WorldWideScience

Sample records for energetic protons radionuclides

  1. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  2. Analysis and verification of a prediction model of solar energetic proton events

    Science.gov (United States)

    Wang, J.; Zhong, Q.

    2017-12-01

    The solar energetic particle event can cause severe radiation damages near Earth. The alerts and summary products of the solar energetic proton events were provided by the Space Environment Prediction Center (SEPC) according to the flux of the greater than 10 MeV protons taken by GOES satellite in geosynchronous orbit. The start of a solar energetic proton event is defined as the time when the flux of the greater than 10 MeV protons equals or exceeds 10 proton flux units (pfu). In this study, a model was developed to predict the solar energetic proton events, provide the warning for the solar energetic proton events at least minutes in advance, based on both the soft X-ray flux and integral proton flux taken by GOES. The quality of the forecast model was measured against verifications of accuracy, reliability, discrimination capability, and forecast skills. The peak flux and rise time of the solar energetic proton events in the six channels, >1MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >100 MeV, were also simulated and analyzed.

  3. Backward emission mechanism of energetic protons studied from two-particle correlations in 800 MeV proton-nucleus collisions

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1982-07-01

    The production mechanism of backward energetic protons was studied in 800 MeV proton-nucleus collision from the measurement of two-particle correlation over a wide range of kinematic regions. The backward energetic protons at 118 deg were measured in coincidence with the particles emitted in the angular range from 15 deg to 100 deg. Both in-plane and out-of-plane coincidences were measured. The backward energetic protons were detected with a delta E-E counter in a momentum region from 350 to 750 MeV/c, whereas the coincident particles were detected with a magnetic spectrometer in the momentum region from 450 to 2000 MeV/c. The reaction process of the backward protons were decomposed into six categories by the measurement of the associated particles, p or d. The momentum spectra, angular distribution and the target mass dependence of these components were studied. The component of p-p QES was well reproduced by the PW1A model, but the backward energetic protons were not from this process. The momenta of two nucleons inside the quasi-deuteron are highly correlated. The components of p-p non-QES and p-p out-of-plane are the main components of the backward energetic proton production. (Kako, I.)

  4. Energetic proton generation in ultra-intense laser-solid interactions

    International Nuclear Information System (INIS)

    Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M. H.; Pennington, D.; MacKinnon, A.; Snavely, R.A.

    2001-01-01

    An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 10 20 W/cm 2 , high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors

  5. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  6. Positron lifetime study of copper irradiated by energetic protons or energetic neutrons

    International Nuclear Information System (INIS)

    Howell, R.H.

    1979-03-01

    Positron lifetime measurements of pure copper damaged by irradiation with energetic protons and neutrons are presented. Lifetime determinations of the bulk material and various traps were made, and the dependence of the trapping rate on dose and irradiation energy were investigated. The results from the neutron- and proton-irradiated samples point to the existence of traps with similar but distinct lifetime parameters, not varying greatly from values reported in deformation studies. Also, a trap with long lifetime is seen for some proton irradiations, but is never seen for the neutron irradiations. The trapping rate of the short-lifetime trap is a linear function of dose for proton-irradiated samples and nearly so for the neutron irradiation. 1 figure

  7. Jupiter energetic particle experiment ESAD proton sensor design

    International Nuclear Information System (INIS)

    Gruhn, C.R.; Higbie, P.R.

    1977-12-01

    A proton sensor design for the Jupiter Energetic Particle Experiment is described. The sensor design uses avalanche multiplication in order to lower the effective energy threshold. A complete signal-to-noise analysis is given for this design

  8. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, P.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 1351-1365 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50107/abstract

  9. Theory of magnetospheric hydromagnetic waves excited by energetic ring-current protons

    International Nuclear Information System (INIS)

    Chen, Liu; Hasegawa, Akira.

    1987-06-01

    A general theoretical formulation, allowing finite ion Larmor radii, general magnetic field geometries and plasma equilibria, has been developed to investigate excitations of magnetohydrodynamic (MHD) Alfven waves within the earth's magnetosphere by the storm-time energetic ring-current protons. In particular, it is found that for adiabatically injected protons, various predicted instability properties are consistent with satellite observations. 8 refs

  10. Importance of energetic solar protons in ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, J A.E.; Scourfield, M W.J. [Natal Univ., Durban (South Africa). Space Physics Research Inst.

    1991-07-11

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by {approx} 9% over {approx} 20% of the total area between the South Pole and latitude 70{sup o}S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author).

  11. Importance of energetic solar protons in ozone depletion

    International Nuclear Information System (INIS)

    Stephenson, J.A.E.; Scourfield, M.W.J.

    1991-01-01

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by ∼ 9% over ∼ 20% of the total area between the South Pole and latitude 70 o S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author)

  12. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  13. Preparation of proton rich radionuclides in support of radiochemical analysis

    International Nuclear Information System (INIS)

    Jerome, Simon; Larijani, Cyrus; Parker, David

    2012-01-01

    The production of proton rich radionuclides supports a wide range of radiochemical analyses via radioactive yield tracers ( 95m Tc and 236 Pu). In recent years, NPL and the University of Birmingham cyclotron have collaborated to produce these, and other, radionuclides. - Highlights: ► In this paper we options for the production of Tc and Pu tracers. ► The irradiation and measurement of targets producing Tc-95 m and Pu-236 are described. ► Options for production are discussed. ► The results of this study and future work needed are described.

  14. Nonlinear interaction of energetic ring current protons with magnetospheric hydromagnetic waves

    International Nuclear Information System (INIS)

    Chan, A.A.; Chen, L.; White, R.B.

    1989-01-01

    In order to study nonlinear wave-particle interactions in the Earth's magnetosphere we have derived Hamiltonian equations for the gyrophase-averaged nonrelativistic motion of charged particles in a perturbed dipole magnetic field. We assume low frequency (less than the proton gyrofrequency) fully electromagnetic perturbations, and we retain finite Larmor radius effects. Analytic and numerical results for the stochastic threshold of energetic protons (approx-gt 100 keV) in compressional geomagnetic pulsations in the Pc 5 range of frequencies 150--600 seconds are presented. These protons undergo a drift-bounce resonance with the Pc 5 waves which breaks the second (longitudinal) and third (flux) adiabatic invariants, while the first invariant (the magnetic moment) and the proton energy are approximately conserved. The proton motion in the observed spectrum of waves is found to be strongly diffusive, due to the overlap of neighboring primary resonances. copyright American Geophysical Union 1989

  15. Nonlinear interaction of energetic ring current protons with magnetospheric hydromagnetic waves

    International Nuclear Information System (INIS)

    Chan, A.A.; Chen, Liu; White, R.B.

    1989-09-01

    In order to study nonlinear wave-particle interactions in the earth's magnetosphere we have derived Hamiltonian equations for the gyrophase-averaged nonrealistic motion of charged particles in a perturbed dipole magnetic field. We assume low frequency (less than the proton gyrofrequency) fully electromagnetic perturbations, and we retain finite Larmor radius effects. Analytic and numerical results for the stochastic threshold of energetic protons (approx gt 100 keV) in compressional geomagnetic pulsations in the Pc 5 range of frequencies (150--600 seconds) are presented. These protons undergo a drift-bounce resonance with the Pc 5 waves which breaks the second (longitudinal) and third (flux) adiabatic invariants, while the first invariant (the magnetic moment) and the proton energy are approximately conserved. The proton motion in the observed spectrum of waves is found to be strongly diffusive, due to the overlap of neighboring primary resonances. 17 refs., 2 figs

  16. Dominant acceleration processes of ambient energetic protons (E>= 50 keV) at the bow shock: conditions and limitations

    International Nuclear Information System (INIS)

    Anagnostopoulos, G.C.; Sarris, E.T.

    1983-01-01

    Energetic proton (Esub(p)>= 50 keV) and magnetic field observations during crossings of the Earth's Bow Shock by the IMP-7 and 8 spacecraft are incorporated in this work in order to examine the effect of the Bow Shock on a pre-existing proton population under different ''interplanetary magnetic field-Bow Shock'' configurations, as well as the conditions for the presence of the Bow Shock associated energetic proton intensity enhancements. The presented observations indicate that the dominant process for the efficient acceleration of ambient energetic particles to energies exceeding approximately 50 keV is by ''gradient-B'' drifting parallel to the induced electric field at quasi-perpendicular Bow Shocks under certain well defined limitations deriving from the finite and curved Bow Shock surface. It is shown that the proton acceleration at the Bow Shock is most efficient for high values of the upstream magnetic field (in general B 1 > 8#betta#), high upstream plasma speed and expanded Bow Shock fronts, as well as for direction of the induced electric field oriented almost parallel to the flanks of the Bow Shock, i.e. when the drift distance of protons parallel to the electric field at the shock front is considerably smaller than the local radius of curvature of the Bow Shock. The implications of the presented observations of Bow Shock crossings as to the source of the energetic proton intensity enhancements are discussed. (author)

  17. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  18. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 3151-3165 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GAP209/12/2023 EU Projects: European Commission(XE) 263340 - SWIFF Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  19. SU-E-T-666: Radionuclides and Activity of the Patient Apertures Used in a Proton Beam of Wobbling System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.Y.; Chen, H.H.; Tsai, H.Y.; Sheu, R.J.

    2015-06-15

    Purpose: To identify the radionuclides and quantify the activity of the patient apertures used in a 190-MeV proton beam of wobbling system. Methods: A proton beam of wobbling system in the first proton center in Taiwan, Chang Gung Memorial Hospital at Linkou, was used to bombard the patient apertures. The patient aperture was composed of 60.5 % copper, 39.4 % Zinc, 0.05 % iron, 0.05 % lead. A protable high-purity germanium (HPGe) coaxial detector was used to measure the spectra of the induced nuclides of patient apertures. The analysis of the spectra and the identification of the radionuclides were preliminarily operated by the Nuclide Navigator III Master Library. On the basis of the results by Nuclide Navigator III Master Library, we manually selected the reliable nuclides by the gamma-ray energies, branching ratio, and half life. In the spectra, we can quantify the activity of radionuclides by the Monte Carlo efficiency transfer method. Results: In this study, the radioisotopes activated in patient apertures by the 190-MeV proton beam were divided into two categories. The first category is long half-life radionuclides, such as Co-56 (half life, 77.3 days). Other radionuclides of Cu-60, Cu-61, Cu-62, Cu-66, and Zn-62 have shorter half life. The radionuclide of Cu-60 had the highest activity. From calculation with the efficiency transfer method, the deviations between the computed results and the measured efficiencies were mostly within 10%. Conclusion: To identify the radionuclides and quantify the activity helps us to estimate proper time intervals for cooling the patient apertures. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  20. SU-E-T-666: Radionuclides and Activity of the Patient Apertures Used in a Proton Beam of Wobbling System

    International Nuclear Information System (INIS)

    Wang, B.Y.; Chen, H.H.; Tsai, H.Y.; Sheu, R.J.

    2015-01-01

    Purpose: To identify the radionuclides and quantify the activity of the patient apertures used in a 190-MeV proton beam of wobbling system. Methods: A proton beam of wobbling system in the first proton center in Taiwan, Chang Gung Memorial Hospital at Linkou, was used to bombard the patient apertures. The patient aperture was composed of 60.5 % copper, 39.4 % Zinc, 0.05 % iron, 0.05 % lead. A protable high-purity germanium (HPGe) coaxial detector was used to measure the spectra of the induced nuclides of patient apertures. The analysis of the spectra and the identification of the radionuclides were preliminarily operated by the Nuclide Navigator III Master Library. On the basis of the results by Nuclide Navigator III Master Library, we manually selected the reliable nuclides by the gamma-ray energies, branching ratio, and half life. In the spectra, we can quantify the activity of radionuclides by the Monte Carlo efficiency transfer method. Results: In this study, the radioisotopes activated in patient apertures by the 190-MeV proton beam were divided into two categories. The first category is long half-life radionuclides, such as Co-56 (half life, 77.3 days). Other radionuclides of Cu-60, Cu-61, Cu-62, Cu-66, and Zn-62 have shorter half life. The radionuclide of Cu-60 had the highest activity. From calculation with the efficiency transfer method, the deviations between the computed results and the measured efficiencies were mostly within 10%. Conclusion: To identify the radionuclides and quantify the activity helps us to estimate proper time intervals for cooling the patient apertures. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  1. Monitoring solar energetic particles with an armada of European spacecraft and the new automated SEPF (Solar Energetic Proton Fluxes) Tool

    Science.gov (United States)

    Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.

    2012-01-01

    Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level ( 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) has developed and validated a novel method to obtain flux spectra from SREM count rates. Using this method and by conducting detailed scientific studies we have showed in

  2. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  3. Comparison on the production of radionuclides in 1.4 GeV proton irradiated LBE targets of different thickness

    CERN Document Server

    Maiti, Moumita; Mendonça, Tania M; Stora, Thierry; Lahiri, Susanta

    2014-01-01

    This is the first report on the inventory of radionuclides produced in 1.4 GeV proton induced reaction on Lead-Bismuth Eutectic (LBE) targets. LBE targets of 6 mm diameter and 1 to 8 mm lengths were irradiated with 1.4 GeV protons. The radionuclides ranging from Be-7 (53.12 days) to Po-207 (5.8 h) were identified in the samples with the help of time resolved gamma-ray spectroscopy. However, there is no signature of formation of At radioisotopes, which can be produced by the interaction of secondary particles, typical for thick targets.

  4. Energetic proton analysis at large angle by 200 MeV proton scattering on nuclei: inclusive spectra; proton-gamma coincidence spectra

    International Nuclear Information System (INIS)

    Al-Zoubidi, M.

    1984-01-01

    With a large acceptance magnet, both in momentum (300-700 MeV/c) and angle (10 0 ), backward energetic proton inclusive cross sections were measured for 200 MeV protons hitting 6 Li, 27 Al, 28 Si, 58 Ni and 197 Au targets. The data are analysed using the ''Quasi Two Body Scaling'' (QTBS) picture and also compared with the predictions at a standard cascade code. This QTBS approch assumes the dominance of the single scattering mechanism. It is shown that a scaling regime is reached for several data taken at incident energies at about 200 MeV/A. These data are remarkably well reproduced using a universal one nucleon momentum density distribution for A > approximately 20. A (p-γ) coincidence experiment was performed on 28 Si target, at 80 0 . Preliminary results indicates also single nucleon-nucleon collision, but the other low energy nucleon interacts with the residuel nucleus. Excitation energy transferred to the system is about 50 MeV [fr

  5. Radiation tests of the EMU spacesuit for the International SpaceStation using energetic protons

    Energy Technology Data Exchange (ETDEWEB)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Shavers, M.

    2001-06-04

    Measurements using silicon detectors to characterize theradiation transmitted through the EMU spacesuit and a human phantom havebeen performed using 155 and 250 MeV proton beams at the Loma LindaUniversity Medical Center (LLUMC). The beams simulate radiationencountered in space, where trapped protons having kinetic energies onthe order of 100 MeV are copious. Protons with 100 MeV kinetic energy andabove can penetrate many centimeters of water of other light materials,so that astronauts exposed to such energetic particles will receive dosesto their internal organs. This dose can be enhanced or reduced byshielding - either from the spacesuit or the self-shielding of the body -but minimization of the risk depends on details of the incident particleflux (in particular the energy spectrum) and on the dose responses of thevarious critical organs.

  6. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  7. Several features of the earthward and tailward streaming of energetic protons (0.29--0.5 MeV) in the earth's plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Krimigis, S.M.

    1981-01-01

    The characteristics of earthward and tailward streaming of energetic protons (0.29--0.50 MeV) in the magnetotial at downstream distances of 20 to 40 R/sub E/ are examined with approx.5.5-min averaged data from the APL/JHU Charged Particle Measurements Experiment on board the IMP 7 and IMP 8 spacecraft. On the basis of observations from September 1972 to May 1978 it is found that the occurrence frequency of energetic magnetospheric protons streaming either tailward or earthward with a front-to-back flux ratio of >2 is at least 23%. Tailward streaming is found to be prevalent in the postmidnight plasma sheet, while earthward streaming is more frequent in the premidnight sector. The particle spectrum is progressively harder from the dawn flank to the dusk flank of the plasma sheet and is generally harder for tailward streaming than for earthward streaming. It is suggested that the dawn-dusk reversal in the dominant streaming direction results from an underlying circulation pattern of energetic protons in the magnetotail, tailward in the postmidnight region and earthward in the premidnight region

  8. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D 3 He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  9. MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)

    2013-08-15

    A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.

  10. Timing Comparisons for GLEs and High-energy Proton Events using GPS Proton Measurements

    Science.gov (United States)

    Bernstein, V.; Winter, L. M.; Carver, M.; Morley, S.

    2017-12-01

    The newly released LANL GPS particle sensor data offers a unique snapshot of access of relativistic particles into the geomagnetic field. Currently, 23 of the 31 operational GPS satellites host energetic particle detectors which can detect the arrival of high-energy solar protons associated with Ground Level Enhancements (GLEs). We compare the timing profiles of solar energetic proton detections from GPS satellites as well as from ground-based Neutron Monitors and GOES spacecraft at geostationary orbit in order to understand how high-energy protons from the Sun enter the geomagnetic field and investigate potential differences in arrival time of energetic protons at GPS satellites as a function of location. Previous studies could only use one or two spacecraft at a similar altitude to track the arrival of energetic particles. With GPS data, we can now test whether the particles arrive isotropically, as assumed, or whether there exist differences in the timing and energetics viewed by each of the individual satellites. Extensions of this work could lead to improvements in space weather forecasting that predict more localized risk estimates for space-based technology.

  11. Proton Radiography with CR-39 by Using the Protons from High Power Femto-second Laser System

    International Nuclear Information System (INIS)

    Choi, Chang Il; Lee, Dong Hoon; Kang, Byoung Hwi; Kim, Yong Kyun; Choi, Il Woo; Ko, Do Kyeong; Lee, Jong Min

    2008-01-01

    Proton radiography techniques are useful to obtain a high quality image of a thin object, because protons travel straight in matter. Generation of the high energy proton using conventional accelerator costs high and requires large accelerating facility. But proton radiography using high power femto-second(10-15 second) laser has been interested, because it can generate high energy protons at lower price than the conventional accelerator like a cyclotron. For this study, we used the CR-39 SSNTD (Solid State Nuclear Track Detector) as the proton radiography screen. Commonly, CR-39 is used to detect the tracks of energetic charged particles. Incident energetic charged particles left latent tracks in the CR-39, in the form of broken molecular chains and free radicals. These latent tracks show high chemical reactivity. After chemical etching with the caustic alkali solution such as NaOH or KOH, tracks are appeared to forms of hole. If protons with various energies enter the two targets with another thickness, number of protons passed through the target per unit area is different each other. Using this feature of protons, we can a proton radiographic image with CR-39. We studied proton radiography with CR-39 by using energetic protons from high power femto-second laser and evaluated potentiality of femto-second laser as new energetic proton generator for radiography

  12. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    Science.gov (United States)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  13. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  14. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  15. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    Science.gov (United States)

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  16. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    Science.gov (United States)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  17. Very energetic photons at HERA

    International Nuclear Information System (INIS)

    Bawa, A.C.; Krawczyk, M.

    1991-01-01

    We show that every energetic photons in the backward direction can be produced in deep inelastic Compton scattering at HERA. Assuming a fixed energy of 9 GeV for the initial photons and 820 GeV for the protons a high rate is found for the production of final photons with a transverse momentum equal to 5 GeV/c and energy between 40 GeV and 300 GeV. These energetic photons arise mainly from the scattering of the soft gluonic constituents of the initial photon with quarks from the proton. They are produced in the backward direction in coincidence with a photon beam jet of energy ∝ 9 GeV in the forward direction. (orig.)

  18. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions

    Science.gov (United States)

    Kurudirek, Murat; Onaran, Tayfur

    2015-07-01

    Effective atomic numbers (Zeff) and electron densities (Ne) of some essential biomolecules have been calculated for total electron interaction, total proton interaction and total alpha particle interaction using an interpolation method in the energy region 10 keV-1 GeV. Also, the spectrum weighted Zeff for multi-energetic photons has been calculated using Auto-Zeff program. Biomolecules consist of fatty acids, amino acids, carbohydrates and basic nucleotides of DNA and RNA. Variations of Zeff and Ne with kinetic energy of ionizing charged particles and effective photon energies of heterogeneous sources have been studied for the given materials. Significant variations in Zeff and Ne have been observed through the entire energy region for electron, proton and alpha particle interactions. Non-uniform variation has been observed for protons and alpha particles in low and intermediate energy regions, respectively. The maximum values of Zeff have found to be in higher energies for total electron interaction whereas maximum values have found to be in relatively low energies for total proton and total alpha particle interactions. When it comes to the multi-energetic photon sources, it has to be noted that the highest Zeff values were found at low energy region where photoelectric absorption is the pre-dominant interaction process. The lowest values of Zeff have been shown in biomolecules such as stearic acid, leucine, mannitol and thymine, which have highest H content in their groups. Variation in Ne seems to be more or less the same with the variation in Zeff for the given materials as expected.

  19. Association between magnetic field fluctuations and energetic particle bursts in the earth's magnetotail

    Science.gov (United States)

    Lui, A. T. Y.; Krimigis, S. M.; Armstrong, T. P.

    1982-01-01

    The association between energetic protons (0.29-0.50 MeV) and simultaneous local fluctuations of magnetic field at 35 to 45 earth radii in the magnetotail is examined statistically with data from APL/JHU particle telescopes aboard IMP 7 and IMP 8. About four satellite years of 5.5 min averaged measurements are used in this study. In addition to confirming that the level of magnetic field fluctuations generally increases with the presence of energetic protons and their streaming anisotropy, it is found that increases in occurrence frequency of streaming of energetic protons are ordered far better by magnetic field fluctuations than by proximity to the neutral sheet. However, the presence of large magnetic field fluctuations (delta B greater than 5 nT or delta B/B greater than 50%) is neither a necessary nor a sufficient condition for the detection of large streaming in energetic protons.

  20. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Costa Jr, Edio da [Instituto Federal de Minas Gerais-IFMG, Ouro Preto, MG, 35400-000 (Brazil); Tsurutani, Bruce T. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Alves, Maria Virgínia; Echer, Ezequiel [Instituto Nacional de Pesquisas Espaciais-INPE, São José dos Campos, SP, 12227-010 (Brazil); Lakhina, Gurbax S., E-mail: edio.junior@ifmg.edu.br, E-mail: costajr.e@gmail.com [Indian Institute for Geomagnetism, Navi Mumbai 410 218 (India)

    2013-12-01

    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  1. New Physics with Energetic Top Quarks

    CERN Document Server

    Andeen, Timothy; The ATLAS collaboration

    2018-01-01

    Many theories beyond the Standard Model predict new phenomena which decay to energetic top quarks. Searches for such new physics models are performed using the ATLAS experiment at the LHC using proton-proton collision data collected in 2015 and 2016 with a center-of-mass energy of 13 TeV. Selected recent results will be discussed.

  2. Energetic Proton Spectra Measured by the Van Allen Probes

    Science.gov (United States)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  3. Evaluation of the Induced Activity in Air by the External Proton Beam in the Target Room of the Proton Accelerator Facility of Proton Engineering Frontier Project

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young Ouk; Cho, Young Sik; Ahn, So Hyun

    2007-01-01

    One of the radiological concerns is the worker's exposure level and the concentration of the radionuclides in the air after shutdown, for the safety analysis on the proton accelerator facility. Although, the primary radiation source is the protons accelerated up to design value, all of the radio-nuclide is produced from the secondary neutron and photon induced reaction in air. Because, the protons don't penetrate the acceleration equipment like the DTL tank wall or BTL wall, secondary neutrons or photons are only in the air in the accelerator tunnel building because of the short range of the proton in the materials. But, for the case of the target rooms, external proton beams are occasionally used in the various experiments. When these external proton beams travel through air from the end of the beam transport line to the target, they interact directly with air and produce activation products from the proton induced reaction. The external proton beam will be used in the target rooms in the accelerator facility of the Proton Accelerator Frontier Project (PEFP). In this study, interaction characteristics of the external proton beam with air and induced activity in air from the direct interaction of the proton beam were evaluated

  4. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  5. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  6. Monte Carlo simulations of the Galileo energetic particle detector

    International Nuclear Information System (INIS)

    Jun, I.; Ratliff, J.M.; Garrett, H.B.; McEntire, R.W.

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study

  7. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  8. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  9. Excitation functions of proton-induced reactions on natural Nd in the 10-30 MeV energy range, and production of radionuclides relevant for double-beta decay

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Lozza, V.; Schrock, P.; Štursa, Jan; Zuber, K.

    2012-01-01

    Roč. 89, č. 4 (2012), 049905/1-049905/12 ISSN 0556-2813 R&D Projects: GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505 Keywords : proton-induced reactions * radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.715, year: 2012

  10. AstroBox: A novel detection system for very low-energy protons from β-delayed proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Pollacco, E., E-mail: epollacco@cea.fr [IRFU, CEA Saclay, Gif-sur-Yvette (France); Trache, L. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, RO-077125 (Romania); Simmons, E.; Spiridon, A.; McCleskey, M. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Roeder, B.T., E-mail: broeder@comp.tamu.edu [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Saastamoinen, A.; Tribble, R.E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Pascovici, G. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, RO-077125 (Romania); Kebbiri, M.; Mols, J.P.; Raillot, M. [IRFU, CEA Saclay, Gif-sur-Yvette (France)

    2013-09-21

    An instrument, AstroBox, has been developed to perform low energy proton spectroscopy from β-delayed proton emitters of interest to astrophysics studies. Energetic precursor nuclei are identified and stopped in the gas volume of the detector. The subsequent β or β-proton decay traces ionized paths in the gas. The ionization electrons are drifted in an electric field and are amplified with a Micro Pattern Gas Amplifier Detector (MPGAD). The system was tested in-beam using the β-delayed proton-emitter {sup 23}Al, which was produced with the p({sup 24}Mg,{sup 23}Al)2n reaction and separated with the Momentum Achromat Recoil Spectrometer (MARS) at the Cyclotron Institute at Texas A and M University. Off-beam proton spectra have essentially no β background down to ∼100keV and have a resolution of ∼15keV (fwhm) for proton-decay lines at E{sub p}=197 and 255 keV. Lines with βp-branching as low as 0.02% are observed. In addition, the device also gives good mass and charge resolution for energetic heavy ions measured in-beam.

  11. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  12. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    Science.gov (United States)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.

    2015-05-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  13. Radionuclide 252Cf neutron source

    International Nuclear Information System (INIS)

    Kolevatov, Yu.I.; Trykov, L.A.

    1979-01-01

    Characteristics of radionuclide neutron sourses of 252 Cf base with the activity from 10 6 to 10 9 n/s have been investigated. Energetic distributions of neutrons and gamma-radiation have been presented. The results obtained have been compared with other data available. The hardness parameter of the neutron spectrum for the energy range from 3 to 15 MeV is 1.4 +- 0.02 MeV

  14. Modeling the electron-proton telescope on Solar Orbiter

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Sebastian; Steinhagen, Jan; Kulkarni, S.R.; Tammen, Jan; Elftmann, Robert; Martin, Cesar; Ravanbakhsh, Ali; Boettcher, Stephan; Seimetz, Lars; Wimmer-Schweingruber, Robert F. [Christian-Albrechts-Universitaet, Kiel (Germany)

    2014-07-01

    The Electron Proton Telescope (EPT) is one of four sensors in the Energetic Particle Detector suite for Solar Orbiter. It investigates low energy electrons and protons of solar events in an energy range from 20 - 400 keV for electrons and 20 keV - 7 MeV for protons. It distinguishes electrons from protons using a magnet/foil technique with silicon detectors. There will be two EPT units, each with double-barreled telescopes, one looking sunwards/antisunwards and the other north/south. We set up a Monte Carlo model of EPT using the GEANT4 framework, which we can use to simulate interactions of energetic particles in the sensor. Here we present simulation results of the energy coverage for different ion species, and we study how it is possible to distinguish between them.

  15. Short-lived radionuclide production capability at the Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Mausner, L.F.; Richards, P.

    1985-01-01

    The Brookhaven National Linac Isotope Producer is the first facility to demonstrate the capability of a large linear accelerator for efficient and economical production of difficult-to-make, medically useful radionuclides. The linac provides a beam of 200-MeV protons at an integrated beam current of up to 60 μA. The 200-MeV proton energy is very suitable for isotope production because the spallation process can create radionuclides unavailable at lower energy accelerators or reactors. Several medically important short-lived radionuclides are presently being prepared for on-site and off-site collaborative research programs. These are iodine-123, iron-52, manganese-52m, ruthenium-97, and the rubidium-81-krypton-81m system. The production parameters for these are summarized

  16. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  17. Solvent control of intramolecular proton transfer

    DEFF Research Database (Denmark)

    Manolova, Y.; Marciniak, Heinz; Tschierlei, S.

    2017-01-01

    of molecules in the enol and zwitterionic proton transfer (PT) form exists in the ground state. However, the zwitterion is the energetically favored one in the electronically excited state. Optical excitation of the enol form results in intramolecular proton transfer and formation of the PT form within 1.4 ps...

  18. Tertiary proton diagnostics in future inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Cremer, S.; Verdon, C.P.; Petrasso, R.D.

    1998-01-01

    Recently, it was proposed to use energetic (up to 31 MeV) tertiary protons produced during the final stage of inertial confinement fusion implosions to measure the fuel areal density of compressed deuterium endash tritium (DT). The method is based on seeding the fuel with 3 He. The reaction of 3 He ions with the energetic knock-on deuterons, produced via the elastic scattering of 14.1 MeV neutrons, is a source of very energetic protons capable of escaping from very large areal density targets. This work presents results of detailed time-dependent Monte Carlo simulations of the nuclear processes involved in producing and transporting these protons through imploding targets proposed for direct-drive experiments on OMEGA [D. K. Bradley et al., Phys. Plasmas 5, 1870 (1998)] and the National Ignition Facility [S. W. Haan et al., Phys. Plasmas 2, 2480 (1995)]. copyright 1998 American Institute of Physics

  19. Database of episode-integrated solar energetic proton fluences

    Science.gov (United States)

    Robinson, Zachary D.; Adams, James H.; Xapsos, Michael A.; Stauffer, Craig A.

    2018-04-01

    A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8) and the Geostationary Operational Environmental Satellites (GOES) series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  20. Database of episode-integrated solar energetic proton fluences

    Directory of Open Access Journals (Sweden)

    Robinson Zachary D.

    2018-01-01

    Full Text Available A new database of proton episode-integrated fluences is described. This database contains data from two different instruments on multiple satellites. The data are from instruments on the Interplanetary Monitoring Platform-8 (IMP8 and the Geostationary Operational Environmental Satellites (GOES series. A method to normalize one set of data to one another is presented to create a seamless database spanning 1973 to 2016. A discussion of some of the characteristics that episodes exhibit is presented, including episode duration and number of peaks. As an example of what can be understood about episodes, the July 4, 2012 episode is examined in detail. The coronal mass ejections and solar flares that caused many of the fluctuations of the proton flux seen at Earth are associated with peaks in the proton flux during this episode. The reasoning for each choice is laid out to provide a reference for how CME and solar flares associations are made.

  1. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.

    Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  2. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    2003-12-01

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  3. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  4. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  5. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  6. Proton-nucleus interactions at 640 MeV accompanied by backward emission of energetic protons

    International Nuclear Information System (INIS)

    Komarov, V.I.; Kosarev, E.G.; Mueller, H.; Netzband, D.; Toneev, V.D.; Stiehler, T.; Tesch, S.; Gudima, K.K.; Mashnik, S.G.

    1979-03-01

    Spectra of protons of energies between 50 and 145 MeV emitted from carbon have been measured at angles from 105 0 to 160 0 with respect to the 640 MeV proton beam. The measurements have been carried out both inclusively and in coincidence with protons emitted at forward angles up to +- 40 0 with energies from 255 to 330 MeV. This energy interval has been chosen in accordance with the kinematics of quasifree scattering on two-nucleon groups. Inclusive differential cross sections at 140 0 and coincidence cross sections at the angle pair (-12 0 , 122 0 ) have also been measured with Be, Al, Cu and Pb targets. The data have been compared with the predictions of several models. (author)

  7. Proton Transfer in Nucleobases is Mediated by Water

    Energy Technology Data Exchange (ETDEWEB)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  8. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1999-09-01

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from  X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.Key words. Magnetospheric physics (magnetosheath; magnetotail boundary layers; storms and substorms

  9. Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I positron emitting radionuclides through future laser-accelerated proton beams at ELI-Beamlines for innovative PET diagnostics

    Directory of Open Access Journals (Sweden)

    Antonio Italiano

    2016-05-01

    Full Text Available The development of innovative production pathways for high-Z positron emitters is of great interest to enlarge the applicability of PET diagnostics, especially in view of the continuous development of new radiopharmaceuticals. We evaluated the theoretical yields of 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I PET isotopes, plus the 68Ge isotope, parent of the 68Ga positron emitter, in the hypothesis of production through laser-accelerated proton sources expected at the ELI-Beamlines facility. By means of the TALYS software we simulated the nuclear reactions leading to the above radionuclides, hypothesizing three possible scenarios of broad proton spectra, with maximum energies of about 9, 40 and 100 MeV. The production yields of the studied radionuclides, within the expected fluences, appear to be suitable for pre-clinical applications.

  10. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  11. Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons

    Science.gov (United States)

    Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.

    2015-08-01

    Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.

  12. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.

    Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  13. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    2000-01-01

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  14. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianwei [Louisiana State Univ., Baton Rouge, LA (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations; and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.

  15. Multiplicity dependence of 2-particle correlations in proton-proton collisions measured with ALICE at the LHC

    International Nuclear Information System (INIS)

    Sicking, E.

    2014-01-01

    We investigate properties of jets in proton-proton collisions using 2-particle angular correlations. By choosing an analysis approach based on 2-particle angular correlations, also the properties of low-energetic jets can be accessed. Observing the strength of the correlation as a function of the charged particle multiplicity reveals jet fragmentation properties as well as the contribution of jets to the overall charged particle multiplicity. Furthermore, the analysis discloses information on the underlying multiple parton interactions. We present results from proton-proton collisions at the center-of-mass energies √(s) = 0.9, 2.76 and 7 TeV recorded by the ALICE experiment. The ALICE data are compared to Pythia6, Pythia8 and Phojet simulations. (author)

  16. Multiplicity Dependence of Two-Particle Correlations in Proton-Proton Collisions Measured with ALICE at the LHC

    CERN Document Server

    Sicking, Eva

    2012-01-01

    We investigate properties of jets in proton-proton collisions using two-particle angular correlations. By choosing an analysis approach based on two-particle angular correlations, also the properties of low-energetic jets can be accessed. Observing the strength of the correlation as a function of the charged particle multiplicity reveals jet fragmentation properties as well as the contribution of jets to the overall charged particle multiplicity. Furthermore, the analysis discloses information on the underlying multiple parton interactions. We present results from proton-proton collisions at the center-of-mass energies $\\sqrt{s}$ = 0.9, 2.76, and 7.0 TeV recorded by the ALICE experiment. The ALICE data are compared to Pythia6, Pythia8, and Phojet simulations.

  17. Quantum-chemical investigation of the 1,2-proton shift in protonated five-membered aromatic heterocycles

    International Nuclear Information System (INIS)

    Abronin, I.A.; Gorb, L.G.; Litvinov, V.P.

    1985-01-01

    Calculations of the energetics of the 1,2-proton shift in protonated five-membered aromatic heterocycles - pyrrole, furan, and thiophene - have been carried out by the SCF MO LCAO method in the MINDO/3 approximation and nonempirically on the OST-3GF (OST-3GF) basis. The general features of this process, and also the influence of solvation and of taking into account the vacant d-AOs of the sulfur atom in the protonated form of thiophene on the results of the calculation are considered. The results obtained have been used for a discussion of the activity and selectivity of the heterocycles considered in aromatic electrophilic substitution reactions

  18. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  19. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  20. Isomers and conformational barriers of gas phase nicotine, nornicotine and their protonated forms

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tomoki; Farone, William A.; Xantheas, Sotiris S.

