are not going to be a sustainable system combined with the handle of big volume together with portioned inflow to the plant. The production of Salix chips in a system of direct chipping is a very delicate system. The ground conditions with frozen and dry grounds are important for a system with heavy machines. The last years have not given such climate conditions. A big problem with practicability has been coming up. The number of days for contract work during the harvest period without interruption, because of hard conditions, has been decreased to the level that the capacity very considerably falls below what is economical defensible. The needs of larger areas for harvesting during fewer days under good conditions counteract each other. In the 'hot flow' during the harvest when the harvest machine will work with escort vehicles/container transports in the field can be impossible to realize because of for example the breakdown of the soil structure. The organization around 'hot flow system' is a very heavy programme

  19. Biofuels from the forest. A study of environmental impacts and economy of different uses; Biobraensle fraan skogen. En studie av miljoekonsekvenser och ekonomi foer olika anvaendningar

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, Clas; Amnell, Goesta; Anheden, Marie; Eidensten, Lars; Kirkegaard, Gunilla [Vattenfall Utveckling AB (Sweden)

    2002-04-01

    The energy and environmental council of the Royal Swedish Academy of Engineering Sciences initiated this study of how an additional 30 TWh/year of forest biofuel could be used in the Swedish energy system within a 10-year period. The specifications include that the forest biofuel shall be used in such a manner that the greatest possible reduction in carbon dioxide emissions will be achieved at the lowest cost without risking other environmental goals, such as good quality of local air. The figure chosen as starting point for the study, 30 TWh/year, was selected as it is this amount that available data have suggested could be extracted without negatively affecting the long-term productive capacity of forest land. The long-term potential of biofuel will probably be much larger than the volume used today, together with the additional use of 30 TWh/yr. We therefore studied fields of use that, totally, will be considerably larger than 30 TWh/yr. The starting point for comparisons of different uses for forest biofuel was the available benefit/utility for industrial, transportation and service sectors, together with domestic uses. The reference alternative was the existing uses of fossil fuels. Comparisons of different alternatives were made including differences in fuel consumption, CO{sub 2} emissions, emissions of sulfur dioxide, nitrogen oxides and dust, as well as costs without environmental and energy taxes or subsidies. Monetary estimations of sulfur dioxide, nitrogen oxides and dust in accordance with the EU ExternE Project were included in the costs. In our study, we have used two scenarios as starting points in order to cover the range of results. Summary of results: The largest reductions in CO{sub 2} emissions (generally about 0.6-1 Mtonnes CO{sub 2} /TWh forest biofuel and for heat pumps slightly more than 2 Mtonnes CO{sub 2}/TWh forest fuel) at the lowest cost are obtained when bioenergy replaces electricity produced by coal fired condensing power stations

  20. Products based on the mixes of fly ashes and fibre sludge (fibre-ashes) for road construction; Produkter baserade paa blandningar av flygaska och fiberslam (fiberaskor) foer vaegbyggande

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Pentti; Maijala Aino; Macsik, Josef

    2005-03-01

    The project has derived benefits from the earlier Finnish research and development as well as from the experience in the fibre-ash materials for geotechnical applications. The fly ashes used for the project have been taken from the same sources as the fly ashes for the earlier Vaermeforsk project 870: FACE. The project's objective was to develop construction materials based on mixtures of fibre sludge and fly ash for geotechnical applications, and for the final commercialisation of the fibre-ash materials. The mixtures are based on fly ashes from energy production (bark, peat and sludge used for incineration) and on kaolin containing fibre sludge from the paper industry. With help of laboratory tests the project has been searching for fibre ashes with excellent technical characteristics like good frost resistance combined with a good bearing capacity and resilience in geotechnical structures. The project's results has given additional knowledge about alternative road construction materials to construct technically good, sustainable and environmentally friendly roads and other constructions with lower costs than the conventional constructions. The results of laboratory tests have shown that this is possible. However, it has to be verified with help of field tests and pilot constructions. The first tasks of the project were to make choices of the appropriate fibre sludge and fly ashes for the project targets. The laboratory tests have been carried out in the geotechnical laboratory of Ramboll Finland Oy (earlier SCC Viatek Oy, SGT - later in the report SGT). After arrival of all test material in the laboratory the test programme started in order to find out the most optimal fibre-ash mixtures with or without any activator. The most potential mixtures were tested for their geotechnical long-term properties (mainly resistance against climatic load) and for their environmental risk potential. The results comprise of several technically, environmentally and

  1. Possibilities for improved practice, decision support for permit applications of ash utilization in constructions; Laett att goera raett, beslutsunderlag foer miljoeproevning av askor i anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna; Johansson, Mats; Wik, Ola; Erlandsson, Aasa; Lundberg, Kristina

    2011-02-15

    Combustion of solid biofuels, peat and different types of waste in Sweden for the purpose of energy production generates approximately 1.3 million tonnes of residues yearly. These have varying chemical and technical properties, depending on the type of fuel, the combustion process and the type of furnace. From a technical point of view, some of the ashes may be used for civil works. However, the Swedish Environmental Code requires that operators obtain a permit from the local environmental authorities if ashes are utilized for construction purposes. Previous studies on the application and permitting process have indicated that it can be improved, in particular both the information provided by the operators and the decision process. The stakeholders involved in the decision process have expressed that they have limited knowledge on expected environmental impacts from the utilization of ashes in civil works and that existing knowledge not is being fully applied in practice. The aim of this project was to improve the decision support for permit application of ash utilization in constructions. The goals were to - initiate and develop the discussion regarding which information should be used in the decision process - suggest the scope and content of the information to be supplied in the permit application - contribute to improved communication between different stakeholders - identify possibilities of using the knowledge obtained by research for decision support The stakeholders' (operators and environmental authorities) opinions and viewpoint on the assessment and application process were achieved through interviews. The results from the interviews were presented and discussed during a seminar. Both the interviews and the seminar provided information, but at the same time they served to initiate a discussion on permit application procedure and to increase the communication between different stakeholders. The outcomes from these activities (interviews and seminar

  2. Quality criteria for bottom ashes for civil construction. Part II Technical characteristics of bottom ashes; Kvalitetskriterier foer bottenaskor till vaegoch anlaeggningsbyggnad. Etapp II Bottenaskors tekniska egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, Bo von; Loorents, Karl-Johan; Ekvall, Annika; Arvidsson, Haakan [SP Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-01-15

    This report is the presentation of the second of two stages. This stage deals mainly with the testing of three different types of ashes and the evaluation and suitability of the chosen test methods. The project only relates to the technical aspects of ashes. The report is written in such a way that both ash owners (e.g. Energy companies) and those who build roads and constructions will find it meaningful. All test methods that are used for traditional materials (gravel and crushed rock) is not fitting for ashes. New test methods for some properties that will be tested must therefore be presented, tested practically and evaluated. The project encompasses both road and construction building but has a focus on road construction since there the highest and comprising demands are defined. Three bottom ashes of different types have been studied regarding some tenfold mechanical/physical parameters, essential for the functionality of the ash as a construction material. An important conclusion is that ash is from a functionality and characterisation point of view, an undefined concept that encloses materials with widely different properties. Despite that only three ashes have been looked into the range of results are varying large for some properties. This is especially true for the loose bulk density, water absorption and grain size distribution. It is also clear that some of the standard test methods for aggregates need to be exchanged by other methods, which are more adapted to alternative materials. One such example is water absorption, a property that further influences frost resistance, frost heave and such. All the proposed test methods that been used in the project is considered fitting for its purpose. The test methods can be divided into two categories the ones that yield easy assessable results and those that yield results hard to appraise. To the first group belong grain size distribution, loose bulk density, thermal conductivity, permeability and frost heave

  3. Simultaneous harvesting of straw and chaff - for energy purposes. Influence on bale density, yield, field drying process and combustion characteristics; Samtidig skoerd av halm och agnar foer energiaendamaal - inverkan paa avkastning, baldensitet, faelttorkningsfoerlopp och foerbraenningsegenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Gunnar; Roennbaeck, Marie

    2010-04-15

    Introductory field experiments were carried out in central Sweden during 2009 for long- and short-stalked winter wheat crops. Two different types of combine harvesters were used with somewhat different methods of kernel separation. Both harvesters were equipped with the Combi System from Rekordverken. This enabled them to mix the chaff in the straw swath as well as distribute this fraction over the working width. The measurement of crop residue moisture immediately after combine harvesting showed that admixture of chaff reduced the initial moisture in the straw swaths. The added chaff increased the total yield of crop residue with 14%, showing that about half the biologically available chaff was harvested. The combustion analyses showed a slight increase in ash content when chaff was mixed in. This did not cause any significant change in net calorific value or ash melting behavior

  4. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2003-07-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Project owner has been the Swedish company Torkapparater AB, and the project is performed inside the 'Vaermeforsk Program for Pulp and Paper Industry 2004-2005'. Other partners, besides SMA Svenska Mineral AB, has been Stora Enso Skoghalls Bruk, Carnot AB, AaF Process AB and KTH Energiprocesser. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result in lime mud difficult to dewater, has not become true. Important experiences have come out which could be used as a base in further investigations.

  5. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2005-12-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result in lime mud difficult to dewater, has not become true. Important experiences have come out which could be used as a base in further investigations.

  6. Transportation Energy - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  7. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  8. Small-scale power production for sustainable development. Households', Utilities' and Retailers' experiences from the market for small-scale solar panels and wind turbines; Smaaskalig elproduktion foer en haallbar utveckling. Hushaalls, energibolags och aaterfoersaeljares erfarenheter av marknaden foer smaaskaliga solpaneler och vindturbiner

    Energy Technology Data Exchange (ETDEWEB)

    Palm, Jenny; Tengvard, Maria

    2009-06-15

    In this report, a special form of small scale renewable solutions marketed towards Swedish households is targeted. During the autumn 2008 the Swedish companies 'Egen El i Stockholm AB' ('Egen El') and 'Home Energy' launched a concept with small scale wind turbines and solar cells that the households connect to the electricity socket so that the own produced electricity can be used directly. The purpose with this report is to analyze how users, retailers and grid companies look upon such small scale production of electricity and discuss what institutional effects own produced energy could have on the electricity market. The main research method used was in-depth interviews. We conducted interviews with representatives of eight retail companies, five grid companies, the industry organization Swedenergy, IKEA Greentech, and 20 households. A main conclusion is that the market concerning households small scale production of electricity is still immature. Though, the media attention that Egen El relieved during spring 2008 has made more households aware of the concept and householders increased interest in the concept is also recognized by other retailers and amongst the grid companies. According to the retailers, it is still hard to make a living from selling these kind of products to household. Nevertheless, they are optimistic and believe that the changes in regulations concerning small scale production of electricity and IKEA's investment in PVs will improve the situation. The grid companies, too, have a positive outlook. Though, they stress a number of problems that could occur with many households producing their own electricity. This is mainly related to security and whether the grid will be able to handle this produced electricity. As for the households, environmental concerns supply the main motive for adopting PVs or micro wind power generation. In some cases, the adopting households have an extensively ecological lifestyle

  9. Energy and energy policy

    International Nuclear Information System (INIS)

    Clerici, A.

    2007-01-01

    Energy has taken with his reflections on the environment, the geopolitical aspects and its pervasive use in all activities a crucial role for sustainable development of our planet. The energy in the future will be increasingly a global problem [it

  10. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  11. Optimized raw material usage and utilization degree in a polygeneration plant for heat, electricity, biofuel and market fuel; Optimal raavaruinsats och utnyttjandegrad i energikombinat foer vaerme, el, biodrivmedel och avsalubraensle

    Energy Technology Data Exchange (ETDEWEB)

    Jennie Rodin; Olle Wennberg; Mikael Berntsson; Rolf Njurell; Ola Thorson

    2012-01-15

    Energy and economic efficiency for six different types of energy combines which include heat, electricity, pellets and fuel production have been studied. The basic case is a conventional power plant, which subsequently is expanded with various additional facilities (dryer, pellets and/or fuel). Maximum exploitation of the product against inserted biofuel was obtained in case 6, pulp mills that use waste heat for district heating supply and drying of bark. Case 6 had also the lowest payoff period; two years. Of the CHP [combined heat and power] based energy combines 'the big combine' with four different products generally showed best marginal efficiency and economy. The results indicate that drying may be an economical way to extend the operating season and increase the production of electricity in a CHP based energy combine.

  12. Choices of action and its influence on farmers' attitudes regarding willow and reed canary grass cultivation; Betydelsen av olika handlingsalternativ foer oekat intresse hos lantbrukare att odla salix och roerflen

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Aasa; Paulrud, Susanne; Laitila, Thomas

    2010-02-15

    The contribution of energy crops from the agricultural sector is an example of a resource that has a potential to increase substantially in the near future. However, one problem is the lack of interest in cultivating energy crops within the agricultural Several studies have shown that there are a number of reasons for farmers not becoming involved in energy crops. Besides biological aspects, market potential and profitability the farmers are also affected by the available resources on the farm, the effect of the crops on the surroundings, work load, liquidity and the perceived risks. The overall aim with the present study is to increase the knowledge about how to change farmers' attitudes regarding energy crop cultivation, i.e. making them more interested. This study also shows that there is a large fraction of farmers that generally believe they have no or little knowledge of energy crops, such as willow, reed canary grass and hemp. The fraction of farmers considering there is a larger probability of future cultivation of these crops with increased knowledge is also quite large. Energy crop cultivation does not suit everybody. Generally, growing willow and reed canary grass is an alternative for farmers having another business besides agricultural business. Characteristics for these farms are working hours <1500 hours and that the machines are partly owned

  13. Future energy, exotic energy

    Energy Technology Data Exchange (ETDEWEB)

    Dumon, R

    1974-01-01

    The Detroit Energy Conference has highlighted the declining oil reserves, estimated worldwide at 95 billion tons vs. an annual rate of consumption of over 3 billion tons. The present problem is one of price; also, petroleum seems too valuable to be simply burned. New sources must come into action before 1985. The most abundant is coal, with 600 billion tons of easily recoverable reserves; then comes oil shale with a potential of 400 billion tons of oil. Exploitation at the rate of 55 go 140 million tons/yr is planned in the U.S. after 1985. More exotic and impossible to estimate quantitatively are such sources as wind, tides, and the thermal energy of the oceans--these are probably far in the future. The same is true of solar and geothermal energy in large amounts. The only other realistic energy source is nuclear energy: the European Economic Community looks forward to covering 60% of its energy needs from nuclear energy in the year 2000. Even today, from 400 mw upward, a nuclear generating plant is more economical than a fossil fueled one. Conservation will become the byword, and profound changes in society are to be expected.

  14. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  15. Energy crisis

    International Nuclear Information System (INIS)

    1977-01-01

    From energy policy to the problem of public acceptance of nuclear power, problems like energy supply, energy strategies, the race of industrial countries for the short energy reserves, the West German energy demand until the year 2.000, energy conservation, and the controversy over increased use of nuclear energy are reviewed. (GL) [de

  16. Tidal energy

    International Nuclear Information System (INIS)

    Lochte, H.G.

    1995-01-01

    Together with wave energy, ocean thermal energy, and the often overlooked energy from ocean curents tidal energy belongs to those renewable energy sources that can be subsumed under the generic term of ocean energy. All that these energy sources have in common, however, is that they are found in the ocean. The present article discusses tidal energy with respect to the four principal factors determining the scope of a renewable energy source, namely global, technical, and economic availability and ecological acceptability. (orig.) [de

  17. Energy Fact Sheets - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  18. Guidance to the regulations on sustainability criteria for biofuels and liquid biofuels. Version 2.0; Vaegledning till regelverket om haallbarhetskriterier foer biodrivmedel och flytande biobraenslen. Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Lina; Jozsa, Emmi; Hagberg, Linus; Wollin, Per; Petren Axner, Margareta

    2012-11-01

    For biofuels and liquid biofuels: Swedish Energy Agency's guidance on the regulatory framework on sustainability criteria have been updated and expanded with new sections on control systems, independent auditing, sustainability statements and verification of land criteria in Sweden.

  19. Prerequisites for carbon capture and storage (CCS) in Sweden - a synthesis of the Baltic Sea Project; Foerutsaettningar foer avskiljning och lagring av koldioxid (CCS) i Sverige - En syntes av Oestersjoeprojektet

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Stigson, Peter; Hoeglund, Jonas; Bingel, Eva

    2011-07-01

    This publication summarizes a project on carbon capture and storage (CCS) in the Baltic region conducted at the initiative of the Energy Agency. The project is called 'the Baltic Project' and the aim has been to highlight the prospects for CCS in Sweden and how the Baltic Sea region affects this

  20. Energy options?; Energie opties?

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W. (ed.)

    2006-05-15

    March 2006 the so-called Options Document was published by the Energy research Centre of the Netherlands (ECN) and the Netherlands Environmental Assessment Agency (MNP). The document is an overview of technical options to reduce energy consumption and emission of greenhouse gases up to 2020. Next to a brief summary of the document a few reactions and comments on the contents of the document are given. [Dutch] Maart 2006 publiceerde het Energieonderzoek Centrum Nederland (ECN) en het Milieu- en Natuurplanbureau (MNP) het zogenaamde Optiedocument energie en emissies 2010-2020. Daarin wordt een overzicht gegeven van de technische mogelijkheden voor vermindering van het energieverbruik en de uitstoot van broeikasgassen en luchtverontreinigende stoffen tot 2020. Naast een korte samenvatting van het document worden enkele reacties gegeven op de inhoud.

  1. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  2. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  3. Inventory of future power and heat production technologies. Partial report Boilers/Combustion/Steam cycle for district heating and cogeneration; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Pannor/Foerbraenning/Aangcykel foer fjaerrvaerme och kraftvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert (AaF Process, Stockholm (Sweden))

    2008-12-15

    The energy market of today is turbulent and it is quite clear that big changes in the consumption pattern are going to occur, due to the expansion in Asia and the expected Climate Change. The EU has, as a first step, stated in a directive that the consumption of renewable energy in the heat and power sector should be increased to 20 % and in the transportation sector to 10 % by the year 2020, a target which is high above current levels in most of the EU countries. It is reasonable to believe the European demand of renewable energy will create a shortage of biomass and that the development and use of technology for energy production will therefore not only depend on what is technically possible. One scenario is that biomass is mainly used for the markets that have very few alternatives, such as the transportation sector and small scale CHP units. We have today a relatively high electrical consumption through a stable grid and district heating nets in almost all densely populated areas. Large high efficiency power plants combined with heat pump technology will probably prevent any significant expansion of the district heating nets. A third major net for gas distribution seems not to be a feasible solution. Local nets for production of biogas from wet waste for different purposes, including EvGT units with 55% efficiency may however be good solution for some areas. There are a number of cycles and technical solutions to increase the electrical efficiency which could be applied also on smaller plants. The total efficiency will however not increase, only the el/heat ratio and it is not obvious that the higher investment cost for indirect cycles, bottom cycles or extreme steam data in combination with the risk of lower availability is a feasible solution. Especially waste to energy plants, with their need of high utilisation time, are sensitive to long production interruptions. The existing heat sinks in Sweden will however be efficiently used for electrical production

  4. Renewable energy

    International Nuclear Information System (INIS)

    Yoon, Cheon Seok

    2009-09-01

    This book tells of renewable energy giving description of environment problem, market of renewable energy and vision and economics of renewable energy. It also deals with solar light like solar cell, materials performance, system and merit of solar cell, solar thermal power such as solar cooker and solar collector, wind energy, geothermal energy, ocean energy like tidal power and ocean thermal energy conversion, fuel cell and biomass.

  5. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  6. Dossier Energy

    International Nuclear Information System (INIS)

    Weijer, H.; Holwerda, B.; Schrauwers, A.; Van de Graaf, A.; Van Gelder, T.

    2003-01-01

    Several aspects with respect to energy are discussed in a special section of this magazine: the security of energy supply in a liberalized market, saving energy by outsourcing (e.g. compressed air contracting), the profits of a liberalized energy market for businesses, incentives for energy saving projects and innovations, an energy efficiency project at Ineos Silicas (producer of zeolites), and energy efficient electronic equipment [nl

  7. Energy intermittency

    CERN Document Server

    Sorensen, Bent

    2014-01-01

    The first book to consider intermittency as a key point of an energy system, Energy Intermittency describes different levels of variability for traditional and renewable energy sources, presenting detailed solutions for handling energy intermittency through trade, collaboration, demand management, and active energy storage. Addressing energy supply intermittency systematically, this practical text:Analyzes typical time-distributions and intervals between episodes of demand-supply mismatch and explores their dependence on system layouts and energy source characteristicsSimulates scenarios regar

  8. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  9. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  10. Short-term forecasts of district heating load and outdoor temperature by use of on-line connected computers; Korttidsprognoser foer fjaerrvaermelast och utetemperatur med on-linekopplade datorer

    Energy Technology Data Exchange (ETDEWEB)

    Malmstroem, B; Ernfors, P; Nilsson, Daniel; Vallgren, H [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Energiteknik

    1996-10-01

    In this report the available methods for forecasting weather and district heating load have been studied. A forecast method based on neural networks has been tested against the more common statistical methods. The accuracy of the weather forecasts from the SMHI (Swedish Meteorological and Hydrological Institute) has been estimated. In connection with these tests, the possibilities of improving the forecasts by using on-line connected computers has been analysed. The most important results from the study are: Energy company staff generally look upon the forecasting of district heating load as a problem of such a magnitude that computer support is needed. At the companies where computer calculated forecasts are in use, their accuracy is regarded as quite satisfactory; The interest in computer produced load forecasts among energy company staff is increasing; At present, a sufficient number of commercial suppliers of weather forecasts as well as load forecasts is available to fulfill the needs of energy companies; Forecasts based on neural networks did not attain any precision improvement in comparison to more traditional statistical methods. There may though be other types of neural networks, not tested in this study, that are possibly capable of improving the forecast precision; Forecasts of outdoor temperature and district heating load can be significantly improved through the use of on-line-connected computers supplied with instantaneous measurements of temperature and load. This study shows that a general reduction of the load prediction errors by approximately 15% is attainable. For short time horizons (less than 5 hours), more extensive load prediction error reductions can be reached. For the 1-hour time horizon, the possible reduction amounts to up to 50%. 21 refs, 4 figs, 7 appendices

  11. Energy assessments

    International Nuclear Information System (INIS)

    Unruh, T.D.

