WorldWideScience

Sample records for energetic particles observed

  1. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    2002-04-01

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  2. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  3. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  4. Recent Observations of Energetic Particles from the Voyager Spacecraft

    Science.gov (United States)

    Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.; Webber, W. R.

    2013-05-01

    The Voyager spacecraft have been exploring the heliosheath since their crossings of the solar wind termination shock on December 2004 (Voyager 1) and August 2007 (Voyager 2). Starting on 7 May 2012, dramatic short-term changes in the intensities of heliospheric particles and galactic cosmic rays have been occurring periodically at Voyager 1. In July, a series of encounters with a heliospheric depletion region occurred, culminating on 25 August 2012 with the durable entry into the region by Voyager 1 (durable at least through the time of this writing in early February 2012). This depletion region is characterized by the disappearance of particles accelerated in the heliosphere, the anomalous cosmic rays and termination shock particles, and the increased intensity of galactic cosmic ray nuclei and electrons. The result is that the low-energy part of the galactic cosmic ray spectra is being revealed for the first time. Data from the magnetometer experiment on Voyager 1 implies that the spacecraft is not yet in the interstellar medium, but it apparently has a good connection path to it. At Voyager 2, dramatic changes haven't occurred but there are longer-term trends in the intensities that are different from what were observed on Voyager 1. We will report on the recent observations of energetic particles from both spacecraft. This work was supported by NASA under contract NNN12AA012.

  5. Observations of Energetic Particle Escape at the Magnetopause: Early Results from the MMS Energetic Ion Spectrometer (EIS)

    Science.gov (United States)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; hide

    2016-01-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  6. ENERGETIC PARTICLE OBSERVATIONS AND PROPAGATION IN THE THREE-DIMENSIONAL HELIOSPHERE DURING THE 2006 DECEMBER EVENTS

    International Nuclear Information System (INIS)

    Malandraki, O. E.; Marsden, R. G.; Tranquille, C.; Lario, D.; Heber, B.; Mewaldt, R. A.; Cohen, C. M. S.; Lanzerotti, L. J.; Forsyth, R. J.; Elliott, H. A.; Vogiatzis, I. I.; Geranios, A.

    2009-01-01

    We report observations of solar energetic particles obtained by the HI-SCALE and COSPIN/LET instruments onboard Ulysses during the period of isolated but intense solar activity in 2006 December, in the declining phase of the solar activity cycle. We present measurements of particle intensities and also discuss observations of particle anisotropies and composition in selected energy ranges. Active Region 10930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. Located over the South Pole of the Sun, at >72 0 S heliographic latitude and 2.8 AU radial distance, Ulysses provided unique measurements for assessing the nature of particle propagation to high latitudes under near-minimum solar activity conditions, in a relatively undisturbed heliosphere. The observations seem to exclude the possibility that magnetic field lines originating at low latitudes reached Ulysses, suggesting either that the energetic particles observed as large solar energetic particle (SEP) events over the South Pole of the Sun in 2006 December were released when propagating coronal waves reached high-latitude field lines connected to Ulysses, or underwent perpendicular diffusion. We also discuss comparisons with energetic particle data acquired by the STEREO and Advanced Composition Explorer in the ecliptic plane near 1 AU during this period.

  7. Location of the source of magnetospheric energetic particle bursts by multispacecraft observations

    International Nuclear Information System (INIS)

    Sarris, E.T.; Krimigis, S.M.; Iijima, T.; Bostrom, C.O.; Armstrong, T.P.

    1976-01-01

    During a magnetic substorm on October 16, 1973 a number of magnetospheric bursts of energetic particles were observed simultaneously by IMP-6 and IMP-7 in the magnetotail (at X/sub SM/approximately-greater-than-32 R/sub e/, Y/sub SM/approximately-greater-than1.2 R/sub e/ and Z/sub SM/SMapprox. =- 4.7 R/sub e/) while the two spacecraft were separated by only approx.1 R/sub e/ along the X/sub sM/ axis (deltaX/sub SM/approx. =1Re, deltaY/sub SM/=deltaZ/sub Sm/approx. = R/sub e/). Detailed anisotropy measurements of 210 and 290 keV protons by the JHU/APL instruments on both spacecraft provide for the first time an indication of the location of the ''source'' of the energetic magnetospheric particles as well as evidence for its movement with speeds from approx.30 to more than 80 km/sec in association with the intensification of the westward auroral electrojet during a magnetic bay at the station closest to the local time of the spacecraft (also local midnight). The size of the source was estimated to be degreeXapprox. =500 km. The observations indicate that in this case energetic particles are accelerated to >1.85 MeV in a moving and localized region in the geomagnetotail

  8. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  9. Approaching solar maximum 24 with STEREO--Multipoint observations of solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Dresing, N.; Heber, B.; Klassen, A., E-mail: dresing@physik.uni-kiel.de [IEAP, University of Kiel, Kiel (Germany); Cohen, C.M.S.; Leske, R.A.; Mewaldt, R.A. [California Institute of Technology, Pasadena, CA (United States); Gomez-Herrero, R. [Space Research Group, University of Alcal´a, Alcal´a (Spain); Mason, G.M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD (United States); Von Rosenvinge, T.T. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2014-07-01

    Since the beginning of the Solar Terrestrial Relations Observatory (STEREO) mission at the end of 2006, the two spacecraft have now separated by more than 130◦ degrees from the Earth. A 360-degree view of the Sun has been possible since February 2011, providing multipoint in situ and remote sensing observations of unprecedented quality. Combining STEREO observations with near-Earth measurements allows the study of solar energetic particle (SEP) events over a wide longitudinal range with minimal radial gradient effects. This contribution provides an overview of recent results obtained by the STEREO/IMPACT team in combination with observations by the ACE and SOHO spacecraft. We focus especially on multi-spacecraft investigations of SEP events. The large longitudinal spread of electron and 3He-rich events as well as unusual anisotropies will be presented and discussed. (author)

  10. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    Science.gov (United States)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  11. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    2000-11-01

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  12. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.

    Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  13. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  14. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  15. Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2017-07-01

    We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, even days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.

  16. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  17. Energetic particles in the heliosphere

    CERN Document Server

    Simnett, George M

    2017-01-01

    This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.

  18. Presentation of the project "An investigation of the early stages of solar eruptions - from remote observations to energetic particles"

    Science.gov (United States)

    Kozarev, Kamen; Veronig, Astrid; Duchlev, Peter; Koleva, Kostadinka; Dechev, Momchil; Miteva, Rositsa; Temmer, Manuela; Dissauer, Karin

    2017-11-01

    Coronal mass ejections (CMEs), one of the most energetic manifestations of solar activity, are complex events, which combine multiple related phenomena occurring on the solar surface, in the extended solar atmosphere (corona), as well as in interplanetary space. We present here an outline of a new collaborative project between scientists from the Bulgarian Academy of Sciences (BAS), Bulgaria and the University of Graz, Austria. The goal of the this research project is to answer the following questions: 1) What are the properties of erupting filaments, CMEs, and CME-driven shock waves near the Sun, and of associated solar energetic particle (SEP) fluxes in interplanetary space? 2) How are these properties related to the coronal acceleration of SEPs? To achieve the scientific goals of this project, we will use remote solar observations with high spatial and temporal resolution to characterize the early stages of coronal eruption events in a systematic way - studying the pre-eruptive behavior of filaments and flares during energy build-up, the kinematics and morphology of CMEs and compressive shock waves, and the signatures of high energy non-thermal particles in both remote and in situ observations.

  19. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  20. Structure of Energetic Particle Mediated Shocks Revisited

    Science.gov (United States)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-05-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1. We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  1. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D. A.

    2011-01-01

    and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines......Multipoint spacecraft observations provide unique opportunities to constrain the propagation and evolution of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere. Using Mars Global Surveyor (MGS) data to study both ICME and solar energetic particle (SEP) events at Mars and OMNI...... separated by only similar to 25 degrees. We model the interplanetary propagation of CME events using the ENLIL version 2.6 3-D MHD code coupled with the Wang-Sheeley-Arge version 1.6 potential source surface model, using Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph...

  2. Ulysses COSPIN observations of cosmic rays and solar energetic particles from the South Pole to the North Pole of the Sun during solar maximum

    Directory of Open Access Journals (Sweden)

    R. B. McKibben

    Full Text Available In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs. At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.

    Key words. Interplanetary physics (cosmic rays – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  3. On Weibull's Spectrum of Nonrelativistic Energetic Particles at IP Shocks: Observations and Theoretical Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Pallocchia, G.; Laurenza, M.; Consolini, G. [INAF—Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-10

    Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a heliocentric distance of 1.08 au, the spacecraft was swept by a perpendicular shock moving away from the Sun. The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the measured particle spectrum over the energy range from 0.1 to 30 MeV. To interpret such an observational result, we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed” stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of the Weibull spectrum in terms of shock-surfing acceleration.

  4. Energetic particle investigation using the ERNE instrument

    Directory of Open Access Journals (Sweden)

    J. Torsti

    1996-05-01

    Full Text Available During solar flares and coronal mass ejections, nuclei and electrons accelerated to high energies are injected into interplanetary space. These accelerated particles can be detected at the SOHO satellite by the ERNE instrument. From the data produced by the instrument, it is possible to identify the particles and to calculate their energy and direction of propagation. Depending on variable coronal/interplanetary conditions, different kinds of effects on the energetic particle transport can be predicted. The problems of interest include, for example, the effects of particle properties (mass, charge, energy, and propagation direction on the particle transport, the particle energy changes in the transport process, and the effects the energetic particles have on the solar-wind plasma. The evolution of the distribution function of the energetic particles can be measured with ERNE to a better accuracy than ever before. This gives us the opportunity to contribute significantly to the modeling of interplanetary transport and acceleration. Once the acceleration/transport bias has been removed, the acceleration-site abundance of elements and their isotopes can be studied in detail and compared with spectroscopic observations.

  5. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Aran, A. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Gomez-Herrero, R.; Dresing, N.; Heber, B., E-mail: david.lario@jhuapl.edu [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany)

    2013-04-10

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ - ({phi} - {phi}{sub 0}){sup 2}/2{sigma}{sup 2}], where {phi} is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, {phi}{sub 0} is the distribution centroid, and {sigma} determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R < 1 AU, allows us to determine a lower limit to the radial dependence of the 71-112 keV electron peak intensities measured along IMF lines. We find five events for which the nominal magnetic footpoint of MESSENGER was less than 20 Degree-Sign apart from the nominal footpoint of a spacecraft near 1 AU. Although the expected theoretical radial dependence for the peak intensity of the events observed along the same field line can be approximated by a functional form R {sup -{alpha}} with {alpha} < 3, we find two events for which {alpha} > 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  6. Juno/JEDI observations of energetic particles near closest approach to Jupiter - Evidence for heavy ion precipitation in the Jovian auroral region

    Science.gov (United States)

    Haggerty, Dennis; Mauk, Barry; Paranicas, Chris; Clark, George; Kollmann, Peter; Rymer, Abigail; Bolton, Scott; Connerney, Jack; Levin, Steve

    2017-04-01

    The Juno spacecraft's polar orbit provides an exceptional opportunity to study auroral processes in the largest and most dynamic auroral region in the solar system. The Jupiter Energetic particle Detector Instruments (JEDI) have SSD telescopes with multiple look directions and additional time-of-flight capabilities to measure ions and electrons from 6 keV to 20 MeV. These instruments resolve major ion species beginning at 30 keV/n, with coarser mass resolution for lower energy ions. JEDI instruments observed energetic heavy ions up to 20 MeV precipitating into the auroral regions during the first few Juno perijoves that have occurred to date. The observed heavy ion intensity was lower than expected, but composition of the precipitating ions included the predicted species oxygen and sulfur. During the first perijove pass, an unexpected element was observed with an atomic mass between oxygen and sulfur with intensity comparable to the other heavy ions. Preliminary analysis of the JEDI composition data indicates magnesium, with an unexpected energy spectrum beginning around 500 keV and extending up through 20 MeV. During the third perijove pass no significant intensity of energetic magnesium was observed, which suggests that the source of this element is intermittent. We report on the new findings of energetic heavy ions from the first few Juno orbits including the auroral regions, observations through closest approach, and discuss possible source mechanisms for the unexpected and transient observation of heavy ions.

  7. Energetic particle mode dynamics in tokamaks

    International Nuclear Information System (INIS)

    Zonca, F.; Briguglio, S.; Fogaccia, G.; Vlad, G.; Chen, L.; Zheng, L.-J.

    2001-01-01

    Energetic Particle Modes (EPM) are strongly driven oscillations excited via wave-particle resonant interactions at the characteristic frequencies of the energetic ions, ω tE , ω BE and/or ω-bar dE , i.e., respectively the transit frequency for circulating particles and the bounce and precessional drift frequencies for trapped ions. A sharp transition in the plasma stability at the critical EPM excitation threshold has been observed by nonperturbative gyrokinetic codes in terms of changes in normalized growth rate (γ/ω A , with ω A =ν A /qR 0 ), real frequency (ω r /ω A ) and parallel wave vector (k parallel qR 0 ) both as α=-R 0 q 2 β' of the thermal plasma and that, α E of fast ions are varied. The present work further explores theoretical aspects of EPM excitations by spatially localized particle sources, possibly associated with frequency chirping, which can radially trap the EPM in the region where the free energy source is strongest. Results of a nonperturbative 3D Hybrid MHD Gyrokinetic code are also presented to emphasize that nonlinear behaviors of EPM's are different from those of Toroidal Alfven Eigenmodes (TAE) and Kinetic TAE (KTAE) and that particle losses and mode saturation are consistent with the mode-particle pumping model (particle radial convection). Results of theoretical analyses of nonlinear EPM dynamics are also presented and the possible overlap with more general nonlinear dynamics problems is discussed. (author)

  8. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  9. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  10. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  11. Baseline composition of solar energetic particles

    International Nuclear Information System (INIS)

    Meyer, J.

    1985-01-01

    We analyze all existing spacecraft observations of the highly variable heavy element composition of solar energetic particles (SEP) during non- 3 He-rich events. All data show the imprint of an ever-present basic composition pattern (dubbed ''mass-unbiased baseline'' SEP composition) that differs from the photospheric composition by a simple bias related to first ionization potential (FIP). In each particular observation, this mass-unbiased baseline composition is being distorted by an additional bias, which is always a monotonic function of mass (or Z). This latter bias varies in amplitude and even sign from observation to observation. To first order, it seems related to differences in the A/Z* ratio between elements (Z* = mean effective charge)

  12. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  13. Solar energetic particles and radio burst emission

    Science.gov (United States)

    Miteva, Rositsa; Samwel, Susan W.; Krupar, Vratislav

    2017-12-01

    We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996-2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection) we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  14. Energetic particles in the jovian magnetotail.

    Science.gov (United States)

    McNutt, R L; Haggerty, D K; Hill, M E; Krimigis, S M; Livi, S; Ho, G C; Gurnee, R S; Mauk, B H; Mitchell, D G; Roelof, E C; McComas, D J; Bagenal, F; Elliott, H A; Brown, L E; Kusterer, M; Vandegriff, J; Stern, S A; Weaver, H A; Spencer, J R; Moore, J M

    2007-10-12

    When the solar wind hits Jupiter's magnetic field, it creates a long magnetotail trailing behind the planet that channels material out of the Jupiter system. The New Horizons spacecraft traversed the length of the jovian magnetotail to >2500 jovian radii (RJ; 1 RJ identical with 71,400 kilometers), observing a high-temperature, multispecies population of energetic particles. Velocity dispersions, anisotropies, and compositional variation seen in the deep-tail (greater, similar 500 RJ) with a approximately 3-day periodicity are similar to variations seen closer to Jupiter in Galileo data. The signatures suggest plasma streaming away from the planet and injection sites in the near-tail region (approximately 200 to 400 RJ) that could be related to magnetic reconnection events. The tail structure remains coherent at least until it reaches the magnetosheath at 1655 RJ.

  15. Acceleration and Propagation of Solar Energetic Particles

    Science.gov (United States)

    Klein, Karl-Ludwig; Dalla, Silvia

    2017-11-01

    Solar Energetic Particles (SEPs) are an important component of Space Weather, including radiation hazard to humans and electronic equipment, and the ionisation of the Earth's atmosphere. We review the key observations of SEPs, our current understanding of their acceleration and transport, and discuss how this knowledge is incorporated within Space Weather forecasting tools. Mechanisms for acceleration during solar flares and at shocks driven by Coronal Mass Ejections (CMEs) are discussed, as well as the timing relationships between signatures of solar eruptive events and the detection of SEPs in interplanetary space. Evidence on how the parameters of SEP events are related to those of the parent solar activity is reviewed and transport effects influencing SEP propagation to near-Earth locations are examined. Finally, the approaches to forecasting Space Weather SEP effects are discussed. We conclude that both flare and CME shock acceleration contribute to Space Weather relevant SEP populations and need to be considered within forecasting tools.

  16. Energetic Particles: From Sun to Heliosphere - and vice versa

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  17. Solar energetic particle anisotropies and insights into particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Leske, R. A., E-mail: ral@srl.caltech.edu; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; Rosenvinge, T. T. von [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  18. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  19. Solar Energetic Particle Composition over Two Solar Cycles as Observed by the Ulysses/HISCALE and ACE/EPAM Pulse Height Analyzers.

    Science.gov (United States)

    Patterson, J. D.; Madanian, H.; Manweiler, J. W.; Lanzerotti, L. J.

    2017-12-01

    We present the compositional variation in the Solar Energetic Particle (SEP) population in the inner heliosphere over two solar cycles using data from the Ulysses Heliospheric Instrument for Spectra, Composition, and Anisotropy at Low Energies (HISCALE) and Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM). The Ulysses mission was active from late 1990 to mid-2009 in a heliopolar orbit inclined by 80° with a perihelion of 1.3 AU and an aphelion of 5.4 AU. The ACE mission has been active since its launch in late 1997 and is in a halo orbit about L1. These two missions provide a total of 27 years of continuous observation in the inner heliosphere with twelve years of simultaneous observation. HISCALE and EPAM data provide species-resolved differential flux and density of SEP between 0.5-5 MeV/nuc. Several ion species (He, C, O, Ne, Si, Fe) are identified using the Pulse Height Analyzer (PHA) system of the Composition Aperture for both instruments. The He density shows a noticeable increase at high solar activity followed by a moderate drop at the quiet time of the solar minimum between cycles 23 and 24. The density of heavier ions (i.e. O and Fe) change minimally with respect to the F10.7 index variations however, certain energy-specific count rates decrease during solar minimum. With Ulysses and ACE observing in different regions of the inner heliosphere, there are significant latitudinal differences in how the O/He ratios vary with the solar cycle. At solar minimum, there is reasonable agreement between the observations from both instruments. At solar max 23, the differences in composition over the course of the solar cycle, and as observed at different heliospheric locations can provide insight to the origins of and acceleration processes differentially affecting solar energetic ions.

  20. CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, R.; Blanco, J.J.; Rodríguez-Pacheco, J. [SRG, Universidad de Alcalá, E-28871 Alcalá de Henares (Spain); Dresing, N.; Klassen, A.; Heber, B.; Banjac, S. [IEAP, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Lario, D. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Agueda, N. [Departament d' Astronomia i Meteorologia. Institut de Ciències del Cosmos. Universitat de Barcelona, E-08028 Barcelona (Spain); Malandraki, O. E., E-mail: raul.gomezh@uah.es [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-01-20

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  1. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  2. The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Richardson, I. G.; Thompson, B. J.; Rosenvinge, T. T. von; Mays, M. L.; Mäkelä, P. A.; Xie, H.; Thakur, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bain, H. M. [Space Sciences Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Zhang, M.; Zhao, L. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL (United States); Cane, H. V. [Department of Mathematics and Physics, University of Tasmania, Hobart (Australia); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Riley, P., E-mail: david.lario@jhuapl.edu [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2017-03-20

    We analyze one of the first solar energetic particle (SEP) events of solar cycle 24 observed at widely separated spacecraft in order to assess the reliability of models currently used to determine the connectivity between the sources of SEPs at the Sun and spacecraft in the inner heliosphere. This SEP event was observed on 2010 August 14 by near-Earth spacecraft, STEREO-A (∼80° west of Earth) and STEREO-B (∼72° east of Earth). In contrast to near-Earth spacecraft, the footpoints of the nominal magnetic field lines connecting STEREO-A and STEREO-B with the Sun were separated from the region where the parent fast halo coronal mass ejection (CME) originated by ∼88° and ∼47° in longitude, respectively. We discuss the properties of the phenomena associated with this solar eruption. Extreme ultraviolet and white-light images are used to specify the extent of the associated CME-driven coronal shock. We then assess whether the SEPs observed at the three heliospheric locations were accelerated by this shock or whether transport mechanisms in the corona and/or interplanetary space provide an alternative explanation for the arrival of particles at the poorly connected spacecraft. A possible scenario consistent with the observations indicates that the observation of SEPs at STEREO-B and near Earth resulted from particle injection by the CME shock onto the field lines connecting to these spacecraft, whereas SEPs reached STEREO-A mostly via cross-field diffusive transport processes. The successes, limitations, and uncertainties of the methods used to resolve the connection between the acceleration sites of SEPs and the spacecraft are evaluated.

  3. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  4. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  5. Solar energetic particles: Acceleration and transport

    Science.gov (United States)

    Cliver, Edward W.

    2000-06-01

    This paper reviews highlights of the 26th ICRC in the area of acceleration and propagation of solar energetic particles (SEPs). New results on SEP charge state and composition, a lively topic during the Conference, are covered in an accompanying paper by Klecker. I begin with a brief historical review of the field to provide context for the key advances/developments on SEP acceleration/propagation presented in Salt Lake City. These include: (1) the use of gamma-ray emissions as diagnostics of the acceleration process(es) and probes of the interaction region; (2) the observation of ~10 GeV (or higher) protons for the 6 November 1997 ground level event by the Milagrito experiment; (3) observations of coronal Moreton waves as ``smoking pistols'' of shock acceleration/injection of SEPs; (4) an investigation of the role of proton event spectra in the current ``two-class'' picture of SEP events; (5) an analysis of the Gnevyshev Gap in SEP activity; (6) a Ulysses-based determination of the dependence of SEP mean free path on radial distance from the Sun and on heliographic latitude, and (7) an examination of the dissipation range in the power spectrum of interplanetary magnetic field fluctuations. I conclude with a discussion of new instrumentation (e.g., Milagro, HESSI) and a look to the expected level of SEP activity for the approaching maximum of solar cycle 23. .

  6. Shock Wave Structure in the Presence of Energetic Particles

    Science.gov (United States)

    Mostafavi, Parisa; Zank, Gary P.; Webb, Gary M.

    2017-09-01

    Energetic particles that are not equilibrated with the thermal plasma (such as pickup ions (PUIs), anomalous cosmic rays (ACRs) and solar energetic particles (SEPs)) can modify the structure of collisionless shock waves. This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM) where observations of shock waves in the e.g., the inner heliosphere show that the energetic particle component pressure is greater than the both the magnetic field and thermal gas pressure (Lario et al., 2015). Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI mediated plasma model is structurally identical to the classical cosmic ray two-fluid model (Axford et al., (1982)), we note that the presence of viscosity at least formally eliminates the need of a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the heliospheric termination shock (HTS), we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1. We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  7. Energetic particle beams in the plasma sheet boundary layer following substorm expansion - Simultaneous near-earth and distant tail observations

    Science.gov (United States)

    Scholer, M.; Baker, D. N.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.; Klecker, B.; Terasawa, T.; Tsurutani, B. T.

    1986-01-01

    Simultaneous observations of ions and electron beams in the near-earth and deep magnetotail following the onset of substorm are analyzed in terms of the substorm neutral line model. The observations were collected on March 20, 1983 with ISSE 1 and 3. Energy fluxes and intensity-time profiles of protons and electrons are studied. The data reveal that the reconnection at the near-earth neutral line produces ions and electrons for the plasma sheet boundary layer. The maximum electric potential along the neutral line is evaluated.

  8. Large gradual solar energetic particle events

    Directory of Open Access Journals (Sweden)

    Mihir Desai

    2016-09-01

    Full Text Available Abstract Solar energetic particles, or SEPs, from suprathermal (few keV up to relativistic ( $$\\sim $$ ∼ few GeV energies are accelerated near the Sun in at least two ways: (1 by magnetic reconnection-driven processes during solar flares resulting in impulsive SEPs, and (2 at fast coronal-mass-ejection-driven shock waves that produce large gradual SEP events. Large gradual SEP events are of particular interest because the accompanying high-energy ( $${>}10$$ > 10 s MeV protons pose serious radiation threats to human explorers living and working beyond low-Earth orbit and to technological assets such as communications and scientific satellites in space. However, a complete understanding of these large SEP events has eluded us primarily because their properties, as observed in Earth orbit, are smeared due to mixing and contributions from many important physical effects. This paper provides a comprehensive review of the current state of knowledge of these important phenomena, and summarizes some of the key questions that will be addressed by two upcoming missions—NASA’s Solar Probe Plus and ESA’s Solar Orbiter. Both of these missions are designed to directly and repeatedly sample the near-Sun environments where interplanetary scattering and transport effects are significantly reduced, allowing us to discriminate between different acceleration sites and mechanisms and to isolate the contributions of numerous physical processes occurring during large SEP events.

  9. Compressive Acceleration of Solar Energetic Particles within Coronal Mass Ejections: Observations and Theory Relevant to the Solar Probe Plus and Solar Orbiter Missions

    Science.gov (United States)

    Roelof, E. C.

    2015-12-01

    Observations of solar energetic particles (SEPs) over Solar Cycles 22-24 included the measurement of their pitch-angle distributions (PADs). When only magnetically "well-connected" SEP events were selected, i.e., with the spacecraft on interplanetary magnetic field (IMF) lines whose coronal foot-points were within about 30 deg of the associated flare site, the PADs were usually "beam-like" during the rise-to-maximum phase (RTM) of the events. This nearly "scatter-free" propagation (due to magnetic focusing of the IMF) revealed that the injection times of the SEPs were delayed up to 10s of minutes after the onset of electromagnetic emissions from the flare. Direct comparison with the flare-associated coronal mass ejections (CMEs) from the western hemisphere indicated that the SEP acceleration/injection was occurring at least 1 Rs into the corona (and often continuing well above that radial distance). Moreover, the RTM profiles exhibited a continuum of shapes, from "spikes" to "pulses" to "ramps", and these shape characterizations ordered the properties of the associated CMEs. Most importantly, when compared at nearly the same near-relativistic velocities, electrons and protons exhibited similar PADs and RTM profiles. Clearly, such orderly patterns in the data call for a single dominant acceleration process that treats all particles of similar velocities the same, regardless of mass and charge. A simple theory that meets all of these requirements, based on nearly scatter-free propagation and energy change within particle "reservoirs" (such as the closed magnetic structure of a CME), has recently been proposed [Roelof, Proc. 14th Ann. Int'l. Astrophys. Conf., IOP, in press, 2015]. The acceleration results from compression (-divV) of the driver plasma, well sunward of the CME shock. Acceleration (e-folding) times of only a few minutes can be obtained from representative parameters of 1000 km/s CMEs. A companion paper [Roelof and Vourlidas, op. cit.], proposed a new

  10. Delay in solar energetic particle onsets at high heliographic latitudes

    Directory of Open Access Journals (Sweden)

    S. Dalla

    2003-06-01

    Full Text Available Ulysses observations have shown that solar energetic particles (SEPs can easily reach high heliographic latitudes. To obtain information on the release and propagation of SEPs prior to their arrival at Ulysses, we analyse the onsets of nine large high-latitude particle events. We measure the onset times in several energy channels, and plot them versus inverse particle speed. This allows us to derive an experimental path length and time of release from the solar atmosphere. We repeat the procedure for near-Earth observations by Wind and SOHO. We find that the derived path lengths at Ulysses are 1.06 to 2.45 times the length of a Parker spiral magnetic field line connecting the spacecraft to the Sun. The time of particle release from the Sun is between 100 and 350 min later than the release time derived from in-ecliptic measurements. We find no evidence of correlation between the delay in release and the inverse of the speed of the CME associated with the event, or the inverse of the speed of the corresponding interplanetary shock. The main parameter determining the magnitude of the delay appears to be the difference in latitude between the flare and the footpoint of the spacecraft.Key words. Interplanetary physics (energetic particles – Solar physics, astrophysics and astronomy (energetic particles, flares and mass ejections

  11. Delay in solar energetic particle onsets at high heliographic latitudes

    Directory of Open Access Journals (Sweden)

    S. Dalla

    Full Text Available Ulysses observations have shown that solar energetic particles (SEPs can easily reach high heliographic latitudes. To obtain information on the release and propagation of SEPs prior to their arrival at Ulysses, we analyse the onsets of nine large high-latitude particle events. We measure the onset times in several energy channels, and plot them versus inverse particle speed. This allows us to derive an experimental path length and time of release from the solar atmosphere. We repeat the procedure for near-Earth observations by Wind and SOHO. We find that the derived path lengths at Ulysses are 1.06 to 2.45 times the length of a Parker spiral magnetic field line connecting the spacecraft to the Sun. The time of particle release from the Sun is between 100 and 350 min later than the release time derived from in-ecliptic measurements. We find no evidence of correlation between the delay in release and the inverse of the speed of the CME associated with the event, or the inverse of the speed of the corresponding interplanetary shock. The main parameter determining the magnitude of the delay appears to be the difference in latitude between the flare and the footpoint of the spacecraft.

    Key words. Interplanetary physics (energetic particles – Solar physics, astrophysics and astronomy (energetic particles, flares and mass ejections

  12. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    2001-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) ''counter'' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  13. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    1999-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) 'counter' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  14. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    -treatment of multiwalled CNTs. A core-sheath structure of the diamond nanorods were identified, with the inner core being diamond crystal and outer shell being amorphous carbon. The diamond nanorods grow along diamond [110] direction. A growth mechanism was proposed. Under irradiation of 60 keV N + and Si + beams at room temperatures, we found that CNTs undergo a non-equilibrium amorphization with ion-generated displacement atoms jumping ballistically from graphite phase to amorphous phase. At high temperature (800 degree C), the recombination of vacancies and interstitials would repair the CNT structure and prevent the CNTs from amorphization. Furthermore, due to vacancy-mending in the graphitic shells, hence decreased shell diameter, and due to growing concentration of carbon atoms in the interior of the tube, the pressure in the inner parts of the system increases. However, unlike interstitials in spherical onions, carbon interstitials in CNTs can easily migrate away from regions with elevated pressure. Thus, radiation generated CNT amorphization can rarely be observed. By irradiating pre-amorphized carbon nanowires at high temperatures, the formation of carbon onions was clearly evidenced by high resolution transmission electron microscope (HRTEM). Such a two-step transformation model, i.e., amorphization at room temperatures and transformation from amorphous carbon to onion-like structure at high temperatures, demonstrated the structural evolution before early nucleation of diamond under energetic particles. A congruous designed compromise between nuclear and electron stopping power makes the diamond nucleation possible in carbon onions. The interconnected CNT networks have fundamental importance in nanoelectronics, integrated circuit connection and reinforcement of composite materials. At room temperatures, the morphological and structural evolution of CNT films under Si + ion beam (60 keV) irradiation was observed by scanning electron microscope and transmission

  15. The Energetic Particle Environment of the Lunar Nearside: SEP Influence

    Science.gov (United States)

    Xu, Xiaojun; Angelopoulos, Vassilis; Wang, Yi; Zuo, Pingbing; Wong, Hon-Cheng; Cui, Jun

    2017-11-01

    The energetic particle environment of the lunar nearside is quite different from that of the lunar farside. Due to the shielding of the Earth’s magnetosphere and the Moon, the lunar nearside may receive much fewer energetic particles from the Sun. It is currently impossible to directly measure the received energetic particle flux of the whole lunar surface. By using the ARTEMIS and Wind observations, we qualitatively studied the shielding effect of the Earth’s magnetosphere and the lunar body from solar energetic particles (SEPs). We found that the Earth’s magnetosphere can effectively shield SEPs with energies up to 4 Mev during the SEP event. However, in the solar wind, the Moon can provide partial shielding from SEPs with energies ≤100 KeV. SEPs with energies above 150 KeV in the lunar shadow show no difference in flux from in the solar wind, which suggests that the nearside and farside are the same in receiving SEPs with energies above 150 KeV during the SEP event.

  16. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    DEFF Research Database (Denmark)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    energetic particles were detected by the same mechanism as galactic cosmic rays; however, their flux levels are far more uncertain due to shielding effects and the energy-dependent response of the microchannel plates. Using the solar energetic particle data, we have developed a catalog of energetic particle...... events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique...

  17. Energetic Particles at High Latitudes of the Heliosphere

    International Nuclear Information System (INIS)

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  18. Are variations in PMSE intensity affected by energetic particle precipitation?

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2002-04-01

    Full Text Available The correlation between variations in Polar Mesosphere Summer Echoes (PMSE and variations in energetic particle precipitation is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD at 67°53' N, 21°06' E. The 30 MHz riometer in Abisko (68°24' N, 18°54' E registered radio wave absorption caused by ionization changes in response to energetic particle precipitation. The relationship between the linear PMSE intensity and the square of absorption has been estimated using the Pearson linear correlation and the Spearman rank correlation. The mean diurnal variation of the square of absorption and the linear PMSE intensity are highly correlated. However, their day-to-day variations show significant correlation only during the late evening hours. The correlation in late evening does not exceed 0.6. This indicates that varying ionization cannot be considered as a primary source of varying PMSE, and the high correlation found when mean diurnal variations are compared is likely a by-product of daily variations caused by other factors.Key words. Ionosphere (particle precipitation Magnetospheric physics (energetic particles, precipitating Meteorology and atmospheric dynamics (precipitation

  19. Are variations in PMSE intensity affected by energetic particle precipitation?

    Directory of Open Access Journals (Sweden)

    V. Barabash

    Full Text Available The correlation between variations in Polar Mesosphere Summer Echoes (PMSE and variations in energetic particle precipitation is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD at 67°53' N, 21°06' E. The 30 MHz riometer in Abisko (68°24' N, 18°54' E registered radio wave absorption caused by ionization changes in response to energetic particle precipitation. The relationship between the linear PMSE intensity and the square of absorption has been estimated using the Pearson linear correlation and the Spearman rank correlation. The mean diurnal variation of the square of absorption and the linear PMSE intensity are highly correlated. However, their day-to-day variations show significant correlation only during the late evening hours. The correlation in late evening does not exceed 0.6. This indicates that varying ionization cannot be considered as a primary source of varying PMSE, and the high correlation found when mean diurnal variations are compared is likely a by-product of daily variations caused by other factors.

    Key words. Ionosphere (particle precipitation Magnetospheric physics (energetic particles, precipitating Meteorology and atmospheric dynamics (precipitation

  20. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  1. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  2. Energetic particle emission: preequilibrium emission and cooperative effects

    Energy Technology Data Exchange (ETDEWEB)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; Zoppo, A. Del; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Piattelli, P.; Santonocito, D. [INFN Lab. Nazionale del Sud, Via A. Doria 44, Catania (Italy); Colonna, N. [INFN, Bari (Italy); Bruno, M.; D Agostino, M.; Mastinu, P.F. [INFN and Dipartimento di Fisica, Bologna (Italy); Gramegna, F. [INFN Laboratorio Nazionale di Legnaro, Padova (Italy); Iori, I.; Fabbietti, L.; Moroni, A. [INFN and Dipartimento di Fisica, Milano (Italy); Margagliotti, G.V.; Milazzo, P.M.; Rui, R.; Vannini, G. [INFN and Dipartimento di Fisica, Trieste (Italy); Blumenfeld, Y.; Scarpaci, J.A. [Institut de Physique Nucleaire, IN2P3CNRS, F91406 Orsay (France)

    2001-09-01

    Full text: The {sup 58} Ni +{sup 58} Ni reaction at 30 A MeV was investigated at Laboratori Nazionale del Sud with the MEDEA and MULTICS apparatus. Energetic protons were detected in coincidence with photons, light charged particles (Z = 1, 2) (LCP) and intermediate and heavy fragments on an event by event basis. Protons with energy extending up to almost 20% of the total available energy, namely much larger than expected by coupling the relative motion with a sharp nucleon Fermi momentum distribution (kinematical limit), were measured in our experiment. We have also investigated the average proton multiplicity as a function of the number of participating nucleons A{sub part} (b) and a striking behavior with increasing energy is found. Indeed, the experimental proton multiplicity (full squares) displays the expected linear dependence on A{sub part} (b) for energy close to the kinematical limit (60 {<=} Ep {<=} 80 MeV), while the multiplicity of extremely energetic protons (130 {<=} Ep {<=} 150 MeV) exhibits an almost quadratic increase with A{sub part}. The comparison with BNV calculations which include the momentum dependence in the effective potential shows that the features of the energetic proton emission are well reproduced up to {approx_equal} 110 MeV while this approach fails to explain the almost quadratic dependence on the number of participant nucleons of the yield of very energetic protons (E{sub p}{sup NN} {>=} 130 MeV). So, the observed behavior calls for the introduction of mechanisms beyond the mean field and two body nucleon-nucleon collisions such as cooperative effects. In conclusions, these results shed some light on the emission of extremely energetic protons and can improve the understanding of the mechanism responsible for deep subthreshold particle production. Moreover, the detailed comparison with dynamical calculations allows to get a deeper insight on the first non equilibrated stage of the reaction where the highest temperatures and

  3. Solar Energetic Particle Events: Phenomenology and Prediction

    Science.gov (United States)

    Gabriel, S. B.; Patrick, G. J.

    2003-04-01

    Solar energetic particle events can cause major disruptions to the operation of spacecraft in earth orbit and outside the earth's magnetosphere and have to be considered for EVA and other manned activities. They may also have an effect on radiation doses received by the crew flying in high altitude aircraft over the polar regions. The occurrence of these events has been assumed to be random, but there would appear to be some solar cycle dependency with a higher annual fluence occuring during a 7 year period, 2 years before and 4 years after the year of solar maximum. Little has been done to try to predict these events in real-time with nearly all of the work concentrating on statistical modelling. Currently our understanding of the causes of these events is not good. But what are the prospects for prediction? Can artificial intelligence techniques be used to predict them in the absence of a more complete understanding of the physics involved? The paper examines the phenomenology of the events, briefly reviews the results of neural network prediction techniques and discusses the conjecture that the underlying physical processes might be related to self-organised criticality and turblent MHD flows.

  4. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  5. Charged Energetic Particle Environment In The Innermost Part Of The Heliosphere: Unsolved Problems

    Science.gov (United States)

    Lario, D.

    2007-01-01

    In situ observations in the innermost part of the heliosphere will provide us with decisive clues regarding the outstanding problems of solar energetic particle origin, acceleration and transport. In order to have successful missions approaching the Sun as close as 0.22 AU, it is indispensable to have an estimation of the energetic particle environment that these missions will encounter. Observations from prior spacecraft that traveled within 1 AU of the Sun allow us to describe the energetic particle populations that missions such as Solar Orbiter (SolO) and Inner Heliospheric Sentinels (IHS) most likely will observe. In this paper, I describe the radial gradients of these particle populations as inferred from particle observations at 1 AU and inner heliocentric distances. I also discuss open questions regarding the processes of particle acceleration and transport throughout the heliosphere that SolO and IHS observations may help to answer.

  6. Irregular Magnetic Fields and Energetic Particles near the Termination Shock

    International Nuclear Information System (INIS)

    Giacalone, J.; Jokipii, J. R.

    2004-01-01

    The physics of magnetic field-line meandering and the associated energetic-particle transport in the outer heliosphere is discussed. We assume that the heliospheric magnetic field, which is frozen into the solar-wind plasma, is composed of both an average and random component. The power in the random component is dominated by spatial scales that are very large (by a few orders of magnitude) compared to the shock thickness. The results from recent numerical simulations are presented. They reveal a number of characteristics which may be related to recent Voyager 1 observations of energetic particles and fields. For instance, low-energy (tens of keV) particles are seen well upstream of the shock that also have large pitch-angle anisotropies. Furthermore, low-energy particles are readily accelerated by the shock, even though their mean-free paths are very large compared to their gyroradii. When averaging over the entire system, the downstream spectra are qualitatively consistent with the theory of diffusive shock acceleration

  7. The Modeling of Pickup Ion or Energetic Particle Mediated Plasmas

    Science.gov (United States)

    Zank, G. P.; Mostafavi, P.; Hunana, P.