    2014-07-17

    We report extensive conformational searches of the neutral nicotine, nornicotine and their protonated analogs that are based on ab-initio second order Møller-Plesset perturbation (MP2) electronic structure calculations. Initial searches were performed with the 6-31G(d,p) and the energetics of the most important structures were further refined from geometry optimizations with the aug-cc-pVTZ basis set. Based on the calculated free energies at T=298 K for the gas phase molecules, neutral nicotine has two dominant trans conformers, whereas neutral nornicotine is a mixture of several conformers. For nicotine, the protonation on both the pyridine and the pyrrolidine sites is energetically competitive, whereas nornicotine prefers protonation on the pyridine nitrogen. The protonated form of nicotine is mainly a mixture of two pyridine-protonated trans conformers and two pyrrolidine-protonated trans conformers, whereas the protonated form of nornicotine is a mixture of four pyridine-protonated trans conformers. Nornicotine is conformationally more flexible than nicotine, however it is less protonated at the biologically important pyrrolidine nitrogen site. The lowest energy isomers for each case were found to interconvert via low (< 6 kcal/mol) rotational barriers around the pyridine-pyrrolidine bond.

  1. Nuclear data for proton activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhammedov, S; Vasidov, A [Institute of Nuclear Physics of Academy of Sciences of Uzbekistan, 702132 Ulugbek, Tashkent (Uzbekistan); Comsan, M N.H. [Nuclear Research Centre, Inshas Cyclotron Facility, AEA 13759 Cairo (Egypt)

    2000-11-15

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy.

  2. Nuclear data for proton activation analysis

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Vasidov, A.; Comsan, M.N.H.

    2000-01-01

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy

  3. Extended emission sources observed via two-proton correlations

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1988-01-01

    Two-proton correlations were measured as a function of the total energy and relative momentum of the proton. The correlation is analyzed for different orientations of the relative momentum, which allows information on the size and lifetime of the emission source to be extracted. The most energetic particles are emitted from a short- lived source of compound nucleus dimensions while the lower energy protons appear to be emitted from a source considerably larger than the compound nucleus. 9 refs., 3 figs

  4. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Engle, Jonathan W.; Wilson, Justin J.; Maassen, Joel R.; Nortier, Meiring F.; Birnbaum, Eva R.; John, Kevin D.; Fassbender, Michael E. [Los Alamos National Laboratory, NM (United States)

    2016-08-01

    Targeted alpha therapy (TAT) is a treatment method of increasing interest to the clinical oncology community that utilizes α-emitting radionuclides conjugated to biomolecules for the selective killing of tumor cells. Proton irradiation of thorium generates a number of α-emitting radionuclides with therapeutic potential for application via TAT. In particular, the radionuclide {sup 230}Pa is formed via the {sup 232}Th(p, 3n) nuclear reaction and partially decays to {sup 230}U, an α emitter which has recently received attention as a possible therapy nuclide. In this study, we estimate production yields for {sup 230}Pa and other Pa isotopes from proton-irradiated thorium based on cross section measurements. We adopt existing methods for the chromatographic separation of protactinium isotopes from proton irradiated thorium matrices to combine and optimize them for effective fission product decontamination.

  5. The effects of coronal holes on the propagation of solar energetic protons

    International Nuclear Information System (INIS)

    Kunches, Joseph M.; Zwickl, Ronald D.

    1999-01-01

    The accurate prediction of the start of a Solar Energetic Particle Event (SEP) is a high priority for space weather forecasters. The Space Environment Center (SEC) has recorded parameters related to SEPs since 1976, and that list includes a total of 134 events for the period 1976-1997. The onset times of individual events are variable, especially SEPs originating from the solar eastern hemisphere. An examination of the data shows the full set can be divided into two families -- those that begin at the geosynchronous satellite at a time consistent with what would be expected for activity from a given heliolongitude, and those whose onset is later than what accepted forecast techniques would predict. There are 21 'long onset' events in this historical record. Seeking to understand what factors distinguished the slow-to-arrive events, Helium I 1083.0 nm observations were examined for the presence of coronal holes at the times of the SEPs. It was found that all SEPs with long onset times had a coronal hole situated between the flare site and the footpoint of the interplanetary magnetic field line connecting to Earth ( Solar-Terrestrial Predictions-V, Hiraiso Solar-Terrestrial Research Center, Ibaraki, Japan). This coronal hole configuration is important for accurate predictions, although the hole may serve as merely a proxy for the plasma conditions that actually affect the propagation and acceleration of the protons. Since coronal holes are easily identifiable using Helium I and other wavelengths, operational forecasters can employ this technique to improve their predictions of SEPs

  6. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from 
    X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was

  7. Proton an alpha detections by track recording technique in CR-39

    International Nuclear Information System (INIS)

    Oliveira, W.A. de; Franco, M.A.R.; Herdade, S.B.; Khouri, M.C.F.; Goncalez, O.L.

    1986-07-01

    The plastic CR-39 is utilized as proton track detector in the study of the reaction 27 A (e, p) and 59 Co (e, p), near threshold. Preliminary results are presented for the energy calibration (mean track diameter as a function of proton energy) of CR-39 with mono-energetic protons of a Van de Graaff accelerator, in the energy range 1-3 MeV. (author) [pt

  8. DFT studies on proton-ethylene collisions

    International Nuclear Information System (INIS)

    Wang Zhiping; Zhang Fengshou; Wang Jing

    2012-01-01

    In the framework of the time-dependent local-density approximation (TDLDA)which applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the microscopic mechanisms of collisions between energetic protons and ethylene are studied. Not only the amount of energy lost of the projectile, but also the electron and vibration excitations of the target are identified. In addition, the influences of the collision orientation on the energy loss of the proton and excitation dynamics of ethylene are discussed. It is found that the ionization is enhanced and more electrons are captured by the proton when the proton with the impact energy less than 250 eV moves perpendicularly to the molecular plane. A strong relation between the proton energy lost and the impact orientation is obtained when the impact energy is larger than 250 eV. (authors)

  9. Origins of energetic ions in the Earth's magnetosheath. Final Report, 8 May 1991 - 5 Jun. 1992

    International Nuclear Information System (INIS)

    Fuselter, S.A.; Shelley, E.G.; Klumpar, D.M.

    1992-06-01

    The analysis and interpretation of the combined scientific data from the Hot Plasma Composition Experiment (HPCE) and the Charge Energy Mass (CHEM) spectrometer on the Active Mesospheric Particle Tracer Experiment (AMPTE) Charge Composition Explorer (CCE) spacecraft are discussed. These combined data sets have and will be used to survey the energetic ion environment in the Earth's magnetosheath to determine the origins and relative strengths of the energetic ion populations found there. A computer code was developed to analyze and interpret the data sets. The focus of the first year was on the determination of the contribution of leaked magnetospheric protons to the total energetic proton population. Emphasis was placed on intervals when the AMPTE spacecraft was in the plasma depletion layer because it was argued that in this region, only the leaked population contributes to the energetic ion population. Manipulation of the CHEM data and comparison of the CHEM and HPCE data over their common energy range near the magnetopause also contributed directly to a second study of that region

  10. Modifications in track registration response of PADC detector by energetic protons

    CERN Document Server

    Dwivedi, K K; Fink, D; Mishra, R; Tripathy, S P; Kulshreshtha, A; Khathing, D T

    1999-01-01

    It has been well established that different ionising radiations modify the track registration properties of dielectric solids. In an effort to study the response of Polyallyl diglycol carbonate (PADC Homalite) detector towards fission fragment, PADC detectors were exposed to 10 sup 4 Gy dose of 62 MeV protons and then one set of samples were exposed to fission fragments from a sup 2 sup 5 sup 2 Cf source. Two of these detectors were containing a thin layer of Buckminsterfullerene (C sub 6 sub 0). The study of the etched tracks by Leitz Optical Microscope reveals that the track diameters are enhanced by more than 70% in the proton irradiated zone as compared to that in the unirradiated zone. Scanning Electron Microscopy was performed after etching the sample in 6 N NaOH at 55 deg. C for different etching times, to study the details of the surface modifications due to proton irradiation of PADC detectors with and without C sub 6 sub 0 layer. Our observations revealed that the diameters and density of proton tra...

  11. Screening Approach to the Activation of Soil and Contamination of Groundwater at Linear Proton Accelerator Sites

    CERN Document Server

    Otto, Thomas

    The activation of soil and the contamination of groundwater at proton accelerator sites with the radionuclides 3H and 22Na are estimated with a Monte-Carlo calculation and a conservative soil- and ground water model. The obtained radionuclide concentrations show that the underground environment of future accelerators must be adequately protected against a migration of activation products. This study is of particular importance for the proton driver accelerator in the planned EURISOL facility.

  12. Long-lasting injection of solar energetic electrons into the heliosphere

    Science.gov (United States)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  13. Haw-glass dissolution and radionuclide release: mechanism - modelling - source term

    Energy Technology Data Exchange (ETDEWEB)

    Grambow, B [Forschungszentrum Karlsruhe, Institut fur Nukleare, Karlsruhe (Germany)

    1997-07-01

    Important release controlling processes are: 1) kinetics of glass matrix dissolution (leaching), 2) formation of secondary alteration products (controlling thermodynamic solubility), 3) sorption on surfaces in the engineered barrier system and 4) formation of mobile species. Quantification of these processes requires assessment of the energetics and dynamics of the various reversible and irreversible processes within an overall open non-equilibrium system. Corrosion/dissolution of the waste matrices is not necessarily associated with a proportional release of radionuclides. The formation of new secondary phases, such as silicates, molybdates, uranates, carbonates... establishes a new geochemical barrier for re-immobilization of radionuclides dissolved from the waste matrices. The presence of iron (corroding canisters during glass alteration) reduces the solution concentration of redox sensitive radionuclides. Consequently, the container, after being corroded, constitutes an important geochemical barrier for radionuclide re-immobilization. Geochemical modelling of the long-term behaviour of glasses must be performed in an integrated way, considering simultaneous reactions of the glass, of container corrosion, of repository rock and of backfill material. Until now, only few attempts were made for integral systems modelling. (A.C.)

  14. Ring current instabilities excited by the energetic oxygen ions

    International Nuclear Information System (INIS)

    Kakad, A. P.; Singh, S. V.; Lakhina, G. S.

    2007-01-01

    The ring current instabilities driven by the energetic oxygen ions are investigated during the magnetic storm. The electrons and protons are considered to have Maxwellian distributions, while energetic oxygen ions are having loss-cone distribution. Dispersion relation for the quasielectrostatic modes with frequencies ω>ω cp (proton cyclotron frequency) and propagating obliquely to the magnetic field is obtained. Dispersion relation is studied numerically for the storm time ring current parameters and it is found that these instabilities are most prominent during intense storms when the oxygen ions become the dominant constituents of the ring current plasma. For some typical storm-time ring current parameters, these modes can produce quasielectrostatic noise in the range of 17-220 Hz, thus providing a possible explanation of the electrostatic noise observed at the inner boundary of the ring current during magnetic storms. Further, these modes can attain saturation electric fields of the order of 100-500 μV/m, and therefore, are expected to scatter O + ions into the loss-cone giving rise to their precipitation into the atmosphere, thus contributing to the ring current decay

  15. 2 keV filters of quasi-mono-energetic neutrons

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Bashter, I.I.; Saleh, A.; Fathallah, M.

    2013-01-01

    A simulation study for the production of 2 keV filters of quasi-mono-energetic neutrons based on the deep interference minima in the 45 Sc total cross-section was carried out. A computer code QMENF-II was adapted to calculate the optimum amounts of the 45 Sc as a main filter element and additional component ones to obtain sufficient intensity at high resolution and purity of the filtered quasi-mono-energetic neutrons. The emitted neutron spectrum from nuclear reactor and from the reaction of 2.6 MeV protons on a lithium fluoride target at the accelerator beam port, are used for simulation

  16. Assessment of radionuclidic impurities in cyclotron produced Tc-99m

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; van Lier, E. J.; Štursa, Jan; Ráliš, Jan; Zyuzin, A.

    2012-01-01

    Roč. 39, č. 12 (2012), s. 1286-1291 ISSN 0969-8051 Institutional research plan: CEZ:AV0Z10480505 Keywords : Technetium-99m * cyclotron * proton irradiation * radionuclidic impurities Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.517, year: 2012

  17. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  18. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  19. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  20. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  1. The ion environment near Europa and its role in surface energetics

    Science.gov (United States)

    Paranicas, C.; Ratliff, J. M.; Mauk, B. H.; Cohen, C.; Johnson, R. E.

    2002-03-01

    This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ~5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europa's surface for depths 0.01 mm - 1 m. We find that in a critical fraction of the upper layer on Europa's trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europa's surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm.

  2. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    Science.gov (United States)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher

  3. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  4. Investigation of the radionuclide inventory and the production yields of the target stacks at the PEFP radioisotope production facility

    International Nuclear Information System (INIS)

    Yoon, Sang-Pil; Hong, In-Seok; Cho, Yong-Sub

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) will construct a radioisotope production facility by using the nuclear reaction between the 100-MeV proton beam and the solid target. For investigating the radionuclide inventory and the production yield of the radioisotope production facility, we have optimized the thickness of the prototype target stacks by using a SRIM calculation. The target stacks consist of RbCl encapsulated in inconel alloy, Zn metal, and Ga metal encapsulated in niobium. Typical beam parameters were 300 μA and 95 hours. An inventory of all generated radionuclide activities is mandatory in order to prepare the operation scenario and design the hot cell. The Monte Carlo code MCNPX was used to investigate what radionuclide is generated. The obtained radionuclide inventory indicated that about 100 radionuclides were generated and that the total radioactivity of the irradiated target stacks was 1324.1 Ci at the end of the bombardment. The production yields of Sr-82, Cu-67, and Ge-68 were 3.79 Ci, 2.74 Ci, and 1.23 Ci at the end of the bombardment.

  5. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    Science.gov (United States)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  6. A Design of Solar Proton Telescope for Next Generation Small Satellite

    Directory of Open Access Journals (Sweden)

    Jongdae Sohn

    2012-12-01

    Full Text Available The solar proton telescope (SPT is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS which is determined for next generation small satellite-1 (NEXTSat-1. The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4. The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

  7. MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere.

    Science.gov (United States)

    Ho, George C; Krimigis, Stamatios M; Gold, Robert E; Baker, Daniel N; Slavin, James A; Anderson, Brian J; Korth, Haje; Starr, Richard D; Lawrence, David J; McNutt, Ralph L; Solomon, Sean C

    2011-09-30

    The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.

  8. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  9. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  10. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  11. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    Science.gov (United States)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  12. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics

    International Nuclear Information System (INIS)

    Klein, Erik; Lukes, Vladimir; Ilcin, Michal

    2007-01-01

    Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms - hydrogen atom transfer (HAT), single-electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans - were calculated using DFT/B3LYP method. For α-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water

  13. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Erik [Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava (Slovakia)], E-mail: erik.klein@stuba.sk; Lukes, Vladimir; Ilcin, Michal [Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava (Slovakia)

    2007-07-09

    Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms - hydrogen atom transfer (HAT), single-electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans - were calculated using DFT/B3LYP method. For {alpha}-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.

  14. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    2000-11-01

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  15. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.

    Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  16. Photoluminescence study of high energy proton irradiation on Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bonhyeong [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, June Hyuk [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Shin, Donghyeop [Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 (United States); Ahn, Byung Tae, E-mail: btahn@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Shin, Byungha, E-mail: byungha@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-03-31

    We have studied the effect of proton irradiation on Cu(In,Ga)Se{sub 2} (CIGS) thin films using photoluminescence (PL). We used a 10 MeV proton beam with varying doses from 10{sup 9} to 10{sup 12} cm{sup −2}. Intensity-dependent low temperature PL measurements suggest that the proton irradiation does not create a new defect level but instead changes the number of preexisting defects in the detection range of the PL system. By comparing PL spectra after the proton irradiation with those obtained after thermal annealing under inert gas as well as under hydrogen gas ambient, we find that the irradiation-induced change in the defect structure does not originate from the incorporation of hydrogen but from energetics of the irradiating particles. Electrical resistivity of the proton irradiated CIGS thin films is shown to decrease after the proton irradiation, and this is explained by the reduction of the concentration of compensating donor-like defects, specifically selenium vacancies, based on the PL results. - Highlights: • Photoluminescence study of 10 MeV proton irradiation on CIGS at 10 K. • Irradiation modified population of existing defects without introducing new levels. • Changes in CIGS by 10 MeV irradiation are due to energetics of irradiating protons.

  17. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (≥1000 km s –1 ) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (α values) of power-law size distributions of the peak 1-8 Å fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes ≥1 pr cm –2 s –1 sr –1 ) and (b) fast CMEs were ∼1.3-1.4 compared to ∼1.2 for the peak proton fluxes of >10 MeV SEP events and ∼2 for the peak 1-8 Å fluxes of all SXR flares. The difference of ∼0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  18. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  19. Controlling the properties of ultraintense laser-proton sources using transverse refluxing of hot electrons in shaped mass-limited targets

    International Nuclear Information System (INIS)

    Tresca, O; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Gray, R J; Quinn, M N; McKenna, P; Aurand, B; Bagnoud, V; Fils, J; Kuehl, T; Zielbauer, B; Li, C; Li, Y T; Lin, X X; Evans, R G; Roth, M; Neely, D

    2011-01-01

    We report on the transverse refluxing of energetic electrons in mass-limited foil targets irradiated with high intensity (1 x 10 19 W cm -2 ), picosecond laser pulses. It is shown experimentally that the maximum energies of protons accelerated by sheath fields formed at the rear and at the edges of the target increase with decreasing target size. This is due to the modification of the sheath field by the energetic electrons which spread laterally along the target surface and reflect from the edges. In addition, it is shown that this transverse refluxing of energetic electrons can be used to tailor the spatial-intensity distribution of the proton beam by engineering the shape and size of the target.

  20. Experimental and theoretical study of radionuclide production on the electronuclear plant target and construction materials irradiated by 1.5 GeV and 130 MeV protons

    International Nuclear Information System (INIS)

    Titarenko, Yu.E.; Karpikhin, E.I.; Smolyakov, A.F.; Igumnov, M.M.; Stepanov, N.V.; Kazaritsky, V.D.; Batyaev, V.F.; Shvedov, O.V.; Mashnik, S.G.; Gabriel, T.A.

    1997-01-01

    Experimental and calculated results are presented for the yields of residual nuclei in 63 Cu, 65 Cu, 206 Pb, 207 Pb, 208 Pb, and 209 Bi targets irradiated to 1.5 GeV and 130 MeV protons and in 59 Co target irradiated to 1.2 GeV protons extracted from the ITEP accelerator. The nuclide yields were found by gamma-spectrometry with a GC-2518 Ge detector, a 1510 module, and a S-100 plate that, as an integral part of IBM PC, emulates a multichannel analyzer. The gamma-spectrometry 60 Co 1332.5 keV line energy resolution was 1.8 keV. The gamma-spectra were processed by the ASPRO code. The SIGMA code with the GDISP radionuclide database was used to identify the gamma-lines and to calculate the respective cross sections. The monitor reactions was 27 Al(p,3pn) 24 Na. The experimental generation cross sections of end products are compared with the respective values calculated by the HETC, INUCL, and CEM95 codes that simulate hadron-nucleus interactions. 12 refs., 3 figs., 7 tabs

  1. Magnetospheric Multiscale (MMS) Observations of Energetic Ion Response to Magnetotail Dipolarization Events

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.

  2. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  3. A system for monitoring the radiation effects of a proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  4. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    International Nuclear Information System (INIS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; Zhang, L. G.; Huang, S.; Xu, Z. Z.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.

    2016-01-01

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  5. Energetic Charged Particle Emission from Hydrogen-Loaded pd and ti Cathodes and its Enhancement by He-4 Implantation

    Science.gov (United States)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.

    2006-02-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.

  6. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation

    International Nuclear Information System (INIS)

    Lipson, A.G.; Miley, G.H.; Lipson, A.G.; Lyakhov, B.F.; Roussetski, A.S.

    2006-01-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that, 4 He doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by 4 He doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals. (authors)

  7. Controlling the properties of ultraintense laser-proton sources using transverse refluxing of hot electrons in shaped mass-limited targets

    Energy Technology Data Exchange (ETDEWEB)

    Tresca, O; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Gray, R J; Quinn, M N; McKenna, P [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Aurand, B; Bagnoud, V; Fils, J; Kuehl, T; Zielbauer, B [PHELIX Department, GSI mbH, 64291 Darmstadt (Germany); Li, C; Li, Y T; Lin, X X [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Evans, R G [Plasma Physics Group, Blackett Laboratory, Imperial College, London, SW7 2AZ (United Kingdom); Roth, M [Technical University of Darmstadt, 64289 Darmstadt (Germany); Neely, D, E-mail: paul.mckenna@strath.ac.uk [STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2011-10-15

    We report on the transverse refluxing of energetic electrons in mass-limited foil targets irradiated with high intensity (1 x 10{sup 19} W cm{sup -2}), picosecond laser pulses. It is shown experimentally that the maximum energies of protons accelerated by sheath fields formed at the rear and at the edges of the target increase with decreasing target size. This is due to the modification of the sheath field by the energetic electrons which spread laterally along the target surface and reflect from the edges. In addition, it is shown that this transverse refluxing of energetic electrons can be used to tailor the spatial-intensity distribution of the proton beam by engineering the shape and size of the target.

  8. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    Science.gov (United States)

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  9. MULTI-VIEWPOINT OBSERVATIONS OF A WIDELY DISTRIBUTED SOLAR ENERGETIC PARTICLE EVENT: THE ROLE OF EUV WAVES AND WHITE-LIGHT SHOCK SIGNATURES

    Energy Technology Data Exchange (ETDEWEB)

    Kouloumvakos, A.; Patsourakos, S.; Nindos, A. [Section of Astrogeophysics, Department of Physics, University of Ioannina, 45110 Ioannina (Greece); Vourlidas, A. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Anastasiadis, A.; Sandberg, I. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236 Penteli (Greece); Hillaris, A. [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, National and Kapodistrian University of Athens, 15783 Athens (Greece)

    2016-04-10

    On 2012 March 7, two large eruptive events occurred in the same active region within 1 hr from each other. Each consisted of an X-class flare, a coronal mass ejection (CME), an extreme-ultraviolet (EUV) wave, and a shock wave. The eruptions gave rise to a major solar energetic particle (SEP) event observed at widely separated (∼120°) points in the heliosphere. From multi-viewpoint energetic proton recordings we determine the proton release times at STEREO B and A (STB, STA) and the first Lagrange point (L1) of the Sun–Earth system. Using EUV and white-light data, we determine the evolution of the EUV waves in the low corona and reconstruct the global structure and kinematics of the first CME’s shock, respectively. We compare the energetic proton release time at each spacecraft with the EUV waves’ arrival times at the magnetically connected regions and the timing and location of the CME shock. We find that the first flare/CME is responsible for the SEP event at all three locations. The proton release at STB is consistent with arrival of the EUV wave and CME shock at the STB footpoint. The proton release time at L1 was significantly delayed compared to STB. Three-dimensional modeling of the CME shock shows that the particle release at L1 is consistent with the timing and location of the shock’s western flank. This indicates that at L1 the proton release did not occur in low corona but farther away from the Sun. However, the extent of the CME shock fails to explain the SEP event observed at STA. A transport process or a significantly distorted interplanetary magnetic field may be responsible.

  10. Recircular accelerator to proton ocular therapy

    International Nuclear Information System (INIS)

    Rabelo, Luisa A.; Campos, Tarcisio P.R.

    2013-01-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  11. Recircular accelerator to proton ocular therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Luisa A.; Campos, Tarcisio P.R., E-mail: luisarabelo88@gmail.com, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  12. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  13. Forecasting E > 50-MeV Proton Events with the Proton Prediction System (PPS)

    Science.gov (United States)

    Kahler, S. W.; White, S. M.; Ling, A. G.

    2017-12-01

    Forecasting solar energetic (E > 10 MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (> 50 MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E > 50-MeV proton events > 1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986 to 2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all > M5 solar X-ray flares; (2) all > 200 sfu 8800-MHz bursts with associated > M5 flares; (3) all > 500 sfu 8800-MHz bursts; and (4) all > 5000 sfu 8800-MHz bursts. For X-ray flare inputs the forecasted event peak intensities and fluences are compared with observed values. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude.

  14. Local protoplanetary disk ionisation by T Tauri star energetic particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  15. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  16. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  17. Neutralized solar energetic particles in the inner heliosphere: a parameter study

    Science.gov (United States)

    Wang, Xiao-Dong; Klecker, Berndt; Futaana, Yoshifumi; Cipriani, Fabrice; Barabash, Stas; Wieser, Martin

    2016-04-01

    The large fluxes of solar energetic particles (SEPs) in Gradual Events, dominated by protons, are believed to be produced by the acceleration of shocks driven by coronal mass ejections (CMEs). As SEPs propagate in the lower corona, there is a chance for them to be neutralized via the charge exchange and/or recombination processes and become energetic neutral atoms (ENAs). These ENAs retain the velocity of their parent SEPs and propagate in straight lines without the influence of the interplanetary magnetic field, and therefore might potentially serve as a new window to observe the particle acceleration processes in the solar corona. STEREO/Low Energy Telescope reported the first probable observation of hydrogen ENAs between 1.6 MeV - 5 MeV from the Sun prior to an X-class flare/CME [Mewaldt et al., 2009]. While such observations were somehow controversial, Wang et al. [2014] simulated the neutralization of solar energetic protons in the corona lower than 40 RS, and the result agreed with the STEREO observation. In this work, we further developed a production model of the ENA near the sun together with a transport model toward the inner planets, and explore the dependences of the ENA characteristics against the model parameters. These parameters include the angular width of the CME, its propagation direction with respect to the Sun-observer line, the propagation speed, the particle density in the corona, the abundances of O6+ and C4+, and the reaction rate of electron impact ionization in the loss of ENAs, and the heliospheric distance of the observer. The calculated ENA flux shows that at lower energy the expected ENA flux depends most sensitively on the CME apex angle and the CME propagation direction. At higher energy the dependence on the coronal density is more prominent. References Mewaldt, R. A., R. A. Leske, E. C. Stone, A. F. Barghouty, A. W. Labrador, C. M. S. Cohen, A. C. Cummings, A. J. Davis, T. T. von Rosenvinge, and M. E. Wiedenbeck (2009), STEREO

  18. Energetic protons at Mars. Interpretation of SLED/Phobos-2 observations by a kinetic model

    International Nuclear Information System (INIS)

    Kallio, E.; Alho, M.; Jarvinen, R.; Dyadechkin, S.; McKenna-Lawlor, S.; Afonin, V.V.

    2012-01-01

    Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs) from the Sun can penetrate close to the planet (under some circumstances reaching the surface). On 13 March 1989 the SLED instrument aboard the Phobos- 2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8RM). In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3- D self-consistent hybrid model (HYB-Mars) where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1) a flux enhancement near the inbound bow shock, (2) the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3) the energy dependency of the flux enhancement near the bow shock and (4) how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars-solar wind interaction significantly modulated the Martian energetic particle environment. (orig.)

  19. Energetic protons at Mars. Interpretation of SLED/Phobos-2 observations by a kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, E.; Alho, M.; Jarvinen, R.; Dyadechkin, S. [Finnish Meteorological Institute, Helsinki (Finland); McKenna-Lawlor, S. [Space Technology Ireland, Maynooth, Co. Kildare (Ireland); Afonin, V.V. [Space Research Institute, Moscow (Russian Federation)

    2012-07-01

    Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs) from the Sun can penetrate close to the planet (under some circumstances reaching the surface). On 13 March 1989 the SLED instrument aboard the Phobos- 2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8RM). In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3- D self-consistent hybrid model (HYB-Mars) where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1) a flux enhancement near the inbound bow shock, (2) the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3) the energy dependency of the flux enhancement near the bow shock and (4) how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars-solar wind interaction significantly modulated the Martian energetic particle environment. (orig.)

  20. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    International Nuclear Information System (INIS)

    Ding, Liu-Guan; Xu, Fei; Gu, Bin; Zhang, Ya-Nan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao

    2014-01-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event

  1. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, A.G.; Miley, G.H. [University of Illinois at Urbana - Champaign, lL (United States); Lipson, A.G.; Lyakhov, B.F. [lnstitute of Physical Chemistry, The Russian Academy of Sciences, Moscow (Russian Federation); Roussetski, A.S. [P. N. Lebedev Physics Institute, The Russian Academy of Sciences Moscow (Russian Federation)

    2006-07-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that, {sup 4}He doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by {sup 4}He doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals. (authors)

  2. Cross Calibration of the GPS Constellation CXD Proton Data With GOES EPS

    Science.gov (United States)

    Carver, Matthew R.; Sullivan, John P.; Morley, Steven K.; Rodriguez, Juan V.

    2018-03-01

    Accurate proton flux measurements of the near-Earth environment are essential to the understanding of many phenomena which have a direct impact on our lives. Currently, there is only a small set of satellites capable of performing these measurements which makes certain studies and analyses difficult. This paper details the capabilities of the Combined X-ray Dosimeter (CXD), flown on 21 satellites of the Global Positioning System constellation, as it relates to proton measurements. We present a cross calibration of the CXD with the Energetic Particle Sensor (EPS) onboard the Geostationary Operational Environmental Satellite operated by the National Oceanic and Atmospheric Administration. By utilizing Solar Energetic Particle Events when both sets of satellites were operational we have orders of magnitude in flux and energy to compare against. Robust statistical analyses show that the CXD and Geostationary Operational Environmental Satellite flux calculations are similar and that for proton energies >30 MeV the CXD fluxes are on average within 20% of EPS. Although the CXD has a response to protons as low as 6 MeV, the sensitivity at energies below 20 MeV is reduced and so flux comparisons of these are generally worse. Integral flux values >10 MeV are typically within 40% of EPS. These calibrated CXD data sets will give researchers capabilities to study solar proton access to the inner magnetosphere down to L 4 near the equatorial plane at high temporal cadence.

  3. Influence of transverse diffusion within the proton beam fast-ignitor scenario

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.; Maynard, Gilles; Kurilenkov, Yuri K.

    2004-01-01

    Fast ignition of an inertial confinement fusion target by an energetic proton beam is here re-examined. We put special emphasis on the role of the transverse dispersion of the beam induced during its travel between the proton source and the compressed deuterium-tritium (DT) fuel. The theoretical model and the computer code used in our calculations are presented. Different beam initial energy distributions are analyzed. We found that the beam exhibits small collective effects while multiple scattering collisions provide a substantial transverse dispersion of the beam. Therefore, the nuclear dispersion imposes severe restrictions on the schemes for fast ignitor even considering an ideal monoenergetic and noncorrelated proton beam

  4. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  5. Thermodynamics of proton binding at the alumina-water interface revisited

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.P.; Morel-Desrosiers, N. [Laboratoire de Thermodynamique des Solutions et des Polymeres, UMR CNRS 6003, Universite Blaise Pascal, 24 avenue des Landais, 63177 Aubiere cedex (France); Guillaud, A.; Marmier, N. [Laboratoire de Radiochimie, Sciences Analytiques et Environnement, EA 1175, Universite de Nice, 28 avenue de Valrose, 06108 Nice cedex 2 (France)

    2005-07-01

    Full text of publication follows: Since sorption on natural or synthetic materials can attenuate the migration of the radionuclides, sorption reactions have to be taken into account in repository performance assessment models. In order to check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive micro-calorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration micro-calorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 deg. C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 deg. C), and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpy variations associated respectively to protonation and deprotonation of the alumina surface. In a second step, the protonation and deprotonation enthalpy values have been used to calculate the alumina surface acidity constants at 60 deg. C via the Van't Hoff equation. Then, a theoretical titration curve at 60 deg. C has been calculated and compared to the experimental alumina surface titration curve. A good agreement between the predicted acid-base titration curve and the experimental one was observed. (authors)

  6. Thermodynamics of proton binding at the alumina-water interface revisited

    International Nuclear Information System (INIS)

    Morel, J.P.; Morel-Desrosiers, N.; Guillaud, A.; Marmier, N.

    2005-01-01

    Full text of publication follows: Since sorption on natural or synthetic materials can attenuate the migration of the radionuclides, sorption reactions have to be taken into account in repository performance assessment models. In order to check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive micro-calorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration micro-calorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 deg. C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 deg. C), and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpy variations associated respectively to protonation and deprotonation of the alumina surface. In a second step, the protonation and deprotonation enthalpy values have been used to calculate the alumina surface acidity constants at 60 deg. C via the Van't Hoff equation. Then, a theoretical titration curve at 60 deg. C has been calculated and compared to the experimental alumina surface titration curve. A good agreement between the predicted acid-base titration curve and the experimental one was observed. (authors)

  7. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  8. Energetic protons at Mars: interpretation of SLED/Phobos-2 observations by a kinetic model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2012-11-01

    Full Text Available Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs from the Sun can penetrate close to the planet (under some circumstances reaching the surface. On 13 March 1989 the SLED instrument aboard the Phobos-2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8 RM. In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3-D self-consistent hybrid model (HYB-Mars where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1 a flux enhancement near the inbound bow shock, (2 the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3 the energy dependency of the flux enhancement near the bow shock and (4 how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars–solar wind interaction significantly modulated the Martian energetic particle environment.

  9. Target shape effects on monoenergetic GeV proton acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen Min; Yu Tongpu; Pukhov, Alexander [Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany); Sheng Zhengming, E-mail: pukhov@tp1.uni-duesseldorf.d [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-04-15

    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose using a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in three-dimensional particle-in-cell simulations when a laser pulse with a focus intensity of 10{sup 22} W cm{sup -2} is used. The energy conversion efficiency of the laser pulse to the accelerated proton beam with the simulation parameters is more than 23%.

  10. Target shape effects on monoenergetic GeV proton acceleration

    International Nuclear Information System (INIS)

    Chen Min; Yu Tongpu; Pukhov, Alexander; Sheng Zhengming

    2010-01-01

    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose using a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in three-dimensional particle-in-cell simulations when a laser pulse with a focus intensity of 10 22 W cm -2 is used. The energy conversion efficiency of the laser pulse to the accelerated proton beam with the simulation parameters is more than 23%.

  11. The virtual enhancements - solar proton event radiation (VESPER) model

    Science.gov (United States)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  12. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  13. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  14. Solar Energetic Particle Events at the Rise Phase of the 23rd Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. The experiment with 10K-80 aboard the INTER-BALL-2. (which detects protons with energies >7, 27-41, 41-58, 58-88, 88-180 and 180-300 MeV) registered six events of the solar energetic particle. (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the ...

  15. Probabilistic model for fluences and peak fluxes of solar energetic particles

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    The model is intended for calculating the probability for solar energetic particles (SEP), i.e., protons and Z=2-28 ions, to have an effect on hardware and on biological and other objects in the space. The model describes the probability for the ≥10 MeV/nucleon SEP fluences and peak fluxes to occur in the near-Earth space beyond the Earth magnetosphere under varying solar activity. The physical prerequisites of the model are as follows. The occurrence of SEP is a probabilistic process. The mean SEP occurrence frequency is a power-law function of solar activity (sunspot number). The SEP size (taken to be the ≥30 MeV proton fluence size) distribution is a power-law function within a 10 5 -10 11 proton/cm 2 range. The SEP event particle energy spectra are described by a common function whose parameters are distributed log-normally. The SEP mean composition is energy-dependent and suffers fluctuations described by log-normal functions in separate events

  16. Simulation results of the electron-proton telescope for Solar Orbiter

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Sebastian; Steinhagen, Jan; Kulkarni, Shrinivasrao; Grunau, Jan; Paspirgilis, Rolf; Martin, Cesar; Boettcher, Stephan; Seimetz, Lars; Schuster, Bjoern; Kulemzin, Alexander; Wimmer-Schweingruber, Robert F. [Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    The Electron Proton Telescope (EPT) is one of five instruments in the Energetic Particle Detector suite for Solar Orbiter. It investigates low energy electrons and protons of solar events. EPT covers an energy range from 20400 keV for electrons and 20 keV-7 MeV for protons and distinguishes electrons from protons using a magnet/foil technique with silicon detectors. There will be two EPT units, each with double-barreled telescopes, one looking sunwards/antisunwards and the other north/south. EPT is designed using the GEometry ANd Tracking (GEANT) simulation toolkit developed by CERN for Monte Carlo calculations. Here we present the details of our simulations and the simulation results with respect to energy coverage and the geometrical factor of the EPT instrument. We also look at the far-field of the EPT magnets, which is important for electromagnetic cleanliness considerations.