    1998-01-01

    Energy industry initiatives during the 1970s and during the 1990s are compared. During the 1970s, the objective was to reduce energy consumption and to reduce dependency on foreign fuel. Today, the emphasis is on reducing energy costs and to improve net operating income. The challenges posed by the drive to reduce energy costs are discussed. As a tool in the drive to reduce energy cost, the energy assessment process was described. The process entails a detailed analysis of energy consumption, an investigation of energy rates and an assessment of site conditions and equipment, with a view towards an optimum combination that will lead to energy cost reductions

  12. Energy needs

    International Nuclear Information System (INIS)

    Chateau, Bertrand

    2014-05-01

    The author first discusses the various concepts and definitions associated with energy needs, and then the difference between actual needs and energy needs by distinguishing personal needs, needs of the productive sector, energetic needs and services. In the next part, he discusses how energy needs are assessed. He discusses the relationship between energy needs and energy consumption, how energy consumptions can be analysed and interpreted. He comments how energy needs can be assessed and analysed in time and in space. He notices and explains why economy and climate are the main causes of spatial differences for energy needs per habitant, and comments the evolution of energy consumption over long periods

  13. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  14. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  15. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  16. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  17. Energy policy

    International Nuclear Information System (INIS)

    Forrester, J.W.

    1979-01-01

    The author places the energy problem in the context of world economy. The various obstacles encountered in the United States to spell out a viable national energy policy are cited. A certain number of practical proposals is given to lead to an 'effective policy' which would allow energy economy at the same time as energy development, that is, including nuclear energy [fr

  18. The development of fast reactors - Effects on the Swedish system of management of spent fuel; Utveckling av snabba reaktorer - Paaverkan paa det svenska systemet foer hantering av anvaent braensle

    Energy Technology Data Exchange (ETDEWEB)

    Hans Forsstroem, Hans [SKB International AB, Stockholm (Sweden)

    2013-09-15

    Since the start of the nuclear power era studies have been performed of how to utilise the uranium energy resource in the most effective way. Only about one percent of the energy potential of uranium is utilised in the light water reactors of today. To improve the utilization other types of reactors are needed. With fast reactors theoretically 50-100 times more energy can be extracted from the uranium. This will require reprocessing of the uranium and multiple recycling of the plutonium. Plutonium and uranium can also be recycled in light water reactors, but this will only improve the uranium utilisation by about 20 %. Recycling of plutonium on a routine basis is presently only done in France. The development of fast reactors has been going on since the end of the 1940ies. During the 1970ies the planning was that a large number of fast reactors and their associated fuel cycle facilities would be in operation by the year 2000. The development has, however, for different reasons been much slower than planned. The general assessment today is that fast reactor, if they will be realised, will hardly give an important contribution to energy production until after 2050. Nuclear power production has instead been dominated by light water reactors similar to the ones in use in Sweden. Light water reactors are believed to continue to dominate during the next decades. To start a fast reactor system plutonium (or highly enriched uranium) will be needed. Such plutonium is contained in spent nuclear fuel from light water reactors. This raises the question: Should the spent nuclear fuel be stored so that the potential energy resource in the fuel can be used in the future instead of disposing of it as a waste? The answer to this question will depend on when the material will be useful, i.e. when fast reactors have been introduced on a large scale. It will also depend on the demand for plutonium at this time, i.e. will plutonium be a scarce redundant resource at this point of time

  19. Energy evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    These 8 charts bring information on with the primary energy consumption, energy indicators, energy bill, prices and electric power, petroleum, natural gas and solid mineral fuels from January 2003 to January 2006. (A.L.B.)

  20. Energy Drinks

    Science.gov (United States)

    ... R S T U V W X Y Z Energy Drinks Share: © Thinkstock Energy drinks are widely promoted as products that increase ... people has been quite effective. Next to multivitamins, energy drinks are the most popular dietary supplement consumed ...

  1. Energy Models

    Science.gov (United States)

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  2. Bottom ash from fluidising bed boilers as filler material in district heating pipe culverts. Chemical and geotechnical characterisation; Pannsand som kringfyllnadsmaterial foer fjaerrvaermeroergravar. Kemisk och geoteknisk karaktaerisering av fluidbaeddsand

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Roger; Rogbeck, Jan; Suer, Pascal

    2004-01-01

    Bottom ashes from fluid bed boilers have been characterised, both geotechnically and chemically, in order to investigate the possibility to use them as filler material in district heating pipe culverts. Bottom ashes from both biofuel boilers and waste boilers are represented in this project. The companies which ashes have been characterised are Sundsvall Energi AB, Sydkraft OestVaerme AB, Sydkraft MaelarVaerme AB, Eskilstuna Miljoe och Energi, Stora Enso Fors, Soederenergi and Fortum Vaerme. A total of ten ashes have been analysed where three ashes originates from Sundsvall Energi AB, two from Sydkraft OestVaerme AB and one from the each of the remaining companies. The chemical analyses have been performed both on fresh ashes and on ashes aged for three months. The geotechnical analyses performed are grain size distribution, packing abilities and permeability. Chemical analyses performed are total content, available content, leaching tests (leaching both by shaking method and column procedure) and organic analyses (PAH, EOX, TOC, dioxin and fenol). The geotechnical analyses show that the ashes fulfils the demands that are put on the filler material used in district heating pipe culverts. When using the ashes in applications, light compaction should be performed due to the risk of crushing the material which may cause an increased amount of fine material. The leachability of fine material is larger than for coarse material. The ashes are relatively insensitive to precipitation. Bio fuel based bottom ashes have a lower content of environmental affecting substances than waste fuel based ashes. This is also shown in the leaching analyses. The leaching water from fresh ashes contains a higher concentration of leachable components than aged ashes. When aged the pH in the ashes decreases due to carbon uptake and hydration and this makes metals as Pb, Cu, Cr and Zn less mobile. On the other hand, an increase in leachability of Sb, Mo and SO{sub 4} is shown when the ashes

  3. Energy, tourism

    OpenAIRE

    Frantál, B. (Bohumil)

    2015-01-01

    The chapter provides a general definition of energy and resume the role and environmental impacts of tourism as one of the largest global industries and energy consumers.Then the energy tourism nexus is conceptualized from three perspectives: The first is energy as a driver of tourism. The second is energy as a constraint of tourism. The third is energy as an attraction and object of tourists´interests.

  4. Competitiveness of grid-connected solar electricity in Sweden - as seen from the perspective of the utilities and the net owners; Konkurrenskraft foer naetansluten solel i Sverige - sett ur kraftfoeretagens och naetaegarnas perspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Carlstedt, Nils-Eric [Vattenfall Power Consultant AB, Stockholm (Sweden); Karlsson, Bjoern; Kjellsson, Elisabeth; Samuelsson, Olof [Faculty of Engineering (LTH), Lund University, Lund (Sweden); Neij, Lena [International Institute for Industrial Environmental Economics, Lund University, Lund (Sweden)

    2006-12-15

    The objective of this report was to analyse the competitiveness of grid-connected solar power in Sweden - and specifically the competitiveness for energy companies and net owners. In theory, solar power could to a large extent fulfil the electricity demand in Sweden, especially in the summer. However, the high cost of solar cells is a major barrier to implementation. Future technology development and increased efficiency could, however, lead to important cost reductions. The question is if such expected cost reductions would make grid-connected solar power a preferable investment option for energy companies and an interesting alternative for the net owners. The results of the study show that solar power will not be a competitive alternative for the energy companies in Sweden, not in 2020 and probably not in 2050. Other alternatives such as new investments in wind turbines and bio-mass based technology options will be producing electricity at a lower cost. Moreover, solar power will have an unfavourable production profile, generating power in the summertime when less needed. However, by using the reservoirs of the hydro power systems in Sweden as storage capacity, approximately 5 TWh solar power could be allowed in the Swedish electricity system. The results of the study indicate that solar power could have a positive effect on the electricity distribution system since distributed generation will result in lower losses in the system. Moreover, solar power will be produced during daytime when the electricity demand will peak. One of the main challenges for the net owners would be to design the net in such a way that the net and the solar cells could work together in the best possible way. Another challenge would be the high cost for connecting the solar cells to the grid; this cost needs to be reduced. Looking instead at the house-owners as possible investors, solar cells appear as a much more attractive alternative for the future, the value of the solar power is

  5. Program description for the program Fuel program sustainability July 1, 2011 through June 30, 2015; Programbeskrivning foer programmet Braensleprogrammet haallbarhet 1 juli 2011 till och med 30 juni 2015

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    The Fuel program sustainability is included as one of three programs in a cohesive commitment to increased, sustainable and efficient production and use of indigenous and renewable fuels that are implemented by the Swedish Energy Agency from July 1, 2011 to June 30, 2015. The program focuses on issues of environment and ecological sustainability of the production of biofuels, and systems and resource issues concerning the use. It does not include purely technical issues related to biofuels production or processes in which fuel is converted to heat, electricity or fuel. Questions about fuel supply and fuel processing / scale combustion are treated in the parallel running programs; the Fuel program supply and the Fuel program conversion. The four-year program will commence on July 1, 2011 and will run until June 30, 2015 and has an annual budget of total SEK 16 millions. Ambiguities in the environmental area may through various regulations mean various forms of barriers on the biofuel market. The Fuel program sustainability aims to sort out such ambiguities and, if possible, eliminate such obstacles, identify solutions and develop opportunities. The availability of biofuels and croplands is limited relative to needs. Thus the program also aims to describe the resource efficiency and climate benefits of current biofuel chains, and the possibility of using instruments to stimulate good practice. The program consists of sub-areas that partly overlap. - The sub-area Environment and sustainability focuses on how biofuel production will be designed to meet national and international environmental objectives and sustainability criteria. - The sub-area Biofuels and greenhouse gases describes different climate aspects related to production and exploitation of biofuels. - The sub-area System and market focuses on resource- and climate-efficient solutions in a system perspective, and how the bio-energy system can be affected by policy instruments

  6. Materials in Sweden for future production of fuel pellets. A review of possible materials in short- and medium long-term; Raavaror foer framtida tillverkning av braenslepellets i Sverige. En kartlaeggning av taenkbara alternativa raavaror paa kort och medellaang sikt

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Lars [Swedish National Testing and Research Inst., Boraas (Sweden)

    2003-07-01

    The use of fuel pellets, mainly produced from sawdust and shavings from the Swedish sawmill industry, has increased during the 1990s among small-scale users such as private houses as well as large-scale users such as thermal power stations. During the last years this increase has continued for small-scale use. Due to a significant increase of the pellet prices the last couple of years the increase for the large-scale users seems to have stopped. It is reasonable to believe that these higher prices depend mostly on lack of raw materials for the fuel pellet production. The greater part of sawdust from Swedish saw mills is used in the pellet industry, the board industry or as an internal fuel. It is reasonable to assume a small increase of present raw material available for pellet production without a further decrease in the use for the board industry. Another sawmill by-product, dry chips, may increase in importance as a fuel pellet raw material and give a small contribution while the green chips should be for use in the pulp industry only. If the use of fuel pellets should increase there is a need for new raw materials. In the short-term, thinning material and cull tree could be alternatives that could give pellets with similar characteristics as present fuel pellets. For large-scale consumers with greater ability to handle problems concerning ash, such as sintering and fouling, as well as particle and gaseous emissions a further choice of raw materials could be possible, such as bark, peat and logging residues. In the longer term energy crops could be used as well as lignin, derived from energy effective pulp industry and from possible large-scale production of ethanol from woody biomass. Nearly all of the different raw materials studied in this review have higher amounts of substances not desirable in combustion such as potassium, chlorine and nitrogen. However, pelletizing gives an unique opportunity to mix different raw materials and possible additives in order

  7. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  8. Energy Theater

    Science.gov (United States)

    Daane, Abigail R.; Wells, Lindsay; Scherr, Rachel E.

    2014-01-01

    Energy Theater is a dynamic, full-body activity that engages all students in representing the flow of energy in various phenomena, such as a light bulb burning steadily or a refrigerator cooling food. In Energy Theater, each participant acts as a unit of energy that has one form at a time. Regions on the floor correspond to objects in a physical…

  9. Energy problems

    International Nuclear Information System (INIS)

    Hoefling, O.

    1980-01-01

    The physical and technical fundamentals of energy conversion are described in popular form. There are chapters on fossil nuclear, and renewable energy sources. The final chapter attempts to give a picture of the complex interactions in the fields of energy economy and energy policy. (UA) [de

  10. Guidance to the regulations on sustainability criteria for biofuels and bioliquids Version 3.0; Vaegledning till regelverket om haallbarhetskriterier foer biodrivmedel och flytande biobraenslen Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Swedish Energy Agency is the regulatory authority for enforcement of the Act (2010:598) concerning sustainability criteria for biofuels and bioliquids. The Act implements into Swedish law provisions on sustainability criteria in the so-called renewable-directive. Authority is based on the authorization issued regulations, but there are many details that are not regulated by statute. Many of the interested companies contacts the authority and want to know more about what will apply in various respects. The Agency has therefore chosen, in this guide, to introduce more detailed explanations of the rules that exist in law and regulation. It is thus not a question of legally binding rules. This third version of the guidance has been supplemented with sections on reporting. The Agency will gradually expand the guide to include more parts of the acquis. The guidance has been produced by the unit for sustainable fuels. Before the content was fixed definitively the guidance has been circulated to NGOs and government.

  11. Energy storage

    Energy Technology Data Exchange (ETDEWEB)

    1962-07-01

    The papers on energy storage problems, given to the United Nations Conference on New Sources of Energy, Rome, 1961, are reviewed. Many aspects of the subject are discussed: comparisons between the costs of storing energy in batteries and in fuel cells; the use, efficiency and expected improvement of fuel cells; the principles involved in the chemical conversion of solar energy to chemical energy; the use of metal hydride fuel cells; the chemical conversion and storage of concentrated solar energy for which the solar furnace is used for photochemical reactions. Finally, the general costs of storing energy in any form and delivering it are analyzed with particular reference to storage batteries and fuel cells.

  12. Advantage Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Increased focus has been placed on the issues of energy access and energy poverty over the last number of years, most notably indicated by the United Nations (UN) declaring 2012 as the 'International Year of Sustainable Energy for All'. Although attention in these topics has increased, incorrect assumptions and misunderstandings still arise in both the literature and dialogues. Access to energy does not only include electricity, does not only include cook stoves, but must include access to all types of energy that form the overall energy system. This paper chooses to examine this energy system using a typology that breaks it into 3 primary energy subsystems: heat energy, electricity and transportation. Describing the global energy system using these three subsystems provides a way to articulate the differences and similarities for each system's required investments needs by the private and public sectors.

  13. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  14. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  15. What energies?

    International Nuclear Information System (INIS)

    Favennec, Jean-Pierre

    2009-01-01

    Energy consumption has developed significantly since the Second World War and population growth and improved living standards should see needs increasing even more. Traditional forecasts show that this energy consumption will continue to depend heavily on fossil energy. However, resources are limited and their use have a negative impact on the greenhouse effect and climate change. There is therefore a need to develop large quantities of renewable energy sources, to intensify energy saving programs and to pursue research in certain key areas

  16. Energy Leapfrogging

    OpenAIRE

    Arthur A. van Benthem

    2015-01-01

    Today's less developed countries (LDCs) have access to energy technologies that did not exist when today's richer countries were at similar stages of development. Do LDCs therefore consume less energy per capita than rich countries in the past? And is their economic growth associated with a lower growth in energy consumption? Can they "leapfrog" to a lower-carbon economy? I use data on energy consumption, prices, and gross domestic product for 76 countries to estimate the energy intensity of ...

  17. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  18. Power, heat and cooling production for a group of buildings (CHCP); Integrerade loesningar foer produktion av kraft, vaerme och kyla (CHCP) i grupper av byggnader med el-, vaerme- och kylbehov

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Corfitz [Svenskt Gastekniskt Center AB, Malmoe (Sweden); Bjurstroem, Henrik; Cronholm, Lars-Aake; Forsberg, Maya [AaF-Energi och Miljoe AB, Stockholm (Sweden)

    2005-04-01

    Small-scale production and distribution of power, heat and cooling (CHCP) for a group of buildings is described in this report on a general level. Possible system solutions are identified and a summary of the state-of-the-art is provided. Costs have been compared for different system solutions using a fictitious group of buildings in a case study. CHCP (Combined Heat, Cooling and Power) is an acronym used for a compact cogeneration unit (CHP) that also provides cooling, where cooling may be produced using an absorption cooling machine. The advantage of heat-driven cooling process combined with a cogeneration unit offers is an increase of the annual number of hours during which the cogeneration is operated. This should lead to an increased competitiveness for small-scale cogeneration also in Sweden, which should become even better if the price for electricity continues to increase. Systems with cogeneration and cooling are often associated with the concept of 'distributed generation' of electricity and with units in single buildings such as hotels, hospitals, offices, shopping centers etc. They could also be considered for groups of buildings connected to a small distribution network for district heating, and district cooling. Both steam and hot water are possible energy carriers. The focus of the study was small-scale cogeneration units in the range 0,1 to 2 MW{sub e} with natural gas as fuel. For the sake of the analysis of profitability and of investment, a fictitious area has been defined with four buildings: two hotels, an office and a shopping centre. The maximum total heat and cooling loads of this area are 8 MW heat and 3.5 MW cooling. The alternatives to heat-only boilers and electric chillers in each building studied were based on piping networks. The results from the calculations show that local production of electric power, heat and cooling is possible in buildings and areas with large energy consumption. With prices and assumptions as in the

  19. Program description for the program Fuel program conversion 2011-07-01 - 2015-06-30; Programbeskrivning foer programmet Braensleprogrammet omvandling 2011-07-01 - 2015-06-30

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    The Fuel program conversion is included as one of three programs in a cohesive commitment to increased, sustainable and efficient production and use of indigenous and renewable fuels that are implemented by the Swedish Energy Agency during the period July 1, 2011 - June 30, 2015. The program focuses on increasing knowledge and development of technologies for processing of the fuel feedstock, and conversion to primarily heat and electricity in plants up to about 10 MW. Issues of particular concern is to strengthen competitiveness, efficiency and sustainability in the chain from raw material to end use, and increasing raw material base by developing knowledge and technologies for new materials that are current. The program includes basic and applied research, development and demonstration. Within the sub-area Processing efforts are prioritized which streamline and reduce costs in different types of processing operations. Processing here means not just technology for pelleting and briquetting, but also sub-processes that prepare, dry, handle or process raw materials in other ways. Within the sub-area Conversion to heat and electricity in the range <10 MW, the focus is principally, on one hand increasing the knowledge of the interaction between fuel and combustion plant, and on the other hand to implement results of research in collaboration with users and equipment suppliers. Furthermore, great importance is given to increasing the competitiveness of local heating in the transition from oil to renewable heat supply and the use of new fuel materials and fuels. Questions about the fuel supply from forestry and agriculture, including issues of sustainability, environment and resource use are treated in the two parallel running programs, the Fuel program supply and the Fuel program sustainability

  20. Deciphering energy

    International Nuclear Information System (INIS)

    Dessus, Benjamin

    2014-01-01

    In this book, the author aims at giving some explanations about the various terms regarding energy which are present in our everyday life, in speeches, in papers and magazines, on the air, in our energy bills, for instance: energy poverty, price of a barrel of oil, resources and proved reserves, intermittency and energy storage, fossil and renewable energies, and so on. In a first part, the author addresses issues ranging from the development needs of a society to the energy assessment of a country, i.e.: nature and quantity of needs in services provided by energy, analysis of the required quantity of energy products needed to satisfy these needs, stages between primary resources and service delivery, description of the French consumption of available final energy products (per product and per economic sector). In the second part, he addresses energy supply, energy sectors and environmental issues, thus focusing on the front end of the energy system, i.e. ways of production from primary energy resources to final energy products: main physical characteristics and description of the different fissile, fossil and renewable energies, description of the main sectors of production of final energy products (fuels, electricity, heat) with a specific attention to electricity. In this part, local, regional and global environmental issues related to the exploitation of these energy sectors are discussed: sources of atmospheric pollution related to energy, relationship between energy and global warming, role of the different greenhouse gases emitted by these sectors, and quantitative analysis of these emissions. The third part addresses the economy of energy systems. The author proposes a cost assessment method which can be used for the production analysis as well as the economic analysis of a specific energy product. He also described external costs and profits, and methods to take those hidden costs and profits into account. Other economic tools are discussed and compared

  1. Energy Consumption vs. Energy Requirement

    Science.gov (United States)

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  2. The hydro energy; Energie hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This paper is a first approach of the hydro energy energy. It presents the principle and the applications of this energy source. It proposes recommendations on the sizing and the cost estimation of an installation and the environmental impacts of this energy. (A.L.B.)

  3. Energy audit and energy security

    Directory of Open Access Journals (Sweden)

    Beata Agnieszka Kulessa

    2013-07-01

    Full Text Available In article, we present the issue of energy security. This article to answer the questions concerning the future of energy in Poland. These activities are directly related to energy security and the reduction of CO2 emissions. One element of this plan is the introduction in the EU energy certification of buildings. The energy certificates in Poland launched on 01.01.2009 and implements the objectives adopted by the European Union and contribute to energy security, increasing energy efficiency in construction and environmental protection.

  4. Energy accountancy

    International Nuclear Information System (INIS)

    Boer, G.A. de.

    1981-01-01

    G.A. de Boer reacts to recently published criticism of his contribution to a report entitled 'Commentaar op het boek 'Tussen Kernenergie en Kolen. Een Analyse' van ir. J.W. Storm van Leeuwen' (Commentary on the book 'Nuclear Energy versus Coal. An Analysis by ir. J.W. Storm van Leeuwen), published by the Dutch Ministry of Economic Affairs. The contribution (Appendix B) deals with energy analyses. He justifies his arguments for using energy accountancy for assessing different methods of producing electricity, and explains that it is simply an alternative to purely economic methods. The energy conversion yield (ratio of energy produced to energy required) is tabulated for different sources. De Boer emphasises that his article purposely discusses among other things, definitions, forms of energy, the limits of the systems, the conversion of money into energy and the definition of the energy yield at length, in order to prevent misunderstandings. (C.F.)