    2016-05-01

    Suprathermal energetic particles, such as solar energetic particles (SEPs) in the inner heliosphere and pickup ions (PUIs) in the outer heliosphere and the very local interstellar medium, often form a thermodynamically dominant component in their various environments. In the supersonic solar wind beyond > 10 AU, in the inner heliosheath (IHS), and in the very local interstellar medium (VLISM), PUIs do not equilibrate collisionally with the background plasma. Similarly, SEPs do not equilibrate collisionally with the background solar wind in the inner heliosphere. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. Using a collisionless Chapman-Enskog expansion, we derive a closed system of multi-component equations for a plasma comprised of thermal protons and electrons, and suprathermal particles (SEPs, PUIs). The energetic particles contribute an isotropic scalar pressure to leading order, a collisionless heat flux at the next order, and a collisionless stress tensor at the second-order. The collisionless heat conduction and viscosity in the multi-fluid description results from a nonisotropic energetic particle distribution. A simpler single-fluid MHD-like system of equations with distinct equations of state for both the background plasma and the suprathermal particles is derived. We note briefly potential pitfalls that can emerge in the numerical modeling of collisionless plasma flows that contain a dynamically important energetic particle component.

  8. Design of the detector to observe the energetic charged particles: a part of the solar X-ray spectrophotometer ChemiX onboard Interhelio-Probe mission

    Science.gov (United States)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Siarkowski, Marek; Evgen Kurbatov, mgr..

    2016-07-01

    Cosmic particle radiation may damages payload's electronics, optics, and sensors during of long-term scientific space mission especially the interplanetary ones. That is why it's extremely important to prevent failures of digital electronics, CCDs, semiconductor detectors at the times of passing through regions of enhanced charged particle fluxes. Well developed models of the Earth's radiation belts allow to predict and to protect sensitive equipment against disastrous influence of radiation due to energetic particle contained in the Van Allen belts. In the contrary interplanetary probes flying far away from our planet undergoes passages through clouds of plasma and solar cosmic rays not predictable by present models. Especially these concerns missions planned for non-ecliptic orbits. The practical approach to protect sensitive modules may be to measure the in situ particle fluxes with high time resolution and generation of alarm flags, which will switch off sensitive units of particular scientific equipment. The ChemiX (Chemical composition in X-rays) instrument is being developed by the Solar Physics Division of Polish Space Research Centre for the Interhelio-Probe interplanetary mission. Charged particle bursts can badly affect the regular measurements of X-ray spectra of solar origin. In order to detect presence of these enhanced particle fluxes the Background Particle Monitor (BPM) was developed constituting now a vital part of ChemiX. The BPM measurements of particle fluxes will assist to determine level of X-ray spectra contamination. Simultaneously BPM will measure the energy spectra of ambient particles. We present overall structure, design, technical and a scientific characteristic of BPM, particle sorts, and energy ranges to be registered. We describe nearly autonomous modular structure of BPM consisting of detector head, analogue and digital electronics modules, and of module of secondary power supply [1-3]. Detector head consists of three

  9. Jupiter energetic particle experiment ESAD proton sensor design

    International Nuclear Information System (INIS)

    Gruhn, C.R.; Higbie, P.R.

    1977-12-01

    A proton sensor design for the Jupiter Energetic Particle Experiment is described. The sensor design uses avalanche multiplication in order to lower the effective energy threshold. A complete signal-to-noise analysis is given for this design

  10. Precision Modeling of Solar Energetic Particle Intensity and Anisotropy Profiles

    Science.gov (United States)

    Ruffolo, D.; Sáiz, A.; Bieber, J. W.; Evenson, P.; Pyle, R.; Rujiwarodom, M.; Tooprakai, P.; Wechakama, M.; Khumlumlert, T.

    2006-12-01

    A focused transport equation for solar energetic particles is sufficiently complex that simple analytic approximations are generally inadequate, but the physics is sufficiently well established to permit precise numerical modeling of high energy particle observations at various distances from the Sun. We demonstrate how observed profiles of intensity and anisotropy vs. time can be quantitatively fit to determine an optimal injection profile at the Sun, scattering mean free path λ, and magnetic configuration. For several ground level enhancements (GLE) of solar energetic particles at energies ~ 1 GeV, the start time of injection has been determined to 1 or 2 minutes. In each case this start time coincides, within that precision, to the soft X-ray peak time, when the flare's primary energy release has ended. This is not inconsistent with acceleration at a coronal mass ejection (CME)-driven shock, though the rapid timescale is challenging to understand. For the GLE of 2005 January 20, λ decreases substantially over ~ 10 minutes, which is consistent with concepts of proton-amplified waves. The GLE of 2000 July 14 is properly fit only when a magnetic bottleneck beyond Earth is taken into account, a feature later confirmed by NEAR observations. The long-standing puzzle of the 1989 October 22 event can now be explained by simultaneous injection of relativistic solar particles along both legs of a closed interplanetary magnetic loop, while other reasonable explanations fail the test of quantitative fitting. The unusually long λ (confirming many previous reports) and a low turbulent spectral index hint at unusual properties of turbulence in the loop. While the early GLE peak on 2003 October 28 remains a mystery, the main peak's strong anisotropy is inconsistent with a suggestion of injection along the far leg of a magnetic loop; quantitative fitting fails because of reverse focusing during Sunward motion. With these modeling capabilities, one is poised to take full

  11. Transient Enhancement ('Spike-on-Tail') Observed on Neutral-Beam-Injected Energetic Ion Spectra Using the E||B Neutral Particle Analyzer in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, N. N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fredrickson, E. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Roquemore, A. L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2010-06-01

    An increase of up to four-fold in the E||B Neutral Particle Analyzer (NPA) charge exchange neutral flux localized at the Neutral Beam (NB) injection full energy is observed in the National Spherical Torus Experiment (NSTX). Termed the High-Energy Feature (HEF), it appears on the NB-injected energetic ion spectrum only in discharges where tearing or kink-type modes (f < 10 kHz) are absent, TAE activity (f ~ 10-150 kHz) is weak (δBrms < 75 mGauss) and CAE/GAE activity (f ~ 400 – 1200 kHz) is robust. The feature exhibits a growth time of ~ 20 - 80 ms and occasionally develops a slowing down distribution that continues to evolve over periods of 100's of milliseconds, a time scale long compared with the typical ~ 10's ms equilibration time of the NB injected particles. The HEF is observed only in H-mode (not L-mode) discharges with injected NB power of 4 MW or greater and in the field pitch range v||/v ~ 0.7 – 0.9; i.e. only for passing (never trapped) energetic ions. The HEF is suppressed by vessel conditioning using lithium deposition at rates ~ 100 mg/shot, a level sufficient to suppress ELM activity. Increases of ~ 10 - 30 % in the measured neutron yield and total stored energy are observed to coincide with the feature along with broadening of measured Te(r), Ti(r) and ne(r) profiles. However, TRANSP analysis shows that such increases are driven by plasma profile changes and not the HEF phenomenon itself. Though a definitive mechanism has yet to be developed, the HEF appears to be caused by a form of TAE/CAE wave-particle interaction that distorts of the NB fast ion distribution in phase space.

  12. The onset of energetic particle irradiation in Class 0 protostars

    Science.gov (United States)

    Favre, C.; López-Sepulcre, A.; Ceccarelli, C.; Dominik, C.; Caselli, P.; Caux, E.; Fuente, A.; Kama, M.; Le Bourlot, J.; Lefloch, B.; Lis, D.; Montmerle, T.; Padovani, M.; Vastel, C.

    2017-12-01

    Context. The early stages of low-mass star formation are likely to be subject to intense ionization by protostellar energetic MeV particles. As a result, the surrounding gas is enriched in molecular ions, such as HCO+ and N2H+. Nonetheless, this phenomenon remains poorly understood for Class 0 objects. Recently, based on Herschel observations taken as part of the key programme Chemical HErschel Surveys of Star forming regions (CHESS), a very low HCO+/N2H+ abundance ratio of about three to four, has been reported towards the protocluster OMC-2 FIR4. This finding suggests a cosmic-ray ionization rate in excess of 10-14 s-1, much higher than the canonical value of ζ = 3 × 10-17 s-1 (value expected in quiescent dense clouds). Aims: We aim to assess the specificity of OMC-2 FIR4, we have extended this study to a sample of sources in low- and intermediate mass. More specifically, we seek to measure the HCO+/N2H+ abundance ratio from high energy lines (J ≥ 6) towards this source sample in order to infer the flux of energetic particles in the warm and dense gas surrounding the protostars. Methods: We have used observations performed with the Heterodyne Instrument for the Far-Infrared spectrometer on board the Herschel Space Observatory towards a sample of nine protostars. Results: We report HCO+/N2H+ abundance ratios in the range of five up to 73 towards our source sample. The large error bars do not allow us to conclude whether OMC-2 FIR4 is a peculiar source. Nonetheless, an important result is that the measured HCO+/N2H+ ratio does not vary with the source luminosity. At the present time, OMC-2 FIR4 remains the only source where a high flux of energetic particles is clearly evident. More sensitive and higher angular resolution observations are required to further investigate this process. Herschel is an ESA space observatory with science instruments provided by European-led principal investigator consortia and with important participation from NASA.

  13. The composition of heavy ions in solar energetic particle events

    Science.gov (United States)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.

  14. TRANSMISSION AND EMISSION OF SOLAR ENERGETIC PARTICLES IN SEMI-TRANSPARENT SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory (Oulu Unit), University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  15. NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

    2013-01-31

    Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the

  16. GOES Space Environment Monitor, Energetic Particles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solid state detectors with pulse height discrimination measure proton, alpha-particle, and electron fluxes. E1 and I1 channels are responding primarily to trapped...

  17. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  18. Developing an Empirical Model for Predicting Solar Energetic Particle Events

    Science.gov (United States)

    Quinn, R. A.; Winter, L. M.; Ledbetter, K.; Ashley, S. F.

    2014-12-01

    Solar energetic particle (SEP) events are powerful enhancements in the particle flux received at Earth. These events, often related to coronal mass ejections, can be disruptive to ionospheric communications, destructive to satellites, and pose a health risk to astronauts. To develop a useful forecast for the onset time and peak flux of SEP events, we are examining the radio burst, proton, and electron properties associated with the SEPs of the current solar cycle. Using the Wind/WAVES radio observations from 2010-2013, we analyzed the 123 decametric-hectometric type II solar radio burst properties, the associated type III burst properties, and their correlation with SEP properties determined from analysis of the Geostationary Operational Environmental Satellite (GOES) observations. Through a principal component and logistic regression analyses, we find that the radio properties alone can be used to predict the occurrence of an SEP event with a false alarm rate of 17%, a probability of detection of 65%, and with 88% of the classifications correct. We also explore the use of the > 2 MeV electron flux to forecast proton peak flux and event onset time, with preliminary results suggesting a correlation between the peak electron and proton flux.

  19. Stability, current drive and heating, energetic particles

    International Nuclear Information System (INIS)

    Razumova, K.

    2001-01-01

    The paper summarizes the results presented at the conference Fusion Energy 2000 (FEC 2000) in relation to the following subjects: 1. The possibility of realizing plasma parameters for ITER needs, advanced regimes in tokamaks and stellarators. 2. Stability of plasmas with an appreciable component of fast particles. 3. Low aspect ratio tokamaks. 4. New results with auxiliary heating and current drive methods. 5. β limit and neoclassical tearing mode (NTM) stabilization. 6. Internal transport barriers. (author)

  20. Erosion tests of materials by energetic particle beams

    International Nuclear Information System (INIS)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed

  1. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.

    Science.gov (United States)

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H; Van Allen, J A

    1989-12-15

    The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts /=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the absence of an accurate magnetic-field model close to the planet. Other results indude the absence of upstream ion increases or energetic neutrals

  2. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    2001-09-01

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  3. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  4. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    OpenAIRE

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Str...

  5. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  6. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    International Nuclear Information System (INIS)

    Diamond, Patrick H.

    2011-01-01

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  7. Transport, Acceleration and Spatial Access of Solar Energetic Particles

    Science.gov (United States)

    Borovikov, D.; Sokolov, I.; Effenberger, F.; Jin, M.; Gombosi, T. I.

    2017-12-01

    Solar Energetic Particles (SEPs) are a major branch of space weather. Often driven by Coronal Mass Ejections (CMEs), SEPs have a very high destructive potential, which includes but is not limited to disrupting communication systems on Earth, inflicting harmful and potentially fatal radiation doses to crew members onboard spacecraft and, in extreme cases, to people aboard high altitude flights. However, currently the research community lacks efficient tools to predict such hazardous SEP events. Such a tool would serve as the first step towards improving humanity's preparedness for SEP events and ultimately its ability to mitigate their effects. The main goal of the presented research is to develop a computational tool that provides the said capabilities and meets the community's demand. Our model has the forecasting capability and can be the basis for operational system that will provide live information on the current potential threats posed by SEPs based on observations of the Sun. The tool comprises several numerical models, which are designed to simulate different physical aspects of SEPs. The background conditions in the interplanetary medium, in particular, the Coronal Mass Ejection driving the particle acceleration, play a defining role and are simulated with the state-of-the-art MHD solver, Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US). The newly developed particle code, Multiple-Field-Line-Advection Model for Particle Acceleration (M-FLAMPA), simulates the actual transport and acceleration of SEPs and is coupled to the MHD code. The special property of SEPs, the tendency to follow magnetic lines of force, is fully taken advantage of in the computational model, which substitutes a complicated 3-D model with a multitude of 1-D models. This approach significantly simplifies computations and improves the time performance of the overall model. Also, it plays an important role of mapping the affected region by connecting it with the origin of

  8. Los Alamos energetic particle sensor systems at geostationary orbit

    International Nuclear Information System (INIS)

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes

  9. Predictions of energetic particle radiation in the close Martian environment

    Science.gov (United States)

    McKenna-Lawlor, Susan M. P.; Dryer, M.; Fry, C. D.; Sun, W.; Lario, D.; Deehr, C. S.; Sanahuja, B.; Afonin, V. A.; Verigin, M. I.; Kotova, G. A.

    2005-03-01

    Intense, prolonged solar flare activity during March 1989 was used to provide a retrospective scenario for predictions of associated interplanetary shocks and accompanying particle radiation at planet Mars. Shocks from five major flares were simulated to hit both the Earth and Mars during the interval 9-23 March 1989. The simulated scenario was provided by the Hakamada-Akasofu-Fry version 2 (HAFv.2) solar wind model. Since part of the generally required inputs for the model (specifically metric radio Type II coronal shock speeds) were not available, the shock speeds were iteratively determined via a "calibration" that uses limited IMP 8 particle and sudden storm commencement (SSC) data as proxies for shock arrival at the Earth. The shocks from four major solar flares were, thereby, found to arrive at Mars at times that are appropriate to explain solar energetic particle (SEP) and energetic storm particle (ESP) events recorded in situ by the particle radiation detector experiments Solar Low Energy Detector (SLED) and Low Energy Telescope (LET) aboard Phobos-2. Supporting measurements were provided by the magnetometer (MAGMA) and plasma spectrometer (TAUS) experiments. A gap in the spacecraft records occurred at the simulated time of arrival of the fifth flare-associated shock. There were some uncertainties attending the selection of certain of the events deemed to be "parent" flares. Such uncertainty can be expected in view of the incomplete set of energetic particle, plasma, and magnetic field measurements made at relevant times at both the Earth and Mars (the latter planet was then located at a distance of 1.6 AU, at about 78° east of the Sun-Earth line). Use of the HAFv.2 solar wind model affords a 4-day lead time between predicted and measured space weather events at Mars, with an error of approximately ±12 hours. Solar radiation events of the magnitude studied occur often enough to warrant consideration in the design of both manned and unmanned expeditions to

  10. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.

    1991-01-01

    An imaging position sensitive, particle beam detector is described which is minimally invasive, operates over a wide dynamic range (>10 7 ), and exhibits high spatial resolution. The detector images secondary electrons or ions produced when an energetic particle beam passes through a thin foil. These secondary electrons or ions are transported onto a two dimensional imaging detector using stigmatic ion optics. The detector has been employed as a tuning aid for the Ion Microtomography (IMT) system at Sandia National Laboratories and its performance in this application will be discussed

  11. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    International Nuclear Information System (INIS)

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Sibeck, David G.

    2017-01-01

    Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observations beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.

  12. JEDI -- The Jupiter Energetic Particle Detector for the Juno mission

    Science.gov (United States)

    Haggerty, D. K.; Mauk, B. H.; Paranicas, C. P.

    2008-12-01

    The Juno mission provides the first opportunity to conduct an in-depth exploration of Jupiter's polar magnetosphere. The high-inclination, low-periapsis orbit provides in-situ access to three critical regions: the auroral magnetic field lines, the equatorial magnetosphere, and the polar ionosphere. The Jupiter Energetic Particle Detector Instrument (JEDI) is one of several Juno magnetospheric instruments that will work together to resolve critical scientific questions about these novel environments, most importantly how Jupiter's dramatic aurora is generated. JEDI measures the energy, spectra, mass species (H, He, O, S), and angular distributions of the higher energy charged particles that: 1) are accelerated at low altitude by Jovian auroral processes, 2) precipitate into Jupiter's upper atmosphere, 3) heat and ionize the Jovian upper atmosphere, and 4) populate Jupiter's inner magnetosphere. JEDI is a compact, light-weight, time-of-flight (TOF) spectrometer that makes 3-parameter TOF and energy ion measurements, 2-parameter TOF-only ion measurements, and single parameter electron measurements in the 10-keV to 10-MeV ion and the 25-keV to 1-MeV electron energy range. The rapid spacecraft motion and slow spacecraft rotation requires that JEDI simultaneously and continuously resolve both magnetic loss cones at every position inside of ~3RJ. To achieve these measurements JEDI uses multiple sensors, each with six angular sectors evenly distributed in a 160° x 12° fan. Through these multiple views JEDI continuously samples within a 360° plane roughly normal to the spacecraft spin axis with full-sky coplanar coverage achieved each spacecraft spin. JEDI with its low resource requirements and rad-hard, high-speed electronics will make the demanding scientific observations required by the Juno mission.

  13. A turbulent bed contactor: energetic efficiency for particle collection

    Directory of Open Access Journals (Sweden)

    M. L. Gimenes

    2007-03-01

    Full Text Available Particle collection experiments were conducted in a fluidizing irrigated bed to evaluate the performance of mobile packings: 38 x 50 mm plain oblate spheroids 38 mm ID plain spheres and alternative perforated spheres with a 38 mm ID and 10% and 25% free areas were used as fluidizing media in a 0.264 m diameter and 1.20 m high turbulent bed contactor (TBC. Particle collection experiments were carried out above the minimum fluidization velocity, using as particulate test powder polysized alumina (size 1.5 to 5.5 mm. Experimental results demonstrated that the perforated spheres performed better in collecting particles than the other packings tested. The efficiency of particle collection was analysed based on energy consumption in the TBC, using the energetic efficiency concept. It was verified that not much more energy was consumed per unit of gas flow in fluidized beds of perforated packings than in those of conventional plain sphere packings, since the perforated spheres were more energetically efficient for particle collection than plain spheres and oblate spheroid packings.

  14. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    Science.gov (United States)

    Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang

    2015-02-01

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle

  15. Stellar energetic particle ionization in protoplanetary disks around T Tauri stars

    Science.gov (United States)

    Rab, Ch.; Güdel, M.; Padovani, M.; Kamp, I.; Thi, W.-F.; Woitke, P.; Aresu, G.

    2017-07-01

    Context. Anomalies in the abundance measurements of short lived radionuclides in meteorites indicate that the protosolar nebulae was irradiated by a large number of energetic particles (E ≳ 10 MeV). The particle flux of the contemporary Sun cannot explain these anomalies. However, similar to T Tauri stars the young Sun was more active and probably produced enough high energy particles to explain those anomalies. Aims: We aim to study the interaction of stellar energetic particles with the gas component of the disk (I.e. ionization of molecular hydrogen) and identify possible observational tracers of this interaction. Methods: We used a 2D radiation thermo-chemical protoplanetary disk code to model a disk representative for T Tauri stars. We used a particle energy distribution derived from solar flare observations and an enhanced stellar particle flux proposed for T Tauri stars. For this particle spectrum we calculated the stellar particle ionization rate throughout the disk with an accurate particle transport model. We studied the impact of stellar particles for models with varying X-ray and cosmic-ray ionization rates. Results: We find that stellar particle ionization has a significant impact on the abundances of the common disk ionization tracers HCO+ and N2H+, especially in models with low cosmic-ray ionization rates (e.g. 10-19 s-1 for molecular hydrogen). In contrast to cosmic rays and X-rays, stellar particles cannot reach the midplane of the disk. Therefore molecular ions residing in the disk surface layers are more affected by stellar particle ionization than molecular ions tracing the cold layers and midplane of the disk. Conclusions: Spatially resolved observations of molecular ions tracing different vertical layers of the disk allow to disentangle the contribution of stellar particle ionization from other competing ionization sources. Modelling such observations with a model like the one presented here allows to constrain the stellar particle flux in

  16. Foreshock waves as observed in energetic ion flux

    Czech Academy of Sciences Publication Activity Database

    Petrukovich, A. A.; Chugunova, O. M.; Inamori, T.; Kudela, Karel; Štetiarová, J.

    2017-01-01

    Roč. 122, č. 5 (2017), s. 4895-4904 ISSN 2169-9380 R&D Projects: GA MŠk EF15_003/0000481 Institutional support: RVO:61389005 Keywords : foreshock * waves * bow shock * energetic particles Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.733, year: 2016

  17. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.

  18. The "Puck" energetic charged particle detector: Design, heritage, and advancements

    Science.gov (United States)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  19. Preparation and characterization of energetic materials coated superfine aluminum particles

    International Nuclear Information System (INIS)

    Liu, Songsong; Ye, Mingquan; Han, Aijun; Chen, Xin

    2014-01-01

    This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20–50 nm. The active aluminum content of different coated samples was measured by means of oxidation–reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG–DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

  20. Stability, energetic particles, waves, and current drive summary

    International Nuclear Information System (INIS)

    Stambaugh, R.D.

    2005-01-01

    This is the summary paper for the subjects of plasma stability, energetic particles, waves, and current drive for the 20th IAEA Fusion Energy Conference, 1-6 November 2004, Vilamoura, Portugal. Material summarized herein was drawn from 65 contributed papers and 21 overview papers. The distribution of contributed papers by subjects is shown. Significant advances were reported on the principal instabilities in magnetically confined plasmas, even looking forward to the burning plasma state. Wave-plasma physics is maturing and novel methods of current drive and noninductive current generation are being developed. (author)

  1. Calibration of a detector system for solar energetic particles analysis

    Science.gov (United States)

    Medina, Jose; Delperal, L.; Sanchez, S.; Meziat, D.

    1992-09-01

    The heavy ions calibration of a detector telescope is presented. The telescope is able to study solar energetic particles from helium to iron up to an energy of 50 MeV/nucleon. The telescope consists of four silicon surfer barrier circular detectors with a 40 degree aperture angle. The calibration was performed in the VICKS (German acronym for Van der Graaf isochron cyclotron combination for heavy ions) accelerator with a 795 MeV ion beam. The raw data, charge and mass spectra are presented, concluding a suitable resolution in charge and mass for registered fragments.

  2. An Overview of Energetic Particle Measurements in the Jovian Magnetosphere with the EPAC Sensor on Ulysses.

    Science.gov (United States)

    Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J

    1992-09-11

    Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.

  3. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  4. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye Huanchun; Breizman, B.N.

    1992-01-01

    The linear response of energetic particles of the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width; when the banana width Δ b is much larger than the mode thickness Δ m , we obtain a new compact expression for the linear power transfer. When Δ m /Δ b m /Δ b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balanced-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (vertical strokev parallel vertical stroke=v A ) is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (vertical strokev parallel vertical stroke=v A /(2l-1) with l≥2) is substantially reduced. (orig.)

  5. Theory of resistive magnetohydrodynamic instabilities excited by energetic trapped particles in large-size tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.

    1987-01-01

    A theory describing excitation of resistive magnetohydrodynamic instabilities due to a population of energetic particles, trapped in region of adverse curvature on energetic particles, trapped in region of adverse curvature in tokamaks, is presented. Theory's principal motivation is observation that high magnetic-field strengths and large geometric dimensions characteristic of present-generation thermonuclear fusion devices, places them in a frequency regime whereby processional drift frequency of auxiliary hot-ion species, in order of magnitude, falls below a typical inverse resistive interchange time scale, so that inclusion of resistive dissipation effects becomes important. Destabilization of the resistive internal kink mode by these suprathermal particles is first investigated. Using variational techniques, a generalized dispersion relation governing such modes, which recovers ideal theory in its appropriate limit, is derived and analyzed using Nyquist-diagrammatic techniques. An important implication of theory for present-generation fusion devices is that they will be stable to fishbone activity. Interaction of energetic particles with resistive interchange-ballooning modes is taken up. A population of hot particles, deeply trapped on adverse curvature side in tokamaks, can resonantly destabilize resistive interchange mode, which is stable in their absence because of favorable average curvature. Both modes are different from their usual resistive magnetohydrodynamic counterparts in their destabilization mechanism

  6. Kinetic description of the interaction between energetic particles and waves in fusion plasmas

    International Nuclear Information System (INIS)

    Zarzoso, D.

    2012-09-01

    The impact of energetic particle transport on turbulence has been so far little explored and constitutes the main focus of this thesis. We investigate two critical issues: (1) the properties of one of the generation mechanisms of energetic particles and (2) the impact of energetic particles on turbulence. The generation of energetic particles is studied in ICRH discharges. We quantify the energetic particle kinetic effects on the discharge properties. For this purpose, we introduce the velocity anisotropy, which is essential to model ICRH scenarios, characterized by perpendicular heating rather than parallel. This is done by means of a full-wave 3D solver called EVE coupled to a module called AQL. This module solves the Fokker-Planck equation in both parallel and perpendicular directions in velocity space. The coupling EVE-AQL provides the self-consistent response of the plasma. The importance of the anisotropy is evidenced by the formation of a long tail in the distribution function for high perpendicular velocities, modifying the properties of the discharge. The impact of energetic particles on electrostatic turbulence is evidenced by means of the full-f 5D gyrokinetic GYSELA code. This is done in two steps. First, the excitation of a particular class of energetic modes in the acoustic range of frequency (EGAMs) is demonstrated. We predict a theoretical linear threshold for the excitation of EGAMs that is verified numerically in neoclassical GYSELA simulations. In addition, the structure of the distribution function is found to impact the excitation and saturation of the modes. Second, EGAMs are excited for the first time in global, full-f and flux-driven turbulent simulations. For this purpose, a heating source is implemented in GYSELA. The effects of this source on turbulence are predicted analytically and corroborated numerically, in particular the possibility of turbulence suppression. In the simulations presented in this thesis, EGAMs are found to interact

  7. Interactions of energetic particles and clusters with solids

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Benedek, R.

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and ''cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs

  8. Modeling geomagnetic shielding of solar energetic particles and cosmic rays

    Science.gov (United States)

    Kress, B. T.

    2009-12-01

    Solar energetic particles (SEPs) are a space weather hazard posing risks to manned and robotic space flight missions. At low- to mid-latitudes the Earth's magnetic field usually shields the upper atmosphere and spacecraft in low Earth orbit from SEPs. During severe geomagnetic storms distortion of the Earth's field suppresses geomagnetic shielding giving SEPs access to Earth at the mid-latitudes. Significant variations in geomagnetic shielding can occur on timescales of an hour or less in response to changes in the solar wind dynamic pressure and IMF. Geomagnetic shielding of energetic ions is quantified in terms of cutoff rigidity, and a dynamic geomagnetic cutoff model can be used for predicting SEP and cosmic ray fluxes in geospace. Two advancements in recent years that have made a real-time geomagnetic cutoff rigidity model a possibility are (1) increased computer power, and (2) the development of accurate dynamic geomagnetic field models that respond to changes in Dst, solar wind dynamic pressure and IMF. A numerical model capable of a real time cutoff prediction will be presented. Issues and techniques related to modeling SEP and cosmic ray fluxes in the magnetosphere will be discussed.

  9. Nonlinear MHD and energetic particle modes in stellarators

    International Nuclear Information System (INIS)

    Strauss, H.R.

    2002-01-01

    The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When beta exceeds a threshold, low poloidal mode number (m=6∼18) modes grow exponentially, clearly distinguishable from the equilibrium evolution. Simulations of NCSX have beta limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. With sufficient viscosity, the growth rate becomes slow enough to allow calculations of magnetic island evolution. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two - period compact stellarator obtained a predominantly n=1 toroidal mode with about the expected TAE frequency. Work is in progress to study fast ion-driven Alfven modes in NCSX. (author)

  10. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    2003-12-01

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  11. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  12. Energetic protons at Mars: interpretation of SLED/Phobos-2 observations by a kinetic model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2012-11-01

    Full Text Available Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs from the Sun can penetrate close to the planet (under some circumstances reaching the surface. On 13 March 1989 the SLED instrument aboard the Phobos-2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8 RM. In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3-D self-consistent hybrid model (HYB-Mars where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1 a flux enhancement near the inbound bow shock, (2 the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3 the energy dependency of the flux enhancement near the bow shock and (4 how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars–solar wind interaction significantly modulated the Martian energetic particle environment.

  13. Energetic protons at Mars. Interpretation of SLED/Phobos-2 observations by a kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, E.; Alho, M.; Jarvinen, R.; Dyadechkin, S. [Finnish Meteorological Institute, Helsinki (Finland); McKenna-Lawlor, S. [Space Technology Ireland, Maynooth, Co. Kildare (Ireland); Afonin, V.V. [Space Research Institute, Moscow (Russian Federation)

    2012-07-01

    Mars has neither a significant global intrinsic magnetic field nor a dense atmosphere. Therefore, solar energetic particles (SEPs) from the Sun can penetrate close to the planet (under some circumstances reaching the surface). On 13 March 1989 the SLED instrument aboard the Phobos- 2 spacecraft recorded the presence of SEPs near Mars while traversing a circular orbit (at 2.8RM). In the present study the response of the Martian plasma environment to SEP impingement on 13 March was simulated using a kinetic model. The electric and magnetic fields were derived using a 3- D self-consistent hybrid model (HYB-Mars) where ions are modelled as particles while electrons form a massless charge neutralizing fluid. The case study shows that the model successfully reproduced several of the observed features of the in situ observations: (1) a flux enhancement near the inbound bow shock, (2) the formation of a magnetic shadow where the energetic particle flux was decreased relative to its solar wind values, (3) the energy dependency of the flux enhancement near the bow shock and (4) how the size of the magnetic shadow depends on the incident particle energy. Overall, it is demonstrated that the Martian magnetic field environment resulting from the Mars-solar wind interaction significantly modulated the Martian energetic particle environment. (orig.)

  14. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  15. Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2018-04-01

    The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in {}3He/{}4He from resonant wave-particle interactions in the small "impulsive" SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio A/Q, rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the "gradual" events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but A/Q-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states Q show coronal temperatures of 1-2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of Q are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of A/Q, we can use abundances to deduce the probable Q-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs

  16. Synthetic NPA diagnostic for energetic particles in JET plasmas

    Science.gov (United States)

    Varje, J.; Sirén, P.; Weisen, H.; Kurki-Suonio, T.; Äkäslompolo, S.; contributors, JET

    2017-11-01

    Neutral particle analysis (NPA) is one of the few methods for diagnosing fast ions inside a plasma by measuring neutral atom fluxes emitted due to charge exchange reactions. The JET tokamak features an NPA diagnostic which measures neutral atom fluxes and energy spectra simultaneously for hydrogen, deuterium and tritium species. A synthetic NPA diagnostic has been developed and used to interpret these measurements to diagnose energetic particles in JET plasmas with neutral beam injection (NBI) heating. The synthetic NPA diagnostic performs a Monte Carlo calculation of the neutral atom fluxes in a realistic geometry. The 4D fast ion distributions, representing NBI ions, were simulated using the Monte Carlo orbit-following code ASCOT. Neutral atom density profiles were calculated using the FRANTIC neutral code in the JINTRAC modelling suite. Additionally, for rapid analysis, a scan of neutral profiles was precalculated with FRANTIC for a range of typical plasma parameters. These were taken from the JETPEAK database, which includes a comprehensive set of data from the flat-top phases of nearly all discharges in recent JET campaigns. The synthetic diagnostic was applied to various JET plasmas in the recent hydrogen campaign where different hydrogen/deuterium mixtures and NBI configurations were used. The simulated neutral fluxes from the fast ion distributions were found to agree with the measured fluxes, reproducing the slowing-down profiles for different beam isotopes and energies and quantitatively estimating the fraction of hydrogen and deuterium fast ions.

  17. Energetic Particle Hybrid Simulations for Kinetic Ring Current Dynamics

    Science.gov (United States)

    Amano, T.; Miyoshi, Y.; Seki, K.

    2016-12-01

    The energetic ring current particles dominate the plasma pressure in the inner magnetosphere. Therefore, it is essential to take into account the ring current dynamics in understanding the various inner magnetospheric phenomena. It has been known that the Magnetohydrodynamics (MHD) approximation is not adequate in numerical modeling of the ring current dynamics and the kinetic effect associated with the ring current ions must be included in a self-consistent manner. In particular, the so-called drift-bounce resonance including finite Larmor radius correction has been considered to be a plausible mechanism for internal excitation of ULF waves. However, the scenario has not been confirmed in a self-consistent simulation. We have developed a new three-dimensional numerical simulation code that incorporates the self-consistent coupling between the fully kinetic ring current particle dynamics and the cold background plasma. In other words, it is essentially a hybrid code that solves the ring current ions by using the particle-in-cell method, whereas the two-fluid approximation is adopted for the background electron and proton fluids. The coupling between the two populations has been introduced in a systematic manner. By performing kinetic temperature-anisotropy driven instabilities, we show that the code is indeed capable of describing the kinetic effect associated with the ring current ions. We also discuss three-dimensional simulation results using an approximate magnetosphere-like equilibrium as an initial condition. The initial equilibrium was obtained by iteratively solving a Grad-Shafranov-like equation for an anisotropic bounce-averaged ring current pressure distribution in a two-dimensional dipole-like potential magnetic field. Depending on parameters, we believe that the simulation model should be able to reproduce ULF wave excitation via drift-bounce resonance. Simulation results with different plasma beta, temperature anisotropy, and pressure gradient scale

  18. Magnetospheric Multiscale (MMS) Observations of Energetic Ion Response to Magnetotail Dipolarization Events

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.

  19. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  20. Energetic particle showers over Mars from comet Siding-Spring

    Science.gov (United States)

    Sanchez-Cano, B.; Witasse, O.; Lester, M.; Rahmati, A.; Cowley, S. W. H.; Ambrosi, R.; Costa, M.; Espley, J.; Guo, J.; Leblanc, F.; Lillis, R.; Plaut, J. J.; Wimmer-Schweingruber, R. F.

    2017-09-01

    On October 19th 2014, Mars experienced a close encounter with Comet C/2013 A1 (Siding Spring), at a distance of only 141,000 km, or one third the Earth Moon distance. The gaseous coma washed over Mars and Mars passed directly through the cometary debris stream [1]. As a close encounter of this type is predicted only once in 100,000 years, this is likely the only opportunity for measurements associated with planetary/cometary encounters. Additionally, the encounter was masked by the transit of a powerful Coronal Mass Ejection (CME) 44 hours before [2]. Thus, the comet flyby took place when the Martian plasma system was still recovering from the CME impact, whilst the solar wind passing Mars remained significantly disturbed. In this study, we investigate the interaction of the comet with the solar wind, and their effects on the shock-accelerated energetic particles that precipitate into the Mars' atmosphere. The study is based on data from MAVEN, Mars Odyssey, MSL and Mars Express missions.

  1. Nonlinear MHD and energetic particle modes in stellarators

    International Nuclear Information System (INIS)

    Strauss, H.R.; Fu, G.Y.; Park, W.; Breslau, J.; Sugiyama, L.E.

    2003-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas using multiple levels of physics, geometry and grid models. The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When β exceeds a threshold, moderate toroidal mode number (n ∼ 10) modes grow exponentially, clearly distinguishable from the equilibrium evolution. The β limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. At low resistivity, the modes couple to resistive interchanges, which are unstable in most stellarators. Two fluid simulations with M3D show that resistive modes can be stabilized by diamagnetic drift. The two fluid computations are done with a realistic value of the Hall parameter, the ratio of ion skin depth to major radius. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two-period compact stellarator obtained a predominantly n=1 toroidal mode with the expected TAE frequency. It is found that TAE modes are more stable in the two-period compact stellarator that in a tokamak with the same q and pressure profiles. M3D combines a two dimensional unstructured mesh with finite element discretization in poloidal planes, and fourth order finite differencing in the toroidal direction. (author)

  2. Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool

    Science.gov (United States)

    Anastasiadis, A.; Papaioannou, A.; Sandberg, I.; Georgoulis, M.; Tziotziou, K.; Kouloumvakos, A.; Jiggens, P.

    2017-09-01

    A novel integrated prediction system for solar flares (SFs) and solar energetic particle (SEP) events is presented here. The tool called forecasting solar particle events and flares (FORSPEF) provides forecasts of solar eruptive events, such as SFs with a projection to occurrence and velocity of coronal mass ejections (CMEs), and the likelihood of occurrence of an SEP event. In addition, the tool provides nowcasting of SEP events based on actual SF and CME near real-time data, as well as the SEP characteristics ( e.g. peak flux, fluence, rise time, and duration) per parent solar event. The prediction of SFs relies on the effective connected magnetic field strength (B_{eff}) metric, which is based on an assessment of potentially flaring active-region (AR) magnetic configurations, and it uses a sophisticated statistical analysis of a large number of AR magnetograms. For the prediction of SEP events, new statistical methods have been developed for the likelihood of the SEP occurrence and the expected SEP characteristics. The prediction window in the forecasting scheme is 24 hours with a refresh rate of 3 hours, while the respective prediction time for the nowcasting scheme depends on the availability of the near real-time data and ranges between 15 - 20 minutes for solar flares and 6 hours for CMEs. We present the modules of the FORSPEF system, their interconnection, and the operational setup. Finally, we demonstrate the validation of the modules of the FORSPEF tool using categorical scores constructed on archived data, and we also discuss independent case studies.

  3. 3He-rich Solar Energetic Particles in Helical Jets on the Sun

    Science.gov (United States)

    Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.; Wiedenbeck, Mark E.; Gómez-Herrero, Raúl; Nitta, Nariaki V.

    2018-01-01

    Particle acceleration in stellar flares is ubiquitous in the universe; however, our Sun is the only astrophysical object where energetic particles and their source flares can both be observed. The acceleration mechanism in solar flares, tremendously enhancing (up to a factor of 10,000) rare elements like 3He and ultra-heavy nuclei, has been puzzling for almost 50 years. Here we present some of the most intense 3He- and Fe-rich solar energetic particle events ever reported. The events were accompanied by nonrelativistic electron events and type-III radio bursts. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. The helical jets originated in relatively small, compact active regions, located at the coronal-hole boundary. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories on the backside of the Sun, during the period of increased solar activity in 2014. The helical jets may be a distinct feature of these intense events that is related to the production of high 3He and Fe enrichments.

  4. Multipoint observations of energetic electron injections with MMS and Van Allen Probes

    Science.gov (United States)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Claudepierre, S. G.; Jaynes, A. N.; Baker, D. N.; Reeves, G. D.; Cohen, I. J.; Mauk, B.; Li, W.; Kletzing, C.; Torbert, R. B.; Burch, J. L.

    2016-12-01

    Between March and September of 2016, the orbits of NASA's Magnetospheric Multiscale (MMS) and Van Allen Probes missions overlapped on the dawn side of the near-equatorial magnetosphere, a region ideal for studying injections of 10s to 100s of keV electrons from the plasma sheet into the inner magnetosphere. During this period, the four MMS spacecraft also underwent a series of conjunctions with both Van Allen Probes, including several in which all six spacecraft were within 1 Earth radii of each other. From such multipoint observations, we investigate the connection between Earth's magnetotail and inner magnetosphere via dipolarization events and the energetic particle injections associated with them. Using the multipoint MMS data, we show how dipolarization fronts surge earthwards through the tail at 100s of kilometers per second, corresponding to strong electric fields that accelerate energetic particles and transport them earthward. Combining MMS with Van Allen Probes, we are able to estimate the transport of particles over larger spatial scales (macroscopic view) and multipoint observations of wave activity during close conjunctions (microscopic view). With such observations, we examine and report on new perspectives concerning the role of energetic electron injections as the seed populations of Earth's outer radiation belt electrons as well as the relationship between freshly injected electrons and chorus and ultra-low frequency (ULF) wave activity.