  17. Radiation Environment Model of Protons and Heavier Ions at Jupiter

    Science.gov (United States)

    Sierra, Luz Maria Martinez; Garrett, Henry B.; Jun, Insoo

    2015-01-01

    We performed an in depth study of the methods used to review the geometric factors (GF) and sensitivity to charge particles of the Energetic Particle Detector instrument on board the Galileo Spacecraft. Monte Carlo simulations were performed to understand the interactions of electrons and ions (i. e., protons and alphas) with the sensitive regions of the instrument. The DC0 and B0 channels were studied with the intention of using them to update the jovian proton radiation model. The results proved that the B0 is a clean proton chanel without any concerns for contamination by heavier ions and electrons. In contrast, DC0 was found to be contaminated by electrons. Furthermore, we also found out that the B2 channel is a clean alpha particle channel (in other words, no contamination by electrons and/or protons).

  18. Isochoric heating of DT fuels through PW-laser-produced proton beams

    International Nuclear Information System (INIS)

    Maynard, G.; Barriga-Carrasco, M.D.

    2005-01-01

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented

  19. Isochoric heating of DT fuels through PW-laser-produced proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, G. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)]. E-mail: gilles.maynard@pgp.u-psud.fr; Barriga-Carrasco, M.D. [Laboratoire de Physique des Gaz et des Pasmas, CNRS UMR8578, bat. 210, Universite Paris XI, F-91405, Orsay (France)

    2005-05-21

    Laser Proton Source (LPS) can generate short bunch of energetic protons with a nearly zero initial emittance. It is thus expected that LPS can deposit a very high density of energy inside dense matter, in particular, in the context of fast ignition of an inertial fusion target. We investigate here one of the factors that can limit the density of deposited energy. It concerns the transverse diffusion, occurring during the transport between the LPS and DT. As the rear surface of LPS should be efficiently protected, the proton along its path has to interact with a substantial amount of high-Z material. Therefore the induced transverse dispersion can become significant. The transport of the proton beam inside a plasma target is calculated using a numerical code, which main features are presented.

  20. 200 MeV proton scattering on nuclei. Energetic proton analysis at large angle

    International Nuclear Information System (INIS)

    Chaigne, G.

    1983-01-01

    By means of a magnetic spectrometer for which has been realized an acceptance's programme, cross-sections for backward emission have been measured (100 MeV till the cinematic limit) (102 0 to 106 0 ) in the interaction proton-nucleus at 200 MeV from light, medium and heavy target. Our experimental set-up used from a polyethylene target (CH2) allowed to obtain, for the elastic cross-section (p,p), values in agreement with those ones determined by an analyse in phase-shift at 200 MeV. A comparison of our experimental spectra with the theory based on the Q.T.B.S. model (Quasi Two Body Scaling) and on a more conventional one of intranuclear cascades showed that the knock out mechanisms inside the nucleus are always unknown [fr

  1. Solar energetic particles and space weather

    Science.gov (United States)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-02-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .

  2. Introduction [Nuclear data for the production of therapeutic radionuclides

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2011-01-01

    Radioactivity plays an important role in medical science in terms of beneficial applications in both diagnosis and therapy. The former entails the introduction of a short lived radionuclide attached to a suitable pharmaceutical into the patient, and measurement of the accumulation and movement of activity from outside. This process is called emission tomography and involves the measurement of either a single low energy γ ray (i.e. single photon computed emission tomography) or coincidences between the two 511 keV photons formed in the annihilation of a positron (i.e. positron emission tomography (PET)). The major governing principle in all diagnostic studies is that the radiation dose to the patient is as low as possible. Two modalities exist in the therapeutic use of radioactivity. The first and most commonly followed procedure involves the use of external beams of electrons, X rays and γ rays from radioactive sources (e.g. 60 Co), high energy γ rays from accelerators, and hadrons (e.g. neutrons, protons and heavy ions). The second modality involves the introduction of certain radionuclides to a given part of the body (e.g. joints, organ and tumour) either mechanically or via a biochemical pathway. Mechanical introduction is called brachytherapy, whereas the biochemical pathway is known as endoradiotherapy. External radiation therapy is outside the scope of the present studies. The concerted and collaborative efforts described here deal specifically with the production and use of radionuclides. An earlier coordinated research project (CRP) of the IAEA was devoted to diagnostic radionuclides. The present effort is related to therapeutic radionuclides.

  3. Efficient production and diagnostics of MeV proton beams from a cryogenic hydrogen ribbon

    International Nuclear Information System (INIS)

    Velyhan, A.; Giuffrida, L.; Scuderi, V.; Lastovicka, T.; Margarone, D.; Perin, J.P.; Chatain, D.; Garcia, S.; Bonnay, P.; Dostal, J.; Ullschmied, J.; Dudzak, R.; Krousky, E.; Cykhardt, J.; Prokupek, J.; Pfeifer, M.; Rosinski, M.; Krasa, J.; Brabcova, K.; Napoli, M. De

    2017-01-01

    A solid hydrogen thin ribbon, produced by the cryogenic system ELISE (Experiments on Laser Interaction with Solid hydrogEn) target delivery system, was experimentally used at the PALS kJ-laser facility to generate intense proton beams with energies in the MeV range. This sophisticated target system operating at cryogenic temperature (∼ 10 K) continuously producing a 62 μm thick target was combined with a 600 J sub-nanosecond laser pulse to generate a collimated proton stream. The accelerated proton beams were fully characterized by a number of diagnostics. High conversion efficiency of laser to energetic protons is of great interest for future potential applications in non-conventional proton therapy and fast ignition for inertial confinement fusion.

  4. Radial dependence of solar energetic particles derived from the 15 March 2013 solar energetic particle event and global MHD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chin-Chun, E-mail: chin-chun.wu@nrl.navy.mil; Plunkett, Simon, E-mail: simon.plunkett@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States); Liou, Kan, E-mail: kan.liou@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland (United States); Wu, S. T., E-mail: wus@uah.edu [CSPAR, University of Alabama, Huntsville, Alabama (United States); Dryer, Murray, E-mail: murraydryer@msn.com [Emeritus, NOAA, Boulder, CO (United States)

    2016-03-25

    We study an unusual solar energetic particle (SEP) event that was associated with the coronal mass ejection (CME) on March 15, 2013. Enhancements of the SEP fluxes were first detected by the ACE spacecraft at 14:00 UT, ∼7 hours after the onset of the CME (07:00 UT), and the SEP’s peak intensities were recorded ∼36 hours after the onset of the CME. Our recent study showed that the CME-driven shock Mach number, based on a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation, is well correlated with the time-intensity of 10-30 MeV and 30-80 MeV protons. Here we focus on the radial dependence (r{sup −α}) of {sup 4}He (3.43-41.2 MeV/n) and O (7.30-89.8 MeV/n) energetic particles from ACE/SIS. It is found that the scaling factor (α) ranges between 2 and 4 for most of the energy channels. We also found that the correlation coefficients tend to increase with SEP energies.

  5. Intensity maps of MeV electrons and protons below the radiation belt

    International Nuclear Information System (INIS)

    Kohno, T.; Munakata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuchi, J.; Doke, T.

    1988-01-01

    The global distributions of energetic electrons (0.19 - 3.2 MeV) and protons (0.64 - 35 MeV) are shown in the form of contour maps. The data were obtained by two sets of energetic particle telescopes on board the satellite OHZORA. The observed altitude range is 350 - 850 Km. Ten degress meshes in longitude and latitude were used to obtain the intensity contours. A pitch angle distribution of J(α) = J(90). sin n α with n = 5 A is assumed to get the average intensity in each mesh. (author) [pt

  6. Feasibility of short-lived radionuclide production at Fermilab

    International Nuclear Information System (INIS)

    Ten Haken, R.K.; Awschalom, M.; Rosenberg, I.

    1985-01-01

    The requirements for establishing a short-lived radionuclide production program at Fermilab are explored. Such a program would utilize beam from the linac portion of the injector much like the present Neutron Therapy Facility. It should be possible to use approximately 10 to 20 μA of 66-MeV protons for iodine-123 production. Several additional magnets would need to be acquired and a shielded target facility would need to be constructed. However, the feasibility of establishing such a program hinges upon its harmonious operation with the high energy physics program

  7. Proton-activation technique for the determination of antimony

    International Nuclear Information System (INIS)

    Krivan, V.; Barth, P.

    1979-01-01

    Photon-activation analysis has been applied to the determination of antimony. Thick-target yields and analytical sensitivities are given for the indicator-radionuclides sup(119m)Te, sup(119g)Te, sup(121m)Te, sup(121g)Te, sup(123m)Te, sup(120m)Sb and sup(122g)Sb for proton energies between 9 and 25 MeV. In irradiations with a 5-μA beam for 5 hr, followed by a specific separation of the indicator-radionuclides, limits of detection at the ppm level can be achieved. Data are given for the most significant interfering reactions. Antimony was determined instrumentally in bismuth of very pure grade and the results are compared with those obtained from two independent techniques. (author)

  8. Prediction of Solar-Terrestrial Disturbances: Decay Phase of Energetic Proton Events.

    Science.gov (United States)

    1982-10-01

    Dependence of 50 keV upstream ion events at IMP 7/8 upon magnetic field-bow shock geometry in the earth’s foreshock : A statistical study, J. Geophys_.Rers...ion events in the F. C. Roelof Earth’s foreshock R. Reinhard ISEE-3/IKtP-8 observations of simultaneous upstream proton T. R. Sanderson events K.-P

  9. Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams.

    Science.gov (United States)

    Galassi, M E; Champion, C; Weck, P F; Rivarola, R D; Fojón, O; Hanssen, J

    2012-04-07

    Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons,whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.

  10. Energetic protons associated with a forward-reverse interplanetary shock pair at 1 A. U

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, A [Imperial Coll. of Science and Technology, London (UK)

    1977-10-01

    A forward-reverse interplanetary shock was observed on 25 March 1969 by the magnetometer and plasma detector on the HEOS-1 satellite. This relatively rare event was described by Chao et al (1972) who concluded that the shock pair was formed at a distance 0.10 to 0.13 AU upstream of the Earth as a result of the interaction between a fast and a slow solar wind streams. Simultaneous observations of 1 MeV solar proton fluxes were also performed on HEOS-1. A characteristic intensity peak was observed as the forward shock passed by the spacecraft. The evolution of the proton intensity, together with a detailed analysis of anisotropies and pitch angle distributions show a complex dynamic picture of the effect of the forward shock on the ambient proton population. Significant changes in particle fluxes are seen to be correlated with fluctuations in the magnetic field. It is suggested that simple geometrical models of shock-assisted acceleration should be expanded to include the effect of magnetic fluctuations on particle fluxes. The interaction region limited by the forward and reverse shocks contained a large variety of magnetic fluctuations. Following the tangential discontinuity separating the fast solar wind stream from the preceding slow stream, a sunward flow was observed in the proton data, followed by a small but significant drop in intensity prior to the reverse shock.

  11. Production cross sections of short-lived silver radionuclides from natPd(p,xn) nuclear processes

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Kim, Kwangsoo; Kim, Guinyun

    2012-01-01

    Production cross-sections of short-lived 103 Ag, 104m Ag and 104g Ag radionuclides from proton-induced reactions on natural palladium (Pd) were measured up to 41 MeV by using a stacked-foil activation technique combined with high resolution γ-ray spectrometry. The present results are compared with the available literature values as well as theoretical data calculated by the TALYS and the ALICE-IPPE computer codes. Note that production cross-sections of the 104m Ag radionuclide from nat Pd(p,xn) processes has been measured here for the first time. Physical thick target yields for the investigated radionuclides were deduced from the respective threshold energy to 41 MeV taking into account that the total energy is absorbed in the targets. Measured data of the short-lived 103 Ag radionuclide are noteworthy due to its possible applications as a precursor for the indirect production of widely used therapeutic 103 Pd radionuclide via nat Pd(p,xn) 103 Ag → 103 Pd processes. On the other hand, the investigated 104 Ag radionuclide finds importance due to its potential use as a diagnostic and positron emission tomography (PET) imaging analogue. Above all, measured data will enrich the literature database leading to various applications in science and technology.

  12. Forecasting E > 50-MeV proton events with the proton prediction system (PPS)

    Science.gov (United States)

    Kahler, Stephen W.; White, Stephen M.; Ling, Alan G.

    2017-11-01

    Forecasting solar energetic (E > 10-MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (≥50-MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E ≥ 50-MeV proton events >1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986-2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all ≥M5 solar X-ray flares; (2) all ≥200 sfu 8800-MHz bursts with associated ≥M5 flares; (3) all ≥500 sfu 8800-MHz bursts; and (4) all ≥5000 sfu 8800-MHz bursts. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude, and argue that the longitude-dependence employed by PPS does not match modern observations. Use of the radio fluxes as the PPS driver tends to result in too many false alarms at the 500 sfu threshold, and misses more events than the soft X-ray predictor at the 5000 sfu threshold.

  13. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  14. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1997-10-01

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  15. Production of no-carrier-added 139Pr via precursor decay in the proton bombardment of natPr

    International Nuclear Information System (INIS)

    Steyn, G.F.; Vermeulen, C.; Nortier, F.M.; Szelecsenyi, F.; Kovacs, Z.; Qaim, S.M.

    2006-01-01

    Excitation functions and production rates are presented for various Pr and Nd radionuclides formed in the bombardment of Pr with protons, from their respective thresholds up to 100 MeV. The indirect production route 141 Pr(p, 3n) 139m Nd → 139 Pr is investigated as an alternative to the direct production route 140 Ce(p, 2n) 139 Pr for producing no-carrier-added 139 Pr of high radionuclidic purity. The simultaneous production of 139 Pr and 140 Nd using Pr as target is investigated. The advantages and disadvantages of both production routes are discussed. Experimental thick-target production rates are presented for selected Pr radionuclides formed in the bombardment of nat Ce with protons at incident energies of 20, 26 and 32 MeV. All the experimental excitation functions obtained in this work are compared with theoretical predictions by means of the geometry-dependent hybrid (GDH) model as implemented in the code ALICE-IPPE. The results of this work are also compared with previous literature experimental data, if available

  16. Van Allen Probes Measurements of Energetic Particle Deep Penetration Into the Low L Region (L Storm on 8 April 2016

    Science.gov (United States)

    Zhao, H.; Baker, D. N.; Califf, S.; Li, X.; Jaynes, A. N.; Leonard, T.; Kanekal, S. G.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    Using measurements from the Van Allen Probes, a penetration event of tens to hundreds of keV electrons and tens of keV protons into the low L shells (L electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L shells, should be MLT localized.

  17. Radionuclide toxicity

    International Nuclear Information System (INIS)

    Galle, P.

    1982-01-01

    The aim of this symposium was to review the radionuclide toxicity problems. Five topics were discussed: (1) natural and artificial radionuclides (origin, presence or emission in the environment, human irradiation); (2) environmental behaviour of radionuclides and transfer to man; (3) metabolism and toxicity of radionuclides (radioiodine, strontium, rare gas released from nuclear power plants, ruthenium-activation metals, rare earths, tritium, carbon 14, plutonium, americium, curium and einsteinium, neptunium, californium, uranium) cancerogenous effects of radon 222 and of its danghter products; (4) comparison of the hazards of various types of energy; (5) human epidemiology of radionuclide toxicity (bone cancer induction by radium, lung cancer induction by radon daughter products, liver cancer and leukaemia following the use of Thorotrast, thyroid cancer; other site of cancer induction by radionuclides) [fr

  18. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    International Nuclear Information System (INIS)

    Voss, H.D.; Smith, L.G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L=2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10 0 indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile

  19. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir

    Science.gov (United States)

    Kar, Parimal; Knecht, Volker

    2012-02-01

    Amprenavir (APV) is a high affinity (0.15 nM) HIV-1 protease (PR) inhibitor. However, the affinities of the drug resistant protease variants V32I, I50V, I54V, I54M, I84V and L90M to amprenavir are decreased 3 to 30-fold compared to the wild-type. In this work, the popular molecular mechanics Poisson-Boltzmann surface area method has been used to investigate the effectiveness of amprenavir against the wild-type and these mutated protease variants. Our results reveal that the protonation state of Asp25/Asp25' strongly affects the dynamics, the overall affinity and the interactions of the inhibitor with individual residues. We emphasize that, in contrast to what is often assumed, the protonation state may not be inferred from the affinities but requires pKa calculations. At neutral pH, Asp25 and Asp25' are ionized or protonated, respectively, as suggested from pKa calculations. This protonation state was thus mainly considered in our study. Mutation induced changes in binding affinities are in agreement with the experimental findings. The decomposition of the binding free energy reveals the mechanisms underlying binding and drug resistance. Drug resistance arises from an increase in the energetic contribution from the van der Waals interactions between APV and PR (V32I, I50V, and I84V mutant) or a rise in the energetic contribution from the electrostatic interactions between the inhibitor and its target (I54M and I54V mutant). For the V32I mutant, also an increased free energy for the polar solvation contributes to the drug resistance. For the L90M mutant, a rise in the van der Waals energy for APV-PR interactions is compensated by a decrease in the polar solvation free energy such that the net binding affinity remains unchanged. Detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.

  20. Activation of 45-MeV proton irradiation and proton-induced neutron irradiation in polymers

    International Nuclear Information System (INIS)

    Ra, Se-Jin; Kim, Kye-Ryung; Jung, Myung-Hwan; Yang, Tae-Keon

    2010-01-01

    During beam irradiation experiments with more than a few MeV energetic protons, the sample activation problem can be very severe because it causes many kinds of additional problems for the post-processing of the samples, such as time loss, inconvenience of sample handling, personal radiation safety, etc. The most serious problem is that immediate treatment of the sample is impossible in some experiments, such as nano-particle synthesizing. To solve these problems, we studied why the samples are activated and how the level of the activation can be reduced. It is known that the main reasons of activation are nuclear reactions with elements of the target material by primary protons and secondary produced neutrons. Even though the irradiation conditions are same, the level of the activation can be different depending on the target materials. For the nanoparticle synthesizing experiments, the target materials can be defined as the container and the sample itself. The reduction of the activation from the container is easier than the reduction from the sample. Therefore, we tried to reduce the activation level by changing the container materials. In this paper, the results are displayed for some candidate container materials, such as polymethyl methacrylate, polystyrene, Glass, etc., with 45-MeV and 10-nA proton beams. As a result, PS is the most suitable material for the container because of its relatively low level of the activation by protons. Also the contribution of secondary produced neutrons to the activation is negligible.

  1. Dosimetric intercomparison between protons and electrons therapies applied to retinoblastoma; Intercomparacao dosimetrica entre terapias de protons e eletrons aplicada ao retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Flavia Vieira

    2008-07-01

    In this work we propose a construction of a simple human eye model in order to simulate the dosimetric response for a treatment with protons and electrons in a retinoblastoma cancer. The computational tool used in this simulation was the Geant4 code, in the version 4.9.1, all these package are free and permit simulate the interaction of radiation with matter. In our simulation we use a box with 4 cm side, with water, for represent the human eye. The simulation was performed considering mono energetics beams of protons and electrons with energy range between 50 and 70 MeV for protons and 2 and 10 MeV for electrons. The simulation was based on the advanced hadron therapy example of the Geant 4 code. In these example the phantom is divided in voxels with 0.2 mm side and it is generated the energy deposited in each voxel. The simulation results show the energy deliver in each voxel, with these energie we can calculate the dose deposited in that region. We can see the dose profile of, proton and electron, and we can see in both cases that for protons the position of delivered dose is well know, that happen in the position where the proton stop, for electrons the energies is delivered along the way and pass the desired position for high dose deposition. (author)

  2. Energetic charged particles in the magnetosphere of Neptune

    International Nuclear Information System (INIS)

    Stone, E.C.; Cummings, A.C.; Looper, M.D.; Selesnick, R.S.; Lal, N.; McDonald, F.B.; Trainor, J.H.; Chenette, D.L.

    1989-01-01

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [approx-lt 1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities at maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet

  3. Production of light elements by cascades from energetic antiprotons in the early Universe and problem of nuclear cosmoarcheology

    International Nuclear Information System (INIS)

    Levitan, Yu.L.; Sobol', I.M.; Khlopov, M.Yu.; Chechetkin, V.M.

    1988-01-01

    The mathematical model of the process of light-element (D and 3 He) production due to disintegration of 4 He nuclei, induced by nonequilibrium processes of production of energetic antiprotons in the early Universe is suggested. Numerical calculations show that formation of the nucleon cascade induced by antiproton slowing down increases the D and 3 He yield due to the growth of probability of disintegration of several 4 He nuclei by a single antiproton and due to disintegration of such nuclei by cascade protons. Restraints on the concentration of possible sources of energetic antiprotons in the early Universe are strengthened respectively

  4. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    International Nuclear Information System (INIS)

    Chadwick, M.B.

    1998-01-01

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given

  5. radiochemical study on the medically and technology radionuclides of some lanthanides

    International Nuclear Information System (INIS)

    Aglan, H.A.E.

    2010-01-01

    In this work, trials for the production of the medically and technologically interesting 139 Ce and 142 Pr radionuclides through cyclotron irradiations using protons and alpha particles were studied. The radiochemical separation of no-carrier-added cerium from proton irradiated lanthanum was studied by solvent extraction using DEE, TBP and TPPO, the latter reagent being employed for the first time for separation of radio cerium from bulk of lanthanum. Distribution coefficients of cerium and lanthanum were investigated as a function of equilibrium time and HNO 3 concentration. A mixture of 0.05 M K 2 Cr 2 O 7 and 0.1 M H 2 SO 4 was used as an oxidizing agent to improve the separation efficiency of cerium. A comparative study of the three extractants released that DEE is the best for separation of cerium from bulk of lanthanum oxide. The target was prepared by pressing. The production of 139 Ce of high radionuclidic and chemical purity via irradiation of lanthanum oxide target at MGC-20 cyclotron with protons of energy 14.5 is described. The experimental yield was found to be 153 kBq/μAh .The adsorption behaviour of La/Ce system on Dowex 50W-X8 in different media, namely, nitric acid, acetate buffer and citrate buffer was studied as a function of the concentration of nitric acid and buffer ph. In addition, in cation-exchange column chromatography experiments, three different eluants, namely, citrate buffer of ph 5.5, 0.1 M EDTA and 0.2 M α-HIBA, were employed for separation of Ce (III) from La (III). The optimum conditions for improvement of radiochemical separation of no-carrier-added 139 Ce from proton irradiated lanthanum were applied using the most suitable chelating agent 0.2 M α-HIBA. The purification of 139 Ce from macro amount of La (III) was done using two columns in a sequence. The experimental yield was found to be 200 kBq/μAh.

  6. Methods of separating short half-life radionuclides from a mixture of radionuclides

    International Nuclear Information System (INIS)

    Bray, L.A.; Ryan, J.L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of 223 Ra and 225 Ac, from a radionuclide ''cow'' of 227 Ac or 229 Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ''cow'' forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ''cow'' from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ''cow''. In one embodiment the radionuclide ''cow'' is the 227 Ac, the at least one daughter radionuclide is a 227 Th and the product radionuclide is the 223 Ra and the first nitrate form ion exchange column passes the 227 Ac and retains the 227 Th. In another embodiment the radionuclide ''cow'' is the 229 Th, the at least one daughter radionuclide is a 225 Ra and said product radionuclide is the 225 Ac and the 225 Ac and nitrate form ion exchange column retains the 229 Th and passes the 225 Ra/Ac. 8 figs

  7. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  8. Free energy for protonation reaction in lithium-ion battery cathode materials

    International Nuclear Information System (INIS)

    Benedek, R.; Thackeray, M. M.; van de Walle, A.

    2008-01-01

    Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn 2 O 4 , and olivine LiFePO 4 are considered. Protonation is most favorable energetically in layered systems, such as Li 2 MnO 3 and LiCoO 2 . Less favorable are ion-exchange in spinel LiMn 2 O 4 and LiV 3 O 8 . Unfavorable is the substitution of protons for Li in olivine LiFePO 4 , because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction

  9. Methods of separating short half-life radionuclides from a mixture of radionuclides

    Science.gov (United States)

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  10. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  11. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  12. Radiation annealing in Ag and Au due to energetic displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Merkle, K.L.

    1975-01-01

    Radiation annealing due to energetic displacement cascades has been studied in Ag and Au. Thin film specimens, 2500 A, were doped to various concentrations of Frenkel pair defects by irradiating with 150 keV protons at temperatures below 10 K. Subsequently, the specimens were irradiated below 10 K with energetic, approximately 540 keV, self-ions. Electrical resistivity measurements were used to monitor the concentration of defects as a function of dose. In Au, approximately 5 percent of the doped-in Frenkel pairs, annealed during the 540 keV Au irradiation. The annealing volume associated with individual cascades was found to be 2.1 x 10 -16 cm 3 . In Ag approximately 5 percent of the doped-in defects annealed during a 500 keV Ag irradiation and the annealing volume of the cascade was found to be 5 x 10 -16 cm 3 . In addition, the effects of doping concentration and specimen temperature during doping were investigated

  13. INC Model interpretation of the proton induced residual nuclide production cross sections below 2 GeV

    International Nuclear Information System (INIS)

    Divadeenam, M.; Ward, T.E.; Spergel, M.S.; Lakatos, S.; Manche, E.P.

    1991-01-01

    For the purposes of interpreting the abundances of various isotopes in meteorites or on lunar and planetary surfaces exposed to fragmentation by cosmic rays, Webber et al. recently reported the measured total elemental and isotopic cross sections with heavy ions as projectiles on H, He, and C targets with beam energies of 0.33 - 1.7 GeV/nucleon. We employ the INC model to predict the fragmentation of the heavy ions in a hydrogen target with the inverse reaction process: proton bombardment of a heavy-ion nucleus leading to spallation products. Charge-changing and mass-changing cross sections are calculated for proton bombardment of an 56 Fe target with beam energies ranging from 0.33 to 1.88 GeV. Total Z-changing and A-changing cross sections in the energy range 0.6 to 1.88 GeV are in excellent agreement with the corresponding experimental data of Webber et al. and Westfall at al., while the agreement below 0.6 GeV proton energy is not as good. The general trend of the Z-changing cross sections are reproduced by the model calculations at each proton incident energy. The interaction of 200-MeV protons with synthetic Stony Meteorite samples was undertaken to explain radionuclide production in a cosmic-ray environment. The BNL Linac 200-MeV-proton beam was used to irradiate synthetic Stony Meteorites to simulate cosmic-ray exposures corresponding to 6.4 and 16.4 million years. Each irradiated sample was analyzed with the help of a high-resolution gamma-ray spectrometer for long-lived radioisotopes. The intranuclear cascade code HETC was employed to simulate the 200-MeV proton bombardment on the meteorite samples to predict the radionuclides 7 Be, 22 Na, 46 Mn, and 56 Co produced in the experimental investigation

  14. Design and optimization of a compact laser-driven proton beamline.

    Science.gov (United States)

    Scisciò, M; Migliorati, M; Palumbo, L; Antici, P

    2018-04-19

    Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 10 18  W·cm -2 ), represent a complementary if not outperforming source compared to conventional accelerators, due  to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm 2 . We briefly discuss the results in the context of applications in the domain of Cultural Heritage.

  15. Radionuclide trap

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition

  16. On contribution of energetic and heavy ions to the plasma pressure: Storm Sept 27 - Oct 4, 2002

    Science.gov (United States)

    Kronberg, E. A.; Mouikis, C.; Kistler, L. M.; Dandouras, I. S.; Daly, P. W.; Welling, D. T.; Grigorenko, E. E.

    2015-12-01

    Contribution of the energetic ions (>> 40 keV) and of heavy ions into the total plasma pressure is often neglected. In this study we evaluate the contribution of these components for the storm observed from September 27 to October 4 in 2002. The thermal component of the pressure for the protons, helium and oxygen at 0--40 keV/q is measured by the Cluster/CIS/CODIF sensor. The contribution of the energetic ions at energies >> 40 keV is calculated from the Cluster/RAPID/IIMS observations. The results show that before the storm has initiated, the contribution of the energetic ions in to the total pressure is indeed negligible in the tail plasma sheet, less than ˜1%. However, with the storm development contribution of the energetic part becomes significant, up to ˜30%, towards the recovery phase and cannot be neglected. Heavy ions contribute to the 27% of the total pressure and half of them are energetic. The contribution of energetic ions to the pressure of the ring current (L≃5) is significant. The heavy ions play a dominant role in the plasma pressure, about 62% during the main phase of the magnetic storm. Half of them are energetic ions. The SWMF/BATS-R-US MHD model underestimates the contribution of the energetic and heavy ions in to the ion distribution in the magnetotail plasma sheet and the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field and defines magnetic storm. Therefore, it is essential to take in to account the contribution of the energetic and heavy ions.

  17. TH-A-19A-01: An Open Source Software for Proton Treatment Planning in Heterogeneous Medium

    International Nuclear Information System (INIS)

    Desplanques, M; Baroni, G; Wang, K; Phillips, J; Gueorguiev, G; Sharp, G

    2014-01-01

    Purpose: Due to its success in Radiation Oncology during the last decade, interest in proton therapy is on the rise. Unfortunately, despite the global enthusiasm in the field, there is presently no free, multiplatform and customizable Treatment Planning System (TPS) providing proton dose distributions in heterogenous medium. This restricts substantially the progress of clinical research for groups without access to a commercial Proton TPS. The latest implementation of our pencil beam dose calculation algorithm for proton beams within the 3D Slicer open-source environment fulfills all the conditions described above. Methods: The core dose calculation algorithm is based on the Hong algorithm (1), which was upgraded with the Kanematsu theory describing the evolution of the lateral scattering of proton beamlets in heterogeneous medium. This algorithm deals with both mono-energetic beams and Spread Out Bragg Peak (SOBP). In order to be user-friendly, we provide a graphical user interface implemented with the Qt libraries, and visualization with the 3D Slicer medical image analysis software. Two different pencil beam algorithms were developed, and the clinical proton beam line at our facility was modeled. Results: The dose distributions provided by our algorithms were compared to dose distributions coming from both commercialized XiO TPS and literature (dose measurements, GEANT4 and MCNPx) and turned out to be in a good agreement, with maximum dose discrepancies of 5% in homogeneous phantoms and 10% in heterogeneous phantoms. The algorithm of SOBP creation from an optimized weigthing of mono-energetic beams results in flat SOBP. Conclusion: We hope that our efforts in implementing this new, open-source proton TPS will help the research groups to have a free access to a useful, reliable proton dose calculation software.(1) L. Hong et al., A pencil beam algorithm for proton dose calculations, Phys. Med. Biol. 41 (1996) 1305–1330. This project is paid for by NCI

  18. ULF waves associated with enhanced subauroral proton precipitation

    Science.gov (United States)

    Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.

    Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.

  19. Radionuclide cisternography

    International Nuclear Information System (INIS)

    Song, H.H.

    1980-01-01

    The purpose of this thesis is to show that radionuclide cisternography makes an essential contribution to the investigation of cerebrospinal fluid (CSF) dynamics, especially for the investigation of hydrocephalus. The technical details of radionuclide cisternography are discussed, followed by a description of the normal and abnormal radionuclide cisternograms. The dynamics of CFS by means of radionuclide cisternography were examined in 188 patients in whom some kind of hydrocephalus was suspected. This study included findings of anomalies associated with hydrocephalus in a number of cases, such as nasal liquorrhea, hygromas, leptomeningeal or porencephalic cysts. The investigation substantiates the value of radionuclide cisternography in the diagnosis of disturbances of CSF flow. The retrograde flow of radiopharmaceutical into the ventricular system (ventricular reflux) is an abnormal phenomenon indicating the presence of communicating hydrocephalus. (Auth.)

  20. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    2012-02-16

    oxygen retention of the tissue and the significantly greater retention amounting in hypoxic tissue. This hypothesis was confirmed in a series of animal studies. Cu-64 can be used both as an imaging radionuclide and a therapeutic radionuclide. The therapeutic efficacy of Cu-64 ATSM was proven in hamsters bearing the CW39 human colorectal tumors. The administration of Cu-64 ATSM significantly increased the survival time of tumor-bearing animals with no acute toxicity. This copper agent therefore shows promise for radiotherapy. The flow tracer Cu-64 PTSM also demonstrates therapeutic potential by inhibiting cancer cells implanted in animal models. Again, this inhibition occurred at doses which showed no sign of toxicity to the animals. Cu-ATSM was translated to humans, under other support a series of tumors were investigated; these included head and neck cancer, non-small cell lung cancer, cervical cancer and renal cancer. Another radionuclide that was investigated was titanium 45. This radionuclide was successfully produced by radiation of a scandium foil with 15 MeV protons. The titanium 45 was processed and separated from residual scandium by high exchange chomotrophy. Titanium titanocene has been utilized as a therapeutic agent; this compound was prepared and studied in vitro and in vivo. Another project was the preparation of cyclodextrin dimers as a new pre-targeting approach for tumor uptake. Beta-cyclodextradin and two other dimers were synthesized. These dimers were studied for the in vivo application. Work continued on the application of the radionuclide already discussed. Technetium 94m, a positron emitting radionuclide of the widely used 99m Tc nuclide was also prepared. This allows the quantification of the uptake of technetium radiopharmaceuticals. In collaboration with Professor David Piwnica-Worms, technetium 94m, sestamibi was studied in animal models and in a limited number of human subjects.

  1. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.

    Science.gov (United States)

    Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon

    2017-08-03

    Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.

  2. MICROSTRUCTURE OF THE HELIOSPHERIC TERMINATION SHOCK: IMPLICATIONS FOR ENERGETIC NEUTRAL ATOM OBSERVATIONS

    International Nuclear Information System (INIS)

    Zank, G. P.; Heerikhuisen, J.; Pogorelov, N. V.; Burrows, R.; McComas, D.

    2010-01-01

    The Voyager 2 plasma observations of the proton distribution function downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism, being essentially transmitted directly through the shock. Instead, the hot supra-thermal pickup ion (PUI) component is most likely responsible for the dissipation at the TS. Consequently, the downstream proton distribution function will be a complicated superposition of relatively cool thermal solar wind protons and hot PUIs that have experienced either direct transmission or reflection at the TS cross-shock potential. We develop a simple model for the TS microstructure that allows us to construct approximate proton distribution functions for the inner heliosheath. The distribution function models are compared to κ-distributions, showing the correspondence between the two. Since the interpretation of energetic neutral atom (ENA) fluxes measured at 1 AU by IBEX will depend sensitively on the form of the underlying proton distribution function, we use a three-dimensional MHD-kinetic global model to model ENA spectra at 1 AU and ENA skymaps across the IBEX energy range. We consider both solar minimum and solar maximum-like global models, showing how ENA skymap structure can be related to global heliospheric structure. We suggest that the ENA spectra may allow us to probe the directly the microphysics of the TS, while the ENA skymaps reveal heliospheric structure and, at certain energies, are distinctly different during solar minimum and maximum.

  3. Protons and alpha particles in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2013-01-01

    Roč. 118, č. 9 (2013), s. 5421-5429 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  4. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    International Nuclear Information System (INIS)

    Toncian, Toma

    2008-05-01

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10 7 -10 10 V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range (δε/ε < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant for medical applications such

  5. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Toncian, Toma

    2008-05-15

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10{sup 7}-10{sup 10} V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range ({delta}{epsilon}/{epsilon} < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant

  6. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    DEFF Research Database (Denmark)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique......We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...