  5. Carbon Emission Trading. A survey of regional and national emission trading schemes outside the European Union; Handel med utslaeppsraetter. Kartlaeggning av EU-externa regionala och nationella system foer handel med koldioxidutslaepp

    Energy Technology Data Exchange (ETDEWEB)

    Widegren, Karin

    2007-03-15

    For those countries that ratified the Kyoto Protocol this is naturally one of the most important incentives for the introduction of mandatory measures such as emissions trading schemes. At the same time, there are major similarities between the political discussions in countries that ratified the Kyoto Protocol and countries that did not. In all countries there is a great interest in market-based regulation such as emissions trading, at the same time as the political difficulties in achieving unity on the limits and shaping of the systems are very substantial. In countries with a federal government, operators at the regional level frequently have a prominent role. The driving force for the regional players is frequently a desire to influence the federal policy from below at the same time as goodwill is created and a learning process is developed that may become a competitive advantage the day a federal system is introduced. Regional initiatives and the introduction of different voluntary programs for emissions trading have also contributed to an increased interest on the part of industry and industrial operators. They have in several cases actively participated in the design of such programs. When it comes to the operational status of the different schemes none of the studied countries is expected to have a nationally compulsory trading system in operation prior to 2010. Most initiatives are at the initial stage and have been delayed many times on account of significant administrative and political difficulties. It may be established that as regards market volume, liquidity and practical experiences EU ETS is in a class of its own. The most common trading system that is planned or debated is of the type 'cap and trade'. Systems focus almost without exception on the energy sector and on emissions of carbon dioxide. Frequently, proposals include a wide variety of approved emission credits (offset). The design of these emission credits often reflects other

  6. Carbon Emission Trading. A survey of regional and national emission trading schemes outside the European Union; Handel med utslaeppsraetter. Kartlaeggning av EU-externa regionala och nationella system foer handel med koldioxidutslaepp

    Energy Technology Data Exchange (ETDEWEB)

    Widegren, Karin

    2007-03-15

    For those countries that ratified the Kyoto Protocol this is naturally one of the most important incentives for the introduction of mandatory measures such as emissions trading schemes. At the same time, there are major similarities between the political discussions in countries that ratified the Kyoto Protocol and countries that did not. In all countries there is a great interest in market-based regulation such as emissions trading, at the same time as the political difficulties in achieving unity on the limits and shaping of the systems are very substantial. In countries with a federal government, operators at the regional level frequently have a prominent role. The driving force for the regional players is frequently a desire to influence the federal policy from below at the same time as goodwill is created and a learning process is developed that may become a competitive advantage the day a federal system is introduced. Regional initiatives and the introduction of different voluntary programs for emissions trading have also contributed to an increased interest on the part of industry and industrial operators. They have in several cases actively participated in the design of such programs. When it comes to the operational status of the different schemes none of the studied countries is expected to have a nationally compulsory trading system in operation prior to 2010. Most initiatives are at the initial stage and have been delayed many times on account of significant administrative and political difficulties. It may be established that as regards market volume, liquidity and practical experiences EU ETS is in a class of its own. The most common trading system that is planned or debated is of the type 'cap and trade'. Systems focus almost without exception on the energy sector and on emissions of carbon dioxide. Frequently, proposals include a wide variety of approved emission credits (offset). The design of these emission credits often reflects other political

  7. The conditions for use of reed canary grass briquettes and chopped reed canary grass in small heating plants; Foerutsaettningar foer anvaendning av roerflensbriketter och hackad roerflen i mindre vaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Davidsson, Kent; Holmgren, Magnus A. (Swedish National Testing and Research Inst., Boraas (Sweden)); Hedman, Henry; Oehman, Rikard; Leffler, Joel (ETC, Piteaa (Sweden))

    2010-09-15

    blend and uniform feed to the boiler. To facilitate the development of reed canary grass as an energy crop, it is important that potential users have access to an overview and assessment of appropriate combustion techniques on the European market today. More demonstration projects are also needed, as well as practical development of fuel handling systems, combustion systems, flue gas cleaning and combustion control systems

  8. Materials for higher steam temperatures (up to 600 deg C) in biomass and waste fired plant. A review of present knowledge; Material foer hoegre aangtemperaturer (upp till 600 grader C) i bio- och avfallseldade anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2011-02-15

    A goal for the Swedish power industry is to build a demonstration biomass-fired plant with 600 deg C steam data in 2015. Vaermeforsk also has a goal to identify materials that can be used in such a plant. This project involves a survey of present knowledge and published articles concerning materials that are suitable for use in biomass and wastefired plants with steam data up to 600 deg C. The information has been gathered from plants presently in operation, and from field tests previously performed with probes. Plants firing only household waste are excluded. The components considered are waterwalls/furnace walls (affected because of higher steam pressures) and superheaters. Fireside corrosion and steam-side oxidation are dealt with. Candidate materials (or coatings) are suggested and areas for further research have been identified. The purpose of this project is to give state-of-the-art information on what materials could be used in biomass and waste-fired plant to reach a maximum steam temperature of 600 deg C. This report is aimed at suppliers of boilers and materials, energy utility companies and others involved in building new plant with higher steam data. In accordance with the goals of this project: - Materials suitable for use at higher steam temperatures (up to 600 deg C steam) in wood-based biomass and waste-fired plant have been identified. Austenitic stainless steels HR3C, TP 347 HFG and AC66 all have adequate strength, steam-side oxidation and fireside corrosion resistance for use as superheaters. AC66 and HR3C have better steam-side oxidation resistance than TP 347 HFG , but TP 347 HFG has better fireside corrosion resistance. It is recommended that TP 347 HFG be shot-peened on the inside to improve the oxidation resistance if in service with steam temperatures above 580 deg C. - Furnace walls coated with Ni-based alloys or a mixture of Ni- alloy and ceramic show good corrosion resistance at lower temperatures and should be evaluated at higher

  9. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  10. Digestion with initial biological hydrolysis step for enhanced methane production in sewage and biogas plants. Exploratory; Roetning med inledande biologiskt hydrolyssteg foer utoekad metanutvinning paa avloppsreningsverk och biogasanlaeggningar. Foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    Anaerobic degradation of organic matter is a multi-step process through the action of various groups of microorganisms whose optimum conditions can differ considerably regarding e.g. nutrients, pH demand, sensitivity for changes and patterns for growth and nutrient uptake. One way of optimizing the anaerobic digestion process, and thereby increase the biogas production and the reduction of organic matter, can be to physically divide the anaerobic digestion process in two steps consisting of an initial hydrolysis and acid production step followed by a methane production step in an anaerobic digester. One problem with the biogas processes of today is that not all organic matter that is added to the process becomes available for conversion into biogas. This is particularly evident in digestion of waste water treatment sludge where almost half of the organic matter added remains after anaerobic digestion. More efficient utilization of substrate in biogas plants is an important element to increase the profitability of biogas production. The possibility to use different pre-treatment methods is being discussed to increase the degree of conversion of organic matter into biogas in the digester. Pre-treatment methods are often energy as well as cost demanding and can require the addition of chemicals. To use the microbiological steps in the biogas process more efficiently by adding an initial hydrolysis step is a method that does not require the usage of chemicals or increased energy consumption. This pre-study is based on literature studies related to anaerobic digestion with initial biological hydrolysis and collected knowledge from full-scale plants, universities and suppliers of equipment. Nearly 70 published scientific articles relevant to the subject have been found in the performed literature searches. The articles have been subdivided according to the purpose of each article. A large part of the articles have concerned modelling of anaerobic digestion why a separate

  11. Prestudy: Anaerobic digestion with primary hydrolysis from increased methane production in waste water treatment plants band biogas plants; Foerstudie: Roetning med inledande hydrolyssteg foer utoekad metanutvinning paa avloppsreningsverk och biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Emelie; Ossiansson, Elin (BioMil AB, Lund (Sweden)); Carlsson, My; Uldal, Martina; Olsson, Lars-Erik (AnoxKaldnes AB, Lund (Sweden))

    2010-04-15

    Anaerobic degradation of organic matter is a multi-step process through the action of various groups of microorganisms whose optimum conditions can differ considerably regarding e.g. nutrient and pH demand, sensitivity for changes and patterns for growth and nutrient uptake. One way of optimizing the anaerobic digestion process, and thereby increase the biogas production and the reduction of organic matter, can be to physically divide the anaerobic digestion process in two steps consisting of an initial hydrolysis and acid production step followed by a methane production step in an anaerobic digester. One problem with the biogas processes of today is that not all organic matter that is added to the process becomes available for conversion into biogas. This is particularly evident in digestion of waste water treatment sludge where almost half of the organic matter added remains after anaerobic digestion. More efficient utilization of substrate in biogas plants is an important element to increase the profitability of biogas production. The possibility to use different pre-treatment methods is being discussed to increase the degree of conversion of organic matter into biogas in the digester. Pre-treatment methods are often energy as well as cost demanding and can require the addition of chemicals. To use the microbiological steps in the biogas process more efficiently by adding an initial hydrolysis step is a method that does not require the usage of chemicals or increased energy consumption. This pre-study is based on literature studies related to anaerobic digestion with initial biological hydrolysis and collected knowledge from full-scale plants, universities and suppliers of equipment. Nearly 70 published scientific articles relevant to the subject have been found in the performed literature searches. The articles have been subdivided according to the purpose of each article. A large part of the articles have concerned modelling of anaerobic digestion why a

  12. Energy sources

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    A comprehensive review is presented of the available sources of energy in the world is presented. About 80 percent of primary energy utilization is based on fossile fuels, and their dominant role is not expected to change in the foreseeable future. Data are given on petroleum, natural gas and coal based power production. The role and economic aspects of nuclear power are analyzed. A brief summary of renewable energy sources is presented. The future prospects of the world's energy resources are discussed, and the special position of Hungary regarding fossil, nuclear and renewable energy and the country's energy potential is evaluated. (R.P.)

  13. Renewable energy

    International Nuclear Information System (INIS)

    Berghmans, J.

    1994-01-01

    Renewable energy sources have a small environmental impact and can be easily integrated within existing structures. Moreover, the use of renewable energy sources can contribute to achieve a zero emission of carbon dioxide by 2100, provided an efficient environmental policy during the next 40 years. This includes a correct pricing policy of renewable energy sources with respect to nuclear energy and fossil fuel. The latter energy sources have been favoured in the past. In addition, an open market policy, the restructuring or conversion of existing international energy institutes, and international treaties for the protection of the natural environment are needed in view of achieving the zero carbon dioxide emission objective. (A.S.)

  14. Devices for separation of particle emissions from biofuel plants smaller than 10 MW - Today's technology and potential for development; Stoftreningsteknik foer biobraensleanlaeggningar mindre aen 10 MW - tekniklaege och utvecklingspotential

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart; Martinsson, Lars; Tullin, Claes; Johansson, Linda

    2002-09-01

    The objective of this report is to compile a survey of available technologies for separation of particles and to present research and development in the area of particle separation for biofuel plants smaller than 10 MW. Technical and economical opportunities to transfer the technologies used today in larger plants to smaller ones are discussed. As the health effects of aerosols are under investigation, the issue of separation of particle less than 1 {mu}m is especially scrutinised. Current research concerning the particle size distribution at different load is presented. The project has been realised partly as a literature survey, partly through contacts with scientists in the area and manufacturers of devices for flue gas cleaning and particle separation. The target group is owners of plants, manufacturers of devices and authorities with responsibility for air quality and energy planning. Fabric filters is an established technology that can perform low particle emissions (less than a few mg/m{sup 3}) at a low cost also at smaller plants. Also electrostatic precipitators can perform the same low emissions, but the cost for installation at smaller plants has to be reduced. Both these technologies can, properly designed, separate submicron particles. Cyclones can today as its best perform a little less than 100 mg/m{sup 3} at 13 % CO{sub 2}. Cyclones are used together with other technologies to achieve high separation at a low cost. Cyclones are attractive because of their simplicity and low price, but because they use inertia forces as separation mechanism, they can never separate submicron particles. Conventional scrubbers and flue gas condensers are capable of separation of submicron particles but the efficiency is lower compared with fabric filters and electrostatic precipitators. The emission level after a scrubber/flue gas condenser is about 70 - 80 mg/m{sup 3} at 13 % CO{sub 2}. New technologies for separation of particles oriented towards smaller plants and

  15. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  16. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  17. Energy Statistics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources

  18. Energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Develi, Abdulkadir; Kaynak, Selahattin (eds.)

    2012-07-01

    Energy resources, the basic input in every area of the economy, have a fundamental function for society's welfare. Traditional energy resources are, however, rapidly decreasing. Energy supply has been falling behind in meeting global demand, and is causing increased focus on efficiency and economy concepts in recent energy policies. Since the existing energy resources are not spread evenly among the countries, but instead are concentrated in certain regions and countries, a monopolistic situation arises. Equally, supply assurance is an issue, since the energy supply is held by certain regions and countries who have monopolistic pricing power. Both the EU and many other countries are studying how to marketize energy. This book focuses on the importance of energy and the problems posed by it. It will be useful for the academic community, related sectors and decision makers.

  19. Energy Analysis.

    Science.gov (United States)

    Bazjanac, Vladimir

    1981-01-01

    The Aquatic Center at Corvallis (Oregon) is analyzed for energy use. Energy conservation in the building would be accomplished best through heavy insulation of exterior surfaces and the maximization of passive solar gain. (Author/MLF)

  20. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  1. Energy consumption and energy prices

    International Nuclear Information System (INIS)

    Bentzen, J.

    1993-01-01

    Data are presented on energy consumption and energy prices related to a number of OECD (Organisation for Economic Co-operation and Development) lands covering the period 1951-1990. The information sources are described and the development of energy consumption and prices in Denmark are illustrated in relation to these other countries. The energy intensity (the relation between energy consumption and the gross national product) is dealt with. Here it is possible to follow development during the whole post-war period. It is generally understood that Denmark saved large amounts of energy after 1973-74 but, taken over the whole post-war period, savings and decline in energy-gross national product relations are less dramatic compared to conditions in other OECD countries. Energy coefficients or elasticities show the relative rise in consumption compared to the relative rise in gross national product (growth rate). This is shown to be typically unstable and an eventual connection with the amount of energy price increase and/or the growth rate of the national economy is considered. Results of Granger causuality tests on energy consumption, national income and energy prices are presented. Effective energy prices were very low in Denmark up to 1970 when they suddenly began to increase. Since the oil crisis Denmark's energy consumption has fallen whereas the other countries have used rather more energy than before. Effective promotion of energy savings must be seen in relation to the fact that the 1970 basis level of energy consumption and intensity was unusually high. The high effective energy prices have also encouraged energy savings in Denmark. (AB)

  2. Energy trading

    International Nuclear Information System (INIS)

    Beckmann, K.; Schroeter, S.

    2009-01-01

    Two brief articles and two interviews deal with the subject of energy trading. Power and gas exchanges in Europe multiply, but, experts say, we are nowhere near a mature, integrated European energy market as yet. Trading regulations need to be improved and harmonised and interconnections expanded. European Energy Review assesses the state of energy trading in Europe and interviews the ceo's of NordPool (the Nordic power exchange) and APX (Amsterdam Power Exchange)

  3. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  4. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  5. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  6. 'Finnova Development Group'. Comb Configurated Costumer-close Network Installations with Underground Service Boxes; 'Finnova' Innovativ Montage och Systemloesning foer Fjaerrvaermeanslutning av Villaomraade. Huvudloesning 'Kamfoerlaeggning med Serviceskaap'

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundson, Tommy [AaF-Process AB, Stockholm (SE)] (and others)

    2006-07-15

    possibility for a high degree of standardisation. The main reason for abandoning the classical DH substation is purely economical. According to available statistics, the conventional Swedish substation normally counts for nearly 40 % of the total costs. Thus, the DH substation is moved out from the customer's house. The DH energy supply is transformed, checked and metered before it is delivered to the premises of the end-user. The costumer will be given 'four holes in the wall' - holes that at demand supply refined hot water directly to existing radiator- and hot water systems. In addition to the already mentioned low investment costs, the two most important advantages are the following: The DH supplier, not the costumer, will be able to perform a life long supervision, and maintenance of the DH S/C box as a whole. All maintenance work and metering can be performed without any inconvenience for the costumer. He will be given 'four pipes through the wall' and more indoor space and a better indoor climate. For the DH supplier: The most evident improvement is the low investment costs. It is substantially lower than to day's best choice. The main reason for this that the all building site work are harmonised to be performed with high continuity and with minimized open excavation time. Also the possible drawbacks are given in the report. For the costumer the S/C box, as situated in the prototype, may be a hard to like new part of a since long familiar and beloved garden view. Another drawback is of course that the heat losses from the box to the house are added to the billed heat consumption. As part of the report, advantages and drawbacks for three different solutions have been listed and discussed. The three approaches are: The Finnova AF, one traditional Swedish high temperature system (temperatures up to + 120 C), with individual substation and a low temperature system called EPSPEX, supported by a common substation. In the aggregated evaluation

  7. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  8. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  9. Energy taxation

    International Nuclear Information System (INIS)

    2001-06-01

    This study presents the energy taxation, as an energy policy tool, applied to the fossil fuels and to the electric power. Taxes, tax revenue and taxation in function of the energy content or the carbon content are discussed. Many tables and statistical data illustrate this analysis and allow the comparison with other countries in Europe. (A.L.B.)

  10. Energy research

    International Nuclear Information System (INIS)

    1979-03-01

    Status reports are given for the Danish Trade Ministry's energy research projects on uranium prospecting and extraction, oil and gas recovery, underground storage of district heating, electrochemical energy storage systems, wind mills, coal deposits, coal cambustion, energy consumption in buildings, solar heat, biogas, compost heat. (B.P.)

  11. ENERGY POLICY

    OpenAIRE

    Avrupa Topluluğu Enstitüsü, Marmara Üniversitesi

    2015-01-01

    John Mitchell considers EU policies on energy supply security; Tera Allas on energy security of supply in the UK: the way forward; Peter Odell assesses public/private partnerships on the UKCS; Olivier Appert provides an overview of French energy policy.

  12. Energy audit for energy conservation

    International Nuclear Information System (INIS)

    Kanetkar, V.V.

    1996-01-01

    Energy audit is a very effective management tool for betterment of plant performance. The energy audit has a problem solving approach rather than a fault finding technique. The energy conservation is a rational use of energy. It has been the experience of the developed countries that energy is one issue which results into cost savings with relatively much less efforts/cost in comparison with other resources used in production, development and adoption of energy efficiency equipment and practices in most of production process has been the result of same technique. (author). 1 tab

  13. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  14. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  15. Energy 93, energy in Israel

    International Nuclear Information System (INIS)

    Shilo, D.; Bar Mashiah, D.; Er-El, J.

    1993-01-01

    For the first time this report includes a chapter entitles 'energy and peace'. Following is an overview of israel's energy economy and some principal initiatives in its various sectors during 1992/93 period. 46 figs, 13 tabs

  16. Energy catastrophes and energy consumption

    International Nuclear Information System (INIS)

    Davis, G.

    1991-01-01

    The possibility of energy catastrophes in the production of energy serves to make estimation of the true social costs of energy production difficult. As a result, there is a distinct possibility that the private marginal cost curve of energy producers lies to the left or right of the true cost curve. If so, social welfare will not be maximized, and underconsumption or overconsumption of fuels will exist. The occurrence of energy catastrophes and observance of the market reaction to these occurrences indicates that overconsumption of energy has been the case in the past. Postulations as to market reactions to further energy catastrophes lead to the presumption that energy consumption levels remain above those that are socially optimal

  17. Renewable Energy

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Bent Sorensen’s Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition, continues the tradition by providing a thorough and current overview of the entire renewable energy sphere. Since its first edition, this standard reference source helped put...... renewable energy on the map of scientific agendas. Several renewable energy solutions no longer form just a marginal addition to energy supply, but have become major players, with the promise to become the backbone of an energy system suitable for life in the sustainability lane. This volume is a problem...... structured around three parts in order to assist readers in focusing on the issues that impact them the most for a given project or question. PART I covers the basic scientific principles behind all major renewable energy resources, such as solar, wind, and biomass. PART II provides in-depth information...

  18. Energy needs

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1982-06-01

    There seems to be a trend towards expecting energy conservation to be a panacea for the world's ills. In fact, a global perspective on energy needs shows that more, not less, energy is needed and technological innovation in energy sources is essential in order to meet the needs of more than just the developed countries. Energy-intensive technology is the amplification of our natural resources rather than their depletion. A fundamental bioethical principle must be established if we are to analyze and organize scientific evidence about hazards from currently feasible energy resources, and separate genuine from counterfeit claims to credibility. In particular, public fears about radiation hazards and radioactive waste disposal are influenced too much by rhetorical cleverness and forensic skills of a vociferous minority. Potential hazard management is ethically equitable only if it is proportioned to actual basic harm that can be identified and reduced by expenditures of human effort, time and money

  19. Evaluating energy

    International Nuclear Information System (INIS)

    Gates, D.M.

    1985-01-01

    Intended as a primer on the relationship between the development and use of various energy resources and resulting ecological consequences, the book is designed for a course that can serve students with or without much background in the biological or physical sciences. A review is presented of the major concepts used in atmospheric science, the general picture of energy principles and laws, the status of energy resources both in the United States and worldwide, and an analysis of how questions of energy demand are approached. Three classes of energy sources are addressed: solar, biomass, and coal. The ecological impacts of carbon dioxide, acid deposition, petroleum, electrical power-generation, and nuclear technology are discussed. Also given is a discussion of alternative technologies in energy production

  20. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  1. Transporation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Clifford Mirman; Promod Vohra

    2012-06-30

    This Transportation Energy Project is comprised of four unique tasks which work within the railroad industry to provide solutions in various areas of energy conservation. These tasks addressed: energy reducing yard related decision issues; alternate fuels; energy education, and energy storage for railroad applications. The NIU Engineering and Technology research team examined these areas and provided current solutions which can be used to both provide important reduction in energy usage and system efficiency in the given industry. This project also sought a mode in which rural and long-distance education could be provided. The information developed in each of the project tasks can be applied to all of the rail companies to assist in developing efficiencies.

  2. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  3. Dark energy

    International Nuclear Information System (INIS)

    Wang, Yun

    2010-01-01

    Dark energy research aims to illuminate the mystery of the observed cosmic acceleration, one of the fundamental problems in physics and astronomy today. This book presents a systematic and detailed review of the current state of dark energy research, with the focus on the examination of the major observational techniques for probing dark energy. It can be used as a textbook to train students and others who wish to enter this extremely active field in cosmology.