  5. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    Science.gov (United States)

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  6. Aerosol particle charger and an SO2 reactor using energetic electrons

    International Nuclear Information System (INIS)

    Davis, R.H.

    1984-01-01

    Two properties of energetic electrons in gas, their high specific ionization and their production of radicals and other chemically active specie, have promising applications to the cleanup of flue gas from coal combustion. The copious ionization has been used in a test particle charger to electrically charge 1 and 3 μm particles for subsequent removal by electrostatic precipitation. Particle charge greater than 5 times the theoretical ionic charging value for 1 μm particles have been observed in a bi-electrode electron beam precharger in which the beam energy is matched with the electrode spacing. In another test device, pulsed streamer coronas have been used to release and to energize electrons which promote gas phase chemical reactions and remote sulfur dioxide from humid air with high efficiency. The energized electrons produce oxidant radicals and chemically active specie which convert the SO 2 into sulfuric acid mist. While reported separately here, the two applications of energetic electrons may be amenable to combination in an integrated system for the combined treatment of flue gas

  7. THE 2012 JULY 23 BACKSIDE ERUPTION: AN EXTREME ENERGETIC PARTICLE EVENT?

    Energy Technology Data Exchange (ETDEWEB)

    Gopalswamy, N. [Code 671, Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Yashiro, S.; Thakur, N.; Mäkelä, P.; Xie, H.; Akiyama, S., E-mail: nat.gopalswamy@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States)

    2016-12-20

    The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr). The associated solar energetic particle (SEP) event had a >10 MeV proton flux peaking at ∼5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to gigaelectronvolt energies). The times of maximum and fluence spectra in the range 10–100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed (>2000 km s{sup −1}), the initial acceleration (∼1.70 km s{sup −2}), and the shock-formation height (∼1.5 solar radii) were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.

  8. The 2012 July 23 Backside Eruption: An Extreme Energetic Particle Event?

    Science.gov (United States)

    Gopalswamy, N.; Yashiro, S.; Thakur, N.; Makela, P.; Xie, H.; Akiyama, S.

    2016-01-01

    The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr).The associated solar energetic particle (SEP) event had a greater than 10 MeV proton flux peaking at approximately 5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to giga-electron volt energies). The times of maximum and fluence spectra in the range 10100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed greater than (2000 km s(exp -1), the initial acceleration (approximately 1.70 km s(exp -2), and the shock-formation height (approximately 1.5 solar radii)were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.

  9. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1999-09-01

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from  X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.Key words. Magnetospheric physics (magnetosheath; magnetotail boundary layers; storms and substorms

  10. The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Mauk, B. H.; Blake, J. B.; Baker, D. N.; Clemmons, J. H.; Reeves, G. D.; Spence, H. E.; Jaskulek, S. E.; Schlemm, C. E.; Brown, L. E.; Cooper, S. A.; Craft, J. V.; Fennell, J. F.; Gurnee, R. S.; Hammock, C. M.; Hayes, J. R.; Hill, P. A.; Ho, G. C.; Hutcheson, J. C.; Jacques, A. D.; Kerem, S.; Mitchell, D. G.; Nelson, K. S.; Paschalidis, N. P.; Rossano, E.; Stokes, M. R.; Westlake, J. H.

    2016-03-01

    The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth's magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly's Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to >0.5 MeV (with capabilities to measure up to >1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to >0.5 MeV, and also measures total ion energy distributions from 45 keV to >0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth

  11. Identification of high-energetic particles by transition radiation

    International Nuclear Information System (INIS)

    Struczinski, W.

    1986-01-01

    This thesis gives a comprehensive survey on the application of the transition radiation for the particle identification. After a short historical review on the prediction and the detection of the transition radiation its theoretical foundations are more precisely explained. They form the foundations for the construction of an optimal transition radiation detector the principal construction of which is described. The next chapter shows some experiments by which the main predictions of the transition-radiation theory are confirmed. Then the construction and operation of two transition-radiation detectors are described which were applied at the ISR respectively SPS in the CERN in Geneva in complex experiments. The detector applied at the ISR served for the e ± identification. With two lithium radiators which were followed by xenon-filled proportional chambers an e/π separation of ≅ 10 -2 could be reached. The transition-radiation detector applied in the SPS was integrated into the European Hybrid Spectrometer. It served for the identification of high-energetic pions (> or approx. 90 GeV) against kaons and protons. With twenty units of carbon-fiber radiators which were followed by xenon-filled proportional chambers a π/K, p separation of better than 1:20 for momenta above 100 GeV could be reached. The cluster-counting method is then presented. Finally, a survey on the contemporary status in the development of transition-radiation detectors for the e/π separation is given. It is shown that by an about half a meter long detector the radiators of which consist of carbon fibers an e/π separation in the order of magnitude of ≅ 10 -2 can be reached. (orig./HSI) [de

  12. Relating Solar Energetic Particle Event Fluences to Peak Intensities

    Science.gov (United States)

    Kahler, Stephen W.; Ling, Alan G.

    2018-02-01

    Recently we (Kahler and Ling, Solar Phys. 292, 59, 2017: KL) have shown that time-intensity profiles [I(t)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [α and β]. We now look for a simple correlation between an event peak energy intensity [Ip] and the time integral of I(t) over the event duration: the fluence [F]. We first ask how the ratio of F/Ip varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both F and Ip were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4 - 13 MeV band to E > 100 MeV. Within each group of SEP events, we find a very robust correlation (CC > 0.90) in log-log plots of F versus Ip over four decades of Ip. The ratio increases from western to eastern longitudes. From the value of Ip for a given event, F can be estimated to within a standard deviation of a factor of {≤} 2. Log-log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of { 10 MeV to {>} 100 MeV. This difference is not explained.

  13. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  14. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  15. Energetic Electron Acceleration Observed by MMS in the Vicinity of an X-Line Crossing

    Science.gov (United States)

    Jaynes, A. N.; Turner, D. L.; Wilder, F. D.; Osmane, A.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Cohen, I. J.; Mauk, B. H.; Reeves, G. D.; hide

    2016-01-01

    During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to greater than 100 keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line, whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments.

  16. A numerical simulation of solar energetic particle dropouts during impulsive events

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Qin, G. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, M. [Department of Physics and Space Science, Florida Institute of Technology, Melbourne, FL 32901 (United States); Dalla, S., E-mail: ywang@spaceweather.ac.cn, E-mail: gqin@spaceweather.ac.cn [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire PR1 2HE (United Kingdom)

    2014-07-10

    This paper investigates the conditions for producing rapid variations of solar energetic particle (SEP) intensity commonly known as 'dropouts'. In particular, we use numerical model simulations based on solving the focused transport equation in the three-dimensional Parker interplanetary magnetic field to put constraints on the properties of particle transport coefficients in both directions perpendicular and parallel to the magnetic field. Our calculations of the temporal intensity profile of 0.5 and 5 MeV protons at the Earth show that the perpendicular diffusion must be small while the parallel mean free path is long in order to reproduce the phenomenon of SEP dropouts. When the parallel mean free path is a fraction of 1 AU and the observer is located at 1 AU, the perpendicular to parallel diffusion ratio must be below 10{sup –5} if we want to see the particle flux dropping by at least several times within 3 hr. When the observer is located at a larger solar radial distance, the perpendicular to parallel diffusion ratio for reproducing the dropouts should be even lower than that in the case of 1 AU distance. A shorter parallel mean free path or a larger radial distance from the source to observer will cause the particles to arrive later, making the effects of perpendicular diffusion more prominent and SEP dropouts disappear. All of these effects require the magnetic turbulence that resonates with the particles to be low everywhere in the inner heliosphere.

  17. Energetic particle drift motions in the outer dayside magnetosphere

    International Nuclear Information System (INIS)

    Buck, R.M.

    1987-12-01

    Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B ''pockets'' in the geomagnetic field. Drift-shell branching caused by the minimum-B pockets is analyzed and interpreted in terms of an adiabatic shell branching and rejoining process. We examine the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field model. We find that shell branching annd rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. We determine the spatial extent of the stable trapping regions for the Choe-Beard model. We develop an adiabatic branching map methodology which completely identifies and describes the location of shell-branching points and the adiabatic trajectories of particles on branched shells, for any model field. We employ the map to develop synthetic pitch angle distributions near the dayside magnetopause by adiabatically transforming observed midnight distributions to the dayside. We find that outer dayside lines contain particles moving on branched and unbranched shells, giving rise to distinctive pitch angle distribution features. We find a good correlation between the pitch angles which mark the transition from branched to unbranched shells in the model, and the distinctive features of the OGO-5 distributions. In the morning sector, we observe large flux changes at critical pitch angles which correspond to B-pocket edges in the model. Measurements on inbound passes in the afternoon sector show first the adiabatic particle shadow, then the arrival of fluxes on rejoined shells, then fluxes on unbranced shells - in accord with model predictions. 204 refs., 138 figs., 2 tabs

  18. Energetic particle drift motions in the outer dayside magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Buck, R.M.

    1987-12-01

    Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B ''pockets'' in the geomagnetic field. Drift-shell branching caused by the minimum-B pockets is analyzed and interpreted in terms of an adiabatic shell branching and rejoining process. We examine the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field model. We find that shell branching annd rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. We determine the spatial extent of the stable trapping regions for the Choe-Beard model. We develop an adiabatic branching map methodology which completely identifies and describes the location of shell-branching points and the adiabatic trajectories of particles on branched shells, for any model field. We employ the map to develop synthetic pitch angle distributions near the dayside magnetopause by adiabatically transforming observed midnight distributions to the dayside. We find that outer dayside lines contain particles moving on branched and unbranched shells, giving rise to distinctive pitch angle distribution features. We find a good correlation between the pitch angles which mark the transition from branched to unbranched shells in the model, and the distinctive features of the OGO-5 distributions. In the morning sector, we observe large flux changes at critical pitch angles which correspond to B-pocket edges in the model. Measurements on inbound passes in the afternoon sector show first the adiabatic particle shadow, then the arrival of fluxes on rejoined shells, then fluxes on unbranced shells - in accord with model predictions. 204 refs., 138 figs., 2 tabs.

  19. MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Mason, G. M., E-mail: rebert@swri.edu [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20273 (United States)

    2016-11-10

    We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinally separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.

  20. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  1. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  2. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    International Nuclear Information System (INIS)

    Kocharov, Leon; Laitinen, Timo; Vainio, Rami

    2013-01-01

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit

  3. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), P.O. Box 3000, University of Oulu, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki (Finland)

    2013-11-20

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  4. Proceedings of the 6th IAEA Technical Committee meeting on energetic particles in magnetic confinement systems

    International Nuclear Information System (INIS)

    2000-03-01

    The sixth IAEA Technical Committee Meeting was organized by Japan Atomic Energy Research Institute. It was held at Naka, JAERI during October 12-14, 1999. The previous meetings of this series, formerly entitled 'Alpha Particles in Fusion Research', were held biennially in Kiev (1989), Aspenas (1991), Trieste (1993), Princeton (1995), and Abingdon (1997). The scope of the meeting covered theoretical and experimental work on alpha particle physics, transport of energetic particles, effects of energetic particles on fusion plasma, related collective phenomena, runaway electrons in disruption and diagnostics on energetic particles. The TCM was attended by over 60 participants. Twenty seven papers were presented orally and 19 papers as posters. This proceedings include 37 contributed papers in the meeting. (J.P.N.)

  5. Proceedings of the 6th IAEA Technical Committee meeting on energetic particles in magnetic confinement systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The sixth IAEA Technical Committee Meeting was organized by Japan Atomic Energy Research Institute. It was held at Naka, JAERI during October 12-14, 1999. The previous meetings of this series, formerly entitled 'Alpha Particles in Fusion Research', were held biennially in Kiev (1989), Aspenas (1991), Trieste (1993), Princeton (1995), and Abingdon (1997). The scope of the meeting covered theoretical and experimental work on alpha particle physics, transport of energetic particles, effects of energetic particles on fusion plasma, related collective phenomena, runaway electrons in disruption and diagnostics on energetic particles. The TCM was attended by over 60 participants. Twenty seven papers were presented orally and 19 papers as posters. This proceedings include 37 contributed papers in the meeting. (J.P.N.)

  6. Energetic particle emission and nuclear dynamics around the Fermi energy

    International Nuclear Information System (INIS)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piatteli, P.; Santonocito, D.; Colonna, N.; Bruno, M.; D'Agostino, M.; Fiandri, M.L.; Vannini, G.; Gramegna, F.; Mastinu, P.F.; Fabbietti, L.; Iori, I.; Moroni, A.; Margagliotti, G.; Milazzo, P.M.; Rui, R.; Blumenfeld, Y.; Scarpaci, J.A.

    2004-01-01

    Energetic proton emission was investigated in the reaction 58 Ni+ 58 Ni at 30 AMeV and compared with the results of dynamical calculations with a momentum dependent mean field. Preliminary results on proton and intermediate mass fragment coincidences are also presented

  7. Energetic particle emission and nuclear dynamics around the Fermi energy

    Science.gov (United States)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piatteli, P.; Santonocito, D.; Colonna, N.; Bruno, M.; D'Agostino, M.; Fiandri, M. L.; Vannini, G.; Gramegna, F.; Mastinu, P. F.; Fabbietti, L.; Iori, I.; Moroni, A.; Margagliotti, G.; Milazzo, P. M.; Rui, R.; Blumenfeld, Y.; Scarpaci, J. A.

    2004-04-01

    Energetic proton emission was investigated in the reaction 58Ni+ 58Ni at 30 AMeV and compared with the results of dynamical calculations with a momentum dependent mean field. Preliminary results on proton and intermediate mass fragment coincidences are also presented.

  8. Energetic particle emission and nuclear dynamics around the Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piatteli, P.; Santonocito, D.; Colonna, N.; Bruno, M.; D' Agostino, M.; Fiandri, M.L.; Vannini, G.; Gramegna, F.; Mastinu, P.F.; Fabbietti, L.; Iori, I.; Moroni, A.; Margagliotti, G.; Milazzo, P.M.; Rui, R.; Blumenfeld, Y.; Scarpaci, J.A

    2004-04-05

    Energetic proton emission was investigated in the reaction {sup 58}Ni+{sup 58}Ni at 30 AMeV and compared with the results of dynamical calculations with a momentum dependent mean field. Preliminary results on proton and intermediate mass fragment coincidences are also presented.

  9. Low-latitude geomagnetic signatures during major solar energetic particle events of solar cycle-23

    Directory of Open Access Journals (Sweden)

    R. Rawat

    2006-12-01

    Full Text Available The frequency of occurrence of disruptive transient processes in the Sun is enhanced during the high solar activity periods. Solar cycle-23 evidenced major geomagnetic storm events and intense solar energetic particle (SEP events. The SEP events are the energetic outbursts as a result of acceleration of heliospheric particles by solar flares and coronal mass ejections (CMEs. The present work focuses on the geomagnetic variations at equatorial and low-latitude stations during the four major SEP events of 14 July 2000, 8 November 2000, 24 September 2001 and 4 November 2001. These events have been reported to be of discernible magnitude following intense X-ray flares and halo coronal mass ejections. Low-latitude geomagnetic records evidenced an intense main phase development subsequent to the shock impact on the Earth's magnetosphere. Satellite observations show proton-flux enhancements associated with solar flares for all events. Correlation analysis is also carried out to bring out the correspondence between the polar cap magnetic field perturbations, AE index and the variations of low-latitude magnetic field. The results presented in the current study elucidate the varying storm development processes, and the geomagnetic field response to the plasma and interplanetary magnetic field conditions for the energetic events. An important inference drawn from the current study is the close correspondence between the persistence of a high level of proton flux after the shock in some events and the ensuing intense magnetic storm. Another interesting result is the role of the pre-shock southward IMF Bz duration in generating a strong main phase.

  10. Charge-to-Mass Dependence of the Longitudinal Distribution of Solar Energetic Particles

    Science.gov (United States)

    Cohen, C. M.; Mason, G. M.; Mewaldt, R. A.

    2015-12-01

    Studies combining observations from near-Earth spacecraft and the twin STEREO spacecraft have resulted in a number of surprising results regarding the spread of solar energetic particles (SEPs) in longitude. The 7 February 2010 3He-rich event was observed by spacecraft spread over 136 degrees, extending far beyond the expected longitudinal extent of such events whose origins are compact flaring regions on the Sun. Intensities of 25 MeV protons from the 3 November 2011 SEP event increased abruptly at all three spacecraft with onsets occurring within 30 minutes of each other even though the spacecraft were roughly equally distributed in longitude around the Sun. These types of observations challenge our understanding of the transport of SEPs. As many transport mechanisms are governed by a particle's rigidity, it is useful to examine the SEP longitude distribution as a function of particles' charge-to-mass ratios. We present the results of such a study using more than 30 large SEP events observed by two or three spacecraft in solar cycle 24.

  11. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tooprakai, P. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Seripienlert, A.; Ruffolo, D.; Chuychai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Matthaeus, W. H., E-mail: david.ruf@mahidol.ac.th [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-11-10

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  12. ONSETS AND SPECTRA OF IMPULSIVE SOLAR ENERGETIC ELECTRON EVENTS OBSERVED NEAR THE EARTH

    International Nuclear Information System (INIS)

    Kontar, Eduard P.; Reid, Hamish A. S.

    2009-01-01

    Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energetic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of nonuniform plasma, collisions, and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of (1) a spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, (2) apparent early onset of low-energy electron injection, and (3) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in nonuniform plasma of a single accelerated electron population with an initial power-law spectrum.

  13. The effects of sloshing energetic particles on ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Stotler, D.P.; Berk, H.L.

    1986-10-01

    Distributions that give rise to energetic trapped particle pressures peaked in the ''good curvature'' region of a tokamak (sloshing distributions) are examined in an attempt to find stable regimes for both the magnetohydrodynamic (MHD) and precessional modes. It is the precessional drift destabilization of ballooning modes that inhibits bridging the unstable gap to second stability by the use of deeply-trapped energetic particles unless the hot particles have an extremely large energy (∼0.35 MeV for a tokamak like PDX). Unfortunately, our calculations indicate that the sloshing particles do not have a significant stabilizing effect. An analytic treatment shows that complete stability can be found only if the sign of the energetic particle magnetic drift-frequency can be reversed from its value in vacuum bad curvature without hot species diamagnetism. This is difficult to do in a tokamak because of the destabilizing contribution of the geodesic curvature to the drift frequency. Furthermore, for each of the two sloshing distributions employed (one contains only trapped particles; the other includes trapped and passing particles), a new ''continuum instability'' (where asymptotically along the field line the mode is a propagating plane wave) is found to be driven by geodesic curvature. These results indicate that energetic sloshing particles are not able to bridge the unstable gap to second stability

  14. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  15. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    Science.gov (United States)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  16. Atmospheric Effects During Solar Energetic Particle Events in Magnetized Regions of Mars

    Science.gov (United States)

    Jolitz, R.; Lee, C. O.; Dong, C.; Brain, D. A.; Lillis, R. J.; Curry, S.; Larson, D. E.

    2016-12-01

    Solar energetic particles (SEPs) represent an important if irregular source of energy to the Martian atmosphere. Volume rates of ionization and heating by SEP protons during intense solar events can be modeled to predict energy deposition from fluxes observed by the SEP instrument on MAVEN. ASPEN (Atmospheric Scattering of Protons and Energetic Neutrals) is a 3-D Monte Carlo simulation that tracks energy deposition by a population of protons in an atmosphere, accounting for three-dimensionally varying neutral densities and magnetic fields. ASPEN simulates proton motion using a Runge-Kutta solver to approximate Lorentz force and an adaptive trace algorithm to accurately model collisions in dense and sparse atmospheric regions. ASPEN can be generalized to study different ion fluxes in other regions of the Mars plasma environment, such as SEP oxygen in the atmosphere or penetrating solar wind protons in the corona. In this presentation, ASPEN is used to generate three-dimensional volume rates of ionization and heating using three-dimensionally-varying magnetic and electric fields from the Michigan Mars multi-fluid MHD model (MF-MHD) and altitude-varying neutral densities from the Mars Global Thermosphere Ionosphere Model (M-GITM). We present ionization rates over the crustal magnetic field anomalies in a 120° x 90° region in the Southern Lowlands and the progression of SEP ionization during a SEP ion event observed by MAVEN on 16 May 2016. Ultimately ASPEN results will help shape a comprehensive model of solar wind interactions with Mars.

  17. Jovian magnetosphere-satellite interactions: aspects of energetic charged particle loss

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1979-01-01

    Observations of energetic charged particles obtained by Pioneers 10 and 11 near the orbits of the inner Jovian satellites are reviewed with particular emphasis on the implications of these observations with regard to possible models of the access of charged particles to the satellite surfaces. The observed effects on particle pitch angle distributions and the observed energy dependence of the intensity depletions seen at the satellite orbits are compared with predictions of satellite sweepup based on several different access models. The two major uncertainties which hamper the comparisons are those associated with the satellite conductivities and the ionospheric dynamo electric field power spectrum. The satellite conductivity is important because it governs the access of the particles to the satellite surface and therefore the lifetime tau: the dynamo power spectrum is important because it controls the magnitude and energy dependence of the radial diffusion coefficient. In spite of these uncertainties we can nevertheless make the following conclusions. The electron pitch angle distributions at Io's orbit are compatible with expectations based on sweeping. The energy dependences of the observed electron depletions at all three inner satellites (Amalthea, Io, and Europa) are incompatible with expectations based on a perfect conductor model of a satellite and its flux tube but are compatible with the energy dependence expected for perfectly insulating or partially conducting satellites However, the proton losses at Io are observed to be much stronger than the electron losses, in contradiction to expectations based on sweeping. The most attractive explanation for the proton-electron discrepancy at Io is that the large proton losses at Io's orbit are principally due to enhanced pitch angle scattering in the region of higher plasma density

  18. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  19. Towards a Self-Consistent Simulation Capability of Catastrophic Solar Energetic Particle Events

    Science.gov (United States)

    Sokolov, I.; Gombosi, T. I.; Bindi, V.; Borovikov, D.; Kota, J.; Giacalone, J.

    2016-12-01

    Space weather refers to variations in the space environment that can affect technologies or endanger human life and health. Solar energetic particle (SEP) events can affect communications and airline safety. Satellites are affected by radiation damage to electronics and to components that produce power and provide images. Sun and star sensors are blinded during large SEP events. Protons of ≳30 MeV penetrate spacesuits and spacecraft walls. Events, like that of August 4, 1972, would have been fatal to moon-walking astronauts. Catastrophic events typically are characterized by hard particle energy spectra potentially containing large fluxes of hundreds of MeV-GeV type particles. These super-energetic particles can penetrate even into the "safest" areas of spacecraft and produce induced radioactivity. We describe several technologies which are to be combined into a physics-based, self consistent model to understand and forecast the origin and evolution of SEP events: The Alfvén Wave Solar-wind Model (AWSoM) simulates the chromosphere-to-Earth system using separate electron and ion temperatures and separate parallel and perpendicular temperatures. It solves the energy equations including thermal conduction and coronal heating by Alfvén wave turbulence. It uses adaptive mesh refinement (AMR), which allows us to cover a broad range of spacial scales. The Eruptive Event Generator using the Gibson-Low flux-rope model (EEGGL) allows the user to select an active region on the sun, select the polarity inversion line where the eruption is observed, and insert a Gibson-Low flux-rope to produce eruption. The Multiple-Field-Lines-Advection Model for Particle Acceleration (M-FLAMPA) solves the particle transport equation along a multitude of interplanetary magnetic field lines originating from the Sun, using time-dependent parameters for the shock and magnetic field obtained from the MHD simulation. It includes a self-consistent coupling of Alfvén wave turbulence to the SEPs

  20. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  1. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1997-10-01

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  2. The effect of turbulence strength on meandering field lines and Solar Energetic Particle event extents

    Science.gov (United States)

    Laitinen, Timo; Effenberger, Frederic; Kopp, Andreas; Dalla, Silvia

    2018-02-01

    Insights into the processes of Solar Energetic Particle (SEP) propagation are essential for understanding how solar eruptions affect the radiation environment of near-Earth space. SEP propagation is influenced by turbulent magnetic fields in the solar wind, resulting in stochastic transport of the particles from their acceleration site to Earth. While the conventional approach for SEP modelling focuses mainly on the transport of particles along the mean Parker spiral magnetic field, multi-spacecraft observations suggest that the cross-field propagation shapes the SEP fluxes at Earth strongly. However, adding cross-field transport of SEPs as spatial diffusion has been shown to be insufficient in modelling the SEP events without use of unrealistically large cross-field diffusion coefficients. Recently, Laitinen et al. [ApJL 773 (2013b); A&A 591 (2016)] demonstrated that the early-time propagation of energetic particles across the mean field direction in turbulent fields is not diffusive, with the particles propagating along meandering field lines. This early-time transport mode results in fast access of the particles across the mean field direction, in agreement with the SEP observations. In this work, we study the propagation of SEPs within the new transport paradigm, and demonstrate the significance of turbulence strength on the evolution of the SEP radiation environment near Earth. We calculate the transport parameters consistently using a turbulence transport model, parametrised by the SEP parallel scattering mean free path at 1 AU, λ∥*, and show that the parallel and cross-field transport are connected, with conditions resulting in slow parallel transport corresponding to wider events. We find a scaling σφ,max∝(1/λ∥*)1/4 for the Gaussian fitting of the longitudinal distribution of maximum intensities. The longitudes with highest intensities are shifted towards the west for strong scattering conditions. Our results emphasise the importance of

  3. NIMROD calculations of energetic particle driven toroidal Alfvén eigenmodes

    Science.gov (United States)

    Hou, Yawei; Zhu, Ping; Kim, Charlson C.; Hu, Zhaoqing; Zou, Zhihui; Wang, Zhengxiong; Nimrod Team

    2018-01-01

    Toroidal Alfvén eigenmodes (TAEs) are gap modes induced by the toroidicity of tokamak plasmas in the absence of continuum damping. They can be excited by energetic particles (EPs) when the EP drive exceeds other dampings, such as electron and ion Landau damping, and collisional and radiative damping. A TAE benchmark case, which was proposed by the International Tokamak Physics Activity group, is studied in this work. The numerical calculations of linear growth of TAEs driven by EPs in a circular-shaped, large aspect ratio tokamak have been performed using the Hybrid Kinetic-MHD (HK-MHD) model implemented in the NIMROD code. This HK-MHD model couples a δf particle-in-cell representation of EPs with the 3D MHD representation of the bulk plasma through moment closure for the momentum conservation equation. Both the excitation of TAEs and their transition to energetic particle modes (EPMs) have been observed. The influence of EP density, temperature, density gradient, and position of the maximum relative density gradient, on the frequency and the growth rate of TAEs are obtained, which are consistent with those from the eigen-analysis calculations, kinetic-MHD, and gyrokinetic simulations for an initial Maxwellian distribution of EPs. The relative pressure gradient of EP at the radial location of the TAE gap, which represents the drive strength of EPs, can strongly affect the growth rate of TAEs. It is demonstrated that the mode transition due to EP drive variation leads to not only the change of frequency but also the change of the mode structure. This mechanism can be helpful in understanding the nonlinear physics of TAE/EPM, such as frequency chirping.

  4. Evidence for Ultra-Energetic Particles in Jet from Black Hole

    Science.gov (United States)

    2006-06-01

    New Haven, Conn. -- An international team of astronomers led by researchers at Yale has obtained key infrared observations that reveal the nature of quasar particle jets that originate just outside super-massive black holes at the center of galaxies and radiate across the spectrum from radio to X-ray wavelengths; a complementary study of jet X-ray emission led by astronomers at the University of Southampton, reaches the same conclusion. Composite of 3C273's jet Chandra, Hubble, and Spitzer composite of 3C273 Credit: NASA/JPL-Caltech/Yale Univ. Press Image and Caption Both studies involve the jet of the quasar 3C273, famous since its identification in 1963 as the first quasar. It now appears that the most energetic radiation from this jet arises through direct radiation from extremely energetic particles, and not in the way expected by most astronomers based on the previously available data. The two reports, available now online in the Astrophysical Journal, will appear in print in the September 10 issue. "Quasar jets, although extremely luminous, are so distant as to be relatively faint and difficult to observe. Thanks to the sensitivity of NASA's Great Observatories, we have been able to map the 3C273 jet in infrared, visible light and X-rays," said C. Megan Urry, Israel Munson Professor of Physics and Astronomy at Yale, and an author on one study. "These combined data strongly suggest that ultra-energetic particles in the 3C273 jet are producing their light via synchrotron radiation." Composite showing the relation between the quasar 3C273 and the jet Composite showing the relation between the quasar 3C273 (top left; the quasar is a very small and bright source, the fuzz apparently surrounding it is an artifact that appears when taking a picture of a very bright source with a camera and telescope for very faint things) and the jet. The color coding is the same as in the image above. Credit: NASA/NRAO, S.Jester, D.E.Harris, H.L.Marshall, K.Meisenheimer, H

  5. Nonlinear effects of energetic particle driven instabilities in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bruedgam, Michael

    2010-03-25

    In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated {delta}/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction

  6. Seventh meeting of the ITER physics expert group on energetic particles, heating and steady state operations

    International Nuclear Information System (INIS)

    Gormezano, C.

    1999-01-01

    The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects

  7. The fate of meteoric metals in ice particles: Effects of sublimation and energetic particle bombardment

    Science.gov (United States)

    Mangan, T. P.; Frankland, V. L.; Murray, B. J.; Plane, J. M. C.

    2017-08-01

    The uptake and potential reactivity of metal atoms on water ice can be an important process in planetary atmospheres and on icy bodies in the interplanetary and interstellar medium. For instance, metal atom uptake affects the gas-phase chemistry of the Earth's mesosphere, and has been proposed to influence the agglomeration of matter into planets in protoplanetary disks. In this study the fate of Mg and K atoms incorporated into water-ice films, prepared under ultra-high vacuum conditions at temperatures of 110-140 K, was investigated. Temperature-programmed desorption experiments reveal that Mg- and K-containing species do not co-desorb when the ice sublimates, demonstrating that uptake on ice particles causes irreversible removal of the metals from the gas phase. This implies that uptake on ice particles in terrestrial polar mesospheric clouds accelerates the formation of large meteoric smoke particles (≥1 nm radius above 80 km) following sublimation of the ice. Energetic sputtering of metal-dosed ice layers by 500 eV Ar+ and Kr+ ions shows that whereas K reacts on (or within) the ice surface to form KOH, adsorbed Mg atoms are chemically inert. These experimental results are consistent with electronic structure calculations of the metals bound to an ice surface, where theoretical adsorption energies on ice are calculated to be -68 kJ mol-1 for K, -91 kJ mol-1 for Mg, and -306 kJ mol-1 for Fe. K can also insert into a surface H2O to produce KOH and a dangling H atom, in a reaction that is slightly exothermic.

  8. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C., E-mail: ltan@umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  9. Tuning the particle size and morphology of high energetic material nanocrystals

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2015-12-01

    Full Text Available Morphology controlled synthesis of nanoparticles of powerful high energetic compounds (HECs such as 1,3,5-trinitro-1,3,5-triazinane (RDX and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX were achieved by a simple solvent–antisolvent interaction (SAI method at 70 °C. The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically. Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy (FE-SEM imaging. X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy studies revealed that RDX and HMX were precipitated in their most stable polymorphic forms, i.e. α and β, respectively. Thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs. HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions. The mean particle size also varied considerably with the use of different solvents.

  10. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from 
    X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was

  11. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  12. Energetic Particle Transport in Compact Quasi-axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Redi, M.H.; Mynick, H.E.; Suewattana, M.; White, R.B.; Zarnstorff, M.C.; Isaev, M.Yu.; Mikhailov, M.I.; Subbotin, A.A.

    1999-01-01

    Hamiltonian coordinate, guiding-center code calculations of the confinement of suprathermal ions in quasi-axisymmetric stellarator (QAS) designs have been carried out to evaluate the attractiveness of compact configurations which are optimized for ballooning stability. A new stellarator particle-following code is used to predict ion loss rates and particle confinement for thermal and neutral beam ions in a small experiment with R = 145 cm, B = 1-2 T and for alpha particles in a reactor-size device. In contrast to tokamaks, it is found that high edge poloidal flux has limited value in improving ion confinement in QAS, since collisional pitch-angle scattering drives ions into ripple wells and stochastic field regions, where they are quickly lost. The necessity for reduced stellarator ripple fields is emphasized. The high neutral beam ion loss predicted for these configurations suggests that more interesting physics could be explored with an experiment of less constrained size and magnetic field geometry

  13. A SIMPLE ANALYTICAL METHOD TO DETERMINE SOLAR ENERGETIC PARTICLES' MEAN FREE PATH

    International Nuclear Information System (INIS)

    He, H.-Q.; Qin, G.

    2011-01-01

    To obtain the mean free path of solar energetic particles (SEPs) for a solar event, one usually has to fit time profiles of both flux and anisotropy from spacecraft observations to numerical simulations of SEPs' transport processes. This method can be called a simulation method. But a reasonably good fitting needs a lot of simulations, which demand a large amount of calculation resources. Sometimes, it is necessary to find an easy way to obtain the mean free path of SEPs quickly, for example, in space weather practice. Recently, Shalchi et al. provided an approximate analytical formula of SEPs' anisotropy time profile as a function of particles' mean free path for impulsive events. In this paper, we determine SEPs' mean free path by fitting the anisotropy time profiles from Shalchi et al.'s analytical formula to spacecraft observations. This new method can be called an analytical method. In addition, we obtain SEPs' mean free path with the traditional simulation methods. Finally, we compare the mean free path obtained with the simulation method to that of the analytical method to show that the analytical method, with some minor modifications, can give us a good, quick approximation of SEPs' mean free path for impulsive events.

  14. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  15. Theory of energetic trapped particle-induced resistive interchange-ballooning modes

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1986-02-01

    A theory describing the influence of energetic trapped particles on resistive interchange-ballooning modes in tokamaks is presented. It is shown that a population of hot particles trapped in the region of adverse curvature can resonantly interact with and destabilize the resistive interchange mode, which is stable in their absence because of favorable average curvature. The mode is different from the usual resistive interchange mode not only in its destabilization mechanism, but also in that it has a real component to its frequency comparable to the precessional drift frequency of the rapidly circulating energetic species. Corresponding growth rate and threshold conditions for this trapped-particle-driven instability are derived and finite banana width effects are shown to have a stabilizing effect on the mode. Finally, the ballooning/tearing dispersion relation is generalized to include hot particles, so that both the ideal and the resistive modes are derivable in the appropriate limits. 23 refs., 7 figs

  16. Ionic charge state distribution of helium, carbon, oxygen, and iron in an energetic storm particle enhancement

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Hoefner, H.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.

    1982-01-01

    An analysis is presented of the ionic charge state distribution of He, C, O and Fe in the energetic storm particle event of September 28-29, 1978. Data were obtained with the ULEZEQ electrostatic analyzer-proportional counter on board the ISEE 3 spacecraft. The He(+)/He(++) ratio between 0.4 and 1 MeV/n is shown to be significantly lower during the energetic storm particle event than during the preceding period of solar flare particle enhancement, with a temporal evolution similar to that of the Fe/He ratio as reported by Klecker et al. (1981). Increases in the mean charge state for oxygen by about 3% and for iron by about 16% are also noted. The temporal variations in charge states are accounted for in terms of first-order Fermi acceleration of the pre-existing solar flare particles by a propagating interplanetary shock wave.

  17. Solar Energetic Particle Events at the Rise Phase of the 23rd Solar ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... ... the solar energetic particle (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the SEP generation are accompanied by coronal mass ejection (CME). Here we analyze the dynamics of the differential energy spectrum at different phases of the SEP ...

  18. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.

  19. Interaction of energetic particles with polymer surfaces: surface morphology development and sputtered polymer-fragment ion analysis

    International Nuclear Information System (INIS)

    Michael, R.S.

    1987-01-01

    The core of this thesis is based on a series of papers that have been published or will soon be published in which the various processes taking place in the energetic particle-polymer surface interaction scene is investigated. Results presented show different developments on polymer surfaces when compared to the vast experimental data on energetic particle-metal surface interactions. The surface morphology development depends on the physical characteristics of the polymer. Sputtering yields of fluoropolymers were several orders higher than the sputtering yields of aliphatic and aromatic polymers. Depending on the chemical nature of the polymer, the surface morphology development was dependent upon the extent of radiation-damage accumulation. Fast Atom Bombardment Mass Spectrometry at low and high resolution was applied to the characterization of sputtered polymer fragment ions. Fragment ions and their intensities were used to identify polymer samples, observe radiation damage accumulation and probe polymer-polymer interface of a polymer-polymer sandwich structure. A model was proposed which attempts to explain the nature of processes involved in the energetic particle-polymer surface interaction region

  20. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  1. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  2. Effects of energetic particle precipitation on the atmospheric electric circuit

    International Nuclear Information System (INIS)

    Reagan, J.B.; Meyerott, R.E.; Evans, J.E.; Imhof, W.L.; Joiner, R.G.

    1983-01-01

    The solar particle event (SPE) of August 1972 is one of the largest that has occurred in the last 20 years. Since it is so well documented, it can serve as a good example of a major perturbation to the atmospheric electric system. In this paper, ion production rates and conductivities from the ground to 80 km at the peak intensity of the event on August 4 and for 30, 35, and 40 km for the 6-day duration of the event are presented. At the peak of the event, the proton and electron precipitation currents, the ohmic current, and the vertical electric field are calculated inside the polar cap. The particle precipitation currents at this time greatly exceed the normal air earth current at altitudes above 30 km and produce reversals in the vertical electric field at 28 km and above. Calculations are presented of the vertical electric field at altitudes near 30 km where balloon measurements were made. Good agreement between the calculated and the measured vertical electric field verifies our ability to calculate disturbed conductivities at these altitudes from satellite measurements of proton spectra incident on the atmosphere. Despite the fact that at the peak of the event the vertical electric field near 30 km was shorted out by the solar particles and that the current carried by the solar particles exceeded the fair weather air-earth current density in the stratosphere by large factors, it is concluded that the largest effect of an SPE of this magnitude on the atmospheric electric circuit is due to the Forbush decrease in the galactic cosmic ray flux rather than to the large increase in solar proton flux

  3. Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields

    Science.gov (United States)

    Pogorelov, N. V.; Fichtner, H.; Czechowski, A.; Lazarian, A.; Lembege, B.; le Roux, J. A.; Potgieter, M. S.; Scherer, K.; Stone, E. C.; Strauss, R. D.; Wiengarten, T.; Wurz, P.; Zank, G. P.; Zhang, M.