  7. Dosimetric intercomparison between protons and electrons therapies applied to retinoblastoma

    International Nuclear Information System (INIS)

    Braga, Flavia Vieira

    2008-01-01

    In this work we propose a construction of a simple human eye model in order to simulate the dosimetric response for a treatment with protons and electrons in a retinoblastoma cancer. The computational tool used in this simulation was the Geant4 code, in the version 4.9.1, all these package are free and permit simulate the interaction of radiation with matter. In our simulation we use a box with 4 cm side, with water, for represent the human eye. The simulation was performed considering mono energetics beams of protons and electrons with energy range between 50 and 70 MeV for protons and 2 and 10 MeV for electrons. The simulation was based on the advanced hadron therapy example of the Geant 4 code. In these example the phantom is divided in voxels with 0.2 mm side and it is generated the energy deposited in each voxel. The simulation results show the energy deliver in each voxel, with these energie we can calculate the dose deposited in that region. We can see the dose profile of, proton and electron, and we can see in both cases that for protons the position of delivered dose is well know, that happen in the position where the proton stop, for electrons the energies is delivered along the way and pass the desired position for high dose deposition. (author)

  8. An assessment of the energetic flows in a commercial PEM fuel-cell system

    International Nuclear Information System (INIS)

    Jovan, Vladimir; Perne, Matija; Petrovcic, Janko

    2010-01-01

    Some primary issues have not yet been fully investigated on the way towards the commercialization of fuel-cell-based systems (FCS), e.g., their actual efficiency, reliability, safety, degradation, maintainability, etc. This article deals with an estimation of the real energetic flows and the corresponding electrical efficiency of a commercial proton-exchange-membrane fuel-cell hydrogen-fed generator set (PEMFCS). The fuel-cell power system considered here is planned to be the source of both electrical and thermal energy in a mobile dwelling container unit with in-built fuel-cell-based cogeneration system, and for the design of a cogeneration unit the actual amount of disposable energy from the PEMFC unit should be estimated. The assessment of the actual energetic flows, the disposable energy and the consequent electrical efficiency of the case-study PEMFCS is carried out using commercial technical data for the PEMFCS.

  9. Thin-target excitation functions: a powerful tool for optimizing yield, radionuclidic purity and specific activity of cyclotron produced radionuclides

    International Nuclear Information System (INIS)

    Bonardi, M.L.

    2002-01-01

    loci of the maxima of Y(E,ΔE) curves are present in most cases. As a relevant conclusion, use of target thickness larger than the 'effective' value, is unsuitable from technological point of view, due to larger power density deposited by the beam in target material itself, instead of target cooling system. Finally, this set of Thick-Target Yields and maxima permits calculating the optimum irradiation conditions to produce radionuclides with higher as possible yield, radionuclidic purity and specific activity. In order to join the advantages of the accurate knowledge of thin-target excitation functions and cross-sections of radionuclide of interest and its radioisotopic impurities, very selective radiochemical separations were optimized to separate the radionuclide itself from the irradiated target without any addition of isotopic carrier. A large number of very high specific activity radionuclides for environmental, toxicological and biomedical research applications have been produced in No Carrier Added form, by medium energy proton, deuteron and alpha accelerating cyclotrons. Some practical examples of radionuclides produced recently are presented. (author)

  10. Proton induced nuclear reactions on natural antimony up to 17 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Elbinawi, Alaa; Al-abyad, Mogahed; Hassan, Khaled F. [Atomic Energy Authority, Cairo (Egypt). Cyclotron Facility; Abd-Elmageed, Karima E. [Benha Univ. (Egypt). Dept. of Physics; Ditroi, Ferenc [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. for Nuclear Research (ATOMKI)

    2016-08-01

    The activation cross sections of proton induced reactions on {sup nat}Sb target leading to the formation of the radioisotopes {sup 121m,g,123m}Te were measured. The experimental excitation functions were compared with the theoretical model calculations using the codes EMPIRE-3.1 and TALYS-1.4. The integral yields of the three radionuclides were calculated and the possibility of their production is discussed.

  11. Speciation analysis of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.

    2010-01-01

    Full text: Naturally occurring and artificially produced radionuclides in the environment can be present in different physico-chemical forms (i. e. radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, complexing ability etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time dependent transformation processes such as mobilization of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, however, the original distribution of radionuclides deposited in ecosystems will change over time and influence the ecosystem behaviour. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews fractionation techniques which should be utilised for radionuclide speciation purposes. (author)

  12. Production cross sections of proton-induced reactions on yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sung-Chul; Song, Tae-Yung; Lee, Young-Ouk [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2017-05-01

    The production cross sections of residual radionuclides such as {sup 86,88,89g}Zr, {sup 86g,87m,87g,88}Y, {sup 83g,85g}Sr, and {sup 83,84g}Rb in the {sup 89}Y(p,x) reaction were measured using a stacked-foil activation and offline γ-ray spectrometric technique with proton energies of 57 MeV and 69 MeV at the 100 MeV proton linac in the Korea Multi-purpose Accelerator Complex (KOMAC), Gyeongju, Korea. The induced activities of the activated samples were measured using a high purity germanium (HPGe) detector, and the proton flux was determined using the {sup nat}Cu(p,x){sup 62}Zn reaction. The measured data was compared with other experimental data and the data from the TENLD-2015 library based on the TALYS code. The present results are generally lower than those in literature, but are found to be in agreement with the shape of the excitation functions. The integral yields for the thick target using the measured cross sections are given.

  13. Excitation functions for the formation of some short-lived products in proton-induced reactions on silver

    OpenAIRE

    Uddin, M. S.; Baba, M.; Hagiwara, M.; Latif, S. K. A.; Qaim, S. M.

    2008-01-01

    Excitation functions of the Ag-nat(p, xn)Cd-104,Cd-105 and Ag-nat(p, pxn) Ag-103,Ag-104m.g,Ag- 1049 reactions were measured for the first time over the proton energy range of 32 to about 60 MeV. The data were compared with the results of precompound-hybrid model calculations, whereby only partial agreement was obtained. The contribution of the Ag-103 precursor decay to the total formation of the therapeutic radionuclide Pd-103 in proton activation of silver was estimated: it amounted to about...

  14. Quantitative radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Scholz, P.M.; Rerych, S.K.; Moran, J.F.; Newman, G.E.; Douglas, J.M.; Sabiston, D.C. Jr.; Jones, R.H.

    1980-01-01

    This study introduces a new method for calculating actual left ventricular volumes and cardiac output from data recorded during a single transit of a radionuclide bolus through the heart, and describes in detail current radionuclide angiocardiography methodology. A group of 64 healthy adults with a wide age range were studied to define the normal range of hemodynamic parameters determined by the technique. Radionuclide angiocardiograms were performed in patients undergoing cardiac catherization to validate the measurements. In 33 patients studied by both techniques on the same day, a close correlation was documented for measurement of ejection fraction and end-diastolic volume. To validate the method of volumetric cardiac output calcuation, 33 simultaneous radionuclide and indocyanine green dye determinations of cardiac output were performed in 18 normal young adults. These independent comparisons of radionuclide measurements with two separate methods document that initial transit radionuclide angiocardiography accurately assesses left ventricular function

  15. Proton and Helium Spectra from the CREAM-III Flight

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. S.; Han, J. H.; Kim, K. C.; Kim, M. H.; Lee, M. H.; Lee, S. E. [Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742 (United States); Anderson, T.; Conklin, N. B.; Coutu, S.; Mognet, S. I. [Department of Physics, Penn State University, University Park, PA 16802 (United States); Barrau, A.; Derome, L. [Laboratoire de Physique Subatomique et Cosmologie, Grenoble (France); Jeon, J. A.; Lee, H. Y.; Lee, J.; Park, I. H. [Department of Physics, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Link, J. T.; Mitchell, J. W. [Astrophysics Space Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Menchaca-Rocha, A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico); Nutter, S. [Department of Physics, Northern Kentucky University, Highland Heights, KY 41099 (United States); and others

    2017-04-10

    Primary cosmic-ray elemental spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The third CREAM payload (CREAM-III) flew for 29 days during the 2007–2008 Antarctic season. Energies of incident particles above 1 TeV are measured with a calorimeter. Individual elements are clearly separated with a charge resolution of ∼0.12 e (in charge units) and ∼0.14 e for protons and helium nuclei, respectively, using two layers of silicon charge detectors. The measured proton and helium energy spectra at the top of the atmosphere are harder than other existing measurements at a few tens of GeV. The relative abundance of protons to helium nuclei is 9.53 ± 0.03 for the range of 1 TeV/n to 63 TeV/n. This ratio is considerably smaller than other measurements at a few tens of GeV/n. The spectra become softer above ∼20 TeV. However, our statistical uncertainties are large at these energies and more data are needed.

  16. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  17. Observation-based estimate of the Fukushima radionuclide in the North Pacific

    Science.gov (United States)

    Yoshida, Sachiko; Jayne, Steven; Macdonald, Alison; Buesseler, Ken; Rypina, Irina

    2014-05-01

    Contaminated waters from Fukushima nuclear power plant (FNPP) were discharged directly into the North Pacific Ocean in March 2011. Coastal current system in this region and time scale of the water exchange with the open ocean is not well understood, however both observational evidence and numerical model simulation results indicate relatively rapid advection of contaminants eastward into the highly energetic mixed water region in the confluence of the Kuroshio and Oyashio. Surface drifters deployed near the FNPP in early summer 2011 show trajectories crossing the North Pacific generally following the large scale ocean circulation after one year. Previously obtained cesium (Cs) samples from multiple cruises near FNPP and off shore region between 2011 and 2013 are collected and evaluated to diagnose the propagating Cs signal crossing North Pacific Ocean. In this presentation, we use radionuclides of Fukushima origin as a tracer to understand the North Pacific circulation and mixing process after two years of release. Large numbers of the observation are repeatedly took place near shore where Cs shows still relatively higher about 10-30 Bq/m3 in 2013. Temperature-salinity (T-S) properties for the available hydrographic data indicate that the majority of the samples were obtained in the region where the water is highly influenced by the warm-salty Kuroshio origin water. Depth profiles of 35N section in March-May 2013 cruise of the U.S. Climate Variability and Predictability and Carbon (CLIVAR) repeat Hydrography sections are examined to track the radionuclide penetration into the subsurface ocean and the subduction pathways along isopycnal surfaces. Available large drifter datasets that accumulated over decades of field work can guide us in estimating the spread of these radionuclides. By applying an innovative statistical analysis to the drifter data, we investigate the spreading of radionuclides in the Pacific Ocean over 5-year time scales.

  18. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.

  19. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  20. Reconciling radiocarbon and ice core timescales over the Holocene - Cosmogenic radionuclides as synchronization tools

    Science.gov (United States)

    Muscheler, R.; Adolphi, F.; Mekhaldi, F.

    2015-12-01

    The atmospheric production rates of cosmogenic radionuclides, such as 14C and 10Be, vary globally due to external processes, namely the solar and geomagnetic modulation of the galactic cosmic ray flux as well as solar proton events. This signature is recorded in various archives such as ice cores (10Be) and tree-rings (14C). Hence, cosmogenic radionuclides offer a means to continuously assess timescale differences between two of the most widely used timescales in paleoclimatology - the radiocarbon and the ice core timescales. Short lived solar proton events additionally provide distinct marker horizons that allow synchronization of discrete horizons at annual precision. We will present a cosmogenic radionuclide based synchronization of the Greenland ice core timescale (GICC05, Svensson et al., 2008) and the radiocarbon timescale (IntCal13, Reimer et al., 2013) over the Holocene. This synchronization allows radiocarbon dated and ice core paleoclimate records to be compared on a common timescale at down to sub-decadal precision. We will compare these results to independent discrete isochrones obtained from tephrochronology and solar proton events. In addition, we will discuss implications for the accuracy and uncertainty estimates of GICC05 over the Holocene. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocarbon, 55, 1869-1887, 10.2458/azu_js_rc.55.16947, 2013. Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin

  1. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  2. Determination of Proton dose distal fall-off location by detecting right-angled prompt gamma rays

    International Nuclear Information System (INIS)

    Seo, Kyu Seok

    2006-02-01

    or 50 cm distance by PGS system. And then We found there exists a clear correlation between the proton beam distal fall-off location and the right-angled prompt gamma ray distribution. Finally, a 70 MeV mono-energetic proton beam (pencil) was irradiated onto the eye of a head phantom (KPHEAD, which is a voxel phantom for a human head) to calculate the distribution of radiation dose distribution in the phantom and the distribution of the right-angled prompt gamma rays. there still exist a correlation between the proton beams distal fall-off location and the right-angled prompt gamma ray distribution in a KPHEAD for a 70 MeV mono-energetic proton beam

  3. Observation and Study of Proton Aurora by using Scanning Photometer

    Science.gov (United States)

    Mochizuki, T.; Ono, T.; Kadokura, A.; Sato, N.

    2009-12-01

    The proton auroras have significant differences from electron auroras in their spectral shape. They show Doppler-shifted and broadened spectra: the spectra have Doppler-shifted (~0.5 nm shorter) peak and both bluewing (~2-4 nm) and redwing (~1.5 nm) extending. Energy spectra of precipitating protons have been estimated from this shape. Recently it is found that the intensity in the extent of the blue wing reflects more effectively by the change of the mean energy of precipitating protons than the shift of peak wavelength [Lanchester et al., 2003]. Another character of the H-beta aurora is that it is diffuse form because a proton becomes hydrogen atom due to a charge-exchange reaction with atmospheric constituent and then possible to move across the magnetic field line. By using a scanning photometer, the movement of the proton auroral belt and change of a spectrum shape associated with the variation of proton source region due to storm and substorm were reported, however, not discussed in detail yet [Deehr and Lummerzheim, 2001]. The purpose of this study is to obtain the detail characteristics of H-beta aurora for understanding of source region of energetic protons in the magnetosphere. For this purpose, a new meridian-scanning photometer (SPM) was installed at Husafell station in Iceland in last summer season and Syowa Station, Antarctica. It will contribute to investigate the distribution of energetic protons and plasma waves which cause the pitch angle scattering in the magnetosphere. The meridian-scanning photometer is able to observe at five wavelengths for H-beta emission. One channel is to measure the background level. By analyzing the data obtained by the SPM, the H-beta spectrum can be estimated by fitting a model function with it. Then it is possible to obtain distribution of precipitating protons in north-south direction. It is also possible to estimate an energy spectrum of precipitating proton, simultaneously. The instrumental parameters of the SPM is

  4. Study of the production yields of {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Italiano, Antonio, E-mail: italianoa@unime.it [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Margarone, Daniele [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic); Pagano, Benedetta [Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Baldari, Sergio [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Korn, Georg [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic)

    2016-03-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of {sup 18}F-, {sup 11}C- and {sup 13}N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  5. Study of the production yields of "1"8F, "1"1C, "1"3N and "1"5O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Margarone, Daniele; Pagano, Benedetta; Baldari, Sergio; Korn, Georg

    2016-01-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. "1"8F, "1"1C, "1"3N and "1"5O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of "1"8F-, "1"1C- and "1"3N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  6. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    International Nuclear Information System (INIS)

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-01-01

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt –γ . The SEEs display a broken power-law WTD. The power-law index is γ 1 = 0.99 for the short waiting times (<70 hr) and γ 2 = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ –α exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt α –3 , where 0 ≤ α < 2

  7. Thermochemical and structural properties of DMAN-“proton sponges”

    International Nuclear Information System (INIS)

    Dávalos, Juan Z.; Lago, Alexsandre F.; Costa, José C.S.; Santos, Luís M.N.B.F.; González, Javier

    2012-01-01

    Highlights: ► We determined the enthalpy of formation Δ f H m o (g) of neutral and protonated DMAN. ► It has been estimated the “strain” effect and hydrogen bond enthalpies in DMAN-H + . ► GB gas phase basicities of naphthalene proton sponges are compared with their pK a . - Abstract: We report a study on the energetics and structural properties of naphthalene-based proton sponges and their corresponding protonated cations. In particular, we have determined the experimental standard enthalpies of formation in the gas phase at T = 298.15 K, Δ f H m o (g), for the neutral and protonated DMAN [1,8-bis (dimethylamino)-naphthalene], (221.0 ± 7.3) and (729.0 ± 11.1) kJ·mol −1 , respectively. A reliable experimental estimation of enthalpy associated with “strain” effect and hydrogen bond intramolecular (included within “enhanced basicity”, EB) contributions to the basicity of DMAN, were deduced from isodesmic reactions, −(29.1 ± 4.6) and (87.1 ± 11.9) kJ·mol −1 , respectively. The gas-phase basicities (GB) of naphthalene-based proton sponges are compared with the corresponding aqueous basicities (pK a ), covering a range of 149 kJ·mol −1 in GB and 11.5 in pK a . Density functional calculations at the M05-2X/6-311++G(d,p) level of theory were used to check the consistency of the experimental results and also to estimate the unavailable GB values of the considered species.

  8. Pair creation by very high-energy photons in gamma-ray bursts a unified picture for the energetics of GRBs

    CERN Document Server

    Totani, T

    1999-01-01

    The extreme energetics of the gamma-ray burst (GRB) 990123 have revealed that some GRBs emit quite a large amount of energy, and the total energy release from GRBs seems to change from burst to burst by a factor of 10/sup 2/-10/sup $9 3/ as E/sub gamma , iso/~10/sup 52-55/ erg, where E/sub gamma , iso/ is the observed GRB energy when the radiation is isotropic. If all GRBs are triggered by similar events, such a wide dispersion in energy release seems odd. The $9 author proposes a unified picture for the energetics of GRBs, in which all GRB events release roughly the same amount of energy E/sub iso/~10 /sup 55-56/ erg relativistic motion, with the baryon load problem almost resolved. A mild $9 dispersion in the initial Lorentz factor ( Gamma ) results in a difference of E/sub gamma , iso/ by up to a factor of m/sub p//m/sub e/~10/sup 3/. Protons work as `a hidden energy reservoir' of the total GRB energy, and E/sub gamma , $9 iso/ depends on the energy transfer efficiency from protons into electrons (or posit...

  9. Radionuclide fixation mechanisms in rocks

    International Nuclear Information System (INIS)

    Nakashima, S.

    1991-01-01

    In the safety evaluation of the radioactive waste disposal in geological environment, the mass balance equation for radionuclide migration is given. The sorption of radionuclides by geological formations is conventionally represented by the retardation of the radionuclides as compared with water movement. In order to quantify the sorption of radionuclides by rocks and sediments, the distribution ratio is used. In order to study quantitatively the long term behavior of waste radionuclides in geological environment, besides the distribution ratio concept in short term, slower radionuclide retention reaction involving mineral transformation should be considered. The development of microspectroscopic method for long term reaction path modeling, the behavior of iron during granite and water interaction, the reduction precipitation of radionuclides, radionuclide migration pathways, and the representative scheme of radionuclide migration and fixation in rocks are discussed. (K.I.)

  10. Resonant interaction of energetic ions with Alfven-like perturbations in stellarators

    International Nuclear Information System (INIS)

    Karulin, N.; Wobig, H.

    1994-04-01

    The modification of passing guiding center orbits of 3.5 MeV alpha particles and 45 keV protons in the presence of global Alfven eigenmodes (GAE's) is studied in modular advanced stellarators. It is found that if resonances between particles and waves occur, drift surfaces form a set of island structures. The mode numbers of the perturbations, which are dangerous for the energetic particle confinement, are discussed for two particular stellarators (Helias reactor and Wendelstein 7-AS). The perturbation amplitudes corresponding to the onset of orbit stochasticity are studied numerically. The coefficient of the collisionless stochastic diffusion is estimated using the island width derived analytically. (orig.)

  11. Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin.

    Science.gov (United States)

    Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles; Michalec, Piotr; Zalewski, Marcin

    2017-11-16

    Substituted biguanides are known for their biological effect, and a few of them are used as drugs, the most prominent example being metformin (1,1-dimethylbiguanide, IUPAC name: N,N-dimethylimidodicarbonimidic diamide). Because of the presence of hydrogen atoms at the amino groups, biguanides exhibit a multiple tautomerism. This aspect of their structures was examined in detail for unsubstituted biguanide and metformin in the gas phase. At the density functional theory (DFT) level {essentially B3LYP/6-311+G(d,p)}, the most stable structures correspond to the conjugated, push-pull, system (NR 2 )(NH 2 )C═N-C(═NH)NH 2 (R = H, CH 3 ), further stabilized by an internal hydrogen bond. The structural and energetic aspects of protonation and lithium cation adduct formation of biguanide and metformin was examined at the same level of theory. The gas-phase protonation energetics reveal that the more stable tautomer is protonated at the terminal imino C═NH site, still with an internal hydrogen bond maintaining the structure of the neutral system. The calculated proton affinity and gas-phase basicity of the two molecules reach the domain of superbasicity. By contrast, the lithium cation prefers to bind the less stable, not fully conjugated, tautomer (NR 2 )C(═NH)-NH-C(═NH)NH 2 of biguanides, in which the two C═NH groups are separated by NH. This less stable form of biguanides binds Li + as a bidentate ligand, in agreement with what was reported in the literature for other metal cations in the solid phase. The quantitative assessment of resonance in biguanide, in metformin and in their protonated forms, using the HOMED and HOMA indices, reveals an increase in electron delocalization upon protonation. On the contrary, the most stable lithium cation adducts are less conjugated than the stable neutral biguanides, because the metal cation is better coordinated by the not-fully conjugated bidentate tautomer.

  12. Marine biogeochemistry of radionuclides

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Radionuclides entering the ocean from runoff, fallout, or deliberate release rapidly become involved in marine biogeochemical cycles. Sources, sinks and transport of radionuclides and analogue elements are discussed with emphasis placed on how these elements interact with marine organisms. Water, food and sediments are the source terms from which marine biota acquire radionuclides. Uptake from water occurs by surface adsorption, absorption across body surfaces, or a combination of both. Radionuclides ingested with food are either assimilated into tissue or excreted. The relative importance of the food and water pathway in uptake varies with the radionuclide and the conditions under which exposure occurs. Evidence suggests that, compared to the water and food pathways, bioavailability of sediment-bound radionuclides is low. Bioaccumulation processes are controlled by many environmental and intrinsic factors including exposure time, physical-chemical form of the radionuclide, salinity, temperature, competitive effects with other elements, organism size, physiology, life cycle and feeding habits. Once accumulated, radionuclides are transported actively by vertical and horizontal movements of organisms and passively by release of biogenic products, e.g., soluble excreta, feces, molts and eggs. Through feeding activities, particles containing radionuclides are ''packaged'' into larger aggregates which are redistributed upon release. Most radionuclides are not irreversibly bound to such particles but are remineralized as they sink and/or decompose. In the pelagic zones, sinking aggregates can further scavenge particle-reactive elements thus removing them from the surface layers and transporting them to depth. Evidence from both radiotracer experiments and in situ sediment trap studies is presented which illustrates the importance of biological scavenging in controlling the distribution of radionuclides in the water column. (author)

  13. Catalogue of {>} 55 MeV Wide-longitude Solar Proton Events Observed by SOHO, ACE, and the STEREOs at {≈} 1 AU During 2009 - 2016

    Science.gov (United States)

    Paassilta, Miikka; Papaioannou, Athanasios; Dresing, Nina; Vainio, Rami; Valtonen, Eino; Heber, Bernd

    2018-04-01

    Based on energetic particle observations made at {≈} 1 AU, we present a catalogue of 46 wide-longitude ({>} 45°) solar energetic particle (SEP) events detected at multiple locations during 2009 - 2016. The particle kinetic energies of interest were chosen as {>} 55 MeV for protons and 0.18 - 0.31 MeV for electrons. We make use of proton data from the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron Experiment (SOHO/ERNE) and the Solar Terrestrial Relations Observatory/High Energy Telescopes (STEREO/HET), together with electron data from the Advanced Composition Explorer/Electron, Proton, and Alpha Monitor (ACE/EPAM) and the STEREO/ Solar Electron and Proton Telescopes (SEPT). We consider soft X-ray data from the Geostationary Operational Environmental Satellites (GOES) and coronal mass ejection (CME) observations made with the SOHO/ Large Angle and Spectrometric Coronagraph (LASCO) and STEREO/ Coronagraphs 1 and 2 (COR1, COR2) to establish the probable associations between SEP events and the related solar phenomena. Event onset times and peak intensities are determined; velocity dispersion analysis (VDA) and time-shifting analysis (TSA) are performed for protons; TSA is performed for electrons. In our event sample, there is a tendency for the highest peak intensities to occur when the observer is magnetically connected to solar regions west of the flare. Our estimates for the mean event width, derived as the standard deviation of a Gaussian curve modelling the SEP intensities (protons {≈} 44°, electrons {≈} 50°), largely agree with previous results for lower-energy SEPs. SEP release times with respect to event flares, as well as the event rise times, show no simple dependence on the observer's connection angle, suggesting that the source region extent and dominant particle acceleration and transport mechanisms are important in defining these characteristics of an event. There is no marked difference between the speed

  14. Proton and electron deep dose profiles for retinoblastoma based on GEANT 4 code

    International Nuclear Information System (INIS)

    Braga, Flavia V.; Campos, Tarcisio P.R. de; Ribeiro, Kilder L.

    2009-01-01

    Herein, the dosimetry responses to a retinoblastoma proton and electron radiation therapy were investigated. The computational tool applied to this simulation was the Geant4 code, version 4.9.1. The code allows simulating the charge particle interaction with eyeball tissue. In the present simulation, a box of 4 cm side water filled had represented the human eye. The simulation was performed considering mono energetic beams of protons and electrons with spectra of 57 to 70 MeV for protons and 2 to 8 MeV for electrons. The simulation was guide by the advanced hadron therapy example distributed with the Geant4 code. The phantom was divided in voxels with 0.2 mm side. The energy deposited in each voxel was evaluated taken the direct beam at one face. The simulation results show the delivery energy and therefore the dose deposited in each voxel. The deep dose profiles to proton and electron were plotted. The well known Bragg peak was reproduced for protons. The maximum delivered dose defined the position at the proton stopped. However, to electrons, the absorbed energies were delivered along its path producing a more continuous distribution following the water depth, but also being stopped in the end of its path. (author)

  15. Proton and electron deep dose profiles for retinoblastoma based on GEANT 4 code

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Flavia V., E-mail: flaviafisica@gmail.co [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares; Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Campos, Tarcisio P.R. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares; Ribeiro, Kilder L., E-mail: kilderlr@gmail.co [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil). Dept. de Fisica

    2009-07-01

    Herein, the dosimetry responses to a retinoblastoma proton and electron radiation therapy were investigated. The computational tool applied to this simulation was the Geant4 code, version 4.9.1. The code allows simulating the charge particle interaction with eyeball tissue. In the present simulation, a box of 4 cm side water filled had represented the human eye. The simulation was performed considering mono energetic beams of protons and electrons with spectra of 57 to 70 MeV for protons and 2 to 8 MeV for electrons. The simulation was guide by the advanced hadron therapy example distributed with the Geant4 code. The phantom was divided in voxels with 0.2 mm side. The energy deposited in each voxel was evaluated taken the direct beam at one face. The simulation results show the delivery energy and therefore the dose deposited in each voxel. The deep dose profiles to proton and electron were plotted. The well known Bragg peak was reproduced for protons. The maximum delivered dose defined the position at the proton stopped. However, to electrons, the absorbed energies were delivered along its path producing a more continuous distribution following the water depth, but also being stopped in the end of its path. (author)

  16. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  17. Performance tests and comparison of microdosimetric measurements with four tissue-equivalent proportional counters in scanning proton therapy

    Czech Academy of Sciences Publication Activity Database

    Farah, J.; De Saint-Hubert, M.; Mojzeszek, N.; Chiriotti, S.; Gryzinski, M.; Ploc, Ondřej; Trompier, F.; Turek, Karel; Vanhavere, F.; Olko, P.

    2017-01-01

    Roč. 96, JAN (2017), s. 42-52 ISSN 1350-4487 EU Projects: European Commission(XE) 662287 - CONCERT Institutional support: RVO:61389005 Keywords : tissue-equivalent proportional counters * microdosimetry * proton therapy * stray neutrons and prothons Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.442, year: 2016

  18. DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Marsh, M. S.; Dalla, S.; Kelly, J.; Laitinen, T.

    2013-01-01

    Drifts are known to play a role in galactic cosmic ray transport within the heliosphere and are a standard component of cosmic ray propagation models. However, the current paradigm of solar energetic particle (SEP) propagation holds the effects of drifts to be negligible, and they are not accounted for in most current SEP modeling efforts. We present full-orbit test particle simulations of SEP propagation in a Parker spiral interplanetary magnetic field (IMF), which demonstrate that high-energy particle drifts cause significant asymmetric propagation perpendicular to the IMF. Thus in many cases the assumption of field-aligned propagation of SEPs may not be valid. We show that SEP drifts have dependencies on energy, heliographic latitude, and charge-to-mass ratio that are capable of transporting energetic particles perpendicular to the field over significant distances within interplanetary space, e.g., protons of initial energy 100 MeV propagate distances across the field on the order of 1 AU, over timescales typical of a gradual SEP event. Our results demonstrate the need for current models of SEP events to include the effects of particle drift. We show that the drift is considerably stronger for heavy ion SEPs due to their larger mass-to-charge ratio. This paradigm shift has important consequences for the modeling of SEP events and is crucial to the understanding and interpretation of in situ observations

  19. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    International Nuclear Information System (INIS)

    Rosa, Vanessa La; Royle, Gary; Gibson, Adam; Kacperek, Andrzej

    2014-01-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σ bkg , which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σ bkg . Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup. (paper)

  20. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    Science.gov (United States)

    La Rosa, Vanessa; Kacperek, Andrzej; Royle, Gary; Gibson, Adam

    2014-06-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σbkg, which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σbkg. Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup.

  1. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  2. Impact assessment of radionuclides released to environment from the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S.; Andersson, K. [Technical University of Denmark (Denmark); Ene, D. [European Spallation Soure AB - ESS, Lund (Sweden)

    2014-07-01

    The European Spallation Source (ESS) is a large science and technology infrastructure project currently under construction in Lund, Sweden, with operation planned by 2019. The facility design and construction includes a linear proton accelerator, a heavy-metal target station, neutron instruments, laboratories, and a data management and software development centre. During operation the ESS will produce a wide range of radionuclides via spallation and activation processes. Radiological assessments are needed to ensure that operational discharges and releases from potential incidents/accidents are within acceptable limits. The spectrum of radionuclides produced at ESS is quite different from that produced in nuclear power plants and assessment work has therefore been challenged by lack of information on less well-known radionuclides. Traditional assessment methodologies have been applied focusing on releases to air and public sewer systems and calculating radiation doses to representative persons living in and near Lund close to the ESS site. Exposure pathways considered include external radiation from radionuclides in air, external radiation from radionuclides deposited on ground and skin, inhalation of radionuclides and ingestion of locally produced contaminated food. Atmospheric dispersion has been simulated with the Gaussian plume model which is considered adequate within a few kilometres. Effects of release height have been investigated and site specific values of other parameters such as wind speed, wind direction, rain fall etc. have been used. Contamination of food has been calculated from the (ECOSYS) food dose model used in the RODOS and ARGOS decision support systems. The food dose model does not contain specific data for a number of ESS relevant radionuclides, e.g. {sup 7}Be, {sup 32}P and {sup 35}S. The data required include mobility of these isotopes, soil-to-plant concentration ratios and equilibrium transfer factors of daily intake by ingestion of meat

  3. Dynamical Changes Induced by the Solar Proton Events in October-November 2003

    Science.gov (United States)

    Jackman, C. H.; Roble, R. G.; Fleming, E. L.

    2006-05-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth and impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Mode (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization and changes in the electric field, which led to Joule heating of the mesosphere and lower thermosphere. This heating led to temperature increases up to 4K in the upper mesosphere. The solar proton-induced ionization, as well as dissociation processes, led to the production of odd hydrogen (HOx) and odd nitrogen (NOy). Substantial (>40%) short-lived ozone decreases followed these enhancements of HOx and NOy and led to a cooling of the mesosphere and upper stratosphere. This cooling led to temperature decreases up to 2.5K. The solar proton-caused temperature changes led to maximum meridional and zonal wind variations of +/- 2 m/s on background winds up to +/- 30 m/s. The solar proton-induced wind perturbations were computed to taper off over a period of several days past the SPEs. Solar cycle 23 was accompanied by ten very large SPEs between 1998 and 2005, along with numerous smaller events. These solar proton-driven atmospheric variations need to be carefully considered when examining other polar changes.

  4. Track etch parameters and annealing kinetics assessment of protons of low energy in CR-39 detector

    International Nuclear Information System (INIS)

    Jain, R.K.; Kumar, Ashok; Singh, B.K.

    2012-01-01

    Highlights: ► We calibrate CR-39 detector with very low energy protons. ► We establish linear relationship between track diameter and time/energy up to 200 keV. ► We determine activation energy of annealing using different models. ► We justify concept of single annealing activation energy in CR-39. - Abstract: In this paper threshold of the registration sensitivity of very low energy proton in CR-39 is investigated. Irradiation of CR-39 (poly-allyl-diglycol carbonate) was carried out with very low energy mono energetic protons of 20–60 keV from a mini proton accelerator. Nearly 10 4 /cm 2 fluence of protons was used. The variation of track diameter with etching time as well as proton energy response curve was carefully calibrated. The bulk and track etch rates were measured by using proton track diameters. Bulk etch rate was also measured by the thickness of removed surface layer. The thermal annealing of proton track at temperatures ranging from 100 to 200 °C in CR-39 was studied by several models. Activation energy of annealed CR-39 detectors was calculated by slope of track etch rate and temperature plot. The data of proton tracks of 200, 250 and 300 keV from 400 kV Van-de-Graaff accelerator was also used and compared with the track diameters of different energies of proton.

  5. Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.

    2010-12-01

    The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  6. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides. Final Report

    International Nuclear Information System (INIS)

    Welch, M.J.

    2012-01-01

    retention of the tissue and the significantly greater retention amounting in hypoxic tissue. This hypothesis was confirmed in a series of animal studies. Cu-64 can be used both as an imaging radionuclide and a therapeutic radionuclide. The therapeutic efficacy of Cu-64 ATSM was proven in hamsters bearing the CW39 human colorectal tumors. The administration of Cu-64 ATSM significantly increased the survival time of tumor-bearing animals with no acute toxicity. This copper agent therefore shows promise for radiotherapy. The flow tracer Cu-64 PTSM also demonstrates therapeutic potential by inhibiting cancer cells implanted in animal models. Again, this inhibition occurred at doses which showed no sign of toxicity to the animals. Cu-ATSM was translated to humans, under other support a series of tumors were investigated; these included head and neck cancer, non-small cell lung cancer, cervical cancer and renal cancer. Another radionuclide that was investigated was titanium 45. This radionuclide was successfully produced by radiation of a scandium foil with 15 MeV protons. The titanium 45 was processed and separated from residual scandium by high exchange chomotrophy. Titanium titanocene has been utilized as a therapeutic agent; this compound was prepared and studied in vitro and in vivo. Another project was the preparation of cyclodextrin dimers as a new pre-targeting approach for tumor uptake. Beta-cyclodextradin and two other dimers were synthesized. These dimers were studied for the in vivo application. Work continued on the application of the radionuclide already discussed. Technetium 94m, a positron emitting radionuclide of the widely used 99m Tc nuclide was also prepared. This allows the quantification of the uptake of technetium radiopharmaceuticals. In collaboration with Professor David Piwnica-Worms, technetium 94m, sestamibi was studied in animal models and in a limited number of human subjects.

  7. Measurement and calculation of cross section for (p,x) reactions on natural Fe for 650 MeV protons

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Loska, L.; Taczanowski, S.; Shvetsov, V.

    2006-01-01

    Cross sections for production of radionuclides in (p,x) reactions on natural iron were measured for protons of 650 ± 4 MeV with the use of HPGe gamma spectrometry and calculated with the MCNPX code. The determined cross section values were compared with the computed and other experimental ones

  8. Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Forthomme, Laurent; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Micanovic, Sasa; Sudic, Lucija; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulte, Jan-Frederik; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; La Licata, Chiara; Schizzi, Andrea; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Oh, Sung Bin; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunchul; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Malberti, Martina; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Ovcharova, Ana; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Bowen, James; Bruner, Christopher; Castle, James; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Kumar, Ajay; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2016-12-16

    A search is presented for an excess of events with large missing transverse momentum in association with at least one highly energetic jet, in a data sample of proton-proton collisions at a centre-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse-femtobarns collected by the CMS experiment at the LHC. The results are interpreted using a set of simplified models for the production of dark matter via a scalar, pseudoscalar, vector, or axial vector mediator. Additional sensitivity is achieved by tagging events consistent with the jets originating from a hadronically decaying vector boson. This search uses jet substructure techniques to identify hadronically decaying vector bosons in both Lorentz-boosted and resolved scenarios. This analysis yields improvements of 80% in terms of excluded signal cross sections with respect to the previous CMS analysis using the same data set. No significant excess with respect to the standard model expectation is observed and limits are place...