  4. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  5. Energy knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Shove, E. [Lancaster Univ., Centre for the Study of Environmental Change (United Kingdom)

    1997-11-01

    James Thurber`s grandmother `lived the latter years of her life in the horrible suspicion that electricity was dripping invisibly all over the house`. The idea that electricity might leak from empty light sockets is both bizarre and at the same time strangely plausible. Delivered in a variety of forms, gas, electricity, oil, coal, wood etc.; energy permits countless services and is embodied in almost everything we find around us. Both everywhere, and nowhere, it remains a mysterious if not magical feature of everyday life. So the image of leaking light sockets is appealing not just because it is a quaintly ridiculous idea conjured up by a confused old lady but because it precisely articulates lingering uncertainty about the intangible qualities of this most pervasive resource. Taking the invisibility of energy as a point of departure, this paper explores the different kind of knowledge we have of energy use. Although the technologies of domestic energy measurement are familiar enough, we know what a meter looks like and we all get energy bills, it still requires an act of faith to believe in the `reality` of energy consumption. Those who have learned the official languages of energy efficiency have access to richer vocabularies of revealing terminology and can talk more confidently in terms of kilowatts, U values and the rest. But how do these different knowledge relate, and how do different ways of knowing energy influence perceptions of the possibilities and problems of energy conservation? In exploring these issues, the paper re-examines theories of energy and knowledge implicit in energy policy and energy related research. (au) 22 refs.

  6. Applied energy an introduction

    CERN Document Server

    Abdullah, Mohammad Omar

    2012-01-01

    Introduction to Applied EnergyGeneral IntroductionEnergy and Power BasicsEnergy EquationEnergy Generation SystemsEnergy Storage and MethodsEnergy Efficiencies and LossesEnergy industry and Energy Applications in Small -Medium Enterprises (SME) industriesEnergy IndustryEnergy-Intensive industryEnergy Applications in SME Energy industriesEnergy Sources and SupplyEnergy SourcesEnergy Supply and Energy DemandEnergy Flow Visualization and Sankey DiagramEnergy Management and AnalysisEnergy AuditsEnergy Use and Fuel Consumption StudyEnergy Life-Cycle AnalysisEnergy and EnvironmentEnergy Pollutants, S

  7. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  8. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  9. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  10. Soft energy

    International Nuclear Information System (INIS)

    Lovins, A.B.

    1978-01-01

    A compact energy concept opposes the existing development course of energy supply. This concept does without projects for opening-up oil and gas occurrences in the Arctic and in offshore seas, and also without a further extension of nuclear energy. Energy consumption is to be stabilized in the long-run on today's level by a utilization of energy which is to be substantially improved in a technical and economic respect. Oil and gas are to be replaced by 'soft', regenerative, mainly decentralized energy sources, in the course of about 30 years time. Solar energy is to be used for heating and service water, biogas as motor fuel being generated primarily from reference which will come from agriculture and forestry. Wind and hydroelectric power are to be used for generating electricity. In the first part, concepts for the present and future energy policy are discussed, in the second part, a lot of figures are given, supporting the respective arguments. In the third part the relationships between social and energy-economic developments are pointed out. (UA) [de

  11. Energy fiscality

    International Nuclear Information System (INIS)

    2001-07-01

    This report gives a general presentation of energy fiscality in France: taxes on energy, mechanisms of stabilization of government's fiscal incomes in case of significant oil prices change, some particularities of energy taxes, the fiscality according to the energy content and according to the carbon content. The fiscality of petroleum products (automotive fuels and other products), natural gas and electricity in France is presented in appendixes together with a comparison of the fiscality in use in the rest of Europe (automotive fuels, domestic fuels, natural gas and electricity for domestic use and for industrial use). (J.S.)

  12. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  13. Methodology for Environmental Impact Assessment; Metodik foer miljoekonsekvensbedoemning

    Energy Technology Data Exchange (ETDEWEB)

    Malmlund, Anna (Structor Miljoebyraan Stockholm AB (Sweden))

    2010-12-15

    This report is an appendix to 'Environmental Impact Assessment Interim storage, encapsulation and disposal of spent nuclear fuel'. The appendix presents the methodology and criteria used in support investigations to conduct impact assessments.

  14. Statistics 2003 - in nuclear medicine; Isotopstatistik 2003 - foer nukleaermedicinsk verksamhet

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene; Richter, Sven

    2004-12-01

    In this compilation the use of radioactive substances in therapies and in vivo examinations during 2003 at all hospitals in Sweden is presented. For each nuclide, examination type, chemical form, way of administration, number of reporters, total number of examinations, mean activity used, and minimum and maximum activity is presented. Of the compilation it becomes known that during 2003 approximately 103,000 examinations and 3,300 therapies were performed. The total dose to the population from diagnostic procedures was 452 manSv.

  15. Small scale pelletizing equipment for agriculture; Smaaskalig pelleteringsanlaeggning foer lantbruket

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne (The Swedish Environmental Research Inst. Ltd., Stockholm (Sweden)); Wallin, Mikael (Sweden Powers Chippers AB, Boraas (Sweden))

    2009-06-15

    Refining agricultural raw materials is one way for farmers to increase the value of their products. For example, briquettes or pellets made from straw, reed canary grass or hemp can sell for a higher price than in loose or baled forms. The aim of this project was to develop and build a plant for small-scale production of pellets on the farm. Working together with the farmer, the plant would then be tested and adapted for small-scale production of pellets from straw, reed canary grass and hemp. The project also aimed to investigate and summarise suitable systems and solutions for breaking up bales in preparation for use in the pellets module. A pelleting system has been developed and built as a container module (measuring 6 x 2.80 x 2.50 m) by Sweden Power Chippers (SPC). The container system includes a fuel store with push floor, a grinder, an SPC pellet press (pp150, capacity 150 kg/hour for woodbased material), a conveyor belt and a cooling system. The practical operation of the plant was tested on two Swedish farms: Laattra gaard in Vingaaker and Ek gaard in Vara. The bales were broken up in preparation for pelleting using a straw mill of model Tomahawk 505M. The project has demonstrated that the SPC plant has the capacity to be used for agricultural pelleting of fuels from straw, canary reed grass and hemp. Some modification and continued adjustment of the feed system for the fuel remains to be done in order to optimise and ensure the reliability of the pelleting process. A certain amount of modifications to the plant is required to enable cost-effective transportation between different locations. Tests showed that each batch of fuel was unique, even from the same raw material, and that optimisation of the dies is necessary for each specific case. Training is required to run the plant. The farmers have been able to run the plant themselves, for example, starting up the plant, changing the sieve on the grinder, changing dies etc. In order for such small-scale pelleting plants to be economically viable, cheap raw materials or good prices for the final product (pellets) is necessary. The agricultural raw material that is currently considered to have the best economic potential for small-scale processing is straw (for bedding pellets). Since the plant is suitable for mobile use, it can be used for several purposes, for example production of bedding pellets in the autumn and fuel pellets in the spring and summer

  16. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  17. Units for radiation protection work; Storheter foer straalskyddsarbete

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, L

    1997-06-01

    ICRU has defined special measurable (operational) quantities for radiation protection. A consequence of using the operational quantities is that hand-held and personal dosemeters can give different measuring results in the same radiation situation. The differences vary and are caused by the geometry of the radiation field. The units have well documented relations to e.g. the ICRP effective dose and equivalent dose to an organ or tissue. Therefore, it is possible to estimate these doses from a measured value of e.g. the ambient dose equivalent. ICRU and ICRP have recently reviewed these relations in two important commonly issued reports (Report 57 and Publication 74). This report tries to show the value of understanding these units and their relations and is primarily meant to be used for educational purposes. 11 refs.

  18. Water and steam sampling systems; Provtagningssystem foer vatten och aanga

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Mats

    2009-10-15

    The supervision of cycle chemistry can be divided into two parts, the sampling system and the chemical analysis. In modern steam generating plants most of the chemical analyses are carried out on-line. The detection limits of these analyzers are pushed downward to the ppt-range (parts per trillion), however the analyses are not more correct than the accuracy of the sampling system. A lot of attention has been put to the analyzers and the statistics to interpret the results but the sampling procedures has gained much less attention. This report aims to give guidance of the considerations to be made regarding sampling systems. Sampling is necessary since most analysis of interesting parameters cannot be carried out in- situ on-line in the steam cycle. Today's on-line instruments for pH, conductivity, silica etc. are designed to meet a water sample at a temperature of 10-30 deg C. This means that the sampling system has to extract a representative sample from the process, transport and cool it down to room temperature without changing the characteristics of the fluid. In the literature research work, standards and other reports can be found. Although giving similar recommendations in most aspects there are some discrepancies that may be confusing. This report covers all parts in the sampling system: Sample points and nozzles; Sample lines; Valves, regulating and on-off; Sample coolers; Temperature, pressure and flow rate control; Cooling water; and Water recovery. On-line analyzers connecting to the sampling system are not covered. This report aims to clarify what guidelines are most appropriate amongst the existing ones. The report should also give guidance to the design of the sampling system in order to achieve representative samples. In addition to this the report gives an overview of the fluid mechanics involved in sampling. The target group of this report is owners and operators of steam generators, vendors of power plant equipment, consultants working in Sweden that come in contact or are involved in cycle chemistry

  19. Substrate Handbook for Biogas Production; Substrathandbok foer biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My; Uldal, Martina (AnoxKaldnes AB, Lund (Sweden))

    2009-02-15

    Today, co-digestion plants in Sweden treat a broad range of different substrates, of which some have not previously been used for anaerobic digestion. The major part of this organic waste derives from households, restaurants, food industries and farms. When evaluating a new substrate as feed for anaerobic digestion, several different aspects need to be taken into consideration, such as anaerobic degradability, TS/VS content, nutrient composition and risk for mechanical problems. Consequently, there is a need for practical guidelines on how to evaluate new substrates as raw materials for biogas production, including not only gas yield but also what practical and microbiological problems that may arise when the specific substrate is treated together with other substrates in the plant. The aim with this handbook is to provide a basis on how to evaluate new substrates as feed for anaerobic digestion. The intention is that this material will save time and effort for the personnel at the plant when they come in contact with new types of waste. Also, the aim is to facilitate the process of identifying new substrates within the ABP-regulation (1774/2002) and what requirements are then demanded on handling. The work with the handbook has been divided in three different parts; (1) an extensive literature study and a compilation of the achieved results, (2) interviews with personnel at most of the Swedish co-digestion plants to identify substrates and problems of interest, and (3) lab tests of selected substrates. The lab tests included Bio Methane Potential (BMP) tests as well as a simple characterization of each substrate based on fat/protein/carbohydrate content. All data origins from anaerobic digestion within the mesophilic temperature range, but the results and discussion are applicable also for thermophilic anaerobic digestion. The result of this work is a written report together with an Excel file which are to be directly used by the biogas plants as a basis in the every day work. The Excel file is intended to work as a living document to be incorporated in calculation templates etc, where new data and information can be added gradually. It includes approximately 40 different substrates, for which the following parameters are given; TS-content, VS-content, methane content, gas yield, methane yield, nutrient composition, ABP-category, possible mechanical problems, other comments and source of information. In addition, the results from the BMP-tests and characterization of in total around 20 different substrates are given. These results points to the difficulty of proposing the final methane production for a substrate only from a rough characterization based on fat/protein/carbohydrate content

  20. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  1. Renewable Energy

    NARCIS (Netherlands)

    Turkenburg, W.C.; Arent, D.; Bertani, R.; Faaij, A.P.C.; Hand, M.; Krewitt, W.; Larson, E.D.; Lund, J.; Mehos, M.; Merrigan, T.; Mitchell, C.; Moreira, J.R.; Sinke, W.C.; Sonntag-O'Brien, V.; Thresher, B.; Sark, W.G.J.H.M. van; Usher, E.

    2012-01-01

    This chapter presents an in-depth examination of major renewable energy technologies, including their installed capacity and energy supply in 2009 , the current state of market and technology development, their economic and financial feasibility in 2009 and in the near future, as well as major

  2. Renewable energy

    DEFF Research Database (Denmark)

    Olsen, Birgitte Egelund

    2016-01-01

    Renewable energy projects are increasingly confronted by local opposition, which delays and sometimes even prevents their implementation. This reflects the frequent gap between support for the general idea of renewables as a strategy for reducing carbon emissions, and acceptance of renewable energy...

  3. Energy sources

    International Nuclear Information System (INIS)

    Anon.

    1972-01-01

    A study carried out around 1970 on the world energy future is described. One method is based on world energy evaluations extrapolated to 1985 and 2000. The other one is prospective and tries to account for changes in life style and technology and relations with the developing countries [fr

  4. Nuclear energy

    International Nuclear Information System (INIS)

    Reuss, Paul

    2012-01-01

    With simple and accessible explanations, this book presents the physical principles, the history and industrial developments of nuclear energy. More than 25 years after the Chernobyl accidents and few months only after the Fukushima one, it discusses the pros and cons of this energy source with its assets and its risks. (J.S.)

  5. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  6. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  7. News: energies

    International Nuclear Information System (INIS)

    Willot, D.

    2003-01-01

    At the beginning of 2003 the French government launched a national debate about the energies. 6 conferences are due to be held during the first semester. The opening conference in Paris was dedicated to the distribution of energy resources in the world, to the struggle against climate warming and to the opening and deregulation of markets. The following conferences that will take place in Strasbourg, Nice, Bordeaux and Rennes will focus on topics such as controlling the energy consumption in industries, companies and households, and reviewing the pros and cons of the different sources of energy. The ending conference will be held in Paris, the participants will try to find consistencies in the previous debates and will draw some conclusions that will help the French authorities to define the next energy policy. (A.C.)

  8. Energy alternatives

    International Nuclear Information System (INIS)

    1981-01-01

    English. A special committe of the Canadian House of Commons was established on 23 May 1980 to investigate the use of alternative energy sources such as 'gasohol', liquified coal, solar energy, methanol, wind and tidal power, biomass, and propane. In its final report, the committee envisions an energy system for Canada based on hydrogen and electricity, using solar and geothermal energy for low-grade heat. The committe was not able to say which method of generating electricty would dominate in the next century, although it recommends that fossil fuels should not be used. The fission process is not specifically discussed, but the outlook for fusion was investigated, and continued governmental support of fusion research is recommended. The report proposes some improvements in governmental energy organizations and programs

  9. Energy Monitoring

    DEFF Research Database (Denmark)

    Hansen, Claus T.; Madsen, Dines; Christiensen, Thomas

    Energy measurement has become an important aspect of our daily lives since we have learned that energy consumption, is one of the main source of global warming. Measuring instruments varies from a simple watt-meter to more sophisticated microprocessor control devices. The negative effects...... that fossil fuels induce on our environment has forced us to research renewable energy such as sunlight, wind etc. This new environmental awareness has also helped us to realize the importance of monitoring and controlling our energy use. The main purpose in this research is to introduce a more sophisticated...... but affordable way to monitor energy consumption of individuals or groups of home appliances. By knowing their consumption the utilization can be regulated for more efficient use. A prototype system has been constructed to demonstrate our idea....

  10. Energy questions

    International Nuclear Information System (INIS)

    1980-01-01

    This Working Paper is about the energy crisis. Its chief aim is to give a lot of information about the various sources of energy and the problems about the supply and the use of them. It is in five parts. Part One illustrates the importance of energy in the world economy and particularly in Britain. Part Two describes the various sources of energy; coal, oil, gas, electricity and nuclear, and discusses the renewable sources and energy conservation. Part Three gives arguments for and against a nuclear future. Part Four describes the debate in the Churches on the nuclear option and Part Five sets out some theological and ethical themes relevant to responsible decision making on these matters. (author)

  11. Energy Magazine

    International Nuclear Information System (INIS)

    1999-01-01

    The present issue of the Energy Magazine is including a summary of the six years of implementation of the energy and sustainable development project, which also includes the participation of the Economic Commission for Latin America and the Caribbean (ECLAC). The substantially parameters and indicators defined by this project have been applied in case studies for Bolivia, Brazil, Colombia, Chile and El Salvador and have yielded sound results. A few pages are dedicated to highlight the preliminary results stemming from the initiative aimed at promoting hydropower projects that OLADE started with the Government of Quebec last year. The main themes included are: Energy efficiency in OLADE-GTZ cooperation. Liberalization and energy development, Energy statistics

  12. Energy quality

    International Nuclear Information System (INIS)

    Stern, David I.

    2010-01-01

    This paper develops economic definitions of energy quality for individual fuels and energy aggregates. There are use- and exchange-value concepts, as well as marginal and total measures, of energy quality. A factor augmentation or quality coefficients approach corresponds to the use-value definition while indicators based on distance functions and relative prices are exchange-value based definitions. These indicators are identical when the elasticity of substitution between fuels is infinity but diverge or cannot be computed for other interfuel elasticities of substitution. When the elasticity of substitution is zero only the quality coefficients approach is defined. I also show that 1) the ratio of an energy volume index to aggregate joules cannot be considered a complete indicator of aggregate energy quality as it does not account for quality changes in the component fuels 2) demand curve integrals do not provide information on relative use-values or fuel qualities when the elasticity of substitution is unity or less. (author)

  13. Energy quality

    Energy Technology Data Exchange (ETDEWEB)

    Stern, David I. [Arndt-Corden Division of Economics, Crawford School of Economics and Government and Centre for Applied Macroeconomic Analysis, Australian National University, Canberra, ACT 0200 (Australia)

    2010-05-15

    This paper develops economic definitions of energy quality for individual fuels and energy aggregates. There are use- and exchange-value concepts, as well as marginal and total measures, of energy quality. A factor augmentation or quality coefficients approach corresponds to the use-value definition while indicators based on distance functions and relative prices are exchange-value based definitions. These indicators are identical when the elasticity of substitution between fuels is infinity but diverge or cannot be computed for other interfuel elasticities of substitution. When the elasticity of substitution is zero only the quality coefficients approach is defined. I also show that 1) the ratio of an energy volume index to aggregate joules cannot be considered a complete indicator of aggregate energy quality as it does not account for quality changes in the component fuels 2) demand curve integrals do not provide information on relative use-values or fuel qualities when the elasticity of substitution is unity or less. (author)

  14. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  15. Preliminary plan for decommissioning - repository for spent nuclear fuel; Preliminaer plan foer avveckling - slutfoervar foer anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Hallberg, Bengt; Tiberg, Liselotte (Studsvik Nuclear AB, Nykoeping (Sweden))

    2010-06-15

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable for the closure is linked to when the last nuclear reactor is taken out of service. Current plans are based on 50-60 years operation of NPPs. The decommissioning of the disposal facility can begin in early 2070s and is expected to take about 15 years.

  16. Energy sector

    International Nuclear Information System (INIS)

    1995-01-01

    Within the framework of assessing the state of the environment in Lebanon, this chapter describes primary energy demand, the electricity generating sector and environmental impacts arising from the energy sector.Apart from hydropower and traditional energy sources, which together represent 1.7% of energy consumption, all energy in Lebanon derives from imported petroleum products and some coal.Tables present the imports of different petroleum products (Gasoil, Kerosene, fuel oil, coal etc...), their use, the energy balance and demand.Energy pricing and pricing policies, formal and informal electricity generations in Lebanon are described emphasized by tables. The main environmental impacts are briefly summarized. Thermal power stations give rise to emissions of Sulphur dioxide (SO 2 ), particulates, oxides of nitrogen (NO x ) and CO/CO 2 from combustion of primary fuel informally generated power from both industry and domestic consumption produce particulate materials and emissions of NO x and SO 2 projected emissions of SO 2 from the power sector with the present generating capacity and with the new combined cycle power plants in operation are shown. Other environmental impacts are described. Recommendations for supply and environment policy are presented

  17. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  18. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  19. Energy perspectives

    International Nuclear Information System (INIS)

    Tissot, B.

    2005-01-01

    In France and in Europe, the political vision of energy production has not yet been taken to heart as much as its importance merits, despite a certain awareness of the gravity of the phenomena within the population. It would already be very difficult to halve the consumption of fossil fuels in France in 2050, without a swift and profound change in our energy-consumption choices (in particular in transport) and a considerable research effort. To divide it by four seems unrealistic, since France, unlike other countries, has already benefited from the transition from electricity produced from fossil fuels to nuclear electricity which does not emit CO 2 . A major evolution in energy, in Europe and throughout the World, is inevitable in the course of the century. To prevent this from being too violent and painful, a process of fundamental research and technological development should be launched forthwith, in all fields of energy production, storage and use, with a large effort supported by major research programmes. Some recommendations are given for the main research fields that should be: capture and long term storage of CO 2 , energy savings in transport, energy supply to large cities and nuclear power plant enhancement, hydrogen storage, wind energy and its unavailability problem, use of forest resources, photovoltaic electricity in rural and isolated regions, temporary storage of electricity

  20. Hydro-energy; Energie hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P. [Electricite de France (EDF), 75 - Paris (France); Tardieu, B. [Coyne et Bellier, 92 - Gennevilliers (France)

    2005-07-01

    The first part of this study concerns the different type of hydraulic works. The second part presents the big hydro-energy, its advantages and disadvantages, the industrial risks, the electric power transport network, the economy and the development perspectives. The third part presents the little hydro-energy, its advantages and disadvantages, the decentralized production and the development perspectives. (A.L.B.)

  1. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  2. Energy swaps

    International Nuclear Information System (INIS)

    Kellett, Jack

    1999-01-01

    This chapter reviews the range of available energy swap structures giving details of the plain vanilla, differential, margin or crack, participation, double-up, extendable, pre-paid, off-market, and curve-lock and backwardation swaps. The application of energy swaps, end-user benefits and concerns, the structure of the swap market, comparisons with other swap markets, market sectors, and energy swaps in financing structures are described. The role of the intermediary, and future developments are examined. The pricing of a swap and success in the swaps market are discussed

  3. Energy materials

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2011-01-01

    In an age of global industrialisation and population growth, the area of energy is one that is very much in the public consciousness. Fundamental scientific research is recognised as being crucial to delivering solutions to these issues, particularly to yield novel means of providing efficient, ideally recyclable, ways of converting, transporting and delivering energy. This volume considers a selection of the state-of-the-art materials that are being designed to meet some of the energy challenges we face today. Topics are carefully chosen that show how the skill of the synthetic chemist can

  4. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  5. Clean energy, renewable energies; Energie propre, energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This document is the compilation of the 4 issues of the 'energie propre - energie renouvelables' newsletter published by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE). Each issue is a technical file presenting a particular facility or installation: the pico-hydraulic power plant of the Allos lake (Mercantour, French Alps), the 'Chute de la Guerche' and 'Chute de Chastillon' hydraulic power plant exploited by the Isola town; the pico-hydraulic power plant of the drinkable water network of Hameau des Agnielles village, the direct solar thermal floor. (J.S.)