    2017-10-01

    This paper summarizes the results obtained by the team "Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields" supported by the International Space Science Institute (ISSI) in Bern, Switzerland. We focus on the physical processes occurring in the outer heliosphere, especially at its boundary called the heliopause, and in the local interstellar medium. The importance of magnetic field, charge exchange between neutral atoms and ions, and solar cycle on the heliopause topology and observed heliocentric distances to different heliospheric discontinuities are discussed. It is shown that time-dependent, data-driven boundary conditions are necessary to describe the heliospheric asymmetries detected by the Voyager spacecraft. We also discuss the structure of the heliopause, especially due to its instability and magnetic reconnection. It is demonstrated that the Rayleigh-Taylor instability of the nose of the heliopause creates consecutive layers of the interstellar and heliospheric plasma which are magnetically connected to different sources. This may be a possible explanation of abrupt changes in the galactic and anomalous cosmic ray fluxes observed by Voyager 1 when it was crossing the heliopause structure for a period of about one month in the summer of 2012. This paper also discusses the plausibility of fitting simulation results to a number of observational data sets obtained by in situ and remote measurements. The distribution of magnetic field in the vicinity of the heliopause is discussed in the context of Voyager measurements. It is argued that a classical heliospheric current sheet formed due to the Sun's rotation is not observed by in situ measurements and should not be expected to exist in numerical simulations extending to the boundary of the heliosphere. Furthermore, we discuss the transport of energetic particles in the inner and outer heliosheath, concentrating on the anisotropic spatial

  4. Electron energetics in the expanding solar wind via Helios observations

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Hellinger, Petr

    2015-01-01

    Roč. 120, č. 10 (2015), s. 8177-8193 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GA15-17490S Institutional support: RVO:67985815 Keywords : solar wind * electrons energetics * transport processes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.318, year: 2015

  5. Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles

    Directory of Open Access Journals (Sweden)

    A. G. Yahnin

    1997-08-01

    Full Text Available According to observations, the discrete auroral arcs can sometimes be found, either deep inside the auroral oval or at the poleward border of the wide (so-called double auroral oval, which map to very different regions of the magnetotail. To find common physical conditions for the auroral-arc generation in these magnetotail regions, we study the spatial relationship between the diffuse and discrete auroras and the isotropic boundaries (IBs of the precipitating energetic particles which can be used to characterise locally the equatorial magnetic field in the tail. From comparison of ground observation of auroral forms with meridional profiles of particle flux measured simultaneously by the low-altitude NOAA satellites above the ground observation region, we found that (1 discrete auroral arcs are always situated polewards from (or very close to the IB of >30-keV electrons, whereas (2 the IB of the >30-keV protons is often seen inside the diffuse aurora. These relationships hold true for both quiet and active (substorm conditions in the premidnight-nightside (18-01-h MLT sector considered. In some events the auroral arcs occupy a wide latitudinal range. The most equatorial of these arcs was found at the poleward edge of the diffuse auroras (but anyway in the vicinity of the electron IB, the most poleward arcs were simultaneously observed on the closed field lines near the polar-cap boundary. These observations disagree with the notion that the discrete aurora originate exclusively in the near-Earth portion of plasma sheet or exclusively on the PSBL field lines. Result (1 may imply a fundamental feature of auroral-arc formation: they originate in the current-sheet regions having very curved and tailward-stretched magnetic field lines.

  6. HFI energetic particle effects: characterization, removal, and simulation

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2014-01-01

    of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro- machined bolometric detectors. In the Planck orbit at L2...... that decays over nearly 1 s. This component produces excess noise if not properly removed from the time- ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from...

  7. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    Science.gov (United States)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; hide

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  8. The acceleration and propagation of energetic particles in turbulent cosmic plasmas

    International Nuclear Information System (INIS)

    Achterberg, A.

    1981-01-01

    This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)

  9. Energetic particle measurements from the Ulysses/COSPIN/LET instrument obtained during the August/September 2005 events

    International Nuclear Information System (INIS)

    Malandraki, O.E.; Imperial Coll. of Science and Technology, London; National Observatory of Athens; Marsden, R.G.; Tranquille, C.; Forsyth, R.J.; Elliott, H.A.; Geranios, A.

    2008-01-01

    We report recent observations of energetic particles at energies 1-40 MeV/n made by the COSPIN/LET instrument onboard the Ulysses spacecraft during the period of intense solar activity in August/September 2005 during the declining phase of solar cycle 23. Ulysses, having started its climb to high southern latitudes for the third time, was located at ∝5 AU, at a helio-latitude of ∝30 degrees south. It detected the arrival of a solar wind compound stream resulting from the merging of a series of fast halo CMEs ejected from the Sun in late August and early September 2005 and their interaction with the pre-existing pattern of solar wind Stream Interaction Regions (SIRs) in the ambient medium through which they propagated. The heavy ion intensities are observed by COSPIN/LET to remain elevated for at least 20 days following the very intense X17.0/3B solar flare on 7 September and its associated very fast CME (plane of sky projected CME speed ∝2400 km s -1 ). We carry out an analysis of the composition of the particle increases observed at the location of the spacecraft. Although the composition signatures were predominantly Solar Energetic Particle (SEP)-like, after the passage of the compound stream over Ulysses, in association with a characteristic forward and reverse shock pair, the observations showed evidence of an enhanced He content. (orig.)

  10. The Properties of Solar Energetic Particle Event-Associated Coronal Mass Ejections Reported in Different CME Catalogs

    OpenAIRE

    Richardson, Ian G.; von Rosenvinge, Tycho T.; Cane, Hilary V.

    2015-01-01

    We compare estimates of the speed and width of coronal mass ejections (CMEs) in several catalogs for the CMEs associated with ~200 solar energetic particle (SEP) events in 2006-2013 that included 25 MeV protons. The catalogs used are: CDAW, CACTUS, SEEDS and CORIMP, all derived from observations by the LASCO coronagraphs on the SOHO spacecraft, the CACTUS catalog derived from the COR2 coronagraphs on the STEREO-A and -B spacecraft, and the DONKI catalog, which uses observations from SOHO and ...

  11. Channeling and Blocking of Energetic Particles in Crystals

    Science.gov (United States)

    Andersen, Jens Ulrik

    The development of channeling and blocking since the foundation of the field was laid by Jens Lindhard in his classical paper in 1965 is discussed, and the question is asked whether this theory has passed the test of time. Have important aspects of the theory been challenged? Where has the theory needed modification or extension? Are there still open questions to be solved? A basic theoretical issue is the applicability of classical mechanics in the description. Lindhard showed that for particles heavy compared with the electron classical orbital pictures may always be applied. However, for electrons and positrons there are strong quantal features, like Bragg interference. The quantal description introduced by Lindhard and co-workers has been used as the basis for a comprehensive treatment of the channeling of MeV electrons and positrons and of channeling radiation. At very high energies, GeV and TeV, the motion becomes classical, due to the relativistic increase of the field seen by the particles in the reference frame following their longitudinal motion. Channeling radiation in this regime is still an active field of research. For channeling and blocking of ions, the concept of statistical equilibrium plays a central part in Lindhard's theory. The application of this concept has met with two important challenges, the first based on computer simulations and the second on experiments with the transmission of heavy ions through thin crystals. In both cases the challenges have been met and new insight has been gained but there are still problems to be solved. Channeling and blocking of ions have found very many interesting applications, and a few problems and opportunities worth pursuing are suggested.

  12. Superbubbles and Energetic Particles in the Galaxy. I: Collective effects of particle acceleration

    OpenAIRE

    Parizot, E.; Marcowith, A.; van der Swaluw, E.; Bykov, A. M.; Tatischeff, V.

    2004-01-01

    Observations indicate that most massive stars in the Galaxy appear in groups, called OB associations, where their strong wind activity generates large structures known as superbubbles, inside which the subsequent supernovae (SNe) explode, in tight space and time correlation. Acknowledging this fact, we investigate four main questions: 1) does the clustering of massive stars and SN explosions influence the particle acceleration process usually associated with SNe, and induce collective effects...

  13. Release timescales of solar energetic particles in the low corona

    Science.gov (United States)

    Agueda, N.; Klein, K.-L.; Vilmer, N.; Rodríguez-Gasén, R.; Malandraki, O. E.; Papaioannou, A.; Subirà, M.; Sanahuja, B.; Valtonen, E.; Dröge, W.; Nindos, A.; Heber, B.; Braune, S.; Usoskin, I. G.; Heynderickx, D.; Talew, E.; Vainio, R.

    2014-10-01

    Aims: We present a systematic study of the timing and duration of the release processes of near-relativistic (NR; >50 keV) electrons in the low corona. Methods: We analyze seven well-observed events using in situ measurements by both the ACE and Wind spacecraft and context electromagnetic observations in soft X-rays, radio, hard X-rays and white light. We make use of velocity dispersion analysis to estimate the release time of the first arriving electrons and compare with the results obtained by using a simulation-based approach, taking interplanetary transport effects into account to unfold the NR electron release time history from in situ measurements. Results: The NR electrons observed in interplanetary space appear to be released during either short (2 h) periods. The observation of NR electron events showing beamed pitch-angle distributions (PADs) during several hours is the clearest observational signature of sustained release in the corona. On the other hand, the in situ observation of PADs isotropizing in less than a couple of hours is a clear signature of a prompt release of electrons in the low corona. Short release episodes appear to originate in solar flares, in coincidence with the timing of the observed type III radio bursts. Magnetic connectivity plays an important role. Only type III radio bursts reaching the local plasma line measured at 1 AU are found to be related with an associated release episode in the low corona. Other type III bursts may also have a release of NR electrons associated with them, but these electrons do not reach L1. Long release episodes appear associated with signatures of long acceleration processes in the low corona (long decay of the soft X-ray emission, type IV radio bursts, and time-extended microwave emission). Type II radio bursts are reported for most of the events and do not provide a clear discrimination between short and long release timescales.

  14. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-01-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q fi ) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes

  15. Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013) Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013)

    Science.gov (United States)

    Lin, Z.

    2014-10-01

    -ion density relaxes to similar profiles for all injection angles. Further verification and validation of these reduced models by existing tokamak experiments and nonlinear simulations are needed. Impressive progress in first-principles simulations of Alfvén eigenmodes and energetic particle transport was prominently featured at the meeting. Rigorous verification and validation have been successfully carried out for global gyrokinetic simulations of Alfvén eigenmodes with kinetic effects of thermal plasmas and non-perturbative contributions by energetic particles. The gyrokinetic turbulence simulation provides an indispensable new capability for studying the nonlinear physics of energetic particles and Alfvén eigenmodes by incorporating important physics of radial variations and toroidal mode coupling. For example, gyrokinetic simulations have found nonlinear oscillations of Alfvén eigenmode amplitude and frequency consistent with experimental observations. With better understanding of linear and nonlinear properties of Alfvén eigenmodes, a fruitful future direction is the self-consistent simulation of energetic particle transport, which requires long time simulations of nonlinear interactions between multiple Alfvén eigenmodes. A significant step in this direction has been taken by MHD-gyrokinetic hybrid simulations, which have demonstrated that fast ion profile is flattened by enhanced transport due to resonance overlaps in multiple interacting Alfvén eigenmodes with realistic amplitudes. A very interesting physics here is that the re-distribution of the energetic particle profile by an initially dominant Alfvén eigenmode leads to the excitation of other Alfvén eigenmodes. The broaden phase space volume for the extraction of free energy can then drive large fluctuation amplitudes and enhanced energetic particle transport. Some experimental evidences of such indirect interaction of multiple modes through energetic particles were observed in JT-60U and ASDEX

  16. Research in space physics at the University of Iowa. [energetic particles and electric, magnetic, and electromagnetic fields

    Science.gov (United States)

    Vanallen, J. A.

    1978-01-01

    Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.

  17. Observations of field-aligned energetic electron and ion distributions near the magnetopause at geosynchronous orbit

    International Nuclear Information System (INIS)

    Korth, A.; Kremser, G.; Daly, P.W.; Amata, E.

    1982-01-01

    On August 28, 1978, the dayside magnetopause crossed the geosynchronous satellite GEOS 2 several times during a geomagnetically disturbed period, and clear signatures of the interconnection of field lines through the magnetopause were observed. The MPAE particle spectrometer provided high time resolution observations of the distribution of energetic electrons (E>22 keV) and ions (E>27 keV). Magnetometer data were used to determine the location of GEOS 2 relative to the magnetopause. The pitch angle distributions of ions and electrons were found to be strongly asymmetric with respect to 90 0 , and the asymmetries have been interpreted in terms of field-aligned particle streaming. Evidence is provided for the first time for electron streaming inside the magnetopause which continues for many bounce periods. It is concluded that magnetospheric field lines opened, at least for brief time intervals, as a consequence of interconnection with magnetosheath field lines. Comparisons of electron spectra provide evidence that the streaming electrons observed in the magnetosheath originate in the magnetosphere

  18. Solar Energetic Particle Events at the Rise Phase of the 23rd Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. The experiment with 10K-80 aboard the INTER-BALL-2. (which detects protons with energies >7, 27-41, 41-58, 58-88, 88-180 and 180-300 MeV) registered six events of the solar energetic particle. (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the ...

  19. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere

    Czech Academy of Sciences Publication Activity Database

    Velinov, P. I. Y.; Asenovski, S.; Kudela, K.; Laštovička, Jan; Mateev, L.; Mishev, A.; Tonev, P.

    2013-01-01

    Roč. 3, 26 March (2013), A14/1-A14/17 ISSN 2115-7251 Grant - others:European COST Action(XE) ES0803 Institutional support: RVO:68378289 Keywords : cosmic rays * solar energetic particles * ionization * ionosphere * atmosphere * solar activity * solar-terrestrial relationships Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/articles/swsc/abs/2013/01/swsc120040/swsc120040.html

  20. Geodesic acoustic mode driven by energetic particles with bump-on-tail distribution

    Science.gov (United States)

    Ren, Haijun; Wang, Hao

    2018-04-01

    Energetic-particle-driven geodesic acoustic mode (EGAM) is analytically investigated by adopting the bump-on-tail distribution for energetic particles (EPs), which is created by the fact that the charge exchange time (τcx ) is sufficiently shorter than the slowing down time (τsl ). The dispersion relation is derived in the use of gyro-kinetic equations. Due to the finite ratio of the critical energy and the initial energy of EPs, defined as τc , the dispersion relation is numerically evaluated and the effect of finite τc is examined. Following relative simulation and experimental work, we specifically considered two cases: τsl/τcx = 3.4 and τsl/τcx = 20.4 . The pitch angle is shown to significantly enhance the growth rate and meanwhile, the real frequency is dramatically decreased with increasing pitch angle. The excitation of high-frequency EGAM is found, and this is consistent with both the experiment and the simulation. The number density effect of energetic particles, represented by \

  1. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Medley, S.S.; Andre, R.; Bell, R.E.; Darrow, D.S.; Domier, C.W.; Fredrickson, E.D.; Gorelenkov, N.N.; Kaye, S.M.; LeBlanc, B.P.; Lee, K.C.; Levinton, F.M.; Liu, D.; Luhmann, N.C. Jr.; Menard, J.E.; Park, H.; Stutman, D.; Roquemore, A.L.; Tritz, K.; Yuh, H

    2007-01-01

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ∼ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvenic (f ∼ 20-150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvenic modes only cause redistribution and the energetic ions remain confined.

  2. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team

    2007-11-15

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.

  3. Effects of Energetic Solar Emissions on the Lower Ionosphere as seen in Ionosonde Observations

    Science.gov (United States)

    Barta, V.; Satori, G.; Williams, E.

    2016-12-01

    The sudden increase of X-radiation and EUV emission following solar flares causes extra ionization in the sunlit hemisphere in the D- and E-regions of the Earth's ionosphere. In addition, solar flares are also accompanied by energetic particles (protons and electrons) with energies from tens of keV to hundreds of MeV result additional ionization. The impact of two exceptional solar events - the Bastille Day event (July 14, 2000) and the Halloween event (Oct/Nov2003) on the lowest region of the ionosphere (European stations (Juliusruh, 53.6°N, 13.4°E; Chilton, 51.5°N, 359.4°E; Rome, 41.9°N, 12.5°E; SanVito 40.6°N, 17.8°E) during the Halloween event. This ionosonde response increases with increasing latitude. Simultaneously the absence of the foE parameter was observed. The sharply increased values (2-4 MHz) of the fmin parameters and the co-occurring absence of the foE parameters were detected in the case of the Bastille Day event as well, but only at high latitude stations (Loparskaya, 68°N, 33°E; St. Petersburg, 59.9°N, 30.3°E; Juliusruh, 53.6°N, 13.4°E). These results suggest that the latitude-dependent change of the fmin and foE parameters is related to energetic solar particles penetrating to the lower ionosphere.

  4. Solar energetic particles a modern primer on understanding sources, acceleration and propagation

    CERN Document Server

    Reames, Donald V

    2017-01-01

    This concise primer introduces the non-specialist reader to the physics of solar energetic particles (SEP) and systematically reviews the evidence for the two main mechanisms which lead to the so-called impulsive and gradual SEP events. More specifically, the timing of the onsets, the longitude distributions, the high-energy spectral shapes, the correlations with other solar phenomena (e.g. coronal mass ejections), as well as the all-important elemental and isotopic abundances of SEPs are investigated. Impulsive SEP events are related to magnetic reconnection in solar flares and jets. The concept of shock acceleration by scattering on self-amplified Alfvén waves is introduced, as is the evidence of reacceleration of impulsive-SEP material in the seed population accessed by the shocks in gradual events. The text then develops processes of transport of ions out to an observer. Finally, a new technique to determine the source plasma temperature in both impulsive and gradual events is demonstrated. Last but not ...

  5. ASSOCIATION OF {sup 3}He-RICH SOLAR ENERGETIC PARTICLES WITH LARGE-SCALE CORONAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Innes, Davina E. [Max-Planck-Institut für Sonnensystemforschung, D-37077, Göttingen (Germany); Mason, Glenn M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wiedenbeck, Mark E., E-mail: bucik@mps.mpg.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-12-10

    Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory ( STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.

  6. Acceleration of Solar Energetic Particles at a Fast Traveling Shock in Non-uniform Coronal Conditions

    Science.gov (United States)

    Le Roux, J. A.; Arthur, A. D.

    2017-09-01

    Time-dependent solar energetic particle (SEP) acceleration is investigated at a fast, nearly parallel spherical traveling shock in the strongly non-uniform corona by solving the standard focused transport equation for SEPs and transport equations for parallel propagating Alfvén waves that form a set of coupled equations. This enables the modeling of self-excitation of Alfvén waves in the inertial range by SEPs ahead of the shock and its role in enhancing the efficiency of the diffusive shock acceleration (DSA) of SEPs in a self-regulatory fashion. Preliminary results suggest that, because of the highly non-uniform coronal conditions that the shock encounters, both DSA and wave excitation are highly time-dependent processes. Thus, DSA spectra of SEPs strongly deviate from the simple power-law prediction of standard steady-state DSA theory and initially strong wave excitation weakens rapidly. Consequently, the ability of DSA to produce high energy SEPs in the corona of ∼1 GeV, as observed in the strongest gradual SEP events, appears to be strongly curtailed at a fast nearly parallel shock, but further research is needed before final conclusions can be drawn.

  7. Low altitude observations of the energetic electrons in the outer radiation belt during isolated substorms

    International Nuclear Information System (INIS)

    Varga, L.; Venkatesan, D.; Johns Hopkins Univ., Laurel, MD; Meng, C.I.

    1985-01-01

    The low energy (1-20 keV) detector registering particles onboard the polar-orbiting low altitude (approx. 850 km) DMSP-F2 and -F3 satellites also records high energy electrons penetrating the detector walls. Thus the dynamics of this electron population at L=3.5 can be studied during isolated periods of magnetospheric substorms identified by the indices of auroral electrojet (AE), geomagnetic (Ksub(p)) and ring current (Dsub(st)). Temporal changes in the electron flux during the substorms are observed to be an additional contribution riding over the top of the pre-storm (or geomagnetically quiet-time) electron population; the duration of the interval of intensity variations is observed to be about the same as that of the enhancement of the AE index. This indicates the temporal response of the outer radiation belt to the substorm activity, since the observation was made in the ''horns'' of the outer radiation belt. The observed enhanced radiation at low altitude may associate with the instantaneous increase and/or dumping of the outer radiation belt energetic electrons during each isolated substorm activity. (author)

  8. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    Science.gov (United States)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  9. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  10. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  11. First order and second order fermi acceleration of energetic charged particles by shock waves

    International Nuclear Information System (INIS)

    Webb, G.M.

    1983-01-01

    Steady state solutions of the cosmic ray transport equation describing first order Fermi acceleration of energetic charged particles at a plane shock (without losses) and second order Fermi acceleration in the downstream region of the shock are derived. The solutions for the isotropic part of the phase space distribution function are expressible as eigenfunction expansions, being superpositions of series of power law momentum spectra, with the power law indices being the roots of an eigenvalue equation. The above exact analytic solutions are for the case where the spatial diffusion coefficient kappa is independent of momentum. The solutions in general depend on the shock compression ratio, the modulation parameters V 1 L/kappa 1 , V 2 L/kappa 2 (V is the plasma velocity, kappa is the energetic particle diffusion coefficient, and L a characteristic length over which second order Fermi acceleration is effective) in the upstream and downstream regions of the shock, respectively, and also on a further dimensionless parameter, zeta, characterizing second order Fermi acceleration. In the limit as zeta→0 (no second order Fermi acceleration) the power law momentum spectrum characteristic of first order Fermi acceleration (depending only on the shock compression ratio) obtained previously is recovered. Perturbation solutions for the case where second order Fermi effects are small, and for realistic diffusion coefficients (kappainfinityp/sup a/, a>0, p = particle momentum), applicable at high momenta, are also obtained

  12. Robustness and flexibility in compact quasiaxial stellarators: Global ideal MHD stability and energetic particle transport

    International Nuclear Information System (INIS)

    Redi, M.H.; Diallo, A.; Cooper, W.A.; Fu, G.Y.

    2000-01-01

    Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic stability is evaluated as well as energetic particle transport. It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviors is found for this large set of equilibria, exhibiting similar particle transport properties

  13. The “Puck” energetic charged particle detector: Design, heritage, and advancements

    Science.gov (United States)

    Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-01-01

    Abstract Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low‐resource missions in the past, the need was recognized for a low‐resource but highly capable, mass‐species‐discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the “Puck” EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high‐voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions. PMID:27867799

  14. Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission.

    Science.gov (United States)

    Lee, Sang-Hun; Dudok, Barna; Parihar, Vipan K; Jung, Kwang-Mook; Zöldi, Miklós; Kang, Young-Jin; Maroso, Mattia; Alexander, Allyson L; Nelson, Gregory A; Piomelli, Daniele; Katona, István; Limoli, Charles L; Soltesz, Ivan

    2017-07-01

    In the not too distant future, humankind will embark on one of its greatest adventures, the travel to distant planets. However, deep space travel is associated with an inevitable exposure to radiation fields. Space-relevant doses of protons elicit persistent disruptions in cognition and neuronal structure. However, whether space-relevant irradiation alters neurotransmission is unknown. Within the hippocampus, a brain region crucial for cognition, perisomatic inhibitory control of pyramidal cells (PCs) is supplied by two distinct cell types, the cannabinoid type 1 receptor (CB 1 )-expressing basket cells (CB 1 BCs) and parvalbumin (PV)-expressing interneurons (PVINs). Mice subjected to low-dose proton irradiation were analyzed using electrophysiological, biochemical and imaging techniques months after exposure. In irradiated mice, GABA release from CB 1 BCs onto PCs was dramatically increased. This effect was abolished by CB 1 blockade, indicating that irradiation decreased CB 1 -dependent tonic inhibition of GABA release. These alterations in GABA release were accompanied by decreased levels of the major CB 1 ligand 2-arachidonoylglycerol. In contrast, GABA release from PVINs was unchanged, and the excitatory connectivity from PCs to the interneurons also underwent cell type-specific alterations. These results demonstrate that energetic charged particles at space-relevant low doses elicit surprisingly selective long-term plasticity of synaptic microcircuits in the hippocampus. The magnitude and persistent nature of these alterations in synaptic function are consistent with the observed perturbations in cognitive performance after irradiation, while the high specificity of these changes indicates that it may be possible to develop targeted therapeutic interventions to decrease the risk of adverse events during interplanetary travel.

  15. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Cliver, E. W. [National Solar Observatory, Boulder, CO (United States)

    2016-12-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10{sup 5}) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10{sup 3}, similar to those of comparably sized well-connected (W20–W90) SEP events.

  16. Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2009-02-01

    Full Text Available Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

  17. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  18. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  19. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  20. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  1. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    International Nuclear Information System (INIS)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs

  2. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  3. Space Weathering Radiation Environment of the Inner Solar System from the Virtual Energetic Particle Observatory

    Science.gov (United States)

    Cooper, J. F.; Papitashvili, N. E.

    2016-12-01

    The surfaces of Mercury, the Moon, the moons of Mars, the asteroids, and other small bodies of the inner solar system have been directly weathered for millions to billions of years by solar wind, energetic particle, and solar ultraviolet irradiation. Surface regolith layers to meters in depth are formed by impacts of smaller bodies and micrometeoroids. Sample return missions to small bodies, such as Osiris-REx to the asteroid Bennu, are intended to recover information on the early history of solar system formation, but must contend with the long-term space weathering effects that perturb the original structure and composition of the affected bodies. Solar wind plasma ions at keV energies penetrate only to sub-micron depths, while more energetic solar & heliospheric particles up to MeV energies reach centimeter depths, and higher-energy galactic cosmic rays to GeV energies fully penetrate through the impact regolith. The weathering effects vary with energy and penetration depth from ion implantation and erosive sputtering at solar wind energies to chemical and structural evolution driven by MeV - GeV particles. The energy versus depth dependence of such effects is weighted by the differential flux distributions of the incident particles as measured near the orbits of the affected bodies over long periods of time. Our Virtual Energetic Particle Observatory (http://vepo.gsfc.nasa.gov/) enables simultaneous access to multiple data sets from 1973 through the present in the form of differential flux spectral plots and downloadable data tables. The most continuous VEPO coverage exists for geospace data sources at 1 AU from the Interplanetary Monitoring Platform 8 (IMP-8), launched in 1973, through the present 1-AU constellation including the ACE, WIND, SOHO, and Stereo-A/B spacecraft. Other mission data, e.g. more occasionally from Pioneer-10/11, Helios-1/2, Voyager-1/2, and Ulysses, extend heliospheric coverage from the orbit of Mercury to that of Mars, the asteroid belt

  4. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  5. Cosmic Extremes: Probing Energetic Transients with Radio Observations

    Science.gov (United States)

    Denham Alexander, Kate

    2018-01-01

    With the advent of sensitive facilities like the Karl G. Jansky Very Large Array (VLA) and planning well underway for vastly more powerful wide-field interferometers like the Square Kilometer Array, the study of radio astrophysical transients is poised for dramatic growth. Radio observations provide a unique window into a wide variety of transient events, from gamma-ray bursts (GRBs) to supernovae to tidal disruption events (TDEs) in which a star is torn apart by a supermassive black hole. In particular, GRBs and TDEs have emerged as valuable probes of some of the most extreme physics in the Universe. In these high-energy laboratories, the longer timescale of radio emission allows for extensive followup and characterization of the event energies and the densities of surrounding material. I will present high-cadence broadband radio studies of GRB afterglows and TDEs undertaken with the goal of learning more about their physical properties, the physics underlying the formation and growth of relativistic jets and outflows, and the environments in which these events occur. Our observations confirm that only a small fraction of TDEs produce relativistic jets but reveal low-luminosity, non-relativistic outflows in two nearby TDEs, allowing us to begin constraining the bulk of the TDE population. Our GRB radio observations reveal both intrinsic variability (reverse shocks) and extrinsic variability (interstellar scintillation). The insights derived from these studies will be invaluable for designing and interpreting the results from future radio transient surveys.

  6. The Dependence of the Cerean Exosphere on Solar Energetic Particle Events

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, M. N.; Russell, C. T. [Earth, Planetary and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1567 (United States); Luhmann, J. G. [Space Sciences Lab, University of California, Berkeley, CA (United States); Thompson, W. T. [Goddard Space Flight Center, Greenbelt, MD (United States); Prettyman, T. H. [Planetary Science Institute, Tucson, AZ (United States); A’Hearn, M. F. [University of Maryland, College Park, MD (United States); Küppers, M.; O’Rourke, L. [European Space Agency/European Space Astronomy Centre, Villanueva de la Cañada (Spain); Raymond, C. A., E-mail: mvillarreal@igpp.ucla.edu [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2017-03-20

    Observations from Earth-based ground and orbiting telescopes indicate that the Ceres’s exosphere has a time-varying water component. Evidence of a transient atmosphere was also detected by Dawn upon its arrival, inferred from the response on the Gamma Ray and Neutron Detector. That atmosphere appeared shortly after the passage of a large enhancement in the local flux of high-energy solar protons. Solar proton events have highly variable fluxes over a range of proton energies from 10 s of keV to over 100 MeV and are capable of sputtering water ice at or near the surface. Herein, we examine the fluxes of solar energetic protons measured during Earth-based attempts to detect water vapor and OH in the Ceres’ atmosphere. We find that the presence of the cerean exosphere is correlated with the inferred presence of solar energetic protons at Ceres, consistent with the event detected by Dawn.

  7. Extreme fluxes in solar energetic particle events: Methodological and physical limitations

    International Nuclear Information System (INIS)

    Miroshnichenko, L.I.; Nymmik, R.A.

    2014-01-01

    In this study, all available data on the largest solar proton events (SPEs), or extreme solar energetic particle (SEP) events, for the period from 1561 up to now are analyzed. Under consideration are the observational, methodological and physical problems of energy-spectrum presentation for SEP fluxes (fluences) near the Earth's orbit. Special attention is paid to the study of the distribution function for extreme fluences of SEPs by their sizes. The authors present advances in at least three aspects: 1) a form of the distribution function that was previously obtained from the data for three cycles of solar activity has been completely confirmed by the data for 41 solar cycles; 2) early estimates of extremely large fluences in the past have been critically revised, and their values were found to be overestimated; and 3) extremely large SEP fluxes are shown to obey a probabilistic distribution, so the concept of an “upper limit flux” does not carry any strict physical sense although it serves as an important empirical restriction. SEP fluxes may only be characterized by the relative probabilities of their appearance, and there is a sharp break in the spectrum in the range of large fluences (or low probabilities). It is emphasized that modern observational data and methods of investigation do not allow, for the present, the precise resolution of the problem of the spectrum break or the estimation of the maximum potentialities of solar accelerator(s). This limitation considerably restricts the extrapolation of the obtained results to the past and future for application to the epochs with different levels of solar activity. - Highlights: • All available data on the largest solar proton events (SPEs) are analyzed. • Distribution function obtained for 3 last cycles is confirmed for 41 solar cycles. • Estimates of extremely large fluences in the past are found to be overestimated. • Extremely large SEP fluxes are shown to obey a probabilistic distribution.

  8. Magnetic trapping of energetic particles on open dayside boundary layer flux tubes

    International Nuclear Information System (INIS)

    Cowley, S.W.H.; Lewis, Z.V.

    1990-01-01

    Both simple as well as detailed empirical magnetic models of the Earth's dayside magnetosphere suggest that field lines near the magnetopause boundary in the noon quadrant (∼ 09:00 to ∼ 15:00 M.L.T.) possess an unusual property due to the compressive effect of the impinging solar wind flow, namely that the equatorial region represents a local maximum in the magnetic field strength, and not a minimum as elsewhere in the magnetosphere. In this region the field lines can therefore support two distinct particle populations, those which bounce across the equator between mirror points on either side, and those which are trapped about the off-equatorial field strength minima and are confined to one side of the equator. When these field lines become magnetically open due to the occurrence of magnetic reconnection at the equatorial magnetopause, the former particles will rapidly escape into the magnetosheath by field-aligned flow, while the latter population may be sustained within the boundary layer over many bounce periods, as the flux tubes contract and move tailward. Consequently, trapped distributions of energetic particles may commonly occur on open field lines in the dayside boundary layer in the noon quadrant, particularly at high latitudes. The existence of such particles is thus not an infallible indicator of the presence of closed magnetic field lines in this region. At earlier and later local times, however, the boundary layer field lines revert to possessing a minimum in the field strength at the equator. (author)

  9. Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument

    Directory of Open Access Journals (Sweden)

    T. Asikainen

    2005-09-01

    Full Text Available In this paper we study the fluxes of energetic protons (30–4000 keV and electrons (20–400 keV in the exterior cusp and in the adjacent high-latitude dayside plasma sheet (HLPS with the Cluster/RAPID instrument. Using two sample orbits we demonstrate that the Cluster observations at high latitudes can be dramatically different because the satellite orbit traverses different plasma regions for different external conditions. We make a statistical study of energetic particles in the exterior cusp and HLPS by analysing all outbound Cluster dayside passes in February and March, 2002 and 2003. The average particle fluxes in HLPS are roughly three (protons or ten (electrons times larger than in the exterior cusp. This is also true on those Cluster orbits where both regions are visited within a short time interval. Moreover, the total electron fluxes, as well as proton fluxes above some 100 keV, in these two regions correlate with each other. This is true even for fluxes in every energy channel when considered separately. The spectral indices of electron and proton fluxes are the same in the two regions. We also examine the possible dependence of particle fluxes at different energies on the external (solar wind and IMF and internal (geomagnetic conditions. The energetic proton fluxes (but not electron fluxes in the cusp behave differently at low and high energies. At low energies (<70 keV, the fluxes increase strongly with the magnitude of IMF By. Instead, at higher energies the proton fluxes in the cusp depend on substorm/geomagnetic activity. In HLPS proton fluxes, irrespective of energy, depend strongly on the Kp and AE indices. The electron fluxes in HLPS depend both on the

  10. MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere.

    Science.gov (United States)

    Ho, George C; Krimigis, Stamatios M; Gold, Robert E; Baker, Daniel N; Slavin, James A; Anderson, Brian J; Korth, Haje; Starr, Richard D; Lawrence, David J; McNutt, Ralph L; Solomon, Sean C

    2011-09-30

    The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.

  11. Thomson scattering diagnostic analyses to determine the energetic particle distributions in TFTR. Final report

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.

    1995-01-01

    Lodestar has been an active participant in the low power Collective Thomson Scattering (CTS) diagnostic at TFTR in collaboration with MIT. Extensive studies were conducted regarding the use of gyrotron scattering as a low cost diagnostic for both energetic ions and alpha particles on TFTR. The numerical scattering code has been improved and compared with similar code developed at JET. The authors have participated and assisted in the CTS experiments through onsite visits and have successfully performed most of the data analysis tasks remotely. Through their analysis on the initial data base accumulated, they are able to understand qualitatively the general features of the anomalous large scattered signal, have proposed an explanation for its generation mechanism, and have suggested a potential new use of CTS as an edge diagnostic

  12. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  13. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles.

    Science.gov (United States)

    Sato, T; Kataoka, R; Yasuda, H; Yashiro, S; Kuwabara, T; Shiota, D; Kubo, Y

    2014-10-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect aircrews from additional SEP exposure. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. An angular multigrid method for computing mono-energetic particle beams in Flatland

    Science.gov (United States)

    Börgers, Christoph; MacLachlan, Scott

    2010-04-01

    Beams of microscopic particles penetrating scattering background matter play an important role in several applications. The parameter choices made here are motivated by the problem of electron-beam cancer therapy planning. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of such a problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation—six if no dimension-reducing assumptions other than time independence are made. If grid-based methods are to be practical for these problems, it is therefore necessary to develop very fast solvers for the discretized problems. For beams of mono-energetic particles interacting with a passive background, but not with each other, in two space dimensions, the first author proposed such a solver, based on angular domain decomposition, some time ago. Here, we propose and test an angular multigrid algorithm for the same model problem. Our numerical experiments show rapid, grid-independent convergence. For high-resolution calculations, our method is substantially more efficient than the angular domain decomposition method. In addition, unlike angular domain decomposition, the angular multigrid method works well even when the angular diffusion coefficient is fairly large.

  15. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2017-12-30

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulation codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the

  16. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  17. Center for Gyrokinetic/MHD Hybrid Simulation of Energetic Particle Physics in Toroidal Plasmas (CSEPP). Final report

    International Nuclear Information System (INIS)

    Chen, Yang

    2012-01-01

    At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global δf-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 α (0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects in the hybrid model we have studied a kinetic electron closure scheme for the fluid electron model. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E || , derived by combining the quasi-neutrality condition, the Ampere's equation and the v || moment of the gyrokinetic equations. A discretization method for the closure scheme is studied in detail for a three-dimensional shear-less slab plasma. It is found that for long-wavelength shear Alfven waves the kinetic closure scheme

  18. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Directory of Open Access Journals (Sweden)

    Semkova Jordanka

    2014-01-01

    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.

  19. Mapping travelling convection vortex events with respect to energetic particle boundaries

    Directory of Open Access Journals (Sweden)

    T. Moretto

    1998-08-01

    Full Text Available Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries as identified by the particle measurements of the NOAA 10 satellite. In addition, for all events at least one close DMSP overpass was available. All but one of the 13 cases agree to an exceptional degree that: the TCV centres are located within the region of trapped, high energy electrons close to the trapping boundary for the population of electrons with energy greater than >100 keV. Correspondingly, from the DMSP data they are located within the region of plasmasheet-type precipitation close to the CPS/BPS precipitation boundary. That is, the TCV centres map to deep inside the magnetosphere and not to the magnetopause.Key Words. Ionosphere (Electric fields and currents; Particle precipitation · Magnetospheric physics (Magnetosphere-ionosphere interaction

  20. The Propitious Role of Solar Energetic Particles in the Origin of Life

    Science.gov (United States)

    Lingam, Manasvi; Dong, Chuanfei; Fang, Xiaohua; Jakosky, Bruce M.; Loeb, Abraham

    2018-01-01

    We carry out 3D numerical simulations to assess the penetration and bombardment effects of solar energetic particles (SEPs), i.e., high-energy particle bursts during large flares and superflares, on ancient and current Mars. We demonstrate that the deposition of SEPs is non-uniform at the planetary surface, and that the corresponding energy flux is lower than other sources postulated to have influenced the origin of life. Nevertheless, SEPs may have been capable of facilitating the synthesis of a wide range of vital organic molecules (e.g., nucleobases and amino acids). Owing to the relatively high efficiency of these pathways, the overall yields might be comparable to (or even exceed) the values predicted for some conventional sources such as electrical discharges and exogenous delivery by meteorites. We also suggest that SEPs could have played a role in enabling the initiation of lightning. A notable corollary of our work is that SEPs may constitute an important mechanism for prebiotic synthesis on exoplanets around M-dwarfs, thereby mitigating the deficiency of biologically active ultraviolet radiation on these planets. Although there are several uncertainties associated with (exo)planetary environments and prebiotic chemical pathways, our study illustrates that SEPs represent a potentially important factor in understanding the origin of life.

  1. Particle observations and propagation in the Three-Dimensional Heliosphere

    Science.gov (United States)

    Malandraki, O.E.; Marsden, R.G.; Lario, D.; Sanderson, T.R.; Tranquille, C.; Forsyth, R.J.; Elliott, H.A.; Lanzerotti, L.J.; Geranios, A.; Sarris, E.T.; Heber, B.; Mueller-Mellin, R.

    Ulysses, the first spacecraft ever to fly over the poles of the Sun, plays a central role in the Heliospheric Network, the international fleet of spacecraft to explore the Sun and Heliosphere. In November 2006, Ulysses, began its passage over the Sun’s south pole for the third time. Although like during the first polar passes in 1994/1995 the Sun is again close to its activity minimum, an unexpected rise of solar activity occurred in December 2006. Active Region 0930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. We will present energetic particle observations by Ulysses located at >70 deg south heliolatitude during this period and will discuss their implications for particle propagation to solar polar regions. The observed events will also be compared with previous Ulysses high latitude measurements obtained close to solar maximum. Furthermore, comparisons with data acquired from other spacecraft of the Heliospheric Network near the ecliptic plane will be discussed. (The project is co-funded by the European Social Fund and National Resources (EPEAEK II) PYTHAGORAS II.)

  2. The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Mason, G. M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-09-20

    On 2013 April 11 active region 11719 was centered just west of the central meridian; at 06:55 UT, it erupted with an M6.5 X-ray flare and a moderately fast (∼800 km s{sup –1}) coronal mass ejection. This solar activity resulted in the acceleration of energetic ions to produce a solar energetic particle (SEP) event that was subsequently observed in energetic protons by both ACE and the two STEREO spacecraft. Heavy ions at energies ≥10 MeV nucleon{sup –1} were well measured by SEP sensors on ACE and STEREO-B, allowing the longitudinal dependence of the event composition to be studied. Both spacecraft observed significant enhancements in the Fe/O ratio at 12-33 MeV nucleon{sup –1}, with the STEREO-B abundance ratio (Fe/O = 0.69) being similar to that of the large, Fe-rich SEP events observed in solar cycle 23. The footpoint of the magnetic field line connected to the ACE spacecraft was longitudinally farther from the flare site (77° versus 58°), and the measured Fe/O ratio at ACE was 0.48, 44% lower than at STEREO-B but still enhanced by more than a factor of 3.5 over average SEP abundances. Only upper limits were obtained for the {sup 3}He/{sup 4}He abundance ratio at both spacecraft. Low upper limits of 0.07% and 1% were obtained from the ACE sensors at 0.5-2 and 6.5-11.3 MeV nucleon{sup –1}, respectively, whereas the STEREO-B sensor provided an upper limit of 4%. These characteristics of high, but longitudinally variable, Fe/O ratios and low {sup 3}He/{sup 4}He ratios are not expected from either the direct flare contribution scenario or the remnant flare suprathermal material theory put forth to explain the Fe-rich SEP events of cycle 23.