  9. Electron, proton, neutron as spheroidical particles

    International Nuclear Information System (INIS)

    Bagge, E.R.

    1993-01-01

    It is shown that it is possible to describe the electron and the proton at rest within the framework of Dirac's relativistic theory of particles as electro-magnetic stable, spheroidal particles like balloons with very thin envelopes. Their properties, especially their spins and their magnetic momenta, are exactly those, which have been measured at first and later on derived by Dirac. In this picture the neutron plays the role of a system of two concentric and synchronically rotating balloons with a small distance between them at a positive energetic minimum of balance at 1.26 MeV. The magnetic moment of this particle has a negative sign and is of the correct size. (orig.)

  10. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wollongong Univ.; Tomiyoshi, K.; Sekine, T.

    1997-01-01

    The present status and future directions of research and development on radionuclide generator technology are reported. The recent interest to develop double-neutron capture reactions for production of in vivo generators; neutron rich nuclides for radio-immunotherapeutic pharmaceuticals: and advances with ultra-short lived generators is highlighted. Emphasis is focused on: production of the parent radionuclide; the selection and the evaluation of support materials and eluents with respect to the resultant radiochemical yield of the daughter, and the breakthrough of the radionuclide parent: and, the uses of radionuclide generators in radiopharmaceutical chemistry, biomedical and industrial applications. The 62 Zn → 62 Cu, 66 Ni → 66 Cu, 103m Rh → 103 Rh, 188 W → 188 Re and the 225 Ac → 221 Fr → 213 Bi generators are predicted to be emphasized for future development. Coverage of the 99 Mo → 99m Tc generator was excluded, as it the subject of another review. The literature search ended June, 1996. (orig.)

  11. Investigation of EBT2 and EBT3 films for proton dosimetry in the 4-20 MeV energy range.

    Science.gov (United States)

    Reinhardt, S; Würl, M; Greubel, C; Humble, N; Wilkens, J J; Hillbrand, M; Mairani, A; Assmann, W; Parodi, K

    2015-03-01

    Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4-20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose-response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth-dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.

  12. The two-proton halo nucleus {sup 17}Ne studied in high-energy nuclear breakup reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); IKP, TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Marganiec, Justyna [IKP, TU Darmstadt, Darmstadt (Germany); EMMI, GSI, Darmstadt (Germany); GSI, Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Chulkov, Leonid [GSI, Darmstadt (Germany); NRC Kurchatov Institute, Moscow (Russian Federation); Heil, Michael; Simon, Haik [GSI, Darmstadt (Germany); Plag, Ralf [GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt (Germany); Savran, Deniz [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    We report on exclusive measurements of nuclear breakup reactions of highly-energetic (500 MeV) unstable {sup 17}Ne beams impinging on light targets in an experiment at the R{sup 3}B-LAND complete-kinematics reaction setup at GSI. Focusing on the properties of beam-like {sup 15}O-p (={sup 16}F) systems produced in one-proton-removal reactions, we are presenting a comprehensive analysis of the s-/d-wave configuration mixing of the {sup 17}Ne valence-proton pair that is used to quantify its halo-nature. The results include the {sup 15}O-p relative-energy spectrum, {sup 16}F momentum distributions, and their corresponding momentum profile.

  13. Accumulation of the Hf-178m2 isomeric nuclei through spallation with internediate-energy protons of tantalum and rhenium targets

    Czech Academy of Sciences Publication Activity Database

    Karamian, S. A.; Adam, Jindřich; Filossov, DV.; Henzlová, D.; Henzl, V.; Kalinnikov, V. B.; Lebedev, NA.; Novgorodov, A. F.; Collins, CB.; Popescu, II.; UR, CA.

    2002-01-01

    Roč. 489, 1/3 (2002), s. 448-468 ISSN 0168-9002 R&D Projects: GA AV ČR KSK2067107 Keywords : protons * spallation * target activation * radionuclides * isomers * cross-section * multistep model Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.167, year: 2002

  14. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Allen, S.E.; Horrill, A.D.; Howard, B.J.; Lowe, V.P.W.; Parkinson, J.A.

    1983-07-01

    The subject is discussed under the headings: concentration and spatial distribution of radionuclides in grazed and ungrazed saltmarshes; incorporation of radionuclides by sheep grazing on an estuarine saltmarsh; inland transfer of radionuclides by birds feeding in the estuaries and saltmarshes at Ravenglass; radionuclides in contrasting types of coastal pastures and taken up by individual plant species found in west Cumbria; procedures developed and used for the measurement of alpha and gamma emitters in environmental materials. (U.K.)

  15. Radionuclide data

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Chapter 8 presents tables on selected alpha, beta, gamma and x-ray emitters by increasing energy; information on specific activity for selected radionuclides; naturally occurring radionuclides; the natural decay series; and the artificially produced neptunium series. A table of alpha emitters is listed by increasing atomic number and by energy. The table of β emitters presented is useful in identifying β emitters whose energies and possibly half-lives have been determined by standard laboratory techniques. It is also a handy guide to β-emitting isotopes for applications requiring specific half-lives and/or energies. Gamma rays for radionuclides of importance to radiological assessments and radiation protection are listed by increasing energy. The energies and branching ratios are important for radionuclide determinations with gamma spectrometry detectors. This section also presents a table of x-ray energies which are useful for radiochemical analyses. A number of nuclides emit x-rays as part of their decay scheme. These x-rays may be counted with Ar proportional counters, Ge planar or n-type Ge co-axial detectors, or thin crystal NaI(T1) scintillation counters. In both cases, spectral measurements can be made and both qualitative and quantitative information obtained on the sample. Nuclear decay data (energy and probability by radiation type) for more than one hundred radionuclides that are important to health physicists are presented in a schematic manner

  16. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  17. Spallation study with proton beams around 1 GeV: neutron production

    International Nuclear Information System (INIS)

    Boudard, A.; Borne, F.; Brochard, F.; Crespin, S.; Drake, D.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hanappe, F.; Kowalski, L.; Lebrun, C.; Lecolley, F.R.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Meigo, S.I.; Menard, S.; Milleret, G.; Patin, Y.; Petibon, E.; Plouin, F.; Pras, P.; Schapira, J.P.; Stuttge, L.; Terrien, Y.; Thun, J.; Uematsu, M.; Varignon, C.; Volant, C.; Whittal, D.M.; Wlazlo, W.

    2000-01-01

    Experiments performed at Lab. Nat. SATURNE on neutron produced by spallation from proton beams in the range 0.8 - 1.6 GeV are presented. Experimental data compared with codes show a significant improvement of the recent intra-nuclear cascade (J. Cugnon). This is also true in the same way for the neutron production from thick targets. However the model underestimates the energetic neutrons produced in the backward direction and other quantities as residual nuclei cross sections are not accurately predicted

  18. Ab initio research of stopping power for energetic ions in solids

    Energy Technology Data Exchange (ETDEWEB)

    He, Bin, E-mail: hebin-rc@163.com; Meng, Xu-Jun; Wang, Jian-Guo

    2017-03-01

    A new physical scenario is suggested to estimate the stopping power of energetic α particles in solid-density Be, Na, and Al at room temperature in an ab initio way based on the average atom model. In the scenario the stopping power is caused by the transition of free electrons to higher energy states and the ionization of bound electrons of the atom. Our results are found generally in good agreement with the recommended data in Al, Be and Na as well as the experimental data in Al. A comparison of energy loss with the recent experiment of protons in Be indicates that the scenario is more reasonable than the local density approximation in this case.

  19. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  20. Binding Thermodynamics of Ferredoxin:NADP+ Reductase: Two Different Protein Substrates and One Energetics

    Science.gov (United States)

    Martínez-Júlvez, Marta; Medina, Milagros; Velázquez-Campoy, Adrián

    2009-01-01

    Abstract The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics. PMID:19527656

  1. Production and quality control of 65Zn radionuclide

    International Nuclear Information System (INIS)

    Rowshanfarzad, P.; Jalilian, R.; Sabet, M.

    2005-01-01

    Zinc-65 was produced in the Nuclear Research Center for Agriculture and Medicine (NRCAM) by the bombardment of natural copper targets with 30 MeV protons via the 65 Cu(p,n) 65 Zn nuclear reaction. Natural copper was used instead of enriched 65 Cu because of the quick decay of undesired radioisotopes. It was also more desirable for cost effectiveness. Cross-section calculations were performed by ALICE nuclear code and the results were compared with the experimental data given in the literature, which showed good agreement. A 160 μm copper layer target was bombarded with a 150 μA current of 30 MeV protons for 20 min, which resulted in 170 MBq activity of 65 Zn product. The yield was 3.4 MBq/μAh. The concentration of the product was 6.8 MBq/ml. Radiochemical separation was carried out by anion exchange chromatography with the yield of about 98%. Quality control of the final product showed a radionuclide purity of more than 98% and no traces of possible impurities (copper) were detected by a colorimetric method with a 1 ppm detection limit using dithizone as the reagent. The materials used for targetry and chemical separation were quite cost-effective. (author)

  2. SOLAR ENERGETIC PARTICLE EVENT ASSOCIATED WITH THE 2012 JULY 23 EXTREME SOLAR STORM

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bei; Liu, Ying D.; Hu, Huidong; Wang, Rui; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G., E-mail: liuxying@spaceweather.ac.cn [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2016-08-20

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A , was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory , suggesting a wide longitudinal spread of the particles at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.

  3. Radionuclide generators

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1983-01-01

    The status of radionuclide generators for chemical research and applications related to the life sciences and biomedical research are reviewed. Emphasis is placed upon convenient, efficient and rapid separation of short-lived daughter radionuclides in a chemical form suitable for use without further chemical manipulation. The focus is on the production of the parent, the radiochemistry associated with processing the parent and daughter, the selection and the characteristic separation methods, and yields. Quality control considerations are briefly noted. The scope of this review includes selected references to applications of radionuclide generators in radiopharmaceutical chemistry, and the life sciences, particularly in diagnostic and therapeutic medicine. The 99 Mo-sup(99m)Tc generator was excluded. 202 references are cited. (orig.)

  4. EBT-XD Radiochromic Film Sensitivity Calibrations Using Proton Beams from a Pelletron Accelerator

    Science.gov (United States)

    Stockler, Barak; Grun, Alexander; Brown, Gunnar; Klein, Matthew; Wood, Jacob; Cooper, Anthony; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Regan, S. P.; Sangster, T. C.

    2017-10-01

    Radiochromic film (RCF) is a transparent detector film that permanently changes color following exposure to ionizing radiation. RCF is used frequently in medical applications, but also has been used in a variety of high energy density physics diagnostics. RCF is convenient to use because it requires no chemical processing and can be scanned using commercially available document scanners. In this study, the sensitivity of Gafchromic™ EBT-XD RCF to protons and x-rays was measured. Proton beams produced by the SUNY Geneseo Pelletron accelerator were directed into an evacuated target chamber where they scattered off a thin gold foil. The scattered protons were incident on a sample of RCF which subtended a range of angles around the scattering center. A new analysis method, which relies on the variation in scattered proton fluence as a function of scattering angle in accordance with the Rutherford scattering law, is currently being developed to speed up the proton calibrations. Samples of RCF were also exposed to x-ray radiation using an X-RAD 160 x-ray irradiator, allowing the sensitivity of RCF to X-rays to be measured. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics as well as the NSF.

  5. Proton energy spectra during ground level enhancements as measured by EPHIN aboard SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Heber, Bernd; Kuehl, Patrick; Klassen, Andreas; Dresing, Nina [Christian-Albrechts-Universitaet zu Kiel, 24118 Kiel (Germany); Gomez-Herrero, Raul [Universidad de Alcala (Spain)

    2016-07-01

    Ground Level Enhancements (GLEs) are solar energetic particle (SEP) events that are recorded by ground-based instrumentation. The energy of the particles is so high that they produce secondary particles in the Earth's atmosphere, i.e. protons and neutrons, which are detected as sudden increases in cosmic ray intensities measured by e.g. neutron monitors. Since the launch of SOHO in December 1995 the neutron monitor network recorded 16 GLEs. The Electron Proton Helium INstrument on board SOHO has been designed to measure protons and helium up to 53 MeV/nucleon as well as electrons up to 8.3 MeV. Above these energies, particles penetrate all detector elements and thus, a separation between different particle species becomes more complicated. Recently we developed a method that allows deriving the energy spectrum for penetrating protons up to more than 1 GeV. In this contribution we present the proton energy spectra and time profiles of above mentioned GLEs and compare them to previous measurements. Although there are differences of up to a factor two the overall shape of the energy spectra agree surprisingly well. Thus it has been demonstrated that EPHIN measurements are a valuable tool for understanding GLE.

  6. Lunar radionuclide records of average solar-cosmic-ray fluxes over the last ten million years

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1980-01-01

    Because changes in solar activity can modify the fluxes of cosmic-ray particles in the solar system, the nature of the galactic and solar cosmic rays and their interactions with matter are described and used to study the ancient sun. The use of cosmogenic nuclides in meteorites and lunar samples as detectors of past cosmic-ray variations are discussed. Meteorite records of the history of the galactic cosmic rays are reviewed. The fluxes of solar protons over various time periods as determined from lunar radionuclide data are presented and examined. The intensities of solar protons emitted during 1954 to 1964 (11-year solar cycle number 19) were much larger than those for 1965 to 1975 (solar cycle 20). Average solar-proton fluxes determined for the last one to ten million years from lunar 26 Al and 53 Mn data show little variation and are similar to the fluxes for recent solar cycles. Lunar activities of 14 C (and preliminary results for 81 Kr) indicate that the average fluxes of solar protons over the last 10 4 (and 10 5 ) years are several times larger than those for the last 10 6 to 10 7 years; however, cross-section measurements and other work are needed to confirm these flux variations

  7. New production cross sections for the theranostic radionuclide 67Cu

    Science.gov (United States)

    Pupillo, Gaia; Sounalet, Thomas; Michel, Nathalie; Mou, Liliana; Esposito, Juan; Haddad, Férid

    2018-01-01

    The cross sections of the 68Zn(p,2p)67Cu, 68Zn(p,2n)67Ga and 68Zn(p,3n)66Ga reactions were measured at the ARRONAX facility by using the 70 MeV cyclotron, with particular attention to the production of the theranostic radionuclide 67Cu. Enriched 68Zn material was electroplated on silver backing and exposed to a low-intensity proton beam by using the stacked-foils target method. Since 67Cu and 67Ga radionuclides have similar half-lives and same γ-lines (they both decay to 67Zn), a radiochemical process aimed at Cu/Ga separation was mandatory to avoid interferences in γ-spectrometry measurements. A simple chemical procedure having a high separation efficiency (>99%) was developed and monitored during each foil processing, thanks to the tracer isotopes 61Cu and 66Ga. Nuclear cross sections were measured in the energy range 35-70 MeV by using reference reactions recommended by the International Atomic Energy Agency (IAEA) to monitor beam flux. In comparison with literature data a general good agreement on the trend of the nuclear reactions was noted, especially with latest measurements, but slightly lower values were obtained in case of 67Cu. Experimental results of the 68Zn(p,2p)67Cu, 68Zn(p,2n)67Ga and 68Zn(p,3n)66Ga reactions were also compared with the theoretical values estimated by using the software TALYS. The production yield of the theranostic radionuclide 67Cu was estimated considering the results obtained in this work.

  8. Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities

    International Nuclear Information System (INIS)

    Halverson, M.A.; Mishima, J.

    1986-09-01

    Non-nuclear explosions are one of the initiating events (accidents) considered in the US Nuclear Regulatory Commission study of formal methods for estimating the airborne release of radionuclides from fuel cycle facilities. Methods currently available to estimate the energetics and mass airborne release from the four types of non-nuclear explosive events (fast and slow physical explosions and fast and slow chemical explosions) are reviewed. The likelihood that fast physical explosions will occur in fuel cycle facilities appears to be remote and this type of explosion is not considered. Methods to estimate the consequences of slow physical and fast chemical explosions are available. Methods to estimate the consequences of slow chemical explosions are less well defined

  9. Recordings of solar protons during October 26-29, 1968

    International Nuclear Information System (INIS)

    Gjerde, A.; Amundsen, P.

    1974-08-01

    The composite events causing increased influx of solar particles during October 26-29, 1968 are studied using data from the polar orbiting ESRO IA satellite. Details on protons of 0.1-10 MeV are presented, and their interplanetary propagation characteristics discussed. Diffusion model fit to the prompt event commencing October 26, suggests an interplanetary diffusion coefficient for 200-350 keV protons of (2.8π+0.7).10 20 cm 2 s -1 . The most likely parent flare for this event is the 1N flare of 0119 UT October 26, occuring in McMath plage region 9740 at 32 deg E solar longitude. The slow decay of the event is then accounted for by co-rotation effects. The flares occurring in the same solar region on October 27 and leading to the delayed events of October 29, did not result in prompt events seen near the Earth, showing the great variability in energetic particle propagation conditions of interplanetary space. (auth)

  10. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    Science.gov (United States)

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  11. Characteristics of flux variations of energetic particles associated with storm sudden commencement at synchronous orbit

    International Nuclear Information System (INIS)

    Tomomura, Kiyoshi; Kato, Yoshio; Sakurai, Tohru

    1982-01-01

    Characteristics of flux variations of energetic particles associated with Storm Sudden Commencement (SSC) are examined on the basis of the particle's data observed by solid state detecter onboard the synchronous satellite, GMS ''Himawari'', during the period from Febuary 1978 to August 1979. The energy of the particles are covered from 1.2 to 4.0 MeV for proton and greater than 2 MeV for electron, respectively. The flux variations for protons generally increase in association with SSC. However, for electrons, they show the increase except 7 events (the decrease event) among 40 events studied. It is evident that the values of the flux attained immediately after SSC (J) clearly depend on those just before SSC(J 0 ). They follow a Power law (J proportional J 0 sup( n)). The variation of the proton flux ( + ΔJ + = + J - J 0+ ) increases with the value of the flux just before SSC. In both increase and decrease events for electrons, the variation of the flux tends to increase until the flux just before SSC attains the value of 10 4 , then to decrease as its value exceeds 10 4 . (author)

  12. A computer study of radionuclide production in high power accelerators for medical and industrial applications

    Science.gov (United States)

    Van Riper, K. A.; Mashnik, S. G.; Wilson, W. B.

    2001-05-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  13. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  14. Investigation of the formation of residual nuclei from the radiactive .sup.237 Np and .sup.241 Am targets in the reaction with 660-MeV protons

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich; Balabekyan, A. R.; Brandt, R.; Dzhelepov, V. P.; Gustov, S. A.; Kalinnikov, V. G.; Krivopustov, M. I.; Mirokhin, I. V.; Mrázek, Jaromír; Odoj, R.

    2002-01-01

    Roč. 65, č. 5 (2002), s. 797-809 ISSN 0044-0027 R&D Projects: GA AV ČR KSK1048102 Keywords : protons * spallation * target activation * radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  15. Measurement Of Inclusive Jet Cross-Section In Proton-Proton Collisions At √s = 13TeV Using The CMS Detector At The LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00345507; Banerjee, Sunanda

    The theory of Quantum Chromodyanmics (QCD) is one of the fundamental underlying theories to describe interactions among quarks and gluons. In QCD, partons (quarks and gluons) are produced in hadron-hadron collision with large cross-sections. Partons, immediately after production, fragment and hadronize forming a cluster of collimated energetic colorless particles, hadrons. A clustering algorithm is applied on these particles to form a collection of particles which are called jets, the experimental analogue of partons and one of the key objects in the theory of QCD. However, formation of jets out of produced partons due to hadron-hadron collision is a very nontrivial phenom- ena. Hence Inclusive Jet cross-section measurement is an important and essential study at every new energy regime. The jets serve as the background for most other searches in a collider experiment. A detailed description of double differential inclusive jet cross- section measurement using proton-proton collision data from the CMS detector...

  16. Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2017-07-01

    We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, even days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.

  17. Exterior Site Occupancy Infers Chloride-Induced Proton Gating in a Prokaryotic Homolog of the ClC Chloride Channel

    Science.gov (United States)

    Bostick, David L.; Berkowitz, Max L.

    2004-01-01

    The ClC family of anion channels mediates the efficient, selective permeation of Cl− across the biological membranes of living cells under the driving force of an electrochemical gradient. In some eukaryotes, these channels are known to exhibit a unique gating mechanism, which appears to be triggered by the permeant Cl− anion. We infer details of this gating mechanism by studying the free energetics of Cl− occupancy in the pore of a prokaryotic ClC homolog. These free energetics were gleaned from 30 ns of molecular dynamics simulation on an ∼133,000-atom system consisting of a hydrated membrane embedded StClC transporter. The binding sites for Cl− in the transporter were determined for the cases where the putative gating residue, Glu148, was protonated and unprotonated. When the glutamate gate is protonated, Cl− favorably occupies an exterior site, Sext, to form a queue of anions in the pore. However, when the glutamate gate is unprotonated, Cl− cannot occupy this site nor, consequently, pass through the pore. An additional, previously undetected, site was found in the pore near the outer membrane that exists regardless of the protonation state of Glu148. Although this suggests that, for the prokaryotic homolog, protonation of Glu148 may be the first step in transporting Cl− at the expense of H+ transport in the opposite direction, an evolutionary argument might suggest that Cl− opens the ClC gate in eukaryotic channels by inducing the conserved glutamate's protonation. During an additional 20 ns free dynamics simulation, the newly discovered outermost site, Sout, and the innermost site, Sint, were seen to allow spontaneous exchange of Cl− ions with the bulk electrolyte while under depolarization conditions. PMID:15345547

  18. Radionuclide cardiography in medical practice

    International Nuclear Information System (INIS)

    Strangfeld, D.; Mohnike, W.; Schmidt, J.; Heine, H.; Correns, H.J.

    1986-01-01

    This publication is a compendium on all aspects of radionuclide diagnostics concerning cardiovascular system diseases. Starting with introductory remarks on the control of cardiovascular diseases the contribution of radionuclide cardiology to functional cardiovascular diagnostics as well as pathophysiological and pathobiochemical aspects of radiocardiography are outlined. Radiopharmaceuticals used in radiocardiography, physical and technical problems in application of radionuclides and their measuring techniques are discussed. In individual chapters radionuclide ventriculography, myocardial scintiscanning, circulatory diagnostics, radionuclide diagnostics of arterial hypertension, of thrombosis and in vitro diagnostics of thrombophilia are treated in the framework of clinical medicine

  19. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  20. Study of measurement method of tritium induced in concrete of high-energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Ohtsuka, N.; Ishihama, S.; Kunifuda, T.; Hayasaka, N.; Miura, T.

    2001-01-01

    Various long-loved radionuclides, 3 H, 7 Be, 22 Na, 51 Cr, 54 Mn, 56 Co, 57 Co, 60 Co, 134 Cs, 152 Eu and 154 Eu, have been produced in the shielding concrete of high energy proton accelerator facility through both nuclear spallation reactions and thermal neutron capture reactions of concrete elements, during machine operation. Tritium is the most important nuclide from the radiation protection. There were, however, few measurements of tritium concentration induced in the shielding concrete. In this study, the conditions of measurement method of tritium concentration induced in shielding concrete have been investigated using the activated shielding concrete of the 12 GeV proton beam-line tunnel at KEK and the standard rock (JG-1) irradiated of thermal neutron at the reactor. And the depth profiles of tritium induced in the shielding concrete of slow extracted proton beam line at KEK were determined using this method. (author)

  1. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    Directory of Open Access Journals (Sweden)

    K. D. Xiao

    2016-01-01

    Full Text Available Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA case.

  2. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  3. Metabolism of radionuclides in domestic animals

    International Nuclear Information System (INIS)

    Wirth, E.; Leising, C.

    1986-01-01

    The reactor accident at Chernobyl has shown that shortly after the contamination of the environment radionuclides can be found in animal products. The main contamination pathways of domestic animas are: uptake of radionuclides by foodstuffs; uptake of radionuclides by contaminated drinking water; uptake of radionuclides by inhalation; uptake of radionuclides through skin; uptake of radionuclides by ingestion of soil particles. Generally the uptake of radionuclides by food is the dominant exposure pathway. In rare cases the inhalation of radionuclides or the uptake by drinking water may be of importance. The metabolism of incorporated radionuclides is comparable to the respective metabolism of essential mass or trace elements or heavy metals. Radioisotopes of essential elements are for instance iron 55, manganese 54, cobalt 58 and cobalt 60. Other elements are typical antagonists to essential elements, e.g. strontium 90 is an antagonist to calcium or cesium 137 to potassium. Lead 210 and plutonium 239 behave similarly as heavy metals. Generally the knowledge of the metabolism of trace and mass elements, of antagonistic and synergistic elements and heavy metals can be applied to these radionuclides

  4. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  5. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  6. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  7. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  8. Photocarrier Radiometry for Non-contact Evaluation of Monocrystalline Silicon Solar Cell Under Low-Energy (< 200 keV) Proton Irradiation

    Science.gov (United States)

    Oliullah, Md.; Liu, J. Y.; Song, P.; Wang, Y.

    2018-06-01

    A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.

  9. Energetic particle, solar wind plasma and magnetic field measurements on board Prognoz-6 during the large scale interplanetary disturbance of Jan. 3-4, 1978

    International Nuclear Information System (INIS)

    Kurt, V.G.; Stolpovskij, V.G.; Gombosi, T.I.; Kecskemety, K.; Somogyi, J.; Gringauz, K.I.; Kotova, G.A.; Verigin, M.I.; Styazhkin, V.A.

    1980-05-01

    The interplanetary shock, generated during the solar flare of Jan. 1, 1978 reached the Earth's orbit on January 3, 21sup(h) UT. Aboard Prognoz-6 satellite the fluxes and spectra of energetic electron (E>30 keV) and proton (E>500 keV) fluxes and energy spectra of solar wind ions up to 4.5 keV and magnetic field were measured, with a time resolution approximately 10 sec. Time variation of these characteristics are given including preshock and postshock frequency spectra of magnetic field fluctuations. Effective acceleration of protons in the oblique shock was observed. The mean free path of protons with E<6 MeV was determined by using the time interval of anisotropic particle flux observations as lambda approximately 0.2 a.u. (author)

  10. Drift-Scale Radionuclide Transport

    International Nuclear Information System (INIS)

    Houseworth, J.

    2004-01-01

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  11. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  12. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  13. Long-duration high-energy proton events observed by GOES in October 1989

    Directory of Open Access Journals (Sweden)

    A. Anttila

    1998-08-01

    Full Text Available We consider the prolonged injection of the high-energy (>10 MeV protons during the three successive events observed by GOES in October 1989. We apply a solar-rotation-stereoscopy approach to study the injection of the accelerated particles from the CME-driven interplanetary shock waves in order to find out how the effectiveness of the particle acceleration and/or escape depends on the angular distance from the shock axis. We use an empirical model for the proton injection at the shock and a standard model of the interplanetary transport. The model can reproduce rather well the observed intensity–time profiles of the October 1989 events. The deduced proton injection rate is highest at the nose of the shock; the injection spectrum is always harder near the Sun. The results seem to be consistent with the scheme that the CME-driven interplanetary shock waves accelerate a seed particle population of coronal origin.Key words. Interplanetary physics · Energetic particles · Solar physics · astrophysics and astronomy · Flares and mass ejections

  14. THE HIGHEST-ENERGY COSMIC RAYS CANNOT BE DOMINANTLY PROTONS FROM STEADY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Kotera, Kumiko [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, F-75014 Paris (France)

    2016-11-20

    The bulk of observed ultrahigh-energy cosmic rays could be light or heavier elements and originate from an either steady or transient population of sources. This leaves us with four general categories of sources. Energetic requirements set a lower limit on single-source luminosities, while the distribution of particle arrival directions in the sky sets a lower limit on the source number density. The latter constraint depends on the angular smearing in the skymap due to the magnetic deflections of the charged particles during their propagation from the source to the Earth. We contrast these limits with the luminosity functions from surveys of existing luminous steady objects in the nearby universe and strongly constrain one of the four categories of source models, namely, steady proton sources. The possibility that cosmic rays with energy >8 × 10{sup 19} eV are dominantly pure protons coming from steady sources is excluded at 95% confidence level, under the safe assumption that protons experience less than 30° magnetic deflection on flight.

  15. Mechanisms behind the generation of protonated ions for polyaromatic hydrocarbons by atmospheric pressure photoionization.

    Science.gov (United States)

    Ahmed, Arif; Choi, Cheol Ho; Choi, Myoung Choul; Kim, Sunghwan

    2012-01-17

    In this study, the mechanism behind the generation of protonated polyaromatic hydrocarbon (PAH) ions without heteroatoms by atmospheric pressure photoionization (APPI) is investigated. Comparing data obtained by APPI of anthracene dissolved either in toluene or perdeuterated toluene suggests that toluene acts as a source of protons and that breakage of C-H bonds in the toluene molecule is important for the overall protonation reaction. Our data describing an Arrhenius-type temperature-dependent relationship between the signal intensities of molecular and protonated ions suggest a mechanistic relation between the generated molecular and protonated ions. The APPI protonation mechanism that best explains the observed phenomena is composed of two reactions: electron transfer followed by hydrogen transfer. This two-step mechanism for APPI was originally suggested by Syage (Syage, J. A. J. Am. Soc. Mass Spectrom. 2004, 15 , 1521-1533). Further quantum mechanical study shows that an energetically favorable ion-molecular complex can be generated as a result of electron transfer from toluene to PAH, which subsequently facilitates hydrogen transfer. This suggests that both electron transfer and hydrogen transfer can occur as a "concerted" reaction through the ion-molecular complex precursor state, which is consistent with experimental results. To our best knowledge, this is the first time that the dynamic nature of the APPI process is clearly revealed by combined experimental and quantum mechanical studies.

  16. Chapter 2. Radionuclides in the biosphere

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with role of radionuclides in the biosphere. Chapter consists of next parts: (1) Natural radionuclides in biosphere; (2) Man-made radionuclides in the biosphere; (3) Ecologically important radionuclides; (4) Natural background; (5) Radiotoxicity and (6) Paths of transfer of radionuclides from the source to human

  17. Dynamical Changes Induced by the Very Large Solar Proton Events in October-November 2003

    Science.gov (United States)

    Jackman, Charles H.; Roble, Raymond G.

    2006-01-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth and impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Mode (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization and changes in the electric field, which led to Joule heating of the mesosphere and lower thermosphere. This heating led to temperature increases up to 4K in the upper mesosphere. The solar proton-induced ionization, as well as dissociation processes, led to the production of odd hydrogen (HO(x)) and odd nitrogen (NO(y)). Substantial (>40%) short-lived ozone decreases followed these enhancements of HO(x) and NO(y) and led to a cooling of the mesosphere and upper stratosphere. This cooling led to temperature decreases up to 2.5K. The solar proton-caused temperature changes led to maximum meridional and zonal wind variations of +/- 2 m/s on background winds up to +/- 30 m/s. The solar proton-induced wind perturbations were computed to taper off over a period of several days past the SPEs. Solar cycle 23 was accompanied by ten very large SPEs between 1998 and 2005, along with numerous smaller events. These solar proton-driven atmospheric variations need to be carefully considered when examining other polar changes.

  18. Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at $\\sqrt{s} = $ 13 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hrubec, Josef; Jeitler, Manfred; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Pieters, Maxim; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Postiau, Nicolas; Starling, Elizabeth; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Wang, Qun; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vermassen, Basile; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; David, Pieter; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Calligaris, Luigi; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Levin, Andrew; Li, Jing; Li, Linwei; Li, Qiang; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Kolosova, Marina; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Ayala, Edy; Carrera Jarrin, Edgar; Assran, Yasser; Elgammal, Sherif; Khalil, Shaaban; Bhowmik, Sandeep; Carvalho Antunes De Oliveira, Alexandra; Dewanjee, Ram Krishna; Ehataht, Karl; Kadastik, Mario; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Granier de Cassagnac, Raphael; Kucher, Inna; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Cherepanov, Vladimir; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lattaud, Hugues; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Khvedelidze, Arsen; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Esch, Thomas; Fischer, Robert; Ghosh, Saranya; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Keller, Henning; Knutzen, Simon; Mastrolorenzo, Luca; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Schmidt, Alexander; Teyssier, Daniel; Flügge, Günter; Hlushchenko, Olena; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Sert, Hale; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Babounikau, Illia; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bertsche, David; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Danilov, Vladyslav; De Wit, Adinda; Defranchis, Matteo Maria; Diez Pardos, Carmen; Domínguez Damiani, Daniela; Eckerlin, Guenter; Eichhorn, Thomas; Elwood, Adam; Eren, Engin; Gallo, Elisabetta; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Haranko, Mykyta; Harb, Ali; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Knolle, Joscha; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Meyer, Mareike; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Myronenko, Volodymyr; Pflitsch, Svenja Karen; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Schütze, Paul; Schwanenberger, Christian; Shevchenko, Rostyslav; Singh, Akshansh; Stefaniuk, Nazar; Tholen, Heiner; Turkot, Oleksii; Vagnerini, Antonio; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Benato, Lisa; Benecke, Anna; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Karavdina, Anastasia; Kasieczka, Gregor; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Kutzner, Viktor; Lange, Johannes; Marconi, Daniele; Multhaup, Jens; Niedziela, Marek; Nowatschin, Dominik; Perieanu, Adrian; Reimers, Arne; Rieger, Oliver; Scharf, Christian; Schleper, Peter; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Troendle, Daniel; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mitra, Soureek; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Paspalaki, Garyfallia; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Kontaxakis, Pantelis; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Vellidis, Konstantinos; Kousouris, Konstantinos; Papakrivopoulos, Ioannis; Tsipolitis, Georgios; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Bartók, Márton; Csanad, Mate; Filipovic, Nicolas; Major, Péter; Nagy, Marton Imre; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Vámi, Tamás Álmos; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Tiwari, Praveen Chandra; Bahinipati, Seema; Kar, Chandiprasad; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chauhan, Sushil; Chawla, Ridhi; Dhingra, Nitish; Gupta, Rajat; Kaur, Anterpreet; Kaur, Amandeep; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Lohan, Manisha; Mehta, Ankita; Sandeep, Kaur; Sharma, Sandeep; Singh, Jasbir; Walia, Genius; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Gola, Mohit; Keshri, Sumit; Kumar, Ashok; Malhotra, Shivali; Naimuddin, Md; Priyanka, Priyanka; Ranjan, Kirti; Shah, Aashaq; Sharma, Ramkrishna; Bhardwaj, Rishika; Bharti, Monika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Mondal, Kuntal; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Bhat, Muzamil Ahmad; Dugad, Shashikant; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Ravindra Kumar Verma, Ravindra; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Karmakar, Saikat; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sahoo, Niladribihari; Sarkar, Tanmay; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Di Florio, Adriano; Errico, Filippo; Fiore, Luigi; Gelmi, Andrea; Iaselli, Giuseppe; Ince, Merve; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Ciocca, Claudia; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Iemmi, Fabio; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Di Mattia, Alessandro; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Latino, Giuseppe; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Di Guida, Salvatore; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Crescenzo, Antonia; Fabozzi, Francesco; Fienga, Francesco; Galati, Giuliana; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Voevodina, Elena; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Boletti, Alessio; Bragagnolo, Alberto; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Fiori, Francesco; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Cometti, Simona; Costa, Marco; Covarelli, Roberto; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Soldi, Dario; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Vazzoler, Federico; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Kim, Hyunsoo; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Jeon, Dajeong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castaneda Hernandez, Alfredo; Murillo Quijada, Javier Alberto; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Ramirez-Sanchez, Gabriel; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Reyes-Almanza, Rogelio; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Alexakhin, Vadim; Bunin, Pavel; Gavrilenko, Mikhail; Golunov, Alexander; Golutvin, Igor; Gorbounov, Nikolai; Karjavine, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Chistov, Ruslan; Danilov, Mikhail; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Dimova, Tatyana; Kardapoltsev, Leonid; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Slabospitskii, Sergei; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Baidali, Sergei; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Álvarez Fernández, Adrian; Bachiller, Irene; Barrio Luna, Mar; Brochero Cifuentes, Javier Andres; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Rodríguez Bouza, Víctor; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; García Alonso, Andrea; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Brondolin, Erica; Camporesi, Tiziano; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; Cucciati, Giacomo; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Fasanella, Daniele; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Guilbaud, Maxime; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Kornmayer, Andreas; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Malgeri, Luca; Mannelli, Marcello; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pantaleo, Felice; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Zeuner, Wolfram Dietrich; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Chernyavskaya, Nadezda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Klijnsma, Thomas; Lustermann, Werner; Manzoni, Riccardo Andrea; Marionneau, Matthieu; Meinhard, Maren Tabea; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Pigazzini, Simone; Quittnat, Milena; Ruini, Daniele; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Brzhechko, Danyyl; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Neutelings, Izaak; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Hou, George Wei-Shu; Kumar, Arun; Li, You-ying; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dolek, Furkan; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Isik, Candan; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Sunar Cerci, Deniz; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Atakisi, Ismail Okan; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Penning, Bjoern; Sakuma, Tai; Smith, Dominic; Smith, Vincent J; Taylor, Joseph; Titterton, Alexander; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Komm, Matthias; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Martelli, Arabella; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Singh, Gurpreet; Stoye, Markus; Strebler, Thomas; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Mackay, Catherine Kirsty; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Madrid, Christopher; Mcmaster, Brooks; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Coubez, Xavier; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Usai, Emanuele; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Kukral, Ota; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Zhang, Fengwangdong; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Citron, Matthew; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Wang, Sicheng; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Sun, Menglei; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Datta, Abhisek; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kortelainen, Matti J; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Pena, Cristian; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Cadamuro, Luca; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Wang, Jian; Wang, Sean-Jiun; Joshi, Yagya Raj; Linn, Stephan; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Rahmani, Mehdi; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Dittmer, Susan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Mills, Corrinne; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Varelas, Nikos; Wang, Hui; Wang, Xiao; Wu, Zhenbin; Zhang, Jingyu; Alhusseini, Mohammad; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Hung, Wai Ting; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bylinkin, Alexander; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Duric, Senka; Ivanov, Andrew; Kaadze, Ketino; Kim, Doyeong; Maravin, Yurii; Mendis, Dalath Rachitha; Mitchell, Tyler; Modak, Atanu; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Wong, Kak; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Zhaozhong, Shi; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kharchilava, Avto; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Lucchini, Marco Toliman; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Salfeld-Nebgen, Jakob; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Mahakud, Bibhuprasad; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Dolen, James; Parashar, Neeti; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Dulemba, Joseph Lynn; Fallon, Colin; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Taus, Rhys; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Luo, Sifu; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Ruiz Alvarez, José David; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Verweij, Marta; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Dezoort, G; Hirosky, Robert; Jiwon, H; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel

    2018-01-01

    A search in energetic, high-multiplicity final states for evidence of physics beyond the standard model, such as black holes, string balls, and electroweak sphalerons, is presented. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected with the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV in 2016. Standard model backgrounds, dominated by multijet production, are determined from control regions in data without any reliance on simulation. No evidence for excesses above the predicted background is observed. Model-independent 95% confidence level upper limits on the cross section of beyond the standard model signals in these final states are set and further interpreted in terms of limits on semiclassical black hole, string ball, and sphaleron production. In the context of models with large extra dimensions, semiclassical black holes with minimum masses as high as 10.1 TeV and string balls with masses as high as 9.5 TeV are excluded by thi...