  6. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  7. Energy generation

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available Current perceptions conjure images of photovoltaic panels and wind turbines when green building or sustainable development is discussed. How energy is used and how it is generated are core components of both green building and sustainable...

  8. Renewable Energies

    Science.gov (United States)

    Ditterich, Barbara

    2010-05-01

    The purpose of this project was to expose middle school students to a variety of alternative energy sources with a variety of practical applications. It was part of an Austria-wide IMST-project (IMST stands for innovation makes students strong). As part of this exposure, several classes of about 80 students visited a number of locations for alternative energy resources, including a hydroelectric site, a biological energy plant, a wind turbine manufacturing plant, a water purification station as well as others others. A short film was made to document the project in order that non-participants in the class could also gain knowledge on alternative energy. The three minute film will be shown at the poster.

  9. Energy Industry

    National Research Council Canada - National Science Library

    Butler, James; Bekbenbetov, Marat; Coffman, Katherine; Davies, Kirk; Farrar, Michael R; Fletcher, Scott N; Hall, Robert; Kljajic, Senad; Koprucu, Feza; Leek, Kevin

    2007-01-01

    ... technologies and use of alternative fuels. Specifically, the national energy policy should lead to one air quality standard for automobile emissions, articulate a clear position on reducing greenhouse gas emissions, increase the diversity...

  10. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  11. Energy transition

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The yearly environmental conference will hold on September 2013 to evaluate the negotiations led at the national and local levels for december 2012. The government will have then to decide of an energy programming bill which will be submitted to the Parliament at the beginning of the year 2014. 30 main propositions have emerged of the decentralised debates. One of them is the ecological taxation which raise the question of the gas oil and petrol taxation. The current environmental taxes are for almost three quarters of them taxes on energy consumptions and mainly on fossil energies. The Economic, Social and Environmental Council, gives his opinion on the way to find resources to ensure the ecological and energy transition while reducing the public deficit of the State. (O.M.)

  12. Energy coppice

    International Nuclear Information System (INIS)

    Mitchell, C.P.

    1991-01-01

    One form of renewable energy production involves the growing of energy coppice on agricultural land. It is important as it can be grown on those areas of agricultural land which are surplus to agricultural production. Hence it can be seen as an alternative farm crop, and as such, a possible solution to the problem of agricultural surpluses as well as providing a source of energy. Studies have indicated that up to one million hectares of land surplus to agricultural production may be suitable for growing energy coppice. However, its development as an agricultural crop will only happen if it can be produced at costs competitive with alternative fuels and there is a reliable and long term market offering good returns. (author)

  13. Solar Energy

    Science.gov (United States)

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  14. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  15. Energy futures

    International Nuclear Information System (INIS)

    Treat, J.E.

    1990-01-01

    This book provides fifteen of the futures industry's leading authorities with broader background in both theory and practice of energy futures trading in this updated text. The authors review the history of the futures market and the fundamentals of trading, hedging, and technical analysis; then they update you with the newest trends in energy futures trading - natural gas futures, options, regulations, and new information services. The appendices outline examples of possible contracts and their construction

  16. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  17. Free energy

    International Nuclear Information System (INIS)

    Holm, Oeystein B.

    2006-01-01

    Norway has fallen behind in the development of district heating and use of solar energy compared to Sweden and Denmark. It is a myth that Norway has less hours of sun than its neighbours; southern and eastern Norway has equally good conditions as areas in Sweden and Denmark that have large solar collector installations used for district heating. Benefits of the solar energy technology are highlighted, especially environmental aspects (ml)

  18. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  19. Energy trading

    International Nuclear Information System (INIS)

    Glachant, J.M.; Kimman, R.; Schweickardt, H.E.

    2001-05-01

    This document brings together 18 testimonies of experts about energy trading: 1 - the energy trading experience on European deregulated markets: structure of deregulated energy markets in Europe, case study: a two years experience of a power exchange in western Europe, case study: European energy exchanges (experience of spot and future trading), case study: risk management on energy deregulated markets; 2 - the trading activity environment and realities in France: the French electrical law and the purchase for resale, experience feedback: status after 3 months of trading in France (the first experience of a French producer), the access to the power transportation network, which legal constraints for trading in France, the access of eligible clients to the French power market, conditions of implementation of a power exchange market in France, which real trading possibilities in France for producers and self-producers in the legal frame, case study: the role of trading in the company (main part or link to process), convergence of gas and electricity markets, gas-electricity trading: which pricing models; 3 - risk management and use of new technologies potentiality, the results outside the French borders: case study: what differences between the European and US markets, prices volatility and commodity risk management: towards the on-line trading, role and developments of E-business in energy trading, how to simplify trade in a liberalized market. (J.S.)

  20. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  1. Energy awareness

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The objective of the Symposium for Public Awareness on Energy was to provide an information exchange among the members of the technical community and the public, civic, fraternal, service, and labor organizations on timely energy-related issues. The 1977 symposium was oriented toward state and local governmental officials in the southeastern states. Since it is these officials who have the responsibility for the development and actualization of local energy strategies, the program was directed toward providing information which would be of help to them in considering energy plans. The symposium presentations featured speakers who are recognized in many facets of the energy field. A variety of views were expressed and a number of policy alternatives were suggested. It is hoped that the presentations provided the motivation for the audience to return to their respective communities with a new and expanded perspective regarding energy issues and policies. The private and public organizations represented at the symposium can continue to provide pertinent information to those who are interested. A separate abstract was prepared for each of the 9 presentations.

  2. Brazilian energy

    International Nuclear Information System (INIS)

    O'Shaughnessy, H.

    1997-04-01

    Brazilian Energy provides all the information necessary for energy companies to invest and operate in Brazil, including: a review of Brazil's natural resources; an assessment of privatisation strategies at the federal, state and regional level; an analysis of the electricity industry and the future for Electrobras; an analysis of the oil industry and, in particular, Petrobras; a discussion of the fuel alcohol industry; the discovery of local natural gas, its prospects and the involvement of the auto industry; an assessment of the problems facing the coal industry and its future; a discussion of the regulatory framework for the newly privatised companies; the importance of intra-regional energy links and the booming membership of Mercosur; the difficulties experienced by foreign investors doing business in Brazil; brief profiles of the key energy companies; profiles of key people influencing the privatisation process in Brazil. Brazilian energy is essential reading for those wishing to advise and assist Brazil in this period of change and development, as well as those who wish to invest or become key players in the Brazilian energy sector. (author)

  3. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  4. Useful energy from wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mayer-Schwinning, W

    1976-01-01

    The work group regards the use of wind energy as the third leg of energy technology. It calculates the wind utilization in Vogelsberg over an area of 1500 km/sup 2/ with 5 plants each 100 m big on 1 km/sup 2/ as example. Production of 14,000 MW electricity through 7500 wind wheels can be generated with an investment sum of up to 28 thousand million D-Mark without maintenance costs.

  5. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  6. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  7. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  9. Alternative energies

    International Nuclear Information System (INIS)

    Asencio, Michel

    2006-01-01

    In a first part, the author proposes an overview of technological developments in the field of power production. He outlines that technological advances may increase assessments of oil and gas reserves but that the associated costs might be too high to keep on exploiting these resources. The problem is almost the same for coal for which the associated costs concern the reduction of pollution and the sequestration and storage of carbon emissions. Nuclear energy avoids this issue of emissions and researches aim at the development of fusion reactors (ITER project) which still are an economic challenge because of their much higher cost in comparison with fission reactors. The author comments the development of renewable energies which however will not be able to replace thermal and nuclear production to face the constant increase of energy consumption. In the second part, the author evokes the various advances in energy production for transports: fuel cells, energy storage, hydrogen storage, and emergence of a hydrogen economy. He finally evokes applications to military propulsions (ground vehicles, marine propulsion, and aircraft propulsion)

  10. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  11. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  12. World energy

    International Nuclear Information System (INIS)

    Curtis, D.L.

    1990-01-01

    Three major concerns face mankind's future: the impending energy crisis as caused by the depletion of the world's fossil fuel reserves, world atmospheric pollution as caused by the burning of these fuels, and mankind's destruction if the vast energy contained in nuclear weapons stockpiles is released in a global conflict. This paper describes an ambitious, combined solution to these problems by the use of deep underground detonations of thermonuclear devices/bombs to provide a virtually pollution free, world energy source into the far distant future, while achieving a significant increase in mutual trust between the superpowers and all nations. The key is believed to be thermonuclear geothermal stimulation to produce the electrical power needed for a hydrogen economy

  13. Energy alternatives

    International Nuclear Information System (INIS)

    Sweet, C.

    1987-01-01

    The designated successor to fossil fuels is nuclear fission/fusion and that turns out to be problematic. Alternative Energy Systems have great potential but political forces seem to be hampering their development and introduction. The technologies are flexible in their use and scale of operation. The learning curve will not be short but neither will it be as long and as costly as nuclear power. It is time that this is recognised and some serious rethinking takes place in what presently passes for energy policies both in the industrialised countries and in the Third World. Alternative energy systems are defined and some of them which are relevant to the United Kingdom are discussed. (author)

  14. Energy Deskbook

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, S

    1982-06-01

    The purpose of the Energy Deskbook is to serve as a convenient reference to definitions of energy-related terms and descriptions of current and potential energy sources and their utilization. The material is presented at a low technical level with emphasis on general principles, which are not difficult to understand, rather than technology. The entries vary in length from a few lines to several pages, according to circumstances. As a general rule, each topic is defined and outlined in the first paragraph; this may be followed by a more detailed treatment, as required. An important feature of the Deskbook is the use of boldface (heavy) type for cross references. Words in the text set in boldface are the titles of articles where the particular subjects are described.

  15. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  16. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  17. Energy Futures

    DEFF Research Database (Denmark)

    Davies, Sarah Rachael; Selin, Cynthia

    2012-01-01

    foresight and public and stakeholder engagement are used to reflect on?and direct?the impacts of new technology. In this essay we draw on our experience of anticipatory governance, in the shape of the ?NanoFutures? project on energy futures, to present a reflexive analysis of engagement and deliberation. We...... draw out five tensions of the practice of deliberation on energy technologies. Through tracing the lineages of these dilemmas, we discuss some of the implications of these tensions for the practice of civic engagement and deliberation in a set of questions for this community of practitioner-scholars....

  18. Energy statistics

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    World data from the United Nation's latest Energy Statistics Yearbook, first published in our last issue, are completed here. The 1984-86 data were revised and 1987 data added for world commercial energy production and consumption, world natural gas plant liquids production, world LP-gas production, imports, exports, and consumption, world residual fuel oil production, imports, exports, and consumption, world lignite production, imports, exports, and consumption, world peat production and consumption, world electricity production, imports, exports, and consumption (Table 80), and world nuclear electric power production

  19. Energy strategies

    International Nuclear Information System (INIS)

    Posner, M.

    1977-01-01

    The energy problem is set out as it appears to an economist. The paper then explains the nature of the strategic arguments, differentiating particularly between options that might be available to the world as a whole and options that are available to the UK as such. It is concluded that in UK there are no options: that all possible sources of energy should be developed, and all opportunities taken for conservation, subject to broad economic considerations. Government policies and sociological aspects are discussed. (U.K.)

  20. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  1. Energy globalization

    International Nuclear Information System (INIS)

    Tierno Andres

    1997-01-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum

  2. Energy politics

    Science.gov (United States)

    McEvoy, Augustin

    2012-07-01

    In his review of Tyler Hamilton's book Mad Like Tesla (May pp44-45), Roger Bridgman writes that "in energy supply, obviously, companies cannot simply junk huge infrastructure investments in favour of something new, however good it might be". But that is exactly what Angela Merkel's administration has done in Germany with its anti-nuclear policy.

  3. Energy Efficiency

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government...

  4. Wasted energy?

    NARCIS (Netherlands)

    E.M. Steg

    1999-01-01

    Original title: Verspilde energie? Many environmental problems are increasing primarily due to rising production and consumption, in other words due to the behaviour of consumers. Accordingly, there is a growing realisation that environmental problems must be partly resolved through a change

  5. Renewable energy

    International Nuclear Information System (INIS)

    1991-01-01

    Evidence given before the Energy Committee by the Seven Tidal Power Group and the Mersey Barrage Company Ltd is presented. The current state of the development of the projects, prices at which electricity could be generated, governmental support, the non-fossil fuel obligation (NNFFO), export potential, and discounted cashflow analysis and discount rate are discussed. (author)

  6. Energy Storage

    CSIR Research Space (South Africa)

    Bladergroen, B

    2015-10-01

    Full Text Available With the emergence of variable renewable energy (VRE) sources, such as solar photovoltaics (PV) and wind power, flexibility requirements in the power system are generally increasing. However, what is not so clear yet is what “increasing flexibility...

  7. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  8. The energy phenomenon

    International Nuclear Information System (INIS)

    Karamanolis, S.

    1993-01-01

    This book gives popular answers to questions concerning the characteristics, origin, conversion and utilization of energy. The forms of energy, energy sources, power generation, natural energy conversion processes, energy consumption, and energy transport and storage are illustrated. (orig.) [de

  9. Energy press kit; Dossier energie

    Energy Technology Data Exchange (ETDEWEB)

    Czarnes, R.; Chauvot, M.; Depagneux, M.A.; Bollack, L.; Cittanova, M.L.; Madelaine, N.; Alves, J.; Burg, D

    2004-06-01

    This special dossier treats of the changes that will happen in France with the deregulation of energy markets. It comprises 19 articles dealing with: the big bang of July 1, 2004 in the electricity and gas sector (on July 1, 2004, all professional consumers will have the possibility to chose their electricity and gas supplier. If Electricite de France (EdF) and Gaz de France (GdF) monopolies will split up, several questions remain unanswered for clients); the impossible penetration of the French market (3 weeks before the enhanced opening of power markets, EdF's competitors remain surprisingly limited and are mainly French actors. The big European competitors follow a wait-and-see policy); the independent power producer Compagnie Generale du Rhone wants to diversify its clients and is looking towards local authorities; Direct Energie: the 'low-cost' company for the mutualization of electricity purchases of small professionals; Endesa, the French daughter company of the Spanish electric utility, is looking for a balance between production and sales; HEW, daughter company of Vattenfall Europe and present in France since April 2000, wants to increase its margins more than its capacity; energy profilers are making consumption profiles for EdF's competitors; Poweo, energy retailing company built in 2002, is fetching very small companies; Atel, French daughter company of the Swiss power producer, does not foresee important changes in July 1; interview of F. Roussely, head of EdF about the liberalization of the electricity sector; the main energy groups favorable to deregulation; case study: Accor, the hotel trade group, has chosen Compagnie Generale du Rhone as power supplier; electricity: why prices are increasing; various foreign experiences; UK: the consolidation time (fully liberalized and privatized between several companies, the British energy market is under total re-building); USA: the deregulation process has failed and stays stuck to 24

  10. Energy: reproduction

    International Nuclear Information System (INIS)

    Velasquez Penagos, J.G.

    1993-01-01

    The ovulatory activity in the livestock depends on the readiness of nutritious energy with relationship to its use for the nursing. During the early nursing the cup of increment in the production of milk exceeds to the consumption of food, the difference in the energy consumption of the diet with relationship to the energy used for production is a negative energy balance. During the first weeks of nursing this reaches their maximum and it diminishes slowly with the increment in the consumption of dry matter. This first metabolic sign is in an increment in the pulses of hormone luteinizant that acts as and stimulate for the ovary and that with a great readiness of insulin, it takes to the ovarian follicles to respond to the stimulus. The sub-alimentation seems to affect the hypothalamic function and ovarian. The return to the positive energy balance in cows highly producers can be accelerated by the consumption of protected fat. The functions of the lipids are to provide energy for normal maintenance and production, to serve as source of essential fatty acids and eat payee of liposoluble vitamins. The importance of the addition of vegetable fat is that this is not degraded in the rumen but rather it is digested in its entirety in abomasa and absorbed in intestine. The addition of a source of Ca to diets with fats promotes the formation of insoluble soaps achieving that the fat doesn't inhibit the fiber fermentation; the chloride of Ca to be of high solubility in water it is completely ionized in rumen and it is more efficient in the formation of insoluble soaps of Ca. The addition of fat in the diet bears increase in the production of N microbial, inhibition of methane formation, increase and change in population of bacteria and mushrooms. The efficiency of the fat is superior when sources of fatty acids of long chain are used, the employment of these, in its protected form, in a diet, stimulates the number of follicles and it increases its size. The linolic acid is

  11. The Energy Crisis and Solar Energy

    Science.gov (United States)

    Bockris, J. O'M.

    1974-01-01

    Examines the status of the energy crisis in Australia. Outlines energy alternatives for the 1990's and describes the present status of solar energy research and the economics of solar energy systems. (GS)

  12. Energy prospects

    International Nuclear Information System (INIS)

    Lyall, K.

    1991-01-01

    The Business Council of Australia's study on Prospects for Improved Energy Efficiency and the Application of Renewable Energy Resources is summarised. The study estimates that replacement of all off-peak electric units in Australia with solar gas boosted systems would reduce electricity consumption for residential water heating by approximately 25% and almost halve carbon dioxide emissions resulting from residential water heating. Furthermore, substitution of all water heating units in Australia with solar gas systems would reduce total emissions by about 80%. The study concludes that while substitution on such a scale could not readily be achieved even within several decades, the estimates do indicate the significant benefits that might be realised by a long term program. 2 refs., 3 tabs

  13. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  14. Renewable energy

    DEFF Research Database (Denmark)

    Olsen, Birgitte Egelund

    2016-01-01

    Renewable energy projects are increasingly confronted by local opposition, which delays and sometimes even prevents their implementation. This reflects the frequent gap between support for the general idea of renewables as a strategy for reducing carbon emissions, and acceptance of renewable energy...... installations in the local landscape. A number of countries have introduced financial incentives to promote community acceptance. The tool box of incentives is still limited but in recent years it has been expanded to address local concerns. Certain general characteristics can be identified, suggesting...... that there are at least three distinct categories of incentives: individual compensation, community benefits and ownership measures. Local opposition must be approached with caution, as financial incentives to promote local acceptance can be seen as buying consent or even ‘bribery’, stirring up further opposition....

  15. Energy exchange

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B. [SolArc, Inc. (United States)

    2000-09-01

    The article discusses the identification of efficiencies that can minimise transaction costs in energy trading and marketing. The article describes what is meant by 'trade management'. It is argued that a trade management system should be able to dovetail with existing or future ERP, advanced risk management, and financial management systems, to provide total enterprise integration. With the right trade management systems, traders have all the necessary information to help them manage exposure to financial risks in a world where energy trading companies are forced to accept very small margins. A trade management system can cover many aspects of a business including the winning of contracts for transportation deals, including rail, car, truck, barge and pipeline. There appears to be unprecedented opportunities for companies specialising in development and provision of trade management systems.

  16. Venezuelan energy

    International Nuclear Information System (INIS)

    1991-12-01

    This paper reports that because military and political instability in the Persian Gulf makes the United States vulnerable to oil supply disruptions, a 1991 Department of Energy report encourages diversification of U.S. oil sources and greater reliance on imports from countries outside the Gulf, such as Venezuela. GAO's report, also published in Spanish, discusses recent increases in Venezuelan oil production and the main factors affecting continued increases through 1996, assesses recent investment reforms in the Venezuelan petroleum industry and U.S. petroleum companies' response to these reforms, identifies the major impediments and inducements to U.S. investment in Venezuela's petroleum industry, and reviews U.S. government efforts to support Venezuela's energy sector

  17. Energy exchange

    International Nuclear Information System (INIS)

    Anderson, B.

    2000-01-01

    The article discusses the identification of efficiencies that can minimise transaction costs in energy trading and marketing. The article describes what is meant by 'trade management'. It is argued that a trade management system should be able to dovetail with existing or future ERP, advanced risk management, and financial management systems, to provide total enterprise integration. With the right trade management systems, traders have all the necessary information to help them manage exposure to financial risks in a world where energy trading companies are forced to accept very small margins. A trade management system can cover many aspects of a business including the winning of contracts for transportation deals, including rail, car, truck, barge and pipeline. There appears to be unprecedented opportunities for companies specialising in development and provision of trade management systems

  18. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  19. Energy alternative

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2010-01-01

    The present work is about primary sources the conventional fossil fuels (petroleum, coal and natural gas) and not conventional (nuclear fuels), as well as the solar light that reaches the floor, the winds, the rivers, the oceanic currents including the seas, and the biomass, among others. In the present technological era the primary sources are used for the most part to transform their energy into electric power.

  20. ENERGY MEDICINE

    OpenAIRE

    Srinivasan, T. M.

    1987-01-01

    Energy medicine is the most comprehensive concept introduced in medical diagnostics and therapy to account for a whole range of phenomena and methods available to help an individual proceed from sickness to health. The modern medical theories do not account for, much less accept many traditional therapies due to deep suspicion that the older methods are not scientific. However, the Holistic Health groups around the world have now created an environment for therapies which work at subtle energ...

  1. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  2. Energy Efficiency

    OpenAIRE

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas; Tsakiris, Aristeidis

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government of South Africa, the Inter-American Development Bank (IDB), the United Nations Environment Programme (UNEP) and the World Bank Group. A large share of the research for this report was conducted on a v...

  3. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  4. Energy transport

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The measurement of primary interaction cross sections and the incorporation of these data into Monte Carlo calculations provide detailed information about the initial spatial distribution of absorbed dose. Our theoretical energy transport studies have focused on the use of this information to predict the evolution of chemical species formed as a result of the energy deposition. This effort has led to a stochastic approach to diffusion kinetics that can account for the influence of track structure on the yield of free radicals in the radiolysis of water. Fluorescence studies with pulsed alpha particle and proton beams provided the first experimental test of our stochastic model of tract structure effects. Our experimental studies use time-resolved emission spectroscopy to investigate the mechanism of energy transport in nonpolar liquids. Studies of the concentration dependence of time-resolved emission from solutions of benzene in cyclohexane also show the importance of using low benzene concentrations to minimize the influence of benzene dimers on the emission kinetics

  5. Effect of energy taxes on energy consumption

    International Nuclear Information System (INIS)

    Johnsen, T.A.