  3. Collective Thomson scattering energetic particle diagnostic in high performance tokamaks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, P.Y.; Aamodt, R.E.; Russell, D.A.

    1997-07-08

    This report summarizes the work performed under DOE grant DE-FG03-95ER54334. Lodestar was an active participant in the low power Collective Thomson Scattering (CTS) diagnostic experiment at TFTR in collaboration with MIT. A simple and effective fitting technique was developed to extract key parameters from the scattered data. Utilizing this new technique, the concept of lower hybrid resonance scattering was adapted for a feasibility study of a low/medium power collective scattering diagnostic for ITER. The implementation and the testing of such a technique for actual parameter extraction using TFTR data, however, was severely limited due to experimental and instrumentation complications. Based on the studies the authors have performed up to date, it is believed that a combination of non-physics related effects such as multiple wall reflection of incident signal and spectral impurity problem o the gyrotron can account for the anomalous signal strength. A collaborative effort with GA was initiated and a feasibility study of developing and implementing a collective thomson scattering (CTS) diagnostic for the detection of energetic particles at DIII-D was completed. Specifically, the process of selecting an optimum receiver location for the diagnostic is discussed in detailed. Results presented here include detailed signal to noise calculations and ray-tracing studies. Critical physics issues and selection criteria are discussed and a procedure to detect anisotropic energetic ion temperatures is also outlined. Favorable results, obtained in the feasibility study, indicate that it should be possible to develop and implement a CTS diagnostic at DIII-D.

  4. The effect of a single blade limiter on energetic neutral beam particles in Doublet III

    International Nuclear Information System (INIS)

    Petrie, T.W.; Armentrout, C.; Burrell, K.H.; Hino, T.; Kahn, C.; Kim, J.; Lohr, J.; Rottler, L.; Schissel, D.; St John, H.

    1984-01-01

    Energetic beam ion collisions with the main limiter can be a significant power loss process under certain operating conditions in Doublet III. Futhermore, these collisions may cause measurable damage to the limiter itself. Under low current and low toroidal field conditions (e.g., Isub(p) = 290 kA and Bsub(T) = 6.3 kG), 20-38% of the inferred absorbed beam power may be deposited directly on the ion drift side of the limiter by the beam ions. However, for higher plasma current and toroidal fields (e.g., Isub(p) = 480 kA and Bsub(t) = 15 kG), the fraction of inferred absorbed beam power deposited on the limiter is reduced to < 10%. Monte Carlo code simulations show that this loss of beam power is primarily a result of the large poloidal and toroidal gyro-orbits of the energetic beam ions. Other factors which may enhance beam ion losses to the limiter are (1) large separation distances between the primary limiter and the (outboard) vacuum vessel wall, and (2) plasma density buildup near the plasma edge during high gas puff operation. In addition, our data suggests enhanced plasma density and recycling near the limiter. This localized density can cause appreciable premature ionizations of the incoming beam neutrals and thus reduce the effective plasma heating of the beamline which is immediately upcurrent of the limiter. The prematurely-ionized beam particles from this adjacent beamline are responsible for much of the damage to the ion drift side of the limiter. We have found that under certain operating conditions (1) the direct beam heating of the limiter is 50% greater and (2) the stored plasma energy is 10% less when the beamline immediately upcurrent of the limiter heats the plasma. Thus, the relative positions of the limiters to the beamlines are important in designing future tokamaks. (orig.)

  5. Some of the ball lightning observations could be phosphenes induced by energetic radiation from thunderstorms and lightning

    Science.gov (United States)

    Cooray, G. K.; Cooray, G. V.; Dwyer, J. R.

    2011-12-01

    Ball Lightning was seen and described since antiquity and recorded in many places. However, so far no one has managed to generate them in the laboratory. It is possible that many different phenomena are grouped together and categorized simply as ball lightning. One such phenomenon could be the phosphenes induced in humans by energetic radiation and particles from lightning and thunderstorms. A phosphene is a visual sensation that is characterized by perceiving luminous phenomena without light entering the eye. Phosphenes are generated when electrical signals are created in the retina or the optical nerve by other means in the absence of light stimuli. The fact that energetic radiation produced by radium can give rise to phosphenes was first noted by Giesel in 1899 [1]. A resurge of studies related to the creation of phosphenes by energetic radiation took place after the reports of phosphenes observed in space by Apollo astronauts and first reported by Buzz Aldrin after the Apollo 11 flight to the moon in 1969 [2]. The shapes of the phosphenes observed by astronauts were either rods, comet shaped, or comprised of a single dot, several dots or blobs. The colors were mostly white, but some had been colored yellow, orange, blue, green or red. The majority of the astronauts had perceived some kind of motion in association with the phosphenes. Most of the time, they were moving horizontally (from the periphery of the vision to the center) and sometimes diagonally, but never vertically. Subsequent studies conducted in space and ground confirmed the creation of phosphenes by energetic radiation. From these studies the threshold energy dissipation in the eye tissue necessary for phosphenes induction was estimated to be 10 MeV/cm. In the present study a quantitative analysis of the energetic radiation generated in the form of X-rays, Gamma rays and relativistic electrons by thunderstorms and lightning was made to investigate whether this radiation is strong enough to induce

  6. A Monte Carlo model of crustal field influences on solar energetic particle precipitation into the Martian atmosphere

    Science.gov (United States)

    Jolitz, R. D.; Dong, C. F.; Lee, C. O.; Lillis, R. J.; Brain, D. A.; Curry, S. M.; Bougher, S.; Parkinson, C. D.; Jakosky, B. M.

    2017-05-01

    Solar energetic particles (SEPs) can precipitate directly into the atmospheres of weakly magnetized planets, causing increased ionization, heating, and altered neutral chemistry. However, strong localized crustal magnetism at Mars can deflect energetic charged particles and reduce precipitation. In order to quantify these effects, we have developed a model of proton transport and energy deposition in spatially varying magnetic fields, called Atmospheric Scattering of Protons and Energetic Neutrals. We benchmark the model's particle tracing algorithm, collisional physics, and heating rates, comparing against previously published work in the latter two cases. We find that energetic nonrelativistic protons precipitating in proximity to a crustal field anomaly will primarily deposit energy at either their stopping altitude or magnetic reflection altitude. We compared atmospheric ionization in the presence and absence of crustal magnetic fields at 50°S and 182°E during the peak flux of the 29 October 2003 "Halloween storm" SEP event. The presence of crustal magnetic fields reduced total ionization by 30% but caused ionization to occur over a wider geographic area.

  7. A Hitch-hiker's Guide to Stochastic Differential Equations. Solution Methods for Energetic Particle Transport in Space Physics and Astrophysics

    Science.gov (United States)

    Strauss, R. Du Toit; Effenberger, Frederic

    2017-10-01

    In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via "toy models". Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.

  8. On resonant destabilization of toroidal Alfven eigenmodes by circulating and trapped energetic ions/alpha particles in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Biglari, H.; Zonca, F.; Chen, L.

    1991-10-01

    Toroidal Alfven eigenmodes are shown to be resonantly destabilized by both circulating and trapped energetic ions/alpha particles. In particular, the energetic circulating ions are shown to resonate with the mode not only at the Alfven speed ({upsilon}{sub A}), but also one-third of this speed, while resonances exist between trapped energetic ions and the wave when {upsilon} = {upsilon}{sub A}/21{epsilon}{sup {1/2}} (l=integer, {epsilon}=r/R is the local inverse aspect ratio), although the instability becomes weaker for resonances other than the fundamental. The oft-quoted criterion that instability requires super-Alfvenic ion velocities is thus sufficient but not necessary. 14 refs.

  9. Identification of best particle radiation shielded region through Energetic Neutral Atoms mapping

    Science.gov (United States)

    Milillo, A.; De Angelis, E.; Mura, A.; Orsini, S.; Mangano, V.; Massetti, S.; Rispoli, R.; Lazzarotto, F.; Vertolli, N.; Lavagna, M.; Ferrari, F.; Lunghi, P.; Attinà, P.; Parissenti, G.

    2017-09-01

    The lunar surface is directly exposed either to direct solar wind, or to Earth's magnetospheric plasma due to the Moon's lack of a magnetosphere or a dense atmosphere. This exposure could create inhospitable conditions for a possible human presence on the Moon, so it is crucial to investigate the close-to-surface environment for establishing the best reliable locations for future human bases. Although it lacks a global magnetic field, the Moon possesses magnetic anomalies that create mini-magnetospheres, where the solar wind is partly deflected. The local protection of the surface from the solar wind radiation inside the mini-magnetospheres could make these sites preferred for future lunar colonization. It is crucial a detailed characterization of these sites. In this paper, an investigation based on the detection of Energetic Neutral Atoms (ENA) from the surface for identifying the best particle radiation shielded region is proposed. A high spatial resolution mapping via ENA is a feasible and it is powerful way for reaching this goal.

  10. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere

    Directory of Open Access Journals (Sweden)

    Mateev Lachezar

    2013-03-01

    Full Text Available A brief review of the study during COST Action ES0803 of effects due to cosmic rays (CR and solar energetic particles (SEP in the ionosphere and atmosphere is presented. Models CORIMIA (COsmic Ray Ionization Model for Ionosphere and Atmosphere and application of CORSIKA (COsmic Ray SImulations for KAscade code are considered. They are capable to compute the cosmic ray ionization profiles at a given location, time, solar and geomagnetic activity. Intercomparison of the models, as well as comparison with direct measurements of the atmospheric ionization, validates their applicability for the entire atmosphere and for the different levels of the solar activity. The effects of CR and SEP can be very strong locally in the polar cap regions, affecting the physical-chemical and electrical properties of the ionosphere and atmosphere. Contributions here were also made by the anomalous CR, whose ionization is significant at high geomagnetic latitudes (above 65°–70°. Several recent achievements and application of CR ionization models are briefly presented. This work is the output from the SG 1.1 of the COST ES0803 action (2008–2012 and the emphasis is given on the progress achieved by European scientists involved in this collaboration.

  11. Sferic propagation perturbations caused by energetic particle events as seen in global lightning data

    Science.gov (United States)

    Anderson, T.; Holzworth, R. H., II; Brundell, J. B.

    2017-12-01

    Energetic particle precipitation associated with solar events have been known to cause changes in the Earth-ionosphere waveguide. Previous studies of solar proton events (SPEs) have shown that high-energy protons can ionize lower-altitude layers of the ionosphere, leading to changes in Schumann resonance parameters (Schlegel and Fullekrug, 1999) and absorption of radio waves over the polar cap (Kundu and Haddock, 1960). We use the World-Wide Lightning Location Network (WWLLN) to study propagation of VLF waves during SPEs. WWLLN detects lightning-generated sferics in the VLF band using 80 stations distributed around the world. By comparing received power at individual stations from specific lightning source regions during SPEs, we can infer changes in the lower ionosphere conductivity profile caused by high-energy proton precipitation. In particular, we find that some WWLLN stations see different distributions of sferic power and range during SPEs. We also use the power/propagation analysis to improve WWLLN's lightning detection accuracy, by developing a better model for ionosphere parameters and speed of light in the waveguide than we have previously used.

  12. Relationship between energetic particles and plasmas in the distant plasma sheet

    International Nuclear Information System (INIS)

    Sarris, E.T.; Krimigis, S.M.; Lui, A.T.Y.; Ackerson, K.L.; Frank, L.A.; Williams, D.J.

    1981-01-01

    Measurements of ions from three different instruments on the IMP-7 and 8 spacecraft are combined to yield with differential energy spectra of ions over the entire energy range of approx.100 eV to 4 MeV in the earth's distant (approx.30 to approx.40 R/sub e/) plasma sheet. These spectra, obtained during times of relatively small bulk flow velocities, span the intensity range from approx.10 -5 to 10 5 (cm 2 sec sr keV) -1 , varying smoothly over the entire energy range both when the plasma is cold (approx.1 keV) and hot (approx.9 keV). Overall, the shape of the spectrum resembles a Maxwellian but with a high energy (> or approx. =50 keV) tail described well by a power law (proportionalE -7 ). The high energy tail is displaced in a parallel fashion to higher or lower intensities when the plasma is hot or cold, respectively. The transition between the Maxwellian and the power law occurs at Eapprox. =(g+1)kT. It is found that the energetic particle populations in the plasma sheet appear to be directly related to the mean thermal energies of the corresponding plasmas

  13. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  14. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST

    Directory of Open Access Journals (Sweden)

    Poedts Stefaan

    2013-05-01

    Full Text Available High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7–8 October 2012, and the period following a fast solar wind stream on 25–26 October 2012 to within a factor of 5 or so. At lower energies of 10 – a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

  15. Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Revallo, M.; Bochníček, Josef; Hejda, Pavel

    2009-01-01

    Roč. 7, April (2009), S04004/1-S04004/7 ISSN 1542-7390 R&D Projects: GA AV ČR(CZ) IAA300120608; GA AV ČR 1QS300120506 Institutional research plan: CEZ:AV0Z30120515 Keywords : neural networks * coronal mass ejections * energetic particles * flares * radio emissions * magnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.845, year: 2009

  16. Cassini MIMI Close-Up of Saturn Energetic Particles: Low Altitude Trapped Radiation, Auroral Ion Acceleration, and Interchange Flow Channels

    Science.gov (United States)

    Mitchell, D. G.; Krimigis, S. M.; Krupp, N.; Paranicas, C.; Roussos, E.; Kollmann, P.

    2017-12-01

    We present observations from the final orbits of the Cassini Mission at Saturn by the Magnetospheric Imaging Instrument (MIMI). Crossing inside the D-Ring at the equator and just above Saturn's atmosphere, these orbits covered regions never visited previously in the mission. Highlights include the confirmation of an inner radiation belt analogous to the inner radiation belt at Earth by the Low Energy Magnetospheric Measurement System (LEMMS), with surprising twists—Saturn's D-ring material appears to be a source for these particles. Details will be presented in another session. The Grand Finale orbits also afforded a close-up view of the auroral ion acceleration regions by the Ion and Neutral Camera (INCA). Ionospheric ions at the base of auroral field lines are accelerated perpendicular to the magnetic field to 10's and 100's of keV, and charge exchange with exospheric neutrals to be emitted as energetic neutral atoms and images by INCA. We show that this acceleration region lies at about 0.1 Rs. Another feature seen previously in the mission but imaged with greater resolution is a flow channel associated with interchange motion in the middle magnetosphere. We show this feature to extend over several Saturn radii in the radial direction, and over about 2 Saturn radii azimuthally. Additional data have been received since the writing of this abstract and before Cassini's plunge into the atmosphere on September 15, so additional features may be presented.

  17. Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere

    Science.gov (United States)

    Clark, G.; Mauk, B. H.; Paranicas, C.; Haggerty, D.; Kollmann, P.; Rymer, A.; Brown, L.; Jaskulek, S.; Schlemm, C.; Kim, C.; Peachey, J.; LaVallee, D.; Allegrini, F.; Bagenal, F.; Bolton, S.; Connerney, J.; Ebert, R. W.; Hospodarsky, G.; Levin, S.; Kurth, W. S.; McComas, D. J.; Mitchell, D. G.; Ranquist, D.; Valek, P.

    2017-05-01

    NASA's Juno spacecraft successfully completed its first science polar pass over Jupiter's northern and southern aurora, with all the instruments powered, on 27 August 2016. Observations of conical energetic proton distributions at low altitudes (broad region of upward beaming electrons and were accompanied by broadband low-frequency wave emissions as well as low-altitude trapped magnetospheric protons and heavy ions. The characteristic energies associated with these accelerated ion conics are 100 times more energetic than similar distributions observed in the Earth's auroral region and similar in energy to those found at Saturn. In addition, the ion conics also exhibited pitch angle dispersion with time that is interpreted as a consequence of the structure of the source location. Mapping these distributions along magnetic field lines connected from the spacecraft to the ionosphere suggests that the source region exists at altitudes between 3 and 5 RJ. These new and exciting observations of accelerated ions over the polar region of Jupiter open up new areas for comparative planetary auroral physics.

  18. Solar energetic particle events during the rise phases of solar cycles 23 and 24

    Science.gov (United States)

    Chandra, R.; Gopalswamy, N.; Mäkelä, P.; Xie, H.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Jain, R.; Awasthi, A. K.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Choudhary, D. P.; Nitta, N. V.

    2013-12-01

    We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996-1998) (22 events) and 24 (2009-2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity pfu), minor (1 pfu pfu) and major (intensity ⩾ 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north-south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.

  19. Science Results from Colorado Student Space Weather Experiment (CSSWE): Energetic Particle Distribution in Near Earth Environment

    Science.gov (United States)

    Li, Xinlin

    2013-04-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, launched into a low-Earth, polar orbit on 13 September 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of trapped radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched 30 August 2012, that traverse the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3.3 MeV. The commissioning phase was completed and REPTile was activated on 4 October 2012. The data are very clean, far exceeding expectations! A number of engineering challenges had to be overcome to achieve such clean measurements under the mass and power limits of a CubeSat. The CSSWE is also an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  20. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  1. Trends of light particle spectra observed in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Awes, T.C.; Poggi, G.; Saini, S.; Gelbke, C.K.; Legrain, R.; Westfall, G.D.

    1981-01-01

    The emission of energetic light particles (p,d,t) has been studied for 16 O induced reactions on Al, Zr and Au targets at the incident energies of 140, 215 and 310 MeV. The light-particle energy spectra have been analyzed in terms of a moving thermal source. The apparent temperatures exhibit a systematic variation as a function of the incident energy per nucleon above the Coulomb barrier. The observed trend can be extrapolated in a smooth fashion to temperatures obtained in relativistic heavy-ion collisions. (orig.)

  2. Toroidal Alfvén eigenmode triggered by trapped anisotropic energetic particles in a toroidal resistive plasma with free boundary

    Science.gov (United States)

    Yang, S. X.; Hao, G. Z.; Liu, Y. Q.; Wang, Z. X.; Hu, Y. J.; Zhu, J. X.; He, H. D.; Wang, A. K.

    2018-04-01

    The toroidal Alfvén eigenmode (TAE), excited by trapped energetic particles (EPs), is numerically investigated in a tokamak plasma, using the non-perturbative magnetohydrodynamic-kinetic hybrid formulation based MARS-K code (Liu et al 2008 Phys. Plasmas 15 112503). Compared with the fixed boundary condition at the plasma edge, a free boundary enhances the critical value of the EPs kinetic contribution for driving the TAE. Free boundary also induces finite perturbations at the plasma edge as expected. An anisotropic distribution of EPs, in the particle pitch angle space, strongly enhances the instability and results in a more global mode structure, compared with the isotropic case. The plasma resistivity is also found to play a role in the EPs-destabilized TAE. In particular, the mode stability domain is mapped out, in the 2D parameter space of the plasma resistivity and a quantity defining the width of the particle distribution in pitch angle (for anisotropic distribution). A resonance layer in the poloidal mode structure, with the layer width increasing with the plasma resistivity, appears at the large width of the particle distribution in pitch angle space. A mode conversion, from the modified ideal kink by the EPs kinetic effect to the TAE, is also observed while increasing the birth energy of EPs. Computational results suggest that the TAE mode structure can be modified by certain key plasma parameters, such as the EPs kinetic contribution, the equilibrium pressure, the plasma resistivity, the distribution of EPs, as well as the birth energy of EPs. Such modification of the eigenmode structure can only be obtained following the non-perturbative hybrid approach (Wang et al 2013 Phys. Rev. Lett. 111 145003, Wang et al 2015 Phys. Plasmas 22 022509), as adopted in this study. More importantly, numerical results show that near the marginal stability point, the dominant poloidal harmonics of the TAE overlap with each other, and are localized at the tip positions of

  3. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002-2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1-2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5-1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar

  4. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures.

  5. Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument

    Directory of Open Access Journals (Sweden)

    T. Asikainen

    2005-09-01

    Full Text Available In this paper we study the fluxes of energetic protons (30–4000 keV and electrons (20–400 keV in the exterior cusp and in the adjacent high-latitude dayside plasma sheet (HLPS with the Cluster/RAPID instrument. Using two sample orbits we demonstrate that the Cluster observations at high latitudes can be dramatically different because the satellite orbit traverses different plasma regions for different external conditions. We make a statistical study of energetic particles in the exterior cusp and HLPS by analysing all outbound Cluster dayside passes in February and March, 2002 and 2003. The average particle fluxes in HLPS are roughly three (protons or ten (electrons times larger than in the exterior cusp. This is also true on those Cluster orbits where both regions are visited within a short time interval. Moreover, the total electron fluxes, as well as proton fluxes above some 100 keV, in these two regions correlate with each other. This is true even for fluxes in every energy channel when considered separately. The spectral indices of electron and proton fluxes are the same in the two regions. We also examine the possible dependence of particle fluxes at different energies on the external (solar wind and IMF and internal (geomagnetic conditions. The energetic proton fluxes (but not electron fluxes in the cusp behave differently at low and high energies. At low energies (<70 keV, the fluxes increase strongly with the magnitude of IMF By. Instead, at higher energies the proton fluxes in the cusp depend on substorm/geomagnetic activity. In HLPS proton fluxes, irrespective of energy, depend strongly on the Kp and AE indices. The electron fluxes in HLPS depend both on the <Kp index and the solar wind speed. In the cusp the electron fluxes mainly depend on the solar wind speed, and are higher for northward than southward IMF. These results give strong evidence in favour of the idea that the

  6. Acceleration and propagation of energetic particles in the solar corona: from RHESSI data analysing to the preparation of the STIX tool operations on Solar Orbiter

    International Nuclear Information System (INIS)

    Musset, S.

    2016-01-01

    The Sun is an active star and one manifestation of its activity is the production of solar flares. It is currently admitted that solar flares are caused by the release of magnetic energy during the process of magnetic reconnection in the solar upper atmosphere, the solar corona. During these flares, a large fraction of the magnetic energy is transferred to the acceleration of particles (electrons and ions). However, the details of particle acceleration during flares are still not completely understood. Several scenarios and models have been developed to explain particle acceleration. In some of them, electric fields, produced at the location of current sheets, which can be fragmented or collapsing, and which are preferentially located on quasi-separatrix layers (QSLs), are accelerating particles. To investigate a possible link between energetic particles and direct electric fields produced at current sheet locations, we looked for a correlation between X-ray emission from energetic electrons and electric currents which can be measured at the photospheric level. We used the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI) data to produce spectra and images of the X-ray emissions during GOES X-class flares, and spectro polarimetric data from the Helio seismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) to calculate the vertical current densities from the reconstructed 3D vector magnetic field. A correlation between the coronal X-ray emissions (tracing the energetic electrons near the acceleration site) and the strong current ribbons at the photospheric level (tracing the coronal current sheet) was found in the five studied X-class flares. Moreover, thanks to the 12-minute time cadence of SDO/HMI, we could study for the first time the time evolution of electric currents : in several flares, a change in the current intensity, occurring during the flare peak, was found to be spatially correlated with X-ray emission sites. These

  7. The MUSCLES Treasury Survey. IV. Scaling Relations for Ultraviolet, Ca II K, and Energetic Particle Fluxes from M Dwarfs

    Science.gov (United States)

    Youngblood, Allison; France, Kevin; Loyd, R. O. Parke; Brown, Alexander; Mason, James P.; Schneider, P. Christian; Tilley, Matt A.; Berta-Thompson, Zachory K.; Buccino, Andrea; Froning, Cynthia S.; Hawley, Suzanne L.; Linsky, Jeffrey; Mauas, Pablo J. D.; Redfield, Seth; Kowalski, Adam; Miguel, Yamila; Newton, Elisabeth R.; Rugheimer, Sarah; Segura, Antígona; Roberge, Aki; Vieytes, Mariela

    2017-07-01

    Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planet’s potential habitability, particularly for M dwarfs, as they are prime targets for current and near-term exoplanet characterization efforts and atmospheric models predict that their UV radiation can produce photochemistry on habitable zone planets different from that on Earth. To derive ground-based proxies for UV emission for use when Hubble Space Telescope (HST) observations are unavailable, we have assembled a sample of 15 early to mid-M dwarfs observed by HST and compared their nonsimultaneous UV and optical spectra. We find that the equivalent width of the chromospheric Ca II K line at 3933 Å, when corrected for spectral type, can be used to estimate the stellar surface flux in ultraviolet emission lines, including H I Lyα. In addition, we address another potential driver of habitability: energetic particle fluxes associated with flares. We present a new technique for estimating soft X-ray and >10 MeV proton flux during far-UV emission line flares (Si IV and He II) by assuming solar-like energy partitions. We analyze several flares from the M4 dwarf GJ 876 observed with HST and Chandra as part of the MUSCLES Treasury Survey and find that habitable zone planets orbiting GJ 876 are impacted by large Carrington-like flares with peak soft X-ray fluxes ≥10-3 W m-2 and possible proton fluxes ˜102-103 pfu, approximately four orders of magnitude more frequently than modern-day Earth.

  8. The MUSCLES Treasury Survey. IV. Scaling Relations for Ultraviolet, Ca ii K, and Energetic Particle Fluxes from M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, Allison; France, Kevin; Loyd, R. O. Parke; Mason, James P. [Laboratory for Atmospheric and Space Physics, University of Colorado, 600 UCB, Boulder, CO 80309 (United States); Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Schneider, P. Christian [European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Tilley, Matt A. [Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195 (United States); Berta-Thompson, Zachory K.; Kowalski, Adam [Department of Astrophysical and Planetary Sciences, University of Colorado, 2000 Colorado Ave., Boulder, CO 80305 (United States); Buccino, Andrea; Mauas, Pablo J. D. [Dpto. de Física, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Froning, Cynthia S. [Department of Astronomy/McDonald Observatory, C1400, University of Texas at Austin, Austin, TX 78712 (United States); Hawley, Suzanne L. [Astronomy Department, Box 351580, University of Washington, Seattle, WA 98195 (United States); Linsky, Jeffrey [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Redfield, Seth [Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Miguel, Yamila [Observatoire de la Cote d’Azur, Boulevard de l’Observatoire, CS 34229 F-06304 NICE Cedex 4 (France); Newton, Elisabeth R. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02138 (United States); Rugheimer, Sarah, E-mail: allison.youngblood@colorado.edu [School of Earth and Environmental Sciences, University of St. Andrews, Irvine Building, North Street, St. Andrews, KY16 9AL (United Kingdom); and others

    2017-07-01

    Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planet’s potential habitability, particularly for M dwarfs, as they are prime targets for current and near-term exoplanet characterization efforts and atmospheric models predict that their UV radiation can produce photochemistry on habitable zone planets different from that on Earth. To derive ground-based proxies for UV emission for use when Hubble Space Telescope ( HST ) observations are unavailable, we have assembled a sample of 15 early to mid-M dwarfs observed by HST and compared their nonsimultaneous UV and optical spectra. We find that the equivalent width of the chromospheric Ca ii K line at 3933 Å, when corrected for spectral type, can be used to estimate the stellar surface flux in ultraviolet emission lines, including H i Ly α . In addition, we address another potential driver of habitability: energetic particle fluxes associated with flares. We present a new technique for estimating soft X-ray and >10 MeV proton flux during far-UV emission line flares (Si iv and He ii) by assuming solar-like energy partitions. We analyze several flares from the M4 dwarf GJ 876 observed with HST and Chandra as part of the MUSCLES Treasury Survey and find that habitable zone planets orbiting GJ 876 are impacted by large Carrington-like flares with peak soft X-ray fluxes ≥10{sup −3} W m{sup −2} and possible proton fluxes ∼10{sup 2}–10{sup 3} pfu, approximately four orders of magnitude more frequently than modern-day Earth.

  9. LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Vourlidas, A.; Raouafi, N. E.; Haggerty, D. K.; Ho, G. C.; Anderson, B. J. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Gómez-Herrero, R. [Space Research Group, Physics and Mathematics Department, University of Alcalá, Alcalá de Henares, E-28871 (Spain); Dresing, N. [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany); Riley, P. [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2016-03-01

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2014 February 25 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. These include spacecraft located near Earth; the twin Solar TErrestrial RElations Observatory spacecraft, STEREO-A and STEREO-B, located at ∼1 au from the Sun 153° west and 160° east of Earth, respectively; the MErcury Surface Space ENvironment GEochemistry and Ranging mission (at 0.40 au and 31° west of Earth); and the Juno spacecraft (at 2.11 au and 48° east of Earth). Although the footpoints of the field lines nominally connecting the Sun with STEREO-A, STEREO-B and near-Earth spacecraft were quite distant from each other, an intense high-energy SEP event with Fe-rich prompt components was observed at these three locations. The extent of the extreme-ultraviolet wave associated with the solar eruption generating the SEP event was very limited in longitude. However, the white-light shock accompanying the associated coronal mass ejection extended over a broad range of longitudes. As the shock propagated into interplanetary space it extended over at least ∼190° in longitude. The release of the SEPs observed at different longitudes occurred when the portion of the shock magnetically connected to each spacecraft was already at relatively high altitudes (≳2 R{sub ⊙} above the solar surface). The expansion of the shock in the extended corona, as opposite to near the solar surface, determined the SEP injection and SEP intensity-time profiles at different longitudes.

  10. Possible effect of extreme solar energetic particle events of September–October 1989 on polar stratospheric aerosols: a case study

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2013-09-01

    Full Text Available The main ionization source of the middle and low Earth's atmosphere is related to energetic particles coming from outer space. Usually it is ionization from cosmic rays that is always present in the atmosphere. But in a case of a very strong solar eruption, some solar energetic particles (SEPs can reach middle/low atmosphere increasing the ionization rate up to some orders of magnitude at polar latitudes. We continue investigating such a special class of solar events and their possible applications for natural variations of the aerosol content. After the case study of the extreme SEP event of January 2005 and its possible effect upon polar stratospheric aerosols, here we analyze atmospheric applications of the sequence of several events that took place over autumn 1989. Using aerosol data obtained over polar regions from two satellites with space-borne optical instruments SAGE II and SAM II that were operating during September–October 1989, we found that an extreme major SEP event might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, the effect of the additional ambient air ionization on the aerosol formation is minor, in comparison with temperature effect, and can take place only in the cold polar atmospheric conditions. The extra aerosol mass formed under the temperature effect allows attributing most of the changes to the "ion–aerosol clear sky mechanism".

  11. Modelling Solar Energetic Particle Propagation in Realistic Heliospheric Solar Wind Conditions Using a Combined MHD and Stochastic Differential Equation Approach

    Science.gov (United States)

    Wijsen, N.; Poedts, S.; Pomoell, J.

    2017-12-01

    Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.

  12. On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE)

    Science.gov (United States)

    Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.

    2018-01-01

    In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of

  13. Injections of energetic particles into the magnetosphere. Consequences on deformations of distribution functions, and on gyro-resonance interactions

    International Nuclear Information System (INIS)

    Solomon, Jacques

    1977-01-01

    This research thesis addresses convection movements of energetic ionised particles in the Earth near magnetosphere (geocentric distances of about 2 to 10 Earth radii), and the interactions between these particles and waves they may generate. The author first recalls some notions dealing with cyclotron interactions between waves and particles, gives an example of dispersion relationship for these interactions, and indicates possible approximations for simplification purposes. The author also outlines the role of the hot and cold plasma with respect to densities in the wave amplification coefficient. Then, the author reports the study of wave amplification and of particle scattering. He tries to address the problem of waves-particles interaction through a self-consistent approach, i.e. by calculating simultaneously the spectral intensity of emitted waves and the particle distribution function resulting from their scattering. He more particularly addresses the case of a non-stationary interaction (relaxation) and of a stationary interaction. Complete calculations are performed for this last case. Radial and azimuth drift movements of hot particles under the influence of magnetic and static electric fields are then taken into account [fr

  14. Energetic electron pitch angle distribution parameters at 6.6 Re, as deduced from GOES X-ray observations

    Science.gov (United States)

    Garcia, H. A.

    1996-05-01

    X-ray sensors that measure the Sun's radiant output in two soft X-ray channels, 1-8 and 0.5-4 Å, are carried on all GOES geostationary equatorial weather satellites. A comparison of X-ray measurements from two co-operational GOES reveals a systematic difference signal that shows periodic diurnal and seasonal variations. These effects are seen during geomagnetically quiet times as well as disturbed times and are most noticeable when solar activity is low to moderate. The GOES orbit lies just above the main outer electron belt of the van Allen radiation belts but it falls inside the region containing >2MeV trapped electrons; thus the local particle environment includes electrons of sufficient energy to cause significant Bremsstrahlung on the walls of the ion chamber as well as direct deposition of energy through the entrance aperture. These background effects occur despite passive shielding of the ion chambers and in-orbit electronic suppression of the spurious particle contribution. However, because of the regularity of the difference signal it is possible to exploit this X-ray contaminant to infer certain properties of the energetic electron pitch angle distribution in anisotropy and in local time, on the assumption that these energetic electrons are responsible for the spurious X-ray detector response. The basic attributes of the observed diurnal and seasonal effects can be re-created in a model that incorporates a tilted dipole magnetosphere and local-time-dependent, generic pitch angle distributions. It is possible to infer the anisotropy index, n, for dayside sin n(α) distributions and the anisotropy index, m, for nightside sin m(2α) butterfly distributions as well as the local times where these distributions convert from normal loss-cone to butterfly in the afternoon and return to normal loss-cone in the morning. Examples of the diurnal and seasonal variations in the observed X-ray difference signal are shown, and these waveforms are re-created by a model

  15. MMS FEEPS Energetic Electron Microinjection Observations During 2015 Through October 2017

    Science.gov (United States)

    Fennell, J. F.; Turner, D. L.; Lemon, C.; Kavosi, S.; Spence, H. E.; Jaynes, A. N.; Blake, J. B.; Clemmons, J. H.; Baker, D. N.; Mauk, B.; Burch, J. L.; Cohen, I. J.

    2017-12-01

    During MMS traversals of the midnight to dusk local time regions energetic electron data showed many clusters of electron injections we call microinjections because of their short duration signatures. These microinjections of 50-400 keV electrons have energy dispersion signatures indicating that they gradient and curvature drifted from earlier local times. Multiple clusters of microinjection occurred during these traversals. We show detailed results from some microinjections taken with burst mode data. These high temporal resolution data showed that the electrons in the microinjections were trapped and had bidirectional field-aligned angular distributions. Drift calculations constrained by the observed electron dispersion times indicate the electrons had drifted from near the magnetopause hours earlier in local time. They were not observed in the midnight through pre-noon regions in 2015-2016. The 2015-2016 observations were limited to altitudes of 9 to 12 Re because the MMS apogee was 12 Re then. In March 2017, the MMS apogee was raised to 25 Re and we will show how these later microinjection observations compare to the earlier ones. These injection clusters are a new phenomenon in this region of the magnetosphere and with the higher orbit we will observe how close to the magnetopause they exist and possibly traverse the source regions. We will provide statistics on the occurrence of the injections and discuss possible sources and implications.

  16. Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons

    Science.gov (United States)

    Andersson, M. E.; Verronen, P. T.; Marsh, D. R.; Seppälä, A.; Päivärinta, S.-M.; Rodger, C. J.; Clilverd, M. A.; Kalakoski, N.; van de Kamp, M.

    2018-01-01

    One of the key challenges in polar middle atmosphere research is to quantify the total forcing by energetic particle precipitation (EPP) and assess the related response over solar cycle time scales. This is especially true for electrons having energies between about 30 keV and 1 MeV, so-called medium-energy electrons (MEE), where there has been a persistent lack of adequate description of MEE ionization in chemistry-climate simulations. Here we use the Whole Atmosphere Community Climate Model (WACCM) and include EPP forcing by solar proton events, auroral electron precipitation, and a recently developed model of MEE precipitation. We contrast our results from three ensemble simulations (147 years) in total with those from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) in order to investigate the importance of a more complete description of EPP to the middle atmospheric ozone, odd hydrogen, and odd nitrogen over decadal time scales. Our results indicate average EPP-induced polar ozone variability of 12-24% in the mesosphere, and 5-7% in the middle and upper stratosphere. This variability is in agreement with previously published observations. Analysis of the simulation results indicate the importance of inclusion of MEE in the total EPP forcing: In addition to the major impact on the mesosphere, MEE enhances the stratospheric ozone response by a factor of 2. In the Northern Hemisphere, where wintertime dynamical variability is larger than in the Southern Hemisphere, longer simulations are needed in order to reach more robust conclusions.

  17. Mapping travelling convection vortex events with respect to energetic particle boundaries

    DEFF Research Database (Denmark)

    Moretto, T.; Yahnin, A.

    1998-01-01

    Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries...

  18. Mapping travelling convection vortex events with respect to energetic particle boundaries

    DEFF Research Database (Denmark)

    Moretto, T.; Yahnin, A.

    1998-01-01

    Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries as iden...

  19. A unified theory of resonant excitation of kinetic ballooning modes by energetic ions/alpha particles in tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1991-10-01

    A complete theory of wave-particle interactions is presented whereby both circulating and trapped energetic ions can destabilize kinetic ballooning modes in tokamaks. Four qualitatively different types of resonances, involving wave-precessional drift, wave-transit, wave-bounce, and precessional drift-bounce interactions, are identified, and the destabilization potential of each is assessed. For a characteristic slowing-down distribution function, the dominant interaction is that which taps those resonant ions with the highest energy. Implications of the theory for present and future generation fusion experiments are discussed. 16 refs

  20. Synergism between low-energy neutral particles and energetic ions in the pulsed glow discharge deposition of diamond-like carbon films

    International Nuclear Information System (INIS)

    Afanasyev-Charkin, I.V.; Nastasi, M.

    2004-01-01

    Diamond-like carbon films were deposited using pulsed glow discharge deposition at 4 kV. The duty factor was varied and all other parameters were kept constant. It was shown that the contribution of neutral particles to the total number of deposition atoms is much larger than that of energetic ions. At the same time, there is a relationship between the deposition of neutral particles and ion bombardment. The sticking coefficient of the neutral particles in proportional to the flux of energetic ions and does not exceed 5x10 -4 for the deposition parameters used in our experiment

  1. Birkeland currents and energetic particles associated with optical auroral signatures of a westward traveling surge

    International Nuclear Information System (INIS)

    Bythrow, P.F.; Potemra, T.A.

    1987-01-01

    The surflike auroral shape commonly associated with the westward traveling surge (WTS) is a remarkably repeatable feature of the polar auroral display. In this paper, we examine the details of one such form that is located on the poleward edge of the diffuse aurora. For this study, we have used the simultaneous imagery, high-resolution magnetic field, and charged particle measurements from the DMSP F7 spacecraft, acquired in the northern hemisphere on December 31, 1983. F7 is the latest of the DMSP series and the first to include a magnetic field experiment. A large-scale upward directed Birkeland current dominates across the entire form, colocated with precipitating electrons having spectra peaked from 3 to 12 keV. A pair of narrow (20 km) parallel arcs extend along the poleward edge of the auroral oval for a few hours in local times west of the surge. They appear to divege to higher and lower latitudes because of an intrusion of aurora from lower latitudes and later local times. In the center of the intrusion, the Birkeland current is directed upward and electrons exhibit accelerated spectra with a monoenergetic peak at 12 keV similar to spectra observed at much lower latitudes. Each of the two narrow arcs poleward and equatorward of the diffuse region is characterized by intense upward directed Birkeland currents, ''inverted V'' electrons with spectra peaked from 1 to 3 keV, and enhanced ion fluxes. Electron spectra in both arcs suggest that these particles are streaming earthward from the plasma-sheet boundary layer. Thus, the WTS appears to result from an expansion of the plasma sheet and and intrusion of the plasma-sheet boundary layer into the high-latitude tail lobe. These observations support the view that the WTS is related to a Kelvin-Helmholtz instability in the distant magnetotail. Copyright American Geophysical Union 1987

  2. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liuguan; Jiang, Yong [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China); Zhao, Lulu; Li, Gang, E-mail: gang.li@uah.edu [Department of Physics and CSPAR, University of Alabama in Huntsville, AL 35899 (United States)

    2013-01-20

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon{sup -1} exceed 10 pfu, we categorize fast CMEs with speed >900 km s{sup -1} and width >60 Degree-Sign from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon{sup -1}. Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon{sup -1}. For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  3. Multi-channel particle observation instrument

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki

    1978-01-01

    In space particle measurement, the data obtained are a function of time of measurement, place, energy and pitch angle. The methods to measure energy and pitch angle distributions simultaneously with a single analyzer were investigated. The one is the method to measure energy distribution at a pitch angle at the same time, using a magnetic field type analyzer. This is similar to ordinary magnetic field type analyzers with plural detecting ports. It is simple in construction, low cost, and the measurable energy range can be changed by employing electromagnets. However, its shortcoming is that the measurement of protons can not be made. The other is the method to measure the pitch angle distribution at a certain energy simultaneously using a quadrant sphere electrostatic analyzer, in which energy distribution is analyzed by potential difference between outer and inner spheres. Since incident particles are deflected only in the direction to the center of the quadrant sphere, analysis of incident angle becomes possible by providing with plural detecting ports on the detecting surface. Though it enables both electron and proton measurements, and the energy scanning is easy, it is rather complicated in construction and tends to be influenced by disturbances due to ultra-violet ray and high energy particles because it has no collimator. To eliminate those background noises, acceleration at the prestage of the analyzer and the secondary electron removal inside the analyzer by retarding at the inlet of a secondary electron multiplier have been considered, and are now under experiments. (Wakatsuki, Y.)