  19. Geomorphological applications of environmental radionuclides

    International Nuclear Information System (INIS)

    Quine, T.A.; Walling, D.

    1998-01-01

    Geomorphologists have shown increasing interest in environmental radionuclides since pioneering studies by Ritchie and McHenry in the USA and Campbell, Longmore and Loughran in Australia. Environmental radionuclides have attracted this interest because they provide geomorphologists with the means to trace sediment movement within the landscape. They, therefore, facilitate investigation of subjects at the core of geomorphology, namely the rates and patterns of landscape change. Most attention has been focussed on the artificial radionuclide caesium-137 ( 137 Cs) but more recently potential applications of the natural radionuclides lead-210 ( 210 Pb) and beryllium-7( 7 Be) have been investigated (Walling et al., 1995; Wallbrink and Murray, 1996a, 1996b). The origin, characteristics and applications of these radionuclides are summarised. These radionuclides are of value as sediment tracers because of three important characteristics: a strong affinity for sediment; a global distribution and the possibility of measurement at low concentration. Geomorphological applications of environmental radionuclides provide unique access to detailed qualitative data concerning landscape change over a range of timescales

  20. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  1. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    Science.gov (United States)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  2. Foodstuffs, radionuclides, monitoring

    International Nuclear Information System (INIS)

    Denisikov, A.I.

    2000-01-01

    Radionuclide contamination of water and food stuffs as a result of the Chernobyl accident and permissible contents of 90 Sr and 137 Cs are considered in brief. A method of radiation monitoring of food stuffs and water for the radionuclides mentioned is suggested. The method permits employment of the simplest and cheapest radiometric equipment for analysis, whole the high degree of radionuclide concentration using fiber sorbents permits using the instrumentation without expensive shields against external radiation. A description of ion-exchange unit for radiation monitoring of liquid samples of food stuffs or water, is provided [ru

  3. Generator for radionuclide

    International Nuclear Information System (INIS)

    Weisner, P.S.; Forrest, T.R.F.

    1985-01-01

    This invention provides a radionuclide generator of the kind in which a parent radionuclide, adsorbed on a column of particulate material, generates a daughter radionuclide which is periodically removed from the column. This invention is particularly concerned with technetium generators using single collection vials. The generator comprises a column, a first reservoir for the eluent, a second reservoir to contain the volume of eluent required for a single elution, and means connecting the first reservoir to the second reservoir and the second reservoir to the column. Such a generator is particularly suitable for operation by vacuum elution

  4. Process for encapsulating radionuclides

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.

    1976-01-01

    Radionuclides are immobilized in virtually an insoluble form by reacting at a temperature of at least 90 0 C as an aqueous alkaline mixture having a solution pH of at least 10, containing a source of silicon, the radionuclide waste, and a metal cation. The molar ratio of silicon to the metal cation is on the order of unity to produce a gel from which complex metalosilicates crystallize to entrap the radionuclides within the resultant condensed crystal lattice. The product is a silicious stone-like material which is virtually insoluble and nonleachable in alkaline or neutral environment. One embodiment provides for the formation of the complex metalo-silicates, such as synthetic pollucite, by gel formation with subsequent calcination to the solid product; another embodiment utilizes a hydrothermal process, either above ground or deep within basalt caverns, at greater than atmospheric pressures and a temperature between 90 and 500 0 C to form complex metalo-silicates, such as strontium aluminosilicate. Another embodiment provides for the formation of complex metalo-silicates, such as synthetic pollucite, by slurrying an alkaline mixture of bentonite or kaolinite with a source of silicon and the radionuclide waste in salt form. In each of the embodiments a mobile system is achieved whereby the metalo-silicate constituents reorient into a condensed crystal lattice forming a cage structure with the condensed metalo-silicate lattice which completely surrounds the radionuclide and traps the radionuclide therein; thus rendering the radionuclide virtually insoluble

  5. Studies on the preparation of thallium-201 by irradiating mercury with protons using extraction chromatography technique to separate thallium from mercury

    International Nuclear Information System (INIS)

    Fernandes, L.

    1990-01-01

    Radionuclide sup(201)Tl is used in Nuclear Medicine to identify myocardial ischemia or myocardial infarct. It is a cyclotron-produced radioisotope, obtained indirectly from the decay of sup(202)Pb or directly by irradiating mercury with deuterons or protons. The usual technique to prepare sup(201)Tl makes use of the nuclear reaction: sup(203)(p,3n) → sup(201)Tl, which requires proton energy of around 28 MeV. Due to the limited proton energy of IPEN'S CV-28 cyclotron, studies on the irradiating conditions of natural mercury oxide pellets and drops of natural mercury metal were made in the range of 19 - 24 MeV. At the end of the bombardment of a 6 MeV thickness target of natural mercury metal with 19 MeV protons around 10 MBq sup(201)Tl/μ A h was obtained. (author)

  6. Precise determination of the Bragg peak position of proton beams in liquid water

    International Nuclear Information System (INIS)

    Marouane, Abdelhak; Ouaskit, Said; Inchaouh, Jamal

    2011-01-01

    The influence of water molecules on the surrounding biological molecules during irradiation with protons is currently a major subject in radiation science. Proton collisions with the water molecules are estimated around the Bragg peak region, taking into account ionization, excitation, charge-changing processes, and energetic secondary electron behavior. The Bragg peak profile and position was determined by adopting a new approach involving discretization, incrementation, and dividing the target into layers, the thickness of each layer being selected randomly from a distribution weighted by the values of the total interaction cross section, from excitation up to ionization of the target and the incident projectile charge exchange. The calculation was carried out by a Monte-Carlo simulation in the energy range 20 ≤ E ≤ 10 8 eV, including the relativistic corrections.

  7. Ac, La, and Ce radioimpurities in {sup 225}Ac produced in 40-200 MeV proton irradiations of thorium

    Energy Technology Data Exchange (ETDEWEB)

    Engle, Jonathan W.; Ballard, Beau D. [Los Alamos National Laboratory, NM (United States); Weidner, John W. [Air Force Institute of Technology, Wright Patterson Air Force Base, OH (United States); and others

    2014-10-01

    Accelerator production of {sup 225}Ac addresses the global supply deficiency currently inhibiting clinical trials from establishing {sup 225}Ac's therapeutic utility, provided that the accelerator product is of sufficient radionuclidic purity for patient use. Two proton activation experiments utilizing the stacked foil technique between 40 and 200 MeV were employed to study the likely co-formation of radionuclides expected to be especially challenging to separate from {sup 225}Ac. Foils were assayed by nondestructive γ-spectroscopy and by α-spectroscopy of chemically processed target material. Nuclear formation cross sections for the radionuclides {sup 226}Ac and {sup 227}Ac as well as lower lanthanide radioisotopes {sup 139}Ce, {sup 141}Ce, {sup 143}Ce, and {sup 140}La whose elemental ionic radii closely match that of actinium were measured and are reported. The predictions of the latest MCNP6 event generators are compared with measured data, as they permit estimation of the formation rates of other radionuclides whose decay emissions are not clearly discerned in the complex spectra collected from {sup 232}Th(p,x) fission product mixtures. (orig.)

  8. THE 2012 JULY 23 BACKSIDE ERUPTION: AN EXTREME ENERGETIC PARTICLE EVENT?

    Energy Technology Data Exchange (ETDEWEB)

    Gopalswamy, N. [Code 671, Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Yashiro, S.; Thakur, N.; Mäkelä, P.; Xie, H.; Akiyama, S., E-mail: nat.gopalswamy@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States)

    2016-12-20

    The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr). The associated solar energetic particle (SEP) event had a >10 MeV proton flux peaking at ∼5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to gigaelectronvolt energies). The times of maximum and fluence spectra in the range 10–100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed (>2000 km s{sup −1}), the initial acceleration (∼1.70 km s{sup −2}), and the shock-formation height (∼1.5 solar radii) were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.

  9. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  10. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  11. Observations of 35- 10 1600-keV protons and low-frequency waves upstream of interplanetary shocks

    International Nuclear Information System (INIS)

    Sanderson, T.R.; Reinhard, R.; Van Nes, P.; Wenzel, K.P.; Smith, E.J.; Tsurutani, B.T.; California Institute of Technology, Pasadena)

    1985-01-01

    The present investigation is concerned with a comparison of measurements of energetic protons in the range from 35 to 1600 keV and low-frequency waves (periods of approximately 6 s) on ISEE 3 associated with the passage of the large oblique shock of April 5, 1979, which exhibits an extended foreshock. An attempt is made to identify the energy of the particles which are responsible for the waves. Intensity profiles of both waves and particles as a function of upstream distance are compared, taking into account the relation between the energy of the particles and the period of the waves. The considered approach makes it possible to identify protons with energies of a few hundred keV as being responsible for the waves in the extended foreshock. It is believed that the high energy density of the high-energy solar flare protons preceding the shock could be responsible for seed waves which provide the scattering centers necessary for the acceleration of the lower-energy protons via a first-order Fermi mechanism. 31 references

  12. Radionuclide transfer from mother to embryo

    International Nuclear Information System (INIS)

    Toader, M.; Vasilache, R.A.; Scridon, R.; Toader, M.L.

    1998-01-01

    The transfer of radionuclides from mother to embryo is still a matter of high interest. Therefore, the relation was investigated between the amount of radionuclides in the embryo and the dietary intake of the mother, this for two scenarios: a recurrent intake of variable amounts of radionuclides, and a long-term intake of a relatively constant amount of radionuclides, the radionuclide being 137 Cs. In the first case, the amount of radionuclides present in the embryo increases with the age of the embryo and with the intake of the mother. In the second case, no correlation could be found between the age of the embryo and its radioactive content; only the correlation between the intake of the mother and the radionuclide content of the embryo remained. (A.K.)

  13. Radionuclide diagnosis of emergency states

    International Nuclear Information System (INIS)

    Ishmukhametov, A.I.

    1985-01-01

    Solution of emergency state radionuclide diagnostics from the technical point of view is provided by the application of the mobile quick-operating equipment in combination with computers, by the use of radionuclides with acceptable for emergency medicine characteristics and by development of radionuclide investigation data propcessing express-method. Medical developments include the study of acute disease and injury radioisotope semiotics, different indication diagnostic value determining, comparison of the results, obtained during radionuclide investigation, with clinicolaboratory and instrumental data, separation of methodical complex series

  14. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L.; Hylen, J.; Kasper, P.; Mokhov, N. V.; Quinn, M.; Striganov, S. I.; Vaziri, K.

    2018-01-01

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15O and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.

  15. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    Science.gov (United States)

    Rakhno, I. L.; Hylen, J.; Kasper, P.; Mokhov, N. V.; Quinn, M.; Striganov, S. I.; Vaziri, K.

    2018-01-01

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides - 11C, 13N, 15O and 41Ar - are in a good agreement with those calculated with the improved MARS15 code.

  16. Anthropogenic radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  17. Radionuclide daughter inventory generator code: DIG

    International Nuclear Information System (INIS)

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs

  18. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  19. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  20. Jovian magnetosphere-satellite interactions: aspects of energetic charged particle loss

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1979-01-01

    Observations of energetic charged particles obtained by Pioneers 10 and 11 near the orbits of the inner Jovian satellites are reviewed with particular emphasis on the implications of these observations with regard to possible models of the access of charged particles to the satellite surfaces. The observed effects on particle pitch angle distributions and the observed energy dependence of the intensity depletions seen at the satellite orbits are compared with predictions of satellite sweepup based on several different access models. The two major uncertainties which hamper the comparisons are those associated with the satellite conductivities and the ionospheric dynamo electric field power spectrum. The satellite conductivity is important because it governs the access of the particles to the satellite surface and therefore the lifetime tau: the dynamo power spectrum is important because it controls the magnitude and energy dependence of the radial diffusion coefficient. In spite of these uncertainties we can nevertheless make the following conclusions. The electron pitch angle distributions at Io's orbit are compatible with expectations based on sweeping. The energy dependences of the observed electron depletions at all three inner satellites (Amalthea, Io, and Europa) are incompatible with expectations based on a perfect conductor model of a satellite and its flux tube but are compatible with the energy dependence expected for perfectly insulating or partially conducting satellites However, the proton losses at Io are observed to be much stronger than the electron losses, in contradiction to expectations based on sweeping. The most attractive explanation for the proton-electron discrepancy at Io is that the large proton losses at Io's orbit are principally due to enhanced pitch angle scattering in the region of higher plasma density

  1. Neutron-decay Protons from Solar Flares as Seed Particles for CME-shock Acceleration in the Inner Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ronald J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Ko, Yuan-Kuen, E-mail: ronald.murphy@nrl.navy.mil, E-mail: yuan-kuen.ko@nrl.navy.mil [Code 7680, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-09-01

    The protons in large solar energetic particle events are accelerated in the inner heliosphere by fast shocks produced by coronal mass ejections. Unless there are other sources, the protons these shocks act upon would be those of the solar wind (SW). The efficiency of the acceleration depends on the kinetic energy of the protons. For a 2000 km s{sup −1} shock, the most effective proton energies would be 30–100 keV; i.e., within the suprathermal tail component of the SW. We investigate one possible additional source of such protons: those resulting from the decay of solar-flare-produced neutrons that escape from the Sun into the low corona. The neutrons are produced by interactions of flare-accelerated ions with the solar atmosphere. We discuss the production of low-energy neutrons in flares and their decay on a interplanetary magnetic field line near the Sun. We find that even when the flaring conditions are optimal, the 30–100 keV neutron-decay proton density produced by even a very large solar flare would be only about 10% of that of the 30–100 keV SW suprathermal tail. We discuss the implication of a seed-particle source of more frequent, small flares.

  2. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  3. The scrounge-atron: a phased approach to the advanced hydrotest facility utilizing proton radiography

    International Nuclear Information System (INIS)

    Alford, O.J.; Barnes, P.D. Jr.; Chargin, A.K.; Dekin, W.D.; Hartouni, E.P.; Hockman, J.; Hockman, J.N.; Ladran, A.S.; Libkind, M.A.; Moore, T.L.; Ohnuma, S.; Pastrnak, J.W.; Pico, R.E.; Ruggiero, A.G.; Souza, R.J.; Stoner, J.M.; Wilson, J.H.

    1999-01-01

    The Department of Energy has initiated its Stockpile Stewardship and Management Program (SSMP) to provide a single, integrated technical program for maintaining the continued safety and reliability of the nation's nuclear weapons stockpile in the absence of nuclear testing. Consistent with the SSMP, the Advanced Hydrotest Facility (AHF) has been conceived to provide improved radiographic imaging with multiple axes and multiple time frames. The AHF would be used to better understand the evolution of nuclear weapon primary implosion shape under normal and accident scenarios. There are three fundamental technologies currently under consideration for use on the AHF. These include linear induction acceleration, inductive-adder pulsed-power technology (both technologies using high current electron beams to produce an intense X-ray beam) and high-energy proton accelerators to produce a proton beam. The Scrounge-atron (a proton synchrotron) was conceived to be a relatively low cost demonstration of the viability of the third technology using bursts of energetic protons, magnetic lenses, and particle detectors to produce the radiographic image. In order for the Scrounge-atron to provide information useful for the AHF technology decision, the accelerator would have to be built as quickly and as economically as possible. These conditions can be met by scrounging parts from decommissioned accelerators across the country, especially the Main Ring at Fermilab. The Scrounge-atron is designed to meet the baseline parameters for single axis proton radiography: a 20 GeV proton beam of ten pulses, 10 11 protons each, spaced 250 ns apart

  4. History of medical radionuclide production.

    Science.gov (United States)

    Ice, R D

    1995-11-01

    Radionuclide production for medical use originally was incidental to isotope discoveries by physicists and chemists. Once the available radionuclides were identified they were evaluated for potential medical use. Hevesy first used 32P in 1935 to study phosphorous metabolism in rats. Since that time, the development of cyclotrons, linear accelerators, and nuclear reactors have produced hundreds of radionuclides for potential medical use. The history of medical radionuclide production represents an evolutionary, interdisciplinary development of applied nuclear technology. Today the technology is represented by a mature industry and provides medical benefits to millions of patients annually.

  5. Shielding measurements for a 230 MeV proton beam

    International Nuclear Information System (INIS)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0 degree, 22 degree, 45 degree, and 90 degree in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm 3 to 1000 cm 3 were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0 degree, 22 degree, and 45 degree, yet correctly predicted the attenuation length at 90 degree. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations

  6. Particle acceleration and production of energetic photons in SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor; Harding, Alice

    1987-09-24

    Young supernova remnants are likely to be bright sources of energetic photons and neutrinos through the collision of particles accelerated inside the remnant. Interactions of accelerated particles in the expanding envelope or in ambient radiation fields will also produce secondary photons and neutrinos at some level. If > 10/sup 39/ erg s/sup -1/ in protons above 10 TeV is injected into the target region, TeV photons from SN1987A could be observable with present detectors. Synchrotron X rays and ..gamma..-rays up to 10 MeV, generated by accelerated electrons, may well also be detectable. The authors discuss a pulsar wind model for acceleration of particles, and find that it would produce observable signals if the spin period of the pulsar is <10 ms.

  7. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  8. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    Science.gov (United States)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  9. Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at √{ s} = 13TeV

    Science.gov (United States)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elkafrawy, T.; Mahrous, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Alexakhin, V.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P., III; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2017-11-01

    A search for new physics in energetic, high-multiplicity final states has been performed using proton-proton collision data collected with the CMS detector at a center-of-mass energy of 13TeV and corresponding to an integrated luminosity of 2.3fb-1. The standard model background, dominated by multijet production, is determined exclusively from control regions in data. No statistically significant excess of events is observed. Model-independent limits on the product of the cross section and the acceptance of a new physics signal in these final states are set and further interpreted in terms of limits on the production of black holes. Semiclassical black holes and string balls with masses as high as 9.5TeV, and quantum black holes with masses as high as 9.0TeV are excluded by this search in the context of models with extra dimensions, thus significantly extending limits set at a center-of-mass energy of 8TeV with the LHC Run 1 data.

  10. Development of linear proton accelerators with the high average beam power

    CERN Document Server

    Bomko, V A; Egorov, A M

    2001-01-01

    Review of the current situation in the development of powerful linear proton accelerators carried out in many countries is given. The purpose of their creation is solving problems of safe and efficient nuclear energetics on a basis of the accelerator-reactor complex. In this case a proton beam with the energy up to 1 GeV, the average current of 30 mA is required. At the same time there is a needed in more powerful beams,for example, for production of tritium and transmutation of nuclear waste products. The creation of accelerators of such a power will be followed by the construction of linear accelerators of 1 GeV but with a more moderate beam current. They are intended for investigation of many aspects of neutron physics and neutron engineering. Problems in the creation of efficient constructions for the basic and auxiliary equipment, the reliability of the systems, and minimization of the beam losses in the process of acceleration will be solved.

  11. Conditions and processes affecting radionuclide transport

    Science.gov (United States)

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media.

  12. Enhanced proton acceleration by ultrashort laser pulse interaction with nanostructured thin films

    International Nuclear Information System (INIS)

    Mondal, Angana; Dalui, Malay; Tata, Sheroy; Sarkar, Subhrangshu; Jha, Jagannath; Lad, Amit; Krishnamurthy, M.; Ayyub, P.; Wang, W m; Sheng, Z m

    2015-01-01

    Enhancement of local electromagnetic field in nanostructured targets as opposed to plain polished targets has been experimentally observed and studied. This increase in field strength leads to enhanced hot electron generation, which gives rise to highly energetic ions through Target Normal Sheath Acceleration. As the laser energy coupled to the electrons increases, the sheath magnitude is expected to increase, leading to an enhancement in ion acceleration. We investigate energy enhancements in ions generated as a result of intense femtosecond laser interaction with nanostructured thin film targets, comprising 2 μm Ta foil coated with 100-200 nm diameter Ta clusters. The optimum nanoparticle size of 100 nm corresponding to maximum laser energy absorption has been predetermined through PIC simulations. The accelerated ions have been studied using Thompson parabola spectrometer at a laser intensity of 15 x 10 19 W/cm 2 at the TIFR high contrast 100 TW Ti:Sapphire laser facility. The proton cut-off energy is observed to increase rapidly with increasing cluster density till a saturation is reached. The enhancement in the proton cut-off energy is observed to be three-fold as compared to the proton cut-off energy for unstructured foils. (author)

  13. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  14. Stable isotopes as tracers for radionuclides

    International Nuclear Information System (INIS)

    Giussani, A.; Bartolo, D. de; Cantone, M.C.; Zilker, T.; Greim, H.; Roth, P.; Werner, E.

    2000-01-01

    The assessment of internal dose after incorporation of radionuclides requires as input data the knowledge of the uptake into the systemic circulation, the distribution and retention in selected organs, the excretion pathways. Realistic biokinetic models are needed for reliable estimates, correct interpretation of bioassay measurements, appropriate decision-making in radiological emergencies. For many radionuclides, however, the biokinetic models currently recommended are often generic, with very few specific parameters, due to the lack of experimental human data. The use of stable isotopes as tracers enables to determine important biokinetic parameters such as the fractional uptake, the clearance from the transfer compartment, the excretion patterns under experimentally controlled conditions. The subjects investigated are not exposed to any radiation risk, so this technique enables to obtain biokinetic information also for sensitive groups of the population, such as children or pregnant women, and to determine age- and gender-specific model parameters. Sophisticated analytical method, able to discriminate and quantitate different isotopes of the same element in complex matrices such as biological fluids, have to be purposely developed and optimized. Activation analysis and mass spectrometry are the most proper techniques of choice. Experiments were conducted with molybdenum, tellurium, ruthenium and zirconium. Activation analysis with protons, thermal ionization mass spectrometry and inductively coupled mass spectrometry were employed for the determination of stable isotopes of these elements in blood plasma and urine samples. Several deviations from the predictions of the ICRP models were observed. For example, modifications to the current model for molybdenum have been suggested on the basis of these results. The dose coefficients to the target regions calculated with this proposed model are even of one order of magnitude different than the ICRP estimates

  15. Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere

    Science.gov (United States)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2002-01-01

    We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.

  16. Recovery of Ra-223 from natural thorium irradiated by protons

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, Aleksandr N.; Ostapenko, Valentina S. [Lomonosov Moscow State Univ. (Russian Federation); Russian Academy of Sciences, Moscow-Troitsk (Russian Federation). Inst. for Nuclear Research; Lapshina, Elena V.; Ermolaev, Stanislav V.; Zhuikov, Boris L. [Russian Academy of Sciences, Moscow-Troitsk (Russian Federation). Inst. for Nuclear Research; Danilov, Sergey S. [Lomonosov Moscow State Univ. (Russian Federation); Kalmykov, Stepan N. [Lomonosov Moscow State Univ. (Russian Federation); National Research Center ' Kurchatov Institute' (NRC ' Kurchatov Institute' ), Moscow (Russian Federation)

    2016-11-01

    Irradiation of natural thorium with medium-energy protons is considered to be a prospective approach to large-scale production of {sup 225}Ac and {sup 223}Ra. In addition to the earlier-developed method of {sup 225}Ac isolation, the present work focuses on the simultaneous recovery of {sup 223}Ra from the same thorium target. Radiochemical procedure is based on liquid-liquid extraction, cation exchange and extraction chromatography. The procedure provides separation of radium from spallation and fission products generated in the thorium target. High chemical yield (85-90%) and radionuclide purity of {sup 223}Ra (> 99.8% except {sup 224}Ra and {sup 225}Ra isotopes) have been achieved.

  17. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard A.; Antolak, A.J.; Henestroza, E.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Kwan, J.W.

    2008-01-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,gamma)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,gamma)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 mu s long pulses, and a 1percent duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  18. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  19. Radionuclides in air, water, and biota

    International Nuclear Information System (INIS)

    Seymour, A.H.; Nelson, V.A.

    1977-01-01

    Air, water, and biological samples collected before and after the 1965, 1969, and 1971 underground nuclear detonations at Amchitka Island were analyzed for natural and fallout radionuclides by gamma spectrometry. Selected samples were also analyzed for tritium, 55 Fe, and 90 Sr. The objectives were to search for and identify radionuclides of Amchitka origin in the samples and to contribute to the general knowledge of the distribution of radionuclides in the environment. The studies showed that there has been no escape of radionuclides from the underground sites of the three nuclear detonations at Amchitka Island except for trace quantities of radionuclides, principally tritium, in water and soil gas samples from the immediate vicinity of the surface ground zero for the 1965 event. Two naturally occurring radionuclides, 40 K and 7 Be, were the most abundant radionuclides in the samples, usually by a factor of 10 or more, except for 137 Cs in lichen samples. All levels were well below applicable Radiation Protction Guides, often being near the statistical limit of detection

  20. Phytoremediation of radionuclides: an emerging alternative

    International Nuclear Information System (INIS)

    Singh, Shraddha

    2013-01-01

    Proliferation of nuclear power industry, nuclear weapon testing, dismantling of existing nuclear weapons and occasional accidents have contributed to an enhancement in the level of radionuclides in the environment. The radionuclides due to their long half life and transfer through the food chain effect adversely to normal biological systems. Hence, it is essential to effectively remove the radionuclides from contaminated soils and solutions. Phytoremediation - the use of plants for remediation of toxic metals and radionuclides has been recognized as an aesthetically pleasing, low cost and environment friendly in situ method. Phytoremediation is an umbrella term which covers several plant based approaches. Plants have shown the potential of remediation of these radionuclides from spiked solutions, low level nuclear waste and soil. Various aspects of phytoremediation as well as potential of various plants for remediation of radionuclides will be discussed here. (author)

  1. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  2. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  3. Radionuclide migration test using undisturbed aerated soil

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Ogawa, Hiromichi; Wadachi, Yoshiki

    1988-01-01

    As one of the most important part of safety assessment on the shallow land disposal of lowlevel radioactive waste, the radionuclide migration was studied using undisturbed soil samples, in order to evaluate an exact radionuclide migration in an aerated soil layer. Soil samples used in the migration test were coastal sand and loamy soil which form typical surface soil layers in Japan. The aqueous solution containing 60 CoCl 2 , 85 SrCl 2 and 137 CsCl was fed into the soil column and concentration of each radionuclide both in effluent and in soil was measured. Large amount of radionuclides was adsorbed on the surface of soil column and small amount of radionuclides moved deep into the soil column. Difference in the radionuclide profile was observed in the low concentration portion particularly. It is that some fractions of 60 Co and 137 Cs are stable in non-ionic form and move downward through the soil column together with water. The radionuclide distribution in the surface of soil column can be fairly predicted with a conventional migration equation for ionic radionuclides. As a result of radionuclide adsorption, both aerated soil layers of coastal sand and loamy soil have large barrier ability on the radionuclide migration through the ground. (author)

  4. Radionuclides in food

    International Nuclear Information System (INIS)

    Fernandez Gomez, Isis Maria

    2008-01-01

    The sources of the presence of radionuclides in food are presented: natural radiation and artificial radiation. The transfer of radionuclides through food chains, intakes of radionuclides to the body with its partners effective doses and typical consumption of basic foods of a rural adult population are exposed as main topics. Also the radiation doses from natural sources and exposure to man by ingestion of contaminated food with radionuclides of artificial origin are shown. The contribution of the food ingestion to the man exposure depends on: characteristics of radionuclide, natural conditions, farming practices and eating habits of the population. The principal international organizations in charge of setting guide levels for radionuclides in food are mentioned: standards, rules and the monitoring. It establishes that a guide is necessary for the food monitoring; the alone CODEX ALIMENTARIUS is applicable to emergency situations and the generic action levels proposed by the CODEX not satisfy all needs (no guiding international levels for planned or existing situations such as NORM). There are handled mainly socio-economic and political aspects. Among the actions to be taken are: to assure a public comprehensive information over the risk evaluation in food; to reinforce the collaboration among the different international organizations (WHO, IAEA, ICRP, EC) in relation with the food of set; to give follow-up to the control of the drinkable water and NORM's presence in the food. In addition, it is possible to create the necessary mechanisms to reduce the number of irrelevant measures and bureaucratic useless steps (certificates); to promote the exchange between the different institutions involved in the topic of the food, with relation to the acquired experiences and learned lessons. Likewise, it might examine the possibility of a multidisciplinary approximation (radioactive and not radioactive pollutants); to elaborate a technical guide to assure the

  5. Initial Radionuclide Inventories

    Energy Technology Data Exchange (ETDEWEB)

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement

  6. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    Science.gov (United States)

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  7. Study of {sup 24}Na activity in concrete using 20-MeV proton beam on Cu

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtanri; Jung, Nam Suk; Lee, Arim; Heo, Tae Min; Bakhtian, Mahdi; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2017-04-15

    The number of medical cyclotrons capable of accelerating protons to about 20 MeV is increasing in Korea. In such facilities, various radionuclides could be induced in shielding materials like concrete from secondary neutrons which Causes problems from the view point of radiation safety. Among these radionuclides, gamma-ray from {sup 24}Na (Tz1/2 = 15 h) is the most important origin of radiation exposure. {sup 24}Na could be produced from secondary neutrons on Na, Al and Mg component which exist in the concrete. {sup 24} Na Could be produced from thermal neutrons on Na and fast neutron with energy lower than 20 MeV on Al and Mg. Due to interaction of 20 MeV protons on Cu target, secondary neutrons with the energy of less than 20 MeV were produced. therefore, among the concrete components, Na, Al and Mg are only corespondent to produce {sup 24}Na. In this work, {sup 24}Na activity induced in concrete and chemical reagents of concrete (NaHCO{sub 3}, Al{sub 2}O{sub 3} and MgO) were measured. To produce neutrons, Cu target was irradiated by 20 MeV protons. Measured data were compared with results of simulations by FLUKA and MARS as well as earlier works and theocratical data. In the case of Mg and Al chemical reagents, FLUKA code overestimates our measurements by approximately four times, while, for Na sample, FLUKA underestimates the experimental data by almost 0.5. Data from FLUKA and measurement for the concrete are consistent. Calculation from TALYS for Mg overestimates the measured data by a factor of 2.5.

  8. Determination of alpha radionuclides in fish

    International Nuclear Information System (INIS)

    Pernicka, L.; Matel, L.; Rosskopfova, O.

    2001-01-01

    In atmospheric water, external water and undercurrent the occurrence of radionuclides is usual. It is an important factor of quality of the environment. Plants ingest radionuclides from water and with they everyone. And it arises radioactivity infest food-chain. Radiotoxicity of this radionuclides is very deer sometimes. The sensitive radiochemical procedures for their determination are necessarily important. The poster presents the combined procedure used at our laboratory for determination of alpha radionuclides in biological samples. (authors)

  9. Excitation functions of radionuclides produced by proton induced reactions on gadolinium targets

    International Nuclear Information System (INIS)

    Challana, M.B.; Comsana, M.N.H.; Moawadb, G.S.; Abou-Zeid, M.A.

    2008-01-01

    Cross section study for proton induced reaction on natural Gadolinium targets were performed. Excitation functions for the reactions n atGd(p,x) 152m+g , 154m,154g Tb from threshold up to E p = 18 MeV have been measured employing the stacked foil activation technique, and using high resolution HPGe gamma spectrometry. Utilizing the simultaneous measurement of the excitation function of n atCu(p,x) 62 Zn, n atCu(p,x) 63 Zn, and n atCu(p,x) 65 Zn as monitor reactions. The theoretical analysis of the excitation functions has been done employing both ALICE-91 and EMPIRE-II codes. In general, theoretical calculations agree well with the experimental data. A significant contribution of pre-equilibrium component has been observed at these energies

  10. In vivo proton dosimetry using a MOSFET detector in an anthropomorphic phantom with tissue inhomogeneity.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko

    2012-03-08

    When in vivo proton dosimetry is performed with a metal-oxide semiconductor field-effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth-output curve for a mono-energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMC(MOSFET)). The SMC(MOSFET) output value at an arbitrary point was compared with the value obtained by the conventional SMC(PPIC), which calculates proton dose distributions by using the depth-dose curve determined by a parallel-plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMC(PPIC) results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector.

  11. Radionuclide usage survey 1979-80

    International Nuclear Information System (INIS)

    Woods, M.J.

    1980-08-01

    Details of a survey by the Life Sciences Working Group of the International Committee for Radionuclide Metrology (ICRM) on radionuclide usage by medical physicists in 11 countries are presented. The results indicate that the radionuclide which will be of most significance in the future will be F-18, Fe-52, Ga-67, Ga-68, Kr-81m, Tc-99m, In-111, I-123, Xe-127 and Tl-201, (U.K.)