    1991-01-01

    The energy consumption and taxation in Norway is described in addition to some of the consequences of this taxation on the energy market. Modelling of energy demand is dealt with. It is concluded that the influence of energy taxation on energy consumption is dependent on market conditions for individual energy products. This thesis is elaborated. (AB)

  6. 2002 energy statistics

    International Nuclear Information System (INIS)

    2003-01-01

    This report has 12 chapters. The first chapter includes world energy reserves, the second chapter is about world primary energy production and consumption condition. Other chapters include; world energy prices, energy reserves in Turkey, Turkey primary energy production and consumption condition, Turkey energy balance tables, Turkey primary energy reserves production, consumption, imports and exports conditions, sectoral energy consumptions, Turkey secondary electricity plants, Turkey energy investments, Turkey energy prices.This report gives world and Turkey statistics on energy

  7. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  8. Energy industry

    Science.gov (United States)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  9. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  10. Nuclear energy

    International Nuclear Information System (INIS)

    Luxo, Armand.

    1977-01-01

    The reasons and conditions of utilizing nuclear power in developing countries are examined jointly with the present status and future uses already evaluated by some organizations. Some consequences are deduced in the human, financial scientific and technological fields, with provisional suggestions for preparing the nuclear industry development in these countries. As a conclusion trends are given to show how the industrialized countries having gained a long scientific and technological experience in nuclear energy can afford their assistance in this field, to developing countries [fr

  11. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  12. Annual Energy Review, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  13. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  14. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  15. Handbook on energy conservation

    International Nuclear Information System (INIS)

    1989-12-01

    This book shows energy situation in recent years, which includes reserves of energy resource in the world, crude oil production records in OPEC and non OPEC, supply and demand of energy in important developed countries, prospect of supply and demand of energy and current situation of energy conservation in developed countries. It also deals with energy situation in Korea reporting natural resources status, energy conservation policy, measurement for alternative energy, energy management of Korea, investment in equipment and public education for energy conservation.

  16. Energy-Water Nexus | Energy Analysis | NREL

    Science.gov (United States)

    Nexus Energy-Water Nexus Water is required to produce energy. Energy is required to pump, treat , and transport water. The energy-water nexus examines the interactions between these two inextricably linked sectors. A cartoon showing the nexus of water and energy using red and blue arrows to indicate the

  17. Energy policy

    International Nuclear Information System (INIS)

    1992-09-01

    Gasoline consumption by passenger cars and light trucks is a major source of air pollution. It also adds to the economy's dependence on petroleum and vulnerability to oil price shocks. Despite these environmental and other costs, called external cost, the price of gasoline, adjusted for inflation, has generally been declining since 1985, encouraging increased consumption. This paper reports that with these concerns in mind, the Chairman, Subcommittee on Environment, House Committee on Science, Space, and Technology, requested that GAO assess policy options for addressing the external costs of gasoline consumption. To do this, GAO identified six major policy options and evaluated whether they addressed several relevant objectives, including economic growth, environmental quality, equity, petroleum conservation, visibility of costs, energy security, traffic congestion, competitiveness, and administrative feasibility

  18. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  19. Taxing energy

    International Nuclear Information System (INIS)

    Deacon, R.; DeCanio, S.; Frech, H.E. III; Johnson, M.B.

    1990-01-01

    In this book, the authors have produced an analysis of state energy taxation. Their factual findings are of particular relevance to California and other states in their consideration of severance taxes on oil production. It turns out, for example, that while California's tax burden on oil producers is slightly below average among the states, the combined revenues from taxes and royalties (expressed as a percent of the value of production) indicate that California is not easy on oil producers. In fact, California's oil tax system appears to be particularly well suited to its oil industry. Much of the production in the state is relatively high-cost and economically marginal. The state must tread carefully in taxing this production, lest it force it to be curtailed

  20. Energy supply and nuclear energy

    International Nuclear Information System (INIS)

    Heitzer, H.

    1977-01-01

    The author emphasizes the necessity and importance of nuclear energy for the energy supply and stresses the point that it is extremely important to return to objective arguments instead of having emotional disputes. In this connection, it would be necessary for the ministries in question to have clear-cut political responsibility from which, under no circumstances, they may escape, and which they cannot pass on to the courts either. Within the framework of listing present problems, the author is concerned with the possibility of improved site planning, the introduction of a plan approval procedure and questions concerning immediately enforceable nuclear licences. He also deals with a proposal, repeatedly made, to improve nuclear licensing procedures on the one hand by introducing a project-free site-appointment procedure, and on the other hand by introducing a simplified licensing procedure for facilities of the same kind. Splitting the procedure into site and facility would make sense solely for the reason that in many cases the objections are, above all, directed against the site. (HP) [de

  1. Energy in Italian regions. Energy balance

    International Nuclear Information System (INIS)

    Catoni, P. G.; Perrella, G.

    1998-01-01

    This paper reports the syntheses of regional energy balance and the elaboration of the most important energy index from 1990 to 1996 at this scope a specific methodology. Pentec (territorial energy planning ecompatible) is pointed [it

  2. Pocket dictionary of energy. Taschenlexikon Energie

    Energy Technology Data Exchange (ETDEWEB)

    Ahlhaus, O; Boldt, G; Gonsior, B; Klein, K; Ziburske, H

    1981-01-01

    The pocket dictionary of energy does not only address the interested amateur but also students, pupils, teachers, scientists, technicians, and polititcians in like manner. The dictionary contains ca. 900 key-words from the fields of energy, consumption, energy types, energy deposits, energy programmes, energy industry, thermal insulation, governmental aids for energy conservation measures, heating cost calculation, energy utilization and energy conservation. The problems of the costs and efficiency of energy conversion, energy pricing, the promotion of research projects, the rentability of heating devices or insulation, the sanitation of old buildings, governmental aids by subsidies or tax abatement according to the modernization and energy conservation law etc., as well as the problem of pollution and the endangering of the environment by exhaust air, waste heat, ash and litter are emphasized particularly. Considering the space available the criterion for the selection of the key-words was not a scientific completeness but the provision of a fundamental understanding of the matter.

  3. VT Renewable Energy Sites - Renewable Energy Professionals

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  4. The renewable energies; Les energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The renewable energies are everywhere but also irregular. Thus they need savings in our energy consumptions. This document provides information, such as economics, capacity and implementation, on the following renewable energies: the wind power, the solar energy, the photovoltaic energy, the biogas, the geothermal energy, the hydroelectricity, the wood. It also presents a state of the art and examples of bio-climatic architecture. (A.L.B.)

  5. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  6. Energy awareness luncheon and energy seminar

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-23

    A separate abstract was prepared for each of the following: the luncheon address, energy-growth-freedom by Kenneth A. Randall; the keynote commentary, by F.S. Patton, program chairman; and four current-awareness papers on the future of oil and gas, coal, nuclear energy, and solar energy. In addition, in a section, Speaking of Energy, very brief statements by eight professional engineers on the energy challenge are included. Also, the NSPE position paper on energy policy is included.

  7. Energy - Sandia National Laboratories

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  8. Energy Trends 2012; Energie Trends 2012

    Energy Technology Data Exchange (ETDEWEB)

    Van Dril, T. (ed.); Gerdes, J. (ed.) [ECN Beleidsstudies, Petten (Netherlands); Marbus, S. (ed.) [Energie-Nederland, Den Haag (Netherlands); Boelhouwer, M. (ed.) [Netbeheer Nederland, Arnhem (Netherlands)

    2012-11-15

    In Energy Trends 2012, all figures and developments in the field of energy in the Netherlands are presented in conjunction. The book provides information on energy use by consumers and businesses, provides insight into the international energy trade, energy production and development of energy networks [Dutch] In Energie Trends 2012 staan alle cijfers en ontwikkelingen op het gebied van energie in Nederland in samenhang gepresenteerd. Het boek biedt informatie over energiegebruik door consumenten en bedrijven, geeft inzage in de internationale energiehandel en energieproductie en biedt inzicht in de ontwikkeling van de energienetten.

  9. Energy Magazine

    International Nuclear Information System (INIS)

    1999-01-01

    To ensure the economic and social development of the countries of Latin America and the Caribbean, one of the problems that have to be addressed is bridging the technology gap that separates the region's countries from those of the so-called First World. In order to achieve this, the indispensable first step is to learn about, evaluate, orient, and promote scientific and technical training of the region's human resources. In this context, OLADE, with the cooperation of the Andean Development Corporation (CAF), undertook an inventory of the region's energy sector training supply and demand in order to identify both the needs of the institutions involved in the sector's development and the training centers that can meet these needs. In order to mitigate and eliminate the impact of Y2K problem, governments, companies and other sector entities are carrying out specific actions, which are described along with the preventive activities that are being implemented by OLADES's Permanent Secretariat. In addition, there is an article on the progress achieved between January and June 1999 in the process aimed at transforming the electric power sector of the Dominican Republic

  10. Fusion energy

    International Nuclear Information System (INIS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  11. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  12. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  13. Energy memento; Memento sur l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This memento about energy provides a series of tables with numerical data relative to energy resources and uses in France, in the European Union and in the rest of the world: energy consumption (primary energy, forecasting, CO{sub 2} emissions, energy independence, supplies, uses and imports, demand scenarios, energy savings..), power production (production, forecasting, loads, consumption, hydro-power, thermal equipment, exports), nuclear power (production, forecasting, reactors population, characteristics of French PWRs, uranium needs and fuel cycle), energy resources (renewable energies, fossil fuels and uranium reserves and production), economic data (gross national product, economic and energy indicators, prices and cost estimations), energy units and conversion factors (counting, calorific value of coals, production costs, energy units). (J.S.)

  14. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  15. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  16. Renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Hydrogen is seen by many as a key energetic vector for the 21{sup st} century. Its utilization in fuel cells enables a clean and efficient production of electricity. The possibility to obtain hydrogen from various sources, along with several types of potential applications of fuel cells, have called the attention and investment of developed countries. European Union, United States, Canada and Japan have important programs that establish tied goals for the utilization of fuel cells in transport and distributed energy generation. Aware of the importance of this technology for the energetic future of Brazil, IPEN started 13 years ago the development of fuel cells for stationary and distributed energy applications. Preliminary studies were carried out at the Materials Research Center due to IPEN expertise on nuclear materials development. Based on both, the good initial results and the proposition of the Brazilian Fuel Cell Program (ProH{sub 2} ) by the Ministry of 2 Science, Technology and Innovation (MCTI), IPEN decided to organize an institutional program on the subject, conducted at the Fuel Cell and Hydrogen Center - CCCH. The objectives of the IPEN/CCCH program are based on the MCTI national program, contributing significantly to the national development in this area. The R and D Program was structured in a cross-cutting way involving human and infrastructure resources from many IPEN technical departments. The Center comprises three main areas of interests: PEMFC (Proton Exchange Membrane Fuel Cell); SOFC (Solid Oxide Fuel Cell); and H{sup 2}-Production, mainly from ethanol reforming. More than 50 professionals were engaged at this development, although some in part time, including PhDs, MSc and graduate students and undergraduate students. Important scientific and technological results have been obtained and the main achievements can be evaluated by patents, published papers, graduate courses given and the graduate student's thesis concluded. Since 2004

  17. Renewable energies

    International Nuclear Information System (INIS)

    2014-01-01

    Hydrogen is seen by many as a key energetic vector for the 21 st century. Its utilization in fuel cells enables a clean and efficient production of electricity. The possibility to obtain hydrogen from various sources, along with several types of potential applications of fuel cells, have called the attention and investment of developed countries. European Union, United States, Canada and Japan have important programs that establish tied goals for the utilization of fuel cells in transport and distributed energy generation. Aware of the importance of this technology for the energetic future of Brazil, IPEN started 13 years ago the development of fuel cells for stationary and distributed energy applications. Preliminary studies were carried out at the Materials Research Center due to IPEN expertise on nuclear materials development. Based on both, the good initial results and the proposition of the Brazilian Fuel Cell Program (ProH 2 ) by the Ministry of 2 Science, Technology and Innovation (MCTI), IPEN decided to organize an institutional program on the subject, conducted at the Fuel Cell and Hydrogen Center - CCCH. The objectives of the IPEN/CCCH program are based on the MCTI national program, contributing significantly to the national development in this area. The R and D Program was structured in a cross-cutting way involving human and infrastructure resources from many IPEN technical departments. The Center comprises three main areas of interests: PEMFC (Proton Exchange Membrane Fuel Cell); SOFC (Solid Oxide Fuel Cell); and H 2 -Production, mainly from ethanol reforming. More than 50 professionals were engaged at this development, although some in part time, including PhDs, MSc and graduate students and undergraduate students. Important scientific and technological results have been obtained and the main achievements can be evaluated by patents, published papers, graduate courses given and the graduate student's thesis concluded. Since 2004, the PEMFC

  18. Australian energy statistics - Australian energy update 2005

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, K.

    2005-06-15

    ABARE's energy statistics include comprehensive coverage of Australian energy consumption, by state, by industry and by fuel. Australian Energy Update 2005 provides an overview of recent trends and description of the full coverage of the dataset. There are 14 Australian energy statistical tables available as free downloads (product codes 13172 to 13185).

  19. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  20. Annual energy review 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report presents historical energy statistics on all major energy activities. The statistics cover consumption, production, trade, stock, and prices, for all major energy commodities including fossil fuels, electricity, and renewable energy sources.

  1. Transportation energy data book

    Science.gov (United States)

    2009-01-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and : published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of : Energy, Office of Energy Efficiency and Renewable Energy, Vehicl...

  2. Energy Policy Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Energy Policy Act (EPA) addresses energy production in the United States, including: (1) energy efficiency; (2) renewable energy; (3) oil and gas; (4) coal; (5)...

  3. International energy outlook, 2010

    Science.gov (United States)

    2010-07-01

    This report presents international energy projections through 2035, : prepared by the U.S. Energy Information Administration, including outlooks : for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2010 (...

  4. Energy policy in Maghreb

    International Nuclear Information System (INIS)

    Rabah, S.

    1993-01-01

    This paper presents energy policy in Algeria, Morocco and Tunisia. Statistical data on fossil fuels reserves and renewable energy sources are given. This paper describes also energy consumption and energy conservation, power generation and interconnected power systems. 5 tabs

  5. Annual energy review 1996

    International Nuclear Information System (INIS)

    1997-07-01

    This report presents historical energy statistics on all major energy activities. The statistics cover consumption, production, trade, stock, and prices, for all major energy commodities including fossil fuels, electricity, and renewable energy sources

  6. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  7. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  8. Energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  9. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  10. Energy in Sweden 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Statistical data on energy supply and consumption are presented, together with information on the current energy situation, developments in energy use and supply, prices and environmental data. The international energy and environmental situation is also treated. 31 figs

  11. Energy drew up 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This article is about the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, petroleum products for energy production, energy demand by economic sector and final consumption.

  12. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  13. World energy prospects

    International Nuclear Information System (INIS)

    Ruttley, E.

    1983-01-01

    The purpose of this paper is to show that the real basis for energy projection has changed by little and that we should not be deluded by the present apparent glut of certain primary energy resources, nor by excess electricity generation into believing that the fundamentals of the energy problem have changed. Not the energy problem, but the economics have changed. Various aspects of energy, including energy demand, energy conversion, energy consumption, energy policy, as well as different sources of energy are discussed. The question is asked whether these resources would be able to supply in the energy demand

  14. Energy situation in Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Badran, I

    1984-10-01

    The report briefly reviews the energy problem in the world, and then studies in detail the situation in Jordan. It covers the energy supply of crude oil, refined products, and non-commercial energy; energy demand; the current pattern of energy consumption of oil and electricity; a forecast of energy demand; the government subsidy of energy; new energy resources in Jordan (oil exploration and oil shale, tar sands, radioactive minerals, and renewable energy sources including geothermal, hydropower, solar, and wind). The report concludes that alternative energy sources must be developed by Jordan to meet the increased demand for energy and to reduce the dependence of Jordan on oil in the next decades.

  15. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  16. Energy entanglement relation for quantum energy teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)

    2010-07-26

    Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.

  17. The energy; L'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In order to inform the public on the stakes bonded to the energy, the french government developed seven days of information on the energy. Visits of energy facilities (production, transport, storage, distribution) are proposed. Colloquium, exhibitions and debates on the energy questions are also offered to the public. This paper summarizes the activities and the concerned addresses of these energy days. (A.L.B.)

  18. Energy Management. Special. Magazine for energy supply and energy management

    International Nuclear Information System (INIS)

    Van Mil, R.

    2000-05-01

    The special Energy Management was issued in cooperation with many participating businesses in the Netherlands which provided articles on recent developments and new services and products with respect to the liberalized energy market in the Netherlands and Europe

  19. Annual energy review, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    This Review presents long-term historical energy data. US energy consumption, production, trade, and prices are included. Also covered are consumption indicators, energy resources, petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy. 5 figs., 129 tabs

  20. Architecture and energy

    DEFF Research Database (Denmark)

    Marsh, Rob; Lauring, Michael

    2011-01-01

    Traditional low-energy architecture has not necessarily led to reduced energy consumption. A paradigm shift is proposed promoting pluralistic energy-saving strategies.......Traditional low-energy architecture has not necessarily led to reduced energy consumption. A paradigm shift is proposed promoting pluralistic energy-saving strategies....

  1. Process energy analysis

    International Nuclear Information System (INIS)

    Kaiser, V.

    1993-01-01

    In Chapter 2 process energy cost analysis for chemical processing is treated in a general way, independent of the specific form of energy and power production. Especially, energy data collection and data treatment, energy accounting (metering, balance setting), specific energy input, and utility energy costs and prices are discussed. (R.P.) 14 refs., 4 figs., 16 tabs

  2. Energy in France

    International Nuclear Information System (INIS)

    2002-01-01

    This document provides a selection of energy statistics in France on, the energy in the economy, all energies, oil, gas, coal, electricity, renewable energies, district heating systems, rational use of energy, prices, energy and the environment and some useful addresses. (A.L.B.)

  3. Applied Energy Program

    Science.gov (United States)

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research » Applied Energy Program Applied Energy Program Los Alamos is using its world-class scientific capabilities to enhance national energy security by developing energy sources with limited environmental impact

  4. The France energy situation

    International Nuclear Information System (INIS)

    2006-01-01

    This analysis of the french energy situation provides information and key data on some key facts about the energy in France, the France energy supply and demand, the major principles of energy policy, the challenges of french energy policy and the DGEMP (general directorate for energy and raw materials). (A.L.B.)

  5. Domestic energy use and householders' energy behaviour

    International Nuclear Information System (INIS)

    Yohanis, Yigzaw Goshu

    2012-01-01

    This paper discusses domestic energy use and energy behaviour. It shows some improvement in domestic energy consumption and adoption of good energy practice. The survey conducted indicated that 35% of homes could improve their energy efficiency by improved tank insulation. In the last 5 years condensing boilers have been installed only in 3% of homes, indicating that householders are unaware of their advantages. Although 88% of surveyed homes had purchased a major appliance in the last 2 years, only 16% had any idea of the energy rating of their new appliances. Use of energy saving light bulbs is predominant in kitchens compared to other rooms. 70–80% of householders undertook some kind of day-to-day energy efficiency measures. 20–35% of householders would like to invest in energy-saving measures but found cost to be a key barrier. Approximately 84% of those surveyed were unaware of the energy rating of their household appliances. Price and brand were the most important factors determining the purchase of a new appliance. Significant energy-saving could be achieved by providing appropriate information to the general public regarding temperature control, efficiency of appliances and energy-saving heating systems. - Highlights: ▶ Good practice in household energy use is being adopted but actual use is rising. ▶ Cost is dominant in energy related decisions purchasing of household appliances. ▶ Energy behaviour is improving but level of awareness needs more work.

  6. Energy in France. References

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet is a compilation of key data about the energy in France: energy and economy (energy industries and gross internal product, employment, investments), overall energies (primary energy production and consumption, sectoral consumption, energy bill, price of imported crude oil), petroleum (primary production, sectoral consumption of refined petroleum products, automotive fuels demand, import and export of petroleum products), natural gas (production, sectoral consumption, imports per country of origin), coal (production, sectoral consumption, imports), electric power (production per origin, classical thermal production per type of fuel, sectoral consumption), renewable energies (overall production, heat networks supplied with non-conventional energy sources, wood consumption, wind power production, solar thermal and photovoltaic production), rational use of energy (primary energy intensity, cumulated energy saving), energy prices (in industries and households, automotive fuel prices, energy consumptions in households), energy and environment (CO 2 emissions). A synthesis of the main energy tariffs and prices is given in a separate folder. (J.S.)

  7. Energy in Croatia 2009, Annual Energy Report

    International Nuclear Information System (INIS)

    2010-01-01

    With the eighteenth edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiancy index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2008 and 2009, made following the EUROSTAT and IEA methodologies. In 2009 total energy demand in Croatia was 1.6 percent lower than the year before. At the same time, gross domestic product fell by 5.8 percent, which as a result gave a 4.4 percent higher level of energy intensity in total energy consumption. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was 6.8 percent higher. The primary energy production in 2009 was 7.1 percent higher form the previous year. Also, due to favorable hydrological situation the hydropower utilization grew by 31 percent. The energy from renewable sources increased by 29.8 percent and the energy from fuel wood increased by 5.6 percent. The production of crude oil in 2009 decreased by 6

  8. Energy in Croatia 2011, Annual Energy Report

    International Nuclear Information System (INIS)

    2012-01-01

    With the twentieth edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2010 and 2011, made following the EUROSTAT and IEA methodologies. In 2011 total primary energy supply in Croatia was 6.8 percent lower than the year before. At the same time, gross domestic product slightly decreased by 0.01 percent, which resulted in lowering energy intensity of total energy consumption by a 6.8 percent. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was only 1.2 percent higher. The primary energy production in 2011 decreased by 18 percent from the previous year. Also, due to unfavorable hydrological situation the hydropower utilization was as much as 46.6 percent lower than in 2010. The energy from renewable sources increased by 13.3 percent and the energy from fuel wood, ondustrial waste wood, energy

  9. The Physics of Energy

    Science.gov (United States)

    Jaffe, Robert L.; Taylor, Washington

    2018-01-01

    Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.