  4. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    Full Text Available We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument for the years 2002–2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1–2 Gmol (109 mol NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5–1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by

  5. The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Lesur, M.

    2010-01-01

    The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles, which are high-energy ions produced by the fusion reaction. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In order to develop diagnostics and control schemes, a better understanding of linear and nonlinear features of resonant interactions between plasma waves and high-energy particles, which is the aim of this thesis, is required. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem, which is an extension of the classic bump-on-tail electrostatic problem, including external damping to a thermal plasma, and collisions. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (δ f) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between

  6. Observing thermomagnetic stability of nonideal magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    The thermomagnetic behavior of remanence-induced magnetite (Fe3O4) particles in the pseudo-single-domain (PSD) size range (similar to 0.1-10 mu m), which dominate the magnetic signature of many rock lithologies, is investigated using off-axis electron holography. Construction of magnetic induction...... maps allowed for the visualization of the vortex domain state in an individual Fe3O4 grain (similar to 200nm in diameter) as a function of temperature. Acquisition of a series of electron holograms at 100 degrees C intervals during in situ heating up to 700 degrees C demonstrates the vortex state...

  7. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Paschmann, G.; Sckopke, N.; Hynds, R.J.

    1981-01-01

    Data from the Los Alamos Scientific Laboratory/Max-Planck-Institut fast plasma experiment on Isee 2 have been combined with data from the European Space Agency/Imperial College/Space Research Laboratory low-energy proton experiment on Isee 3 to obtain for the first time an ion velocity distribution function f(v) extending from solar wind energies (-1 keV) to 1.6 MeV during the postshock phase of an energetic storm particle (ESP) event. This study reveals that f(v) of the ESP population is roughly isotropic in the solar wind frame from solar wind thermal energies out to 1.6 MeV. Emerging smoothly out of the solar wind thermal distribution, the ESP f(v) initially falls with increasing energy as E/sup -2.4/ in the solar wind frame. Above about 40 keV no single power law exponent adequately describes the energy dependence of f(v) in the solar wind frame. Above approx.200 keV in both the spacecraft frame and the solar wind frame, f(v) can be described by an exponential in speed (f(v)proportionale/sup -v/v//sub o/) with v/sub o/ = 1.05 x 10 8 cm s -1 . The ESP event studied (August 27, 1978) was superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. Our observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with the shock wave disturbance. The acceleration mechanism is sufficiently efficient that approx.1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approx.290 eV cm -3

  8. Gas morphology and energetics at the surface of PDRs : New insights with Herschel observations of NGC 7023

    NARCIS (Netherlands)

    Joblin, C.; Pilleri, P.; Montillaud, J.; Fuente, A.; Gerin, M.; Berne, O.; Ossenkopf, V.; Le Bourlot, J.; Teyssier, D.; Goicoechea, J. R.; Le Petit, F.; Roellig, M.; Akyilmaz, M.; Benz, A. O.; Boulanger, F.; Bruderer, S.; Dedes, C.; France, K.; Guesten, R.; Harris, A.; Klein, T.; Kramer, C.; Lord, S. D.; Martin, P. G.; Martin-Pintado, J.; Mookerjea, B.; Okada, Y.; Phillips, T. G.; Rizzo, J. R.; Simon, R.; Stutzki, J.; van der Tak, F.; Yorke, H. W.; Steinmetz, E.; Jarchow, C.; Hartogh, P.; Honingh, C. E.; Siebertz, O.; Caux, E.; Colin, B.

    2010-01-01

    Context. We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Aims: Using Herschel/HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC

  9. A Study of the Correlation between Earthquakes and NOAA Satellite Energetic Particle Bursts

    Directory of Open Access Journals (Sweden)

    William J. Burger

    2010-09-01

    Full Text Available Over the last two decades, potentially interesting phenomena in the ionosphere-magnetosphere transition region have been studied; anomalous particle fluxes detected by several space experiments and correlated with earthquakes. These phenomena are characterized by short-term increases in high energy particle counting rates, called particle bursts. In this work we have used the NOAA electron flux data to study the time correlation between particle rate fluctuations and earthquakes. With respect to previous studies, we have analyzed contiguous particle bursts in order to distinguish correlations with seismic activity from seasonal variations of particle flux and solar activity. Earthquake clustering was initially included to study the types and causes of false correlations.

  10. Energetic molecular outflow near AFGL 961: millimeter-wave and infrared observations

    International Nuclear Information System (INIS)

    Lada, C.J.; Gautier, T.N. III

    1982-01-01

    We report detailed millimeter-wave and near-infrared spectroscopy of the dynamically active region around the infrared source AFGL 961, near the Rosette nebula. Millimeter-wave 12 CO observations are used to study the high-velocity molecular flow around AFGL 961. These observations show that the high-velocity flow has a maximum extent of at least 6' or 2.9 pc at the distance of AFGL 961. The flow is found to be anisotropic, with redshifted high-velocity emission considerably more extended than blueshifted high-velocity emission. However, the flow does not appear to be as highly collimated as some other sources of high-velocity bipolar outflow. We also find the emission profiles to be asymmetric in velocity such that the integrated intensity of the redshifted high-velocity emission is on average 2.5 times greater than that of the blueshifted emission. The mass of the gas involved in the flow is determined to be approximately 19 M/sub sun/, and the kinetic energy of this gas is estimated to be about 8 x 10 46 ergs. These observations are interpreted as evidence that an energetic bipolar outflow of molecular gas is occurring near AFGL 961. The momentum of the outflowing molecular gas is large, and it is shown that this places strong constraints on possible physical mechanisms which may be driving the outflow. The near-infrared spectrum of AFGL 961 from 1.4-2.4 μm was obtained in order to study the conditions immediately around the infrared source which may be driving the molecular outflow

  11. Backward emission mechanism of energetic protons studied from two-particle correlations in 800 MeV proton-nucleus collisions

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1982-07-01

    The production mechanism of backward energetic protons was studied in 800 MeV proton-nucleus collision from the measurement of two-particle correlation over a wide range of kinematic regions. The backward energetic protons at 118 deg were measured in coincidence with the particles emitted in the angular range from 15 deg to 100 deg. Both in-plane and out-of-plane coincidences were measured. The backward energetic protons were detected with a delta E-E counter in a momentum region from 350 to 750 MeV/c, whereas the coincident particles were detected with a magnetic spectrometer in the momentum region from 450 to 2000 MeV/c. The reaction process of the backward protons were decomposed into six categories by the measurement of the associated particles, p or d. The momentum spectra, angular distribution and the target mass dependence of these components were studied. The component of p-p QES was well reproduced by the PW1A model, but the backward energetic protons were not from this process. The momenta of two nucleons inside the quasi-deuteron are highly correlated. The components of p-p non-QES and p-p out-of-plane are the main components of the backward energetic proton production. (Kako, I.)

  12. The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Lesur, M.

    2010-01-01

    The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (δf) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between major chirping events and quiescent phases, which is observed in experiments. A new method for analyzing fundamental kinetic plasma parameters, such as linear drive and external damping rate, is developed. The method, which consists of fitting procedures between COBBLES simulations and quasi-periodic chirping AE experiments, does not require any internal diagnostics. This approach is applied to Toroidicity-induced AEs

  13. Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-08-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC has been extended by processes that parameterize particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In part 1, the EMAC parameterization for NOx produced in the upper atmosphere by low-energy electrons is presented. Here, we discuss production of NOy and HOx associated with Solar Proton Events (SPEs. A submodel that parameterizes the effects of precipitating protons, based on flux measurements by instruments on the IMP or GOES satellites, was added to the EMAC model. Production and transport of NOy and HOx, as well as effects on other chemical species and dynamics during the 2003 Halloween SPEs are presented. Comparisons with MIPAS/ENVISAT measurements of a number of species affected by the SPE are shown and discussed. There is good agreement for NO2, but a severe disagreement is found for N2O similar to other studies. We discuss the effects of an altitude dependence of the N/NO production rate on the N2O and NOy changes during the SPE. This yields a modified parameterization that shows mostly good agreement between MIPAS and model results for NO2, N2O, O3, and HOCl. With the ability of EMAC to relax the model meteorology to observations, accurate assessment of total column ozone loss is also possible, yielding a loss of approximately 10 DU at the end of November. Discrepancies remain for HNO3, N2O5, and ClONO2, which are likely a consequence from the missing cluster ion chemistry and ion-ion recombination in the EMAC model as well as known issues with the model's NOy partitioning.

  14. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plates for energetic protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, Charles; Canfield, Michael; Graeper, Gavin; Lombardo, Andrew; Stillman, Collin; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    A Thomson parabola ion spectrometer (TPIS) has been designed and built to study energetic ions accelerated from the rear surface of targets irradiated by ultra-intense laser light from the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The device uses a permanent magnet and a pair of electrostatic deflector plates to produce parallel magnetic and electric fields, which cause ions of a given charge-to-mass ratio to be deflected onto parabolic curves on the detector plane. The position of the ion along the parabola can be used to determine its energy. Fujifilm imaging plates (IP) are placed in the rear of the device and are used to detect the incident ions. The energy dispersion of the spectrometer has been calibrated using monoenergetic ion beams from the SUNY Geneseo 1.7 MV pelletron accelerator. The IP sensitivity has been measured for protons and deuterons with energies between 0.6 MeV and 3.4 MeV, and for alpha particles with energies between 1.5 MeV and 5.1 MeV.

  15. Terrestrial energetic neutral atom emissions and the ground-based geomagnetic indices: First daylong observations by IBEX

    Science.gov (United States)

    Ogasawara, K.; Dayeh, M. A.; Fuselier, S. A.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    We report daylong continuous observations of bright terrestrial energetic neutral atom (ENA) emissions in the energy of 0.5-6.0 keV by Interstellar Boundary Explorer (IBEX). The unique vantage point of IBEX, 48 Earth radii (Re) from the dawn/dusk side, made an unprecedented long duration monitoring of ENAs possible from almost stable locations. This type of observation is difficult with the other ENA imager satellites since they are orbiting closer to the Earth in shorter periods. The studied energy range is unique due to the coverage of the transition from the solar wind plasma to the magnetospheric particles with a single sensor. In addition, the Coulomb decay becomes important for the protons with energy less than 1 keV. In order to minimize contamination from the sub-solar magnetosphere or the cusp emissions, we focused on two events when the auroral electrojet (AE) index exceeded 300 nT in this study. We will also show the ENA images from Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) in support of the IBEX observations. We found a significant correlation between the observed ENA profile and the AE indices, whose correlation coefficients were maximized at >0.75 for >1.4 keV energy. There are systematic differences between two events in terms of AU, AL, and Asy-H correlations: One event has the stronger AU correlation than AL and the Asy-H correlation, suggesting partial ring current contribution. The other has the stronger AL correlation than AU without Asy-H correlation, which suggests substorm related ENA emissions. On the contrary, we could not find a meaningful correlation with Sym-H for these two events. The other important finding is the decay time of these ENA emissions. The observed e-folding decay time, 2 to 4 hours for most of the energy bands, was a little shorter than the conventional ring-current decay time (typically >6 hours) expected from the charge exchange and the field-line curvature effect, suggesting the stronger effect of the

  16. A Coupled System for Assessing the Threat of Solar Energetic Particle Events, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar Particle Events (SPEs) represent a major hazard for extravehicular maneuvers by astronauts in Earth orbit, and for eventual manned interplanetary space travel....

  17. Observational test of shock drift and Fermi acceleration on a seed particle population upstream of earth's bow shock

    Science.gov (United States)

    Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.

  18. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  19. Radiation by energetic electrons accelerated by wave-particle interaction: a plausible mechanism for x-ray emission from the Venus mantle

    Directory of Open Access Journals (Sweden)

    R. Bingham

    2008-07-01

    Full Text Available In this paper it is argued that recently observed x-ray emission from non-magnetic planets (Dennerl et al., 2002 can be explained as a combination of bremsstrahlung and line K-shell radiation produced by the interaction of energetic electrons with the neutral atmosphere. Numerical simulations show that the modified two stream instability can generate energetic 100 eV electrons that are observed and these electrons can produce x-ray emission.

  20. Energetic ions and electrons and their acceleration processes in the magnetotail

    International Nuclear Information System (INIS)

    Scholer, M.

    1984-01-01

    Observations of energetic particle fluxes in the geomagnetic tail show that these particles exhibit a bursty appearance on all time scales. Often, however, the bursty appearance is merely due to multiple entries and exits of the spacecraft into and out of the plasma sheet which always contains varying fluxes of energetic particles. Observations of the suprathermal and high-energy component of the plasma sheet are discussed, and observations are presented of energetic particle bursts in the plasma sheet proper, which may be due to a locally ongoing acceleration process. Also discussed are energetic particle phenomena occurring near the edge of the plasma sheet, either during thinning or during recovery. Some recent results from the ISEE 3 deep tail mission bearing on energetic particle acceleration are presented, and the present status of the theory of particle acceleration within the magnetotail is briefly reviewed. 40 references

  1. VEGA1 TUNDE-M ENERGETIC PARTICLE ANALYSER DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — TUNDE-M consists of two particle telescopes: T1 is viewing at 55 deg to the east of the Sun, T2 looks at 90 deg to the east of the Sun, both in the ecliptic plane....

  2. Anomalous separation of homogeneous particle-fluid mixtures: Further observations

    Science.gov (United States)

    Husain, H. S.; Hussain, F.; Goldshtik, M.

    1995-11-01

    Previously, we reported the puzzling phenomenon of separation of components from an initially uniform mixture (air and smoke) in a rotating flow device (a cylindrical can with a rotating end disk). Here we summarize further studies of this phenomenon through experiments, analysis of particle forces, and direct numerical simulation (DNS). Separation of spherical polystyrene particles when immersed in water or pure alcohol lends further credence to the phenomenon. We have studied the dependence of the particle-free column size and its establishment time on particle size, particle concentration, disk and cylinder Reynolds numbers, and fluid composition. The evolution of passive markers in DNS shows segregation similar to that observed in experiments, supporting our kinematic separation hypothesis. However, kinematic action, though important, is inadequate to explain the ``antidiffusion'' phenomenon. Although estimates show that known particle forces cannot account for the particle separation, experimental results suggest the action of a yet unknown lift force whose effect is magnified kinematically in our apparatus. At high particle concentrations or when a small amount of solute (e.g. sugar, salt, or alcohol) is added to water polystyrene particle mixtures, the flow within the column becomes unstable and the particle-free column loses its axial symmetry; this unusual behavior is not yet clearly understood.

  3. Propagation of energetic electrons in the solar corona observed with LOFAR

    Science.gov (United States)

    Breitling, F.

    2017-06-01

    This work reports about new high-resolution imaging and spectroscopic observations of solar type III radio bursts at low radio frequencies in the range from 30 to 80 MHz. Solar type III radio bursts are understood as result of the beam-plasma interaction of electron beams in the corona. The Sun provides a unique opportunity to study these plasma processes of an active star. Its activity appears in eruptive events like flares, coronal mass ejections and radio bursts which are all accompanied by enhanced radio emission. Therefore solar radio emission carries important information about plasma processes associated with the Sun's activity. Moreover, the Sun's atmosphere is a unique plasma laboratory with plasma processes under conditions not found in terrestrial laboratories. Because of the Sun's proximity to Earth, it can be studied in greater detail than any other star but new knowledge about the Sun can be transfer to them. This "solar stellar connection" is important for the understanding of processes on other stars. The novel radio interferometer LOFAR provides imaging and spectroscopic capabilities to study these processes at low frequencies. Here it was used for solar observations. LOFAR, the characteristics of its solar data and the processing and analysis of the latter with the Solar Imaging Pipeline and Solar Data Center are described. The Solar Imaging Pipeline is the central software that allows using LOFAR for solar observations. So its development was necessary for the analysis of solar LOFAR data and realized here. Moreover a new density model with heat conduction and Alfvén waves was developed that provides the distance of radio bursts to the Sun from dynamic radio spectra. Its application to the dynamic spectrum of a type III burst observed on March 16, 2016 by LOFAR shows a nonuniform radial propagation velocity of the radio emission. The analysis of an imaging observation of type III bursts on June 23, 2012 resolves a burst as bright, compact region

  4. Resistance probe for energetic particle dosimetry with applications for plasma edge studies

    International Nuclear Information System (INIS)

    Wampler, W.R.

    1982-01-01

    Changes in the electrical resistance of thin carbon films caused by implantation with hydrogen, deuterium, and carbon ions were measured for various incident energies and for particle fluences in the range from 10 12 to 10 17 at./cm 2 . At low fluences the resistivity change is found to be proportional to the displacement damage caused by the incident particles. A model is presented which can be used to calculate the resistance change which is in good agreement with the measurements. It is proposed that by measuring the resistance change for carbon films exposed to the edge of magnetically confined plasmas the energy and the flux of incident ions and neutral atoms may be determined

  5. Numerical Test of Different Approximations Used in the Transport Theory of Energetic Particles

    Science.gov (United States)

    Qin, G.; Shalchi, A.

    2016-05-01

    Recently developed theories for perpendicular diffusion work remarkably well. The diffusion coefficients they provide agree with test-particle simulations performed for different turbulence setups ranging from slab and slab-like models to two-dimensional and noisy reduced MHD turbulence. However, such theories are still based on different analytical approximations. In the current paper we use a test-particle code to explore the different approximations used in diffusion theory. We benchmark different guiding center approximations, simplifications of higher-order correlations, and the Taylor-Green-Kubo formula. We demonstrate that guiding center approximations work very well as long as the particle's unperturbed Larmor radius is smaller than the perpendicular correlation length of the turbulence. Furthermore, the Taylor-Green-Kubo formula and the definition of perpendicular diffusion coefficients via mean square displacements provide the same results. The only approximation that was used in the past in nonlinear diffusion theory that fails is to replace fourth-order correlations by a product of two second-order correlation functions. In more advanced nonlinear theories, however, this type of approximation is no longer used. Therefore, we confirm the validity of modern diffusion theories as a result of the work presented in the current paper.

  6. Planck 2013 results X. Energetic particle effects: characterization, removal, and simulation

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Girard, D; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Mandolesi, N; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miniussi, A; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Mottet, S; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Racine, B; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Sanselme, L; Santos, D; Savini, G; Shellard, E P S; Spencer, L; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents the detection, interpretation and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). These interactions fall into two categories, heating the 0.1 K bolometer plate and glitches in each detector time stream. Glitch shapes are not simple single pole exponential decays and fall into a three families. The glitch shape for each family has been characterized empirically in flight data and removed from the detector time streams. The spectrum of the count rate/unit energy is computed for each family and a correspondence to where on the detector the particle hit is made. Most of the detected glitches are from galactic protons incident on the Si die frame supporting the micromachined bolometric detectors. At HFI, the particle flux is ~ 5 per square cm and per second and is dominated by protons incident on the spacecraft with an energy >39 MeV, leading to a rate of typically one event per second and per detector. Different categ...

  7. Response of cultured human airway epithelial cells to X-rays and energetic α-particles

    International Nuclear Information System (INIS)

    Yang, T.C.; Holley, W.R.; Curtis, S.B.; Gruenert, D.C.; California Univ., San Francisco, CA

    1990-01-01

    Radon and its progeny, which emit α-particles during decay, may play an important role in inducing human lung cancer. To gain a better understanding of the biological effects of α-particles in human lung we studied the response of cultured human airway epithelial cells to X-rays and monoenergetic helium ions. Experimental results indicated that the radiation response of primary cultures was similar to that for airway epithelial cells that were transformed with a plasmid containing an origin-defective SV40 virus. The RBE for cell inactivation determined by the ratio of D 0 for X-rays to that for 8 MeV helium ions was 1.8-2.2. The cross-section for helium ions, calculated from the D 0 value, was about 24 μm 2 for cells of the primary culture. This cross-section is significantly smaller than the average geometric nuclear area (∼ 180 μm 2 ), suggesting that an average of 7.5 α-particles (8 MeV helium ions) per cell nucleus are needed to induce a lethal lesion. (author)

  8. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    Science.gov (United States)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  9. Direct observation of the decay of beauty particles into charm particles

    International Nuclear Information System (INIS)

    Albanese, J.P.; Alpe, V.; Aoki, S.; Arnold, R.; Baroni, G.; Barth, M.; Bartley, J.H.; Bertrand, D.; Bertrand-Coremans, G.; Bisi, V.; Breslin, A.C.; Carboni, G.; Chesi, E.; Chiba, K.; Cook, G.S.; Coupland, M.; Crosetti, G.; Davis, D.H.; Dell'Uomo, S.; Di Liberto, S.; Bonnelly, W.; Duff, B.G.; Esten, M.J.; Gamba, D.; Gerke, C.; Hazama, M.; Heymann, F.F.; Hoshino, K.; Imrie, D.C.; Isokane, Y.; Kazuno, M.; Kodama, Y.; Lush, G.J.; Maeda, Y.; Marzari-Chiesa, A.; Mazzoni, M.A.; Meddi, F.; Miyanishi, M.; Montwill, A.; Muciaccia, M.T.; Musset, P.; Nakamura, M.; Nakazawa, K.; Natali, S.; Niu, K.; Niwa, K.; Nuzzo, S.; Ohashi, M.; Piuz, F.; Poulard, G.; Ramello, L.; Riccati, L.; Romano, G.; Roosen, R.; Rosa, G.; Ruggieri, F.; Sato, Y.; Sasaki, H.; Sgarbi, C.; Shibuya, H.; Simone, S.; Sletten, H.; Tasaka, S.; Tesuka, I.; Tomita, Y.; Tovee, D.N.; Trent, P.; Tsuneoka, Y.; Ushida, N.; Yamakawa, O.; Yanagisawa, Y.; Aichi Women's Coll., Nisshin-Cho; Bari Univ.; Istituto Nazionale di Fisica Nucleare, Bari; Birkbeck Coll., London; Interuniversity Inst. for High Energies, Brussels; European Organization for Nuclear Research, Geneva; University Coll., Dublin; Gifu Univ.; University Coll., London; Nagoya Univ.; Nagoya Inst. of Tech.; Rome Univ.; Istituto Nazionale di Fisica Nucleare, Rome; Toho Univ., Funabashi, Chiba; Istituto Nazionale di Fisica Nucleare, Turin; Turin Univ.; Utsunomiya Univ.; Yokohama National Univ.

    1985-01-01

    The associated production of a pair of beauty particles B - and anti B 0 by a 350 GeV π - interaction has been observed in an emulsion target inserted in an array of silicon microstrip detectors. Both beauty particles decay into charm particles, both of which are also observed to decay in the emulsion. Two negative muons were identified and their momenta measured in a large muon spectrometer. One muon has a psub(T) of 1.9 GeV/c and is associated with a beauty particle decay. The other, with a psub(T) of 0.45 GeV/c is associated with a charm particle decay. The flight times of the two beauty particles are respectively (0.8+-0.1).10 -13 s and (5sub(-1) +2 ).10 -13 s. Alternative interpretations of this event have negligible probability. (orig.)

  10. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  11. Energetic particles precipitation from the magnetosphere above the epicenter of approaching earthquake

    International Nuclear Information System (INIS)

    Gal'perin, Yu.I.; Gladyshev, V.A.; Dzhordzhio, N.V.; Larkina, V.I.; Mogilevskij, M.M.

    1992-01-01

    A survey of seismo-magnetospheric effects and a discussion of possible processes leading to the respective particles precipitation enhancements are presented. It is supposed that ELF electromagnetic noises mostly in the 0.1-10 Hz range are exicited by MHD-waves generated in the ionospheric dynamo-region above the epicenter zone under the action of weak but relatively large-scale (tens of km) intra-acoustic waves originating from staggering of geological blocks with periods of order of minutes

  12. Fast Flows in the Magnetotail and Energetic Particle Transport: Multiscale Coupling in the Magnetosphere

    Science.gov (United States)

    Lin, Y.; Wang, X.; Fok, M. C. H.; Buzulukova, N.; Perez, J. D.; Chen, L. J.

    2017-12-01

    The interaction between the Earth's inner and outer magnetospheric regions associated with the tail fast flows is calculated by coupling the Auburn 3-D global hybrid simulation code (ANGIE3D) to the Comprehensive Inner Magnetosphere/Ionosphere (CIMI) model. The global hybrid code solves fully kinetic equations governing the ions and a fluid model for electrons in the self-consistent electromagnetic field of the dayside and night side outer magnetosphere. In the integrated computation model, the hybrid simulation provides the CIMI model with field data in the CIMI 3-D domain and particle data at its boundary, and the transport in the inner magnetosphere is calculated by the CIMI model. By joining the two existing codes, effects of the solar wind on particle transport through the outer magnetosphere into the inner magnetosphere are investigated. Our simulation shows that fast flows and flux ropes are localized transients in the magnetotail plasma sheet and their overall structures have a dawn-dusk asymmetry. Strong perpendicular ion heating is found at the fast flow braking, which affects the earthward transport of entropy-depleted bubbles. We report on the impacts from the temperature anisotropy and non-Maxwellian ion distributions associated with the fast flows on the ring current and the convection electric field.

  13. Monitoring and forecasting of radiation hazard from great solar energetic particle events by using on-line one-min neutron monitor and satellite data.

    Science.gov (United States)

    Dorman, Lev I

    2007-01-01

    The method of automatically determining the start of great solar energetic particle (SEP) events are described on the basis of cosmic ray (CR) one-min observations by neutron monitors in real-time scale. It is shown that the probabilities of false alarms and missed triggers are negligible. After the start of SEP event, it is automatically determined by the method of coupling functions the SEP energy spectrum and flux for each minute of observations. By solving the inverse problem during few first minutes of SEP event, diffusion coefficient in the interplanetary space, source function on the Sun, and time of ejection of SEP into solar wind are determined. For extending obtained results into small energy range we use also available from Internet the satellite one-min CR data. This make possible to give forecast of space-time variation of SEP for more than 2 days and estimate expected radiation dose for satellite and aircrafts. With each new minute of observations, the quality of forecast increased, and after approximately 30 min became near 100%.

  14. A Kinetic-MHD Theory for the Self-Consistent Energy Exchange Between Energetic Particles and Active Small-scale Flux Ropes

    Science.gov (United States)

    le Roux, J. A.

    2017-12-01

    We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been

  15. Agile deployment and code coverage testing metrics of the boot software on-board Solar Orbiter's Energetic Particle Detector

    Science.gov (United States)

    Parra, Pablo; da Silva, Antonio; Polo, Óscar R.; Sánchez, Sebastián

    2018-02-01

    In this day and age, successful embedded critical software needs agile and continuous development and testing procedures. This paper presents the overall testing and code coverage metrics obtained during the unit testing procedure carried out to verify the correctness of the boot software that will run in the Instrument Control Unit (ICU) of the Energetic Particle Detector (EPD) on-board Solar Orbiter. The ICU boot software is a critical part of the project so its verification should be addressed at an early development stage, so any test case missed in this process may affect the quality of the overall on-board software. According to the European Cooperation for Space Standardization ESA standards, testing this kind of critical software must cover 100% of the source code statement and decision paths. This leads to the complete testing of fault tolerance and recovery mechanisms that have to resolve every possible memory corruption or communication error brought about by the space environment. The introduced procedure enables fault injection from the beginning of the development process and enables to fulfill the exigent code coverage demands on the boot software.

  16. Joint Ne/O and Fe/O Analysis to Diagnose Large Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C.; Shao, Xi [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Malandraki, Olga E., E-mail: ltan@umd.edu [IAASARS, National Observatory of Athens, GR-15236, Penteli (Greece)

    2017-02-01

    We have examined 29 large solar energetic particle (SEP) events with the peak proton intensity J {sub pp}(>60 MeV) > 1 pfu during solar cycle 23. The emphasis of our examination is put on a joint analysis of Ne/O and Fe/O data in the energy range (3–40 MeV nucleon{sup −1}) covered by Wind /Low-Energy Matrix Telescope and ACE /Solar Isotope Spectrometer sensors in order to differentiate between the Fe-poor and Fe-rich events that emerged from the coronal mass ejection driven shock acceleration process. An improved ion ratio calculation is carried out by rebinning ion intensity data into the form of equal bin widths in the logarithmic energy scale. Through the analysis we find that the variability of Ne/O and Fe/O ratios can be used to investigate the accelerating shock properties. In particular, the high-energy Ne/O ratio is well correlated with the source plasma temperature of SEPs.

  17. Surface scaling analysis of textured MgO thin films fabricated by energetic particle self-assisted deposition

    Science.gov (United States)

    Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.

  18. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinhye; Moon, Y.-J. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Lee, Harim, E-mail: jinhye@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2017-07-20

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are as follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  19. Observations of the UARS Particle Environment Monitor and computation of ionization rates in the middle and upper atmosphere during a geomagnetic storm

    Science.gov (United States)

    Sharber, J. R.; Frahm, R. A.; Winningham, J. D.; Biard, J. C.; Lummerzheim, D.; Rees, M. H.; Chenette, D. L.; Gaines, E. E.; Nightingale, R. W.; Imhof, W. L.

    1993-01-01

    In this paper we present observations made by the Particle Environment Monitor (PEM) instruments during the geomagnetic storm of 8-9 November, 1991. Ionization and energy deposition rates as functions of altitude in the middle and upper atmosphere by incident electrons and positive ions in the storm interval are computed. The suite of PEM instruments provides a systematic measurement of energetic particles and their associated X-rays over an energy range not fully covered by previous satellite missions.

  20. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    Science.gov (United States)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  1. Impacts of sediments on coral energetics: partitioning the effects of turbidity and settling particles.

    Directory of Open Access Journals (Sweden)

    Reef K Junjie

    Full Text Available Sediment loads have long been known to be deleterious to corals, but the effects of turbidity and settling particles have not previously been partitioned. This study provides a novel approach using inert silicon carbide powder to partition and quantify the mechanical effects of sediment settling versus reduced light under a chronically high sedimentary regime on two turbid water corals commonly found in Singapore (Galaxea fascicularis and Goniopora somaliensis. Coral fragments were evenly distributed among three treatments: an open control (30% ambient PAR, a shaded control (15% ambient PAR and sediment treatment (15% ambient PAR; 26.4 mg cm(-2 day(-1. The rate of photosynthesis and respiration, and the dark-adapted quantum yield were measured once a week for four weeks. By week four, the photosynthesis to respiration ratio (P/R ratio and the photosynthetic yield (Fv/Fm had fallen by 14% and 3-17% respectively in the shaded control, contrasting with corals exposed to sediments whose P/R ratio and yield had declined by 21% and 18-34% respectively. The differences in rates between the shaded control and the sediment treatment were attributed to the mechanical effects of sediment deposition. The physiological response to sediment stress differed between species with G. fascicularis experiencing a greater decline in the net photosynthetic yield (13% than G. somaliensis (9.5%, but a smaller increase in the respiration rates (G. fascicularis = 9.9%, G. somaliensis  = 14.2%. These different physiological responses were attributed, in part, to coral morphology and highlighted key physiological processes that drive species distribution along high to low turbidity and depositional gradients.

  2. An attempt to observe directly beauty particles in nuclear emulsions

    International Nuclear Information System (INIS)

    Albanese, J.P.; Arnold, R.; Matteuzzi, C.; Musset, P.; Piuz, F.; Poulard, G.; Price, M.J.; Ramello, L.; Sletten, H.; Allasia, D.; Bisi, V.; Gamba, D.; Marzari-Chiesa, A.; Riccati, L.; Romero, A.; Armenise, N.; Calicchio, M.; Erriquez, O.; Lavopa, P.; Maggi, G.; Muciaccia, M.T.; Natali, S.; Nuzzo, S.; Romano, F.; Ruggieri, F.; Baroni, G.; Di Ciaccio, L.; Di Liberto, S.; Manfredini, A.; Meddi, F.; Petrera, S.; Romano, G.; Rosa, G.; Santonico, R.; Sebastiani, F.; Barth, M.; Bertrand, D.; Bertrand-Coremans, G.; Roosen, R.; Sacton, J.; Schorochoff, G.; Wickens, J.; Breslin, A.C.; Montwill, A.; O'Connor, A.; Davis, D.G.; Davis, D.H.; Downes, J.K.; Duff, B.G.; Esten, M.J.; Gjerpe, I.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Tovee, D.N.; Hazama, M.; Isokane, Y.; Tsuneoka, Y.; Maeda, Y.; Tasaka, S.

    1983-01-01

    An attempt at the direct observation of the cascade decay of beauty particles, produced by π - of 350 GeV/c leading to 3 muons or 4 muons in the final state, has been made in an emulsion/counter hybrid experiment at CERN. Under the assumption that the lifetime of beauty particles is of the order of 10 - 13 s the non-observation of any candidates provides an upper limit for beauty production of approx.=90 nb at the 90% confidence level. (orig.)

  3. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    Science.gov (United States)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  4. Investigation of the impact of extraterrestrial energetic particles on stratospheric nitrogen compounds and ozone on the basis of three dimensional model studies

    Energy Technology Data Exchange (ETDEWEB)

    Wieters, Nadine

    2013-06-17

    As a result of solar events like Coronal Mass Ejections (CMEs) and solar flares, highly energetic charged particles including protons and electrons can precipitate in the direction of the Earth. Having sufficient energies, these particles can penetrate down to the middle atmosphere and lead to a change in the chemical composition of the atmosphere. In particular during strong events, these charged particles induce an ionisation in the atmosphere that can reach down to the lower stratosphere. This ionisation is followed by a fast positive ion chemistry that causes a strong increase in reactive HO{sub x} (H,OH,HO{sub 2}) an NO{sub x} (N,NO,NO{sub 2}). HO{sub x} and NO{sub x} constituents eventually destroy O{sub 3} in catalytical reaction cycles. Furthermore, NO{sub x} is long-lived during polar winter and can be transported into the middle and lower stratosphere, where it can contribute to the O{sub 3} depletion. The increase in NO{sub x} in the upper and middle atmosphere due to solar events and the consequential depletion of O{sub 3} has been observed as during the Solar Proton Event (SPE) in October/November 2003 by satellite instruments. In atmospheric models, the generation of HO{sub x} and NO{sub x} can be well described by parametrisations to include in neutral models. Whereas other changes, for instance in chlorine compounds, can not be described sufficiently by this parametrisation. The purpose of this PhD thesis is, to investigate the impact of strong solar particle events on the abundance in NO{sub x} and O{sub 3} in the stratosphere and mesosphere on the basis of three-dimensional model studies. For this purpose a three-dimensional Chemistry and Transport Model (CTM) has been extended to the upper atmosphere (lower thermosphere). To include the processes in the mesosphere and lower thermosphere a new meteorological data set has been implemented to the model. To describe the ionising effect of energetic particle on the atmosphere, three

  5. Comparison of Solar Energetic Particle Events and Impulsive Nitrate Increases in Greenland Ice Cores

    Science.gov (United States)

    Spence, H. E.; Kepko, L.; Shea, M. A.; Smart, D. F.

    2004-12-01

    Using nitrate measurements from Greenland ice cores we examine the correlation of nitrate spikes and solar proton events. We choose a few large space-age events for analysis, focusing particular attention on the amplitude and timing of the nitrate increase in relation to the onset and characteristics of the SEP event. A time delay between nitrate spikes and SEP onset has previously been observed to be a few weeks, which is much faster than current atmospheric downward transport theory allows. Independent confirmation or invalidation of the previous analysis of this short delay has not been attempted before.

  6. Charge state distributions of iron in gradual solar energetic particle events

    Science.gov (United States)

    Ostryakov, V. M.; Stovpyuk, M. F.

    1999-11-01

    The energy and charge spectra of Fe ions accelerated in gradual events are calculated numerically. Our results are compared with the available observations. Stripping of Fe ions by thermal electrons and protons during ion acceleration in the solar corona results in the dependence of mean charge \\barq_Fe on energy. We consider the influence of varying plasma parameters (temperature T, number density N, and spectral index of turbulence S) on the charge distribution of iron. Our calculations indicate T~10^6 K and N~(0.5-1)x10^10 cm^-3 at the accelerating site, provided the characteristic acceleration time is about 1 s. The calculated charge spectra for S>2 and S<2 turn out to be different, but some theoretical and experimental uncertainties do not yet allow this parameter to be extracted from observational data. The theoretically obtained charge distributions of Fe could be important in the light of ACE spacecraft data which are currently available for analysis.

  7. Observation of self-sputtering in energetic condensation of metal ions

    International Nuclear Information System (INIS)

    Anders, Andre

    2004-01-01

    The condensation of energetic metal ions on a surface may cause self-sputtering even in the absence of substrate bias. Charge-state-averaged self-sputtering yields were determined for both zirconium and gold ions generated by a cathodic vacuum arc. Films were deposited on differently biased substrates exposed to streaming Zr and Au vacuum arc plasma. The self-sputtering yields for both metals were estimated to be about 0.05 in the absence of bias, and exceeding 0.5 when bias reached-50 V. These surprisingly high values can be reconciled with binary collision theory and molecular dynamics calculations taking high the kinetic and potential energy of vacuum arc ions into account

  8. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. I. FE, O, AND SEED MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.; Mccomas, D. J.; Schwadron, N. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States); Li, G. [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Smith, C. W., E-mail: mdesai@swri.edu [Department of Physics and Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2016-01-10

    We have surveyed ∼0.1–100 MeV nucleon{sup −1} O and Fe fluence spectra during 46 isolated, large gradual SEP events observed at ACE during solar cycles 23 and 24. Most SEP spectra are well represented by the four-parameter Band function with a normalization constant, low-energy spectral slope, high-energy spectral slope, and break energy. The O and Fe spectral slopes are similar and most spectra steepen above the break energy, probably due to common acceleration and transport processes affecting different ion species. SEP spectra above the break energies depend on the origin of the seed population; larger contributions of suprathermal flare material result in higher Fe/O ratios and flatter spectra at higher energies. SEP events with steeper O spectra at low energies and higher break energies are associated with slower coronal mass ejections (CMEs), while those associated with fast (>2000 km s{sup −1}) CMEs and ground level enhancements have harder or flatter spectra at low and high energies, and O break energies between ∼1 and 10 MeV nucleon{sup −1}. The latter events are enriched in {sup 3}He and higher-energy Fe, and have Fe spectra that rollover at significantly lower energies compared with O, probably because Fe ions with smaller Q/M ratios can escape from the distant shock more easily than O ions with larger Q/M ratios. We conclude that SEP spectral properties result from many complex and competing effects, namely Q/M-dependent scattering, shock properties, and the origin of the seed populations, all of which must be taken into account to develop a comprehensive picture of CME-driven shock acceleration of large gradual SEP events.

  9. Phoenix-1 observations of equatorial zone particle precipitation

    International Nuclear Information System (INIS)

    Miah, M.A.; Guzik, T.G.; Mitchell, J.W.; Wefel, J.P.

    1988-01-01

    The precipitation of magnetospheric particles at low altitude (160-300 km) near the geomagnetic equator during moderate geomagnetic conditions was studied by the ONR-602 experiment on board the S81-1 pallet mission in 1982. Significant fluxes of low energy (∼ 1 MeV) protons were observed, with maximum intensity along the line of minimum magnetic field strength. These protons exhibit an altitude dependence that varies as the fifth power of the altitude, and a flux that is higher than that measured in previous missions. The source function, atmospheric loss processes and pitch angle distributions of these particles are investigated

  10. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  11. What have we learned about the energetic particle dynamics in the inner belt and slot region from Van Allen Probes and CSSWE missions?

    Science.gov (United States)

    Li, Xinlin; Selesnick, Richard; Zhao, Hong; Baker, Dan; Jaynes, Allison; Kanekal, Shrikanth; Bern Blake, J.