  12. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Dzazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    Full text: The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but and for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energetical part of the resonance 1320 keV onto the cross section. Last experimental data for more wide energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E ρ = (320 † 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E p = 991, 558 and 365 keV, the accuracy is not worse then 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The 13 C (99%) targets, used in the experiment, were sprayed onto copper base. The target thickness was determined by incident protons energy losses in the target. The energy losses were clearly reflected in the corresponding spreading of transitions of radiation capture. The statement about the gamma-lines spreading is valid in this case, because energy losses in the target are here significantly more, than the energetical resolution of the detector. The peak width of the radiation capture gamma-line at half-height corresponds to energy losses of incident protons in the target. From the Table of brake values for protons in carbon [2] there was determined that the thickness of the target was 140 ± 5% μg/cm 2 . The upper part of gamma-lines in the spectrum repeats the

  13. Radionuclides: Accumulation and Transport in Plants.

    Science.gov (United States)

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  14. Method of separating short half-life radionuclides from a mixture of radionuclides

    Science.gov (United States)

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  15. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  16. Radiochemical studies relevant to cyclotron production of the radionuclides 71,72As, 68Ge/68Ga and 76,77,80mBr

    International Nuclear Information System (INIS)

    Shehata, Mohamed Mostafa Mostafa

    2011-01-01

    The radionuclides 71,72,73,74 As, 68 Ge/ 68 Ga and 76,77,80m Br are gaining considerable interest in nuclear medicine. A method for the separation of no-carrier-added arsenic radionuclides from the bulk amount of proton-irradiated GeO 2 target as well as from coproduced radiogallium was developed. The extraction of radioarsenic by different organic solvents from acid solutions containing alkali iodide was studied and optimized. The influence of the concentration of various acids (HCl, HClO 4 , HNO 3 , HBr, H 2 SO 4 ) as well as of KI was studied using cyclohexane. The practical application of the optimized procedure in the production of 71 As and 72 As is demonstrated. The batch yields achieved were in the range of 75-84% of the theoretical values. The radiochemical separation of radiogallium from radiogermanium was studied using ion exchange chromatography (Amberlite IR-120) and solvent extraction (Aliquat 336 in o-xylene). At first optimized methods for the separation of no-carrier-added 68 Ge/ 69 Ge formed via the nat Ga(p,xn) 69 Ge process in a Ga 2 O 3 target and for n.c.a. 67 Ga formed via the nat Zn(p,xn) 67 Ga reaction in a Zn target were developed. Using those radionuclides as tracers several factors affecting the separation of radiogallium from radiogermanium were studied and for each procedure the optimum conditions were determined. The solvent extraction using Aliquat 336 was found to be more suitable and was adapted to the separation of n.c.a. 68 Ga from its parent n.c.a. 68 Ge. The quality of the product thus obtained is discussed. The separation of no-carrier-added radiobromine and no-carrier-added radiogallium from proton irradiated ZnSe target was studied in detail. The adsorption behaviour of n.c.a. radiobromine, n.c.a. radiogallium, zinc and selenium towards the cation-exchange resin Amberlyst 15, in H + form, and towards the anion-exchange resin Dowex 1X10 in Cl - and OH - forms, was investigated. The elution of n.c.a. radiobromine and n

  17. The current status of model development of the electron and proton telescope for Solar Orbiter

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Jan; Kulkarni, S.R.; Tammen, Jan; Boden, Sebastian; Elftmann, Robert; Martin, Cesar; Ravanbakhsh, Ali; Boettcher, Stephan I.; Seimetz, Lars; Schuster, Bjoern; Wimmer-Schweingruber, Robert [Institute for Experimental and Applied Physics, University of Kiel (Germany)

    2014-07-01

    ESA's Solar Orbiter mission, scheduled for launch in January 2017, will study how the sun creates the inner heliosphere. Therefore, the spacecraft will perform in situ and remote sensing measurements of the sun on a high inclination orbit with a perihelion of about 60 solar radii, making it possible to observe the poles of the sun from nearby. The Energetic Particle Detector suite on-board of Solar Orbiter will measure particles of a wide energy range and from multiple directions. One of the important sensors of the EPD suite is the Electron Proton Telescope. It consists of two antiparallel telescopes with two silicon detectors respectively and is designed to detect electrons between 20 - 400 keV and protons from 20 keV to 7 MeV. EPT relies on a magnet/foil technique to discriminate between electrons and protons. Here, we present the testing of the Structural and Thermal Model, which has already been delivered to ASTRIUM for spacecraft level tests as well as the integration and testing of the Engineering Model, which already provides full electrical functionality.

  18. Radionuclide Sensors for Water Monitoring

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-01-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for loW--level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements

  19. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Bocock, K.L.

    1981-01-01

    This report summarizes information on the distribution and movement of radionuclides in semi-natural terrestrial ecosystems in north-west England with particular emphasis on inputs to, and outputs from ecosystems; on plant and soil aspects; and on radionuclides in fallout and in discharges by the nuclear industry. (author)

  20. Artificial radionuclides in soil, flora and fauna

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Sources and ways of soil contamination by radionuclides, as well as the main regularities of radionuclide behaviour in soils, are discussed. Ways of radionuclide uptake by plants are discussed in detail, since radionuclide contamination of vegetation, and agricultural plants and pastures in particular, is one of the main factors, determining sanitary value of environmental contamination by radioactive substances

  1. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  2. Environmental behaviour of radionuclides and transfer to man

    International Nuclear Information System (INIS)

    Smith, H.

    1982-01-01

    The environmental behaviour of the radionuclides making the major contribution to man's irradiation through diet is described. The following stages are emphasized: transfer of radionuclides to plants; transfer of radionuclides to animals; metabolism of inhaled or ingested radionuclides in animals providing food for man; transfer of radionuclides through the aquatic environment; application of food chain models. (43 references)

  3. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  4. Radioactivity: radionuclides in foods

    International Nuclear Information System (INIS)

    Simpson, R.E.; Baratta, E.J.; Jelinek, C.F.

    1977-01-01

    The results are summarized of the analysis for strontium-90, cesium-137, iodine-131, ruthenium-106, and potassium-40, a naturally occurring radionuclide, in samples of total diet and selected import commodities in the foods compliance program of the Food and Drug Administration. On the basis of the radionuclide intake guidelines established by the Federal Radiation Council (FRC), the low content of radionuclides found in the total diet samples for fiscal years 1973 and 1974 demonstrates the need for surveillance only at the present level. The low levels of radionuclides found in a limited number of edible imported commodities indicate that their contribution to the total diet would not increase the levels of these radionuclides above those recommended for only periodic surveillance by the FRC. The potassium levels, determined from potassium-40 activity, found in meats and fish agree with the value for normal muscle tissue for the reference man reported by the International Commission on Radiation Protection. Of the other commodities, nuts contained the highest levels, while sugar, beverages, and processed foods contained the lowest levels of potassium. Although cesium and potassium are chemical analogs with similar metabolic properties, because of their variable content in some leafy samples as a result of surface contamination, a correlation between cesium-137 levels and the cesium-137-to-potassium ratio was inconclusive

  5. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  6. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites

    Science.gov (United States)

    Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang

    2010-04-01

    In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.

  7. Inverse problem in radionuclide transport

    International Nuclear Information System (INIS)

    Yu, C.

    1988-01-01

    The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab

  8. Radionuclide Retention in Concrete Wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  9. First in situ TOF-PET study using digital photon counters for proton range verification.

    Science.gov (United States)

    Cambraia Lopes, P; Bauer, J; Salomon, A; Rinaldi, I; Tabacchini, V; Tessonnier, T; Crespo, P; Parodi, K; Schaart, D R

    2016-08-21

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong (15)O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  10(8) protons s(-1), and 10(10) total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results

  10. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  11. Variance-reduction technique for Coulomb-nuclear thermalization of energetic fusion products in hot plasmas

    International Nuclear Information System (INIS)

    DeVeaux, J.C.; Miley, G.H.

    1982-01-01

    A variance-reduction technique involving use of exponential transform and angular-biasing methods has been developed. Its purpose is to minimize the variance and computer time involved in estimating the mean fusion product (fp) energy deposited in a hot, multi-region plasma under the influence of small-energy transfer Coulomb collisions and large-energy transfer nuclear elastic scattering (NES) events. This technique is applicable to high-temperature D- 3 He, Cat. D and D-T plasmas which have highly energetic fps capable of undergoing NES. A first application of this technique is made to a D- 3 He Field Reversed Mirror (FRM) where the Larmor radius of the 14.7 MeV protons are typically comparable to the plasma radius (plasma radius approx. 2 fp gyroradii) and the optimistic fp confinement (approx. 45% of 14.7 MeV protons) previously predicted is vulnerable to large orbit perturbations induced by NES. In the FRM problem, this variance reduction technique is used to estimate the fractional difference in the average fp energy deposited in the closed-field region, E/sub cf/, with and without NES collisions

  12. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  13. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    Science.gov (United States)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  14. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  15. Nuclear forensics of a colored gemstone: evidence of proton bombardment of a blue topaz

    International Nuclear Information System (INIS)

    Steinhauser, Georg; Sterba, Johannes H.; Hammer, Vera M.F.

    2013-01-01

    A blue topaz was investigated radiologically for forensic purposes. It clearly exhibited detectable activities of 22 Na (0.28±0.01 Bq). The occurrence of this artificial radionuclide evidences fraudulent irradiation of the gemstone with protons to give it its blue color. It can be assumed that also 7 Be must have been produced in the course of proton bombardment, yielding even greater activities than 22 Na. Since no traces of short-lived 7 Be could be detected, the topaz must have been irradiated at least 300 days prior to measurement. - Highlights: ► A blue topaz was radiologically investigated for forensic purposes. ► Detectable activities of 22 Na were found. ► The lack of 7 Be indicates that the gemstone was irradiated >300 d prior to measurement. ► The irradiation was performed by fraudulent intent to give the topaz the blue color

  16. Measurement of radionuclides in waste packages

    Science.gov (United States)

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  17. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.

    2017-01-01

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  18. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom)

    2017-01-10

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  19. Study of proton-nucleus collisions at high energies based on the hydrodynamical model

    International Nuclear Information System (INIS)

    Masuda, N.; Weiner, R.M.

    1978-01-01

    We study proton-nucleus collisions at high energies using the one-dimensional hydrodynamical model of Landau with special emphasis on the effect of the size of the target nucleus and of the magnitude of velocity of sound of excited hadronic matter. We convert a collision problem of a proton and a nucleus with a spherical shape into that of a proton and a one-dimensional nuclear tunnel whose length is determined from the average impact parameter. By extending the methods developed by Milekhin and Emelyanov, we obtain the solutions of the hydrodynamical equations of proton-nucleus collisions for arbitrary target tunnel length and arbitrary velocity of sound. The connection between these solutions and observable physical quantities is established as in the work of Cooper, Frye, and Schonberg. Extensive numerical analyses are made at E/sub lab/ = 200 GeV and for the velocity of sound u = 1/√3 of a relativistic ideal Bose gas and u = 1/(7.5)/sup 1/2/ of an interacting Bose gas. In order to compare proton-nucleus collisions with proton-proton collisions, all the analyses are made in the equal-velocity frame. We find the following results. (1) In comparing the number of secondary particles produced in p-A collisions N/sub p/A with those in p-p collisions N/sub p/p, while most of the excess of N/sub p/A over N/sub p/p is concentrated in the backward rapidity region, there exists also an increase of N/sub p/A with A in the forward rapidity region. This result is at variance with the predictions of the energy-flux-cascade model and of the coherent-production model. (2) The excess energies are contained exclusively in the backward region. We also find evidence for new phenomena in proton-nucleus collisions. (3) The existence of an asymmetry of average energies of secondary particles between forward and backward regions, in particular, >> for larger nuclear targets. Thus, energetic particles are predominantly produced in the backward region

  20. Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression.

    Science.gov (United States)

    Boutilier, Robert G; St-Pierre, Julie

    2002-08-01

    The common frog (Rana temporaria) spends the coldest months of each year overwintering in ice-covered ponds where temperatures can vary from 0.5 to 4.0 degrees C. Over the course of a winter season, the animals enter progressively into a state of metabolic depression that relies almost exclusively on aerobic production of ATP. However, if aerobic metabolism is threatened, for example by increasingly hypoxic conditions, decreases in the animal's metabolic rate can reach upwards of 75% compared with the 50% decrease seen during normoxia. Under these conditions, the major proportion of the overall reduction in whole-animal metabolic rate can be accounted for by metabolic suppression of the skeletal muscle (which makes up approximately 40% of body mass). Little is known about the properties of mitochondria during prolonged periods of metabolic depression, so we have examined several aspects of mitochondrial metabolism in the skeletal muscle of frogs over periods of hibernation of up to 4 months. Mitochondria isolated from the skeletal muscle of frogs hibernating in hypoxic water show a considerable reorganisation of function compared with those isolated from normoxic submerged animals at the same temperature (3 degrees C). Both the active (state 3) and resting (state 4) respiration rates of mitochondria decrease during hypoxic, but not normoxic, hibernation. In addition, the affinity of mitochondria for oxygen increases during periods of acute hypoxic stress during normoxic hibernation as well as during long-term hibernation in hypoxic water. The decrease in mitochondrial state 4 respiration rates during hypoxic hibernation evidently occurs through a reduction in electron-transport chain activity, not through a lowered proton conductance of the mitochondrial inner membrane. The reduced aerobic capacity of frog skeletal muscle during hypoxic hibernation is accompanied by lowered activities of key enzymes of mitochondrial metabolism caused by changes in the intrinsic

  1. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    International Nuclear Information System (INIS)

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N; McDonough, J; Yin, L; Teo, B; Fisher, T

    2014-01-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy

  2. Separation of no-carrier-added 107,109Cd from proton induced silver target. Classical chemistry still relevant

    International Nuclear Information System (INIS)

    Moumita Maiti; Susanta Lahiri; Tomar, B.S.

    2011-01-01

    The classical chemistry like precipitation technique is relevant even in modern days trans-disciplinary research from the view point of green chemistry. A definite demand of no-carrier-added (nca) cadmium tracers, namely, 107,109 Cd, has been realized for diverse applications. Development of efficient separation technique is therefore important to address the purity of the tracers for various applications. No-carrier-added 107,109 Cd radionuclides were produced by bombarding natural silver target matrix with 13 MeV protons, which gave ∼15 MBq/μA h yield for nca 107 Cd. The nca cadmium radionuclides were separated from the natural silver target matrix by precipitating Ag as AgCl. The developed method is an example wherein green chemistry is used in trans-disciplinary research. The method is also simple, fast, cost effective and environmentally benign. (author)

  3. Speciation of radionuclides in the environment

    International Nuclear Information System (INIS)

    Gunten, H.R. von; Benes, P.

    1994-02-01

    Methods for the determination of the speciation of radionuclides in aerosols, in aquatic solutions, in sediments, soils and rocks are reviewed. At present, most of the results about speciation are deduced from model calculations, model experiments, and separation of species (forms) of radionuclides, e.g., by sequential extraction procedures. Methods of direct determination of speciation of radionuclides (e.g. by laser induced spectroscopy) are in general not yet sensitive enough for a measurement of the very low concentrations of radionuclides in the environment. The methodological part of this paper is followed by a review of the very abundant literature about speciation of important radionuclides in the environment, i.e. in the atmosphere, hydrosphere and lithosphere. The review does not include the biosphere. Literature up to spring 1993 is included (with a few more recent additions). (author)

  4. Radionuclide transport in a single fissure

    International Nuclear Information System (INIS)

    Eriksen, T.E.

    1983-01-01

    Radionuclide migration have been studied in natural fissures orieted parallel to the axis of granite drill cores. A short pulse of the radionuclides solution was injected at one end of the fissure and the temporal change in radionuclide concentration of the eluate measured. After several hundred fissure volumes water had been pumped through the fissure following the radionuclide pulse the activity distribution on the fissure surfaces was measured. From the retardation of 152 Eu, 235 Np and 237 Pu it is concluded that these radionuclides are transported in the oxidation states Eu(III), Pu(IV) and Np(V). The distribution coefficients K sub (d) calculated from flow and activity distribution data on the basis of geometric surface area/volume ratios are of the same order as published K sub (d) values obtained from batch equilibrium experiments. (Author)

  5. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  6. Drift-shell splitting of energetic ions injected at pseudo-substorm onsets

    International Nuclear Information System (INIS)

    Takahashi, K.; Anderson, B.J.; Ohtani, S.; Reeves, G.D.; Takahashi, S.; Sarris, T.E.; Mursula, K.

    1997-01-01

    One feature of a magnetospheric substorm is the injection of energetic particles into closed drift orbits. Injections are routinely observed by geosynchronous satellites and have been used to identify the occurrence of substorms and the local time of particle energization. In this study we examine pitch angle distributions of ion injections in the 50-to 300-keV energy range observed by the Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) satellite, hereinafter CCE. In a dipole field, all pitch angles follow the same drift shell, but the day night asymmetry of the magnetospheric magnetic field introduces a pitch angle dependence in particle drift orbits, so that particles with different pitch angles disperse radially as they drift. The effect is known as drift-shell splitting. For satellite observations near noon at a fixed geocentric distance, the guiding center orbits of ions detected at small pitch angles intersect the midnight meridian at larger geocentric distances than do ions with near-90 degree pitch angles. The ion pitch angle distributions detected on the dayside therefore provide information about the radial distance of the nightside acceleration region. We apply this principle to study ion injection events observed on September 17 - 18, 1984, in association with pseudo-substorm onsets. CCE was at 13 hours local time near its apogee (8.8R E ) and observed a series of ion flux enhancements. Energy dispersion of the timing of the flux increases assures that they are due to injections on the nightside. The flux increases were observed only at pitch angles from 0 degree to 60 degree. We calculate drift orbits of protons using the Tsyganenko 89c magnetic field model and find that the drift orbits for 60 degree pitch angle protons observed at the satellite pass through midnight at 9R E , well outside of geostationary orbit, indicating that the ion injections occurred tailward of 9R E . Energetic ion data from geostationary

  7. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  8. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  9. Measurement of anthropogenic radionuclides in the atmosphere with a radionuclide monitoring network for nuclear tests

    International Nuclear Information System (INIS)

    Yonezawa, Chushiro; Yamamoto, Yoichi

    2011-01-01

    A worldwide radionuclide monitoring network for nuclear tests has detected the anthropogenic radioactive materials released in the atmosphere due to the accident of the Fukushima Daiichi Nuclear Power Plant impacted by the Great East Japan Earthquake on March 11, 2011. After four months have passed since the accident occurred, most overseas stations do not detect the radionuclides of Fukushima origin any more. The Takasaki station in Japan, however, is still detecting them every day. This paper describes radionuclide monitoring stations and the network of them as part of the International Monitoring System (IMS) in the Comprehensive Nuclear Test Ban Treaty (CTBT), as well as the measurement results of radionuclide particulates and radioactive isotopes of xenon released from the Fukushima Daiichi Nuclear Power Plant with the monitoring network. (J.P.N.)

  10. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    International Nuclear Information System (INIS)

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)

  11. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  12. A vector Wiener filter for dual-radionuclide imaging

    International Nuclear Information System (INIS)

    Links, J.M.; Prince, J.L.; Gupta, S.N.

    1996-01-01

    The routine use of a single radionuclide for patient imaging in nuclear medicine can be complemented by studies employing two tracers to examine two different processes in a single organ, most frequently by simultaneous imaging of both radionuclides in two different energy windows. In addition, simultaneous transmission/emission imaging with dual-radionuclides has been described, with one radionuclide used for the transmission study and a second for the emission study. There is thus currently considerable interest in dual-radionuclide imaging. A major problem with all dual-radionuclide imaging is the crosstalk between the two radionuclides. Such crosstalk frequently occurs, because scattered radiation from the higher energy radionuclide is detected in the lower energy window, and because the lower energy radionuclide may have higher energy emissions which are detected in the higher energy window. The authors have previously described the use of Fourier-based restoration filtering in single photon emission computed tomography (SPECT) and positron emission tomography (PET) to improve quantitative accuracy by designing a Wiener or other Fourier filter to partially restore the loss of contrast due to scatter and finite spatial resolution effects. The authors describe here the derivation and initial validation of an extension of such filtering for dual-radionuclide imaging that simultaneously (1) improves contrast in each radionuclide's direct image, (2) reduces image noise, and (3) reduces the crosstalk contribution from the other radionuclide. This filter is based on a vector version of the Wiener filter, which is shown to be superior [in the minimum mean square error (MMSE) sense] to the sequential application of separate crosstalk and restoration filters

  13. Radionuclides in Canada goose eggs

    International Nuclear Information System (INIS)

    Rickard, W.H.; Sweany, H.A.

    1975-01-01

    Low levels of radionuclides were measured in Canada goose eggs taken from deserted nests from Columbia River islands on the Energy Research and Development Administration's Hanford Reservation. Potassium-40, a naturally occurring radionuclide, was the most abundant radionuclide measured in egg contents and egg shell. Strontium-90 was incorporated into egg shells and cesium-137 into inner egg contents. Manganese-54, cobalt-60, and zinc-65 were more abundant in inner egg contents than in egg shell. Cerium-144 was detected in egg shell but not in inner shell

  14. Sensors and Automated Analyzers for Radionuclides

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.

    2003-01-01

    The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less

  15. Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Adam, W. [Institut für Hochenergiephysik der OeAW, Wien (Austria); Collaboration: The CMS collaboration; and others

    2016-12-16

    A search is presented for an excess of events with large missing transverse momentum in association with at least one highly energetic jet, in a data sample of proton-proton collisions at a centre-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 fb{sup −1} collected by the CMS experiment at the LHC. The results are interpreted using a set of simplified models for the production of dark matter via a scalar, pseudoscalar, vector, or axial vector mediator. Additional sensitivity is achieved by tagging events consistent with the jets originating from a hadronically decaying vector boson. This search uses jet substructure techniques to identify hadronically decaying vector bosons in both Lorentz-boosted and resolved scenarios. This analysis yields improvements of 80% in terms of excluded signal cross sections with respect to the previous CMS analysis using the same data set. No significant excess with respect to the standard model expectation is observed and limits are placed on the parameter space of the simplified models. Mediator masses between 80 and 400 GeV in the scalar and pseudoscalar models, and up to 1.5 TeV in the vector and axial vector models, are excluded.

  16. Radionuclide deposition control

    International Nuclear Information System (INIS)

    1980-01-01

    A method is described for controlling the deposition, on to the surfaces of reactor components, of the radionuclides manganese-54, cobalt-58 and cobalt-60 from a liquid stream containing the radionuclides. The method consists of disposing a getter material (nickel) in the liquid stream, and a non-getter material (tantalum, tungsten or molybdenum) as a coating on the surfaces where deposition is not desired. The process is described with special reference to its use in the coolant circuit in sodium cooled fast breeder reactors. (U.K.)

  17. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2015-01-01

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MC simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations

  18. Radionuclide transfer

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1993-01-01

    The research project described here had the aim to obtain further information on the transfer of nuclides during pregnancy and lactation. The tests were carried out in mini-pigs and rats receiving unchanging doses of radionuclides with the food. The following findings were revealed for the elements examined: Fe, Se, Cs and Zn were characterized by very high transfer levels in the mother, infant and foetus. A substantial uptake by the mother alone was observed for Co, Ag and Mn. The uptake by the foetus and infant here was 1 to 10 times lower. A preferential concentration in certain tissues was seen for Sr and Tc; the thyroid levels of Tc were about equally high in mothers and infants, while Sr showed less accumulation in the maternal bone. The lanthanide group of substances (Ce, Eu and Gd as well as Y and Ru) were only taken up to a very limited extent. The uptake of the examined radionuclides (Fe, Co, Ag, Ce) with the food ingested was found here to be ten times greater in rats as compared to mini-pigs. This showed that great caution must be observed, if the behaviour of radionuclides in man is extrapolated from relevant data obtained in rodents. (orig./MG) [de

  19. On the formation of radical dications of protonated amino acids in a "microsolution" of water or acetonitrile and their reactivity towards the solvent

    DEFF Research Database (Denmark)

    Sørensen, M; Forster, JS; Hvelplund, P

    2001-01-01

    +* in the "microsolution" depends on the energetics of the electron transfer reaction AH2+* +S --> AH++S+*, the hydrogen abstraction reaction AH2+*+S --> AH2(2+)+[S-H]*, and the proton transfer reaction AH2+* + S --> A+*+SH+. Using B3LYP/ 6-311+G(2d,p)//B3LYP/6-31+G(d) model chemistry, we describe these three reactions...

  20. Radionuclides in the study of marine processes

    International Nuclear Information System (INIS)

    Kershaw, P.J.; Woodhead, D.S.

    1991-01-01

    For many years, the radioactive properties of the naturally occurring radionuclides have been used to determine their distributions in the marine environment and, more generally, to gain an understanding of the dynamic processes which control their behaviour in attaining these distributions. More recently the inputs from human activities of both natural and artificial (i.e. man-made) radionuclides have provided additional opportunities for the study of marine processes on local, regional and global scales. The primary objective of the symposium is to provide a forum for an open discussion of the insights concerning processes in the marine environment which can be gained from studies of radionuclide behaviour. Papers have been grouped within the following principal themes; the uses of radionuclides as tracers of water transport; scavenging and particulate transport processes in the oceans as deduced from radionuclide behaviour; processes in the seabed and radionuclides in biological systems. (Author)

  1. Chemical speciation of radionuclides migrating in groundwaters

    International Nuclear Information System (INIS)

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., 60 Co and 106 Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters

  2. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  3. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  4. Mobility and Bioavailability of Radionuclides in Soils

    International Nuclear Information System (INIS)

    Iurian, A.; Olufemi Phaneuf, M.; Mabit, L.

    2016-01-01

    It is crucial to understand the behavior of radionuclides in the environment, their potential mobility and bioavailability related to long-term persistence, radiological hazards, and impact on human health. Such key information is used to develop strategies that support policy decisions. The environmental behavior of radionuclides depends on ecosystem characteristics. A given soil’s capacity to immobilize radionuclides has been proved to be the main factor responsible for their resulting activity concentrations in plants. The mobility and bioavailability of radionuclides in soils is complex, depending on clay-sized soil fraction, clay mineralogy, organic matter, cation exchange capacity, pH and quantities of competing cations. Moreover, plant species have different behaviors regarding radionuclide absorption depending on soil and plan characteristics

  5. Radionuclides deposition over Antarctica

    International Nuclear Information System (INIS)

    Pourchet, M.; Magand, O.; Frezzotti, M.; Ekaykin, A.; Winther, J.-G.

    2003-01-01

    A detailed and comprehensive map of the distribution patterns for both natural and artificial radionuclides over Antarctica has been established. This work integrates the results of several decades of international programs focusing on the analysis of natural and artificial radionuclides in snow and ice cores from this polar region. The mean value (37±20 Bq m -2 ) of 241 Pu total deposition over 28 stations is determined from the gamma emissions of its daughter 241 Am, presenting a long half-life (432.7 yrs). Detailed profiles and distributions of 241 Pu in ice cores make it possible to clearly distinguish between the atmospheric thermonuclear tests of the fifties and sixties. Strong relationships are also found between radionuclide data ( 137 Cs with respect to 241 Pu and 210 Pb with respect to 137 Cs), make it possible to estimate the total deposition or natural fluxes of these radionuclides. Total deposition of 137 Cs over Antarctica is estimated at 760 TBq, based on results from the 90-180 deg. East sector. Given the irregular distribution of sampling sites, more ice cores and snow samples must be analyzed in other sectors of Antarctica to check the validity of this figure

  6. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  7. Radionuclides in the food chain

    International Nuclear Information System (INIS)

    Harley, J.H.; Schmidt, G.D.

    1988-01-01

    Radionuclides in the Food Chain reviews past experience in meeting the challenge of radionuclide contamination of foodstuffs and water sources and, in the wake of the reactor accidents at Chernobyl and Three Mile Island, presents current concepts and programs relating to measurement, surveillance, effects, risk management, evaluation guidelines, and control and regulatory activities. This volume, based on a symposium sponsored by the International Life Sciences Institute in association with the International Institute for Applied Systems Analysis, which brought together both radiation experts and food industry policymakers, examines such vital topics as structural problems in large-scale crisis-managment systems; dose assessment from man-made sources; international recommendations on radiation protection; airborne contamination, as well as aquatic and soilborne radionuclides; food-chain contamination from testing nuclear devices; long-term health effects of radionuclides in food and water supplies; and use of mathematical models in risk assessment and management. (orig.)

  8. On the way to high-power linear proton accelerator for the long half-life radionuclides transmutation

    International Nuclear Information System (INIS)

    Batskikh, G.I.; Lupandin, O.S.; Murin, B.P.; Fedotov, A.P.

    1991-01-01

    The concept of continuous mode high-power linear proton accelerator with 1.5 GeV energy, 0.3 A current for the long half-life nuclides transmutation into the short ones (waste of atomic power plants (APP)) is proposed. The accelerator design main principles, scheme and parameters are presented. The accent is made on the accelerator efficiency, reliability and radiation purity. (author)

  9. Idaho radionuclide exposure study: Literature review

    International Nuclear Information System (INIS)

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.

    1987-10-01

    Phosphate ores contain elevated levels of natural radioactivity, some of which is released to the environment during processing or use of solid byproducts. The effect of radionuclides from Idaho phosphate processing operations on the local communities has been the subject of much research and study. The literature is reviewed in this report. Two primary radionuclide pathways to the environment have been studied in detail: (1) airborne release of volatile radionuclides, primarily 210 Po, from calciner stacks at the two elemental phosphorus plants; and (2) use of byproduct slag as an aggregate for construction in Soda Springs and Pocatello. Despite the research, there is still no clear understanding of the population dose from radionuclide emissions, effluents, and solid wastes from phosphate processing plants. Two other potential radionuclide pathways to the environment have been identified: radon exhalation from phosphogypsum and ore piles and contamination of surface and ground waters. Recommendations on further study needed to develop a data base for a complete risk assssment are given in the report

  10. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  11. Some parameters of radionuclide kinetics

    International Nuclear Information System (INIS)

    Prokof'ev, O.N.; Smirnov, V.A.; Belen'kij, E.I.

    1978-01-01

    Numerical values of the rates of radionuclide absorption into, and elimination from, bovine organs were determined. Kinetic rate constants of radionuclides such as 89 Sr, 99 Mo, 131 I, 132 Tl, and 140 Be were calculated. The calculations were done for muscle, liver, and kidney

  12. Radionuclide - Soil Organic Matter Interactions

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1985-01-01

    Interactions between soil organic matter, i.e. humic and fulvic acids, and radionuclides of primary interest to shallow land burial of low activity solid waste have been reviewed and to some extent studied experimentally. The radionuclides considered in the present study comprise cesium, strontium...

  13. Search for Supersymmetry in final states with missing transverse momentum and multiple $b$-jets in proton--proton collisions at $\\sqrt{s} = 13$ TeV with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrá, Sonia; Carrillo-Montoya, German D; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernst, Michael; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Förster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; García Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Geß{}ner, Gregor; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kendrick, James; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Poulard, Gilbert; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherafati, Nima; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Søgaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Sopczak, Andre; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thiele, Fabian; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Xu, Tairan; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamatani, Masahiro; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemaityte, Gabija; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2017-01-01

    A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks into the lightest neutralino ($\\displaystyle\\tilde\\chi^0_1$) is reported. It uses LHC proton--proton collision data at a centre-of-mass energy $\\sqrt{s} = 13$ TeV with an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from $b$-quarks. To increase the sensitivity, the sample is divided into subsamples based on the presence or absence of electrons or muons. No excess is found above the predicted background. For $\\displaystyle\\tilde\\chi^0_1$ masses below approximately 300 GeV, gluino masses of less than 1.97 (1.92) TeV are excluded at 95% confidence level in simplified models involving the pair production of gluinos that decay via top (bottom) squarks. An interpretation of the limits in terms of the b...

  14. Radionuclide transport in a single fissure

    International Nuclear Information System (INIS)

    Eriksen, T.E.

    1984-01-01

    Radionuclide migration has been studied in natural fissures running parallel to the axes of granitic drill cores. A short pulse of radionuclide solution was injected at one end of the fissure and the temporal change in radionuclide concentration of the eluate measured. At the end of each experiment the fissure was opened and the radionuclide distribution on the fissure surfaces measured. The retardation of 241 Am(III) at pH 8.2 as well as the variation in 235 Np(V) retardation with pH are found to be in good agreement with K d-values obtained in batch experiments. The reduction of (TcO - 4 ) to Tc(IV) leads as expected to increasing retardation.(author)

  15. Radionuclide migration in water reservoirs

    International Nuclear Information System (INIS)

    Rodionova, L.F.

    1983-01-01

    Toxicity degree and radiation effect of different radionuclides depend on multiple factors, whose interaction can strengthen or weaken the effects through the mechanism of nuclide accumulation by hydrobiontes. Stage of development of an aquatic organism, its age, mass and sex as well as lifetime and residence time of the organism in the given medium are of importance. The radionuclide build up depends on illumination, locale of the bioobject residence, on the residence nature. The concentration of radionuclides in aquatic organisms and bionts survival depend on a season, temperature of the residence medium, as well as salinity and mineral composition of water influence

  16. Radionuclide Air Emissions Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Linnea [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Berkeley Lab operates facilities where radionuclides are produced, handled, store d, and potentially emitted . These facilities are subject to the EPA radioactive air emission regulations in 40 CFR 61, Subpart H (EPA 1989a). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2012, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]) . These minor sources include d about 140 stack sources and no diffuse sources . T here were no unplanned airborne radionuclide emissions from Berkeley Lab operations . Emissions from minor sources were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building- specific and common parameters, Laboratory personnel applied the EPA -approved computer code s, CAP88-PC and COMPLY , to calculate doses to the maximally exposed individual (MEI) at any offsite point where there is a residence, school, business, or office. Because radionuclides are used at three noncontiguous locations (the main site, Berkeley West Bio center, and Joint BioEnergy Institute), three different MEIs were identified.

  17. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  18. Structure, thermodynamic and electronic properties of carbon-nitrogen cubanes and protonated polynitrogen cations

    Science.gov (United States)

    Chaban, Vitaly V.; Andreeva, Nadezhda A.

    2017-12-01

    Energy generation and storage are at the center of modern civilization. Energetic materials constitute quite a large class of compounds with a high amount of stored chemical energy that can be released. We hereby use a combination of quantum chemistry methods to investigate feasibility and properties of carbon-nitrogen cubanes and multi-charged polynitrogen cations in the context of their synthesis and application as unprecedented energetic materials. We show that the stored energy increases gradually with the nitrogen content increase. Nitrogen-poor cubanes retain their stabilities in vacuum, even at elevated temperatures. Such molecules will be probably synthesized at some point. In turn, polynitrogen cations are highly unstable, except N8H+, despite they are isoelectronic to all-carbon cubane. Kinetic stability of the cation decays drastically as its total charge increases. High-level thermodynamic calculations revealed that large amounts of energy are liberated upon decompositions of polynitrogen cations, which produce molecular nitrogen, acetylene, and protons. The present results bring a substantial insights to the design of novel high-energy compounds.

  19. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  20. Radionuclide supply of the progeny via mother's milk

    International Nuclear Information System (INIS)

    Ovcharenko, E.P.

    1982-01-01

    While examining transition of radioactive substances from material organism to milk and then radionuclide administration with milk to progeny, a number of relationships had been revealed. They are similar to those discovered by the author during his study on transplacental radionuclide kinetics. The quantity of transition through placental and milk barriers of group 2 Periodical system radionuclides is inversally proportional to radionuclide mass number. There is evidence for the increase of radionuclide transition per different kinds of animal progeny mass unit during pregnancy as well as during lactation [ru

  1. Radionuclide Retention in Concrete Wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  2. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  3. Water, soil, crops and radionuclides. Studies on the behavior of radionuclides in the terrestrial environments

    International Nuclear Information System (INIS)

    Uchida, Shigeo

    2008-01-01

    In order to predict the migration of artificially-produced radionuclides into a human body and its radiation dose rates of human body and to decrease the exposed radiation doses of human body, the behavior of radionuclides in the environment must be elucidated. In National Institute of Radiological Sciences (NIRS), the environmental radioecological research group of Nakaminato Laboratory for Marine Radioecology has progressed the survey and research on the behavior of artificially-produced radionuclides in the terrestrial environment. This article describes the research results (the radioactivity of water, soil, and crops) made so far at Nakaminato Laboratory for Marine Radioecology. (M.H.)

  4. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    Directory of Open Access Journals (Sweden)

    I. M. Robinson

    2005-07-01

    Full Text Available We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003 and Li et al. (2003 which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons.

    Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections – Space plasma physics (Transport processes

  5. Water versus DNA: new insights into proton track-structure modelling in radiobiology and radiotherapy.

    Science.gov (United States)

    Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Weck, P F; Fojón, O A; Hanssen, J; Rivarola, R D

    2015-10-21

    Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.

  6. Abscess detection with radionuclides

    International Nuclear Information System (INIS)

    Alavi, J.B.