  10. Energy in Croatia 2007, Annual Energy Report

    International Nuclear Information System (INIS)

    2008-01-01

    With a great deal of pleasure we present the sixteenth edition of the review Energy in Croatia. With this Review the Ministry of Economy, Labor and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiency indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiency trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2006 and 2007, made following the EUROSTAT and IEA methodologies. Total annual energy consumption in Croatia in 2007 increased by 1.5 percent from the previous year. At the same time gross domestic product increased by 5.6 percent, which resulted in a continuing energy intensity reduction, by 3.8 percent. In relation the European Union (EU 27), energy intensity in Croatia was 16.5 percent above the European average. In 2007 the Croatian production of primary energy decreased by 6.4 percent. The production decrease was recorded in most of primary energy forms. The only energy forms with growing production in 2007 were natural gas production and energy from renewable sources. Due to unfavorable hydrology in 2007, hydro power utilization decreased by 27.4 percent

  11. Architecture and energy; Arkitektur og energi

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R.; Grupe Larsen, V.; Lauring, M.; Christensen, Morten

    2006-07-01

    The aim of this book is to illustrate the interaction between architecture and energy in an overall perspective starting from the new energy requirements. Architects make a lot of form related outlines early in the design process, and these have significant consequences for the energy consumption. Furthermore, the new energy requirements start from an overall evaluation, during which the architectural form is of decisive importance to minimization of the energy consumption. The book focuses on four themes: a) day lighting, which plays a decisive part in relation to our health and wellness inside buildings, b) solar heating; passive solar heating has traditionally been playing an important part in low-energy architecture, c) rough house; choice of materials can both increase and decrease buildings' energy consumption, and d) technology; modern buildings use a number of energy demanding installations, therefore the interaction between technology and energy is examined. (BA)

  12. Energy. The countdown

    International Nuclear Information System (INIS)

    Montbrial, T. de.

    1979-01-01

    The subject is treated under the following heads: the past -the politics of energy - the oil and nuclear power crisis (the great oil adventure; the oil crisis and international relations since October 1973; the nuclear energy crisis (why the opposition to nuclear energy, the proliferation of nuclear weapons); geopolitics and energy policy); the future - the energy crisis (the nature of the energy problem; global energy demand; toward an imbalanced oil market; natural gas, coal, nuclear and other energy sources; anticipating the second energy crisis to try to avoid it; future evolution of the price of energy; the economic effects of a massive increase in the price of oil. (UK)

  13. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  14. Energy in Croatia 2012, Annual Energy Report

    International Nuclear Information System (INIS)

    2013-01-01

    With the twenty-first edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2011 and 2012, made following the EUROSTAT and IEA methodologies. In 2012 total energy demand in Croatia was 4.7 percent lower than the year before. At the same time, gross domestic product fell by 2 percent, which resulted in a decrease in a total primary energy supply intensity by 2.8 percent. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was 6.9 percent higher. The primary energy production in 2012 decreased by 5.6 compared to the previous year. Also, due to hydrological situation the hydropower utilization grew by 6.7 percent. The energy from renewable sources increased by 29.8 percent and the energy from fuel wood increased by 5.6 percent. The production of crude oil in 2012 decreased by 9.7 percent and of natural

  15. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  16. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  17. Energy Mix between Renewable Energy and Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Yousry E. M. Abushady

    2015-08-01

    Full Text Available  Energy is the backbone of any development in any State. Renewable Energy (wind, solar and biomass appears currently as a major strategic energy source for a sustainable development particularly for developing or under developing societies. Use of renewable Energy will challenge major technological changes, by achieving energy production and saving. In particular by replacing fossil fuel, a significant cut of environmental impact and green house gas emission (GHG could be achieved. In addition Renewable Energy could offer a sustainable development for different societies particularly those in rural area (e.g. desert or isolated islands. The significant technical renewable energy tool developments in developed States could be much easier to be transferred to or copied in developing States .

  18. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  19. Measuring Technique for emission of carbon dioxide - principles and costs for monitoring within the framework of the EU Emissions Trading Scheme; Maetteknik foer koldioxidutslaepp - principer och kostnader foer oevervakning inom ramen foer EU:s system foer handel med utslaeppsraetter foer koldioxid

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Peter; Gustavsson, Lennart; Magnusson, Bertil; Loefdahl, Gunn-Mari

    2004-07-01

    The report describes different methods to monitor the variables, used to calculate the emission of carbon dioxide, within the framework of the Emissions Trading Scheme. All factors such as the amount of material (e.g. fuel used from supply data or measurement), the thermal value, transition- or emission factor and any oxidation factor of the material, are discussed. The main part of the report, chapters 3-5, deals with the measurements of the so called activity data, i.e. primarily the amount of fuel and carbonaceous materials which will result in CO{sub 2}- emission, and which is introduced to, or which is the result of a process in the form of a product. A background regarding metrological aspects is given, primarily how the uncertainty of the different monitoring levels of the reported CO{sub 2}-values, can be met. Chapter 6 deals with the thermal value, transition- or emission factor and the oxidation factor. As a conclusion from putting together this report, we can verify that there are many different types of scales and flow-meters (for liquids) that technically have the potential to determine the amount of fuel/material with sufficiently low measurement uncertainty, even to reach the highest verification level of 1 %. But to make this work in practice, a number of requirements must be met. The measuring instruments must be installed and maintained in such a way that the capability of the instruments really is utilized. In many cases, there must also be routines on how to handle the results from the measurements, including e.g. correction for temperature etc. A tip for those that quickly wish to find vital information is to use the compilations that can be found as figures in the report. In the compilation over 'Conditions' Chapter 4, information on the prerequisites that must be met for the measuring instrument related to the different verification (uncertainty) levels, is compiled in one diagram, with codes referring to short descriptions. Regarding the choice of instrument, essential data is compiled regarding area of use and related costs.

  20. The Energy Chart'93

    International Nuclear Information System (INIS)

    Shervashidze, N.

    1993-01-01

    The Energy Chart'93 is developed with respect to forthcoming restructuring of energy sector in Bulgaria and contains its main directions for both short- and long-term periods. The priorities are given to: energy supply, stabilization of the existing units, ecological development, domestic energy sources, atomic energy, gas energy, utilization of the available hydrological potential. The leading role of legislation in this area is also pointed out, as well as the regulating function of the Committee of Energy. (author)

  1. Energy supply and energy saving in Ukraine

    Directory of Open Access Journals (Sweden)

    V.M. Ilchenko

    2015-09-01

    Full Text Available The article examines the main problems and solutions of energy saving and energy supply in Ukraine. Low energy efficiency has become one of the main factors of the crisis in the Ukrainian economy. The most relevant scientific and methodical approaches to assessment of the level of energy consumption and saving are indicated. The comparative analysis of annual energy use has been made. A potential to solve energy supply problems is strongly correlated with the ability to ensure the innovative development of economy for efficient and economical use of existing and imported energy resources. The ways for reducing of energy resource consumption have been suggested. Creation of technological conditions for the use of alternative energy sources is considered to be rational also. The development of renewable sources of energy (alternative and renewable energy sources will provide a significant effect in reducing the use of traditional energy sources, harmful emissions and greenhouse gas. Under these conditions, increasing of energy efficiency of economy and its competitiveness can be real. Improvement of environmental and social conditions of citizens of the country will mark a positive step towards the EU, and also will cancel some problems of the future generation.

  2. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  3. The International Energy Agency's world energy outlook

    International Nuclear Information System (INIS)

    O'Dell, S.

    1996-01-01

    The 1996 edition of the World Energy Outlook to 2010 was reviewed. An overview of the energy projections was provided based on assumptions about economic growth and energy prices, geological potential, technological developments, the availability of traditional fuels outside the OECD and the future preferences of energy users. Demand vs. price movements were modelled, based on 'capacity constraints' and 'energy saving ' scenarios. Three major conclusions derived from the projections were: (1) world primary energy demand will grow steadily as it has over the past two decades, (2) fossil fuels will account for 90 per cent of total primary energy demand in 2010, and (3) a structural shift in the shares of different regions in world energy demand is likely to occur, i.e., the OECD share will fall in favor of the share of the ROW (rest of the world). 4 tabs., 9 figs

  4. Energy conservation, efficiency and energy audit

    International Nuclear Information System (INIS)

    Sharma, R.A.

    2006-01-01

    In this paper the author discusses the conservation, efficiency, audit, fundamentals, differences and methods, the objectives of energy conservation, definitions of energy audit, scope, short term, medium term and long term measures to be taken for conservation are discussed

  5. Energy modeling: nuclear energy as China's main energy after 2040

    International Nuclear Information System (INIS)

    Guo Xingqu

    1987-01-01

    According to the energy modeling and the strategic forecast of China's economic development and population, the energy demand in China in the coming century has been calculated yearly by computer simulation. It is shown by the calculation results that the primary energy consumption in 2050 will be 3.37-4.25 times as that of 2000. The fossil energy will still be the main energy during the early stage of 21st century, but it will be cut down rapidly since 2020s as its annual consumption is increased to 1.656-2.044 x 10 9 tce/a. Because the fossil fuel ressources in China are limited, more and more fossil fuel will be mainly turned to chemical products, and the environmental pollution will be serious if we still use the fossil as a main fuel widely. The amount of renewable energy will be increasing, but its share in the primary energy consumption will be cut down from 36% to about 20% during the first half of next century and then will maintain this portion. In this case, the nuclear energy will be developed rapidly during the early stage of next century and will become the main energy since 2040. The methodology of energy forecast has also been reviewed

  6. Energy in Croatia 2003. Annual Energy Report

    International Nuclear Information System (INIS)

    2004-11-01

    Reports have kept domestic and international audience continuously informed about the latest relations and developments in the Croatian energy system. Annual report presents all characteristic indicators of the Croatian energy system in 2003, outlines their development over a longer past period, and suggests a future course of development of basic energy system indicators. Total primary energy supply in the Republic of Croatia in 2003 was 5.2 percent higher compared to the previous year. The gross domestic product increased by 4.3 percent over the same period. This means that energy intensity, primary energy supply per unit of gross domestic product, increased by 0.9 percent. Compared to the european Union average Croatian energy intensity was approximately 32 percent higher. Total primary energy production, on the other hand, decreased by 1.1 percent compared to 2002. This means that primary energy self-supply, which fell to 46.4 percent, reached its lowest level to-date in the observed period. The remaining energy needs were met by imports, which increased by 1.7 percent. In the structure of total primary energy supply, decrease has been observed only in energy conversion losses, while all other categories increased. Final energy demand increased by 6.7 percent in 2003, with the levels recorded in different sectors ranging from 2.5 percent in industry to 7.5 and 8 percent in transport and other sectors, respectively. In terms of final energy demand, an increase has been recorded in all energy forms except natural gas, whose consumption showed stagnation. This is due to lower consumption in the energy transformation sector and a significant 9.2 percent increase in its final energy demand. A continuous increase in electricity consumption - which reached 4.8 percent in the observed period - is worth nothing. Energy forms which recorded highest consumption increase levels in 2003 are coal (16 percent) and diesel fuel (15 percent). In contrast to the fast increase in

  7. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  8. Energy and environment policies. International Energy Agency

    International Nuclear Information System (INIS)

    1991-01-01

    An analysis is made of how energy policies can be adapted to environmental concerns. The efficiency of measures solving environmental problems is investigated, in particular measures substituting energy carriers, improving energy efficiency rates, postfitting pollution control devices, and applying clean energy technologies. In connection with methods of state control the report deals with questions of taxation and regularization which are to induce the private sector to actively to something for the protection of the environment. (orig.) [de

  9. The World energy issue

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2011-01-01

    This Power Point document proposes figures and data about the current world energy consumption, the various energy sources, the share of primary energy consumption by different sectors, and the levels of energy reserves. It addresses the issue of global warming (evolution of temperature, regional anomalies, the challenge of limitation of temperature, the greenhouse gas emissions), the strategic role of electricity (energy mix, heat production with electricity), energy savings, electricity production (key data on solar, wind, solar and biomass energy, possibilities of carbon capture, nuclear energy, costs of these different energies)

  10. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  11. Guam Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.

    2013-07-01

    Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

  12. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  13. Global view of energy

    International Nuclear Information System (INIS)

    Kursunoglu, B.N.; Millunzi, A.C.; Perlmutter, A.

    1982-01-01

    This book contains selected papers presented at the fourth interdisciplinary international forum on the Geopolitics of Energy. Topics included: energy demand; energy modeling; urgency of world energy problems; nuclear fission; progress in nuclear fusion; financing energy investments; conservation of energy in developed countries; public safety - risks and benefits; and atmospheric carbon dioxide. A separate abstract was prepared for each of the 25 papers for inclusion in the Energy Data Base; all will appear in Energy Abstracts for Policy Analysis and five in Energy Research Abstracts (ERA)

  14. Energy consumption: energy consumption in mainland Norway

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-25

    The purpose of this report is to describe trends in energy consumption in mainland Norway, with an emphasis on key trends within the largest consumer groups. We also explain common terms and concepts in the field of energy consumption. Finally, we look at forecasts for future energy consumption, produced by bodies outside NVE. Total final energy consumption in mainland Norway in 2009 was 207 TWh. The most important end-user groups are households, service industries, manufacturing industry and transport. In addition, the energy sector in mainland Norway consumed 15 TWh. Energy consumed in the energy sector is not considered as final consumption, as the energy is used to produce new energy products. The long-term trend in energy consumption in mainland Norway is that fuel in the transport sector and electricity for the energy sector increases, while energy consumption in other sectors flattens out. The main reason for an increased use of fuel in the transport sector is the rise in the number of motorised machinery and vehicles in mainland Norway. This has caused a rise in gasoline and diesel consumption of 75 per cent since 1976. The petroleum sector is the largest consumer of energy within the energy sector in mainland Norway, and electricity from onshore to platforms in the North Sea and to new shore side installations has led to a rise in electricity consumption from 1 TWh in 1995 to 5 TWh in 2009. The energy consumption in households showed flat trend from 1996 to 2009, after many years of growth. The main reasons are a warmer climate, higher energy prices, the use of heats pumps and more energy-efficient buildings. In the service industries, the growth in energy consumptions has slightly decreased since the late 1990s, for much the same reasons as for households. In manufacturing industries the energy consumption have flatten out mainly due to the closure of energy-intensive businesses and the establishment of new more energy-efficient businesses. Electricity is

  15. Energy from biomass. Energie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, J [Business Unit ESC-Energy Studies, Netherlands Energy Research Foundation, Petten (Netherlands)

    1992-11-01

    A brief overview is given of the options to use biomass as an energy source. Attention is paid to processing techniques, energy yields from crops, production costs in comparison with other renewable sources and fossil fuels, and the Dutch energy policy for this matter. 1 fig., 1 ill., 2 tabs., 3 refs.

  16. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  17. Geothermal Energy as source or energy production

    International Nuclear Information System (INIS)

    Lozano, E.

    1998-01-01

    This article shows the use and utilization of geothermal energy. This calorific energy can be used, through the wells perforation, in generation of electricity and many other tasks. In Colombia is possible the utilization of this energy in the electrical production due to the volcanic presence in the Western and Central mountain chains

  18. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  19. Dashboard of the energy

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Eight comparative tables present statistical data on the energy in France: the corrected consumption of the climate and the CO 2 emissions coming from the energy consumption; the energy independence rate; the monthly energy invoice; the monthly middle prices of imported energies; the corrected consumptions for the electric power, the petroleum, the mineral solid fuels and the natural gas

  20. The energy challenge

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter addresses the challenge of switching US energy dependency from fossil fuels to renewable sources of energy for economic and environmental reasons. The topics discussed include the role of fossil fuels in the US economy, the role of chlorofluorocarbons and fossil fuel combustion on the greenhouse effect, energy choices, and the role of energy efficiency and nuclear energy

  1. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  2. Energy in France. Highlights

    International Nuclear Information System (INIS)

    2002-01-01

    This document presents a selection of statistics (figures as of 30 April 2002) about: energy in the French economy, all energies, oil, gas, coal, electricity, renewable energies, district heating, rational use of energy, prices, energy and environment (CO 2 emissions). Data are presented in tables and graphs. (J.S.)

  3. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  4. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  5. Resources | Energy Plan

    Science.gov (United States)

    Skip to main content Navigate Up This page location is: Department for Energy Development and Independence Department for Energy Development and Independence Resources Pages EnergyPlan Sign In Ky.gov An Official Website of the Commonwealth of Kentucky Energy and Environment Cabinet Department for Energy

  6. Wind Energy Basics | NREL

    Science.gov (United States)

    Wind Energy Basics Wind Energy Basics We have been harnessing the wind's energy for hundreds of grinding grain. Today, the windmill's modern equivalent-a wind turbine can use the wind's energy to most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and

  7. Solar Energy Basics | NREL

    Science.gov (United States)

    Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the technologies convert sunlight to usable energy for buildings. The most commonly used solar technologies for

  8. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  9. Guide to energy management

    International Nuclear Information System (INIS)

    2006-03-01

    A systematic and practical guide to energy management. Energy management signifies here a methodology concerning how an organisation continuously can work on improving all aspects of energy efficiency and energy consumption. Focus is on how energy management can be implemented in the companies already existing environment management systems. Useful recommendations and examples are provided (ml)

  10. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  11. Energy prospects for industry

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, P P; Roberts, G F.I.; Thomas, V E; Davies, D; Crow, L M

    1983-01-01

    Contents: Electricity today and tomorrow; Gas--supply prospects for the future; Petroleum based energy--the UK perspective; Future markets for coal; Flexibility--the key to Dunlop's energy strategy; Energy conservation in Alcan; Present and future energy patterns in Courtaulds PLC; New energy technology for the quarrying industry.

  12. Dissolve energy obesity by energy diet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Heum [Sunmoon University, Asan (Korea)

    2000-07-01

    Every organism takes needed materials or energy from outside and excretes unessential things to outside. This is called a metabolism or energy metabolism. Calculating the amount of energy consumed by human in the world by converting to the amount of metabolism of an animal to survive, the weight of a human being is corresponding to an animal with a weigh of 40 ton. Human beings can find a solution to dissolve energy obesity or can maintain a massive status by finding a new energy source in the universe.

  13. The energy yield of nuclear energy

    International Nuclear Information System (INIS)

    Smith, Ph.B.

    1983-01-01

    In this paper, a comparison is made between the energy produced in a nuclear cycle in a light-water reactor without recycling of plutonium or uranium on the one hand and the energy stored into the system to realize this energy production on the other. Only empirical data are used, which means that some energy costs are omitted because no empirical data were available (e.g. energy needed to waste processing and waste disposal). The following steps are taken into account: production and processing of ores, conversion and enrichment of fuels, construction and shutdown of the reactor itself. (Auth.)

  14. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  15. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  16. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  17. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  18. World energy perspectives

    International Nuclear Information System (INIS)

    2002-01-01

    Basic facts on energy reserves and main environmental effects of energy production are recalled. Physical constraints associated to the different energy production means are summarized, and present cost estimates are given. (author)

  19. National Energy Balance - 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The National Energy Balance - 1985 shows energy fluxes of several primary and secondary energy sources, since the production to the final consumption in the main economic sectors, since 1974 to 1984 (E.G.) [pt

  20. National Energy Balance - 1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The National Energy Balance - 1984 shows energy fluxes of several primary and secondary energy sources, since the productions to final consumption in the main economic sectors, since 1973 to 1983. (E.G.) [pt

  1. Energy. BI-Taschenlexikon

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, W [ed.

    1981-01-01

    The illustrated dictionary defines and explains 1125 terms or names of importance to energy technology. 91 entries are directly relevant to the peaceful uses of nuclear energy or nuclear energy technology.

  2. Energy in Sweden 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Statistical data on supply and consumption of energy are presented together with information on the current energy situation, developments in energy use and supply, prices and environmental data. International aspects are also treated.

  3. Energy in Sweden 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    Statistical data on supply and consumption of energy are presented together with information on the current energy situation, developments in energy use and supply, prices and environmental data. International aspects are also treated.

  4. Energy consumption assessment methods

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K S

    1975-01-01

    The why, what, and how-to aspects of energy audits for industrial plants, and the application of energy accounting methods to a chemical plant in order to assess energy conservation possibilities are discussed. (LCL)

  5. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  6. Securing energy equity

    Energy Technology Data Exchange (ETDEWEB)

    Grimsby, Lars Kare, E-mail: lars.grimsby@umb.no [Department of International Environment and Development Studies, Noragric, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas (Norway)

    2011-11-15

    Addressing energy poverty rather than energy equity conveniently evades the problem of the gap in energy consumption per capita in the developed and developing world. For energy security policies to adequately address energy poverty it requires a widening of scope from national to global. This is a comment to the forthcoming presentation of IEA's proposition for a new architecture for financing universal modern energy access to be presented at the conference 'Energy for all-Financing access for the poor' held in Oslo in October 2011. - Highlights: > Addressing energy poverty may elude the disparity in energy consumption between rich and poor. > A minimum threshold of energy for the poor does not itself address inequity in energy consumption. > Energy equity may be secured by widening scope from national to global, from the poorest to us all.

  7. Securing energy equity

    International Nuclear Information System (INIS)

    Grimsby, Lars Kare

    2011-01-01

    Addressing energy poverty rather than energy equity conveniently evades the problem of the gap in energy consumption per capita in the developed and developing world. For energy security policies to adequately address energy poverty it requires a widening of scope from national to global. This is a comment to the forthcoming presentation of IEA's proposition for a new architecture for financing universal modern energy access to be presented at the conference 'Energy for all-Financing access for the poor' held in Oslo in October 2011. - Highlights: → Addressing energy poverty may elude the disparity in energy consumption between rich and poor. → A minimum threshold of energy for the poor does not itself address inequity in energy consumption. → Energy equity may be secured by widening scope from national to global, from the poorest to us all.

  8. The french energy policy

    International Nuclear Information System (INIS)

    1991-01-01

    This book describes french energy policy from 1973 oil crisis till 1992. In a first part, energy consumption, domestic primary energy production, trend of independence energy ratio and costs of petroleum imports in France are presented. In a second part, long-term energy prospects and new axis of energy policy are given: trends of french energy needs, progressive substitution of fossil fuels by nuclear energy and hydroelectric power, energy policy in Common Market and cooperation with eastern Europe. In a third part, energy demand and supply are studied: energy conservation policy in housing, transport and industrial sector is developed. Power generation policy is focused on two main stakes: the choice of investments and nuclear power plants programming, the quality of electric power and the development of efficient uses and exports. A diversification between coal petroleum and natural gas is led. After the fall of petroleum prices in 1986, renewable energies have lost their competitiveness, fire wood occupies a significant place

  9. Sustainable Energy for All

    DEFF Research Database (Denmark)

    - renewable energy and energy efficiency. The promise of renewable energy can only be realised through significant R&D investments on technologies such as solar, biomass, wind, hydropower, geothermal power, ocean energy sources, solar-derived hydrogen fuel coupled with energy storage technologies necessary......Energy crisis is one of the most pressing issues of our century. The world currently invests more than $1 trillion per year in energy, much of it going toward the energy systems of the past instead of building the clean energy economies of the future. Effectively, the provision of energy should...... be such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. Investment in sustainable energy is a smart strategy for growing markets, improving competitiveness, and providing greater equity and opportunity. Sustainable energy has two key elements...

  10. Alcohol Energy Drinks

    Science.gov (United States)

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 33960 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  11. Energy - the existential problem

    International Nuclear Information System (INIS)

    Michaelis, H.

    1980-01-01

    The volume contains the 16 speeches held on the meeting of the German Atom Forum Nuclear energy with the background of the world's energy situation of January 1980. They deal with the new dimensions of the world energy problem, possibilities of an alternative long-term development, long-term prognoses, energy for the Third World, international problems of energy policy, availability of hard coal, energy policy in the Federal Republic, ways of application and substitution potential of nuclear energy, industrial development, new energy sources, the purpose of energy decentralized energy supply, the energy demand, environment protection as a vehicle for cultural criticism. The editor sees in the debate a serious approach between supporters and opponents of nuclear energy. (HSCH) [de

  12. Providing sustainability in energy

    International Nuclear Information System (INIS)

    2004-12-01

    This report has five chapters: free market system and reestablishment, general energy planning and supply security, energy and environment, energy efficiency and demand side management and financing. 31 figures and 37 tables are included

  13. Energy in Canada

    International Nuclear Information System (INIS)

    1987-11-01

    This discussion paper was prepared by the Department of Energy, Mines and Resources Canada to provide information about Canada's resource potential, the contribution of energy to the Canadian economy, Canada's place in the world energy market, and the outlook for the development of Canadian energy resources. In addition, it provides background information on issues such as: energy and the environment, energy security, Canadian ownership of energy resources, energy R and D, and energy conservation. Finally, it concludes with an indication of some of the key challenges facing the energy sector. The paper is intended to inform the public and to serve as a reference document for those participating in the review of Canada's energy options. The paper was prepared before Canada and the U.S. agreed in principle on a free trade agreement (FTA) and does not include a discussion of the FTA or its potential impacts on the energy sector

  14. Energy in Sweden 1999

    International Nuclear Information System (INIS)

    1999-11-01

    Statistical data on supply and consumption of energy are presented together with information on the current energy situation, developments in energy use and supply, prices and environmental data. International aspects are also treated

  15. National Energy Balance-1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The National Energy Balance - 1987 showns energy fluxes of several primary and secondary energy sources, since the production to final consumption in the main economic sectors, since 1971 to 1986. (E.G.) [pt

  16. Renewable Energy Certificates (RECs)

    Science.gov (United States)

    Renewable Energy Certificates (RECs), are tradable, non-tangible energy commodities in the United States that represent proof that 1 megawatt-hour (MWh) of electricity was generated from an eligible renewable energy resource.

  17. Energy in Sweden 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Statistical data on supply and consumption of energy are presented together with information on the current energy situation, developments in energy use and supply, prices and environmental data. International aspects are also treated

  18. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  19. Western Energy Corridor -- Energy Resource Report

    International Nuclear Information System (INIS)

    Roberts, Leslie; Hagood, Michael

    2011-01-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  20. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  1. Western Energy Corridor -- Energy Resource Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Roberts; Michael Hagood

    2011-06-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  2. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  3. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  4. Energy audit at Russian dairies. Energy guidance

    Energy Technology Data Exchange (ETDEWEB)

    Draborg, S [Dansk Energi Analyse A/S, Vanloese (Denmark); Sheina, L S; Kolesnikov, A I [RDIEE, Moscow (Russian Federation)

    1999-12-31

    The project encompassed following activities: Elaboration of a description of the Russian dairy sector including a mapping of the entire sector in respect of production capacity, actual production, products, production technologies and energy consumption; Energy audits at twelve selected dairies with different typical productions; Elaboration of an `Energy Audit Guidance` which describes how to perform energy audits in dairies and where to expect energy saving possibilities. The energy savings possibilities are often due to the same kind of problems, e.g. low production, inefficient equipment or manually control of the process equipment. The main problems that Russian dairies faces can be divided into the following categories: Old and inefficient technological equipment which is operated at low capacity with very low energy efficiency; Lack of knowledge about new energy efficient technologies; Financial problems which causes low interest and few possibilities for using funds for investment in energy efficient equipment; Energy savings do not lead to personal gains for the persons in the dairy management or other employees which causes low interest in energy savings. At some dairies it seemd to be a problem for the management to adapt to the new and very different conditions for enterprises in Russian today, where sales, production, production capacity and raw milk available are interconnected. With respect to energy matters it was often a wish to replace existing oversized equipment with new equipment of the same size no matter that it is unlikely that the production will increase considerable in the future. The project has discovered that there is a need for demonstrating energy saving measures by implementation because it was in many ways hard for the dairy management`s to believe that, the energy consumption could be reduced dramatically without affecting the production or the processes. Furthermore, the project has discovered a need for transferring to the

  5. Energy audit at Russian dairies. Energy guidance

    Energy Technology Data Exchange (ETDEWEB)

    Draborg, S. [Dansk Energi Analyse A/S, Vanloese (Denmark); Sheina, L.S.; Kolesnikov, A.I. [RDIEE, Moscow (Russian Federation)

    1998-12-31

    The project encompassed following activities: Elaboration of a description of the Russian dairy sector including a mapping of the entire sector in respect of production capacity, actual production, products, production technologies and energy consumption; Energy audits at twelve selected dairies with different typical productions; Elaboration of an `Energy Audit Guidance` which describes how to perform energy audits in dairies and where to expect energy saving possibilities. The energy savings possibilities are often due to the same kind of problems, e.g. low production, inefficient equipment or manually control of the process equipment. The main problems that Russian dairies faces can be divided into the following categories: Old and inefficient technological equipment which is operated at low capacity with very low energy efficiency; Lack of knowledge about new energy efficient technologies; Financial problems which causes low interest and few possibilities for using funds for investment in energy efficient equipment; Energy savings do not lead to personal gains for the persons in the dairy management or other employees which causes low interest in energy savings. At some dairies it seemd to be a problem for the management to adapt to the new and very different conditions for enterprises in Russian today, where sales, production, production capacity and raw milk available are interconnected. With respect to energy matters it was often a wish to replace existing oversized equipment with new equipment of the same size no matter that it is unlikely that the production will increase considerable in the future. The project has discovered that there is a need for demonstrating energy saving measures by implementation because it was in many ways hard for the dairy management`s to believe that, the energy consumption could be reduced dramatically without affecting the production or the processes. Furthermore, the project has discovered a need for transferring to the

  6. Energy Informatics Panel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2012-06-01

    Designed to be the world's most comprehensive, open, and collaborative energy information network, Open Energy Information (OpenEI - openei.org) supplies essential energy data to decision makers and supports a global energy transformation. The platform, sponsored by the U.S. Department of Energy (DOE) and developed by the National Renewable Energy Laboratory (NREL), is intended for global contribution and collaboration.

  7. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  8. Cuban energy development perspectives

    International Nuclear Information System (INIS)

    Berdellans Escobar, Ilse; Perez Martin, David; Lopez Lopez, Ileana; Ricardo Mora, Henry; Gomez De la Torre, Yoandys

    2005-01-01

    In this paper from energy demand scenario calculated for the country until 2025, energy supply options were assessed. Three energy development scenarios considering economic and social development projections and different energy options were evaluated: a reference scenario which includes the nowadays energy development projections; a second scenario basing the development on intensive use of domestic fossil fuels; and a third scenario, where the development is based on the maximum use of domestic renewable energy potential. The results are analyzed and recommendations are formulated

  9. Croatian Energy System Defossilization

    International Nuclear Information System (INIS)

    Potocnik, V.

    2013-01-01

    Defossilization of an energy system, as primary cause of the actual climate change, means exchange of predominantly imported fossil fuels with climate more convenient energy carriers, facilitating thus the way out of crisis.Overview of the world and Croatian energy system situation is presented as well as the overview of climate change. The most important Croatian energy system defossilization measures-energy efficiency increase, renewable energy inclusion and others - are described.(author)

  10. Oneida Tribe Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Ray [Energy Controls Manager; Schubert, Eugene [Policy Analyst

    2014-08-15

    Project funding energy audits of 44 Tribally owned buildings operated by the Oneida Tribe of Indians of WI. Buildings were selected for their size, age, or known energy concerns and total over 1 million square feet. Audits include feasibility studies, lists of energy improvement opportunities, and a strategic energy plan to address cost effective ways to save energy via energy efficiency upgrades over the short and long term.

  11. Energy in 1996

    International Nuclear Information System (INIS)

    1996-01-01

    Six charts are presented and discussed concerning energy utilization in France during the 1970-1996 period: national energy bill, energy intensity ratios, imported crude oil costs, energy-induced carbon dioxide emissions, operating ability ratios of EDF nuclear plants, France's energy independence ratios. 1996 has seen an strong increase (+31%) in the energy bill, reaching 77 billions Francs, combining an increase in energy consumption and dollar exchange rate and a decline in energy conservation; carbon dioxide emission are taking up again after a strong decrease in the 80's

  12. Current Energy Patents

    International Nuclear Information System (INIS)

    Kelly, R.C.

    1982-01-01

    Current Energy Patents (CEP) provides abstracting and indexing coverage of the international patent literature, including patent applications, that concerns any aspect of energy production, conservation, and utilization

  13. Swiss energy statistics 2006

    International Nuclear Information System (INIS)

    2007-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2006. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2006 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  14. Swiss energy statistics 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2004. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2004 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  15. Swiss energy statistics 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2005. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2005 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  16. Swiss energy statistics 2003

    International Nuclear Information System (INIS)

    2004-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2003. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2003 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  17. Energy for tomorrow

    International Nuclear Information System (INIS)

    Koerber, H.

    1991-07-01

    The book is intended for readers not so familiar with the subjects, presenting reliable information on specific topics or technologies in the context of a review of the situation in the energy sector. The author explains the energy supply systems and the relevant energy sources, also referring to the potentials of renewable energy sources and the role they may play in addition to fossil fuels and nuclear energy. Energy conseration, economically efficient use of available energy sources, and protection of the environment are other items of main interest. The hazards emanating from energy generation and the market power of electric utilities are items of critical discussion. (DG) [de

  18. 'Energies 2050' report

    International Nuclear Information System (INIS)

    Percebois, Jacques; Mandil, C.

    2012-02-01

    This report proposes an analysis of different scenarios of energy policy for France by 2050, notably by studying four options of evolution of electricity supply in France (extension of the present nuclear fleet, speeding up the passage to third generation and even fourth generation nuclear reactors, progressive reduction of nuclear energy, and phasing out nuclear). The report analyses the European and world energy context (main challenges, energy policies in other countries), the challenges of the future French energy mix (present situation, constraints and uncertainties, criteria to be met by 2050), the issue of the French energy mix by 2050 with respect to the different scenarios (in terms of energy demand, energy supply)

  19. Swedish Energy Research 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Swedish Energy Research 2009 provides a brief, easily accessible overview of the Swedish energy research programme. The aims of the programme are to create knowledge and skills, as needed in order to commercialise the results and contribute to development of the energy system. Much of the work is carried out through about 40 research programmes in six thematic areas: energy system analysis, the building as an energy system, the transport sector, energy-intensive industries, biomass in energy systems and the power system. Swedish Energy Research 2009 describes the overall direction of research, with examples of current research, and results to date within various thematic areas and highlights

  20. Swiss energy statistics 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2002. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2002 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  1. Swiss energy statistics 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2010. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2010 and energy use in various sectors are presented. The Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. In the third chapter, details are given related to each energy carrier. The final chapter deals with economical and environmental aspects

  2. Energy and human needs

    International Nuclear Information System (INIS)

    Curran, S.C.; Curran, J.S.

    1979-01-01

    The subject is dealt with in five parts, as follows: energy sources and converted forms; fossil fuels and their depletion; the nuclear option (fission and fusion phenomena; fission reactors; the economics of nuclear power; energy from fusion); the provision of energy (including - energy as electricity, transmission, the hydrogen economy, energy storage, heat pumps, energy conservation and energy from waste, energy analysis); social, environmental and international aspects (the environment - non radioactive pollution; nuclear power and safety, reprocessing and waste disposal; political aspects of the civil uses of nuclear power; proliferation and terrorism, summary and some thoughts for the future). (U.K.)

  3. Energy in Croatia 2004, Annual Energy Report

    International Nuclear Information System (INIS)

    2005-11-01

    Report represents a continuous information source for both national and international public on relations and trends in the Croatian energy system. This edition brings certain changes in the energy topics' outline and broader scope of information compared to the previous editions. However, the representative features of the Croatian energy sector, related to supply and demand of energy at all levels, kept the familiar outlook of presentation.Besides the detailed analysis of energy trends, this edition provides numerous information on capacity, reserves and prices of energy as well as individual energy sources' balances - crude oil and oil derivates, natural gas, electricity, heat, coal and renewable energy sources. In addition, Croatian basic and economic and financial indicators, emission of air pollutants plus basic energy efficiency indicators were presented in order to give better understanding of the Croatian energy sector environment. Finally, there is a special novelty of representing energy balances of the Republic of Croatia made in the compliance with EUROSTAT and IEA methodology for years 2003 and 2004. Total primary energy supply in the Republic of Croatia in 2004 was 4.1 percent higher compared to the previous year. The gross domestic product increased by 3.8 percent over the same period. This means that energy intensity, primary energy supply per unit of gross domestic product, increased by 0.3 percent. Compared to the European Union average Croatian energy intensity was approximately 24 percent higher. Total primary energy production, on the other hand, increased by 11.2 percent due to extremely favourable hydrological conditions. The raise i n hydropower by 48.5 percent improved Croatian primary energy self-supply to 49.6 percent. In the structure of total primary energy supply for 2004, the losses of transmission and distribution of energy were reduced only while the rest of the categories of energy consumption increased. The 3.3 percent increase

  4. Energy handbook. 2008 edition

    International Nuclear Information System (INIS)

    2008-01-01

    This memento about energy provides a series of tables with numerical data relative to energy resources and uses in France, in the European Union and in the rest of the world: energy consumption and demand (primary energy demand, consumption, and efficiency per region and per source. Forecasting, CO 2 emissions, energy independence, supplies, uses and imports, demand scenarios, energy savings..), power production (production per geopolitical region, in OECD countries and in France. Peak load demand, power consumption and generation in France. Hydro-power and thermal plants in France. Total capacity, forecasts and exports), nuclear power (production, forecasting, reactors population, characteristics of French PWRs, uranium needs and fuel cycle), energy resources (renewable energies, fossil fuels and uranium reserves and production), economic data (gross national product, economic and energy indicators, prices and cost estimations), energy units and conversion factors (counting, calorific value of coals, production costs, energy units). (A.L.B.)

  5. Annual energy reviews-2009

    International Nuclear Information System (INIS)

    2010-01-01

    The important items related to energy in 2009 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand and supply are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trends on boiler, industrial furnace, engine, thermal energy system, high efficiency power generation technology are explained. And, on the last item, trend on environment problem and developmental trend on environmental conservation technology are explained. (J.P.N.)

  6. Annual energy reviews-2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Here were described as important items related to energy in 2001 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous. On the first item, here were described on trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand. On the second item, here were described on petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources. On the third item, here were described on combustion theory, trend on boiler trend on industrial furnace, trend on engine, trend on energy system, and trend on high efficiency power generation technology. And, on the fourth item, here were described on trend on environment problem, and developmental trend on environmental conversion technology. (J.P.N.)

  7. Annual energy reviews-2007

    International Nuclear Information System (INIS)

    2008-01-01

    The important times related to energy in 2007 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand and supply are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trends on boiler, industrial furnace, engine, thermal energy system, high efficiency power generation technology are explained. And, on the last item, trend on environment problem and developmental trend on environmental conservation technology are explained. (J.P.N.)

  8. Annual energy reviews-2005

    International Nuclear Information System (INIS)

    2006-01-01

    The important items related to energy in 2005 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand and supply are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trends on boiler, industrial furnace, engine, thermal energy system, high efficiency power generation technology are explained. And, on the last item, trend on environment problem and developmental trend on environmental conservation technology are explained. (J.P.N.)

  9. Energy data book 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This memento about energy provides a series of tables with numerical data relative to energy resources and uses in France, in the European Union and in the rest of the world: energy consumption and demand (primary energy demand, consumption, and efficiency per region and per source; forecasting, CO 2 emissions, energy independence, supplies, uses and imports, demand scenarios, energy savings..), power production (production per geopolitical region, in OECD countries and in France; peak load demand, power consumption and generation in France; hydro-power and thermal plants in France; total capacity, forecasts and exports), nuclear power (production, forecasting, reactors population, characteristics of French PWRs, uranium needs and fuel cycle), energy resources (renewable energies, fossil fuels and uranium reserves and production), economic data (gross national product, economic and energy indicators, prices and cost estimations), energy units and conversion factors (counting, calorific value of coals, production costs, energy units). (J.S.)

  10. Brazilian energy model

    Science.gov (United States)

    1981-05-01

    A summary of the energy situation in Brazil is presented. Energy consumption rates, reserves of primary energy, and the basic needs and strategies for meeting energy self sufficiency are discussed. Conserving energy, increasing petroleum production, and utilizing other domestic energy products and petroleum by-products are discussed. Specific programs are described for the development and use of alcohol fuels, wood and charcoal, coal, schist, solar and geothermal energy, power from the sea, fresh biomass, special batteries, hydrogen, vegetable oil, and electric energy from water power, nuclear, and coal. Details of the energy model for 1985 are given. Attention is also given to the energy demands and the structure of global energy from 1975 to 1985.

  11. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  12. Energy in Sweden 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    The annual Energy in Sweden report, and its sister publication, Energy in Sweden - Facts and Figures 2010 (STEM-ET--2010-46), are intended to provide decision makers, journalists, companies, teachers and the public with coherent and easily available information on developments in the energy sector. Most of the publication is based on official statistics up to and including 2009, complemented where possible by input reflecting current events and decisions up to the middle of 2010. Energy in Sweden presents facts about the use and supply of energy, present energy- and climate policy and policy measures, energy prices and energy markets, the impact of energy systems on the environment and an international outlook etc. See also the publication Energy in Sweden - Facts and Figures 2010 where the tabular data behind most of the diagrams in Energy in Sweden are presented

  13. Energy in Sweden 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-12-15

    The annual Energy in Sweden report, and its sister publication, Energy in Sweden: Facts and Figures (STEM-ET--2009-29), are intended to provide decision makers, journalists, companies, teachers and the public with coherent and easily available information on developments in the energy sector. Most of the publication is based on official statistics up to and including 2008, complemented where possible by input reflecting current events and decisions up to the middle of 2009. Energy in Sweden presents facts about the use and supply of energy, present energy- and climate policy and policy measures, energy prices and energy markets, the impact of energy systems on the environment and an international outlook etc. See also the publication Energy in Sweden - Facts and Figures 2009 where the tabular data behind most of the diagrams in Energy in Sweden are presented

  14. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  15. Energy in Croatia 2005, Annual Energy Report

    International Nuclear Information System (INIS)

    2006-12-01

    Report presents the latest information on relations and trends in the Croatian energy sector. The reports gives a familiar overview of comprehensive data about and representative features of the Croatian energy sector, related to the supply and demand of energy at all levels. It produces a detailed analysis of energy trends and provides extensive data on capacity, reserves and prices as well as balances of individual energy sources - crude oil, petroleum products, natural gas, electricity, heat, coal and renewable source of energy. Basic economic and financial indicators, emissions of air pollutants and basic energy efficiency indicators for Croatia are also presented. In 2005, total primary energy supply in Croatia decreased slightly by 0.1 per cent with respect to the previous year. At the same time, GDP rose by 4.3 per cent, resulting in a drop in energy intensity of the total primary energy supply of 4.2 per cent. The energy intensity in Croatia was 20.1 per cent higher than the average energy intensity in the European Union, but a positive decreasing trend was noted during the past period. In 2005 the total primary energy production in Croatia fell by 3.5 per cent with respect to the previous year. The highest decrease was recorded in harnessing hydro power, and the production of crude oil and fuel wood also declined. Only the production of natural gas showed a growth of 3.5 per cent. Due to the decrease in the primary energy production, energy self-supply was also reduced to 47.9 per cent. A less value was achieved only in the year 2003. A continuing trend towards a gradual decline in energy self-supply was present throughout the past several years. Final energy demand increased by 3 per cent while demands in other sectors decreased. Energy transformation losses were reduced by 7 per cent, non-energy use declined by 5.6 per cent and energy transmission and distribution losses by 5.5 per cent, and there was a slight drop of 0.2 per cent in demand in energy

  16. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  17. Swiss energy statistics 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2007. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2007 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power

  18. Swiss energy statistics 2000

    International Nuclear Information System (INIS)

    2001-01-01

    This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2000. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2000 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power

  19. The French energy policy

    International Nuclear Information System (INIS)

    Maillard, D.; Baulinet, Ch.; Lajoinie, A.

    2001-01-01

    France has to face strong energy challenges: a heavy energy bill, increasing supplies risk, no decreasing CO 2 emissions, deregulation of energy markets, nuclear controversy etc.. In consequence, the French government has defined a voluntaristic energy policy with a better balance between the development of renewable energies and the mastery of energy and without renouncing the advantages of nuclear energy. In parallel, the electric power and natural gas industries have to cope with the deregulation of energy markets and the resulting competition. This issue of 'Energies et Matieres Premieres' newsletter comprises 3 articles. The first one gives a general presentation of the French energy policy ('mobilizing our margins of manoeuvre without renouncing our stakes'): challenges of the energy policy (greenhouse effect, security of supplies, long-term worldwide energy context, European integration, nuclear contestation), stakes for France (evolution of production structure, advantages of the French energy status), renewable energies and energy saving, long-term view of the nuclear industry, managing together the dynamism of competition and the advantages of public utilities. The second article entitled 'energy for everybody: a challenge for the 21. century' is a reprint of the introduction of the information report registered on January 31, 2001 by the commission of production and exchanges of the French national assembly. The third article is a reprint of the summary of conclusions and recommendations of the IEA about the French energy policy. (J.S.)

  20. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program