    2017-04-01

    Comprehensive measurements of energetic protons (10s of MeV) in the inner belt (LVan Allen Probes, in a geo-transfer-like orbit, revealed new features of these energetic protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different dynamic variations associated with their different source populations. Measurements from the Relativistic Electron-Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complex pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator, which has inspired a great deal of theoretical interest in an attempt to explain such a peculiar pitch angle distribution. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  12. Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission

    Science.gov (United States)

    Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Bolton, M.; Bourdarie, S.; Chan, A. A.; Claudepierre, S. G.; Clemmons, J. H.; Cravens, J. P.; Elkington, S. R.; Fennell, J. F.; Friedel, R. H. W.; Funsten, H. O.; Goldstein, J.; Green, J. C.; Guthrie, A.; Henderson, M. G.; Horne, R. B.; Hudson, M. K.; Jahn, J.-M.; Jordanova, V. K.; Kanekal, S. G.; Klatt, B. W.; Larsen, B. A.; Li, X.; MacDonald, E. A.; Mann, I. R.; Niehof, J.; O'Brien, T. P.; Onsager, T. G.; Salvaggio, D.; Skoug, R. M.; Smith, S. S.; Suther, L. L.; Thomsen, M. F.; Thorne, R. M.

    2013-11-01

    The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA's Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10's of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives

  13. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  14. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    Science.gov (United States)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf

    2016-09-01

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.

  15. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf

    2016-01-01

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.

  16. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2016-09-15

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.

  17. Aircraft Observations of Ice Particle Properties in Stratiform Precipitating Clouds

    Directory of Open Access Journals (Sweden)

    Tuanjie Hou

    2014-01-01

    Full Text Available This study presented airborne measurements of ice particle properties in three stratiform precipitating clouds over northern China. By using horizontal observations at selected altitudes, the distributions of ice water content (IWC, particle habits, and particle size spectrum parameters were investigated. The cloud cases were characterized by high IWC values due to the existence of embedded convective cells. Liquid water contents were rather low with the maxima of less than 0.3 g m−3 and the general values of less than 0.1 g m−3. The occurrence of large dendritic crystals as well as rimed capped columns and branched crystals indicated that ice seeding from the above cloud layer (6 km altitude or above contributed significantly to both high ice crystal number concentrations and IWCs. Horizontal observations at selected levels suggested the general decreasing trend of IWC with decreasing temperature only in part of the cloud layers but not throughout the cold layer of the multilayered stratiform clouds. Both exponential and gamma functions were used to characterize the particle size spectrum parameters. The slope parameter values of exponential distributions were primarily in the range of 103–104 m−1. In comparison, slope values of the gamma distribution fits spanned more and a relationship was found between the dispersion and slope values.

  18. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  19. Two Azimuthally Separated Regions of Cusp Ion Injection Observed via Energetic Neutral Atoms

    Science.gov (United States)

    Abe, M.; Taguchi, S.; Collier, M. R.; Moore, T. E.

    2011-01-01

    The low-energy neutral atom (LENA) imager on the IMAGE spacecraft can detect energetic neutral atoms produced by ion injection into the cusp through a charge exchange with the Earth's hydrogen exosphere. We examined the occurrence of the LENA cusp signal during positive IMF B(sub z) in terms of the arrival direction and the IMF clock angle theta(sub CA). Results of statistical analyses show that the occurrence frequency is high on the postnoon side when theta(sub CA) is between approximately 20 degrees and approximately 50 degrees. This is ascribed to ion injection caused by cusp reconnection typical of positive IMF B(sub z). Our results also show that there is another situation of high occurrence frequency, which can be identified with theta(sub CA) of approximately 30 degrees to approximately 80 degrees. When theta(sub CA) is relatively large (60 degrees - 80 degrees), occurrence frequencies are high at relatively low latitudes over a wide extent spanning both prenoon and postnoon sectors. This feature suggests that the ion injection is caused by reconnection at the dayside magnetopause. Its postnoon side boundary shifts toward the prenoon as theta(sub CA) decreases. When theta(sub CA) is less than approximately 50 degrees, the high occurrence frequency exists well inside the prenoon sector, which is azimuthally separated from the postnoon region ascribed to cusp reconnection. The prenoon region, which is thought due to ion injection caused by dayside reconnection, may explain the recent report that proton aurora brightening occurs in the unanticipated prenoon sector of the northern high-latitude ionosphere for IMF B(sub y) greater than 0 and B(sub z) greater than 0.

  20. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  1. Experimental observation of entanglement duality for identical particles

    International Nuclear Information System (INIS)

    Ma, J-J; Yuan, X-X; Zu, C; Chang, X-Y; Hou, P-Y; Duan, L-M

    2014-01-01

    It was shown recently that entanglement of identical particles has a feature called dualism (Bose and Home 2013 Phys. Rev. Lett. 110 140404), which is fundamentally connected with quantum indistinguishability. Here we report an experiment that observes the entanglement duality for the first time with two identical photons, which manifest polarization entanglement when labeled by different paths or path entanglement when labeled by polarization states. By adjusting the mismatch in frequency or arrival time of the entangled photons, we tune the photon indistinguishability from the quantum to the classical limit and observe that the entanglement duality disappears under the emergence of classical distinguishability, confirming it as a characteristic feature of quantum indistinguishable particles. (paper)

  2. Observations in particle physics: from two neutrinos to standard model

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1990-01-01

    Experiments, which have made their contribution to creation of the standard model, are discussed. Results of observations on the following concepts: long-lived neutral V-particles, violation of preservation of parity and charge invariance in meson decays, reaction with high-energy neutrino and existence of neutrino of two types, partons and dynamic quarks, dimuon resonance at 9.5 GeV in 400 GeV-proton-nucleus collisions, are considered

  3. Energetic particle fluxes data base of "CORONAS-I" satellite observations.

    Science.gov (United States)

    Dmitriev, A; Kuznetsov, S; Panasyuk, M; Ryumin, S

    1998-01-01

    The data base DB SCR uses data obtained by the SCR instrument package on the CORONAS-I satellite. DB SCR contains information about fluxes of relativistic electrons (0.5-124 MeV), protons (1-300 MeV), nuclei (1-19 MeV/nucl) and gamma-radiation (0.1-7 MeV) in the low altitude region (500 km). The time resolution of the data is 2.5 s. Magnetic field parameters (B, magnetic latitude and longitude), L-shell and local times (LT and MLT) are included in DB SCR. Since all parameters are equivalents it is possible to perform the multidimensional analysis for any set of DB SCR parameters. The additional DB SCR software packages may be used to develop different semi-empirical models.

  4. Source Regions of the Interplanetary Magnetic Field and Variability in Heavy-Ion Elemental Composition in Gradual Solar Energetic Particle Events

    Science.gov (United States)

    Ko, Yuan-Kuen; Tylka, Allan J.; Ng, Chee K.; Wang, Yi-Ming; Dietrich, William F.

    2013-01-01

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass-ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. But an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the PFSS model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations; and (2) then look for correlation between SEP composition (as measured by Wind and ACE at approx. 2-30 MeV/nucleon) and characteristics of the identified IMF-source regions. The study is based on 24 SEP events, identified as a statistically-significant increase in approx. 20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly-emergent solar magnetic flux and CMEs was lower than in solar-maximum years and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF-source, with the largest enhancements occurring when the footpoint field is strong, due to the nearby presence of an active region. In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering, at least on average, similar to that found in impulsive events. These results lead us to suggest that magnetic reconnection in footpoint regions near active regions bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

  5. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. II. SYSTEMATIC Q/M DEPENDENCE OF HEAVY ION SPECTRAL BREAKS

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.; Schwadron, N. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States); McComas, D. J. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Smith, C. W., E-mail: mdesai@swri.edu [University of New Hampshire, 8 College Road, Durham NH 03824 (United States)

    2016-09-10

    We fit ∼0.1–500 MeV nucleon{sup −1} H–Fe spectra in 46 large solar energetic particle (SEP) events with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γ {sub a} and γ {sub b}, and break energy E {sub B}, and derive the low-energy spectral slope γ {sub 1}. We find that: (1) γ {sub a}, γ {sub 1}, and γ {sub b} are species-independent and the spectra steepen with increasing energy; (2) E {sub B} decreases systematically with decreasing Q/M scaling as (Q/M){sup α}; (3) α varies between ∼0.2–3 and is well correlated with the ∼0.16–0.23 MeV nucleon{sup −1} Fe/O; (4) in most events, α < 1.4, γ {sub b}– γ {sub a} > 3, and O E {sub B} increases with γ {sub b}– γ {sub a}; and (5) in many extreme events (associated with faster coronal mass ejections (CMEs) and GLEs), Fe/O and {sup 3}He/{sup 4}He ratios are enriched, α ≥ 1.4, γ {sub b}– γ {sub a} < 3, and E {sub B} decreases with γ {sub b}– γ {sub a}. The species-independence of γ {sub a}, γ {sub 1}, and γ {sub b} and the Q/M dependence of E {sub B} within an event and the α values suggest that double power-law SEP spectra occur due to diffusive acceleration by near-Sun CME shocks rather than scattering in interplanetary turbulence. Using γ {sub 1}, we infer that the average compression ratio for 33 near-Sun CME shocks is 2.49 ± 0.08. In most events, the Q/M dependence of E {sub B} is consistent with the equal diffusion coefficient condition and the variability in α is driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but weaker than the spectra for extreme events. In contrast, in extreme events, enhanced wave power enables faster CME shocks to accelerate impulsive suprathermal ions more efficiently than ambient coronal ions.

  6. OBSERVATIONAL EVIDENCE OF PARTICLE ACCELERATION ASSOCIATED WITH PLASMOID MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Takasao, Shinsuke [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan); Asai, Ayumi; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Isobe, Hiroaki, E-mail: takasao@nagoya-u.jp [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2016-09-10

    We report a strong association between the particle acceleration and plasma motions found in the 2010 August 18 solar flare. The plasma motions are tracked in the extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and the Extreme UltraViolet Imager (EUVI) on the Solar Terrestrial Relations Observatory spacecraft Ahead , and the signature of particle acceleration was investigated by using Nobeyama Radioheliograph data. In our previous paper, we reported that in EUV images many plasma blobs appeared in the current sheet above the flare arcade. They were ejected bidirectionally along the current sheet, and the blobs that were ejected sunward collided with the flare arcade. Some of them collided or merged with each other before they were ejected from the current sheet. We discovered impulsive radio bursts associated with such plasma motions (ejection, coalescence, and collision with the post flare loops). The radio bursts are considered to be the gyrosynchrotron radiation by nonthermal high energy electrons. In addition, the stereoscopic observation by AIA and EUVI suggests that plasma blobs had a three-dimensionally elongated structure. We consider that the plasma blobs were three-dimensional plasmoids (i.e., flux ropes) moving in a current sheet. We believe that our observation provides clear evidence of particle acceleration associated with the plasmoid motions. We discuss possible acceleration mechanisms on the basis of our results.

  7. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    Science.gov (United States)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  8. Observation of particles delayed long times after extensive air showers

    International Nuclear Information System (INIS)

    Smith, G.R.; Standil, S.

    1976-01-01

    A large aperture, five element cosmic ray telescope was operated in conjunction with an air shower array in a search for long lived particles, delayed between 1 and 45 μs after extensive air showers. After sampling approximately 29 000 air showers with an energy greater than approximately 10 14 eV, over a period of 9 months, an excess of 11 such events were observed with time delays in the interval of 1 to 6 μs following the showers. The events in the remainder of the 45 μs interval were consistent with background random coincidences. We estimate that only 1 of the 11 excess events might be attributable to afterpulsing in our telescope photomultiplier tubes. All the excess 'trailing particle' events can be explained as being due to electrons resulting from shower associated muons that stop and decay in the vicinity of the cosmic ray telescope. (author)

  9. CLPX-Ground: Sub-Canopy Energetics at the Local Scale Observation Site (LSOS)

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of solar and longwave radiation data from beneath two pine canopies (one uniform, one discontinuous) at the Local Scale Observation Site...

  10. CLPX-Ground: Sub-Canopy Energetics at the Local Scale Observation Site (LSOS), Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of solar and longwave radiation data from beneath two pine canopies (one uniform, one discontinuous) at the Local Scale Observation Site...

  11. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  12. Discussion of the origin of secondary photon and secondary ion emission during energetic particle irradiation of solids. I. The collision cascade

    International Nuclear Information System (INIS)

    Wright, R.B.; Gruen, D.M.

    1980-01-01

    Secondary photon and secondary ion emission during energetic particle irradiation of solid surfaces is assumed to arise due to excitation and de-excitation of sputtered particles originating from a collision cascade induced by the incident projectile. The excitation is postulated to occur by two alternative mechanisms: path (a), where excitation occurs at or very near the surface of the solid due to atom--atom or atom--electron collisions; and path (b), where excitation occurs as the sputtered particle leaves the solid, but is still under its influence so that electron exchange processes are permitted. Once the excited and/or ionized sputtered particle is formed nonradiative de-excitation processes are then included in the discussion which allow the excited and/or ionized particle to be de-excited and/or neutralized. The result of these nonradiative de-excitation processes is shown to provide a possible channel for the formation of new excited ''daughters'' by the de-excitation of the initial excited ''parent''. Depending on the initial excitation probability of the parent the new excited daughters are shown to contribute to various energy regions of the excited and/or ionized secondary particle energy distribution. A mathematical formalism is developed based on the neutral sputtered atom energy and velocity distributions assuming a collision cascade origin for these sputtered particles. By including various models for the excitation probability, and the survival probability for excited particles once formed to not undergo nonradiative de-excitation the resulting energy and velocity distributions of the sputtered excited and/or ionized secondary particles are calculated. These distributions are found to be a function of the emission angle depending on the model assumed for the initial excitation. From this formalism the total excited secondary particle yield may be calculated

  13. Excitation of internal kink modes by trapped energetic beam ions

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rosenbluth, M.N.

    1983-10-01

    Energetic trapped particles are shown to have a destabilizing effect on the internal kink mode in tokamaks. The plasma pressure threshold for the mode is lowered by the particles. The growth rate is near the ideal magnetohydrodynamic value, but the frequency is comparable to the trapped particle precission frequency. A model for the instability cycle gives stability properties, associated particle losses, and neutron emissivity consistent with the fishbone events observed in PDX

  14. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-05-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q 2 in the range 3.10 -4 BJ -3 and 10 2 2 . (orig.)

  15. Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications

    Science.gov (United States)

    Roussos, E.; Jackman, C. M.; Thomsen, M. F.; Kurth, W. S.; Badman, S. V.; Paranicas, C.; Kollmann, P.; Krupp, N.; Bučík, R.; Mitchell, D. G.; Krimigis, S. M.; Hamilton, D. C.; Radioti, A.

    2018-01-01

    The lack of an upstream solar wind monitor poses a major challenge to any study that investigates the influence of the solar wind on the configuration and the dynamics of Saturn's magnetosphere. Here we show how Cassini MIMI/LEMMS observations of Solar Energetic Particle (SEP) and Galactic Cosmic Ray (GCR) transients, that are both linked to energetic processes in the heliosphere such us Interplanetary Coronal Mass Ejections (ICMEs) and Corotating Interaction Regions (CIRs), can be used to trace enhanced solar wind conditions at Saturn's distance. SEP protons can be easily distinguished from magnetospheric ions, particularly at the MeV energy range. Many SEPs are also accompanied by strong GCR Forbush Decreases. GCRs are detectable as a low count-rate noise signal in a large number of LEMMS channels. As SEPs and GCRs can easily penetrate into the outer and middle magnetosphere, they can be monitored continuously, even when Cassini is not situated in the solar wind. A survey of the MIMI/LEMMS dataset between 2004 and 2016 resulted in the identification of 46 SEP events. Most events last more than two weeks and have their lowest occurrence rate around the extended solar minimum between 2008 and 2010, suggesting that they are associated to ICMEs rather than CIRs, which are the main source of activity during the declining phase and the minimum of the solar cycle. We also list of 17 time periods ( > 50 days each) where GCRs show a clear solar periodicity ( ∼ 13 or 26 days). The 13-day period that derives from two CIRs per solar rotation dominates over the 26-day period in only one of the 17 cases catalogued. This interval belongs to the second half of 2008 when expansions of Saturn's electron radiation belts were previously reported to show a similar periodicity. That observation not only links the variability of Saturn's electron belts to solar wind processes, but also indicates that the source of the observed periodicity in GCRs may be local. In this case GCR

  16. Effects of amines on particle growth observed in new particle formation events

    Science.gov (United States)

    Tao, Ye; Ye, Xingnan; Jiang, Shuqing; Yang, Xin; Chen, Jianmin; Xie, Yuanyuan; Wang, Ruyu

    2016-01-01

    Particle size distributions in the range of 0.01-10 µm were measured in urban Shanghai in the summer of 2013 using a Wide-range Particle Spectrometer (WPS). Size-segregated aerosol samples were collected concurrently using a Micro-Orifice Uniform Deposit Impactor (MOUDI), which aided our in-depth understanding of the new particle formation (NPF) mechanism in the polluted Yangtze River Delta area. During the observations, 16 NPF events occurred at high temperatures (~34.7°C) on clear and sunny days. In the ammonium-poor PM1.0 (particulate matter less than 1.0 µm), sulfate and ammonium accounted for 92% of the total water-soluble inorganic species. Six aminiums were detected in these MOUDI samples, among which the group of diethylaminium and trimethylaminium (DEAH+ + TMAH+) was the most abundant. The very high level of aminiums (average concentration up to 86.4 ng m-3 in PM1.8), together with highly acidic aerosols, provided insight into the frequent NPF events. The high mass ratio of total aminiums to NH4+ (>0.2 for PM0.056) further highlighted the important role of amines in promoting NPF. The concentration of DEAH+ + TMAH+ in new particles below 180 nm was strongly correlated with aerosol phase acidity, indicating that acid-base reactions dominated the aminium formation in NPF events. The unexpected enhancement of DEAH+ + TMAH+ on a nonevent day was attributed to the transportation of an SO2 plume. Our results reveal that the heterogeneous uptake of amines is dominated by the acid-base reaction mechanism, which can effectively contribute to particle growth in NPF events.

  17. Energetics and metastability of the adenine dication observed in proton-adenine collisions

    Science.gov (United States)

    Moretto-Capelle, Patrick; Le Padellec, Arnaud; Brière, Guillaume; Massou, Sophie; Franceries, Frédéric

    2007-12-01

    We present here a study that deals with the correlated fragmentation of a doubly charged adenine molecular target induced by a 100keV proton beam. We have elucidated part of the dissociation dynamics for several channels and have obtained the corresponding kinetic energy released values. We have extracted activation energies by combining our experimental data with computations using the ab initio GAMESS code. We have observed metastability patterns against fragmentation, for which we have extracted the temporal mechanism (one or two steps). Subsequently, we have obtained lifetimes in the 100-200ns range. In the simplest case of two-body fragmentation with the emission of mass 28, the determination of transition states and reaction paths has showed that emission of the H-C-N-H fragment is preferred to that of C -N-H2. From the calculated activation barriers and lifetimes, we have deduced an equivalent temperature of the dication that we have compared with the existing models.

  18. Observational evidence for gravitationally trapped massive axion(-like) particles

    CERN Document Server

    Di Lella, L

    2003-01-01

    Several unexpected astrophysical observations can be explained by gravitationally captured massive axions or axion-like particles, which are produced inside the Sun or other stars and are accumulated over cosmic times. Their radiative decay in solar outer space would give rise to a `self-irradiation' of the whole star, providing the time-independent component of the corona heating source (we do not address here the flaring Sun). In analogy with the Sun-irradiated Earth atmosphere, the temperature and density gradient in the corona$-$chromosphere transition region is suggestive for an omnipresent irradiation of the Sun, which is the strongest evidence for the generic axion-like scenario. The same mechanism is compatible with phenomena like the solar wind, the X-rays from the dark-side of the Moon, the X-Ray Background Radiation, the diffuse X-ray excesses (below $\\sim 1$ keV), the non-cooling of oldest Stars, etc. A temperature of $\\sim 10^6$ K is observed in various places, while the radiative decay of a popu...

  19. TRACKING THE SOLAR CYCLE THROUGH IBEX OBSERVATIONS OF ENERGETIC NEUTRAL ATOM FLUX VARIATIONS AT THE HELIOSPHERIC POLES

    Energy Technology Data Exchange (ETDEWEB)

    Reisenfeld, D. B.; Janzen, P. H. [University of Montana, Missoula, MT 59812 (United States); Bzowski, M., E-mail: dan.reisenfeld@umontana.edu, E-mail: paul.janzen@umontana.edu, E-mail: bzowski@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, (CBK PAN), Bartycka 18A, 00-716, Warsaw (Poland); and others

    2016-12-20

    With seven years of Interstellar Boundary Explorer ( IBEX ) observations, from 2009 to 2015, we can now trace the time evolution of heliospheric energetic neutral atoms (ENAs) through over half a solar cycle. At the north and south ecliptic poles, the spacecraft attitude allows for continuous coverage of the ENA flux; thus, signal from these regions has much higher statistical accuracy and time resolution than anywhere else in the sky. By comparing the solar wind dynamic pressure measured at 1 au with the heliosheath plasma pressure derived from the observed ENA fluxes, we show that the heliosheath pressure measured at the poles correlates well with the solar cycle. The analysis requires time-shifting the ENA measurements to account for the travel time out and back from the heliosheath, which allows us to estimate the scale size of the heliosphere in the polar directions. We arrive at an estimated distance to the center of the ENA source region in the north of 220 au and in the south a distance of 190 au. We also find a good correlation between the solar cycle and the ENA energy spectra at the poles. In particular, the ENA flux for the highest IBEX energy channel (4.3 keV) is quite closely correlated with the areas of the polar coronal holes, in both the north and south, consistent with the notion that polar ENAs at this energy originate from pickup ions of the very high speed wind (∼700 km s{sup −1}) that emanates from polar coronal holes.

  20. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  1. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    Science.gov (United States)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  2. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  3. Detection of zero anisotropy at 5.2 AU during the November 1998 solar particle event: Ulysses Anisotropy Telescopes observations

    Directory of Open Access Journals (Sweden)

    S. Dalla

    Full Text Available For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3-2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.

    Key words: Interplanetary physics (energetic particles - Solar physics, astrophysics and astronomy (energetic particles - Space plasma physics (instruments and techniques

  4. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the EISCAT radar

    International Nuclear Information System (INIS)

    Olafsson, K.J.

    1990-08-01

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the Coordinated EISCAT and Balloon Observations (CEBO) campaign in August 1984. The energy spectral variations of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the mordning side of the auroral zone. 96 refs., 70 figs., 11 tabs

  5. LANL LDRD-funded project: Test particle simulations of energetic ions in natural and artificial radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Friedel, Reinhard H. [Los Alamos National Laboratory; Reeves, Geoffrey D. [Los Alamos National Laboratory

    2012-07-17

    We summarize the scientific problem and work plan for the LANL LDRD-funded project to use a test particle code to study the sudden de-trapping of inner belt protons and possible cross-L transport of debris ions after a high altitude nuclear explosion (HANE). We also discuss future application of the code for other HANE-related problems.

  6. Substorm Injected Energetic Electrons and Ions Deeply into the Inner Magnetosphere Observed by BD-IES and Van Allan Probes

    Science.gov (United States)

    Zong, Qiugang

    2017-04-01

    When substorm injections are observed simultaneously with multiple spacecraft, they help elucidate potential mechanisms for particle transport and energization, a topic of great importance for understanding and modeling the magnetosphere. In the present paper, by using the data return from the BeiDa- IES (BD-IES) instrument onboard an inclined (55◦) geosynchronous orbit (IGSO) satellite together with geo-transfer orbit (GTO) Van Allen Probe A&B satellite, we analysis a substorm injection event occurred on Oct 16, 2015. During the substorm injection, the IES onboard IGSO is outbound while both Van Allen Probe A&B satellites are inbound. This configuration of multiple satellite trajectories provides a unique opportunity to investigate the inward and outward radial propagation of the substorm injection simultaneously. This substorm as indicated by AE/AL indices is closely related an IMF/solar wind discontinuity with a sharp change in the IMF Bz direction (northward turning). The innermost signature of this substorm injection has been detected by the Van Allen Probes A & B at L 3.7. The outermost signature, observed by the BD-IES, is found to be at L 10. This indicated that this substorm have a rather global effect rather than just a local effect. Further, we suggest that the electric fields carried by fast-mode compressional waves around the substorm injection are the most likely mechanism candidate for the injection signatures of electrons observed in the innermost and outermost inner magnetosphere.

  7. Radial Propagation of Magnetospheric Substorm Injected Energetic Electrons Observed by BD-IES and Van Allan Probes

    Science.gov (United States)

    Zong, Q.

    2016-12-01

    When substorm injections are observed simultaneously with multiple spacecraft, they help elucidate potential mechanisms for particle transport and energization, a topic of great importance for understanding and modeling the magnetosphere. In the present paper, by using the data return from the BeiDa- IES (BD-IES) instrument onboard an inclined (55°) geosynchronous orbit (IGSO) satellite together with geo-transfer orbit (GTO) Van Allen Probe A&B satellite, we analysis a substorm injection event occurred on Oct 16, 2015. During the substorm injection, the IES onboard IGSO is outbound while both Van Allen Probe A&B satellites are inbound. This configuration of multiple satellite trajectories provides a unique opportunity to investigate the inward and outward radial propagation of the substorm injection simultaneously. This substorm as indicated by AE/AL indices is closely related an IMF/solar wind discontinuity with a sharp change in the IMF Bz direction (northward turning). The innermost signature of this substorm injection has been detected by the Van Allen Probes A & B at L 3.7. The outermost signature, observed by the BD-IES, is found to be at L 10. This indicated that this substorm have a rather global effect rather than just a local effect. Further, we suggest that the electric fields carried by fast-mode compressional waves around the substorm injection are the most likely mechanism candidate for the injection signatures of electrons observed in the innermost and outermost inner magnetosphere.

  8. Annual particle flux observations over a heterogeneous urban area

    DEFF Research Database (Denmark)

    Järvi, L.; Rannik, Ü.; Mammarella, I.

    2009-01-01

    . The measurement footprint was estimated by the use of both numerical and analytical models. Using the crosswind integrated form of the footprint function, we estimated the emission factor for the mixed vehicle fleet, yielding a median particle number emission factor per vehicle of 3.0×1014 # km−1. Particle fluxes...... from the vegetated area were the lowest with daytime median fluxes below 0.2×109 m−2 s−1. During weekends and nights, the particle fluxes were low from all land use sectors being in the order of 0.02–0.1×109 m−2 s−1. On an annual scale the highest fluxes were measured in winter, when emissions from...

  9. Stochastic heating of dust particles in complex plasmas as an energetic instability of a harmonic oscillator with random frequency

    Energy Technology Data Exchange (ETDEWEB)

    Marmolino, Ciro [Dipartimento di Scienze e Tecnologie dell' Ambiente e del Territorio-DiSTAT, Universita del Molise, Contrada Fonte Lappone, I-86090 Pesche (Italy)

    2011-10-15

    The paper describes the occurrence of stochastic heating of dust particles in dusty plasmas as an energy instability due to the correlations between dust grain charge and electric field fluctuations. The possibility that the mean energy (''temperature'') of dust particles can grow in time has been found both from the self-consistent kinetic description of dusty plasmas taking into account charge fluctuations [U. de Angelis, A. V. Ivlev, V. N. Tsytovich, and G. E. Morfill, Phys. Plasmas 12(5), 052301 (2005)] and from a Fokker-Planck approach to systems with variable charge [A. V. Ivlev, S. K. Zhdanov, B. A. Klumov, and G. E. Morfill, Phys. Plasmas 12(9), 092104 (2005)]. Here, a different derivation is given by using the mathematical techniques of the so called multiplicative stochastic differential equations. Both cases of ''fast'' and ''slow'' fluctuations are discussed.

  10. Energetic resolution study on pure and CsBr doped CsI under gamma excitations and alpha particles

    International Nuclear Information System (INIS)

    Pereira, Maria da Conceicao Costa; Madi Filho, Tufic; Hamada, Margarida Mizue

    2009-01-01

    Pure and doped CsI crystals were grown using the Bridgman technique. Bromine was the doping element which was studied in the range of 1.5x10 -1 M to 10 -2 M. The distribution of the doping element at crystalline volume was determined by neutron activation. Concerning gamma radiation response it was carried out measurements to evaluate the developed scintillators in the energy range of 350 keV to 1330 keV. For alpha particles measurements an 241 Am source was used with 5.54 MeV energy. The resolution of 3.7% was obtained for the CsI:Br 10 -2 M crystal, when excited with alpha particles from an 241 Am source. For CsI:Br 10 -1 M crystal 9.1% resolution was obtained when excited with gamma radiation from 22 Na source, with 1275 keV energy. (author)

  11. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the Eiscat radar

    International Nuclear Information System (INIS)

    Olafsson, K.J.

    1990-01-01

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the coordinated EISCAT and balloon observation campaign in August 1984. A method by which an estimate of the energy spectrum of precipitating energetic electrons can be obtained from balloon measurements of bremsstrahlung X-rays is described. The energy spectral variation of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the morning side of the auroral zone. 96 refs

  12. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  13. LHCb experiment reports observation of exotic pentaquark particles

    CERN Multimedia

    Dominguez, Daniel

    2015-01-01

    Illustration of the possible layout of the quarks in a pentaquark particle such as those discovered at LHCb. The five quarks might be tightly bonded. They might also be assembled into a meson (one quark and one antiquark) and a baryon (three quarks), weakly bonded together.

  14. New Method for Online Observation of Growing Polyolefin Particles

    NARCIS (Netherlands)

    Pater, J.T.M.; Weickert, G.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    In classical experimental research work on catalytic olefin polymerization, kinetics and powder properties are always determined as an average value over a large number of polymer particles. When studying the properties of the polymer, the powder has to be evacuated from the reactor system. This

  15. Separable orthogonal coordinates and particle creation for an accelarating observer

    International Nuclear Information System (INIS)

    Costa, Isaias.

    1986-01-01

    An exactly solvable example of a non-stationary system, which has an inertial and an uniform accelerated asymptotic region is presented. A set of solutions that are quasi-classical in these two regions is constructed and the two sets are compared. The Bogolinbov-coefficients have the thermal character and show a temperature of a ∞ / 2Π, where a ∞ is the asymptotic acceleration in the out-region. This result is much what one would expect on the grounds of the Hawking-effect. It implies that the natural particle number is not conserved in free Minkowski - space. (Author) [pt

  16. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL

    International Nuclear Information System (INIS)

    Forot, M.

    2006-12-01

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects

  17. HAWC and Solar Energetic Transient Events

    Science.gov (United States)

    Lara, A.; Ryan, J. M.

    2013-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC's primary purpose is the study of both galactic and extra-galactic sources of high energy gamma rays. The HAWC instrument will consist of 300 large water Cherenkov detectors whose counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site ( ˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effect of Coronal Mass Ejections on the galactic cosmic rays, known as Forbush Decreases (FDs). The Milagro experiment, the HAWC predecessor, successfully observed GLEs and the HAWC engineering array "VAMOS" already observed a FD. HAWC will be sensitive to γ rays and neutrons produced during large solar flares. In this work, we present the instrument and discuss its capability to observe solar energetic events. i. e., flares and CMEs.

  18. Observational Signatures of Particle Acceleration in Supernova Remnants

    NARCIS (Netherlands)

    Helder, E.A.; Vink, J.; Bykov, A.M.; Ohira, Y.; Raymond, J.C.; Terrier, R.

    2012-01-01

    We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these observations tell us about the acceleration processes by high Mach number shock fronts. We

  19. Renewal: New Aspects of Acceleration and Transport of Solar Energetic Particles (SEPs) from the Sun to the Earth

    Science.gov (United States)

    2014-10-31

    The gradual events that are important for space weather effects are the focus of our interest. Within this basic picture of SEP events lie many...Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang-Sheeley-Arge model of SW propagation. The observed in-situ magnetic

  20. Observation of short range three-particle correlations in e+e- annihilations at LEP energies

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Barão, F; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myagkov, A; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Valenti, G; Vallazza, E; Van Eldik, J; Van der Velde, C; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S

    1995-01-01

    \\def\\tpc{three-particle correlation} \\def\\twopc{two-particle correlation} Measurements are presented of short range three-particle correlations in e^+ e^- annihilations at LEP using data collected by the DELPHI detector. %The jet structure is studied using three-particle correlation functions. At small values of the four-momentum difference, strong three-particle correlations are observed for like-sign (+++ and ---) and for unlike-sign (++- and +--) pion combinations which are not a consequence of two-particle correlations. A possible explanation of the observed effects in like-sign combinations is the existence of higher order Bose-Einstein interference, which significantly changes the particle distributions in jets.

  1. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  2. Three-particle effects observed in two-particle correlation measurements

    International Nuclear Information System (INIS)

    Pochodzalla, J.; Friedman, W.A.; Gelbke, C.K.; Lynch, W.G.; Maier, M.; Bizard, G.; Lefebvres, F.; Tamain, B.; Quebert, J.

    1985-01-01

    Correlations between coincident alpha particles and protons were measured for 40 Ar induced reactions on 197 Au at E/A=60 MeV. The correlation function exhibits features not expected from free α-p interactions. These include a pronounced maximum at low relative momenta, qapprox.=15 MeV/c, and a dependence of the 5 Li ground state peak on the total 5 Li energy and decay kinematics. These anomalies are explained by considering the contribution of the decay of 9 B, and the effects of the Coulomb field, due to the reaction residue, on the decay of 5 Li. (orig.)

  3. Three-particle effects observed in two-particle correlation measurements. [60 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pochodzalla, J.; Friedman, W.A.; Gelbke, C.K.; Lynch, W.G.; Maier, M.; Ardouin, D.; Delagrange, H.; Doubre, H.; Gregoire, C.; Kyanowski, A.; Mittig, W.; Peghaire, A.; Peter, J.; Saint-Laurent, F.; Viyogi, Y.P.; Zwieglinski, B.; Bizard, G.; Lefebvres, F.; Tamain, B.; Quebert, J.

    1985-10-31

    Correlations between coincident alpha particles and protons were measured for UAr induced reactions on ZXAu at E/A=60 MeV. The correlation function exhibits features not expected from free -p interactions. These include a pronounced maximum at low relative momenta, qapprox.=15 MeV/c, and a dependence of the VLi ground state peak on the total VLi energy and decay kinematics. These anomalies are explained by considering the contribution of the decay of ZB, and the effects of the Coulomb field, due to the reaction residue, on the decay of VLi. (orig.).

  4. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers

    International Nuclear Information System (INIS)

    Fowler, W.B.

    1989-01-01

    Proton beams, from the 1GeV Cosmotron accelerator at Brookhaven, were used in the 1950s to produce strange particles. One big leap forward technologically was the development of the diffusion cloud chamber which made detecting particle tracks more accurate and sensitive. A large co-operative team worked on its development. By the mid 1950s enough tracks had been observed to show the associated production of strange particles. It was the same Brookhaven workers who developed the eighty-inch hydrogen bubble chamber which took the first photograph of the long predicted omega minus particle at the end of the decade. (UK)

  5. Efimov effect, Thomas effect and model dependence of three-particle observables

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Delfino, A.; Frederico, T.; Goldman, I.D.; Tomio, L.

    1987-01-01

    It is demonstrated for the three-dimensional three-particle system that a divergence arising from essentially the same singularity structure of the Kernel of the scattering integral equation is responsible for both the Efimov and Thomas effects. The above divergence implies that the results of three-particle dynamical calculation be sensitive to the details of the two-particle interaction. In two-dimensional systems the above divergence is absent and consequently the three-particle observables become essentially model independent. (M.W.O.) [pt

  6. Probabilistic Solar Energetic Particle Models

    Science.gov (United States)

    Adams, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.

    2011-01-01

    To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. This is done by setting the goal of achieving safety and reliability with some desired level of confidence. To achieve this goal, a worst-case space radiation environment at the required confidence level must be obtained. Planning and designing then proceeds, taking into account the effects of this worst-case environment. The result will be a mission that is reliable against the effects of the space radiation environment at the desired confidence level. In this paper we will describe progress toward developing a model that provides worst-case space radiation environments at user-specified confidence levels. We will present a model for worst-case event-integrated solar proton environments that provide the worst-case differential proton spectrum. This model is based on data from IMP-8 and GOES spacecraft that provide a data base extending from 1974 to the present. We will discuss extending this work to create worst-case models for peak flux and mission-integrated fluence for protons. We will also describe plans for similar models for helium and heavier ions.

  7. Imprint of the Sun’s Evolving Polar Winds on IBEX Energetic Neutral Atom All-sky Observations of the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zirnstein, E. J.; McComas, D. J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dayeh, M. A. [Southwest Research Institute, San Antonio, TX 78228 (United States); Sokół, J. M., E-mail: ejz@princeton.edu [Space Research Centre of the Polish Academy of Sciences, 00-716 Warsaw (Poland)

    2017-09-01

    With 7 years of Interstellar Boundary Explorer ( IBEX ) measurements of energetic neutral atoms (ENAs), IBEX has shown a clear correlation between dynamic changes in the solar wind and the heliosphere’s response in the formation of ENAs. In this paper, we investigate temporal variations in the latitudinal-dependent ENA spectrum from IBEX and their relationship to the solar wind speed observed at 1 au. We find that the variation in latitude of the transition in ENA spectral indices between low (≲1.8) and high (≳1.8) values, as well as the distribution of ENA spectral indices at high and low latitudes, correlates well with the evolution of the fast and slow solar wind latitudinal structure observed near 1 au. This correlation includes a delay due to the time it takes the solar wind to propagate to the termination shock and into the inner heliosheath, and for ENAs to be generated via charge-exchange and travel back toward 1 au. Moreover, we observe a temporal asymmetry in the steepening of the ENA spectrum in the northern and southern hemispheres, consistent with asymmetries observed in the solar wind and polar coronal holes. While this asymmetry is observed near the upwind direction of the heliosphere, it is not yet observed in the tail direction, suggesting a longer line-of-sight integration distance or different processing of the solar wind plasma downstream of the termination shock.

  8. Stable, Fluorescent Polymethylmethacrylate Particles for the Long-Term Observation of Slow Colloidal Dynamics.

    Science.gov (United States)

    Kodger, Thomas E; Lu, Peter J; Wiseman, G Reid; Weitz, David A

    2017-06-27

    Suspensions of solid micron-scale colloidal particles in liquid solvents are a foundational model system used to explore a wide range of phase transitions, including crystallization, gelation, spinodal decomposition, and the glass transition. One of the most commonly used systems for these investigations is the fluorescent spherical particles of polymethylmethacrylate (PMMA) suspended in a mixture of nonpolar solvents that match the density and the refractive index of the particles to minimize sedimentation and scattering. However, the particles can swell in these solvents, changing their size and density, and may leak the fluorescent dye over days to weeks; this constrains the exploration of slow and kinetically limited processes, such as near-boundary phase separation or the glass transition. In this paper, we produce PMMA colloidal particles that employ polymerizable and photostable cyanine-based fluorescent monomers spanning the range of visible wavelengths and a polymeric stabilizer prepared from polydimethylsiloxane, PDMS-graft-PMMA. Using microcalorimetry, we characterize the thermodynamics of an accelerated equilibration process for these dispersions in the buoyancy- and refractive-index-matching solvents. We use confocal differential dynamic microscopy to demonstrate that they behave as hard spheres. The suspended particles are stable for months to years, maintaining fixed particle size and density, and do not leak dye. Thus, these particles enable longer term experiments than may have been possible earlier; we demonstrate this by observing spinodal decomposition in a mixture of these particles with a depletant polymer in the microgravity environment of the International Space Station. Using fluorescence microscopy, we observe coarsening over several months and measure the growth of the characteristic length scale to be a fraction of a picometer per second; this rate is among the slowest observed in a phase-separating system. Our protocols should

  9. Observation and interpretation of particle and electric field measurements inside and adjacent to an active auroral arc

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.W.; Kelley, M.C.

    1977-06-01

    A Javelin sounding rocket instrumented to measure electric fields, energetic particles, and suprathermal electrons was flown across an auroral display in the late expansion phase of a substorm. Four distinct regions of fields and particles were interpreted here in light of our present understanding of auroral dynamics.r of 10 and resemble fluxes mesured in the equatorial plane during the expansion phase. The hard fluxes in the equatorward zone are further energized and may act as a source for the outer radiation belt as inward convection further energizes them.