    1988-01-01

    Radionuclide studies may aid in the diagnosis and localization of intra-abdominal infections. Despite the introduction of new radiographic and ultrasound methods, there are several clinical situations in which radionuclide scans have proved useful. Those include detection of postoperative intra-abdominal abscess, evaluation of liver abscess, differentiation between pancreatic pseudocyst or abscess, evaluation of fever of unknown origin, and evaluation of inflammatory bowel disease. Each clinical situation is discussed separately here

  7. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  8. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and

  9. Theoretical estimation of proton induced X-ray emission yield of the trace elements present in the lung and breast cancer

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.

    2013-01-01

    X-rays may be produced following the excitation of target atoms induced by an energetic incident ion beam of protons. Proton induced X-ray emission (PIXE) analysis has been used for many years for the determination of elemental composition of materials using X-rays. Recent interest in the proton induced X-ray emission cross section has arisen due to their importance in the rapidly expanding field of PIXE analysis. One of the steps in the analysis is to fit the measured X-ray spectrum with theoretical spectrum. The theoretical cross section and yields are essential for the evaluation of spectrum. We have theoretically evaluated the PIXE cross sections for trace elements in the lung and breast cancer tissues such as Cl, K, Ca,Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, P, S, Sr, Hg and Pb. The estimated cross section is used in the evaluation of Proton induced X-ray emission spectrum for the given trace elements.We have also evaluated the Proton induced X-ray emission yields in the thin and thick target of the given trace elements. The evaluated Proton induced X-ray emission cross-section, spectrum and yields are graphically represented. Some of these values are also tabulated. Proton induced X-ray emission cross sections and a yield for the given trace elements varies with the energy. PIXE yield depends on a real density and does not on thickness of the target. (author)

  10. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  11. Therapy for incorporated radionuclides: scope and need

    International Nuclear Information System (INIS)

    Smith, V.H.

    1981-03-01

    In the United States the recent termination of funding for research on therapy for incorporated radionuclides has virtually halted progress on improved or new agents and procedures for removing radioactivity from the body. Research was eliminated, but is still needed on new removal agents, improved delivery system, in vitro test systems, and the toxicology of treatments. For many radionuclides, no adequate therapy exists. The relationship between radionuclide removal and reduction in cancer risk is still unanswered. Without proper research support, needed improvements in the treatment for incorporated radionuclides in the US are uncertain

  12. Phytoremediation of soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Yamaguchi, Isamu

    2004-01-01

    Aiming at efficient phytoremediation of soils contaminated with radionuclides, we examined the effect of soil microbes on the uptake ability of plants using the multitracer technique to find that tomato rhizofungi in Fusarium spp. can stimulate the uptake of 85 Sr and 137 Cs by the plants. The synergic effect of a nonpathogenic strain of F. oxysporum on the uptake of radionuclides by plants proved to be enhanced by introducing a phytochelatin synthase gene into the fungus. Since soil contamination by radionuclides is still an unsolved problem in many parts of the world. Studies on phytoremediation of polluted soil environment will be important for developing effective strategies and devising adequate techniques to reduce human risks caused by food contamination of radionuclides. (author)

  13. The RADEX facility as a tool for studies of radiation damage under proton and spallation neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koptelov, E.A.; Lebedev, S.G.; Matveev, V.A.; Sobolevsky, N.M. [Institute for Nuclear Research of Russian Academy of Sciences, Moscow (Russian Federation); Strebkov, Yu.S.; Subbotin, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)

    2001-03-01

    We present results of numerical modeling for processes of primary protons and spallation neutrons interactions with structural materials at the RADiation EXperiment facility of the Neutron Complex. The installation has a vertical irradiation channel inside the beam stop for horizontally incident protons with energies up to 600 MeV of the Moscow Meson Factory of the INR (Institute for Nuclear Research) RAS (Russian Academy of Science). The calculations are based on a set of computer codes SHIELD and RADDAM, which were developed in the INR RAS and give data on point defect generation by irradiation, rate of accumulation of H and He atoms produced in nuclear reactions, energetic spectra of primary knocked-off atoms in collision displacements, temperature of samples under irradiation. Different positions of the channel, which are available by rotation of a target relatively the vertical axis for angles 0, 60, 120 and 180 degrees to the proton beam direction, are considered. Changes of irradiation damage parameters due to various inputs of primary protons and spallation neutrons at different target orientations are demonstrated. It is shown also that the spallation neutron facility RADEX may provide with perspective experimental possibilities for modeling of irradiation conditions for fusion reactors ITER and DEMO. (author)

  14. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    Science.gov (United States)

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  15. Do interacting coronal mass ejections play a role in solar energetic particle events?

    International Nuclear Information System (INIS)

    Kahler, S. W.; Vourlidas, A.

    2014-01-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre , speeds V pre , or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  16. National Low-Level Waste Management Program Radionuclide Report Series

    International Nuclear Information System (INIS)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process

  17. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  18. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  19. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  20. New memory devices based on the proton transfer process

    Science.gov (United States)

    Wierzbowska, Małgorzata

    2016-01-01

    Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge—saturated with oxygen or the hydroxy group—and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices.

  1. The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 1996–2010

    Directory of Open Access Journals (Sweden)

    Rodríguez-Gasén Rosa

    2013-03-01

    Full Text Available SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP events and related electromagnetic (EM emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA for protons and time-shifting analysis (TSA for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s ≲ 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times

  2. Remediation of radionuclide pollutants through biosorption - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nilanjana [Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore (India)

    2012-01-15

    The development of nuclear science and technology has led to the increase of nuclear wastes containing radionuclides to be released and disposed in the environment. Pollution caused by radionuclides is a serious problem throughout the world. To solve the problem, substantial research efforts have been directed worldwide to adopt sustainable technologies for the treatment of radionuclide containing wastes. Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. A variety of biomaterials viz. algae, fungi, bacteria, plant biomass, etc. have been reported for radionuclide remediation with encouraging results. This paper reviews the achievements and current status of radionuclide remediation through biosorption which will provide insights into this research frontier. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. On proton CT reconstruction using MVCT-converted virtual proton projections

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dongxu; Mackie, T. Rockwell; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Morgridge Institute of Research, University of Wisconsin, Madison, Wisconsin 53715 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Oncophysics Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 (United States)

    2012-06-15

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of {+-}0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of {+-}0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of {+-}1.1% compared with that reconstructed from theoretical projections

  4. On proton CT reconstruction using MVCT-converted virtual proton projections

    International Nuclear Information System (INIS)

    Wang Dongxu; Mackie, T. Rockwell; Tomé, Wolfgang A.

    2012-01-01

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of ±0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of ±0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of ±1.1% compared with that reconstructed from theoretical projections. If

  5. Radionuclide injury to the lung

    International Nuclear Information System (INIS)

    Dagle, G.E.; Sanders, C.L.

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequently observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. 88 references

  6. The vertical distribution of radionuclides in a Ribble Estuary saltmarsh: transport and deposition of radionuclides

    International Nuclear Information System (INIS)

    Brown, J.E.; McDonald, P.; Parker, A.; Rae, J.E.

    1999-01-01

    Routine discharges of low-level liquid radioactive waste by British Nuclear Fuels plc (BNFL) at Sellafield and Springfields have resulted in enhanced levels of radionuclides in sediments of the Ribble Estuary, NW England, UK. Variations in radionuclide concentrations ( 137 Cs, 230 Th, and 239240 Pu) with depth in a mature saltmarsh core were analysed in order to investigate historical discharge trends and waste-dispersal mechanisms. Core samples from Longton/Hutton Marsh were analysed by gamma-spectrometry and α-spectrometry for radionuclides and by laser granulometry to establish grain-size variations with depth. Distinct subsurface maxima were present for 137 Cs and 239240 Pu with activities as high as 4500 Bq kg -1 for 137 Cs and 600 Bq kg -1 for 239240 Pu. Thorium-230 exhibited complex activity profiles with depth, specific activities ranging between 200 and 2400 Bq kg -1 . The vertical distributions of Sellafield-derived radionuclides ( 137 Cs and 239240 Pu) in mature saltmarsh deposits reflect the time-integrated discharge pattern from Sellafield, implying a transport mechanism that has involved the mixing of sediment labelled with radioactivity from recent discharges and sediment labelled from historical discharge events before deposition. A mechanism involving the transport of contaminated silt therefore seems to dominate. The vertical distribution of Springfields-derived 230 Th in the same areas reflects the annual gross-α discharge pattern from BNFL Springfields. In contrast to the Sellafield-derived radionuclides, a fairly rapid transport mechanism from source to sink is implied, with little or no time for mixing with radionuclides discharged years earlier. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Excitation functions for the formation of some short-lived products in proton-induced reactions on silver

    International Nuclear Information System (INIS)

    Uddin, M.S.; Latif, S.K.A.; Baba, M.; Hagiwara, M.; Qaim, S.M.

    2008-01-01

    Excitation functions of the nat Ag(p, xn) 104, 105 Cd and nat Ag(p, pxn) 103, 104m,g, 104g Ag reactions were measured for the first time over the proton energy range of 32 to about 60 MeV. The data were compared with the results of precompound-hybrid model calculations, whereby only partial agreement was obtained. The contribution of the 103 Ag precursor decay to the total formation of the therapeutic radionuclide 103 Pd in proton activation of silver was estimated: it amounted to about 70%. The various possible routes for the production of 103 Pd were also considered: the nat Ag(p, x) 103 Pd and 103 Rh(p, n) 103 Pd processes were found to be most interesting. Despite its somewhat lower yield, the latter process is preferred because it can be applied at a low-energy cyclotron. (orig.)

  8. Interpretation of biological-rate coefficients derived from radionuclide content, radionuclide concentration and specific activity experiments

    International Nuclear Information System (INIS)

    Vanderploeg, H.A.; Booth, R.S.

    1976-01-01

    Rigorous expressions are derived for the biological-rate coefficients (BRCs) determined from time-dependent measurements of three different dependent variables of radionuclide tracer experiments. These variables, which apply to a single organism, are radionuclide content, radionuclide concentration and specific activity. The BRCs derived from these variables have different mathematical expressions and, for high growth rates, their numerical values can be quite different. The precise mathematical expressions for the BRCs are presented here to aid modelers in selecting the correct parameters for their models and to aid experiments in interpreting their results. The usefulness of these three variables in quantifying elemental uptakes and losses by organisms is discussed. (U.K.)

  9. Research on sorption behavior of radionuclides under shallow land environment. Mechanism and standard methodologies for measurement of distribution coefficients of radionuclides

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Tanaka, Tadao; Takebe, Shinichi; Nagao, Seiya; Ogawa, Hiromichi; Komiya, Tomokazu; Hagiwara, Shigeru

    2001-01-01

    This study consists of two categories' research works. One is research on sorption mechanism of radionuclides with long half-life, which are Technetium-99, TRU elements and U series radionuclides, on soil and rocks, including a development of database of distribution coefficients of radionuclides. The database on the distribution coefficients of radionuclides with information about measurement conditions, such as shaking method, soil characteristics and solution composition, has been already opened to the public (JAERI-DATABASE 20001003). Another study is investigation on a standard methodology of the distribution coefficient of radionuclide on soils, rocks and engineering materials in Japan. (author)

  10. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  11. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. G.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J. [Physics Department, SUNY Geneseo, Geneseo, New York 14454 (United States); Fiksel, G.; Stoeckl, C.; Mileham, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Sinenian, N.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-07-15

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  12. Radionuclides in the environment: Risks and opportunities

    International Nuclear Information System (INIS)

    Elzerman, A.W.

    1993-01-01

    Environmental chemistry plays a critical role in the open-quotes nuclear ageclose quotes. It makes a vital contribution to understanding of the sources, fate and effects of radionuclides in the environment, both man-made and natural. Risk assessment of radionuclides in the environment relies heavily on the tools of environmental chemistry. On the other hand, radionuclides provide unique opportunities to exploit in environmental chemistry investigations due to their well-defined sources, traceability in environmental processes, analytical sensitivities, and open-quotes built-inclose quotes radioactive decay open-quotes clocksclose quotes. In some cases naturally present radionuclides are utilized, while in others tracers are deliberately added or have already been added by the nuclear fuel cycle or nuclear testing. Several examples in each of these categories are discussed to spotlight the current status of environmental chemistry and radionuclides in the environment as an example application

  13. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  14. Solar energetic particles in the Earth magnetosphere: kinematic modeling of the 'non-shock' penetration

    International Nuclear Information System (INIS)

    Pavlov, N N

    2013-01-01

    Penetration of solar energetic particles into the Earth's magnetosphere is quantitatively studied with a simple kinematic model. The goal is to assess, for the first time, how does effectiveness of the penetration depend on such geometry factors as: distance of the magneto-pause (MP) from the Earth; shape of MP; angle at which solar energetic particle crosses MP; location of the crossing point; type of the particle motion in the magnetosphere. To get off excessive details, the model deliberately operates with just equatorial section of the static dipolar magnetic field confined with asymmetric boundary – MP. Several rather obvious facts are illustrated: finite orbits of longitudinal drift reside only inside the circle of the Störmer-unit-length radius; deepest penetration of a particle occurs if the particle crosses MP at the point closest to the Earth and with velocity-vector oriented along the particle's longitudinal drift inside MP (westward for protons); etc. The model's software allows the inquirer to vary geometry of MP, the type, energy and direction of flight of the energetic particle(s), the location(s), aperture and orientation(s) of a virtual sensor, then to run the model and obtain the reference particle distributions either global (for entire magnetosphere) or for specified locations, all along the time, energy and flux-orientation axes. Static and animated plots can be easily produced. The model provides a toolkit allowing one to evaluate and illustrate the process of particle penetration into the magnetosphere under various conditions in space. It may be used for the configuring of the satellite particle sensors; its results may be compared with the observations for to assess how strongly the real magnetosphere differs from its simplified form; it may be used in education.

  15. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    Schreiner, R.

    2001-01-01

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M and O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  16. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  17. Chapter 13. Radionuclides in medicine

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with using of radionuclides in medicine. Methods of treatment with using of radionuclides are reviewed. Chapter consists of next parts: (1) Remotion of thyroid gland; (2) Treatment of cerebrally tumour in nuclear reactor; (3) Artificial heart

  18. Naturally occurring radionuclides in food

    International Nuclear Information System (INIS)

    Djujic, I.

    1995-01-01

    The naturally occurring radionuclides are the major source of radiation exposure to humans. The principal way of natural radiation exposure is the inhalation of 222 Rn decay products (about 85% of the total). The remainder is equally divided between internally deposited radionuclides, cosmic and terrestrial sources. In the present study, the content of 40 K, 210 Pb, 226 Ra, 230 Th, 232 Th and 238 U in representative food samples (milk, pork, beef, potatoes, wheat and corn flour) and samples of different food items that do not represent entire national production but provide interesting additional data for approximative calculation of naturally occurring radionuclide intake is presented. Daily weight of food eaten, participation of food groups, as well as daily intake by food of mentioned naturally occurring radionuclides in the Serbian diet was obtained on the base of house hold budget surveys. The result obtained for daily intake estimates in mBq for Serbian population are 78.1 ( 40 K), 38.2( 210 Pb), 52.3( 226 Ra), 2.0( 230 Th) and 12.5( 238 U). (author)

  19. Radionuclide Sensors for Subsurface Water Monitoring. Final report

    International Nuclear Information System (INIS)

    Timothy DeVol

    2006-01-01

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitored in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program. Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media

  20. The current status of development of the electron and proton telescope for Solar Orbiter

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Jan; Kulkarni, Shrinivasrao; Boden, Sebastian; Martin-Garcia, Cesar; Boettcher, Stephan; Schuster, Bjoern; Seimetz, Lars; Wimmer-Schweingruber, Robert F. [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    ESA's Solar Orbiter mission, scheduled for launch in January 2017, will study how the sun creates the inner heliosphere. Therefore, the spacecraft will perform in situ and remote sensing measurements of the sun on a high inclination orbit with a perihelion of about 60 solar radii, making it possible to observe the poles of the sun from nearby. The Energetic Particle Detector suite on-board of Solar Orbiter will measure particles of a wide energy range and from multiple directions. One of the important sensors of the EPD suite is the Electron and Proton Telescope. It consists of two antiparallel telescopes with two silicon detectors respectively and is designed to detect electrons between 20 - 400 keV and protons from 20 keV to 7 MeV. EPT relies on a magnet/foil technique to discriminate between electrons and protons. Its design is driven by mass allocation, the thermal environment, power consumption and electronic noise; especially the magnet system must guarantee stray fields low enough to be compliant with the Solar Orbiter EMC requirements. Here, we present the current status of the Structural/Thermal Model and Engineering Model assembly as well as the integration and testing of the prototype.

  1. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  2. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  3. Determination of natural occurring radionuclides concentrations

    International Nuclear Information System (INIS)

    Stajic, J.; Markovic, V.; Krstic, D.; Nikezic, D.

    2011-01-01

    Tobacco smoke contains certain concentrations of naturally occurring radionuclides from radioactive chains of uranium and thorium - 214 Pb, 214 Bi, 228 Ac, 208 Tl, 226 Ra, 232 Th and 40 K. Inhaling of tobacco smoke leads to internal exposure of man. In order to estimate absorbed dose of irradiation it is necessary to determine concentrations of radionuclides present in the tobacco leaves. In this paper specific activities of naturally occurring radionuclides were measured in tobacco samples from cigarettes which are used in Serbia. [sr

  4. Manual of bioassay procedures for radionuclides

    International Nuclear Information System (INIS)

    Pleskach, S.; Petkau, A.

    1986-06-01

    A monitoring program is described by which atomic radiation workers ar monitored for internal contamination with radionuclides in the workplace. The program involves analytical procedures for measuring alpha, beta and gamma activity in biological specimens, usually urine. Radionuclides are identified by their characteristic radiation using liquid scintillation counting, and alpha, beta and gamma spectrometry. Examples of calculating the minimum detectable activity for specific radionuclides are given and used to derive call-in-criteria in accordance with which the different groups of workers are monitored each month

  5. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  6. Radionuclides in ground-level air

    International Nuclear Information System (INIS)

    Sinkko, K.

    1987-01-01

    In the air surveillance programme the concentrations of artificial radionuclides are monitored in the air close to the ground to obtain the necessary basic data for estimating the exposure of the Finnish population to fall-out radionuclides and also to detect atmospheric traces of radioactive materials caused by their use or production. Airborne dust is collected on filters with high-volume air samplers and the concentrations of gamma-emitting radionuclides in the air are evaluated. In the first quarter of 1986 only long-lived cesium, caused by earlier atmospheric nuclear explosions was detected. The concentrations of cesium were very low. In January and March a small amount of short-lived, fresh fission and activation products were also observed

  7. Probability Estimates of Solar Proton Doses During Periods of Low Sunspot Number for Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.

  8. Selected radionuclides important to low-level radioactive waste management

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237

  9. Selected radionuclides important to low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  10. Time variations of magnetospheric intensities of outer zone protons, alpha particles and ions (Z greater than or equal to 2). Ph.D. Thesis

    Science.gov (United States)

    Randall, B. A.

    1973-01-01

    A comprehensive study of the temporal behavior of trapped protons, alpha particles and ions (Z 2) in outer zone of the earth's magnetosphere has been made. These observations were made by the Injun V satellite during the first 21 months of operation, August 1968 to May 1970. Rapid increases in the observed number of particles followed by slower exponential decay characterize the data. Comparisons are made with the temporal behavior of interplanetary particles of the same energy observed by Explorer 35. Increases in the trapped fluxes generally correspond to enhanced interplanetary activity. The energy spectra of protons and alpha particles at L = 3 have similar shapes when compared on an energy per charge basis while the respective polar cap spectra have similar shape on an energy per nucleon basis. Apparent inward trans-L motion of energetic protons is observed. These particles are diffused inward by a process involving fluctuating electric fields. The loss of trapped low altitude protons, alpha particles and ions (Z 2) is controlled by coulombic energy loss in the atmosphere.

  11. Measurements for modeling radionuclide transfer in the aquatic environment

    International Nuclear Information System (INIS)

    Kahn, B.

    1976-01-01

    Analytical methods for measuring radionuclides in the aquatic environment are discussed for samples of fresh water and seawater, fish and shellfish, biota such as algae, plankton, seaweed, and aquatic plants, and sediment. Consideration is given to radionuclide collection and concentration, sample preservation, radiochemical and instrumental analysis, and quality assurance. Major problems are the very low environmental levels of the radionuclides of interest, simultaneous occurrence of radionuclides in several chemical and physical forms and the numerous factors that affect radionuclide levels in and transfers among media. Some radionuclides of importance in liquid effluents from nuclear power stations are listed, and sources of radiochemical analytical methods are recommended

  12. Influence of Hydration on Proton Transfer in the Guanine-Cytosine Radical Cation (G•+-C) Base Pair: A Density Functional Theory Study

    Science.gov (United States)

    Kumar, Anil; Sevilla, Michael D.

    2009-01-01

    On one-electron oxidation all molecules including DNA bases become more acidic in nature. For the GC base pair experiments suggest that a facile proton transfer takes place in the G•+-C base pair from N1 of G•+ to N3 of cytosine. This intra-base pair proton transfer reaction has been extensively considered using theoretical methods for the gas phase and it is predicted that the proton transfer is slightly unfavorable in disagreement with experiment. In the present study, we consider the effect of the first hydration layer on the proton transfer reaction in G•+-C by the use of density functional theory (DFT), B3LYP/6-31+G** calculations of the G•+-C base pair in the presence of 6 and 11 water molecules. Under the influence of hydration of 11 waters, a facile proton transfer from N1 of G•+ to N3 of C is predicted. The zero point energy (ZPE) corrected forward and backward energy barriers, for the proton transfer from N1 of G•+ to N3 of C, was found to be 1.4 and 2.6 kcal/mol, respectively. The proton transferred G•-(H+)C + 11H2O was found to be 1.2 kcal/mol more stable than G•+-C + 11H2O in agreement with experiment. The present calculation demonstrates that the inclusion of the first hydration shell around G•+-C base pair has an important effect on the internal proton transfer energetics. PMID:19485319

  13. Statistical analysis of fallout radionuclides transfer to paddy-field rice

    International Nuclear Information System (INIS)

    Takahashi, T.; Morisawa, S.; Inoue, Y.

    1996-01-01

    Radionuclides released from nuclear facilities to atmosphere are transported through various pathways in biosphere and cause human exposure. Among these radionuclides transfer pathways, an ingestion of crops containing radionuclides is one of the dominant pathway for human exposure. For the safety assessment of nuclear facilities, it is important to understand the behavior of radionuclides in agricultural environment and to describe them in a mathematical model. In this paper, a statistical model is proposed for estimating the concentration of fallout radionuclides in paddy-field rice, the staple food for Japanese people. For describing behavior of fallout radionuclides in a paddy-field, a dynamic model and a statistical model have been proposed respectively. The model used in this study has been developed assuming that the amount of radionuclides transfer to brown rice (hulled rice) or polished rice through direct deposition of airborne radionuclides (the direct deposition pathway) and root uptake from a paddy soil (the root uptake pathway) are proportional to the deposition flux of radionuclides and concentration of radionuclides in paddy soil respectively. That is, the model has two independent variables; the deposition flux of radionuclides and the concentration of radionuclides in the paddy soil, and has single dependent variable; the concentration of radionuclides in brown rice or polished rice. The regression analysis is applied by using environmental monitoring data. Then the distribution of radionuclides between rice-bran (skin part of rice crop) and polished rice (core part) through both the direct deposition pathway and the root uptake pathway are evaluated by the model. (author)

  14. Accumulation of radionuclides by lichen symbionts

    Energy Technology Data Exchange (ETDEWEB)

    Nifontova, M G; Kulikov, N V [AN SSSR, Sverdlovsk. Inst. Ehkologii Rastenij i Zhivotnykh

    1983-01-01

    The aim of investigation is the quantitative estimation of ability and role of separate symbionts in the accumulation of radionuclides. As investigation volumes, durably cultivated green lichen alga Trebouxia erici and lichen fungi extracted from Cladonia rangiferina, Parmelia caperata and Acarospora fuscata are used. The accumulation of radioactive isotopes with fungi and seaweeds is estimated according to accumulation coefficients (AC) which are the ratio of radiation concentration in plants and agarized medium. Radionuclide content (/sup 90/Sr and /sup 137/Cs) is determined radiometrically. A special series of experiments is done to investigate radionuclide accumulation dependences with lichen seaweed and fungi on light conditions. It is shown that both symbionts of lichen-seaweed and fungus take part in the accumulation of radionuclide from outer medium (atmospheric fall-out and soil). However fungus component constituting the base of structural organization of thallus provides the greater part of radionuclides accumulated by the plant. Along with this the violation of viability of seaweed symbionts particularly in the case of light deficiency brings about the reduction of /sup 137/Cs sorption by seaweeds and tells on the total content of radiocesium in plant thallus.

  15. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  16. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  17. Radionuclides in foods

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains data on the levels of radionuclides in the UK foodchain. Most data derive from monitoring programmes that exist around nuclear sites, and in some cases date back to the 1960s. Some comparative data from site operator and government-run programmes are included. Data from monitoring undertaken after the Chernobyl accident are summarised. General monitoring of the foodchain for both artificial and natural radionuclides, and the results of relevant government-sponsored research are also described. The report includes basic information on radioactivity in the environment, radiation protection standards and describes what measures are taken to routinely monitor the foodchain and assess public risk. (Author)

  18. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  19. Radionuclides in house dust

    Energy Technology Data Exchange (ETDEWEB)

    Fry, F A; Green, N; Dodd, N J; Hammond, D J

    1985-04-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate authorising Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, although radionuclides originating rom the BNFL site can be detected in house dust, this source of contamination is a negligible route of exposure for members of the public in West Cumbria. This report presents the results of the Board's study of house dust in twenty homes in Cumbria during the spring and summer of 1984. A more intensive investigation is being carried out by Imperial College. (author)

  20. High-repetition-rate laser-proton acceleration from a condensed hydrogen jet

    Energy Technology Data Exchange (ETDEWEB)

    Obst, Lieselotte; Zeil, Karl; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Rehwald, Martin; Sommer, Philipp; Brack, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Goede, Sebastian; Gauthier, Maxence; Roedel, Christian; MacDonald, Michael; Schumaker, William; Glenzer, Siegfried [SLAC National Accelerator Laboratory, Stanford (United States)

    2016-07-01

    Applications of laser-accelerated protons demand a stable source of energetic particles at high repetition rates. We present the results of our experimental campaign in cooperation with MEC/SLAC at the 10Hz Ti:Sa laser Draco of Helmholtz-Zentrum Dresden-Rossendorf (HZDR), employing a pure condensed hydrogen jet as a renewable target. Draco delivers pulses of 30 fs and 5 J at 800 nm, focused to a 3 μm spot by an F/2.5 off-axis parabolic mirror. The jet's nominal electron density is approximately 30 times the critical density and its thickness is 2 μm, 5 μm or 10 μm, depending on the applied aperture on the source. Ion diagnostics reveal mono-species proton acceleration in a solid angle of at least +/-45 with respect to the incoming laser beam, with maximum energies of around 5 MeV. The expanding jet could be monitored on-shot with a temporally synchronized probe beam perpendicular to the pump laser axis. Recorded probe images resemble those of z-pinch experiments with metal wires and indicate an m=0 instability in the plasma.

  1. Radionuclide accumulation peculiarities demonstrated by vegetable varieties

    International Nuclear Information System (INIS)

    Kruk, A.V.; Goncharenko, G.G.; Kilchevsky, A.V.

    2004-01-01

    This study focused on ecological and genetic aspects of radionuclide accumulation demonstrated by a number of vegetable varieties. The researches resulted in determining the cabbage varieties which were characterised by the minimal level of radionuclide accumulation. It was shown that the above varieties manifested the relation between radionuclide accumulation and morphobiological characteristics such as vegetation period duration and yield criteria. The study specified the genotypes with high ecological stability as regards to radionuclide accumulation: 'Beloruskaya 85' cabbage and 'Dokhodny' tomato showed the best response to Cs 137, while 'Beloruskaya 85', 'Rusinovka', 'Amager 611' cabbage varieties and 'Sprint' tomato showed the minimal level of Sr 90 accumulation. (authors)

  2. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  3. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  4. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  5. 2008 LANL radionuclide air emissions report

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  6. 2010 LANL radionuclide air emissions report /

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  7. Preparation of porous materials for radionuclides capture

    International Nuclear Information System (INIS)

    Bajzikova, Anna; Smrcek, Stanislav; Kozempel, Jan; Vlk, Martin; Barta, Jan

    2015-01-01

    Porous materials showing promise for radionuclide capture from water at contaminated sites were prepared. Nanoporous materials (size of pores 1-100 nm) and some polymers are well suited to this purpose owing their affinity for selected radionuclides. Nanoporous metal oxides and silica gel with styrene-divinylbenzene-TODGA-modified surface were prepared, characterized and tested for radionuclide ( 227 Ac, 227 Th, 223 Ra) capture efficiency. (orig.)

  8. Radionuclide Data Centre. Tasks and problems of obtaining the most reliable values of the nuclear physics characteristics of radionuclides and radiation physics parameters of radionuclide sources

    International Nuclear Information System (INIS)

    Chechev, V.P.

    1994-01-01

    Information is provided on the establishment of the Radionuclide Data Centre under the V.G. Khlopin Radium Institute. Its functions and areas of activity are discussed. The paper focuses on the procedure of obtaining the evaluated values of the decay and radiative characteristics of the widely used radionuclides. (author)

  9. Human dose pathways of radionuclides in forests

    International Nuclear Information System (INIS)

    Rantavaara, A.

    2009-01-01

    Forest soil, understorey vegetation and trees are all sources of radionuclides and human radiation doses after contaminating atmospheric deposition. People are exposed to radiation externally from sources outside the body and internally via ingestion and inhalation of radionuclides. Understorey vegetation contributes to ingestion doses through berries, herbs, wild honey, mushrooms and game meat; also trees provide feed to terrestrial birds and big game. During stay in forests people are subject to external radiation from forest floor and overstorey, and they may inhale airborne radioactive aerosol or gaseous radionuclides in ground level air. In the early phase of contamination also resuspended radionuclides may add to the internal dose of people via inhalation. People in Nordic countries are most exposed to radiation via ingestion of radionuclides in wild foods. The distribution of radionuclides in forests is changed by environmental processes, and thereby also the significance of various dose pathways to humans will change with time. External exposure is received in living environment from contaminated stemwood used as building timber and for manufacturing of furniture and other wood products. The aim of this paper is to outline the significance of various human dose pathways of radionuclides in forests considering the public and workers in forestry and production of bioenergy. Examples on effective doses are given based on two historical events, atmospheric nuclear weapon tests (mostly in 1950's and in 1960's) and the Chernobyl nuclear power plant accident in 1986. (au)

  10. General program for the advancement of the radionuclide technology

    International Nuclear Information System (INIS)

    1979-12-01

    The 'General Program for the Advancement of the Radionuclide Technology' was elaborated in 1978 by the 'Arbeitsgemeinschaft zur Foerderung der Radionuklidtechnik' (AFR) (Association for the Promotion of Radionuclide Technology). In addition to an inventory of the major applications of radionuclide technology, this General Program includes a comprehensive description of tasks relating to the central topics of raw materials, environment, technology and materials, health and nutrition, scientific developments of radionuclide technology. The 'General Program for the Advancement of the Radionuclide Technology' serves inter alia as a basis of evaluation in opinions on funding applications filed with the Federal Ministry for Research and Technology (BMFT) with respect to the provision of advanced techniques involving radionuclides for industrial application. (orig.) [de

  11. Radionuclides in house dust

    CERN Document Server

    Fry, F A; Green, N; Hammond, D J

    1985-01-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, alt...

  12. Geochemistry and radionuclide migration

    International Nuclear Information System (INIS)

    Isherwood, D.

    1978-01-01

    Theoretically, the geochemical barrier can provide a major line of defense in protecting the biosphere from the hazards of nuclear waste. The most likely processes involved are easily identified. Preliminary investigations using computer modeling techniques suggest that retardation is an effective control on radionuclide concentrations. Ion exchange reactions slow radionuclide migration and allow more time for radioactive decay and dispersion. For some radionuclides, solubility alone may limit concentrations to less than the maximum permissible now considered acceptable by the Federal Government. The effectiveness of the geochemical barrier is ultimately related to the repository site characteristics. Theory alone tells us that geochemical controls will be most efficient in an environment that provides for maximum ion exchange and the precipitation of insoluble compounds. In site selection, consideration should be given to rock barriers with high ion exchange capacity that might also act as semi-permeable membranes. Also important in evaluating the site's potential for effective geochemical controls are the oxidation potentials, pH and salinity of the groundwater

  13. Mechanical-property changes of structural composite materials after low-temperature proton irradiation: Implications for use in SSC magnet systems

    International Nuclear Information System (INIS)

    Morena, J.; Snead, C.L. Jr.; Czajkowski, C.; Skaritka, J.

    1993-01-01

    Longterm physical, mechanical, electrical, and other properties of advanced composites, plastics, and other polymer materials are greatly affected by high-energy proton, neutron, electron, and gamma radiation. The effects of high-energy particles on materials is a critical design parameter to consider when choosing polymeric structural, nonstructural, and elastomeric matrix resin systems. Polymer materials used for filled resins, laminates, seals, gaskets, coatings, insulation and other nonmetallic components must be chosen carefully, and reference data viewed with caution. Most reference data collected in the high-energy physics community to date reflects material property degradation using other than proton irradiations. In most instances, the data were collected for room-temperature irradiations, not 4.2 K or other cryogenic temperatures, and at doses less than 10 8 --10 9 Rad. Energetic proton (and the accompanying spallation-product particles) provide good simulation fidelity to the expected radiation fields predicted for the cold-mass regions of the SSC magnets, especially the corrector magnets. The authors present here results for some structural composite materials which were part of a larger irradiation-characterization of polymeric materials for SSC applications

  14. Isobaric yield curves at A=72 from the spallation of medium mass isotopes by intermediate energy protons

    International Nuclear Information System (INIS)

    Tobin, M.J.; Karol, P.J.; Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)

    1989-01-01

    Cross sections of radionuclides in the A∼72 mass region produced by the interaction 800 MeV protons with 89 Y, /sup 92,96,100/Mo, and 130 Te were measured. Particular emphasis was paid to the measurement of short-lived products far from β stability. The cross sections were used to generate isobaric yield curves at A=72. Precise characterization of these curves showed that the distribution parameters (mean, standard deviation, skewness) vary in a regular fashion with target N/Z. For 89 Y, relative isobaric curves produced by 500 and 800 MeV protons were found to be identical within experimental error. The yield distributions for the /sup 92,96,100/Mo targets also scaled with those from an earlier alpha-induced spallation study. These findings lend strong support to the argument that the spallation mechanism is independent of projectile energy and target composition

  15. DKPRO: A radionuclide decay and reprocessing code

    International Nuclear Information System (INIS)

    Wootan, D.; Schmittroth, F.A.

    1997-01-01

    The DKPRO code solves the general problem of modeling complex nuclear wastes streams using ORIGEN2 radionuclide production files. There is a continuing need for estimates of Hanford radionuclides. Physical measurements are one basis; calculational estimates, the approach represented here, are another. Given a known nuclear fuel history, it is relatively straightforward to calculate radionuclide inventories with codes such as the widely-used Oak Ridge National Laboratory code ORIGEN2

  16. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  17. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  18. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  19. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    Amin, Munib

    2008-12-01

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  20. Transfer of radionuclides into human milk

    International Nuclear Information System (INIS)

    Steiner, M.; Wirth, E.

    1998-01-01

    Up until now the potential radiation exposure to breast-fed babies due to contaminated human milk has not been taken into account, when deriving international limit values and reference levels for radionuclides in foodstuffs, in air at monitored work places or for exposures in the medical field. It was the aim of the research project 'Transfer of radionuclides into human milk' to quantify the transfer of incorporated radionuclides into mother's milk, and develop simple models to estimate the radiation exposure of babies through the ingestion of human milk. The study focused on considerations of the radiation exposure due to the ingestion of contaminated foodstuffs by the mother, the inhalation of radionuclides at monitored work places, and the administration of radiopharmaceuticals to breast-feeding mothers. The blocking of infant thyroid glands by stable iodine in the case of accidental releases of radioiodine was considered as well. (orig.) [de