  10. Charged particle behavior in localized ultralow frequency waves: Theory and observations

    Science.gov (United States)

    Li, Li; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rankin, Robert; Zou, Hong; Liu, Ying; Chen, Xing-Ran; Hao, Yi-Xin

    2017-06-01

    The formation and variability of the Van Allen radiation belts are highly influenced by charged particles accelerated via drift-resonant interactions with ultralow frequency (ULF) waves. In the prevailing theory of drift resonance, the ULF wave amplitude is assumed independent of magnetic longitude. This assumption is not generally valid in Earth's magnetosphere, as supported by numerous observations that point to the localized nature of ULF waves. Here we introduce a longitude dependence of the ULF wave amplitude, achieved via a von Mises function, into the theoretical framework of ULF wave-particle drift resonance. To validate the revised theory, the predicted particle signatures are compared with observational data through a best fit procedure. It is demonstrated that incorporation of nonlocal effects in drift-resonance theory provides an improved understanding of charged particle behavior in the inner magnetosphere through the intermediary of ULF waves.

  11. Observation of a spontaneous particle-transport barrier in the HL-2A tokamak.

    Science.gov (United States)

    Xiao, W W; Zou, X L; Ding, X T; Yao, L H; Feng, B B; Song, X M; Song, S D; Zhou, Y; Liu, Z T; Yuan, B S; Sun, H J; Ji, X Q; Gao, Y D; Li, Y G; Yan, L W; Yang, Q W; Liu, Yi; Dong, J Q; Duan, X R; Liu, Yong; Pan, C H

    2010-05-28

    Using the profile analysis, the density perturbation transport analysis, and the Doppler reflectometry measurement, for the first time a spontaneous and steady-state particle-transport barrier has been evidenced in the Ohmic plasmas in the HL-2A tokamak with no externally applied momentum or particle input except the gas puffing. A threshold in density has been found for the observation of the barrier. The particle diffusivity is well-like, and the convection is found to be inward outside the well and outward inside the well. The formation of the barrier coincides with the transition between the trapped electron mode and the ion temperature gradient driven mode.

  12. Observations of ultraheavy cosmic ray particles at 10 GV cutoff rigidity

    Science.gov (United States)

    Yanagimachi, T.; Hisano, K.; Ito, K.; Kobayashi, S.; Doke, T.; Hamasaki, R.; Hayashi, T.; Yakenaka, T.; Nagata, K.

    1985-01-01

    Ultraheavy cosmic ray particles with Z 45 and Fe were observed in two balloon flights at a mean geomagnetic cutoff rigidity of 10 GV. Fluxes of these particles at the top of the atmosphere are presented. A ratio of (Z 45)/(Fe) is compared with other experimental results. The ratio decreases with increasing energy in the energy range from 1 to 10 GeV/amu. A possibility is presented to explain the variation of the ratio with energy.

  13. Spin-dependent observable effect for free particles using the arrival time distribution

    International Nuclear Information System (INIS)

    Ali, Md. Manirul; Majumdar, A.S.; Home, Dipankar; Sengupta, Shyamal

    2003-01-01

    The mean arrival time of free particles is computed using the quantum-mechanical probability current. This is uniquely determined in the nonrelativistic limit of Dirac equation, although the Schroedinger probability current has an inherent nonuniqueness. Since the Dirac probability current contains a spin-dependent term, an arrival time distribution based on the probability current shows an observable spin-dependent effect, even for free particles. This arises essentially from relativistic quantum dynamics, but persists even in the nonrelativistic regime

  14. Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere

    Science.gov (United States)

    Fok, Mei-Ching H.

    2011-01-01

    Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.

  15. Laboratory observations of sediment transport using combined particle image and tracking velocimetry (Conference Presentation)

    Science.gov (United States)

    Frank, Donya; Calantoni, Joseph

    2017-05-01

    Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.

  16. Simultaneous Multiwavelength Observations of V404 Cygni during its 2015 June Outburst Decay Strengthen the Case for an Extremely Energetic Jet-base

    Science.gov (United States)

    Maitra, Dipankar; Scarpaci, John F.; Grinberg, Victoria; Reynolds, Mark T.; Markoff, Sera; Maccarone, Thomas J.; Hynes, Robert I.

    2017-12-01

    We present results of multiband optical photometry of the black hole X-ray binary system V404 Cyg obtained using Wheaton College Observatory’s 0.3 m telescope, along with strictly simultaneous INTEGRAL and Swift observations during 2015 June 25.15–26.33 UT, and 2015 June 27.10–27.34 UT. These observations were made during the 2015 June outburst of the source when it was going through an epoch of violent activity in all wavelengths ranging from radio to γ-rays. The multiwavelength variability timescale favors a compact emission region, most likely originating in a jet outflow, for both observing epochs presented in this work. The simultaneous INTEGRAL/Imager on Board the Integral Satellite (IBIS) 20–40 keV light curve obtained during the June 27 observing run correlates very strongly with the optical light curve, with no detectable delay between the optical bands as well as between the optical and hard X-rays. The average slope of the dereddened spectral energy distribution was roughly flat between the {I}C- and V-bands during the June 27 run, even though the optical and X-ray flux varied by >25× during the run, ruling out an irradiation origin for the optical and suggesting that the optically thick to optically thin jet synchrotron break during the observations was at a frequency larger than that of V-band, which is quite extreme for X-ray binaries. These observations suggest that the optical emission originated very close to the base of the jet. A strong {{H}}α emission line, probably originating in a quasi-spherical nebula around the source, also contributes significantly in the R C -band. Our data, in conjunction with contemporaneous data at other wavelengths presented by other groups, strongly suggest that the jet-base was extremely compact and energetic during this phase of the outburst.

  17. What could we learn about high energy particle physics from cosmological observations at largest spatial scales ?

    Directory of Open Access Journals (Sweden)

    Gorbunov Dmitry

    2017-01-01

    Full Text Available The very well known example of cosmology testing particle physics is the number of relativistic particles (photons and three active neutrinos within the Standard Model at primordial nucleosynthesis. These days the earliest moment we can hope to probe with present cosmological data is the early time inflation. The particle physics conditions there and now are different because of different energy scales and different values of the scalar fields, that usually prohibits a reliable connection between the particle physics parameters at the two interesting epochs. The physics at the highest energy scales may be probed with observations at the largest spatial scales (just somewhat smaller than the size of the visible Universe. However, we are not (yet ready to make the tests realistic, because of lack of a self-consistent theoretical description of the presently favorite cosmological models to be valid right after inflation.

  18. Observation of cosmic-ray particles with artificial satellites in Japan

    International Nuclear Information System (INIS)

    Nagata, Katsuaki

    1981-01-01

    The present status are described on the cosmic-ray observation with artificial satellites in Japan. In 1978, an electrostatic analyzer was loaded on the satellite EXOS-A to measure low energy electrons. The spectra taken on April 27, 1978, showed that the electron flux decreased exponentially with the increasing electron energy. A space environment monitor (SEM) was loaded on a geostationary meteorological satellite (GMS) in 1977. The SEM consists of 5 Si detectors, with which particle identification can be made, and protons with the energy of 500 MeV and alpha particles with the energy of 370 MeV were observed. The time variation of particle flux was large in the low energy part and small in the high energy part. In 1984, the satellite EXOS-C will be launched. The purposes of this project are general observation of the middle atmosphere composition and the study of the anomaly of the ionosphere above the Brazilian Anomaly. Measurement of low energy particles will be done with an electrostatic analyzer, and that of high energy particles with a telescope with Si detectors. Other projects designed in Japan are OPEN-J and EXOS-D. (Kato, T.)

  19. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    The proposer requested funding for laser equipment that would be used to study engineered nanometric energetic materials consisting of nanometer metal particles, passivation layers and oxidizing binders...

  20. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    Science.gov (United States)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; hide

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  1. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  2. The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station

    Directory of Open Access Journals (Sweden)

    Berrilli Francesco

    2014-05-01

    Full Text Available High-energy charged particles represent a severe radiation risk for astronauts and spacecrafts and could damage ground critical infrastructures related to space services. Different natural sources are the origin of these particles, among them galactic cosmic rays, solar energetic particles and particles trapped in radiation belts. Solar particle events (SPE consist in the emission of high-energy protons, alpha-particles, electrons and heavier particles from solar flares or shocks driven by solar plasma propagating through the corona and interplanetary space. Ground-level enhancements (GLE are rare solar events in which particles are accelerated to near relativistic energies and affect space and ground-based infrastructures. During the current solar cycle 24 a single GLE event was recorded on May 17th, 2012 associated with an M5.1-class solar flare. The investigation of such a special class of solar events permits us to measure conditions in space critical to both scientific and operational research. This event, classified as GLE71, was detected on board the International Space Station (ISS by the active particle detectors of the ALTEA (Anomalous Long Term Effects in Astronauts experiment. The collected data permit us to study the radiation environment inside the ISS. In this work we present the first results of the analysis of data acquired by ALTEA detectors during GLE71 associated with an M5.1-class solar flare. We estimate the energy loss spectrum of the solar particles and evaluate the contribution to the total exposure of ISS astronauts to solar high-energy charged particles.

  3. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.

    Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  4. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    2003-06-01

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  5. CERN Press Release: CERN experiments observe particle consistent with long-sought Higgs boson

    CERN Multimedia

    2012-01-01

    Geneva, 4 July 2012. At a seminar held at CERN today as a curtain raiser to the year’s major particle physics conference, ICHEP2012 in Melbourne, the ATLAS and CMS experiments presented their latest preliminary results in the search for the long sought Higgs particle. Both experiments observe a new particle in the mass region around 125-126 GeV.   CERN physicists await the start of the Higgs seminar. “We observe in our data clear signs of a new particle, at the level of 5 sigma, in the mass region around 126 GeV. The outstanding performance of the LHC and ATLAS and the huge efforts of many people have brought us to this exciting stage,” said ATLAS experiment spokesperson Fabiola Gianotti, “but a little more time is needed to prepare these results for publication.” "The results are preliminary but the 5 sigma signal at around 125 GeV we’re seeing is dramatic. This is indeed a new particle. We know it must be a boson and it&...

  6. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    Directory of Open Access Journals (Sweden)

    T. Hamburger

    2012-12-01

    Full Text Available In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm−3 stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  7. Coupling an aerosol box model with one-dimensional flow: a tool for understanding observations of new particle formation events

    OpenAIRE

    Kivekäs, N.; Carpman, J.; Roldin, P.; Leppä, J.; O'Connor, E. J.; Kristensson, A.; Asmi, E.

    2016-01-01

    Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a...

  8. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    Science.gov (United States)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of

  9. Characteristics of solar and heliospheric ion populations observed near earth

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1984-01-01

    The composition and spectra of ions in solar-energetic-particle and energetic-storm-particle events, of diffuse ions upstream of the earth bow shock, and of ions in deep-geomagnetic-tail plasmoids are characterized in a summary of in situ observations. Data are presented in graphs and tables, and remarkable similarities are noted in the distribution functions of the heliospheric ion populations. The solar wind, acting through acceleration mechanisms associated with shocks and turbulence, is identified as the major plasma source of suprathermal and energetic particles. 33 references

  10. Constraints on Particles and Fields from Full Stokes Observations of AGN

    Directory of Open Access Journals (Sweden)

    Daniel C. Homan

    2018-01-01

    Full Text Available Combined polarization imaging of radio jets from Active Galactic Nuclei (AGN in circular and linear polarization, also known as full Stokes imaging, has the potential to constrain both the magnetic field structure and particle properties of jets. Although only a small fraction of the emission when detected, typically less than a few tenths of a percent but up to as much as a couple of percent in the strongest resolved sources, circular polarization directly probes the magnetic field and particles within the jet itself and is not expected to be modified by external screens. A key to using full Stokes observations to constrain jet properties is obtaining a better understanding of the emission of circular polarization, including its variability and spectrum. We discuss what we have learned so far from parsec scale monitoring observations in the MOJAVE program and from multi-frequency observations of selected AGN.

  11. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  12. Experimental observations of aluminum particle combustion during hypervelocity water impact and penetration

    Science.gov (United States)

    Rudolphi, John Joseph

    residue composition. It was found that 7% of an Al shaped charge liner reacted during penetration in open water targets. Oxidized and unoxidized particles in sizes ranging from 425 mum - 10 mum were created during penetration and combustion. No reaction was observed with Al jets fired into oil.

  13. An Analysis of Conjugate Ground-based and Space-based Measurements of Energetic Electrons during Substorms

    Science.gov (United States)

    Sivadas, N.; Semeter, J. L.

    2015-12-01

    Substorms within the Earth's magnetosphere release energy in the form of energetic charged particles and several kinds of waves within the plasma. Depending on their strength, satellite-based navigation and communication systems are adversely affected by the energetic charged particles. Like many other natural phenomena, substorms can have a severe economic impact on a technology-driven society such as ours. Though energization of charged particles is known to occur in the magnetosphere during substorms, the source of this population and its relation to traditional acceleration region dynamics, are not completely understood. Combining measurements of energetic charged particles within the plasmasheet and that of charged particles precipitated in to the ionosphere will provide a better understanding of the role of processes that accelerate these charged particles. In the current work, we present energetic electron flux measured indirectly using data from ground-based Incoherent Scatter Radar and that measured directly at the plasmasheet by the THEMIS spacecraft. Instances of low-altitude-precipitation observed from ground suggest electrons of energy greater than 300 keV, possibly arising from particle injection events during substorms at the magnetically conjugate locations in the plasmasheet. The differences and similarities in the measurements at the plasmasheet and the ionosphere indicate the role different processes play in influencing the journey of these energetic particles form the magnetosphere to the ionosphere. Our observations suggest that there is a lot more to be understood of the link between magnetotail dynamics and energetic electron precipitation during substorms. Understanding this may open up novel and potentially invaluable ways of diagnosing the magnetosphere from the ground.

  14. Search for impact-parameter dependence of two-particle correlations using exclusive observables

    International Nuclear Information System (INIS)

    Ardouin, D.; Delagrange, H.; Doubre, H.; Gregoire, C.; Mittig, W.; Peghaire, A.; Peter, J.; Saint-Laurent, F.; Bizard, G.; Lefebvres, F.; Tamain, B.; Kyanowski, A.; Quebert, J.; Viyogi, Y.P.

    1986-01-01

    In order to provide detailed information about the dynamics of Heavy-Ion Collisions, it is necessary to perform experiments with exclusive observables to be able to select different impact-parameters domains, various degrees of the evolution of processes leading to possible equilibrium and competing forms of energy like potential and thermal energies. Two-particle correlations measurements in triple-coincidence with a multidetector plasticwall array are presented and shown to offer such possible filters. (orig.)

  15. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    International Nuclear Information System (INIS)

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion

  16. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion. (ERB)

  17. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    Directory of Open Access Journals (Sweden)

    A. L. Hodshire

    2016-07-01

    Full Text Available New-particle formation (NPF is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available, condensation of organic vapors, uptake of organic acids through acid–base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS measurement campaign took place at the DOE Southern Great Plains (SGP facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1 growth by primarily organics, (2 growth by primarily sulfuric acid and ammonia, and (3 growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1 sulfuric-acid condensation (and subsequent salt formation with ammonia or amines, (2 near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs, and (3 organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  18. Observation Of Individual Particles In The Two-Proton Radioactivity With A Time Projection Chamber

    International Nuclear Information System (INIS)

    Giovinazzo, J.; Blank, B.; Audirac, L.; Borcea, C.; Canchel, G.; Demonchy, C. E.; Hay, L.; Huikari, J.; Leblanc, S.; Matea, I.; Pedroza, J.-L.; Pibernat, J.; Serani, L.; Oliveira Santos, F. de; Grevy, S.; Perrot, L.; Stodel, C.; Thomas, J.-C.; Dossat, C.

    2007-01-01

    After the recent discovery of two-proton radioactivity, an important effort has been made in order to observe each emitted particle individually. Such kind of studies may result in energy and angular correlation measurements of the protons, which are required to give a precise theoretical description of this exotic decay mode. In this frame, we performed an experiment at the GANIL/SISSI/LISE3 facility, where we used a Time Projection Chamber to observe tracks of protons in the decay of 45 Fe, produced in projectile fragmentation reactions

  19. A Year-round Observation of Size Distribution of Aerosol Particles at the Cape Ochiishi, Japan

    Science.gov (United States)

    Miura, K.; Mukai, H.; Hashimoto, S.; Uematsu, M.

    2010-12-01

    New particle formation by nucleation of gas-phase compounds emitted from marine biogenic sources is very important for climate change. To clarify the mechanism of the formation, size distributions of submicron aerosols have been measured at the Cape Ochiishi, facing the North Western Pacific Ocean where primary productivity is high. A test observation was done from 22nd May to 18th June 2008 and a year-round observation has been performed from 16th October 2009 to 7th September 2010. The size distribution from 10 nm to 487 nm in diameter was measured with a scanning mobility particle sizer (SMPS, TSI 3034). Sample air was dried to lower than 40%. Transport of sulfate, organic carbon (OC), and black carbon (BC) was estimated with Chemical weather FORecasting System (CFORS), developed by Prof. Uno, Kyushu University, Japan. Existence of inversion layer was estimated with temperature profile measured at surface, 10m, 30m, and 50m in altitude. The burst of the particles smaller than 20nm in diameter continuing longer than 3 hrs was observed ten times until 3rd November 2009. Two were observed in early summer and the other was in autumn. Banana shape was faintly observed five times. Transport of sulfate, OC, and BC was observed 3, 8, 9 times, respectively. Source of air mass was estimated with these elements, weather map, and wind direction. Five air masses were estimated to continental. Clearly nucleation related to marine sources was not observed. The size distribution of burst evens of maritime and continental air mass showed the shift of mode to larger diameter. Strong inversion of temperature was observed once. The value of size distribution did not show high. Minimum value of size distribution was observed in the strong rain on 27th October. Acknowledgments This study was partly supported by the Grant-in-Aids for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18067005). The observation was

  20. Observation and Analysis of Particle Nucleation at a Forest Site in Southeastern US

    Directory of Open Access Journals (Sweden)

    Viney Aneja

    2013-04-01

    Full Text Available This study examines the characteristics of new particle formation at a forest site in southeastern US. Particle size distributions above a Loblolly pine plantation were measured between November 2005 and September 2007 and analyzed by event type and frequency, as well as in relation to meteorological and atmospheric chemical conditions. Nucleation events occurred on 69% of classifiable observation days. Nucleation frequency was highest in spring. The highest daily nucleation (class A and B events frequency (81% was observed in April. The average total particle number concentration on nucleation days was 8,684 cm−3 (10 < Dp < 250 nm and 3,991 cm−3 (10 < Dp < 25 nm with a mode diameter of 28 nm with corresponding values on non-nucleation days of 2,143 cm−3, 655 cm−3, and 44.5 nm, respectively. The annual average growth rate during nucleation events was 2.7 ± 0.3 nm·h−1. Higher growth rates were observed during summer months with highest rates observed in May (5.0 ± 3.6 nm·h−1. Winter months were associated with lower growth rates, the lowest occurring in February (1.2 ± 2.2 nm·h−1. Consistent with other studies, nucleation events were more likely to occur on days with higher radiative flux and lower relative humidity compared to non-nucleation days. The daily minimum in the condensation sink, which typically occurred 2 to 3 h after sunrise, was a good indicator of the timing of nucleation onset. The intensity of the event, indicated by the total particle number concentration, was well correlated with photo-synthetically active radiation, used here as a surrogate for total global radiation, and relative humidity. Even though the role of biogenic VOC in the initial nuclei formation is not understood from this study, the relationships with chemical precursors and secondary aerosol products associated with nucleation, coupled with diurnal boundary layer dynamics and seasonal meteorological patterns, suggest that H2SO4 and biogenic

  1. Observational study of lipid profile and LDL particle size in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Martínez-Mernández Pedro

    2011-09-01

    Full Text Available Abstract Background The atherogenic lipoprotein phenotype is characterized by an increase in plasma triglycerides, a decrease in high-density lipoprotein cholesterol (HDLc, and the prevalence of small, dense-low density lipoprotein cholesterol (LDLc particles. The aim of this study was to establish the importance of LDL particle size measurement by gender in a group of patients with Metabolic Syndrome (MS attending at a Cardiovascular Risk Unit in Primary Care and their classification into phenotypes. Subjects and methods One hundred eighty-five patients (93 men and 92 women from several areas in the South of Spain, for a period of one year in a health centre were studied. Laboratory parameters included plasma lipids, lipoproteins, low-density lipoprotein size and several atherogenic rates were determinated. Results We found differences by gender between anthropometric parameters, blood pressure and glucose measures by MS status. Lipid profile was different in our two study groups, and gender differences in these parameters within each group were also remarkable, in HDLc and Apo A-I values. According to LDL particle size, we found males had smaller size than females, and patients with MS had also smaller than those without MS. We observed inverse relationship between LDL particle size and triglycerides in patients with and without MS, and the same relationship between all atherogenic rates in non-MS patients. When we considered our population in two classes of phenotypes, lipid profile was worse in phenotype B. Conclusion In conclusion, we consider worthy the measurement of LDL particle size due to its relationship with lipid profile and cardiovascular risk.

  2. Constraints on dark matter particles from theory, galaxy observations, and N-body simulations

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2008-01-01

    Mass bounds on dark matter (DM) candidates are obtained for particles that decouple in or out of equilibrium while ultrarelativistic with arbitrary isotropic and homogeneous distribution functions. A coarse grained Liouville invariant primordial phase-space density D is introduced which depends solely on the distribution function at decoupling. The density D is explicitly computed and combined with recent photometric and kinematic data on dwarf spheroidal satellite galaxies in the Milky Way (dShps) and the observed DM density today yielding upper and lower bounds on the mass, primordial phase-space densities, and velocity dispersion of the DM candidates. Combining these constraints with recent results from N-body simulations yields estimates for the mass of the DM particles in the range of a few keV. We establish in this way a direct connection between the microphysics of decoupling in or out of equilibrium and the constraints that the particles must fulfill to be suitable DM candidates. If chemical freeze-out occurs before thermal decoupling, light bosonic particles can Bose condense. We study such Bose-Einstein condensate (BEC) as a dark matter candidate. It is shown that, depending on the relation between the critical (T c ) and decoupling (T d ) temperatures, a BEC light relic could act as cold DM but the decoupling scale must be higher than the electroweak scale. The condensate hastens the onset of the nonrelativistic regime and tightens the upper bound on the particle's mass. A nonequilibrium scenario which describes particle production and partial thermalization, sterile neutrinos produced out of equilibrium, and other DM models is analyzed in detail and the respective bounds on mass, primordial phase-space density, and velocity dispersion are obtained. Thermal relics with m∼few keV that decouple when ultrarelativistic and sterile neutrinos produced resonantly or nonresonantly lead to a primordial phase-space density compatible with cored dShps and

  3. Observations of linear dependence between sulfate and nitrate in atmospheric particles

    Science.gov (United States)

    Kong, Lingdong; Yang, Yiwei; Zhang, Shuanqin; Zhao, Xi; Du, Huanhuan; Fu, Hongbo; Zhang, Shicheng; Cheng, Tiantao; Yang, Xin; Chen, Jianmin; Wu, Dui; Shen, Jiandong; Hong, Shengmao; Jiao, Li

    2014-01-01

    Hourly measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009-2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.

  4. Regional and local new particle formation events observed in the Yangtze River Delta region, China

    Science.gov (United States)

    Dai, Liang; Wang, Honglei; Zhou, Luyu; An, Junlin; Tang, Lili; Lu, Chunsong; Yan, Wenlian; Liu, Ruiyang; Kong, Shaofei; Chen, Mindong; Lee, Shanhu; Yu, Huan

    2017-02-01

    To study the spatial inhomogeneity of new particle formation (NPF) in the polluted atmosphere of China, we conducted simultaneous measurements at an urban site near a petrochemical industrial area and a regional background site in the Yangtze River Delta region from September to November 2015. At the urban site we observed a type of local NPF event (number of events: n = 5), in which nucleation was limited to a small area but persisted for 6.8 h on average during the daytime. Formation rates of 5 nm particles (J5) were found to be correlated positively with the H2SO4 proxy (log J5 versus log[H2SO4] slope near 1) in both local and regional events. Furthermore, J5 was enhanced by the anthropogenic volatile organic carbon (VOC) plumes from nearby industrial area in the local events compared to the regional events. Size-dependent aerosol dynamics calculation showed that in comparison with the observed regional events, the local events were featured with high nucleation rate (J1.3 > 1000 cm-3 s-1), high growth rate of sub-3 nm particles (GRsub-3 > 20 nm h-1), and high number concentration of nucleation mode particles (mean peak N5-20: 6 × 104 cm-3). Considering these features, the local NPF events of anthropogenic origin may also be an important contributor to cloud condensation nuclei concentrations in urban and regional scales. In addition, the comparison of simultaneous regional NPF events between the two sites (number of events: n = 7) suggested that regional NPF intensity may be underestimated by the single-point measurement at an urban site, due to the heterogeneity of air masses.

  5. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  6. Direct Observation of Heavy-Tailed Storage Times of Bed Load Tracer Particles Causing Anomalous Superdiffusion

    Science.gov (United States)

    Bradley, D. Nathan

    2017-12-01

    A consensus has formed that the step length distribution of fluvial bed load is thin tailed and that the observed anomalous superdiffusion of bed load tracer particles must arise from heavy-tailed resting times. However, heavy-tailed resting times have never been directly observed in the field over multiple floods. Using 9 years of data from a large bed load tracer experiment, I show that the spatial variance of the tracer plume scales faster than linearly with integrated excess stream power, indicating anomalous superdiffusion. The superdiffusion is caused by a heavy-tailed distribution of observed storage times that is fit with a truncated Pareto distribution with a tail parameter that is predicted by anomalous diffusion theory. The heavy-tailed distribution of storage times causes the tracer virtual velocity to slow over time, indicated by a sublinear increase in the mean displacement that is predicted by the storage time distribution tail parameter.

  7. Observations of bromine monoxide transport in the Arctic sustained on aerosol particles

    Directory of Open Access Journals (Sweden)

    P. K. Peterson

    2017-06-01

    Full Text Available The return of sunlight in the polar spring leads to the production of reactive halogen species from the surface snowpack, significantly altering the chemical composition of the Arctic near-surface atmosphere and the fate of long-range transported pollutants, including mercury. Recent work has shown the initial production of reactive bromine at the Arctic surface snowpack; however, we have limited knowledge of the vertical extent of this chemistry, as well as the lifetime and possible transport of reactive bromine aloft. Here, we present bromine monoxide (BrO and aerosol particle measurements obtained during the March 2012 BRomine Ozone Mercury EXperiment (BROMEX near Utqiaġvik (Barrow, AK. The airborne differential optical absorption spectroscopy (DOAS measurements provided an unprecedented level of spatial resolution, over 2 orders of magnitude greater than satellite observations and with vertical resolution unable to be achieved by satellite methods, for BrO in the Arctic. This novel method provided quantitative identification of a BrO plume, between 500 m and 1 km aloft, moving at the speed of the air mass. Concurrent aerosol particle measurements suggest that this lofted reactive bromine plume was transported and maintained at elevated levels through heterogeneous reactions on colocated supermicron aerosol particles, independent of surface snowpack bromine chemistry. This chemical transport mechanism explains the large spatial extents often observed for reactive bromine chemistry, which impacts atmospheric composition and pollutant fate across the Arctic region, beyond areas of initial snowpack halogen production. The possibility of BrO enhancements disconnected from the surface potentially contributes to sustaining BrO in the free troposphere and must also be considered in the interpretation of satellite BrO column observations, particularly in the context of the rapidly changing Arctic sea ice and snowpack.

  8. On the observation of the need for an unusually high concentration of cysteine and homocysteine to induce aggregation of polymer-stabilized gold nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Radhakumary, C.; Sreenivasan, K., E-mail: sreeni@sctimst.ac.in [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Laboratory for Polymer Analysis, Biomedical Technology Wing (India)

    2013-02-15

    This study reports the interaction of chitosan-stabilized gold nanoparticles (CH-AuNPs) with cysteine (Cys) and homocysteine (Hcys) in aqueous media at pH 1.4. Since the polymer precipitates at higher pH, and the amino acids Cys and HCys are soluble at acidic pH, we kept the pH around 1.4 for stabilizing the particles. Zeta potential of CH-AuNPs was found to be positive and it is reasonable to assume that +ve Cys or Hcys at pH 1.4 will experience repulsive force. However, TEM images and absorption spectra indicated formation of aggregates including rod-like assembly. An interesting observation was the need for unusually high concentration of analytes (Cys and Hcys) to induce the assembly of CH-AuNPs. We also found time bound variation of the optical properties probably indicating the interaction is kinetically controlled and only a fraction of the analyte molecules having sufficient energy can bind onto the particles. We observed that at elevated temperature, the reaction was faster with a lower concentration of Cys or Hcys. These observations were supported by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory which describes the interparticle interaction and the colloidal stability in solution. Only molecules possessing enough energy to cross this force barrier can cause the aggregation. We also noted a time lag between Cys and Hcys to influence optical properties reflecting the possibility of using this simple approach to discriminate these two clinically relevant molecules. Our observation shows that simple sensing as well as generation of novel nanostructures could be manipulated by a judicious choice of conditions such as stabilizing agents, pH, etc.Graphical AbstractMore energetic ones cross the barrier to induce aggregation.

  9. Acceleration of energetic protons by interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1979-01-01

    The acceleration of energetic protons in interplanetary magnetosonic fast-mode shock waves is studied via analytical modelling, numerical simulations and in situ observations. It is found that the only physical process by which energetic particles can gain energy from magnetosonic fast-mode shock waves is the one in which the particles cross the shock front several times during a shock encounter and the particle guiding centers gradient B and/or curvature drift at the shock front in the vector V x vector B electric field that exists in the shock rest frame. It is shown that it is physically impossible for charged particles to be Fermi accelerated by MHD shock waves or discontinuities. An analytical model is presented in which the particle-shock interaction is viewed in an intermediate frame in which the upstream and downstream vector V x vector B and partial derivative of vector B with respect to the electric fields are simultaneously zero. It is shown by numerical simulations that both reflected and transmitted particles conserve the first adiabatic invariant in the vector E = 0 frame for quasi-perpendicular shocks psi greater than or equal to 70 0 . The analytical predictions of post-shock energies and pitch angles and shock reflection and transmission coefficients are shown to be in excellent agreement with numerical simulation results. It is found that the 2 to 3 orders of magnitude increases in the Ca 1 MeV proton intensity frequently observed around the time of shock passage apparently cannot be produced by protons encountering the shocks just once, and that the average particle probably encounters the shocks several times prior to observation at Ca 1 MeV. The combination of vector V x vector B electric field mechanism and multiple shock encounters is shown to lead naturally to a differential energy spectrum that is an exponential in momentum

  10. Coupling an aerosol box model with one-dimensional flow: a tool for understanding observations of new particle formation events

    Directory of Open Access Journals (Sweden)

    Niku Kivekäs

    2016-04-01

    Full Text Available Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.

  11. A Supra-Thermal Energetic Particle detector (STEP) for composition measurements in the range approximately 20 keV/nucleon to 1 MeV/nucleon

    Science.gov (United States)

    Mason, G. M.; Gloeckler, G.

    1981-01-01

    A detector system is described, employing a time-of-flight versus residual energy technique which allows measurement of particle composition (H-Fe), energy spectral and anisotropies in an energy range unaccessible with previously flown sensors. Applications of this method to measurements of the solar wind ion composition are discussed.

  12. A supra-thermal energetic particle detector /STEP/ for composition measurements in the range of about 20 keV/nucleon to 1 MeV/nucleon

    Science.gov (United States)

    Mason, G. M.; Gloeckler, G.

    1981-01-01

    A novel detector system is described, employing a time-of-flight versus residual energy technique which allows measurement of particle composition (H-Fe), energy spectra and anisotropies in an energy range unaccessible with previously flown sensors. Applications of this method to measurements of the solar wind ion composition are also discussed.

  13. The Bpd Energetic Particle Detector as Part of the Solar X-Ray Photometer ChemiX for the "interhelioprobe" Interplanetary Mission

    Science.gov (United States)

    Dudnik, O. V.; Kurbatov, E. V.; Zajtsevsky, I. L.; Sylwester, J.; Siarkowski, M.; Kowaliński, M.; Podgórski, P.

    2015-09-01

    The Background Particle Detector (BPD) is an important block of the Polish-Ukrainian X-ray spectrophotometer ChemiX under development for the “Interhelioprobe” interplanetary mission. The BPD primary objective is to detect incoming charged particle fluxes, measure particle energy spectra and safeguard the instrument in case of emergency. The present work describes the BPD laboratory prototype and current results of adjustment and measurements of its important characteristics, in particular the analog signal processing unit and the source of secondary power supply unit. Laboratory benches designed for controlling the parameters of analog module and for characterization of small-sized organic and inorganic scintillation detectors of high energy charged particles are presented. The functional block diagram of the experimental model of digital signal processing line and information data streaming line designed using ProASIC3E M1A3PE1500 FPGA are introduced and explained. The results of respective digital modules’ tests performed by using experimental ModelISim Microsemi ME 10.2c program simulator are also presented.

  14. Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost

    OpenAIRE

    Nemeth, Christopher; Fearnhead, Paul; Mihaylova, Lyudmila

    2013-01-01

    Poyiadjis et al. (2011) show how particle methods can be used to estimate both the score and the observed information matrix for state space models. These methods either suffer from a computational cost that is quadratic in the number of particles, or produce estimates whose variance increases quadratically with the amount of data. This paper introduces an alternative approach for estimating these terms at a computational cost that is linear in the number of particles. The method is derived u...

  15. The Northern Rims of SNR RCW 86 Chandras Recent Observations and their Implications for Particle Acceleration

    Science.gov (United States)

    Castro, Daniel

    2018-01-01

    The Chandra observations towards the northwest (NW) and northeast (NE) rims of supernova remnant (SNR) RCW 86 reveal great detail about the characteristics of the shocks, particle acceleration and the local environments in these 2 distinct regions. Both the NW and NE of RCW 86 show clear evidence of non-thermal X-ray emission, identified as synchrotron radiation from shock-accelerated electrons with TeV energies, interacting with the compressed, and probably amplified, local magnetic field.Magnetic field amplification (MFA) is broadly believed to result from, and contribute to, cosmic ray acceleration at the shocks of SNRs. However, we still lack a detailed understanding of the particle acceleration mechanism, and with this study we address the connection between the shock properties and ambient medium with MFA. The Chandra observations of RCW 86 allowed us to constrain the magnitude of the post- shock magnetic field in the NE and NW rims by deriving synchrotron filament widths, and also the densities in these regions, using thermal emission co-located with the non-thermal rims. I will discuss our analysis in detail and comment on how MFA appears to be related to certain characteristics of the SNR shock.

  16. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  17. INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. II. THE WARSAW TEST PARTICLE MODEL (WTPM)

    Energy Technology Data Exchange (ETDEWEB)

    Sokół, J. M.; Kubiak, M. A.; Bzowski, M.; Swaczyna, P., E-mail: jsokol@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, 00-716 Warsaw (Poland)

    2015-10-15

    We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the original findings on the flow vector, but suggested a significantly higher temperature. The present version of the model has two strains targeted for different applications, based on an identical paradigm, but differing in the implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX, and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He. Details of the analysis method are presented by Swaczyna et al. and results of the analysis are presented by Bzowski et al.

  18. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.

    Science.gov (United States)

    Costello, M Joseph; Johnsen, Sönke; Gilliland, Kurt O; Freel, Christopher D; Fowler, W Craig

    2007-01-01

    To employ Mie scattering theory to predict the light-scattering from micrometer-sized particles surrounded by lipid shells, called multilamellar bodies (MLBs), reported in human age-related nuclear cataracts. Mie scattering theory is applicable to randomly distributed spherical and globular particles separated by distances much greater than the wavelength of incident light. With an assumed refractive index of 1.40 for nuclear cytoplasm, particle refractive indices from 1.33 to 1.58 were used to calculate scattering efficiencies for particle radii 0.05 to 3 microm and incident light with wavelengths (in vacuo) of 400, 550, and 700 nm. Surface plots of scattering efficiency versus particle radius and refractive index were calculated for coated spherical particles. Pronounced peaks and valleys identified combinations of particle parameters that produce high and low scattering efficiencies. Small particles (scattering efficiency over a wide range of particle refractive indices. Particles with radii 0.6 to 3 microm and refractive indices 0.08 to 0.10 greater (or less) than the surrounding cytoplasm had very high scattering efficiencies. This size range corresponds well to MLBs in cataractous nuclei (average MLB radius, 1.4 microm) and, at an estimated 4000 particles/mm(3) of tissue, up to 18% of the incident light was scattered primarily within a 20 degrees forward cone. The calculated size of spherical particles that scatter efficiently was close to the observed dimensions of MLBs in cataractous nuclei. Particle refractive indices only 0.02 units different from the surrounding cytoplasm scatter a significant amount of light. These results suggest that the MLBs observed in human age-related nuclear cataracts may be major sources of forward light scattering that reduces contrast of fine details, particularly under dim light.

  19. Large scale collective modeling the final 'freeze out' stages of energetic heavy ion reactions and calculation of single particle measurables from these models

    International Nuclear Information System (INIS)

    Nyiri, Agnes

    2005-01-01

    -relativistic heavy ion reactions is an important hadronic observable sensitive to the early stages of system evolution. The flow analysis involves the particles, which have already been frozen out. Therefore, to perform realistic flow computations from the Multi Module Model we need a complete freeze out description and a well identified freeze out surface. However, the freeze out module is still not ready. Although we have not yet been able to evaluate collective flow using the Multi Module Model, the method and code for the calculation of flow components has been worked out in an independent module. This module is completed and can be coupled to the previous modules when those are ready for use. In order to test the code, we have calculated directed and elliptic flow from a tilted, ellipsoidally expanding source using a simple, blast wave type of model. This model was developed directly for this aim based on Buda-Lund hydro models. Although, this oversimplified blast wave model is not suitable to reproduce the experimental data -which will be an important task in the future to check our Multi Module Model-, it has provided us with important information. We have found that the directed flow, is very sensitive to the correct identification of the reaction plane included the determination of the impact parameter vector, and can be misinterpreted by some experimental methods. We have shown that misidentification of the reaction plane may even set the directed flow to zero by construction. We have presented results of the rapidity dependence of the directed flow, v1, and elliptic flow, v2, furthermore, the transverse momentum dependence of v2. We have also investigated the dependence of the flow pattern on the initial geometry of the fireball by calculating flow components from two ellipsoidal sources with the same thermodynamical properties but different shape. The code determining the freeze out hypersurface should still be improved in order to avoid inaccuracies in the further

  20. Large scale collective modeling the final 'freeze out' stages of energetic heavy ion reactions and calculation of single particle measurables from these models

    Energy Technology Data Exchange (ETDEWEB)

    Nyiri, Agnes

    2005-07-01

    -relativistic heavy ion reactions is an important hadronic observable sensitive to the early stages of system evolution. The flow analysis involves the particles, which have already been frozen out. Therefore, to perform realistic flow computations from the Multi Module Model we need a complete freeze out description and a well identified freeze out surface. However, the freeze out module is still not ready. Although we have not yet been able to evaluate collective flow using the Multi Module Model, the method and code for the calculation of flow components has been worked out in an independent module. This module is completed and can be coupled to the previous modules when those are ready for use. In order to test the code, we have calculated directed and elliptic flow from a tilted, ellipsoidally expanding source using a simple, blast wave type of model. This model was developed directly for this aim based on Buda-Lund hydro models. Although, this oversimplified blast wave model is not suitable to reproduce the experimental data--which will be an important task in the future to check our Multi Module Model--it has provided us with important information. We have found that the directed flow, is very sensitive to the correct identification of the reaction plane included the determination of the impact parameter vector, and can be misinterpreted by some experimental methods. We have shown that misidentification of the reaction plane may even set the directed flow to zero by construction. We have presented results of the rapidity dependence of the directed flow, v1, and elliptic flow, v2, furthermore, the transverse momentum dependence of v2. We have also investigated the dependence of the flow pattern on the initial geometry of the fireball by calculating flow components from two ellipsoidal sources with the same thermodynamical properties but different shape. The code determining the freeze out hypersurface should still be improved in order to avoid inaccuracies in the further

  1. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gildemeister, Otto; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko