WorldWideScience

Sample records for energetic particle events

  1. Energetic particle pressure in intense ESP events

    Science.gov (United States)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  2. THE 2012 JULY 23 BACKSIDE ERUPTION: AN EXTREME ENERGETIC PARTICLE EVENT?

    Energy Technology Data Exchange (ETDEWEB)

    Gopalswamy, N. [Code 671, Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Yashiro, S.; Thakur, N.; Mäkelä, P.; Xie, H.; Akiyama, S., E-mail: nat.gopalswamy@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States)

    2016-12-20

    The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr). The associated solar energetic particle (SEP) event had a >10 MeV proton flux peaking at ∼5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to gigaelectronvolt energies). The times of maximum and fluence spectra in the range 10–100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed (>2000 km s{sup −1}), the initial acceleration (∼1.70 km s{sup −2}), and the shock-formation height (∼1.5 solar radii) were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.

  3. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  4. A semi-analytical foreshock model for energetic storm particle events inside 1 AU

    Directory of Open Access Journals (Sweden)

    Vainio Rami

    2014-02-01

    Full Text Available We have constructed a semi-analytical model of the energetic-ion foreshock of a CME-driven coronal/interplanetary shock wave responsible for the acceleration of large solar energetic particle (SEP events. The model is based on the analytical model of diffusive shock acceleration of Bell (1978, appended with a temporal dependence of the cut-off momentum of the energetic particles accelerated at the shock, derived from the theory. Parameters of the model are re-calibrated using a fully time-dependent self-consistent simulation model of the coupled particle acceleration and Alfvén-wave generation upstream of the shock. Our results show that analytical estimates of the cut-off energy resulting from the simplified theory and frequently used in SEP modelling are overestimating the cut-off momentum at the shock by one order magnitude. We show also that the cut-off momentum observed remotely far upstream of the shock (e.g., at 1 AU can be used to infer the properties of the foreshock and the resulting energetic storm particle (ESP event, when the shock is still at small distances from the Sun, unaccessible to the in-situ observations. Our results can be used in ESP event modelling for future missions to the inner heliosphere, like the Solar Orbiter and Solar Probe Plus as well as in developing acceleration models for SEP events in the solar corona.

  5. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  6. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    The elemental, charge state, and isotopic composition of approximately 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events was determined and current understanding of the nature of solar and interplanetary processes which may explain the observations are outlined. The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however are found to be roughly energy independent in the approximately 1 to approximately 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seem to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He(+) along with heavy ions with typical coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP Ne-22 relative to this isotopes ratio in the solar wind

  7. ENERGETIC PARTICLE CROSS-FIELD PROPAGATION EARLY IN A SOLAR EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Dalla, S.; Marsh, M. S. [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE Preston (United Kingdom)

    2013-08-20

    Solar energetic particles (SEPs) have been observed to easily spread across heliographic longitudes, and the mechanisms responsible for this behavior remain unclear. We use full-orbit simulations of a 10 MeV proton beam in a turbulent magnetic field to study to what extent the spread across the mean field can be described as diffusion early in a particle event. We compare the full-orbit code results to solutions of a Fokker-Planck equation including spatial and pitch angle diffusion, and of one including also propagation of the particles along random-walking magnetic field lines. We find that propagation of the particles along meandering field lines is the key process determining their cross-field spread at 1 AU at the beginning of the simulated event. The mean square displacement of the particles an hour after injection is an order of magnitude larger than that given by the diffusion model, indicating that models employing spatial cross-field diffusion cannot be used to describe early evolution of an SEP event. On the other hand, the diffusion of the particles from their initial field lines is negligible during the first 5 hr, which is consistent with the observations of SEP intensity dropouts. We conclude that modeling SEP events must take into account the particle propagation along meandering field lines for the first 20 hr of the event.

  8. ENERGETIC PARTICLE CROSS-FIELD PROPAGATION EARLY IN A SOLAR EVENT

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.; Marsh, M. S.

    2013-01-01

    Solar energetic particles (SEPs) have been observed to easily spread across heliographic longitudes, and the mechanisms responsible for this behavior remain unclear. We use full-orbit simulations of a 10 MeV proton beam in a turbulent magnetic field to study to what extent the spread across the mean field can be described as diffusion early in a particle event. We compare the full-orbit code results to solutions of a Fokker-Planck equation including spatial and pitch angle diffusion, and of one including also propagation of the particles along random-walking magnetic field lines. We find that propagation of the particles along meandering field lines is the key process determining their cross-field spread at 1 AU at the beginning of the simulated event. The mean square displacement of the particles an hour after injection is an order of magnitude larger than that given by the diffusion model, indicating that models employing spatial cross-field diffusion cannot be used to describe early evolution of an SEP event. On the other hand, the diffusion of the particles from their initial field lines is negligible during the first 5 hr, which is consistent with the observations of SEP intensity dropouts. We conclude that modeling SEP events must take into account the particle propagation along meandering field lines for the first 20 hr of the event

  9. SOLAR ENERGETIC PARTICLE EVENT ASSOCIATED WITH THE 2012 JULY 23 EXTREME SOLAR STORM

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bei; Liu, Ying D.; Hu, Huidong; Wang, Rui; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G., E-mail: liuxying@spaceweather.ac.cn [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2016-08-20

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A , was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory , suggesting a wide longitudinal spread of the particles at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.

  10. SOLAR ENERGETIC PARTICLE EVENTS AND THE KIPLINGER EFFECT

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2012-01-01

    The Kiplinger effect is an observed association of solar energetic (E > 10 MeV) particle (SEP) events with a 'soft-hard-harder' (SHH) spectral evolution during the extended phases of the associated solar hard (E > 30 keV) X-ray (HXR) flares. Besides its possible use as a space weather predictor of SEP events, the Kiplinger effect has been interpreted as evidence of SEP production in the flare site itself, contradicting the widely accepted view that particles of large SEP events are predominately or entirely accelerated in shocks driven by coronal mass ejections (CMEs). We review earlier work to develop flare soft X-ray (SXR) and HXR spectra as SEP event forecast tools and then examine recent Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) evidence supporting the association of SHH HXR flares with large SEP events. We point out that ad hoc prediction criteria using the CME widths and SXR flare durations of associated RHESSI hard X-ray bursts (HXBs) can yield results comparable to those of the SHH prediction criteria. An examination of the RHESSI dynamic plots reveals several ambiguities in the determination of whether and when the SHH criteria are fulfilled, which must be quantified and applied consistently before an SHH-based predictive tool can be made. A comparative HXR spectral study beginning with the large population of relatively smaller SEP events has yet to be done, and we argue that those events will not be so well predicted by the SHH criteria. SHH HXR flares and CMEs are both components of large eruptive flare events, which accounts for the good connection of the SHH HXR flares with SEP events.

  11. Solar Energetic Particle Events at the Rise Phase of the 23rd Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. The experiment with 10K-80 aboard the INTER-BALL-2. (which detects protons with energies >7, 27-41, 41-58, 58-88, 88-180 and 180-300 MeV) registered six events of the solar energetic particle. (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the ...

  12. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Ding, Liuguan; Jiang, Yong; Zhao, Lulu; Li, Gang

    2013-01-01

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon –1 exceed 10 pfu, we categorize fast CMEs with speed >900 km s –1 and width >60° from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon –1 . Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon –1 . For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  13. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of approximatelt 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production

  14. Radial dependence of solar energetic particles derived from the 15 March 2013 solar energetic particle event and global MHD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chin-Chun, E-mail: chin-chun.wu@nrl.navy.mil; Plunkett, Simon, E-mail: simon.plunkett@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States); Liou, Kan, E-mail: kan.liou@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland (United States); Wu, S. T., E-mail: wus@uah.edu [CSPAR, University of Alabama, Huntsville, Alabama (United States); Dryer, Murray, E-mail: murraydryer@msn.com [Emeritus, NOAA, Boulder, CO (United States)

    2016-03-25

    We study an unusual solar energetic particle (SEP) event that was associated with the coronal mass ejection (CME) on March 15, 2013. Enhancements of the SEP fluxes were first detected by the ACE spacecraft at 14:00 UT, ∼7 hours after the onset of the CME (07:00 UT), and the SEP’s peak intensities were recorded ∼36 hours after the onset of the CME. Our recent study showed that the CME-driven shock Mach number, based on a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation, is well correlated with the time-intensity of 10-30 MeV and 30-80 MeV protons. Here we focus on the radial dependence (r{sup −α}) of {sup 4}He (3.43-41.2 MeV/n) and O (7.30-89.8 MeV/n) energetic particles from ACE/SIS. It is found that the scaling factor (α) ranges between 2 and 4 for most of the energy channels. We also found that the correlation coefficients tend to increase with SEP energies.

  15. ENERGETIC PARTICLE OBSERVATIONS AND PROPAGATION IN THE THREE-DIMENSIONAL HELIOSPHERE DURING THE 2006 DECEMBER EVENTS

    International Nuclear Information System (INIS)

    Malandraki, O. E.; Marsden, R. G.; Tranquille, C.; Lario, D.; Heber, B.; Mewaldt, R. A.; Cohen, C. M. S.; Lanzerotti, L. J.; Forsyth, R. J.; Elliott, H. A.; Vogiatzis, I. I.; Geranios, A.

    2009-01-01

    We report observations of solar energetic particles obtained by the HI-SCALE and COSPIN/LET instruments onboard Ulysses during the period of isolated but intense solar activity in 2006 December, in the declining phase of the solar activity cycle. We present measurements of particle intensities and also discuss observations of particle anisotropies and composition in selected energy ranges. Active Region 10930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. Located over the South Pole of the Sun, at >72 0 S heliographic latitude and 2.8 AU radial distance, Ulysses provided unique measurements for assessing the nature of particle propagation to high latitudes under near-minimum solar activity conditions, in a relatively undisturbed heliosphere. The observations seem to exclude the possibility that magnetic field lines originating at low latitudes reached Ulysses, suggesting either that the energetic particles observed as large solar energetic particle (SEP) events over the South Pole of the Sun in 2006 December were released when propagating coronal waves reached high-latitude field lines connected to Ulysses, or underwent perpendicular diffusion. We also discuss comparisons with energetic particle data acquired by the STEREO and Advanced Composition Explorer in the ecliptic plane near 1 AU during this period.

  16. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  17. Mapping travelling convection vortex events with respect to energetic particle boundaries

    Directory of Open Access Journals (Sweden)

    T. Moretto

    1998-08-01

    Full Text Available Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries as identified by the particle measurements of the NOAA 10 satellite. In addition, for all events at least one close DMSP overpass was available. All but one of the 13 cases agree to an exceptional degree that: the TCV centres are located within the region of trapped, high energy electrons close to the trapping boundary for the population of electrons with energy greater than >100 keV. Correspondingly, from the DMSP data they are located within the region of plasmasheet-type precipitation close to the CPS/BPS precipitation boundary. That is, the TCV centres map to deep inside the magnetosphere and not to the magnetopause.Key Words. Ionosphere (Electric fields and currents; Particle precipitation · Magnetospheric physics (Magnetosphere-ionosphere interaction

  18. CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, R.; Blanco, J.J.; Rodríguez-Pacheco, J. [SRG, Universidad de Alcalá, E-28871 Alcalá de Henares (Spain); Dresing, N.; Klassen, A.; Heber, B.; Banjac, S. [IEAP, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Lario, D. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Agueda, N. [Departament d' Astronomia i Meteorologia. Institut de Ciències del Cosmos. Universitat de Barcelona, E-08028 Barcelona (Spain); Malandraki, O. E., E-mail: raul.gomezh@uah.es [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-01-20

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  19. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  20. Low-Frequency Type III Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Gopalswamy, Nat; Makela, Pertti

    2010-01-01

    We analyzed the coronal mass ejections (CMEs), flares, and type 11 radio bursts associated with a set of six low frequency (15 min) normally used to define these bursts. All but one of the type III bursts was not associated with a type 11 burst in the metric or longer wavelength domains. The burst without type 11 burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 min) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs were of similar speeds and the flares are also of similar size and duration. This study suggests that the type III burst duration may not be a good indicator of an SEP event.

  1. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST

    Directory of Open Access Journals (Sweden)

    Poedts Stefaan

    2013-05-01

    Full Text Available High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7–8 October 2012, and the period following a fast solar wind stream on 25–26 October 2012 to within a factor of 5 or so. At lower energies of 10 – a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

  2. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  3. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  4. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    International Nuclear Information System (INIS)

    Ding, Liu-Guan; Xu, Fei; Gu, Bin; Zhang, Ya-Nan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao

    2014-01-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event

  5. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liuguan; Jiang, Yong [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China); Zhao, Lulu; Li, Gang, E-mail: gang.li@uah.edu [Department of Physics and CSPAR, University of Alabama in Huntsville, AL 35899 (United States)

    2013-01-20

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon{sup -1} exceed 10 pfu, we categorize fast CMEs with speed >900 km s{sup -1} and width >60 Degree-Sign from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon{sup -1}. Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon{sup -1}. For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  6. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  7. Relating Solar Energetic Particle Event Fluences to Peak Intensities

    Science.gov (United States)

    Kahler, Stephen W.; Ling, Alan G.

    2018-02-01

    Recently we (Kahler and Ling, Solar Phys. 292, 59, 2017: KL) have shown that time-intensity profiles [I(t)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [α and β]. We now look for a simple correlation between an event peak energy intensity [Ip] and the time integral of I(t) over the event duration: the fluence [F]. We first ask how the ratio of F/Ip varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both F and Ip were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4 - 13 MeV band to E > 100 MeV. Within each group of SEP events, we find a very robust correlation (CC > 0.90) in log-log plots of F versus Ip over four decades of Ip. The ratio increases from western to eastern longitudes. From the value of Ip for a given event, F can be estimated to within a standard deviation of a factor of {≤} 2. Log-log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of { 10 MeV to {>} 100 MeV. This difference is not explained.

  8. Evidence for Alfvén Waves in Source Flares of Impulsive Solar Energetic Particle Events

    Science.gov (United States)

    Bucik, R.; Innes, D.; Mason, G. M.; Wiedenbeck, M. E.; Gomez-Herrero, R.; Nitta, N.

    2017-12-01

    Impulsive solar energetic particle events, characterised by a peculiar elemental composition with the rare elements like 3He and ultra-heavy ions enhanced by factors up to ten thousand above their thermal abundance, have been puzzling for almost 50 years. The solar sources of these events have been commonly associated with coronal jets, believed to be a signature of magnetic reconnection involving field lines open to interplanetary space. Here we present some of the most intense events, highly enriched in both 3He and heavier ions. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories on the backside of the Sun, during the period of increased solar activity in 2014. During the last decade, it has been established that the helical motions in coronal jets represent propagating Alfvén waves. Revealing such magnetic-untwisting waves in the solar sources of highly enriched events in this study is consistent with a stochastic acceleration mechanism. An examination of jets in previously reported impulsive solar energetic particle events indicates that they tend to be large-scale blowout jets, sometimes cleanly showing a twisted configuration.The work of R. Bucik is supported by the Deutsche Forschungsgemeinschaft grant BU 3115/2-1.

  9. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  10. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    Science.gov (United States)

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the

  11. Foretelling Flares and Solar Energetic Particle Events: the FORSPEF tool

    Science.gov (United States)

    Anastasiadis, Anastasios; Papaioannou, Athanasios; Sandberg, Ingmar; Georgoulis, Manolis K.; Tziotziou, Kostas; Jiggens, Piers

    2017-04-01

    A novel integrated prediction system, for both solar flares (SFs) and solar energetic particle (SEP) events is being presented. The Forecasting Solar Particle Events and Flares (FORSPEF) provides forecasting of solar eruptive events, such as SFs with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. In addition, FORSPEF, also provides nowcasting of SEP events based on actual SF and CME near real-time data, as well as the complete SEP profile (peak flux, fluence, rise time, duration) per parent solar event. The prediction of SFs relies on a morphological method: the effective connected magnetic field strength (Beff); it is based on an assessment of potentially flaring active-region (AR) magnetic configurations and it utilizes sophisticated analysis of a large number of AR magnetograms. For the prediction of SEP events new methods have been developed for both the likelihood of SEP occurrence and the expected SEP characteristics. In particular, using the location of the flare (longitude) and the flare size (maximum soft X-ray intensity), a reductive statistical method has been implemented. Moreover, employing CME parameters (velocity and width), proper functions per width (i.e. halo, partial halo, non-halo) and integral energy (E>30, 60, 100 MeV) have been identified. In our technique warnings are issued for all > C1.0 soft X-ray flares. The prediction time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective prediction time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes for solar flares and 6 hours for CMEs. We present the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on

  12. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  13. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    International Nuclear Information System (INIS)

    Tan, Lun C.

    2017-01-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  14. Electron-Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Science.gov (United States)

    Tan, Lun C.

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron-ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  15. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C., E-mail: ltan@umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  16. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    Science.gov (United States)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  17. ARE THERE TWO DISTINCT SOLAR ENERGETIC PARTICLE RELEASES IN THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT EVENT?

    International Nuclear Information System (INIS)

    Ding, Liu-Guan; Jiang, Yong; Li, Gang

    2016-01-01

    We examine ion release times in the solar vicinity for the 2012 May 17 Ground Level Enhancement event using the velocity dispersion analysis method. In situ energetic proton data from Solar and Heliospheric Observatory (SOHO)/Energetic and Relativistic Nuclei and Electron and Geostationary Operational Environmental Satellite are used. We find two distinct releases of Solar Energetic Particles (SEPs) near the Sun, separated by ∼40 minutes. From soft X-ray observations, we find that the first release coincides with the solar flare eruption: the release starts from the flare onset and ends near the peak of the soft X-ray; type-III radio bursts also occur when the release starts. A type II radio burst may also start at the begining of the release. However, the associated Coronal Mass Ejection (CME) only has a height of 0.08R s from extrapolation of SOHO/LASCO data. At the start of the second release, the CME propagates to more than 8.4R s in height, and there are signatures of an enhanced type II radio burst. The time-integrated spectra for the two releases differ. The spectrum for the second release shows the common double-power-law feature of gradual SEP events. The spectrum for the first release does not resemble power laws because there is considerable modulation at lower energies. Based on our analysis, we suggest that SEPs of the first release were dominated by particles accelerated at the flare, and those of the second release were dominated by particles accelerated at the associated CME-driven shock. Our study may be important to understand certain extreme SEP events

  18. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  19. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  20. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (≥1000 km s –1 ) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (α values) of power-law size distributions of the peak 1-8 Å fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes ≥1 pr cm –2 s –1 sr –1 ) and (b) fast CMEs were ∼1.3-1.4 compared to ∼1.2 for the peak proton fluxes of >10 MeV SEP events and ∼2 for the peak 1-8 Å fluxes of all SXR flares. The difference of ∼0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  1. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  2. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    International Nuclear Information System (INIS)

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-01-01

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt –γ . The SEEs display a broken power-law WTD. The power-law index is γ 1 = 0.99 for the short waiting times (<70 hr) and γ 2 = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ –α exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt α –3 , where 0 ≤ α < 2

  3. Energetic Particles at High Latitudes of the Heliosphere

    International Nuclear Information System (INIS)

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  4. Time distributions of solar energetic particle events: Are SEPEs really random?

    Science.gov (United States)

    Jiggens, P. T. A.; Gabriel, S. B.

    2009-10-01

    Solar energetic particle events (SEPEs) can exhibit flux increases of several orders of magnitude over background levels and have always been considered to be random in nature in statistical models with no dependence of any one event on the occurrence of previous events. We examine whether this assumption of randomness in time is correct. Engineering modeling of SEPEs is important to enable reliable and efficient design of both Earth-orbiting and interplanetary spacecraft and future manned missions to Mars and the Moon. All existing engineering models assume that the frequency of SEPEs follows a Poisson process. We present analysis of the event waiting times using alternative distributions described by Lévy and time-dependent Poisson processes and compared these with the usual Poisson distribution. The results show significant deviation from a Poisson process and indicate that the underlying physical processes might be more closely related to a Lévy-type process, suggesting that there is some inherent “memory” in the system. Inherent Poisson assumptions of stationarity and event independence are investigated, and it appears that they do not hold and can be dependent upon the event definition used. SEPEs appear to have some memory indicating that events are not completely random with activity levels varying even during solar active periods and are characterized by clusters of events. This could have significant ramifications for engineering models of the SEP environment, and it is recommended that current statistical engineering models of the SEP environment should be modified to incorporate long-term event dependency and short-term system memory.

  5. Incipient motion in gravel bed rivers due to energetic turbulent flow events

    Science.gov (United States)

    Valyrakis, Manousos

    2013-04-01

    This contribution reviews recent developments and contributions in the field of incipient motion and entrainment of coarse sediment grains due to the action of near bed turbulent flows. Specifically, traditional shear based spatio-temporally averaged concepts and instantaneous stress tensor criteria are contrasted to the newly proposed flow event based impulse and energy criteria. The energy criterion, suggests that only sufficiently energetic turbulent events can remove a particle from its resting position on the bed surface and result on its entrainment downstream. While the impulse and energy criteria are interconnected through the energy-impulse equation, the later appears to be more versatile and appropriate for generalising to sediment transport. These flow event based criteria have a sound physical basis for describing the intermittent character of particle entrainment as inherited by near boundary turbulence at near threshold conditions. These criteria can be derived from fundamental laws of physics such as Newtonian classical mechanics and the Lagrange equations respectively. The energetic events that are capable of performing geomorphic work at the scale of individual particles are shown to follow a power law, meaning that more energetic events (capable of removing larger stones) are expected to occur less frequently. In addition, this paper discusses the role of the coefficient of energy transfer efficiency introduced in the energy equation for particle entrainment. A preliminary investigation from analysis of a series of mobile grain flume experiments illustrates that different signatures of turbulence or sequence of flow structures may have different effectiveness towards particle transport. Characteristic cases of specific energetic flow events and the associated particle response are shown and classified with regard to the time required for complete entrainment. Finally these findings are commented with respect to the implications for sediment

  6. Do interacting coronal mass ejections play a role in solar energetic particle events?

    International Nuclear Information System (INIS)

    Kahler, S. W.; Vourlidas, A.

    2014-01-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre , speeds V pre , or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  7. SOLAR ENERGETIC PARTICLE EVENT ONSETS: FAR BACKSIDE SOLAR SOURCES AND THE EAST–WEST HEMISPHERIC ASYMMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W., E-mail: stephen.kahler@kirtland.af.mil [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States)

    2016-03-10

    Prompt onsets and short rise times to peak intensities Ip have been noted in a few solar energetic (E > 10 MeV) particle (SEP) events from far behind (≥25°) the west limb. We discuss 15 archival and recent examples of these prompt events, giving their source longitudes, onset and rise times, and associated coronal mass ejection (CME) speeds. Their timescales and CME speeds are not exceptional in comparison with a larger set of SEP events from behind the west limb. A further statistical comparison of observed timescales of SEP events from behind the west limb with events similarly poorly magnetically connected to the eastern hemisphere (EH) shows the longer timescales of the latter group. We interpret this result in terms of a difference between SEP production at parallel shocks on the eastern flanks of western backside events and at perpendicular shocks on the western flanks of EH events.

  8. Mapping travelling convection vortex events with respect to energetic particle boundaries

    DEFF Research Database (Denmark)

    Moretto, T.; Yahnin, A.

    1998-01-01

    Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries...

  9. Analysis and verification of a prediction model of solar energetic proton events

    Science.gov (United States)

    Wang, J.; Zhong, Q.

    2017-12-01

    The solar energetic particle event can cause severe radiation damages near Earth. The alerts and summary products of the solar energetic proton events were provided by the Space Environment Prediction Center (SEPC) according to the flux of the greater than 10 MeV protons taken by GOES satellite in geosynchronous orbit. The start of a solar energetic proton event is defined as the time when the flux of the greater than 10 MeV protons equals or exceeds 10 proton flux units (pfu). In this study, a model was developed to predict the solar energetic proton events, provide the warning for the solar energetic proton events at least minutes in advance, based on both the soft X-ray flux and integral proton flux taken by GOES. The quality of the forecast model was measured against verifications of accuracy, reliability, discrimination capability, and forecast skills. The peak flux and rise time of the solar energetic proton events in the six channels, >1MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >100 MeV, were also simulated and analyzed.

  10. DOES A SCALING LAW EXIST BETWEEN SOLAR ENERGETIC PARTICLE EVENTS AND SOLAR FLARES?

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2013-01-01

    Among many other natural processes, the size distributions of solar X-ray flares and solar energetic particle (SEP) events are scale-invariant power laws. The measured distributions of SEP events prove to be distinctly flatter, i.e., have smaller power-law slopes, than those of the flares. This has led to speculation that the two distributions are related through a scaling law, first suggested by Hudson, which implies a direct nonlinear physical connection between the processes producing the flares and those producing the SEP events. We present four arguments against this interpretation. First, a true scaling must relate SEP events to all flare X-ray events, and not to a small subset of the X-ray event population. We also show that the assumed scaling law is not mathematically valid and that although the flare X-ray and SEP event data are correlated, they are highly scattered and not necessarily related through an assumed scaling of the two phenomena. An interpretation of SEP events within the context of a recent model of fractal-diffusive self-organized criticality by Aschwanden provides a physical basis for why the SEP distributions should be flatter than those of solar flares. These arguments provide evidence against a close physical connection of flares with SEP production.

  11. DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Marsh, M. S.; Dalla, S.; Kelly, J.; Laitinen, T.

    2013-01-01

    Drifts are known to play a role in galactic cosmic ray transport within the heliosphere and are a standard component of cosmic ray propagation models. However, the current paradigm of solar energetic particle (SEP) propagation holds the effects of drifts to be negligible, and they are not accounted for in most current SEP modeling efforts. We present full-orbit test particle simulations of SEP propagation in a Parker spiral interplanetary magnetic field (IMF), which demonstrate that high-energy particle drifts cause significant asymmetric propagation perpendicular to the IMF. Thus in many cases the assumption of field-aligned propagation of SEPs may not be valid. We show that SEP drifts have dependencies on energy, heliographic latitude, and charge-to-mass ratio that are capable of transporting energetic particles perpendicular to the field over significant distances within interplanetary space, e.g., protons of initial energy 100 MeV propagate distances across the field on the order of 1 AU, over timescales typical of a gradual SEP event. Our results demonstrate the need for current models of SEP events to include the effects of particle drift. We show that the drift is considerably stronger for heavy ion SEPs due to their larger mass-to-charge ratio. This paradigm shift has important consequences for the modeling of SEP events and is crucial to the understanding and interpretation of in situ observations

  12. Solar Energetic Particle Event Risks for Future Human Missions within the Inner Heliosphere

    Science.gov (United States)

    Over, S.; Ford, J.

    2017-12-01

    As astronauts travel beyond low-Earth orbit (LEO), space weather research will play a key role in determining risks from space radiation. Of interest are the rare, large solar energetic particle (SEP) events that can cause significant medical effects during flight. Historical SEP data were analyzed from the Geostationary Operational Environmental Satellites (GOES) program covering the time period of 1986 to 2016 for SEP events. The SEP event data were combined with a Monte Carlo approach to develop a risk model to determine maximum expected doses for missions within the inner heliosphere. Presented here are results from risk assessments for proposed Mars transits as compared to a geostationary Earth-bound mission. Overall, the greatest risk was for the return from Mars with a Venus swing-by, due to the additional transit length and decreased distance from the Sun as compared to traditional Hohmann transfers. The overall results do not indicate that the effects of SEP events alone would prohibit these missions based on current radiation limits alone, but the combination of doses from SEP events and galactic cosmic radiation may be significant, and should be considered in all phases of mission design.

  13. Energetic particles at venus: galileo results.

    Science.gov (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G

    1991-09-27

    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  14. The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Kwon, R.-Y.; Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Gómez-Herrero, R. [Space Research Group, Physics and Mathematics Department, University of Alcalá, Alcalá de Henares, E-28871 Spain (Spain); Dresing, N. [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel D-24118 (Germany); Riley, P. [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2014-12-10

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2013 April 11 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. We use extreme ultraviolet (EUV) and white-light coronagraph observations from the Solar Dynamics Observatory (SDO), the SOlar and Heliospheric Observatory, and the twin Solar TErrestrial RElations Observatory spacecraft (STEREO-A and STEREO-B) to determine the angular extent of the EUV wave and coronal mass ejection (CME) associated with the origin of the SEP event. We compare the estimated release time of SEPs observed at each spacecraft with the arrival time of the structures associated with the CME at the footpoints of the field lines connecting each spacecraft with the Sun. Whereas the arrival of the EUV wave and CME-driven shock at the footpoint of STEREO-B is consistent, within uncertainties, with the release time of the particles observed by this spacecraft, the EUV wave never reached the footpoint of the field lines connecting near-Earth observers with the Sun, even though an intense SEP event was observed there. We show that the west flank of the CME-driven shock propagating at high altitudes above the solar surface was most likely the source of the particles observed near Earth, but it did not leave any EUV trace on the solar disk. We conclude that the angular extent of the EUV wave on the solar surface did not agree with the longitudinal extent of the SEP event in the heliosphere. Hence EUV waves cannot be used reliably as a proxy for the solar phenomenon that accelerates and injects energetic particles over broad ranges of longitudes.

  15. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  16. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  17. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    International Nuclear Information System (INIS)

    Duffin, R T; White, S M; Ray, P S; Kaiser, M L

    2015-01-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena. (paper)

  18. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gopalswamy, N.; Mäkelä, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kahler, S. W., E-mail: nat.gopalswamy@nasa.gov [Air Force Research Laboratory, Albuquerque, NM 87117 (United States)

    2015-06-10

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  19. Delay in solar energetic particle onsets at high heliographic latitudes

    Directory of Open Access Journals (Sweden)

    S. Dalla

    2003-06-01

    Full Text Available Ulysses observations have shown that solar energetic particles (SEPs can easily reach high heliographic latitudes. To obtain information on the release and propagation of SEPs prior to their arrival at Ulysses, we analyse the onsets of nine large high-latitude particle events. We measure the onset times in several energy channels, and plot them versus inverse particle speed. This allows us to derive an experimental path length and time of release from the solar atmosphere. We repeat the procedure for near-Earth observations by Wind and SOHO. We find that the derived path lengths at Ulysses are 1.06 to 2.45 times the length of a Parker spiral magnetic field line connecting the spacecraft to the Sun. The time of particle release from the Sun is between 100 and 350 min later than the release time derived from in-ecliptic measurements. We find no evidence of correlation between the delay in release and the inverse of the speed of the CME associated with the event, or the inverse of the speed of the corresponding interplanetary shock. The main parameter determining the magnitude of the delay appears to be the difference in latitude between the flare and the footpoint of the spacecraft.Key words. Interplanetary physics (energetic particles – Solar physics, astrophysics and astronomy (energetic particles, flares and mass ejections

  20. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results

    International Nuclear Information System (INIS)

    Mironova, I A; Usoskin, I G

    2014-01-01

    This letter presents a summary of a phenomenological study of the response of the polar stratosphere to strong solar energetic particle (SEP) events corresponding to ground level enhancements (GLEs) of cosmic rays. This work is focused on evaluation of the possible influence of the atmospheric ionization caused by SEPs upon formation of aerosol particles in the stratosphere over polar regions. Following case studies of two major SEP/GLE events, in January 2005 and September 1989, and their possible effects on polar stratospheric aerosols, we present here the results of an analysis of variations of the daily profiles of the stratospheric aerosol parameters (aerosol extinction for different wavelengths, as well as Ångstrom exponent) for both polar hemispheres during SEP/GLE events of July 2000, April 2001 and October 2003, which form already five clear cases corresponding to extreme and strong SEP/GLE events. The obtained results suggest that an enhancement of ionization rate by a factor of about two in the polar region with night/cold/winter conditions can lead to the formation/growing of aerosol particles in the altitude range of 10–25 km. We also present a summary of the investigated effects based on the phenomenological study of the atmospheric application of extreme SEP events. (paper)

  1. Multi-spacecraft observations and transport simulations of solar energetic particles for the May 17th 2012 event

    Science.gov (United States)

    Battarbee, M.; Guo, J.; Dalla, S.; Wimmer-Schweingruber, R.; Swalwell, B.; Lawrence, D. J.

    2018-05-01

    Context. The injection, propagation and arrival of solar energetic particles (SEPs) during eruptive solar events is an important and current research topic of heliospheric physics. During the largest solar events, particles may have energies up to a few GeVs and sometimes even trigger ground-level enhancements (GLEs) at Earth. These large SEP events are best investigated through multi-spacecraft observations. Aims: We aim to study the first GLE-event of solar cycle 24, from 17th May 2012, using data from multiple spacecraft (SOHO, GOES, MSL, STEREO-A, STEREO-B and MESSENGER). These spacecraft are located throughout the inner heliosphere, at heliocentric distances between 0.34 and 1.5 astronomical units (au), covering nearly the whole range of heliospheric longitudes. Methods: We present and investigate sub-GeV proton time profiles for the event at several energy channels, obtained via different instruments aboard the above spacecraft. We investigated issues caused by magnetic connectivity, and present results of three-dimensional SEP propagation simulations. We gathered virtual time profiles and perform qualitative and quantitative comparisons with observations, assessed longitudinal injection and transport effects as well as peak intensities. Results: We distinguish different time profile shapes for well-connected and weakly connected observers, and find our onset time analysis to agree with this distinction. At select observers, we identify an additional low-energy component of Energetic Storm Particles (ESPs). Using well-connected observers for normalisation, our simulations are able to accurately recreate both time profile shapes and peak intensities at multiple observer locations. Conclusions: This synergetic approach combining numerical modelling with multi-spacecraft observations is crucial for understanding the propagation of SEPs within the interplanetary magnetic field. Our novel analysis provides valuable proof of the ability to simulate SEP propagation

  2. Do Solar Coronal Holes Affect the Properties of Solar Energetic Particle Events?

    Science.gov (United States)

    Kahler, S. W.; Arge, C. N.; Akiyama, S.; Gopalswamy, N.

    2013-01-01

    The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E (is) approx. 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang-Sheeley-Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.

  3. The acceleration and propagation of solar energetic particles

    International Nuclear Information System (INIS)

    Dalla, Silvia

    2004-01-01

    During flares and coronal mass ejections at the Sun, ions and electrons can be accelerated to high energies. They can escape from the solar corona into interplanetary space, and be detected by instruments on board spacecraft. This paper will review measurements of these solar energetic particles (SEPs) and models of their acceleration and propagation.It is generally agreed that SEP flux enhancements fall into two distinct classes: the so-called impulsive events, thought to originate in solar flares, and gradual events, thought to be the result of acceleration at the shock driven through the corona and interplanetary space by coronal mass ejections. A fundamental assumption of this model for SEPs is that particles' guiding centers propagate essentially parallel to the interplanetary magnetic field lines, and cross-field particle diffusion is negligible.The recent passage of the Ulysses spacecraft over the solar poles provided the first ever measurements of SEPs out of the ecliptic plane. Analysis of these data has revealed several fundamental differences with respect to the near-ecliptic measurements, such as large delays in particle arrival and in fluxes reaching their peak value. It will be shown that the current model of SEP acceleration and propagation does not account for the Ulysses results, which would more easily be explained by efficient cross-field diffusion of energetic particles

  4. Solar energetic particle anisotropies and insights into particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Leske, R. A., E-mail: ral@srl.caltech.edu; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; Rosenvinge, T. T. von [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  5. Solar energetic particle anisotropies and insights into particle transport

    Science.gov (United States)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  6. The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu [Physics and Space Sciences Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2017-02-10

    Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22, and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.

  7. Enhanced Spectral Analysis of SEP Reservoir Events by OMNIWeb Multi-Source Browse Services of the Space Physics Data Facility and the Virtual Energetic Particle Observatory

    Science.gov (United States)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; McGuire, Robert

    2015-04-01

    The NASA Space Physics Data Facility and Virtual Energetic Particle Observatory (VEPO) have jointly upgraded the highly used OMNIWeb services for heliospheric solar wind data to also include energetic electron, proton, and heavier ion data in a variety of graphical browse formats. The underlying OMNI and VEPO data now span just over a half century from 1963 to the present. The new services include overlay of differential flux spectra from multiple instruments and spacecraft, scatter plots of fluxes from two user-selected energy channels, distribution function histograms of selected parameters, and spectrograms of flux vs. energy and time. Users can also overlay directional flux spectra from different angular channels. Data from most current and some past (Helios 1&2, Pioneer 10&11) heliospheric spacecraft and instruments are wholly or partially covered by these evolving new services. The traditional OMNI service of correlating magnetic field and plasma data from L1 to 1 AU solar wind sources is also being extended for other spacecraft, e.g. Voyager 1 and 2, to correlations with energetic particle channels. The user capability is, for example, demonstrated to rapidly scan through particle flux spectra from consecutive time periods for so-called “reservoir” events, in which solar energetic particle flux spectra converge in shape and amplitude from multiple spacecraft sources within the inner heliosphere. Such events are important for understanding spectral evolution of global heliospheric events and for intercalibration of flux data from multiple instruments of the same and different spacecraft. These services are accessible at http://omniweb.gsfc.nasa.gov/. SPDF and VEPO are separately accessible at http://spdf.gsfc.nasa.gov/ and http://vepo.gsfc.nasa.gov/.In the future we will propose to extend OMNIWeb particle flux data coverage to the plasma and suprathermal energy range.

  8. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  9. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  10. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Reames, Donald V., E-mail: ltan@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2016-01-10

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E{sub e}), while the index of scattered/reflected electrons is nearly independent of E{sub e}. We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind.

  11. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Tan, Lun C.; Reames, Donald V.

    2016-01-01

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E e ), while the index of scattered/reflected electrons is nearly independent of E e . We hence perform an observational examination of the correlation between the anisotropic index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind

  12. Long-lasting solar energetic electron injection during the 26 Dec 2013 widespread SEP event

    Science.gov (United States)

    Dresing, N.; Klassen, A.; Temmer, M.; Gomez-Herrero, R.; Heber, B.; Veronig, A.

    2017-12-01

    The solar energetic particle (SEP) event on 26 Dec 2013 was detected all around the Sun by the two STEREO spacecraft and close-to-Earth observers. While the two STEREOs were separated by 59 degrees and situated at the front side of the associated large coronal event, it was a backside-event for Earth. Nevertheless, significant and long-lasting solar energetic electron anisotropies together with long rise times were observed at all three viewpoints, pointing to an extended electron injection. Although the CME-driven shock appears to account for the SEP event at a first glance a more detailed view reveals a more complex scenario: A CME-CME interaction takes place during the very early phase of the SEP event. Furthermore, four hours after the onset of the event, a second component is measured at all three viewpoints on top of the first SEP increase, mainly consisting of high energy particles. We find that the CME-driven shock alone can hardly account for the observed SEP event in total but a trapping scenario together with ongoing particle acceleration is more likely.

  13. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  14. Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2017-07-01

    We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, even days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.

  15. CORRECTING FOR INTERPLANETARY SCATTERING IN VELOCITY DISPERSION ANALYSIS OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.; Valtonen, E.

    2015-01-01

    To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energetic protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA

  16. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  17. SOLAR SOURCES OF 3He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-01-01

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 3 He-rich solar energetic particle events at ≲1 MeV nucleon −1 that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of 3 He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, 3 He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the 3 He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed

  18. Solar energetic particle events during the rise phases of solar cycles 23 and 24

    Science.gov (United States)

    Chandra, R.; Gopalswamy, N.; Mäkelä, P.; Xie, H.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Jain, R.; Awasthi, A. K.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Choudhary, D. P.; Nitta, N. V.

    2013-12-01

    We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996-1998) (22 events) and 24 (2009-2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity pfu), minor (1 pfu pfu) and major (intensity ⩾ 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north-south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.

  19. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  20. MULTI-VIEWPOINT OBSERVATIONS OF A WIDELY DISTRIBUTED SOLAR ENERGETIC PARTICLE EVENT: THE ROLE OF EUV WAVES AND WHITE-LIGHT SHOCK SIGNATURES

    Energy Technology Data Exchange (ETDEWEB)

    Kouloumvakos, A.; Patsourakos, S.; Nindos, A. [Section of Astrogeophysics, Department of Physics, University of Ioannina, 45110 Ioannina (Greece); Vourlidas, A. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Anastasiadis, A.; Sandberg, I. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236 Penteli (Greece); Hillaris, A. [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, National and Kapodistrian University of Athens, 15783 Athens (Greece)

    2016-04-10

    On 2012 March 7, two large eruptive events occurred in the same active region within 1 hr from each other. Each consisted of an X-class flare, a coronal mass ejection (CME), an extreme-ultraviolet (EUV) wave, and a shock wave. The eruptions gave rise to a major solar energetic particle (SEP) event observed at widely separated (∼120°) points in the heliosphere. From multi-viewpoint energetic proton recordings we determine the proton release times at STEREO B and A (STB, STA) and the first Lagrange point (L1) of the Sun–Earth system. Using EUV and white-light data, we determine the evolution of the EUV waves in the low corona and reconstruct the global structure and kinematics of the first CME’s shock, respectively. We compare the energetic proton release time at each spacecraft with the EUV waves’ arrival times at the magnetically connected regions and the timing and location of the CME shock. We find that the first flare/CME is responsible for the SEP event at all three locations. The proton release at STB is consistent with arrival of the EUV wave and CME shock at the STB footpoint. The proton release time at L1 was significantly delayed compared to STB. Three-dimensional modeling of the CME shock shows that the particle release at L1 is consistent with the timing and location of the shock’s western flank. This indicates that at L1 the proton release did not occur in low corona but farther away from the Sun. However, the extent of the CME shock fails to explain the SEP event observed at STA. A transport process or a significantly distorted interplanetary magnetic field may be responsible.

  1. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    Science.gov (United States)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  2. MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Mason, G. M., E-mail: rebert@swri.edu [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20273 (United States)

    2016-11-10

    We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinally separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.

  3. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    Science.gov (United States)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  4. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  5. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  6. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  7. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  8. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    Energy Technology Data Exchange (ETDEWEB)

    Verkhoglyadova, Olga P. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109 (United States); Zank, Gary P.; Li, Gang [Department of Space Science, UAH, Huntsville, AL35899 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States)

    2015-02-12

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the “pump mechanism”), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the

  9. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  10. Survey of ionic charge states of solar energetic particle events during the first year of ACE

    International Nuclear Information System (INIS)

    Moebius, E.; Popecki, M.A.; Morris, D.; Galvin, A.B.; Heirtzler, D.; Kistler, L.M.; Siren, C.; Klecker, B.; Bogdanov, A.T.; Hovestadt, D.; Mason, G.M.; Dwyer, J.R.; Stone, E.C.

    2000-01-01

    The ionic charge state distributions of solar energetic particle events are determined with ACE SEPICA on an event by event basis, over the time period from launch through the end of 1998. Because of the large geometric factor of SEPICA the observations can be extended to events with very low fluxes. The study is confined to the most abundant species O, Ne, Mg, and Fe. Mean charge states for Fe are observed to vary between ≅11 for CME related events and ≅20 for small events that carry signatures of impulsive events. For these events all elements up to Mg, appear almost fully ionized. The charge states of all species follow the same trend as that of Fe in their variation from event to event. A comparison of observed mean charge states with a model assuming thermal equilibrium shows a general agreement with temperatures ranging from 1.2-10·10 6 K. However, noticeable deviations from charge states at a unique temperature for all species are seen for O at high and for Mg at both high and low charge states, which may suggest the presence of other processes. A distinct correlation is observed between the charge states and the overabundance of heavy ions in comparison with O. It remains puzzling that events with substantial deviations from coronal abundance accelerate almost fully stripped ions, which do not lend themselves easily to fractionation processes based on mass and charge

  11. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  12. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  13. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  14. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  15. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  16. Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit

    Science.gov (United States)

    Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.

    2017-12-01

    Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.

  17. Extreme fluxes in solar energetic particle events: Methodological and physical limitations

    International Nuclear Information System (INIS)

    Miroshnichenko, L.I.; Nymmik, R.A.

    2014-01-01

    In this study, all available data on the largest solar proton events (SPEs), or extreme solar energetic particle (SEP) events, for the period from 1561 up to now are analyzed. Under consideration are the observational, methodological and physical problems of energy-spectrum presentation for SEP fluxes (fluences) near the Earth's orbit. Special attention is paid to the study of the distribution function for extreme fluences of SEPs by their sizes. The authors present advances in at least three aspects: 1) a form of the distribution function that was previously obtained from the data for three cycles of solar activity has been completely confirmed by the data for 41 solar cycles; 2) early estimates of extremely large fluences in the past have been critically revised, and their values were found to be overestimated; and 3) extremely large SEP fluxes are shown to obey a probabilistic distribution, so the concept of an “upper limit flux” does not carry any strict physical sense although it serves as an important empirical restriction. SEP fluxes may only be characterized by the relative probabilities of their appearance, and there is a sharp break in the spectrum in the range of large fluences (or low probabilities). It is emphasized that modern observational data and methods of investigation do not allow, for the present, the precise resolution of the problem of the spectrum break or the estimation of the maximum potentialities of solar accelerator(s). This limitation considerably restricts the extrapolation of the obtained results to the past and future for application to the epochs with different levels of solar activity. - Highlights: • All available data on the largest solar proton events (SPEs) are analyzed. • Distribution function obtained for 3 last cycles is confirmed for 41 solar cycles. • Estimates of extremely large fluences in the past are found to be overestimated. • Extremely large SEP fluxes are shown to obey a probabilistic distribution.

  18. The composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.

    1984-01-01

    The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the proportional1 to proportional20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He + along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22 Ne/ 20 Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3 He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production. (orig./HM)

  19. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2002-04-01

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  20. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    T. Hada

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  1. STEREO/LET Observations of Solar Energetic Particle Pitch Angle Distributions

    Science.gov (United States)

    Leske, Richard; Cummings, Alan; Cohen, Christina; Mewaldt, Richard; Labrador, Allan; Stone, Edward; Wiedenbeck, Mark; Christian, Eric; von Rosenvinge, Tycho

    2015-04-01

    As solar energetic particles (SEPs) travel through interplanetary space, the shape of their pitch angle distributions is determined by magnetic focusing and scattering. Measurements of SEP anisotropies therefore probe interplanetary conditions far from the observer and can provide insight into particle transport. Bidirectional flows of SEPs are often seen within interplanetary coronal mass ejections (ICMEs), resulting from injection of particles at both footpoints of the CME or from mirroring of a unidirectional beam. Mirroring is clearly implicated in those cases that show a loss cone distribution, in which particles with large pitch angles are reflected but the magnetic field enhancement at the mirror point is too weak to turn around particles with the smallest pitch angles. The width of the loss cone indicates the magnetic field strength at the mirror point far from the spacecraft, while if timing differences are detectable between outgoing and mirrored particles they may help constrain the location of the reflecting boundary.The Low Energy Telescopes (LETs) onboard both STEREO spacecraft measure energetic particle anisotropies for protons through iron at energies of about 2-12 MeV/nucleon. With these instruments we have observed loss cone distributions in several SEP events, as well as other interesting anisotropies, such as unusual oscillations in the widths of the pitch angle distributions on a timescale of several minutes during the 23 July 2012 SEP event and sunward-flowing particles when the spacecraft was magnetically connected to the back side of a distant shock well beyond 1 AU. We present the STEREO/LET anisotropy observations and discuss their implications for SEP transport. In particular, we find that the shapes of the pitch angle distributions generally vary with energy and particle species, possibly providing a signature of the rigidity dependence of the pitch angle diffusion coefficient.

  2. Solar energetic particles and space weather

    Science.gov (United States)

    Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.

    2001-02-01

    The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .

  3. SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING

    International Nuclear Information System (INIS)

    Bain, H. M.; Luhmann, J. G.; Li, Y.; Mays, M. L.; Jian, L. K.; Odstrcil, D.

    2016-01-01

    During periods of increased solar activity, coronal mass ejections (CMEs) can occur in close succession and proximity to one another. This can lead to the interaction and merger of CME ejecta as they propagate in the heliosphere. The particles accelerated in these shocks can result in complex solar energetic particle (SEP) events, as observing spacecraft form both remote and local shock connections. It can be challenging to understand these complex SEP events from in situ profiles alone. Multipoint observations of CMEs in the near-Sun environment, from the Solar Terrestrial Relations Observatory –Sun Earth Connection Coronal and Heliospheric Investigation and the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph, greatly improve our chances of identifying the origin of these accelerated particles. However, contextual information on conditions in the heliosphere, including the background solar wind conditions and shock structures, is essential for understanding SEP properties well enough to forecast their characteristics. Wang–Sheeley–Arge WSA-ENLIL + Cone modeling provides a tool to interpret major SEP event periods in the context of a realistic heliospheric model and to determine how much of what is observed in large SEP events depends on nonlocal magnetic connections to shock sources. We discuss observations of the SEP-rich periods of 2010 August and 2012 July in conjunction with ENLIL modeling. We find that much SEP activity can only be understood in the light of such models, and in particular from knowing about both remote and local shock source connections. These results must be folded into the investigations of the physics underlying the longitudinal extent of SEP events, and the source connection versus diffusion pictures of interpretations of SEP events.

  4. SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Bain, H. M.; Luhmann, J. G.; Li, Y. [Space Sciences Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Mays, M. L. [Catholic University of America, Washington, DC (United States); Jian, L. K.; Odstrcil, D., E-mail: hbain@ssl.berkeley.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-01

    During periods of increased solar activity, coronal mass ejections (CMEs) can occur in close succession and proximity to one another. This can lead to the interaction and merger of CME ejecta as they propagate in the heliosphere. The particles accelerated in these shocks can result in complex solar energetic particle (SEP) events, as observing spacecraft form both remote and local shock connections. It can be challenging to understand these complex SEP events from in situ profiles alone. Multipoint observations of CMEs in the near-Sun environment, from the Solar Terrestrial Relations Observatory –Sun Earth Connection Coronal and Heliospheric Investigation and the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph, greatly improve our chances of identifying the origin of these accelerated particles. However, contextual information on conditions in the heliosphere, including the background solar wind conditions and shock structures, is essential for understanding SEP properties well enough to forecast their characteristics. Wang–Sheeley–Arge WSA-ENLIL + Cone modeling provides a tool to interpret major SEP event periods in the context of a realistic heliospheric model and to determine how much of what is observed in large SEP events depends on nonlocal magnetic connections to shock sources. We discuss observations of the SEP-rich periods of 2010 August and 2012 July in conjunction with ENLIL modeling. We find that much SEP activity can only be understood in the light of such models, and in particular from knowing about both remote and local shock source connections. These results must be folded into the investigations of the physics underlying the longitudinal extent of SEP events, and the source connection versus diffusion pictures of interpretations of SEP events.

  5. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Paschmann, G.; Sckopke, N.; Hynds, R.J.

    1981-01-01

    Data from the Los Alamos Scientific Laboratory/Max-Planck-Institut fast plasma experiment on Isee 2 have been combined with data from the European Space Agency/Imperial College/Space Research Laboratory low-energy proton experiment on Isee 3 to obtain for the first time an ion velocity distribution function f(v) extending from solar wind energies (-1 keV) to 1.6 MeV during the postshock phase of an energetic storm particle (ESP) event. This study reveals that f(v) of the ESP population is roughly isotropic in the solar wind frame from solar wind thermal energies out to 1.6 MeV. Emerging smoothly out of the solar wind thermal distribution, the ESP f(v) initially falls with increasing energy as E/sup -2.4/ in the solar wind frame. Above about 40 keV no single power law exponent adequately describes the energy dependence of f(v) in the solar wind frame. Above approx.200 keV in both the spacecraft frame and the solar wind frame, f(v) can be described by an exponential in speed (f(v)proportionale/sup -v/v//sub o/) with v/sub o/ = 1.05 x 10 8 cm s -1 . The ESP event studied (August 27, 1978) was superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. Our observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with the shock wave disturbance. The acceleration mechanism is sufficiently efficient that approx.1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approx.290 eV cm -3

  6. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2013-01-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME , and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  7. Acceleration mechanisms for energetic particles in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Schiferl, S.; Fan, C.Y.; Hsieh, K.C.; Erickson, K.N.; Gloeckler, G.; Hovestadt, D.

    1982-01-01

    By analyzing data on energetic particle fluxes measured simultaneously with detector systems on several earth satellites, we searched for signatures of different acceleration mechanisms for these particles. One of the samples is an event observed on ATS-6 and IMP-7. IMP-7 was in the dusk quarter at 38 Rsub(E) while ATS-6 was located at local midnight at a distance of 6.6 Rsub(E). Although the flux variations as observed on the two spacecraft both showed 1.5 min. periodicity, there was a 40-second time lag with IMP-7 behind. The results indicate that the particles are accelerated by magnetic field line annihilation, with the ''x-point'' located at approximately 10 Rsub(E)

  8. STEREO/SEPT particle observations during the CIR event on 2011 August 9

    Science.gov (United States)

    Dresing, N.; Heber, B.; Klassen, A.; Kühl, P.; Boettcher, S. I.; Gomez-Herrero, R.; Wraase, S.

    2017-12-01

    Among others, shocks are known to be accelerators of energetic charged particles. However, many questions regarding the acceleration efficiency and the required conditions are not fully understood. In particular, the acceleration of electrons by shocks is often questioned. Recurrent energetic particle events are caused by the passage of Corotating Interaction Regions (CIRs) that have been extensively analysed by different instrumentation close to Earth. Measurements of the Solar Electron and Proton Telescope aboard the Solar TErrestrial RElations Observatory are utilized in the solar heliospheric community to investigate electron events. Due to its measurement principle, the magnet foil technique, ions can contribute to the electron channel. This effect is well known. During recurrent energetic particle events the averaged helium to proton ration is enhanced to more than 10%. The energy per nucleon spectra are nearly the same for protons and helium. Although the electron intensity profile is influenced by an ion contamination during the shock crossings it is not obvious that electrons are not enhanced during such periods. Computation using a GEANT4 simulation of the SEPT instrument resulted in response function for ions and electrons. These response functions have been utilzed to analyze the recurrent energetic particle event that was was measured by STEREO B on August 9, 2011. Assuming a constant helium to proton ratio and energy spectra described by a Band function we found that electron and ion measurement can be explained by the contribution of helium and protons with an helium to proton ratio of about 16%. Thus no electron enhancements are needed to explain the SEPT measurements.

  9. Baseline composition of solar energetic particles

    International Nuclear Information System (INIS)

    Meyer, J.

    1985-01-01

    We analyze all existing spacecraft observations of the highly variable heavy element composition of solar energetic particles (SEP) during non- 3 He-rich events. All data show the imprint of an ever-present basic composition pattern (dubbed ''mass-unbiased baseline'' SEP composition) that differs from the photospheric composition by a simple bias related to first ionization potential (FIP). In each particular observation, this mass-unbiased baseline composition is being distorted by an additional bias, which is always a monotonic function of mass (or Z). This latter bias varies in amplitude and even sign from observation to observation. To first order, it seems related to differences in the A/Z* ratio between elements (Z* = mean effective charge)

  10. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    International Nuclear Information System (INIS)

    Kocharov, Leon; Laitinen, Timo; Vainio, Rami

    2013-01-01

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit

  11. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), P.O. Box 3000, University of Oulu, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki (Finland)

    2013-11-20

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  12. A numerical simulation of solar energetic particle dropouts during impulsive events

    International Nuclear Information System (INIS)

    Wang, Y.; Qin, G.; Zhang, M.; Dalla, S.

    2014-01-01

    This paper investigates the conditions for producing rapid variations of solar energetic particle (SEP) intensity commonly known as 'dropouts'. In particular, we use numerical model simulations based on solving the focused transport equation in the three-dimensional Parker interplanetary magnetic field to put constraints on the properties of particle transport coefficients in both directions perpendicular and parallel to the magnetic field. Our calculations of the temporal intensity profile of 0.5 and 5 MeV protons at the Earth show that the perpendicular diffusion must be small while the parallel mean free path is long in order to reproduce the phenomenon of SEP dropouts. When the parallel mean free path is a fraction of 1 AU and the observer is located at 1 AU, the perpendicular to parallel diffusion ratio must be below 10 –5 if we want to see the particle flux dropping by at least several times within 3 hr. When the observer is located at a larger solar radial distance, the perpendicular to parallel diffusion ratio for reproducing the dropouts should be even lower than that in the case of 1 AU distance. A shorter parallel mean free path or a larger radial distance from the source to observer will cause the particles to arrive later, making the effects of perpendicular diffusion more prominent and SEP dropouts disappear. All of these effects require the magnetic turbulence that resonates with the particles to be low everywhere in the inner heliosphere.

  13. Energetic Particles: From Sun to Heliosphere - and vice versa

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  14. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    DEFF Research Database (Denmark)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique......We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...

  15. Joint Ne/O and Fe/O Analysis to Diagnose Large Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C.; Shao, Xi [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Malandraki, Olga E., E-mail: ltan@umd.edu [IAASARS, National Observatory of Athens, GR-15236, Penteli (Greece)

    2017-02-01

    We have examined 29 large solar energetic particle (SEP) events with the peak proton intensity J {sub pp}(>60 MeV) > 1 pfu during solar cycle 23. The emphasis of our examination is put on a joint analysis of Ne/O and Fe/O data in the energy range (3–40 MeV nucleon{sup −1}) covered by Wind /Low-Energy Matrix Telescope and ACE /Solar Isotope Spectrometer sensors in order to differentiate between the Fe-poor and Fe-rich events that emerged from the coronal mass ejection driven shock acceleration process. An improved ion ratio calculation is carried out by rebinning ion intensity data into the form of equal bin widths in the logarithmic energy scale. Through the analysis we find that the variability of Ne/O and Fe/O ratios can be used to investigate the accelerating shock properties. In particular, the high-energy Ne/O ratio is well correlated with the source plasma temperature of SEPs.

  16. EVIDENCE OF CONFINEMENT OF SOLAR-ENERGETIC PARTICLES TO INTERPLANETARY MAGNETIC FIELD LINES

    International Nuclear Information System (INIS)

    Chollet, E. E.; Giacalone, J.

    2011-01-01

    We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity dropouts because magnetic field lines filled with and empty of particle flux mix together. The edges of these dropouts are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in the time available during their transport from the Sun. In this paper, we perform high time-resolution observations of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport.

  17. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  18. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  19. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  20. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    2000-11-01

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  1. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.

    Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  2. Recent progress of hybrid simulation for energetic particles and MHD

    International Nuclear Information System (INIS)

    Todo, Y.

    2013-01-01

    Several hybrid simulation models have been constructed to study the evolution of Alfven eigenmodes destabilized by energetic particles. Recent hybrid simulation results of energetic particle driven instabilities are presented in this paper. (J.P.N.)

  3. Magnetospheric Multiscale (MMS) Observations of Energetic Ion Response to Magnetotail Dipolarization Events

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.

  4. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.

    Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  5. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    2003-12-01

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  6. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  7. The effect of the magnetic topology of the Magnetic Clouds over the Solar Energetic Particle Events

    Science.gov (United States)

    Medina, J.; Hidalgo, M.; Blanco, J.; Rodriguez-Pacheco, J.

    2007-12-01

    We have simulated the effect of the magnetic topology of the Magnetic Clouds (MCs) over the solar energetic particle event (SEPe) fluxes (0.5-100 MeV) provided by solar flares. When a SEPe passes through a MC a characteristic behaviour in the data corresponding to the ion and electron fluxes is observed: a depression after a strong maximum of the flux. Using our cross-section circular and elliptical MC models we have tried to explain that effect, understanding the importance of the topology of the MC. In sight of the results of the preliminary analysis we conclude that the magnitude of the magnetic field seems not to play a significant role but the helicoidal topology associated with topology of the MCs. This work has been supported by the Spanish Comisión Internacional de Ciencia y Tecnologia (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459. This work is performed inside COST Action 724.

  8. Energetic particle effects on global MHD modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  9. Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2018-04-01

    The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in {}3He/{}4He from resonant wave-particle interactions in the small "impulsive" SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio A/Q, rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the "gradual" events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but A/Q-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states Q show coronal temperatures of 1-2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of Q are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of A/Q, we can use abundances to deduce the probable Q-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs

  10. Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence

    Science.gov (United States)

    Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2004-05-01

    The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).

  11. Energetic Particles in the Inner Heliosphere

    Science.gov (United States)

    Malandraki, Olga

    2016-07-01

    Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  12. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  13. Detection of zero anisotropy at 5.2 AU during the November 1998 solar particle event: Ulysses Anisotropy Telescopes observations

    Directory of Open Access Journals (Sweden)

    S. Dalla

    Full Text Available For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3-2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.

    Key words: Interplanetary physics (energetic particles - Solar physics, astrophysics and astronomy (energetic particles - Space plasma physics (instruments and techniques

  14. Neutralized solar energetic particles in the inner heliosphere: a parameter study

    Science.gov (United States)

    Wang, Xiao-Dong; Klecker, Berndt; Futaana, Yoshifumi; Cipriani, Fabrice; Barabash, Stas; Wieser, Martin

    2016-04-01

    The large fluxes of solar energetic particles (SEPs) in Gradual Events, dominated by protons, are believed to be produced by the acceleration of shocks driven by coronal mass ejections (CMEs). As SEPs propagate in the lower corona, there is a chance for them to be neutralized via the charge exchange and/or recombination processes and become energetic neutral atoms (ENAs). These ENAs retain the velocity of their parent SEPs and propagate in straight lines without the influence of the interplanetary magnetic field, and therefore might potentially serve as a new window to observe the particle acceleration processes in the solar corona. STEREO/Low Energy Telescope reported the first probable observation of hydrogen ENAs between 1.6 MeV - 5 MeV from the Sun prior to an X-class flare/CME [Mewaldt et al., 2009]. While such observations were somehow controversial, Wang et al. [2014] simulated the neutralization of solar energetic protons in the corona lower than 40 RS, and the result agreed with the STEREO observation. In this work, we further developed a production model of the ENA near the sun together with a transport model toward the inner planets, and explore the dependences of the ENA characteristics against the model parameters. These parameters include the angular width of the CME, its propagation direction with respect to the Sun-observer line, the propagation speed, the particle density in the corona, the abundances of O6+ and C4+, and the reaction rate of electron impact ionization in the loss of ENAs, and the heliospheric distance of the observer. The calculated ENA flux shows that at lower energy the expected ENA flux depends most sensitively on the CME apex angle and the CME propagation direction. At higher energy the dependence on the coronal density is more prominent. References Mewaldt, R. A., R. A. Leske, E. C. Stone, A. F. Barghouty, A. W. Labrador, C. M. S. Cohen, A. C. Cummings, A. J. Davis, T. T. von Rosenvinge, and M. E. Wiedenbeck (2009), STEREO

  15. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  16. MULTI-SPACECRAFT OBSERVATIONS AND TRANSPORT MODELING OF ENERGETIC ELECTRONS FOR A SERIES OF SOLAR PARTICLE EVENTS IN AUGUST 2010

    Energy Technology Data Exchange (ETDEWEB)

    Dröge, W.; Kartavykh, Y. Y. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Dresing, N.; Klassen, A. [Institut für Experimentelle und Angewandte Physik, Universität Kiel, D-24118 Kiel (Germany)

    2016-08-01

    During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magnetic field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ {sub ∥} in the range of 0.15–0.6 au, and values of λ {sub ⊥} in the range of 0.005–0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.

  17. Observation of energetic particle mode by using microwave reflectometer

    International Nuclear Information System (INIS)

    Tokuzawa, T.; Kawahata, K.; Sakakibara, S.; Toi, K.; Osakabe, M.; Yamamoto, S.

    2006-01-01

    Two heterodyne reflectometer systems are utilized for the fluctuation measurement in the Large Helical Device (LHD). By using the extraordinary polarized wave, we can measure the corresponding value to the combined fluctuation with the electron density and the magnetic field in the plasma core region even if the radial electron density profile is flat. E-band system has three channels of fixed frequencies of 78, 72, 65 GHz. The system is very convenient to observe magnetohydrodynamics (MHD) phenomena such as energetic particle driven Alfven eigenmodes, even if the system works as an interferometer mode. The detailed behaviour of the energetic particle mode is studied when low-n MHD burst is occurred. It seems to be caused that the spatial distribution of high energy particle is changed by such a MHD-burst. Also to know the radial distribution of MHD mode, frequency swept R-band reflectometer is applied for the first time. It seems to be successfully detected the energetic particle mode and toroidal Alfven eigenmode. (author)

  18. Local protoplanetary disk ionisation by T Tauri star energetic particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  19. Correlation Analyses Between the Characteristic Times of Gradual Solar Energetic Particle Events and the Properties of Associated Coronal Mass Ejections

    Science.gov (United States)

    Pan, Z. H.; Wang, C. B.; Wang, Yuming; Xue, X. H.

    2011-06-01

    It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 - 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.

  20. Studies of energetic ion confinement during fishbone events in PDX

    International Nuclear Information System (INIS)

    Strachan, J.D.; Grek, B.; Heidbrink, W.; Johnson, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; McGuire, K.

    1984-11-01

    The 2.5-MeV neutron emission from the beam-target d(d,n,) 3 He fusion reaction has been examined for all PDX deuterium plasmas which were heated by deuterium neutral beams. The magnitude of the emission was found to scale classically and increase with T/sub e//sup 3/2/ as expected when electron drag is the primary energy degradation mechanism. The time evolution of the neutron emission through fishbone events was measured and used to determine the confinement properties of the energetic beam ions. Many of the experimental results are predicted by the Mode Particle Pumping theory

  1. Monitoring solar energetic particles with an armada of European spacecraft and the new automated SEPF (Solar Energetic Proton Fluxes) Tool

    Science.gov (United States)

    Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.

    2012-01-01

    Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level ( 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) has developed and validated a novel method to obtain flux spectra from SREM count rates. Using this method and by conducting detailed scientific studies we have showed in

  2. Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Nguyen, Ch.

    2009-12-01

    The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear plasma. Reaching these two goals is the general motivation for this work. More specifically, our focus is on one type of instability, the Beta Alfven Eigenmode (BAE), which can be driven by energetic particles and impact on the confinement of both energetic and thermal particles. In this work, we study the characteristics of BAEs analytically and derive its dispersion relation and structure. Next, we analyze the linear stability of the mode in the presence of energetic particles. First, a purely linear description is used, which makes possible to get an analytical linear criterion for BAE destabilization in the presence of energetic particles. This criterion is compared with experiments conducted in the Tore-Supra tokamak. Secondly, because the linear analysis reveals some features of the BAE stability which are subject to a strong nonlinear modification, the question is raised of the possibility of a sub-critical activity of the mode. We propose a simple scenario which makes possible the existence of meta-stable modes, verified analytically and numerically. Such a scenario is found to be relevant to the physics and scales characterizing BAEs. (author)

  3. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  4. Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere

    Science.gov (United States)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2002-01-01

    We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.

  5. The Two Sources of Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2013-06-01

    Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to "impulsive" SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of ( Z>50)/O. Alternatively, in "gradual" SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ˜2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the "reservoir", a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing "magnetic bottle" expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow

  6. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    2001-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) ''counter'' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  7. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    1999-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) 'counter' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  8. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  9. Source Regions of the Interplanetary Magnetic Field and Variability in Heavy-Ion Elemental Composition in Gradual Solar Energetic Particle Events

    Science.gov (United States)

    Ko, Yuan-Kuen; Tylka, Allan J.; Ng, Chee K.; Wang, Yi-Ming; Dietrich, William F.

    2013-01-01

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass-ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. But an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the PFSS model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations; and (2) then look for correlation between SEP composition (as measured by Wind and ACE at approx. 2-30 MeV/nucleon) and characteristics of the identified IMF-source regions. The study is based on 24 SEP events, identified as a statistically-significant increase in approx. 20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly-emergent solar magnetic flux and CMEs was lower than in solar-maximum years and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF-source, with the largest enhancements occurring when the footpoint field is strong, due to the nearby presence of an active region. In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering, at least on average, similar to that found in impulsive events. These results lead us to suggest that magnetic reconnection in footpoint regions near active regions bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

  10. Probabilistic model for fluences and peak fluxes of solar energetic particles

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    The model is intended for calculating the probability for solar energetic particles (SEP), i.e., protons and Z=2-28 ions, to have an effect on hardware and on biological and other objects in the space. The model describes the probability for the ≥10 MeV/nucleon SEP fluences and peak fluxes to occur in the near-Earth space beyond the Earth magnetosphere under varying solar activity. The physical prerequisites of the model are as follows. The occurrence of SEP is a probabilistic process. The mean SEP occurrence frequency is a power-law function of solar activity (sunspot number). The SEP size (taken to be the ≥30 MeV proton fluence size) distribution is a power-law function within a 10 5 -10 11 proton/cm 2 range. The SEP event particle energy spectra are described by a common function whose parameters are distributed log-normally. The SEP mean composition is energy-dependent and suffers fluctuations described by log-normal functions in separate events

  11. The effects of sloshing energetic particles on ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Stotler, D.P.; Berk, H.L.

    1986-10-01

    Distributions that give rise to energetic trapped particle pressures peaked in the ''good curvature'' region of a tokamak (sloshing distributions) are examined in an attempt to find stable regimes for both the magnetohydrodynamic (MHD) and precessional modes. It is the precessional drift destabilization of ballooning modes that inhibits bridging the unstable gap to second stability by the use of deeply-trapped energetic particles unless the hot particles have an extremely large energy (∼0.35 MeV for a tokamak like PDX). Unfortunately, our calculations indicate that the sloshing particles do not have a significant stabilizing effect. An analytic treatment shows that complete stability can be found only if the sign of the energetic particle magnetic drift-frequency can be reversed from its value in vacuum bad curvature without hot species diamagnetism. This is difficult to do in a tokamak because of the destabilizing contribution of the geodesic curvature to the drift frequency. Furthermore, for each of the two sloshing distributions employed (one contains only trapped particles; the other includes trapped and passing particles), a new ''continuum instability'' (where asymptotically along the field line the mode is a propagating plane wave) is found to be driven by geodesic curvature. These results indicate that energetic sloshing particles are not able to bridge the unstable gap to second stability

  12. Los Alamos energetic particle sensor systems at geostationary orbit

    International Nuclear Information System (INIS)

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes

  13. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  14. Energetic particle measurements from the Ulysses/COSPIN/LET instrument obtained during the August/September 2005 events

    International Nuclear Information System (INIS)

    Malandraki, O.E.; Imperial Coll. of Science and Technology, London; National Observatory of Athens; Marsden, R.G.; Tranquille, C.; Forsyth, R.J.; Elliott, H.A.; Geranios, A.

    2008-01-01

    We report recent observations of energetic particles at energies 1-40 MeV/n made by the COSPIN/LET instrument onboard the Ulysses spacecraft during the period of intense solar activity in August/September 2005 during the declining phase of solar cycle 23. Ulysses, having started its climb to high southern latitudes for the third time, was located at ∝5 AU, at a helio-latitude of ∝30 degrees south. It detected the arrival of a solar wind compound stream resulting from the merging of a series of fast halo CMEs ejected from the Sun in late August and early September 2005 and their interaction with the pre-existing pattern of solar wind Stream Interaction Regions (SIRs) in the ambient medium through which they propagated. The heavy ion intensities are observed by COSPIN/LET to remain elevated for at least 20 days following the very intense X17.0/3B solar flare on 7 September and its associated very fast CME (plane of sky projected CME speed ∝2400 km s -1 ). We carry out an analysis of the composition of the particle increases observed at the location of the spacecraft. Although the composition signatures were predominantly Solar Energetic Particle (SEP)-like, after the passage of the compound stream over Ulysses, in association with a characteristic forward and reverse shock pair, the observations showed evidence of an enhanced He content. (orig.)

  15. Energetic particle perspective of the magnetopause

    International Nuclear Information System (INIS)

    Williams, D.J.; Fritz, T.A.; Wilken, B.; Keppler, E.

    1979-01-01

    We present a detailed analysis of energetic (>24 keV) particle data obtained from the Isee satellites during a series of magnetopause crossings which occurred at 0000--0400 hours UT (approx.1030 hours LT) on November 20, 1977. The primary energetic particle data used are the three-dimensional distributions obtained from the Isee A satellite. Correlative magnetic field measurements are used to relate the particle behavior to magnetic field characteristics at and earthward of the magnetopause. We find that to first order the magnetopause can be regarded as a perfectly absorbing boundary for trapped >24-keV particles, that it is nearly alway in motion, and that boundary waves are often present. We find that the observed dayside magnetopause motion is consistent with a large-scale radial motion having an approx.10-min period plus superimposed boundary waves with a 90- to 150-s period. More qualitatively, we find that the data require a third and longer period (approx. 30 min) magnetopause motion upon which the above, shorter-period motions are superimposed. Consistent with the picture of absorbing boundary, we find no evidence of microturbulent processes at the magnetopause which significantly affect the directional trapped particle flux to within 9--36 km of the boundary. We therefore conclude that the radial gradient to the magnetopause observed in the directional, >24-keV, dayside, near-equatorial, magnetospherically trapped particle flux is due to internal magnetospheric processes. Just outside the magnetopause in the magnetosheath we observe a broad (approximately hemispherical) field-aligned flow of >24-keV ions away from the magnetosphere. The absolute intensity and spectral characteristics of this flow and its relation to the magnetopause and the trapped particle population indicate that it is formed by the leakage of trapped particles from the radiation belts

  16. Elemental composition of solar energetic particles

    International Nuclear Information System (INIS)

    Cook, W.R. III.

    1981-01-01

    The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 less than or equal to Z less than or equal to 28) and energy spectra (5 to 15 MeV/nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources - spectroscopy of the photosphere and corona, and solar wind measurements. The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 less than or equal to Z less than or equal to 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events. The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: the elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe, and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events

  17. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  18. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C. T. [University of California, Los Angeles, CA 90095-1567 (United States); Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Luhmann, J. G. [University of California, Berkeley, CA 94720 (United States); Mason, G. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Von Rosenvinge, T. T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gomez-Herrero, R. [University of Alcala, E-28871 Alcala de Henares (Spain); Klassen, A. [Kiel University, D-24118 Kiel (Germany); Galvin, A. B.; Simunac, K. D. C., E-mail: ctrussell@igpp.ucla.edu [University of New Hampshire, Durham, NH 03824 (United States)

    2013-06-10

    The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

  19. Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.

    1989-01-01

    The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs

  20. Selection of low-risk design guidelines for energetic events

    International Nuclear Information System (INIS)

    Ferguson, D.; Marchaterre, J.; Graham, J.

    1982-01-01

    This paper recommends the establishment of specific design guidelines for protection against potential, but low-probability, energetic events. These guidelines recognize the plant protective features incorporated to prevent such events, as well as the inherent capability of the plant to accommodate a certain level of energy release. Further, their application is recommended within the context of necessary standardized and agreed-upon acceptance criteria which are less restrictive than ASME code requirements. The paper provides the background upon which the selection of the design is made, including the characterization of energetic events dependent on various core-design parameters, and including the necessity of a low-risk design balanced between prevention of accidents and the mitigation of consequences

  1. Energetic solar particles

    International Nuclear Information System (INIS)

    Biswas, M.

    1975-01-01

    In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H 2 , H 3 and He 3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)

  2. Long-lasting injection of solar energetic electrons into the heliosphere

    Science.gov (United States)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  3. Multipoint Observations of Energetic Particle Injections and Substorm Activity During a Conjunction Between Magnetospheric Multiscale (MMS) and Van Allen Probes

    Science.gov (United States)

    Turner, D. L.; Fennell, J. F.; Blake, J. B.; Claudepierre, S. G.; Clemmons, J. H.; Jaynes, A. N.; Leonard, T.; Baker, D. N.; Cohen, I. J.; Gkioulidou, M.; Ukhorskiy, A. Y.; Mauk, B. H.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R. J.; Kletzing, C. A.; Le Contel, O.; Spence, H. E.; Torbert, R. B.; Burch, J. L.; Reeves, G. D.

    2017-11-01

    This study examines multipoint observations during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes on 7 April 2016 in which a series of energetic particle injections occurred. With complementary data from Time History of Events and Macroscale Interactions during Substorms, Geotail, and Los Alamos National Laboratory spacecraft in geosynchronous orbit (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (maximum AE energy wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger ion and electron injection did not penetrate to L < 6.6, but several of the smaller electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron versus ion injections, this event presents challenges to the current conceptual models of energetic particle injections.

  4. Monitoring and forecasting of radiation hazard from great solar energetic particle events by using on-line one-min neutron monitor and satellite data

    International Nuclear Information System (INIS)

    Dorman, L. I.

    2007-01-01

    The method of automatically determining the start of great solar energetic particle (SEP) events are described on the basis of cosmic ray (CR) one-min observations by neutron monitors in real-time scale. It is shown that the probabilities of false alarms and missed triggers are negligible. After the start of SEP event, it is automatically determined by the method of coupling functions the SEP energy spectrum and flux for each minute of observations. By solving the inverse problem during few first minutes of SEP event, diffusion coefficient in the interplanetary space, source function on the Sun, and time of ejection of SEP into solar wind are determined. For extending obtained results into small energy range we use also available from Internet the satellite one-min CR data. This make possible to give forecast of space-time variation of SEP for more than 2 days and estimate expected radiation dose for satellite and aircraft. With each new minute of observations, the quality of forecast increased, and after ∼30 min became near 100%. (authors)

  5. The interaction of energetic alpha-particles with intense lower hybrid waves

    International Nuclear Information System (INIS)

    Fisch, N.J.; Rax, J.M.

    1992-06-01

    Lower hybrid waves are a demonstrated, continuous means of driving toroidal current in a tokamak. When these waves propagate in a tokamak fusion reactor, in which there are energetic α- particles, there are conditions under which the α-particles do not appreciably damp, and may even amplify, the wave, thereby enhancing the current-drive effect. Waves traveling in one poloidal direction, in addition to being directed in one toroidal direction, are shown to be the most efficient drivers of current in the presence of the energetic α-particles

  6. Effect of field-aligned-beam in parallel diffusion of energetic particles in the Earth's foreshock

    Science.gov (United States)

    Matsukiyo, S.; Nakanishi, K.; Otsuka, F.; Kis, A.; Lemperger, I.; Hada, T.

    2016-12-01

    Diffusive shock acceleration (DSA) is one of the plausible acceleration mechanisms of cosmic rays. In the standard DSA model the partial density of the accelerated particles, diffused into upstream, exponentially decreases as the distance to the shock increases. Kis et al. (GRL, 31, L20801, 2004) examined the density gradients of energetic ions upstream of the bow shock with high accuracy by using Cluster data. They estimated the diffusion coefficients of energetic ions for the event in February 18, 2003 and showed that the obtained diffusion coefficients are significantly smaller than those estimated in the past statistical study. This implies that particle acceleration at the bow shock can be more efficient than considered before. Here, we focus on the effect of the field-aligned-beam (FAB) which is often observed in the foreshock, and examine how the FAB affects the efficiency of diffusion of the energetic ions by performing test particle simulations. The upstream turbulence is given by the superposition of parallel Alfven waves with power-law energy spectrum with random phase approximation. In the spectrum we further add a peak corresponding to the waves resonantly generated by the FAB. The dependence of the diffusion coefficient on the presence of the FAB as well as total energy of the turbulence, power-law index of the turbulence, and intensity of FAB oriented waves are discussed.

  7. An Overview of Energetic Particle Measurements in the Jovian Magnetosphere with the EPAC Sensor on Ulysses.

    Science.gov (United States)

    Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J

    1992-09-11

    Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.

  8. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    International Nuclear Information System (INIS)

    Voss, H.D.; Smith, L.G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes

  9. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.

  10. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    Science.gov (United States)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  11. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    He Qibing; Peng Qiyang; Qu Wenxiao

    1993-09-01

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  12. The energetic alpha particle transport method EATM

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets

  13. Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas

    International Nuclear Information System (INIS)

    Heidbrink, W. W.

    2008-01-01

    Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P ζ is most important. Once a mode is driven unstable, a wide variety of

  14. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  15. Characteristics of flux variations of energetic particles associated with storm sudden commencement at synchronous orbit

    International Nuclear Information System (INIS)

    Tomomura, Kiyoshi; Kato, Yoshio; Sakurai, Tohru

    1982-01-01

    Characteristics of flux variations of energetic particles associated with Storm Sudden Commencement (SSC) are examined on the basis of the particle's data observed by solid state detecter onboard the synchronous satellite, GMS ''Himawari'', during the period from Febuary 1978 to August 1979. The energy of the particles are covered from 1.2 to 4.0 MeV for proton and greater than 2 MeV for electron, respectively. The flux variations for protons generally increase in association with SSC. However, for electrons, they show the increase except 7 events (the decrease event) among 40 events studied. It is evident that the values of the flux attained immediately after SSC (J) clearly depend on those just before SSC(J 0 ). They follow a Power law (J proportional J 0 sup( n)). The variation of the proton flux ( + ΔJ + = + J - J 0+ ) increases with the value of the flux just before SSC. In both increase and decrease events for electrons, the variation of the flux tends to increase until the flux just before SSC attains the value of 10 4 , then to decrease as its value exceeds 10 4 . (author)

  16. The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Richardson, I. G.; Thompson, B. J.; Rosenvinge, T. T. von; Mays, M. L.; Mäkelä, P. A.; Xie, H.; Thakur, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bain, H. M. [Space Sciences Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Zhang, M.; Zhao, L. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL (United States); Cane, H. V. [Department of Mathematics and Physics, University of Tasmania, Hobart (Australia); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Riley, P., E-mail: david.lario@jhuapl.edu [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2017-03-20

    We analyze one of the first solar energetic particle (SEP) events of solar cycle 24 observed at widely separated spacecraft in order to assess the reliability of models currently used to determine the connectivity between the sources of SEPs at the Sun and spacecraft in the inner heliosphere. This SEP event was observed on 2010 August 14 by near-Earth spacecraft, STEREO-A (∼80° west of Earth) and STEREO-B (∼72° east of Earth). In contrast to near-Earth spacecraft, the footpoints of the nominal magnetic field lines connecting STEREO-A and STEREO-B with the Sun were separated from the region where the parent fast halo coronal mass ejection (CME) originated by ∼88° and ∼47° in longitude, respectively. We discuss the properties of the phenomena associated with this solar eruption. Extreme ultraviolet and white-light images are used to specify the extent of the associated CME-driven coronal shock. We then assess whether the SEPs observed at the three heliospheric locations were accelerated by this shock or whether transport mechanisms in the corona and/or interplanetary space provide an alternative explanation for the arrival of particles at the poorly connected spacecraft. A possible scenario consistent with the observations indicates that the observation of SEPs at STEREO-B and near Earth resulted from particle injection by the CME shock onto the field lines connecting to these spacecraft, whereas SEPs reached STEREO-A mostly via cross-field diffusive transport processes. The successes, limitations, and uncertainties of the methods used to resolve the connection between the acceleration sites of SEPs and the spacecraft are evaluated.

  17. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    2001-09-01

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  18. Solar energetic particles a modern primer on understanding sources, acceleration and propagation

    CERN Document Server

    Reames, Donald V

    2017-01-01

    This concise primer introduces the non-specialist reader to the physics of solar energetic particles (SEP) and systematically reviews the evidence for the two main mechanisms which lead to the so-called impulsive and gradual SEP events. More specifically, the timing of the onsets, the longitude distributions, the high-energy spectral shapes, the correlations with other solar phenomena (e.g. coronal mass ejections), as well as the all-important elemental and isotopic abundances of SEPs are investigated. Impulsive SEP events are related to magnetic reconnection in solar flares and jets. The concept of shock acceleration by scattering on self-amplified Alfvén waves is introduced, as is the evidence of reacceleration of impulsive-SEP material in the seed population accessed by the shocks in gradual events. The text then develops processes of transport of ions out to an observer. Finally, a new technique to determine the source plasma temperature in both impulsive and gradual events is demonstrated. Last but not ...

  19. Energetic particles in the heliosphere and GCR modulation: Reviewing of SH-posters

    International Nuclear Information System (INIS)

    Struminsky, Alexei

    2013-01-01

    This rapporteur paper addresses the SH poster session titled 'Energetic particles in the heliosphere (solar and anomalous CRs, GCR modulation)' of the 23rd European Cosmic Ray Symposium (ECRS) and the 32nd Russian Cosmic Ray Conference (RCRC). The 65 posters presented are tentatively divided into five sections: Instruments and Methods; Solar Energetic Particles; Short Term Variations; Long Term Variations; Heliosphere.

  20. Study of the Most Harmful Solar Energetic Particle for Shielding next Human Space Flights

    Science.gov (United States)

    Komei Yamashiro, Bryan

    2015-04-01

    Solar energetic particles (SEPs) accelerated by solar events such as flares and coronal mass ejections are radiation risks for humans in space on board the International Space Station (ISS), and will be significant obstacles for future long-duration manned space flight missions. This research supported efforts to improve predictions of large solar storms and aimed for a better understanding of Heliophysics. The main objective was to generate a dated catalog of the highest energy range SEPs measured by the Alpha Magnetic Spectrometer (AMS-02). Using online graphical user interfaces from the satellites, Solar and Heliospeheric Observatory (SOHO) and Geostationary Operational Environmental Satellite (GOES-13, 15), the generated data files from the mounted particle detectors were plotted along a specified energy range. The resulting histograms illustrated the low energy range data from SOHO (4 MeV to 53 MeV) and the low-mid energy range from GOES (0.8 MeV to 500 MeV), which collectively provided a low- to mid-energy range spectrum of the specific event energy ranges versus the SEP proton flux. The high energy range results of the AMS-02 (125 MeV to a few TeV) will eventually be incorporated with the two alternative space satellites of lower energy ranges for a complete analysis across a full SEP energy range. X-ray flux from GOES-15 were then obtained and plotted with the corresponding time to portray initial phenomena of the solar events. This procedure was reproduced for 5 different events determined energetic enough to be measured by AMS-02. The generated plots showed correlation between the different satellite detectors.

  1. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  2. Jupiter energetic particle experiment ESAD proton sensor design

    International Nuclear Information System (INIS)

    Gruhn, C.R.; Higbie, P.R.

    1977-12-01

    A proton sensor design for the Jupiter Energetic Particle Experiment is described. The sensor design uses avalanche multiplication in order to lower the effective energy threshold. A complete signal-to-noise analysis is given for this design

  3. Field dipolarization in Saturn's magnetotail with planetward ion flows and energetic particle flow bursts: Evidence of quasi-steady reconnection.

    Science.gov (United States)

    Jackman, C M; Thomsen, M F; Mitchell, D G; Sergis, N; Arridge, C S; Felici, M; Badman, S V; Paranicas, C; Jia, X; Hospodarksy, G B; Andriopoulou, M; Khurana, K K; Smith, A W; Dougherty, M K

    2015-05-01

    We present a case study of an event from 20 August (day 232) of 2006, when the Cassini spacecraft was sampling the region near 32 R S and 22 h LT in Saturn's magnetotail. Cassini observed a strong northward-to-southward turning of the magnetic field, which is interpreted as the signature of dipolarization of the field as seen by the spacecraft planetward of the reconnection X line. This event was accompanied by very rapid (up to ~1500 km s -1 ) thermal plasma flow toward the planet. At energies above 28 keV, energetic hydrogen and oxygen ion flow bursts were observed to stream planetward from a reconnection site downtail of the spacecraft. Meanwhile, a strong field-aligned beam of energetic hydrogen was also observed to stream tailward, likely from an ionospheric source. Saturn kilometric radiation emissions were stimulated shortly after the observation of the dipolarization. We discuss the field, plasma, energetic particle, and radio observations in the context of the impact this reconnection event had on global magnetospheric dynamics.

  4. Probability Estimates of Solar Particle Event Doses During a Period of Low Sunspot Number for Thinly-Shielded Spacecraft and Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.

  5. The selection of low-risk design guidelines for energetic events

    International Nuclear Information System (INIS)

    Fergusson, Donald; Marchaterre, John; Graham, John

    1982-01-01

    This paper recommends the establishment of specific design guidelines for protection against potential, but low probability, energetic events. These guidelines recognize the plant protective features incorporated to prevents such events, as well as the inherent capability of the plant to accommodate a certain level of energy release. Further, their application is recommended within the context of necessary standardized and agreed upon acceptance criteria which are less restrictive than ASME code requirements. The paper provides the background upon which the selection of the design is made, including the characterization of energetic events dependent on various core-design parameters, and including the necessity of a low-risk design balanced between prevention of accidents and the mitigation of consequences

  6. Plasma Interaction and Energetic Particle Dynamics near Callisto

    Science.gov (United States)

    Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.

    2017-12-01

    Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.

  7. A Novel Forecasting System for Solar Particle Events and Flares (FORSPEF)

    International Nuclear Information System (INIS)

    Papaioannou, A; Anastasiadis, A; Sandberg, I; Tsiropoula, G; Tziotziou, K; Georgoulis, M K; Jiggens, P; Hilgers, A

    2015-01-01

    Solar Energetic Particles (SEPs) result from intense solar eruptive events such as solar flares and coronal mass ejections (CMEs) and pose a significant threat for both personnel and infrastructure in space conditions. In this work, we present FORSPEF (Forecasting Solar Particle Events and Flares), a novel dual system, designed to perform forecasting of SEPs based on forecasting of solar flares, as well as independent SEP nowcasting. An overview of flare and SEP forecasting methods of choice is presented. Concerning SEP events, we make use for the first time of the newly re-calibrated GOES proton data within the energy range 6.0-243 MeV and we build our statistics on an extensive time interval that includes roughly 3 solar cycles (1984-2013). A new comprehensive catalogue of SEP events based on these data has been compiled including solar associations in terms of flare (magnitude, location) and CME (width, velocity) characteristics. (paper)

  8. ON THE REMOTE DETECTION OF SUPRATHERMAL IONS IN THE SOLAR CORONA AND THEIR ROLE AS SEEDS FOR SOLAR ENERGETIC PARTICLE PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin; Moses, J. Daniel; Ko, Yuan-Kuen [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States); Ng, Chee K. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Rakowski, Cara E.; Tylka, Allan J. [NASA/GSFC Code 672, Greenbelt, MD 20771 (United States)

    2013-06-10

    Forecasting large solar energetic particle (SEP) events associated with shocks driven by fast coronal mass ejections (CMEs) poses a major difficulty in the field of space weather. Besides issues associated with CME initiation, the SEP intensities are difficult to predict, spanning three orders of magnitude at any given CME speed. Many lines of indirect evidence point to the pre-existence of suprathermal seed particles for injection into the acceleration process as a key ingredient limiting the SEP intensity of a given event. This paper outlines the observational and theoretical basis for the inference that a suprathermal particle population is present prior to large SEP events, explores various scenarios for generating seed particles and their observational signatures, and explains how such suprathermals could be detected through measuring the wings of the H I Ly{alpha} line.

  9. ON THE REMOTE DETECTION OF SUPRATHERMAL IONS IN THE SOLAR CORONA AND THEIR ROLE AS SEEDS FOR SOLAR ENERGETIC PARTICLE PRODUCTION

    International Nuclear Information System (INIS)

    Laming, J. Martin; Moses, J. Daniel; Ko, Yuan-Kuen; Ng, Chee K.; Rakowski, Cara E.; Tylka, Allan J.

    2013-01-01

    Forecasting large solar energetic particle (SEP) events associated with shocks driven by fast coronal mass ejections (CMEs) poses a major difficulty in the field of space weather. Besides issues associated with CME initiation, the SEP intensities are difficult to predict, spanning three orders of magnitude at any given CME speed. Many lines of indirect evidence point to the pre-existence of suprathermal seed particles for injection into the acceleration process as a key ingredient limiting the SEP intensity of a given event. This paper outlines the observational and theoretical basis for the inference that a suprathermal particle population is present prior to large SEP events, explores various scenarios for generating seed particles and their observational signatures, and explains how such suprathermals could be detected through measuring the wings of the H I Lyα line.

  10. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  11. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  12. Chemical Impact of Solar Energetic Particle Event From The Young Sun: Implications for the Origin of Prebiotic Chemistry and the Fain Young Sun Paradox

    Science.gov (United States)

    Airapetian, V.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2015-12-01

    Understanding how the simple molecules present on the early Earth and possibly Mars may have set a path for complex biological molecules, the building blocks of life, represents one of greatest unsolved questions. Here we present a new model of the rise of the abiotic nitrogen fixation and associated pre-biotic chemistry in the early Earth and Mars atmosphere mediated by solar eruptive events. Our physical models of interaction of magnetic clouds ejected from the young Sun with magnetospheres of the early Earth show significant perturbations of geomagnetic fields that produce extended polar caps. These polar caps provide pathways for energetic particles associated with magnetic clouds to penetrate into the nitrogen-rich weakly reducing atmosphere and initiate the reactive chemistry by breaking molecular nitrogen, carbon dioxide, methane and producing hydrogen cyanide, the essential compound for life. The model also shows that contrary to the current models of warming of early Earth and Mars, major atmospheric constituents, CO2 and CH4 will be destroyed due to collisional dissociation with energetic particles. Instead, efficient formation of the potent greenhouse gas, nitrous oxide, as a by-product of these processes is expected. This mechanism can consistently explain the Faint Young Sun's paradox for the early atmospheres of Earth and Mars. Our new model provides insight into how life may have initiated on Earth and Mars and how to search for the spectral signatures on planets "pregnant" with the potential for life.

  13. The effect of energetic trapped particles on the ''ideal'' internal kink mode

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.; Mahajan, S.M.

    1988-12-01

    The internal kink stability of a tokamak in the presence of energetic particles is studied. It is found that there exists a stable window when a finite population of energetic particles are present, and the relation between the predictions of the fishbone theory of Chen-White-Rosenbluth and the fishbone theory of Coppi-Porcelli is explained. The theory indicates why some experiments, like PDX and TFTR, are likely to see fishbone oscillations in conjunction with sawtooth modes, while other experiments can observe sawtooth suppression in presence of hot particles. 14 refs., 3 figs., 2 tabs

  14. Precision Modeling of Solar Energetic Particle Intensity and Anisotropy Profiles

    Science.gov (United States)

    Ruffolo, D.; Sáiz, A.; Bieber, J. W.; Evenson, P.; Pyle, R.; Rujiwarodom, M.; Tooprakai, P.; Wechakama, M.; Khumlumlert, T.

    2006-12-01

    A focused transport equation for solar energetic particles is sufficiently complex that simple analytic approximations are generally inadequate, but the physics is sufficiently well established to permit precise numerical modeling of high energy particle observations at various distances from the Sun. We demonstrate how observed profiles of intensity and anisotropy vs. time can be quantitatively fit to determine an optimal injection profile at the Sun, scattering mean free path λ, and magnetic configuration. For several ground level enhancements (GLE) of solar energetic particles at energies ~ 1 GeV, the start time of injection has been determined to 1 or 2 minutes. In each case this start time coincides, within that precision, to the soft X-ray peak time, when the flare's primary energy release has ended. This is not inconsistent with acceleration at a coronal mass ejection (CME)-driven shock, though the rapid timescale is challenging to understand. For the GLE of 2005 January 20, λ decreases substantially over ~ 10 minutes, which is consistent with concepts of proton-amplified waves. The GLE of 2000 July 14 is properly fit only when a magnetic bottleneck beyond Earth is taken into account, a feature later confirmed by NEAR observations. The long-standing puzzle of the 1989 October 22 event can now be explained by simultaneous injection of relativistic solar particles along both legs of a closed interplanetary magnetic loop, while other reasonable explanations fail the test of quantitative fitting. The unusually long λ (confirming many previous reports) and a low turbulent spectral index hint at unusual properties of turbulence in the loop. While the early GLE peak on 2003 October 28 remains a mystery, the main peak's strong anisotropy is inconsistent with a suggestion of injection along the far leg of a magnetic loop; quantitative fitting fails because of reverse focusing during Sunward motion. With these modeling capabilities, one is poised to take full

  15. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  16. A SIMPLE ANALYTICAL METHOD TO DETERMINE SOLAR ENERGETIC PARTICLES' MEAN FREE PATH

    International Nuclear Information System (INIS)

    He, H.-Q.; Qin, G.

    2011-01-01

    To obtain the mean free path of solar energetic particles (SEPs) for a solar event, one usually has to fit time profiles of both flux and anisotropy from spacecraft observations to numerical simulations of SEPs' transport processes. This method can be called a simulation method. But a reasonably good fitting needs a lot of simulations, which demand a large amount of calculation resources. Sometimes, it is necessary to find an easy way to obtain the mean free path of SEPs quickly, for example, in space weather practice. Recently, Shalchi et al. provided an approximate analytical formula of SEPs' anisotropy time profile as a function of particles' mean free path for impulsive events. In this paper, we determine SEPs' mean free path by fitting the anisotropy time profiles from Shalchi et al.'s analytical formula to spacecraft observations. This new method can be called an analytical method. In addition, we obtain SEPs' mean free path with the traditional simulation methods. Finally, we compare the mean free path obtained with the simulation method to that of the analytical method to show that the analytical method, with some minor modifications, can give us a good, quick approximation of SEPs' mean free path for impulsive events.

  17. Observations of Energetic Particle Escape at the Magnetopause: Early Results from the MMS Energetic Ion Spectrometer (EIS)

    Science.gov (United States)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; hide

    2016-01-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  18. Theory of energetic trapped particle-induced resistive interchange-ballooning modes

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1986-02-01

    A theory describing the influence of energetic trapped particles on resistive interchange-ballooning modes in tokamaks is presented. It is shown that a population of hot particles trapped in the region of adverse curvature can resonantly interact with and destabilize the resistive interchange mode, which is stable in their absence because of favorable average curvature. The mode is different from the usual resistive interchange mode not only in its destabilization mechanism, but also in that it has a real component to its frequency comparable to the precessional drift frequency of the rapidly circulating energetic species. Corresponding growth rate and threshold conditions for this trapped-particle-driven instability are derived and finite banana width effects are shown to have a stabilizing effect on the mode. Finally, the ballooning/tearing dispersion relation is generalized to include hot particles, so that both the ideal and the resistive modes are derivable in the appropriate limits. 23 refs., 7 figs

  19. Irregular Magnetic Fields and Energetic Particles near the Termination Shock

    International Nuclear Information System (INIS)

    Giacalone, J.; Jokipii, J. R.

    2004-01-01

    The physics of magnetic field-line meandering and the associated energetic-particle transport in the outer heliosphere is discussed. We assume that the heliospheric magnetic field, which is frozen into the solar-wind plasma, is composed of both an average and random component. The power in the random component is dominated by spatial scales that are very large (by a few orders of magnitude) compared to the shock thickness. The results from recent numerical simulations are presented. They reveal a number of characteristics which may be related to recent Voyager 1 observations of energetic particles and fields. For instance, low-energy (tens of keV) particles are seen well upstream of the shock that also have large pitch-angle anisotropies. Furthermore, low-energy particles are readily accelerated by the shock, even though their mean-free paths are very large compared to their gyroradii. When averaging over the entire system, the downstream spectra are qualitatively consistent with the theory of diffusive shock acceleration

  20. Strong non-radial propagation of energetic electrons in solar corona

    Science.gov (United States)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  1. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  2. Monte Carlo simulations of the Galileo energetic particle detector

    International Nuclear Information System (INIS)

    Jun, I.; Ratliff, J.M.; Garrett, H.B.; McEntire, R.W.

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study

  3. ONSETS AND SPECTRA OF IMPULSIVE SOLAR ENERGETIC ELECTRON EVENTS OBSERVED NEAR THE EARTH

    International Nuclear Information System (INIS)

    Kontar, Eduard P.; Reid, Hamish A. S.

    2009-01-01

    Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energetic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of nonuniform plasma, collisions, and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of (1) a spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, (2) apparent early onset of low-energy electron injection, and (3) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in nonuniform plasma of a single accelerated electron population with an initial power-law spectrum.

  4. Transport, Acceleration and Spatial Access of Solar Energetic Particles

    Science.gov (United States)

    Borovikov, D.; Sokolov, I.; Effenberger, F.; Jin, M.; Gombosi, T. I.

    2017-12-01

    Solar Energetic Particles (SEPs) are a major branch of space weather. Often driven by Coronal Mass Ejections (CMEs), SEPs have a very high destructive potential, which includes but is not limited to disrupting communication systems on Earth, inflicting harmful and potentially fatal radiation doses to crew members onboard spacecraft and, in extreme cases, to people aboard high altitude flights. However, currently the research community lacks efficient tools to predict such hazardous SEP events. Such a tool would serve as the first step towards improving humanity's preparedness for SEP events and ultimately its ability to mitigate their effects. The main goal of the presented research is to develop a computational tool that provides the said capabilities and meets the community's demand. Our model has the forecasting capability and can be the basis for operational system that will provide live information on the current potential threats posed by SEPs based on observations of the Sun. The tool comprises several numerical models, which are designed to simulate different physical aspects of SEPs. The background conditions in the interplanetary medium, in particular, the Coronal Mass Ejection driving the particle acceleration, play a defining role and are simulated with the state-of-the-art MHD solver, Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US). The newly developed particle code, Multiple-Field-Line-Advection Model for Particle Acceleration (M-FLAMPA), simulates the actual transport and acceleration of SEPs and is coupled to the MHD code. The special property of SEPs, the tendency to follow magnetic lines of force, is fully taken advantage of in the computational model, which substitutes a complicated 3-D model with a multitude of 1-D models. This approach significantly simplifies computations and improves the time performance of the overall model. Also, it plays an important role of mapping the affected region by connecting it with the origin of

  5. Influence of an energetic-particle component on ballooning modes in an optimized stellarator

    International Nuclear Information System (INIS)

    Nuehrenberg, J.; Zheng, L.J.

    1993-01-01

    Besides quasi-helically symmetric configurations, which have particle drift properties analogous to tokamaks, a second interesting route for stellarator investigations is the choice of the optimized stellarator configuration, which has been adopted for the W7-X stellarator project. Of the many remarkably good properties of the optimized stellarator, two are mentioned here: One is the low geodesic curvature, which leads to a small Pfirsch-Schlueter current and fosters the MHD stability together with a vacuum field magnetic well; the other is that trapped energetic particles are well confined being reflected around the triangular cross section with maximum J - the second invariant. Maximum J configuration could be favorable for the stabilization of the low-frequency thermal-trapped-particle modes. On the other hand, for the energetic particles this means drift-reversal prevailing, and therefore the kinetic energy of the trapped energetic particles is destabilizing. Furthermore, when trapped energetic particles are drift-reversed, two β limits emerge: One is due to the ballooning modes, which relates to the Van Dam-Lee-Nelson limit for EBT; the other is due to the interchange modes. Nevertheless, these two theories predict that - when the core plasma β is high enough - stability may resume. The purpose of this work is to determine whether one of these two limits - the Van Dam-Lee-Nelson limit for ballooning modes - harms the optimized stellarator or not. (author) 12 refs., 1 fig

  6. LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Vourlidas, A.; Raouafi, N. E.; Haggerty, D. K.; Ho, G. C.; Anderson, B. J. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Gómez-Herrero, R. [Space Research Group, Physics and Mathematics Department, University of Alcalá, Alcalá de Henares, E-28871 (Spain); Dresing, N. [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany); Riley, P. [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2016-03-01

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2014 February 25 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. These include spacecraft located near Earth; the twin Solar TErrestrial RElations Observatory spacecraft, STEREO-A and STEREO-B, located at ∼1 au from the Sun 153° west and 160° east of Earth, respectively; the MErcury Surface Space ENvironment GEochemistry and Ranging mission (at 0.40 au and 31° west of Earth); and the Juno spacecraft (at 2.11 au and 48° east of Earth). Although the footpoints of the field lines nominally connecting the Sun with STEREO-A, STEREO-B and near-Earth spacecraft were quite distant from each other, an intense high-energy SEP event with Fe-rich prompt components was observed at these three locations. The extent of the extreme-ultraviolet wave associated with the solar eruption generating the SEP event was very limited in longitude. However, the white-light shock accompanying the associated coronal mass ejection extended over a broad range of longitudes. As the shock propagated into interplanetary space it extended over at least ∼190° in longitude. The release of the SEPs observed at different longitudes occurred when the portion of the shock magnetically connected to each spacecraft was already at relatively high altitudes (≳2 R{sub ⊙} above the solar surface). The expansion of the shock in the extended corona, as opposite to near the solar surface, determined the SEP injection and SEP intensity-time profiles at different longitudes.

  7. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  8. Energetic particle instabilities in fusion plasmas

    International Nuclear Information System (INIS)

    Sharapov, S.E.; Alper, B.; Challis, C.D.; Gryaznevich, M.P.; Kiptily, V.G.; Voitsekhovich, I.; Berk, H.L.; Breizman, B.N.; Borba, D.N.; Nabais, F.; Classen, I.G.J.; Edlund, E.M.; Fredrickson, E.D.; Fu, G.Y.; Ghantous, K.; Gorelenkov, N.N.; Kramer, G.J.; Nazikian, R.; Podesta, M.; White, R.B.; Eriksson, J.; Hellesen, C.; Fasoli, A.; Garcia-Munoz, M.; Lauber, P.; Thun, C. Perez von; Gassner, T.; Goloborodko, V.; Schoepf, K.; Yavorskij, V.; Hacquin, S.; Heidbrink, W.W.; Lilley, M.K.; Lisak, M.; Nyqvist, R.; Osakabe, M.; Todo, Y.; Toi, K.; Pinches, S.D.; Porkolab, M.; Shinohara, Koji; Van Zeeland, M.A.

    2012-11-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge. (author)

  9. Geodesic acoustic mode driven by energetic particles with bump-on-tail distribution

    Science.gov (United States)

    Ren, Haijun; Wang, Hao

    2018-04-01

    Energetic-particle-driven geodesic acoustic mode (EGAM) is analytically investigated by adopting the bump-on-tail distribution for energetic particles (EPs), which is created by the fact that the charge exchange time (τcx ) is sufficiently shorter than the slowing down time (τsl ). The dispersion relation is derived in the use of gyro-kinetic equations. Due to the finite ratio of the critical energy and the initial energy of EPs, defined as τc , the dispersion relation is numerically evaluated and the effect of finite τc is examined. Following relative simulation and experimental work, we specifically considered two cases: τsl/τcx = 3.4 and τsl/τcx = 20.4 . The pitch angle is shown to significantly enhance the growth rate and meanwhile, the real frequency is dramatically decreased with increasing pitch angle. The excitation of high-frequency EGAM is found, and this is consistent with both the experiment and the simulation. The number density effect of energetic particles, represented by \

  10. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  11. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  12. Energetic Particle Loss Estimates in W7-X

    Science.gov (United States)

    Lazerson, Samuel; Akaslompolo, Simppa; Drevlak, Micheal; Wolf, Robert; Darrow, Douglass; Gates, David; W7-X Team

    2017-10-01

    The collisionless loss of high energy H+ and D+ ions in the W7-X device are examined using the BEAMS3D code. Simulations of collisionless losses are performed for a large ensemble of particles distributed over various flux surfaces. A clear loss cone of particles is present in the distribution for all particles. These simulations are compared against slowing down simulations in which electron impact, ion impact, and pitch angle scattering are considered. Full device simulations allow tracing of particle trajectories to the first wall components. These simulations provide estimates for placement of a novel set of energetic particle detectors. Recent performance upgrades to the code are allowing simulations with > 1000 processors providing high fidelity simulations. Speedup and future works are discussed. DE-AC02-09CH11466.

  13. Drift mechanism for energetic charged particles at shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Axford, W.I.; Terasawa, T.

    1983-01-01

    The energy changes of energetic charged particles at a plane shock due to the so-called drift mechanism are analyzed by using the ''adiabatic treatment.'' The analysis shows that for a fast MHD shock, particles lose energy owing to acceleration (curvature) drift in the magnetic field at the shock with the drift velocity being antiparallel to the electric field, and they gain energy owing to gradient drift parallel to the electric field. It is shown that particles with pitch angles aligned along the magnetic field which pass through the shock tend to lose energy owing to acceleration drift, whereas particles with pitch angles nonaligned to the magnetic field gain energy owing to gradient drift. Particles that are reflected by the shock always gain energy. Slow-mode shocks may be similarly analyzed, but in this case curvature drifts give rise to particle energy gains, and gradient drifts result in particle energy losses

  14. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. II. SYSTEMATIC Q/M DEPENDENCE OF HEAVY ION SPECTRAL BREAKS

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.; Schwadron, N. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States); McComas, D. J. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Smith, C. W., E-mail: mdesai@swri.edu [University of New Hampshire, 8 College Road, Durham NH 03824 (United States)

    2016-09-10

    We fit ∼0.1–500 MeV nucleon{sup −1} H–Fe spectra in 46 large solar energetic particle (SEP) events with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γ {sub a} and γ {sub b}, and break energy E {sub B}, and derive the low-energy spectral slope γ {sub 1}. We find that: (1) γ {sub a}, γ {sub 1}, and γ {sub b} are species-independent and the spectra steepen with increasing energy; (2) E {sub B} decreases systematically with decreasing Q/M scaling as (Q/M){sup α}; (3) α varies between ∼0.2–3 and is well correlated with the ∼0.16–0.23 MeV nucleon{sup −1} Fe/O; (4) in most events, α < 1.4, γ {sub b}– γ {sub a} > 3, and O E {sub B} increases with γ {sub b}– γ {sub a}; and (5) in many extreme events (associated with faster coronal mass ejections (CMEs) and GLEs), Fe/O and {sup 3}He/{sup 4}He ratios are enriched, α ≥ 1.4, γ {sub b}– γ {sub a} < 3, and E {sub B} decreases with γ {sub b}– γ {sub a}. The species-independence of γ {sub a}, γ {sub 1}, and γ {sub b} and the Q/M dependence of E {sub B} within an event and the α values suggest that double power-law SEP spectra occur due to diffusive acceleration by near-Sun CME shocks rather than scattering in interplanetary turbulence. Using γ {sub 1}, we infer that the average compression ratio for 33 near-Sun CME shocks is 2.49 ± 0.08. In most events, the Q/M dependence of E {sub B} is consistent with the equal diffusion coefficient condition and the variability in α is driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but weaker than the spectra for extreme events. In contrast, in extreme events, enhanced wave power enables faster CME shocks to accelerate impulsive suprathermal ions more efficiently than ambient coronal ions.

  15. The acceleration and propagation of energetic particles in turbulent cosmic plasmas

    International Nuclear Information System (INIS)

    Achterberg, A.

    1981-01-01

    This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)

  16. Energetic particles in the heliosphere

    CERN Document Server

    Simnett, George M

    2017-01-01

    This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.

  17. Proceedings of the 6th IAEA Technical Committee meeting on energetic particles in magnetic confinement systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The sixth IAEA Technical Committee Meeting was organized by Japan Atomic Energy Research Institute. It was held at Naka, JAERI during October 12-14, 1999. The previous meetings of this series, formerly entitled 'Alpha Particles in Fusion Research', were held biennially in Kiev (1989), Aspenas (1991), Trieste (1993), Princeton (1995), and Abingdon (1997). The scope of the meeting covered theoretical and experimental work on alpha particle physics, transport of energetic particles, effects of energetic particles on fusion plasma, related collective phenomena, runaway electrons in disruption and diagnostics on energetic particles. The TCM was attended by over 60 participants. Twenty seven papers were presented orally and 19 papers as posters. This proceedings include 37 contributed papers in the meeting. (J.P.N.)

  18. Proceedings of the 6th IAEA Technical Committee meeting on energetic particles in magnetic confinement systems

    International Nuclear Information System (INIS)

    2000-03-01

    The sixth IAEA Technical Committee Meeting was organized by Japan Atomic Energy Research Institute. It was held at Naka, JAERI during October 12-14, 1999. The previous meetings of this series, formerly entitled 'Alpha Particles in Fusion Research', were held biennially in Kiev (1989), Aspenas (1991), Trieste (1993), Princeton (1995), and Abingdon (1997). The scope of the meeting covered theoretical and experimental work on alpha particle physics, transport of energetic particles, effects of energetic particles on fusion plasma, related collective phenomena, runaway electrons in disruption and diagnostics on energetic particles. The TCM was attended by over 60 participants. Twenty seven papers were presented orally and 19 papers as posters. This proceedings include 37 contributed papers in the meeting. (J.P.N.)

  19. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    Science.gov (United States)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  20. Theoretical model of Orion gamma emission: acceleration, propagation and interaction of energetic particles in the interstellar medium

    International Nuclear Information System (INIS)

    Parizot, Etienne

    1997-01-01

    This research thesis reports the development of a general model for the study of the propagation and interaction of energetic particles (cosmic rays, and so on) in the interstellar medium (ISM). The first part addresses the development of theoretical and numerical tools. The author presents cosmic rays and energetic particles, presents and describes the various processes related to high-energy particles (matter ionisation, synchrotron and Bremsstrahlung radiation, Compton scattering, nuclear processes), addresses the transport and acceleration of energetic particles (plasmas, magnetic fields and energetic particles, elements of kinetic theory, transport and acceleration of energetic particles), and describes the general model of production of γ nuclear lines and of secondary nuclei. The second part addresses the gamma signature of a massive star in a dense medium: presentation and description of massive stars and of the circumstellar medium, life, death and gamma resurrection of a massive star at the heart of a cloud. The third part addresses the case of the gamma emission by Orion, and more particularly presents a theoretical model of this emission. Some generalities and perspectives (theoretical as well as observational) are then stated [fr

  1. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  2. Observations of Solar Energetic Particle Anisotropies at MeV Energies from STEREO/LET

    Science.gov (United States)

    Leske, R. A.; Cummings, A. C.; Cohen, C.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; von Rosenvinge, T. T.

    2016-12-01

    During the transport of solar energetic particles (SEPs) through interplanetary space, their pitch-angle distributions are modified by the competing effects of scattering and magnetic focusing. Thus, measurements of SEP anisotropies can reveal conditions such as magnetic field strength, topology, and turbulence levels at heliospheric locations far removed from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures angular distributions in the ecliptic for SEP protons, helium, and heavier ions up to iron with energies of about 2-12 MeV/nucleon. Anisotropies observed with this instrument include unidirectional outward beams at the onset of magnetically well-connected SEP events when particles experienced little scattering, bidirectional flows within many interplanetary coronal mass ejections, sunward particle flows when the spacecraft was magnetically connected to the back side of a shock, and loss-cone distributions when particles with large pitch angles were magnetically mirrored at a remote field enhancement that was too weak to reflect particles with the smallest pitch angles. Observations at a 1-minute cadence also revealed peculiar oscillations in the width of a beamed distribution at the onset of the 23 July 2012 extreme SEP event. The shapes of the pitch angle distributions often vary with energy and differ for H, He, and heavier species, perhaps as a result of rigidity dependence of the pitch angle diffusion coefficient. We present a selection of the more interesting LET anisotropy observations made throughout solar cycle 24 and discuss the implications of these observations for SEP transport in the heliosphere.

  3. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  4. Solar energetic particles and radio burst emission

    Czech Academy of Sciences Publication Activity Database

    Miteva, R.; Samwel, S. W.; Krupař, Vratislav

    2017-01-01

    Roč. 7 (2017), č. článku A37. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : solar energetic particles * solar radio burst emission * solar cycle Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/ articles /swsc/abs/2017/01/swsc170028/swsc170028.html

  5. First spacecraft observations of energetic particles near comet Halley

    International Nuclear Information System (INIS)

    Somogyi, A.J.; Szegoe, K.; Gringauz, K.I.

    1986-04-01

    The TUENDE-M energetic particle instrument on board of VEGA-1 detected intense fluxes of energetic (>- 40 keV) ions in the vicinity of comet Halley, at a distance of 10sup(7) km. Three regions of different ion characteristics were identified. An outer region at several 10sup(6) km contains pick up ions in the solar wind. A second region of an extent of several 10sup(5) km inside the bow shock contains the most intense fluxes, whereas the innermost region of 10sup(4) km is characterized by lower intensities and sharp spikes around closest approach (8900 km from the nucleus). (author)

  6. The effect of energetic trapped particles on the resistive internal Kink

    International Nuclear Information System (INIS)

    Romanelli, F.; White, R.B.

    1988-01-01

    The effect of energetic trapped particles on the ideal and resistive internal Kink mode is analyzed including diamagnetic effects. The relation between different approaches to the problem is discussed

  7. Aerosol particle charger and an SO2 reactor using energetic electrons

    International Nuclear Information System (INIS)

    Davis, R.H.

    1984-01-01

    Two properties of energetic electrons in gas, their high specific ionization and their production of radicals and other chemically active specie, have promising applications to the cleanup of flue gas from coal combustion. The copious ionization has been used in a test particle charger to electrically charge 1 and 3 μm particles for subsequent removal by electrostatic precipitation. Particle charge greater than 5 times the theoretical ionic charging value for 1 μm particles have been observed in a bi-electrode electron beam precharger in which the beam energy is matched with the electrode spacing. In another test device, pulsed streamer coronas have been used to release and to energize electrons which promote gas phase chemical reactions and remote sulfur dioxide from humid air with high efficiency. The energized electrons produce oxidant radicals and chemically active specie which convert the SO 2 into sulfuric acid mist. While reported separately here, the two applications of energetic electrons may be amenable to combination in an integrated system for the combined treatment of flue gas

  8. Association of 3He-rich solar energetic particles with large-scale coronal waves

    Science.gov (United States)

    Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark

    2016-07-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  9. Jet evolution in a dense medium: event-by-event fluctuations and multi-particle correlations

    Science.gov (United States)

    Escobedo, Miguel A.; Iancu, Edmond

    2017-11-01

    We study the gluon distribution produced via successive medium-induced branchings by an energetic jet propagating through a weakly-coupled quark-gluon plasma. We show that under suitable approximations, the jet evolution is a Markovian stochastic process, which is exactly solvable. For this process, we construct exact analytic solutions for all the n-point correlation functions describing the gluon distribution in the space of energy [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv:arxiv:arXiv:1601.03629, doi:http://dx.doi.org/10.1007/JHEP05(2016)008, M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv:arxiv:arXiv:1609.06104, doi:http://dx.doi.org/10.1007/JHEP12(2016)104]. Using these results, we study the event-by-event distribution of the energy lost by the jet at large angles and of the multiplicities of the soft particles which carry this energy. We find that the event-by-event fluctuations are huge: the standard deviation in the energy loss is parametrically as large as its mean value [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv:arxiv:arXiv:1601.03629, doi:http://dx.doi.org/10.1007/JHEP05(2016)008]. This has important consequences for the phenomenology of di-jet asymmetry in Pb+Pb collisions at the LHC: it implies that the fluctuations in the branching process can contribute to the measured asymmetry on an equal footing with the geometry of the di-jet event (i.e. as the difference between the in-medium path lengths of the two jets). We compute the higher moments of the multiplicity distribution and identify a remarkable regularity known as Koba-Nielsen-Olesen (KNO) scaling [M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv:arxiv:arXiv:1609.06104, doi

  10. Jet evolution in a dense medium: event-by-event fluctuations and multi-particle correlations

    International Nuclear Information System (INIS)

    Escobedo, Miguel A.; Iancu, Edmond

    2017-01-01

    We study the gluon distribution produced via successive medium-induced branchings by an energetic jet propagating through a weakly-coupled quark-gluon plasma. We show that under suitable approximations, the jet evolution is a Markovian stochastic process, which is exactly solvable. For this process, we construct exact analytic solutions for all the n-point correlation functions describing the gluon distribution in the space of energy [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv: (arXiv:1601.03629), doi: (http://dx.doi.org/10.1007/JHEP05(2016)008), M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv: (arXiv:1609.06104), doi: (http://dx.doi.org/10.1007/JHEP12(2016)104)]. Using these results, we study the event-by-event distribution of the energy lost by the jet at large angles and of the multiplicities of the soft particles which carry this energy. We find that the event-by-event fluctuations are huge: the standard deviation in the energy loss is parametrically as large as its mean value [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv: (arXiv:1601.03629), doi: (http://dx.doi.org/10.1007/JHEP05(2016)008)]. This has important consequences for the phenomenology of di-jet asymmetry in Pb+Pb collisions at the LHC: it implies that the fluctuations in the branching process can contribute to the measured asymmetry on an equal footing with the geometry of the di-jet event (i.e. as the difference between the in-medium path lengths of the two jets). We compute the higher moments of the multiplicity distribution and identify a remarkable regularity known as Koba-Nielsen-Olesen (KNO) scaling [M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv: (arXiv:1609.06104), doi: (http

  11. Study on the creation and destruction of transport barriers via the effective safety factors for energetic particles

    Science.gov (United States)

    Ogawa, Shun; Leoncini, Xavier; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-12-01

    Charged particles with low kinetic energy move along the magnetic field lines, but so do not the energetic particles. We investigate the topological structure changes in the phase space of energetic particles with respect to the magnetic one. For this study, cylindrical magnetic fields with non-monotonic safety factors that induce the magnetic internal transport barrier are considered. We show that the topological structure of the magnetic field line and of the particle trajectories can be quite different. We explain this difference using the concept of an effective particle q-profile. Using this notion, we can investigate the location and existence of resonances for particle orbits that are different from the magnetic ones. These are examined both numerically by integrating an equation of motion and theoretically by the use of Alfvén's guiding center theory and by the use of an effective reduced Hamiltonian for the integrable unperturbed system. It is clarified that, for the energetic particles, the grad B drift effect shifts the resonances and the drift induced by curvature of the magnetic field line leads to the vanishing of the resonances. As a result, we give two different mechanisms that lead to the creation of transport barriers for energetic particles in the region where the magnetic field line is chaotic.

  12. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    International Nuclear Information System (INIS)

    Voss, H.D.; Smith, L.G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L=2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10 0 indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile

  13. Enhancements of energetic particles near the heliospheric termination shock.

    Science.gov (United States)

    McDonald, Frank B; Stone, Edward C; Cummings, Alan C; Heikkila, Bryant; Lal, Nand; Webber, William R

    2003-11-06

    The spacecraft Voyager 1 is at a distance greater than 85 au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate 'anomalous cosmic rays', as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.

  14. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  15. Using Dawn to Observe SEP Events Past 2 AU

    Science.gov (United States)

    Villarreal, M. N.; Russell, C. T.; Prettyman, T. H.

    2017-12-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn's GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  16. Theory of resistive magnetohydrodynamic instabilities excited by energetic trapped particles in large-size tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.

    1987-01-01

    A theory describing excitation of resistive magnetohydrodynamic instabilities due to a population of energetic particles, trapped in region of adverse curvature on energetic particles, trapped in region of adverse curvature in tokamaks, is presented. Theory's principal motivation is observation that high magnetic-field strengths and large geometric dimensions characteristic of present-generation thermonuclear fusion devices, places them in a frequency regime whereby processional drift frequency of auxiliary hot-ion species, in order of magnitude, falls below a typical inverse resistive interchange time scale, so that inclusion of resistive dissipation effects becomes important. Destabilization of the resistive internal kink mode by these suprathermal particles is first investigated. Using variational techniques, a generalized dispersion relation governing such modes, which recovers ideal theory in its appropriate limit, is derived and analyzed using Nyquist-diagrammatic techniques. An important implication of theory for present-generation fusion devices is that they will be stable to fishbone activity. Interaction of energetic particles with resistive interchange-ballooning modes is taken up. A population of hot particles, deeply trapped on adverse curvature side in tokamaks, can resonantly destabilize resistive interchange mode, which is stable in their absence because of favorable average curvature. Both modes are different from their usual resistive magnetohydrodynamic counterparts in their destabilization mechanism

  17. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  18. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    International Nuclear Information System (INIS)

    Diamond, Patrick H.

    2011-01-01

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  19. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States)

    2017-09-10

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  20. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhao, Lulu

    2017-01-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  1. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  2. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    Science.gov (United States)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  3. Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics

    Science.gov (United States)

    Guo, Fan

    2012-11-01

    (kinetic ions and fluid electrons) to investigate the acceleration of low-energy particles (often termed as "injection problem") at parallel shocks. We find that the accelerated particles always gain the first amount of energy by reflection and acceleration at the shock layer. The protons can move off their original field lines in the 3-D electric and magnetic fields. The results are consistent with the acceleration mechanism found in previous 1-D and 2-D simulations. In the second part of Chapter 3, we use a stochastic integration method to study diffusive shock acceleration in the existence of large-scale magnetic variations. We show that the 1-D steady state solution of diffusive shock acceleration can be significantly modified in this situation. The results suggest that the observations of anomalous cosmic rays by Voyager spacecraft can be explained by a 2-D shock that includes the large-scale magnetic field variations. In Chapter 4 we study electron acceleration at a shock passing into a turbulent magnetic field by using a combination of hybrid simulations and test-particle electron simulations. We find that the acceleration of electrons is greatly enhanced by including the effect of large-scale magnetic turbulence. Since the electrons mainly follow along the magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons interacting with the shock front multiple times. Ripples in the shock front occurring at various scales also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. We discuss the application of this process in interplanetary shocks and flare termination shocks. We also discuss the implication of this study to solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. The intensity correlation of electrons and ions in SEP events indicates that perpendicular or quasi

  4. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    Science.gov (United States)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  5. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  6. Solar energetic particles in the Earth magnetosphere: kinematic modeling of the 'non-shock' penetration

    International Nuclear Information System (INIS)

    Pavlov, N N

    2013-01-01

    Penetration of solar energetic particles into the Earth's magnetosphere is quantitatively studied with a simple kinematic model. The goal is to assess, for the first time, how does effectiveness of the penetration depend on such geometry factors as: distance of the magneto-pause (MP) from the Earth; shape of MP; angle at which solar energetic particle crosses MP; location of the crossing point; type of the particle motion in the magnetosphere. To get off excessive details, the model deliberately operates with just equatorial section of the static dipolar magnetic field confined with asymmetric boundary – MP. Several rather obvious facts are illustrated: finite orbits of longitudinal drift reside only inside the circle of the Störmer-unit-length radius; deepest penetration of a particle occurs if the particle crosses MP at the point closest to the Earth and with velocity-vector oriented along the particle's longitudinal drift inside MP (westward for protons); etc. The model's software allows the inquirer to vary geometry of MP, the type, energy and direction of flight of the energetic particle(s), the location(s), aperture and orientation(s) of a virtual sensor, then to run the model and obtain the reference particle distributions either global (for entire magnetosphere) or for specified locations, all along the time, energy and flux-orientation axes. Static and animated plots can be easily produced. The model provides a toolkit allowing one to evaluate and illustrate the process of particle penetration into the magnetosphere under various conditions in space. It may be used for the configuring of the satellite particle sensors; its results may be compared with the observations for to assess how strongly the real magnetosphere differs from its simplified form; it may be used in education.

  7. ASSOCIATION OF {sup 3}He-RICH SOLAR ENERGETIC PARTICLES WITH LARGE-SCALE CORONAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Innes, Davina E. [Max-Planck-Institut für Sonnensystemforschung, D-37077, Göttingen (Germany); Mason, Glenn M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wiedenbeck, Mark E., E-mail: bucik@mps.mpg.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-12-10

    Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory ( STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.

  8. Sources and acceleration efficiencies for energetic particles in the heliosphere

    International Nuclear Information System (INIS)

    Kucharek, H; Moebius, E

    2006-01-01

    Shocks at solar wind stream interaction regions, coronal mass ejections and magnetospheric obstacles have long been known for their intimate link with particle acceleration. Much enhanced capabilities to determine mass and charge composition at interplanetary shocks with ACE and SOHO have enabled us to identify sources and acceleration processes for the energetic particles. Both solar wind and interstellar pickup ions are substantial sources for particle acceleration in corotating interaction regions and at coronal mass ejections driven shocks and that flare particles are re-accelerated. Suprathermal distributions, such as pickup ions and pre-existing flare populations are accelerated much more efficiently than particles out of the solar wind. Recent results of the termination shock crossing by Voyager I and the scientific goals of the upcoming IBEX mission will be discussed

  9. Energetic event in fuel-coolant interaction test FARO L-33

    International Nuclear Information System (INIS)

    Magallon, D.; Huhtiniemi, I.

    2001-01-01

    The paper presents the results of the energetic event triggered in FARO test L-33, which was the last test of the FARO series dedicated to large-scale experimental investigation of FCI in light water reactors. In FARD L-33, 100 kg of UO 2 -ZrO 2 corium at 3000 K were released via a 50 mm orifice to a pool of sub-cooled water 1.6 m in height and 0.71 m in diameter at 0.4 MPa system pressure. A self-sustained propagating event triggered by an explosive charge occurred when the melt leading edge reached the pool bottom and about 22 kg of melt had entered the water. The maximum pressure measured at the inner vessel wall located at a radial distance of 350 mm form the centre of the test section was 10 MPa. The maximum impulse was 20 kPa.s and the mechanical energy release about 110 kJ (i.e., two orders of magnitude higher than the trigger energy), giving a maximum efficiency of the order of 0.2 %. The energetic event caused the inner test vessel to deform plastically and lift inside the housing pressure vessel FAT, which moved 2.5 mm upward and downward but was not damaged. After the event, the rest of the melt discharged undisturbed into the water and quenched as in the previous FARO tests. (authors)

  10. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    Science.gov (United States)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  11. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  12. Studies of fast-ion transport induced by energetic particle modes using fast-particle diagnostics with high time resolution in CHS

    International Nuclear Information System (INIS)

    Isobe, M.; Toi, K.; Suzuki, C.; Nagaoka, K.; Matsushita, H.; Goto, K.

    2006-01-01

    The purpose of this work is to reveal the effects of the energetic particle mode (EPM) on fast-ion transport and consequent fast-ion loss in the Compact Helical System (CHS). For this purpose, fast particle diagnostics capable of following fast events originating from the EPM (f -5 Tesla at the magnetic probe position. The lost fast-ion probe (LIP) located at the outboard side of the torus indicates that bursting EPMs lead to periodically enhanced losses of co-going fast ions having smaller pitch angles in addition to losses of marginally co-passing fast ions. Coinciding with EPM bursts, the H- light detector viewing the peripheral region at the outboard side also shows large pulsed increases similar to that of the LIP whereas the detector viewing the peripheral region at the inboard side does not. This is also evidence that fast ions are expelled to the outboard side due to the EPM. The charge-exchange neutral particle analyzer indicates that only fast ions whose energy is close to the beam injection energy E b are strongly affected by EPM, suggesting in turn that observed EPMs are excited by fast ions having energy close to E b . (author)

  13. Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1979-01-01

    Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.

  14. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  15. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye Huanchun; Breizman, B.N.

    1992-01-01

    The linear response of energetic particles of the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width; when the banana width Δ b is much larger than the mode thickness Δ m , we obtain a new compact expression for the linear power transfer. When Δ m /Δ b m /Δ b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balanced-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (vertical strokev parallel vertical stroke=v A ) is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (vertical strokev parallel vertical stroke=v A /(2l-1) with l≥2) is substantially reduced. (orig.)

  16. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  17. Energetic event in fuel-coolant interaction test FARO L-33

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I. [European Commission, Institute for Systems, Informatics and Safety, Ispra, VA (Italy)

    2001-07-01

    The paper presents the results of the energetic event triggered in FARO test L-33, which was the last test of the FARO series dedicated to large-scale experimental investigation of FCI in light water reactors. In FARD L-33, 100 kg of UO{sub 2}-ZrO{sub 2} corium at 3000 K were released via a 50 mm orifice to a pool of sub-cooled water 1.6 m in height and 0.71 m in diameter at 0.4 MPa system pressure. A self-sustained propagating event triggered by an explosive charge occurred when the melt leading edge reached the pool bottom and about 22 kg of melt had entered the water. The maximum pressure measured at the inner vessel wall located at a radial distance of 350 mm form the centre of the test section was 10 MPa. The maximum impulse was 20 kPa.s and the mechanical energy release about 110 kJ (i.e., two orders of magnitude higher than the trigger energy), giving a maximum efficiency of the order of 0.2 %. The energetic event caused the inner test vessel to deform plastically and lift inside the housing pressure vessel FAT, which moved 2.5 mm upward and downward but was not damaged. After the event, the rest of the melt discharged undisturbed into the water and quenched as in the previous FARO tests. (authors)

  18. Pitch angle scattering of an energetic magnetized particle by a circularly polarized electromagnetic wave

    International Nuclear Information System (INIS)

    Bellan, P. M.

    2013-01-01

    The interaction between a circularly polarized wave and an energetic gyrating particle is described using a relativistic pseudo-potential that is a function of the frequency mismatch. Analysis of the pseudo-potential provides a means for interpreting numerical results. The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves show that the energetic electron pitch angle can be deflected 5°towards the loss cone when transiting a 10 ms long coherent wave packet having realistic parameters.

  19. Backward emission mechanism of energetic protons studied from two-particle correlations in 800 MeV proton-nucleus collisions

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1982-07-01

    The production mechanism of backward energetic protons was studied in 800 MeV proton-nucleus collision from the measurement of two-particle correlation over a wide range of kinematic regions. The backward energetic protons at 118 deg were measured in coincidence with the particles emitted in the angular range from 15 deg to 100 deg. Both in-plane and out-of-plane coincidences were measured. The backward energetic protons were detected with a delta E-E counter in a momentum region from 350 to 750 MeV/c, whereas the coincident particles were detected with a magnetic spectrometer in the momentum region from 450 to 2000 MeV/c. The reaction process of the backward protons were decomposed into six categories by the measurement of the associated particles, p or d. The momentum spectra, angular distribution and the target mass dependence of these components were studied. The component of p-p QES was well reproduced by the PW1A model, but the backward energetic protons were not from this process. The momenta of two nucleons inside the quasi-deuteron are highly correlated. The components of p-p non-QES and p-p out-of-plane are the main components of the backward energetic proton production. (Kako, I.)

  20. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    Science.gov (United States)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  1. Stability, energetic particles, waves, and current drive summary

    International Nuclear Information System (INIS)

    Stambaugh, R.D.

    2005-01-01

    This is the summary paper for the subjects of plasma stability, energetic particles, waves, and current drive for the 20th IAEA Fusion Energy Conference, 1-6 November 2004, Vilamoura, Portugal. Material summarized herein was drawn from 65 contributed papers and 21 overview papers. The distribution of contributed papers by subjects is shown. Significant advances were reported on the principal instabilities in magnetically confined plasmas, even looking forward to the burning plasma state. Wave-plasma physics is maturing and novel methods of current drive and noninductive current generation are being developed. (author)

  2. Excitation of internal kink modes by trapped energetic beam ions

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rosenbluth, M.N.

    1983-10-01

    Energetic trapped particles are shown to have a destabilizing effect on the internal kink mode in tokamaks. The plasma pressure threshold for the mode is lowered by the particles. The growth rate is near the ideal magnetohydrodynamic value, but the frequency is comparable to the trapped particle precission frequency. A model for the instability cycle gives stability properties, associated particle losses, and neutron emissivity consistent with the fishbone events observed in PDX

  3. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye, Huanchun; Breizman, B.N.

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width triangle b is much larger than the mode thickness triangle m , we obtain a new compact expression for the linear power transfer. When triangle m /triangle b much-lt 1, the banana orbit effect reduces the power transfer by a factor of triangle m /triangle b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (|υ parallel | = υ A is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (|υ parallel |) = υ A /(2 ell - 1) with ell ≥ 2) is substantially reduced. 10 refs

  4. On Weibull's Spectrum of Nonrelativistic Energetic Particles at IP Shocks: Observations and Theoretical Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Pallocchia, G.; Laurenza, M.; Consolini, G. [INAF—Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-10

    Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a heliocentric distance of 1.08 au, the spacecraft was swept by a perpendicular shock moving away from the Sun. The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the measured particle spectrum over the energy range from 0.1 to 30 MeV. To interpret such an observational result, we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed” stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of the Weibull spectrum in terms of shock-surfing acceleration.

  5. Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013) Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013)

    Science.gov (United States)

    Lin, Z.

    2014-10-01

    In magnetic fusion plasmas, a significant fraction of the kinetic pressure is contributed by superthermal charged particles produced by auxiliary heating (fast ions and electrons) and fusion reactions (a-particles). Since these energetic particles are often far away from thermal equilibrium due to their non-Maxwellian distribution and steep pressure gradients, the free energy can excite electromagnetic instabilities to intensity levels well above the thermal fluctuations. The resultant electromagnetic turbulence could induce large transport of energetic particles, which could reduce heating efficiency, degrade overall plasma confinement, and damage fusion devices. Therefore, understanding and predicting energetic particle confinement properties are critical to the success of burning plasma experiments such as ITER since the ignition relies on plasma self-heating by a-particles. To promote international exchanges and collaborations on energetic particle physics, the biannual conference series under the auspices of the International Atomic Energy Agency (IAEA) were help in Kyiv (1989), Aspenas (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007), Kyiv (2009), and Austin (2011). The papers in this special section were presented at the most recent meeting, the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was hosted by the Fusion Simulation Center, Peking University, Beijing, China (17-20 September 2013). The program of the meeting consisted of 71 presentations, including 13 invited talks, 26 oral contributed talks, 30 posters, and 2 summary talks, which were selected by the International Advisory Committee (IAC). The IAC members include H. Berk, L.G. Eriksson, A. Fasoli, W. Heidbrink, Ya. Kolesnichenko, Ph. Lauber, Z. Lin, R. Nazikian, S. Pinches, S. Sharapov, K. Shinohara, K. Toi, G. Vlad, and X.T. Ding. The conference program

  6. Seventh meeting of the ITER physics expert group on energetic particles, heating and steady state operations

    International Nuclear Information System (INIS)

    Gormezano, C.

    1999-01-01

    The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects

  7. Energetic Charged Particle Emission from Hydrogen-Loaded pd and ti Cathodes and its Enhancement by He-4 Implantation

    Science.gov (United States)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.

    2006-02-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.

  8. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation

    International Nuclear Information System (INIS)

    Lipson, A.G.; Miley, G.H.; Lipson, A.G.; Lyakhov, B.F.; Roussetski, A.S.

    2006-01-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that, 4 He doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by 4 He doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals. (authors)

  9. Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.

    Science.gov (United States)

    Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I

    2018-02-12

    Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.

  10. Association between magnetic field fluctuations and energetic particle bursts in the earth's magnetotail

    Science.gov (United States)

    Lui, A. T. Y.; Krimigis, S. M.; Armstrong, T. P.

    1982-01-01

    The association between energetic protons (0.29-0.50 MeV) and simultaneous local fluctuations of magnetic field at 35 to 45 earth radii in the magnetotail is examined statistically with data from APL/JHU particle telescopes aboard IMP 7 and IMP 8. About four satellite years of 5.5 min averaged measurements are used in this study. In addition to confirming that the level of magnetic field fluctuations generally increases with the presence of energetic protons and their streaming anisotropy, it is found that increases in occurrence frequency of streaming of energetic protons are ordered far better by magnetic field fluctuations than by proximity to the neutral sheet. However, the presence of large magnetic field fluctuations (delta B greater than 5 nT or delta B/B greater than 50%) is neither a necessary nor a sufficient condition for the detection of large streaming in energetic protons.

  11. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  12. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1997-10-01

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  13. Magnetic field power density spectra during 'scatter-free' solar particle events

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.

    1993-01-01

    We have examined interplanetary magnetic field power spectral density during four previously identified 3He-rich flare periods when the about 1 MeV nucleon-1 particles exhibited nearly scatter-free transport from the sun to 1 AU. Since the scattering mean free path A was large, it might be expected that interplanetary turbulence was low, yet the spectral density value was low only for one of the four periods. For the other three, however, the spectral index q of the power density spectrum was near 2.0, a value at which quasi-linear theories predict an increase in the scattering mean free path. Comparing the lambda values from the energetic particles with that computed from a recent quasi-linear theory which includes helicity and the propagation direction of waves, we find lambda(QLT)/lambda(SEP) = 0.08 +/- 0.03 for the four events. Thus, the theory fits the q-dependence of lambda; however, as found for previous quasi-linear theories, the absolute value is low.

  14. A DIRECT METHOD TO DETERMINE THE PARALLEL MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES WITH ADIABATIC FOCUSING

    International Nuclear Information System (INIS)

    He, H.-Q.; Wan, W.

    2012-01-01

    The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.

  15. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)

  16. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, A.G.; Miley, G.H. [University of Illinois at Urbana - Champaign, lL (United States); Lipson, A.G.; Lyakhov, B.F. [lnstitute of Physical Chemistry, The Russian Academy of Sciences, Moscow (Russian Federation); Roussetski, A.S. [P. N. Lebedev Physics Institute, The Russian Academy of Sciences Moscow (Russian Federation)

    2006-07-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that, {sup 4}He doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by {sup 4}He doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals. (authors)

  17. Interaction of energetic particles with polymer surfaces: surface morphology development and sputtered polymer-fragment ion analysis

    International Nuclear Information System (INIS)

    Michael, R.S.

    1987-01-01

    The core of this thesis is based on a series of papers that have been published or will soon be published in which the various processes taking place in the energetic particle-polymer surface interaction scene is investigated. Results presented show different developments on polymer surfaces when compared to the vast experimental data on energetic particle-metal surface interactions. The surface morphology development depends on the physical characteristics of the polymer. Sputtering yields of fluoropolymers were several orders higher than the sputtering yields of aliphatic and aromatic polymers. Depending on the chemical nature of the polymer, the surface morphology development was dependent upon the extent of radiation-damage accumulation. Fast Atom Bombardment Mass Spectrometry at low and high resolution was applied to the characterization of sputtered polymer fragment ions. Fragment ions and their intensities were used to identify polymer samples, observe radiation damage accumulation and probe polymer-polymer interface of a polymer-polymer sandwich structure. A model was proposed which attempts to explain the nature of processes involved in the energetic particle-polymer surface interaction region

  18. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1999-09-01

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from  X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.Key words. Magnetospheric physics (magnetosheath; magnetotail boundary layers; storms and substorms

  19. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  20. Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications

    Science.gov (United States)

    Roussos, E.; Jackman, C. M.; Thomsen, M. F.; Kurth, W. S.; Badman, S. V.; Paranicas, C.; Kollmann, P.; Krupp, N.; Bučík, R.; Mitchell, D. G.; Krimigis, S. M.; Hamilton, D. C.; Radioti, A.

    2018-01-01

    The lack of an upstream solar wind monitor poses a major challenge to any study that investigates the influence of the solar wind on the configuration and the dynamics of Saturn's magnetosphere. Here we show how Cassini MIMI/LEMMS observations of Solar Energetic Particle (SEP) and Galactic Cosmic Ray (GCR) transients, that are both linked to energetic processes in the heliosphere such us Interplanetary Coronal Mass Ejections (ICMEs) and Corotating Interaction Regions (CIRs), can be used to trace enhanced solar wind conditions at Saturn's distance. SEP protons can be easily distinguished from magnetospheric ions, particularly at the MeV energy range. Many SEPs are also accompanied by strong GCR Forbush Decreases. GCRs are detectable as a low count-rate noise signal in a large number of LEMMS channels. As SEPs and GCRs can easily penetrate into the outer and middle magnetosphere, they can be monitored continuously, even when Cassini is not situated in the solar wind. A survey of the MIMI/LEMMS dataset between 2004 and 2016 resulted in the identification of 46 SEP events. Most events last more than two weeks and have their lowest occurrence rate around the extended solar minimum between 2008 and 2010, suggesting that they are associated to ICMEs rather than CIRs, which are the main source of activity during the declining phase and the minimum of the solar cycle. We also list of 17 time periods ( > 50 days each) where GCRs show a clear solar periodicity ( ∼ 13 or 26 days). The 13-day period that derives from two CIRs per solar rotation dominates over the 26-day period in only one of the 17 cases catalogued. This interval belongs to the second half of 2008 when expansions of Saturn's electron radiation belts were previously reported to show a similar periodicity. That observation not only links the variability of Saturn's electron belts to solar wind processes, but also indicates that the source of the observed periodicity in GCRs may be local. In this case GCR

  1. Why is solar cycle 24 an inefficient producer of high-energy particle events?

    Science.gov (United States)

    Vainio, Rami; Raukunen, Osku; Tylka, Allan J.; Dietrich, William F.; Afanasiev, Alexandr

    2017-08-01

    Aims: The aim of the study is to investigate the reason for the low productivity of high-energy SEPs in the present solar cycle. Methods: We employ scaling laws derived from diffusive shock acceleration theory and simulation studies including proton-generated upstream Alfvén waves to find out how the changes observed in the long-term average properties of the erupting and ambient coronal and/or solar wind plasma would affect the ability of shocks to accelerate particles to the highest energies. Results: Provided that self-generated turbulence dominates particle transport around coronal shocks, it is found that the most crucial factors controlling the diffusive shock acceleration process are the number density of seed particles and the plasma density of the ambient medium. Assuming that suprathermal populations provide a fraction of the particles injected to shock acceleration in the corona, we show that the lack of most energetic particle events as well as the lack of low charge-to-mass ratio ion species in the present cycle can be understood as a result of the reduction of average coronal plasma and suprathermal densities in the present cycle over the previous one.

  2. Effect of Energetic Trapped Particles Produced by ICRF Wave Heating on Sawtooth Instability in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Choi, M.; Chan, V. S.; Chu, M. S.; Lao, L. L.; Pinsker, R. I.; Turnbull, A. D.; Jeon, Y. M.; Li, G.; Ren, Q.

    2007-01-01

    We evaluate the accuracy of the Porcelli sawtooth model using more realistic numerical models from the ORBIT-RF and GATO codes in DIII-D fast wave heating experiments. Simulation results confirm that the fast wave-induced energetic trapped particles may stabilize the sawtooth instability. The crucial kinetic stabilizing contribution strongly depends on both the experimentally reconstructed magnetic shear at the q = 1 surface and the calculated poloidal beta of energetic trapped particles inside the q = 1 surface

  3. Energetic particles in the inner magnetosphere of Jupiter: simulation and results from the energetic particles detector on board the Galileo spacecraft

    International Nuclear Information System (INIS)

    Lagg, A.

    1997-11-01

    The simulation of the Low Energy Magnetospheric Measurement System (LEMMS) on board the GALILEO spacecraft and the analysis of data from the Jovian magnetosphere are the main topics of this work. The geometric factors obtained from this simulation can reproduce spectral electron fluxes measured in the Jovian magnetosphere without applying additional corrections. The depletion of particles at high pitch angles measured during the first encounter period with Io is used to calculate neutral number density and latitudinal extension of the neutral gas torus at the Io orbit. As the most likely interaction process the charge exchange between energetic charged particles and the neutral sulfur and oxygen atoms in the torus is discussed. A simple model for this region including this interaction mechanism is the basis for the first calculation of the neutral number density from in-situ measurements of charged particle fluxes. An additional topic of the data analysis is an energy dispersive enhancement of electron fluxes observed in the Io torus. The plasma transport as a consequence of the gradient-curvature drift motion is examined. The time and the origin of a possible injection process is estimated. (author)

  4. Energetic electron precipitation characteristics observed from Antarctica during a flux dropout event

    Science.gov (United States)

    Clilverd, Mark A.; Cobbett, Neil; Rodger, Craig J.; Brundell, James B.; Denton, Michael H.; Hartley, David P.; Rodriguez, Juan V.; Danskin, Donald; Raita, Tero; Spanswick, Emma L.

    2013-11-01

    from two autonomous VLF radio receiver systems installed in a remote region of the Antarctic in 2012 is used to take advantage of the juxtaposition of the L = 4.6 contour, and the Hawaii-Halley, Antarctica, great circle path as it passes over thick Antarctic ice shelf. The ice sheet conductivity leads to high sensitivity to changing D region conditions, and the quasi constant L shell highlights outer radiation belt processes. The ground-based instruments observed several energetic electron precipitation events over a moderately active 24 h period, during which the outer radiation belt electron flux declined at most energies and subsequently recovered. Combining the ground-based data with low and geosynchronous orbiting satellite observations on 27 February 2012, different driving mechanisms were observed for three precipitation events with clear signatures in phase space density and electron anisotropy. Comparison between flux measurements made by Polar-orbiting Operational Environmental Satellites (POES) in low Earth orbit and by the Antarctic instrumentation provides evidence of different cases of weak and strong diffusion into the bounce loss cone, helping to understand the physical mechanisms controlling the precipitation of energetic electrons into the atmosphere. Strong diffusion events occurred as the bounce loss cone. Two events had a factor of about 3 to 10 times more >30 keV flux than was reported by POES, more consistent with strong diffusion conditions.

  5. Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail flow-reversal events

    Science.gov (United States)

    Christon, S. P.; Gloeckler, G.; Williams, D. J.; Mukai, T.; Mcentire, R. W.; Jacquey, C.; Angelopoulos, V.; Lui, A. T. Y.; Kokubun, S.; Fairfield, D. H.

    1994-01-01

    Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.

  6. Transport theory for energetic alpha particles and tolerable magnitude of error fields in tokamaks with broken symmetry

    International Nuclear Information System (INIS)

    Shaing, K.C.; Hsu, C.T.

    2014-01-01

    A transport theory for energetic fusion born alpha particles in tokamaks with broken symmetry has been developed. The theory is a generalization of the theory for neoclassical toroidal plasma viscosity for thermal particles in tokamaks. It is shown that the radial energy transport rate can be comparable to the slowing down rate for energetic alpha particles when the ratio of the typical magnitude of the perturbed magnetic field strength to that of the equilibrium magnetic field strength is of the order of 10 −4 or larger. This imposes a constraint on the magnitude of the error fields in thermonuclear fusion reactors. The implications on stellarators as potential fusion reactors are also discussed. (paper)

  7. An Analysis of Conjugate Ground-based and Space-based Measurements of Energetic Electrons during Substorms

    Science.gov (United States)

    Sivadas, N.; Semeter, J. L.

    2015-12-01

    Substorms within the Earth's magnetosphere release energy in the form of energetic charged particles and several kinds of waves within the plasma. Depending on their strength, satellite-based navigation and communication systems are adversely affected by the energetic charged particles. Like many other natural phenomena, substorms can have a severe economic impact on a technology-driven society such as ours. Though energization of charged particles is known to occur in the magnetosphere during substorms, the source of this population and its relation to traditional acceleration region dynamics, are not completely understood. Combining measurements of energetic charged particles within the plasmasheet and that of charged particles precipitated in to the ionosphere will provide a better understanding of the role of processes that accelerate these charged particles. In the current work, we present energetic electron flux measured indirectly using data from ground-based Incoherent Scatter Radar and that measured directly at the plasmasheet by the THEMIS spacecraft. Instances of low-altitude-precipitation observed from ground suggest electrons of energy greater than 300 keV, possibly arising from particle injection events during substorms at the magnetically conjugate locations in the plasmasheet. The differences and similarities in the measurements at the plasmasheet and the ionosphere indicate the role different processes play in influencing the journey of these energetic particles form the magnetosphere to the ionosphere. Our observations suggest that there is a lot more to be understood of the link between magnetotail dynamics and energetic electron precipitation during substorms. Understanding this may open up novel and potentially invaluable ways of diagnosing the magnetosphere from the ground.

  8. Acceleration, Transport, Forecasting and Impact of solar energetic particles in the framework of the 'HESPERIA' HORIZON 2020 project

    Science.gov (United States)

    Malandraki, Olga; Klein, Karl-Ludwig; Vainio, Rami; Agueda, Neus; Nunez, Marlon; Heber, Bernd; Buetikofer, Rolf; Sarlanis, Christos; Crosby, Norma

    2017-04-01

    High-energy solar energetic particles (SEPs) emitted from the Sun are a major space weather hazard motivating the development of predictive capabilities. In this work, the current state of knowledge on the origin and forecasting of SEP events will be reviewed. Subsequently, we will present the EU HORIZON2020 HESPERIA (High Energy Solar Particle Events foRecastIng and Analysis) project, its structure, its main scientific objectives and forecasting operational tools, as well as the added value to SEP research both from the observational as well as the SEP modelling perspective. The project addresses through multi-frequency observations and simulations the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space to the detection near 1 AU. Furthermore, publicly available software to invert neutron monitor observations of relativistic SEPs to physical parameters that can be compared with space-borne measurements at lower energies is provided for the first time by HESPERIA. In order to achieve these goals, HESPERIA is exploiting already available large datasets stored in databases such as the neutron monitor database (NMDB) and SEPServer that were developed under EU FP7 projects from 2008 to 2013. Forecasting results of the two novel SEP operational forecasting tools published via the consortium server of 'HESPERIA' will be presented, as well as some scientific key results on the acceleration, transport and impact on Earth of high-energy particles. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  9. PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herbert L.

    2014-05-23

    The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.

  10. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    International Nuclear Information System (INIS)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C.; Aran, A.; Gómez-Herrero, R.; Dresing, N.; Heber, B.

    2013-01-01

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ – (φ – φ 0 ) 2 /2σ 2 ], where φ is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, φ 0 is the distribution centroid, and σ determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R –α with α 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  11. The magnitude and effects of extreme solar particle events

    Directory of Open Access Journals (Sweden)

    Jiggens Piers

    2014-06-01

    Full Text Available The solar energetic particle (SEP radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm−2 as a function of particle energy (in MeV. This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads, non-ionising energy loss (MeV g−1, single event upsets (upsets/bit and the dose in humans compared to established limits for stochastic (or cancer-causing effects and tissue reactions (such as acute radiation sickness in humans given in grey-equivalent and sieverts respectively.

  12. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.

    2017-01-01

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  13. ENERGETIC PARTICLE TRANSPORT ACROSS THE MEAN MAGNETIC FIELD: BEFORE DIFFUSION

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom)

    2017-01-10

    Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.

  14. Simulation of charge generation and transport in semi-conductors under energetic-particle bombardment

    International Nuclear Information System (INIS)

    Martin, R.C.

    1990-01-01

    The passage of energetic ions through semiconductor devices generates excess charge which can produce logic upset, memory change, and device damage. This single event upset (SEU) phenomenon is increasingly important for satellite communications. Experimental and numerical simulation of SEUs is difficult because of the subnanosecond times and large charge densities within the ion track. The objective of this work is twofold: (1) the determination of the track structure and electron-hole pair generation profiles following the passage of an energetic ion; (2) the development and application of a new numerical method for transient charge transport in semiconductor devices. A secondary electron generation and transport model, based on the Monte Carlo method, is developed and coupled to an ion transport code to simulate ion track formation in silicon. A new numerical method is developed for the study of transient charge transport. The numerical method combines an axisymmetric quadratic finite-element formulation for the solution of the potential with particle simulation methods for electron and hole transport. Carrier transport, recombination, and thermal generation of both majority and minority carriers are included. To assess the method, transient one-dimensional solutions for silicon diodes are compared to a fully iterative finite-element method. Simulations of charge collection from ion tracks in three-dimensional axisymmetric devices are presented and compared to previous work. The results of this work for transient current pulses following charged ion passage are in agreement with recent experimental data

  15. NUMERICAL STUDY OF THE LONGITUDINALLY ASYMMETRIC DISTRIBUTION OF SOLAR ENERGETIC PARTICLES IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    He, H.-Q.; Wan, W., E-mail: hqhe@mail.iggcas.ac.cn, E-mail: wanw@mail.iggcas.ac.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2015-06-22

    Solar energetic particles (SEPs) affect the solar–terrestrial space environment and are very important to space weather research. In this work, we numerically investigate the transport processes of SEPs in the three-dimensional interplanetary magnetic field, with an emphasis on the longitudinal distribution of SEPs in the heliosphere. We confirm our previous finding that there exists an east–west longitudinal asymmetry in the SEP intensities, i.e., with the same longitude separations between the solar source centers and the magnetic footpoint of the observer, the fluxes of SEP events originating from solar sources located on the eastern side of the nominal magnetic footpoint of the observer are systematically larger than those of the SEP events originating from sources located on the western side. We discuss the formation mechanism of this phenomenon, and conclude that the longitudinally asymmetric distribution of SEPs results from the east–west azimuthal asymmetry in the topology of the heliospheric magnetic field as well as the effects of perpendicular diffusion on the transport of SEPs in the heliosphere. Our results will be valuable to understanding Sun–Earth relations and useful for space weather forecasting.

  16. Simultaneous Modeling of Gradual SEP Events at the Earth and the Mars

    Science.gov (United States)

    Hu, J.; Li, G.

    2017-12-01

    Solar Energetic Particles (SEP) event is the number one space hazard for spacecraft instruments and astronauts' safety. Recent studies have shown that both longitudinal and radial extent of SEP events can be very significant. In this work, we use the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model to simulate gradual SEP events that have impacts upon both the Earth and the Mars. We follow the propagation of a 2D CME-driven shock. Particles are accelerated at the shock via the diffusive shock acceleration (DSA) mechanism. Transport of the escaped particles to the Earth and the Mars is then followed using a backward stochastic differential equation method. Perpendicular diffusion is considered in both the DSA and the transport process. Model results such as time intensity profile and energetic particle spectrum at the two locations are compared to understand the spatial extent of an SEP event. Observational data at the Earth and the Mars are also studied to validate the model.

  17. Energy Dispersion in Solar Ion Events over 4 Orders of Magnitude: SOHO/COSTEP and Wind/STICS

    Science.gov (United States)

    Kunow, Horst W.; Posner, A.

    2003-07-01

    The ma jority of solar particle events in the COSTEP observational range of 4 75 MeV/n reveals nucleon energy disp ersion (NED), implying a flare-associated particle acceleration mechanism. Towards lower energies, the situation changes somewhat. Only in a minority of solar energetic particle (SEP) events can the effect of NED be followed into the lower keV range. We analyse the reasons for the distinctly different types of particle transport of >10 keV suprathermal up to 100 MeV energetic ions and conclude that the mean free path depends on rigidity.

  18. Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Fu, G.Y.; Breslau, J.; Fredrickson, E.; Park, W.; Strauss, H.R.

    2004-01-01

    Global hybrid simulations of energetic particle-driven MHD modes have been carried out for tokamaks and spherical tokamaks using the hybrid code M3D. The numerical results for the National Spherical Tokamak Experiments (NSTX) show that Toroidal Alfven Eigenmodes are excited by beam ions with their frequencies consistent with the experimental observations. Nonlinear simulations indicate that the n=2 mode frequency chirps down as the mode moves out radially. For ITER, it is shown that the alpha-particle effects are strongly stabilizing for internal kink mode when central safety factor q(0) is sufficiently close to unity. However, the elongation of ITER plasma shape reduces the stabilization significantly

  19. Particle acceleration and production of energetic photons in SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor; Harding, Alice

    1987-09-24

    Young supernova remnants are likely to be bright sources of energetic photons and neutrinos through the collision of particles accelerated inside the remnant. Interactions of accelerated particles in the expanding envelope or in ambient radiation fields will also produce secondary photons and neutrinos at some level. If > 10/sup 39/ erg s/sup -1/ in protons above 10 TeV is injected into the target region, TeV photons from SN1987A could be observable with present detectors. Synchrotron X rays and ..gamma..-rays up to 10 MeV, generated by accelerated electrons, may well also be detectable. The authors discuss a pulsar wind model for acceleration of particles, and find that it would produce observable signals if the spin period of the pulsar is <10 ms.

  20. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  1. A coordinated two-satellite study of energetic electron precipitation events

    International Nuclear Information System (INIS)

    Imhof, W.L.; Nakano, G.H.; Gaines, E.E.; Reagan, J.B.

    1975-01-01

    A new technique for studying the spatial/temporal variations of energetic electron precipitation events is investigated. Data are presented in which precipitating electrons were measured simultaneously on two coordinated polar-orbiting satellites and the bremsstrahlung produced by the electrons precipitating into the atmosphere was observed from one of the satellites. Two electron spectrometers measuring the intensities and energy spectra of electrons of >130 keV were located on the oriented satellite 1971-089A (altitude, approx. =800 km), whereas a single similar spectrometer measuring electrons of >160 keV was located on the spinning low-altitude (approx.750 km) satellite 1972-076B. The X rays of >50 keV were measured with a 50-cm 3 germanium spectrometer placed on the 1972-076B satellite. With the coordinated data a study is made of events in which large fluctuations were observed in the precipitating energetic electron intensities. In the examples presented the satellite X ray data alone demonstrate that the spatially integrated electron influx was constant in time, and when the X ray data are combined with the direct electron measurements from the two satellites, the resulting data suggest that the major features in the flux profiles were primarily spatial in nature. The combination of X ray and electron measurements from two satellites is shown to provide an important method for studying and attempting to resolve spatial and temporal effects

  2. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    Science.gov (United States)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  3. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  4. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  5. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  6. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  7. Destabilization of low mode number Alfven modes in a tokamak by energetic or alpha particles

    International Nuclear Information System (INIS)

    Tsang, K.T.; Sigmar, D.J.; Whitson, J.C.

    1980-12-01

    With the inclusion of finite Larmor radius effects in the shear Alfven eigenmode equation, the continuous Alfven spectrum, which has been extensively discussed in ideal magnetohydrodynamics, is removed. Neutrally stable, discrete radial eigenmodes appear in the absence of sources of free energy and dissipation. Alpha (or energetic) particle toroidal drifts destabilize these modes, provided the particles are faster than the Alfven speed. Although the electron Landu resonance contributes to damping, a stability study of the parametric variation of the energy and the density scale length of the energetic particles shows that modes with low radial mode numbers remain unstable in most cases. Since the alpha particles are concentrated in the center of the plasma, this drift-type instability suggests anomalous helium ash diffusion. Indeed, it is shown that stochasticity of alpha orbits due to the overlapping of radially neighboring Alfven resonances is induced at low amplitudes, e/sub i//sup approx./phi/T/sub i/ greater than or equal to 0.05, implying a diffusion coefficient D/sub r//sup α/ greater than or equal to 4.4 x 10 3 cm 2 /s

  8. Acceleration and propagation of energetic particles in the solar corona: from RHESSI data analysing to the preparation of the STIX tool operations on Solar Orbiter

    International Nuclear Information System (INIS)

    Musset, S.

    2016-01-01

    The Sun is an active star and one manifestation of its activity is the production of solar flares. It is currently admitted that solar flares are caused by the release of magnetic energy during the process of magnetic reconnection in the solar upper atmosphere, the solar corona. During these flares, a large fraction of the magnetic energy is transferred to the acceleration of particles (electrons and ions). However, the details of particle acceleration during flares are still not completely understood. Several scenarios and models have been developed to explain particle acceleration. In some of them, electric fields, produced at the location of current sheets, which can be fragmented or collapsing, and which are preferentially located on quasi-separatrix layers (QSLs), are accelerating particles. To investigate a possible link between energetic particles and direct electric fields produced at current sheet locations, we looked for a correlation between X-ray emission from energetic electrons and electric currents which can be measured at the photospheric level. We used the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI) data to produce spectra and images of the X-ray emissions during GOES X-class flares, and spectro polarimetric data from the Helio seismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) to calculate the vertical current densities from the reconstructed 3D vector magnetic field. A correlation between the coronal X-ray emissions (tracing the energetic electrons near the acceleration site) and the strong current ribbons at the photospheric level (tracing the coronal current sheet) was found in the five studied X-class flares. Moreover, thanks to the 12-minute time cadence of SDO/HMI, we could study for the first time the time evolution of electric currents : in several flares, a change in the current intensity, occurring during the flare peak, was found to be spatially correlated with X-ray emission sites. These

  9. SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F.; Telloni, D.; Zurbuchen, T. H.; Weberg, M.

    2013-01-01

    In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

  10. Lightweight energetic particle detector EPONA and its performance on Giotto

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.; Kirsch, E.; Thompson, A.; O' Sullivan, D.; Wenzel, K.-P.

    1987-06-01

    A lightweight energetic particle detector system (EPONA/EPA) is described which was designed to operate in those novel environmental conditions (i) characterised by the varying solar aspect angles and temperatures pertaining during the cruise phase of the Giotto spacecraft and (ii) during the dust bombardment characterising closest approach (approx. 600 km) to the nucleus of comet Halley. Representative data, illustrating the functioning of EPONA during both the Giotto cruise phase and at comet encounter, are represented. The instrument has a wide range of applications to other space experiments where reliable plasma diagnostics are required.

  11. OCCURRENCE OF EXTREME SOLAR PARTICLE EVENTS: ASSESSMENT FROM HISTORICAL PROXY DATA

    International Nuclear Information System (INIS)

    Usoskin, Ilya G.; Kovaltsov, Gennady A.

    2012-01-01

    The probability of occurrence of extreme solar particle events (SPEs) with proton fluence (>30 MeV) F 30 ≥ 10 10 cm –2 is evaluated based on data on the cosmogenic isotopes 14 C and 10 Be in terrestrial archives covering centennial-millennial timescales. Four potential candidates with F 30 = (1-1.5) × 10 10 cm –2 and no events with F 30 > 2 × 10 10 cm –2 are identified since 1400 AD in the annually resolved 10 Be data. A strong SPE related to the Carrington flare of 1859 AD is not supported by the data. For the last 11,400 years, 19 SPE candidates with F 30 = (1-3) × 10 10 cm –2 are found and clearly no event with F 30 > 5 × 10 10 cm –2 (50 times the SPE of 1956 February 23) has occurred. These values serve as observational upper limits on the strength of SPEs on the timescale of tens of millennia. Two events, ca. 780 and 1460 AD, appear in different data series making them strong candidates for extreme SPEs. We build a distribution of the occurrence probability of extreme SPEs, providing a new strict observational constraint. Practical limits can be set as F 30 ≈ 1, 2-3, and 5×10 10 cm –2 for occurrence probabilities ≈10 –2 , 10 –3 , and 10 –4 yr –1 , respectively. Because of the uncertainties, our results should be interpreted as a conservative upper limit on the SPE occurrence near Earth. The mean solar energetic particle (SEP) flux is evaluated as ≈40 (cm 2 s) –1 , in agreement with estimates from lunar rocks. On average, extreme SPEs contribute about 10% to the total SEP fluence.

  12. SEL monitoring of the earth's energetic particle radiation environment

    International Nuclear Information System (INIS)

    Sauer, H.H.

    1989-01-01

    The Space Environment Laboratory (SEL) of the National Oceanic and Atmospheric Administration (NOAA) maintains instruments on board the GOES series of geostationary satellites, and aboard the NOAA/TIROS series of low-altitude, polar-orbiting satellites, which provide monitoring of the energetic particle radiation environment as well as monitoring the geostationary magnetic field and the solar x-ray flux. The data are used by the SEL Space Environment Services Center (SESC) to help provide real-time monitoring and forecasting of the state of the near earth environment and its disturbances, and to maintain a source of reliable information to research and operational activities of a variety of users

  13. Influence of resistivity on energetic trapped particle-induced internal kink modes

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1986-01-01

    The influence of resistivity on energetic trapped particle-induced internal kink modes, dubbed ''fishbones'' in the literature, is explored. A general dispersion relation, which recovers the ideal theory in its appropriate limit, is derived and analyzed. An important implication of the theory for present generation fusion devices such as the Joint European Torus [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, London, 1984), Vol I, p.11] is that they will be stable to fishbone activity

  14. New Measurements of Suprathermal Ions, Energetic Particles, and Cosmic Rays in the Outer Heliosphere from the New Horizons PEPSSI Instrument

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Spencer, J. R.

    2017-12-01

    During the period from January 2012 to December 2017 the New Horizons spacecraft traveled from 22 to 41 AU from the Sun, making nearly continuous interplanetary plasma and particle measurements utilizing the SWAP and PEPSSI instruments. We report on newly extended measurements from PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation) that now bring together suprathermal particles above 2 keV/nuc (including interstellar pickup ions), energetic particles with H, He, and O composition from 30 keV to 1 MeV, and cosmic rays above 65 MeV (with effective count-rate-limited upper energy of 1 GeV). Such a wide energy range allows us to look at the solar wind structures passing over the spacecraft, the energetic particles that are often accelerated by these structures, and the suppression of cosmic rays resulting from the increased turbulence inhibiting cosmic ray transport to the spacecraft position (i.e., Forbush decreases). This broad perspective provides simultaneous, previously unattainable diagnostics of outer heliospheric particle dynamics and acceleration. Besides the benefit of being recent, in-ecliptic measurements, unlike the historic Voyager 1 and 2 spacecraft, these PEPSSI observations are also totally unique in the suprathermal range; in this region only PEPSSI can span the suprathermal range, detecting a population that is a linchpin to understanding the outer heliosphere.

  15. Recent Observations of Energetic Particles from the Voyager Spacecraft

    Science.gov (United States)

    Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.; Webber, W. R.

    2013-05-01

    The Voyager spacecraft have been exploring the heliosheath since their crossings of the solar wind termination shock on December 2004 (Voyager 1) and August 2007 (Voyager 2). Starting on 7 May 2012, dramatic short-term changes in the intensities of heliospheric particles and galactic cosmic rays have been occurring periodically at Voyager 1. In July, a series of encounters with a heliospheric depletion region occurred, culminating on 25 August 2012 with the durable entry into the region by Voyager 1 (durable at least through the time of this writing in early February 2012). This depletion region is characterized by the disappearance of particles accelerated in the heliosphere, the anomalous cosmic rays and termination shock particles, and the increased intensity of galactic cosmic ray nuclei and electrons. The result is that the low-energy part of the galactic cosmic ray spectra is being revealed for the first time. Data from the magnetometer experiment on Voyager 1 implies that the spacecraft is not yet in the interstellar medium, but it apparently has a good connection path to it. At Voyager 2, dramatic changes haven't occurred but there are longer-term trends in the intensities that are different from what were observed on Voyager 1. We will report on the recent observations of energetic particles from both spacecraft. This work was supported by NASA under contract NNN12AA012.

  16. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  17. Investigation of the impact of extraterrestrial energetic particles on stratospheric nitrogen compounds and ozone on the basis of three dimensional model studies

    Energy Technology Data Exchange (ETDEWEB)

    Wieters, Nadine

    2013-06-17

    As a result of solar events like Coronal Mass Ejections (CMEs) and solar flares, highly energetic charged particles including protons and electrons can precipitate in the direction of the Earth. Having sufficient energies, these particles can penetrate down to the middle atmosphere and lead to a change in the chemical composition of the atmosphere. In particular during strong events, these charged particles induce an ionisation in the atmosphere that can reach down to the lower stratosphere. This ionisation is followed by a fast positive ion chemistry that causes a strong increase in reactive HO{sub x} (H,OH,HO{sub 2}) an NO{sub x} (N,NO,NO{sub 2}). HO{sub x} and NO{sub x} constituents eventually destroy O{sub 3} in catalytical reaction cycles. Furthermore, NO{sub x} is long-lived during polar winter and can be transported into the middle and lower stratosphere, where it can contribute to the O{sub 3} depletion. The increase in NO{sub x} in the upper and middle atmosphere due to solar events and the consequential depletion of O{sub 3} has been observed as during the Solar Proton Event (SPE) in October/November 2003 by satellite instruments. In atmospheric models, the generation of HO{sub x} and NO{sub x} can be well described by parametrisations to include in neutral models. Whereas other changes, for instance in chlorine compounds, can not be described sufficiently by this parametrisation. The purpose of this PhD thesis is, to investigate the impact of strong solar particle events on the abundance in NO{sub x} and O{sub 3} in the stratosphere and mesosphere on the basis of three-dimensional model studies. For this purpose a three-dimensional Chemistry and Transport Model (CTM) has been extended to the upper atmosphere (lower thermosphere). To include the processes in the mesosphere and lower thermosphere a new meteorological data set has been implemented to the model. To describe the ionising effect of energetic particle on the atmosphere, three

  18. Energetic particle physics in JT-60U and JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Takechi, M [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Ishikawa, M [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Kusama, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Tsuzuki, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Urata, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Kawashima, H [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Tobita, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Fukuyama, A [Department of Nuclear Engineering, Kyoto University, 606-8501, (Japan); Cheng, C Z [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Darrow, D S [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gorelenkov, N N [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Todo, Y [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu, 509-5292, (Japan); Miura, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Ozeki, T [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan)

    2004-07-01

    Recent energetic particle physics research in JT-60U and JFT-2M is reported. Alfven eigenmodes (AEs) are investigated in reversed-shear (RS) plasmas in JT-60U where frequency sweeping (FS) modes are observed to follow the q-profile evolution. The RS-induced AE model can explain the FS of the modes within the context of an evolving q-profile. Enhanced energetic ion transport is also investigated with the appearance of modes in the toroidicity-induced AE range of frequency in JT-60U using a multi-channel neutron profile monitor and in JFT-2M using a lost ion probe. Additionally, the ripple loss in the complex toroidal field ripple due to ferritic steel inserts in JFT-2M is shown and compared with model analysis. The simulation code developed to predict ripple loss in JFT-2M will be of use in estimating the heat flux in the complex ripple field of a future device such as ITER.

  19. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    Science.gov (United States)

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  20. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  1. EDITORIAL: Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    Science.gov (United States)

    Kolesnichenko, Ya.

    2010-08-01

    The history of fusion research resembles the way in which one builds skyscrapers: laying the first foundation stone, one thinks about the top of the skyscraper. At the early stages of fusion, when it became clear that the thermonuclear reactor would operate with DT plasma confined by the magnetic field, the study of the `top item'—the physics of 3.5 MeV alpha particles produced by the DT fusion reaction—was initiated. The first publications on this topic appeared as long ago as the 1960s. At that time, because the physics of alpha particles was far from the experimental demand, investigations were carried out by small groups of theoreticians who hoped to discover important and interesting phenomena in this new research area. Soon after the beginning of the work, theoreticians discovered that alpha particles could excite various instabilities in fusion plasmas. In particular, at the end of the 1960s an Alfvén instability driven by alpha particles was predicted. Later it turned out that a variety of Alfvén instabilities with very different features does exist. Instabilities with perturbations of the Alfvénic type play an important role in current experiments; it is likely that they will affect plasma performance in ITER and future reactors. The first experimental manifestation of instabilities excited by superthermal particles in fusion devices was observed in the PDX tokamak in 1983. In this device a large-scale instability—the so called `fishbone instability'—associated with ions produced by the neutral beam injection resulted in a loss of a large fraction of the injected energy. Since then, the study of energetic-ion-driven instabilities and the effects produced by energetic ions in fusion plasmas has attracted the growing attention of both experimentalists and theorists. Recognizing the importance of this topic, the first conference on fusion alpha particles was held in 1989 in Kyiv under the auspices of the IAEA. The meeting in Kyiv and several

  2. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    Science.gov (United States)

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Sibeck, David G.; Turner, Drew L.; Fennell, Joseph F.; Blake, J. Bern; Jaynes, Allison N.; Leonard, Trevor W.; Baker, Daniel N.; Spence, Harlan E.; Reeves, Geoff D.; Giles, Barbara J.; Strangeway, Robert J.; Torbert, Roy B.; Burch, James L.

    2017-09-01

    Observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observations beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.

  3. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    International Nuclear Information System (INIS)

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Sibeck, David G.

    2017-01-01

    Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observations beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.

  4. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  5. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    Science.gov (United States)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  6. Destabilization of low-n peeling modes by trapped energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Hao, G. Z.; Wang, A. K.; Mou, Z. Z.; Qiu, X. M. [Southwestern Institute of Physics, PO Box 432, Chengdu 610041 (China); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Matsunaga, G. [Japan Atomic Energy Agency, 801-1, Mukouyama, Naka, Ibaraki 311-0193 (Japan); Okabayashi, M. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543-0451 (United States)

    2013-06-15

    The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n=6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value β{sub c}{sup *}, which is sensitive to the pitch angle of trapped EPs. The dependence of β{sub c}{sup *} on the particle pitch angle is eventually determined by the bounce average of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs.

  7. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from 
    X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was

  8. One-dimensional energetic particle quasilinear diffusion for realistic TAE instabilities

    Science.gov (United States)

    Duarte, Vinicius; Ghantous, Katy; Berk, Herbert; Gorelenkov, Nikolai

    2014-10-01

    Owing to the proximity of the characteristic phase (Alfvén) velocity and typical energetic particle (EP) superthermal velocities, toroidicity-induced Alfvén eigenmodes (TAEs) can be resonantly destabilized endangering the plasma performance. Thus, it is of ultimate importance to understand the deleterious effects on the confinement resulting from fast ion driven instabilities expected in fusion-grade plasmas. We propose to study the interaction of EPs and TAEs using a line broadened quasilinear model, which captures the interaction in both regimes of isolated and overlapping modes. The resonance particles diffuse in the phase space where the problem essentially reduces to one dimension with constant kinetic energy and the diffusion mainly along the canonical toroidal angular momentum. Mode structure and wave particle resonances are computed by the NOVA code and are used in a quasilinear diffusion code that is being written to study the evolution of the distribution function, under the assumption that they can be considered virtually unalterable during the diffusion. A new scheme for the resonant particle diffusion is being proposed that builds on the 1-D nature of the diffusion from a single mode, which leads to a momentum conserving difference scheme even when there is mode overlap.

  9. Interactions of energetic particles and clusters with solids

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Benedek, R.

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and ''cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs

  10. Reconstructing particle masses in events with displaced vertices

    Science.gov (United States)

    Cottin, Giovanna

    2018-03-01

    We propose a simple way to extract particle masses given a displaced vertex signature in event topologies where two long-lived mother particles decay to visible particles and an invisible daughter. The mother could be either charged or neutral and the neutral daughter could correspond to a dark matter particle in different models. The method allows to extract the parent and daughter masses by using on-shell conditions and energy-momentum conservation, in addition to the displaced decay positions of the parents, which allows to solve the kinematic equations fully on an event-by-event basis. We show the validity of the method by means of simulations including detector effects. If displaced events are seen in discovery searches at the Large Hadron Collider (LHC), this technique can be applied.

  11. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  12. A parametric study of the dynamic failure of energetic composites

    Science.gov (United States)

    Tanasoiu, Bogdan; Koslowski, Marisol

    2017-09-01

    Heating by frictional sliding of cracks is often considered to be one of the most important causes of localized melting and ignition in solid explosives. Furthermore, recent high speed X-ray phase contrast experiments on energetic composites under dynamic compression [Parab et al., Appl. Phys. Lett. 109(13) (2016)] show that most fracture events appear inside the particles. Initial cracks develop in regions where particles are close, and widespread fragmentation is observed in the interior of the particles as the stress waves propagate through the sample. However, most simulations have focused on interface debonding of energetic composites and, in general, do not include fracture of the particles explicitly. A phase field damage approach is used to model the dynamic response of a system of cyclotetramethylene-tetranitramine particles embedded in a Sylgard matrix. The simulations show several damage mechanisms observed in the experiments. The effects of the energy release rate and the initial crack distribution on the energy dissipation due to fracture are studied. The numerical results confirm that initial cracks play an important role in the evolution of damage, energy dissipation and consequently, the formation of hot-spots.

  13. Effects of energetic particle precipitation on the atmospheric electric circuit

    International Nuclear Information System (INIS)

    Reagan, J.B.; Meyerott, R.E.; Evans, J.E.; Imhof, W.L.; Joiner, R.G.

    1983-01-01

    The solar particle event (SPE) of August 1972 is one of the largest that has occurred in the last 20 years. Since it is so well documented, it can serve as a good example of a major perturbation to the atmospheric electric system. In this paper, ion production rates and conductivities from the ground to 80 km at the peak intensity of the event on August 4 and for 30, 35, and 40 km for the 6-day duration of the event are presented. At the peak of the event, the proton and electron precipitation currents, the ohmic current, and the vertical electric field are calculated inside the polar cap. The particle precipitation currents at this time greatly exceed the normal air earth current at altitudes above 30 km and produce reversals in the vertical electric field at 28 km and above. Calculations are presented of the vertical electric field at altitudes near 30 km where balloon measurements were made. Good agreement between the calculated and the measured vertical electric field verifies our ability to calculate disturbed conductivities at these altitudes from satellite measurements of proton spectra incident on the atmosphere. Despite the fact that at the peak of the event the vertical electric field near 30 km was shorted out by the solar particles and that the current carried by the solar particles exceeded the fair weather air-earth current density in the stratosphere by large factors, it is concluded that the largest effect of an SPE of this magnitude on the atmospheric electric circuit is due to the Forbush decrease in the galactic cosmic ray flux rather than to the large increase in solar proton flux

  14. Energy dependence and temporal evolution of the 3He/4He ratios in heavy-ion-rich energetic particle events

    International Nuclear Information System (INIS)

    Moebius, E.; Hovestadt, D.; Klecker, B.; Gloeckler, G.

    1980-01-01

    The energy dependence of the 3 He/ 4 He ratio between 0.44 and 4.1 MeV per nucleon has been studied for six heavy-ion--rich events observed in 1974 and 1976 using the low-energy dE/dx versus E Ultralow-Energy Particle telescope (ULET) on IMP 8. We find that all selected heavy-ion--rich events are also enriched in 3 He, that the 3 He/ 4 He He ratio decreases with decreasing energies, and that a rapid temporal evolution of the 3 He/ 4 He and the Fe/(H+He) ratios is strongly correlated during one event with the maximum value at the onset. These results are discussed in terms of a model which is based on preferential injection of 3 He and Fe resulting from turbulent ion heating and subsequent Fermi acceleration

  15. Search for new phenomena in events with a highly energetic jet and missing transverse momentum with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387867

    This thesis present the search for new phenomena in events with a highly energetic jet and large missing transverse momentum at ATLAS with data collected in Run 2 during 2015 and 2016 corresponding to 36.1 fb-1. This search, also referred to as 'monojet search' exhibits a unique sensitivity to BSM models predicting heavy particles that may escape the detector untraced. If an object, such as a jet, recoils against these particles a monojet signature is produced. The search exploits the discrimination power of the E_{T}^{miss} spectrum between background and BSM signals. The E_{T}^{miss} spectrum is fitted in 10 bins in four orthogonal control regions simultaneously to estimate the background contribution in the signal region and determine the probability of various signal hypothesis from the observed data distribution. The fit model relies on state of the art theory predictions concerning NLO QCD and nNLO EW corrections to the major V+jets backgrounds and uses as well data driven techniques. Therefore, the pr...

  16. Thermal and nonthermal particle production without event horizons

    International Nuclear Information System (INIS)

    Sanchez, N.

    1979-01-01

    Usually, particle production in accelerated frames is discussed in connection with the presence of event horizons and with a planckian spectrum. Accelerated frames without event horizons, where particle production takes place with thermal as well as nonthermal distributions, are constructed. (Auth.)

  17. Catalog of solar particle events 1955--1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This catalog, which is a common enterprise of solar physicists and space scientists, consists of three parts. The first part contains a complete list of 732 particle events of solar origin recorded at the Earth or in space from the first PCA observation in 1955 up to the end of 1969; it thus covers two solar cycle maxima. Each particle event is described in detail by using many unpublished data, kindly made available by more than 20 space scientists. A group of solar experts has tried to look up the source, or alternative sources, of each particle event on the Sun. These sources (with estimates of ''certainty'') are presented, and all the flares which have been considered to be obvious or probable sources of the particle events are summarized in the second part of the catalog, with a description of their characteristic features in the optical, radio, and X-ray spectral range. Finally, the third part describes the active regions in which these flares occurred, including magnetic field maps, plage and sunspot group configurations, flare positions (often with flare photographs), data on the active region development, and bibliography

  18. Fast-ion response to energetic-particle-driven MHD activity in Heliotron J

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, S.; Yamamoto, S.; Mizuuchi, T.; Nagasaki, K.; Okada, H.; Minami, T.; Hanatani, K.; Konoshima, S.; Ohshima, S.; Toushi, K.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji (Japan); Nagaoka, K.; Suzuki, Y.; Takeiri, Y.; Yokoyama, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Murakami, S. [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Lee, H.Y.; Nakamura, Y.; Hosaka, K. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji (Japan)

    2010-08-15

    In Heliotron J, low magnetic shear configuration, instabilities with frequency chirping in the frequency range of Alfven eigenmodes have been observed in tangentially injected neutral beam plasmas. These modes are induced by energetic-particle driven magnetohydrodynamic (MHD) instabilities such as global Alfven eigenmode or energetic particle mode. A hybrid directional Langmuir probe system has been installed into Heliotron J to investigate the response of fast-ion fluxes to the MHD modes. A high coherent response of the ion flux to the bursting modes has been observed not only by the co-directed probe but also by the counter-directed one. A linear correlation between the response of the co-directed ion flux and the mode amplitude has been found. The radial profile of the response of the co-directed ions has decreased with the minor radius and has not been obtained significantly outside last closed flux surface. These results indicate that the fast-ion response is due to a resonant convective oscillation. The ion flux response of the counter-directed probe has appeared in the growth phase of the mode burst. Its phase relation is different from that of co-directed one and magnetic probe located at the Heliotron J vacuum vessel. Two candidates of the detected ion flux of the counter-directed probe have been discussed. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    Science.gov (United States)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; hide

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  20. Magnetosphere energetics during substorm events IMP 8 and Geotail observations

    CERN Document Server

    Belehaki, A

    2001-01-01

    Magnetospheric energetics during substorm events is studied in this paper. Three events were selected, a weak substorm, a large isolated one and finally a prolonged period of substorm activity with multiple intensifications. It is assumed that the energy, that entered the magnetosphere due to electromagnetic coupling with the solar wind, is described by the epsilon parameter, proposed by Perreault and Akasofu (1978). High resolution, magnetic field and plasma data from the MGF and LEP experiments on board Geotail were analyzed to determine the timing of plasmoid release, its dimensions, its convection velocity and finally the energy carried by each plasmoid. Plasmoids were defined as structures with rotating magnetic fields and enhanced total pressure. Tailward plasmoid bulk speed in the distant tail varied from 350 to 750 km/s. Their dimensions in the X/sub GSM/ direction was found to be from 4.5 to 28 R/sub E/, and their duration did not exceed 5 min. The average energy carried by each plasmoid in the dista...

  1. First order and second order fermi acceleration of energetic charged particles by shock waves

    International Nuclear Information System (INIS)

    Webb, G.M.

    1983-01-01

    Steady state solutions of the cosmic ray transport equation describing first order Fermi acceleration of energetic charged particles at a plane shock (without losses) and second order Fermi acceleration in the downstream region of the shock are derived. The solutions for the isotropic part of the phase space distribution function are expressible as eigenfunction expansions, being superpositions of series of power law momentum spectra, with the power law indices being the roots of an eigenvalue equation. The above exact analytic solutions are for the case where the spatial diffusion coefficient kappa is independent of momentum. The solutions in general depend on the shock compression ratio, the modulation parameters V 1 L/kappa 1 , V 2 L/kappa 2 (V is the plasma velocity, kappa is the energetic particle diffusion coefficient, and L a characteristic length over which second order Fermi acceleration is effective) in the upstream and downstream regions of the shock, respectively, and also on a further dimensionless parameter, zeta, characterizing second order Fermi acceleration. In the limit as zeta→0 (no second order Fermi acceleration) the power law momentum spectrum characteristic of first order Fermi acceleration (depending only on the shock compression ratio) obtained previously is recovered. Perturbation solutions for the case where second order Fermi effects are small, and for realistic diffusion coefficients (kappainfinityp/sup a/, a>0, p = particle momentum), applicable at high momenta, are also obtained

  2. OCCURRENCE OF EXTREME SOLAR PARTICLE EVENTS: ASSESSMENT FROM HISTORICAL PROXY DATA

    Energy Technology Data Exchange (ETDEWEB)

    Usoskin, Ilya G. [Sodankylae Geophysical Observatory (Oulu unit) and Department of Physical Sciences, University of Oulu, FIN-90014 Oulu (Finland); Kovaltsov, Gennady A., E-mail: ilya.usoskin@oulu.fi [Ioffe Physical-Technical Institute of RAS, 194021 St. Petersburg (Russian Federation)

    2012-09-20

    The probability of occurrence of extreme solar particle events (SPEs) with proton fluence (>30 MeV) F{sub 30} {>=} 10{sup 10} cm{sup -2} is evaluated based on data on the cosmogenic isotopes {sup 14}C and {sup 10}Be in terrestrial archives covering centennial-millennial timescales. Four potential candidates with F{sub 30} = (1-1.5) Multiplication-Sign 10{sup 10} cm{sup -2} and no events with F{sub 30} > 2 Multiplication-Sign 10{sup 10} cm{sup -2} are identified since 1400 AD in the annually resolved {sup 10}Be data. A strong SPE related to the Carrington flare of 1859 AD is not supported by the data. For the last 11,400 years, 19 SPE candidates with F{sub 30} = (1-3) Multiplication-Sign 10{sup 10} cm{sup -2} are found and clearly no event with F{sub 30} > 5 Multiplication-Sign 10{sup 10} cm{sup -2} (50 times the SPE of 1956 February 23) has occurred. These values serve as observational upper limits on the strength of SPEs on the timescale of tens of millennia. Two events, ca. 780 and 1460 AD, appear in different data series making them strong candidates for extreme SPEs. We build a distribution of the occurrence probability of extreme SPEs, providing a new strict observational constraint. Practical limits can be set as F{sub 30} Almost-Equal-To 1, 2-3, and 5 Multiplication-Sign 10{sup 10} cm{sup -2} for occurrence probabilities Almost-Equal-To 10{sup -2}, 10{sup -3}, and 10{sup -4} yr{sup -1}, respectively. Because of the uncertainties, our results should be interpreted as a conservative upper limit on the SPE occurrence near Earth. The mean solar energetic particle (SEP) flux is evaluated as Almost-Equal-To 40 (cm{sup 2} s){sup -1}, in agreement with estimates from lunar rocks. On average, extreme SPEs contribute about 10% to the total SEP fluence.

  3. Robustness and flexibility in compact quasiaxial stellarators: Global ideal MHD stability and energetic particle transport

    International Nuclear Information System (INIS)

    Redi, M.H.; Diallo, A.; Cooper, W.A.; Fu, G.Y.

    2000-01-01

    Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic stability is evaluated as well as energetic particle transport. It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviors is found for this large set of equilibria, exhibiting similar particle transport properties

  4. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    Science.gov (United States)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  5. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  6. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  7. Numerical and analytic models of spontaneous frequency sweeping for energetic particle-driven Alfven eigenmodes

    Science.gov (United States)

    Wang, Ge; Berk, H. L.

    2011-10-01

    The frequency chirping signal arising from spontaneous a toroidial Alfven eigenmode (TAE) excited by energetic particles is studied for both numerical and analytic models. The time-dependent numerical model is based on the 1D Vlasov equation. We use a sophisticated tracking method to lock onto the resonant structure to enable the chirping frequency to be nearly constant in the calculation frame. The accuracy of the adiabatic approximation is tested during the simulation which justifies the appropriateness of our analytic model. The analytic model uses the adiabatic approximation which allows us to solve the wave evolution equation in frequency space. Then, the resonant interactions between energetic particles and TAE yield predictions for the chirping rate, wave frequency and amplitudes vs. time. Here, an adiabatic invariant J is defined on the separatrix of a chirping mode to determine the region of confinement of the wave trapped distribution function. We examine the asymptotic behavior of the chirping signal for its long time evolution and find agreement in essential features with the results of the simulation. Work supported by Department of Energy contract DE-FC02-08ER54988.

  8. User's guide to data obtained by the Aerospace Corporation energetic particle spectrometer on ATS-6

    International Nuclear Information System (INIS)

    Paulikas, G.A.; Hilton, H.H.

    1977-01-01

    Descriptions of the energetic particle detector are offered with calibration data, as part of a user's guide to the data obtained by ATS 6. Information on instrumental and operational anomalies and a description of the procedures used to reduce the data are also presented, along with a description of the format of the data

  9. Energetic ions and electrons and their acceleration processes in the magnetotail

    International Nuclear Information System (INIS)

    Scholer, M.

    1984-01-01

    Observations of energetic particle fluxes in the geomagnetic tail show that these particles exhibit a bursty appearance on all time scales. Often, however, the bursty appearance is merely due to multiple entries and exits of the spacecraft into and out of the plasma sheet which always contains varying fluxes of energetic particles. Observations of the suprathermal and high-energy component of the plasma sheet are discussed, and observations are presented of energetic particle bursts in the plasma sheet proper, which may be due to a locally ongoing acceleration process. Also discussed are energetic particle phenomena occurring near the edge of the plasma sheet, either during thinning or during recovery. Some recent results from the ISEE 3 deep tail mission bearing on energetic particle acceleration are presented, and the present status of the theory of particle acceleration within the magnetotail is briefly reviewed. 40 references

  10. Nonlinear MHD and energetic particle modes in stellarators

    International Nuclear Information System (INIS)

    Strauss, H.R.

    2002-01-01

    The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When beta exceeds a threshold, low poloidal mode number (m=6∼18) modes grow exponentially, clearly distinguishable from the equilibrium evolution. Simulations of NCSX have beta limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. With sufficient viscosity, the growth rate becomes slow enough to allow calculations of magnetic island evolution. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two - period compact stellarator obtained a predominantly n=1 toroidal mode with about the expected TAE frequency. Work is in progress to study fast ion-driven Alfven modes in NCSX. (author)

  11. Physics of energetic particle-driven instabilities in the START spherical tokamak

    International Nuclear Information System (INIS)

    McClements, K.G.; Gryaznevich, M.P.; Akers, R.J.; Appel, L.C.; Counsell, G.F.; Roach, C.M.; Sharapov, S.E.; Majeski, R.

    1999-01-01

    The recent use of neutral beam injection (NBI) in the UKAEA small tight aspect ratio tokamak (START) has provided the first opportunity to study experimentally the physics of energetic ions in spherical tokamak (ST) plasmas. In such devices the ratio of major radius to minor radius R 0 /a is of order unity. Several distinct classes of NBI-driven instability have been observed at frequencies up to 1 MHz during START discharges. These observations are described, and possible interpretations are given. Equilibrium data, corresponding to times of beam-driven wave activity, are used to compute continuous shear Alfven spectra: toroidicity and high plasma beta give rise to wide spectral gaps, extending up to frequencies of several times the Alfven gap frequency. In each of these gaps Alfvenic instabilities could, in principle, be driven by energetic ions. Chirping modes observed at high beta in this frequency range have bandwidths comparable to or greater than the gap widths. Instability drive in START is provided by beam ion pressure gradients (as in conventional tokamaks), and also by positive gradients in beam ion velocity distributions, which arise from velocity-dependent charge exchange losses. It is shown that fishbone-like bursts observed at a few tens of kHz can be attributed to internal kink mode excitation by passing beam ions, while narrow-band emission at several hundred kHz may be due to excitation of fast Alfven (magnetosonic) eigenmodes. In the light of our understanding of energetic particle-driven instabilities in START, the possible existence of such instabilities in larger STs is discussed. (author)

  12. Energetic particle drive for toroidicity-induced Alfven eigenmodes and kinetic toroidicity-induced Alfven eigenmodes in a low-shear Tokamak. Revised

    International Nuclear Information System (INIS)

    Breizman, B.N.; Sharapov, S.E.

    1994-10-01

    The structure of toroidicity-induced Alfven eigenmodes (TAE) and kinetic TAE (KTAE) with large mode numbers is analyzed and the linear power transfer from energetic particles to these modes is calculated in the low shear limit when each mode is localized near a single gap within an interval whose total width Δ out is much smaller than the radius r m of the mode location. Near its peak where most of the mode energy is concentrated, the mode has an inner scalelength Δ in , which is much smaller than Δ out . The scale Δ in is determined by toroidicity and kinetic effects, which eliminate the singularity of the potential at the resonant surface. This work examines the case when the drift orbit width of energetic particles Δ b is much larger than the inner scalelength Δ in , but arbitrary compared to the total width of the mode. It is shown that the particle-to-wave linear power transfer is comparable for the TAE and KTAE modes in this case. The ratio of the energetic particle contributions to the growth rates of the TAE and KTAE modes is then roughly equal to the inverse ratio of the mode energies. It is found that, in the low shear limit the growth rate of the KTAE modes can be larger than that for the TAE modes

  13. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  14. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    Science.gov (United States)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  15. Energetic electron precipitation in the aurora as determined by x-ray imaging

    International Nuclear Information System (INIS)

    Werden, S.C.

    1988-01-01

    This work examines two aspects of energetic-particle dynamics in the Earth's magnetosphere through the use of an x-ray imager flown from a stratospheric balloon in the auroral zone. The design and theory of this instrument is completely described, including the technique of image formation using an on-board microprocessor and a statistical analysis of the imaging process. Day-side energetic-electron precipitation is examined in the context of global energy dissipation during the substorm process. It is found that the relationship between events on the night side and the day side are considerably more complex that can be modeled with just a simple picture of drifting particles that induced instabilities, wave growth, and pitch-angle diffusion into the loss cone. The driving force for precipitation is probably not the presence of the energetic electrons (>30 keV) alone, but is influenced either by local effects or the less energetic component. The presence of small-scale structure, including gradients and complex motions in the precipitation region in the morning sector, suggests a local process influencing the rate of electron precipitation. The spatial and temporal evolution of a classic 5-15 second pulsating aurora during the post-breakup phase is also examined with the x-ray imager

  16. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Aran, A. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Gomez-Herrero, R.; Dresing, N.; Heber, B., E-mail: david.lario@jhuapl.edu [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany)

    2013-04-10

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ - ({phi} - {phi}{sub 0}){sup 2}/2{sigma}{sup 2}], where {phi} is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, {phi}{sub 0} is the distribution centroid, and {sigma} determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R < 1 AU, allows us to determine a lower limit to the radial dependence of the 71-112 keV electron peak intensities measured along IMF lines. We find five events for which the nominal magnetic footpoint of MESSENGER was less than 20 Degree-Sign apart from the nominal footpoint of a spacecraft near 1 AU. Although the expected theoretical radial dependence for the peak intensity of the events observed along the same field line can be approximated by a functional form R {sup -{alpha}} with {alpha} < 3, we find two events for which {alpha} > 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  17. Observations of counterstreaming between plasma and energetic particles in the magnetotail

    International Nuclear Information System (INIS)

    Sarris, E.T.; Williams, D.J.; Krimigis, S.M.

    1978-01-01

    We present fine resolution (10--20 s) measurements of the energy and angular distributions of three bursts of energetic particles in the magnetotail at distances of approximately 32 R/sub E/. The measurements were made near the onset of a magnetic substorm on October 16, 1973, by the NOAA/APL (50 or =290keV,E/sub e/> or =220kev) experiments on Imp 7 and the JHU/APL (210 or =50keV. These observations place a number of requirements on various theories which attempt to explain the dynamical processes in the magnetotail. No published theory to date seems to be in satisfactory agreement with all aspects of our observations

  18. Cosmological event horizons, thermodynamics, and particle creation

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Hawking, S.W.

    1977-01-01

    It is shown that the close connection between event horizons and thermodynamics which has been found in the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An observer in these models will have an event horizon whose area can be interpreted as the entropy or lack of information of the observer about the regions which he cannot see. Associated with the event horizon is a surface gravity kappa which enters a classical ''first law of event horizons'' in a manner similar to that in which temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an analogy: An observer with a particle detector will indeed observe a background of thermal radiation coming apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain energy and entropy at the expense of the region beyond his ken and the event horizon will shrink. The derivation of these results involves abandoning the idea that particles should be defined in an observer-independent manner. They also suggest that one has to use something like the Everett-Wheeler interpretation of quantum mechanics because the back reaction and hence the spacetime metric itself appear to be observer-dependent, if one assumes, as seems reasonable, that the detection of a particle is accompanied by a change in the gravitational field

  19. Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1989-01-01

    The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.

  20. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  1. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  2. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    Science.gov (United States)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  3. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Medley, S.S.; Andre, R.; Bell, R.E.; Darrow, D.S.; Domier, C.W.; Fredrickson, E.D.; Gorelenkov, N.N.; Kaye, S.M.; LeBlanc, B.P.; Lee, K.C.; Levinton, F.M.; Liu, D.; Luhmann, N.C. Jr.; Menard, J.E.; Park, H.; Stutman, D.; Roquemore, A.L.; Tritz, K.; Yuh, H

    2007-01-01

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ∼ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvenic (f ∼ 20-150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvenic modes only cause redistribution and the energetic ions remain confined.

  4. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team

    2007-11-15

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.

  5. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  6. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2017-12-30

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulation codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the

  7. Signatures of the various regions of the outer magnetosphere in the pitch angle distributions of energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    West, H.I. Jr.

    1978-12-11

    An account is given of the obervations of the pitch angle distributions of energetic particles in the near equatorial regions of the Earth's magnetosphere. The emphasis is on relating the observed distributions to the field configuration responsible for the observed effects. The observed effects relate to drift-shell splitting, to the breakdown of adiabatic guiding center motion in regions of sharp field curvature relative to partial gyro radii, to wave-particle interactions, and to moving field configurations. 39 references.

  8. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    International Nuclear Information System (INIS)

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures

  9. Acceleration of Solar Energetic Particles at a Fast Traveling Shock in Non-uniform Coronal Conditions

    Science.gov (United States)

    Le Roux, J. A.; Arthur, A. D.

    2017-09-01

    Time-dependent solar energetic particle (SEP) acceleration is investigated at a fast, nearly parallel spherical traveling shock in the strongly non-uniform corona by solving the standard focused transport equation for SEPs and transport equations for parallel propagating Alfvén waves that form a set of coupled equations. This enables the modeling of self-excitation of Alfvén waves in the inertial range by SEPs ahead of the shock and its role in enhancing the efficiency of the diffusive shock acceleration (DSA) of SEPs in a self-regulatory fashion. Preliminary results suggest that, because of the highly non-uniform coronal conditions that the shock encounters, both DSA and wave excitation are highly time-dependent processes. Thus, DSA spectra of SEPs strongly deviate from the simple power-law prediction of standard steady-state DSA theory and initially strong wave excitation weakens rapidly. Consequently, the ability of DSA to produce high energy SEPs in the corona of ∼1 GeV, as observed in the strongest gradual SEP events, appears to be strongly curtailed at a fast nearly parallel shock, but further research is needed before final conclusions can be drawn.

  10. Jovian magnetosphere-satellite interactions: aspects of energetic charged particle loss

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1979-01-01

    Observations of energetic charged particles obtained by Pioneers 10 and 11 near the orbits of the inner Jovian satellites are reviewed with particular emphasis on the implications of these observations with regard to possible models of the access of charged particles to the satellite surfaces. The observed effects on particle pitch angle distributions and the observed energy dependence of the intensity depletions seen at the satellite orbits are compared with predictions of satellite sweepup based on several different access models. The two major uncertainties which hamper the comparisons are those associated with the satellite conductivities and the ionospheric dynamo electric field power spectrum. The satellite conductivity is important because it governs the access of the particles to the satellite surface and therefore the lifetime tau: the dynamo power spectrum is important because it controls the magnitude and energy dependence of the radial diffusion coefficient. In spite of these uncertainties we can nevertheless make the following conclusions. The electron pitch angle distributions at Io's orbit are compatible with expectations based on sweeping. The energy dependences of the observed electron depletions at all three inner satellites (Amalthea, Io, and Europa) are incompatible with expectations based on a perfect conductor model of a satellite and its flux tube but are compatible with the energy dependence expected for perfectly insulating or partially conducting satellites However, the proton losses at Io are observed to be much stronger than the electron losses, in contradiction to expectations based on sweeping. The most attractive explanation for the proton-electron discrepancy at Io is that the large proton losses at Io's orbit are principally due to enhanced pitch angle scattering in the region of higher plasma density

  11. Energetic particle parallel diffusion in a cascading wave turbulence in the foreshock region

    Directory of Open Access Journals (Sweden)

    F. Otsuka

    2007-09-01

    Full Text Available We study parallel (field-aligned diffusion of energetic particles in the upstream of the bow shock with test particle simulations. We assume parallel shock geometry of the bow shock, and that MHD wave turbulence convected by the solar wind toward the shock is purely transverse in one-dimensional system with a constant background magnetic field. We use three turbulence models: a homogeneous turbulence, a regular cascade from a large scale to smaller scales, and an inverse cascade from a small scale to larger scales. For the homogeneous model the particle motions along the average field are Brownian motions due to random and isotropic scattering across 90 degree pitch angle. On the other hand, for the two cascade models particle motion is non-Brownian due to coherent and anisotropic pitch angle scattering for finite time scale. The mean free path λ|| calculated by the ensemble average of these particle motions exhibits dependence on the distance from the shock. It also depends on the parameters such as the thermal velocity of the particles, solar wind flow velocity, and a wave turbulence model. For the inverse cascade model, the dependence of λ|| at the shock on the thermal energy is consistent with the hybrid simulation done by Giacalone (2004, but the spatial dependence of λ|| is inconsistent with it.

  12. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere

    Czech Academy of Sciences Publication Activity Database

    Velinov, P. I. Y.; Asenovski, S.; Kudela, K.; Laštovička, Jan; Mateev, L.; Mishev, A.; Tonev, P.

    2013-01-01

    Roč. 3, 26 March (2013), A14/1-A14/17 ISSN 2115-7251 Grant - others:European COST Action(XE) ES0803 Institutional support: RVO:68378289 Keywords : cosmic rays * solar energetic particles * ionization * ionosphere * atmosphere * solar activity * solar-terrestrial relationships Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/articles/swsc/abs/2013/01/swsc120040/swsc120040.html

  13. arXiv Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Afik, Yoav; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Oliver Keith; Bakker, Pepijn Johannes; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Bertsche, Carolyn; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; C-Q, Changqiao; Cabrera Urbán, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrá, Sonia; Carrillo-Montoya, German D; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgeniya; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubinin, Filipp; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dulsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Ernst, Michael; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Förster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; García Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Geß{}ner, Gregor; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonski, Julia; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gurbuz, Saime; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handl, David Michael; Haney, Bijan; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis Holub; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche, Franziska; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Simon; Lin, Tai-Hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maiani, Camilla; Maidantchik, Carmen; Maier, Thomas; Maio, Amélia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McNicol, Christopher John; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Sam Yanwing; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olsson, Joakim; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia María; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Rüttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Šfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Søgaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Sopczak, Andre; Sosa, David; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timothée; Thiele, Fabian; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Renjie; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Sebastian Mario; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemaityte, Gabija; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dengfeng; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2018-01-25

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton--proton collision data corresponding to an integrated luminosity of 36.1 fb${}^{-1}$ at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons ($e$ or $\\mu$). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.

  14. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002-2010

    Science.gov (United States)

    Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2018-01-01

    We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002-2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1-2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5-1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar

  15. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  16. Probabilistic Models for Solar Particle Events

    Science.gov (United States)

    Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.

  17. Solar wind heavy ions from energetic coronal events

    International Nuclear Information System (INIS)

    Bame, S.J.

    1978-01-01

    Ions heavier than those of He can be resolved in the solar wind with electrostatic E/q analyzers when the local thermal temperatures are low. Ordinarily this condition prevails in the low speed solar wind found between high speed streams, i.e. the interstream, IS, solar wind. Various ions of O, Si and Fe are resolved in IS heavy ion spectra. Relative ion peak intensities indicate that the O ionization state is established in the IS coronal source regions at approx. 2.1 x 10 6 K while the state of Fe is frozen in at approx. 1.5 x 10 6 K farther out. Occasionally, anomalous spectra are observed in which the usually third most prominent ion peak, O 8+ , is depressed as are the Fe peaks ranging from Fe 12+ to Fe 7+ . A prominent peak in the usual Si 8+ position of IS spectra is self-consistently shown to be Fe 16+ . These features demonstrate that the ionization states were frozen in at higher than usual coronal temperatures. The source regions of these hot heavy ion spectra are identified as energetic coronal events including flares and nonflare coronal mass ejections. 24 references

  18. 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herbert L.; Breizman, Boris N.

    2014-02-21

    The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems took place in Austin, Texas (7–11 September 2011). This meeting was organized jointly with the 5th IAEA Technical Meeting on Theory of Plasma Instabilities (5–7 September 2011). The two meetings shared one day (7 September 2011) with presentations relevant to both groups. Some of the work reported at these meetings was then published in a special issue of Nuclear Fusion [Nucl. Fusion 52 (2012)]. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the ‘viewing’ of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptily and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from symmetry breaking due to finite coil number or magnetic field imperfections introduced by diagnostic or test modules. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self

  19. Measurement of plasma and energetic charged particles in the proximity of Halley's comet

    International Nuclear Information System (INIS)

    Erdoes, Geza; Gombosi, Tamas; Kecskemety, Karoly; Somogyi, Antal; Tatrallyay, Mariella; Varga, Andras

    1987-01-01

    The instrumentation aboard the space probe VEGA for the exploration of Halley's comet contained the particle analyzers PLAZMAG and TUENDE-M. PLAZMAG was used for the measurement of the interaction between the low-energy solar plasma and the heavy ions from the comet. From the energy spectra measured near the nucleus of the comet the density distribution of ion groups can also be determined. TUENDE-M recorded the distribution of energetic heavy ions from the comet. The properties of various plasma regions within the 10 million km range from the comet's nucleus are discussed in detail. (R.P.)

  20. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model

    Science.gov (United States)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi

    2018-02-01

    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  1. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    OpenAIRE

    Reames, Donald V.

    2018-01-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances o...

  2. Particle formation events measured at a semirural background site in Denmark

    DEFF Research Database (Denmark)

    Wang, Fenjuan; Zhang, Zhenyi; Massling, Andreas

    2013-01-01

    according to 3D daily plots in combination with an automatic routine. A clear seasonal variation was found in the way that events occurred more frequently during the warm season from May to September and especially in June. The mean values of the apparent 6 nm particle formation rates, the growth rate......The particle formation and growth events observed at a semirural background site in Denmark were analyzed based on particle number size distribution data collected during the period from February 2005 to December 2010. The new particle formation (NPF) events have been classified visually in detail...... and the condensation sink were about 0.36 cm−3 s−1, 2.6 nm h−1, 4.3 × 10−3 s−1, respectively. A positive relationship of oxidation capacity (OX = O3 + NO2) of the atmosphere and the appearance of NPF events was found indicating that the oxidation of the atmosphere was linked to the formation of new particles...

  3. From Particle Flow to Colour Flow in Top Events

    CERN Document Server

    Lofberg, Henrik Johan

    2013-01-01

    A deeper understanding of the underlying event in $t\\overline{t}$ pair production is expected to improve the current uncertainty on the measurements of the top quark mass. By selecting events with an electron, a muon and two b-tagged jets a high purity signal is obtained. The main properties of the underlying event are isolated and compared between data and different Pythia Monte Carlo Tunes. Discrepancies between the total number of charged particles for different models is observed. Furthermore a contribution of colour reconnection to the modeling of the average transverse momentum of the charged particles is identified.

  4. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  5. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  6. INTERPLANETARY PROPAGATION OF SOLAR ENERGETIC PARTICLE HEAVY IONS OBSERVED AT 1 AU AND THE ROLE OF ENERGY SCALING

    International Nuclear Information System (INIS)

    Mason, G. M.; Haggerty, D. K.; Li, G.; Zank, G. P.; Cohen, C. M. S.; Leske, R. A.; Mewaldt, R. A.; Desai, M. I.

    2012-01-01

    We have studied ∼0.3 to >100 MeV nucleon –1 H, He, O, and Fe in 17 large western hemisphere solar energetic particle events (SEP) to examine whether the often observed decrease of Fe/O during the rise phase is due to mixing of separate SEP particle populations, or is an interplanetary transport effect. Our earlier study showed that the decrease in Fe/O nearly disappeared if Fe and O were compared at energies where the two species interplanetary diffusion coefficient were equal, and therefore their kinetic energy nucleon –1 was different by typically a factor ∼2 ( e nergy scaling ) . Using an interplanetary transport model that includes effects of focusing, convection, adiabatic deceleration, and pitch angle scattering we have fit the particle spectral forms and intensity profiles over a broad range of conditions where the 1 AU intensities were reasonably well connected to the source and not obviously dominated by local shock effects. The transport parameters we derive are similar to earlier studies. Our model follows individual particles with a Monte Carlo calculation, making it possible to determine many properties and effects of the transport. We find that the energy scaling feature is preserved, and that the model is reasonably successful at fitting the magnitude and duration of the Fe/O ratio decrease. This along with successfully fitting the observed decrease of the O/He ratio leads us to conclude that this feature is best understood as a transport effect. Although the effects of transport, in particular adiabatic deceleration, are very significant below a few MeV nucleon –1 , the spectral break observed in these events at 1 AU is only somewhat modified by transport, and so the commonly observed spectral breaks must be present at injection. For scattering mean free paths of the order of 0.1 AU adiabatic deceleration is so large below ∼200 keV nucleon –1 that ions starting with such energies at injection are cooled sufficiently as to be

  7. Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities

    International Nuclear Information System (INIS)

    Halverson, M.A.; Mishima, J.

    1986-09-01

    Non-nuclear explosions are one of the initiating events (accidents) considered in the US Nuclear Regulatory Commission study of formal methods for estimating the airborne release of radionuclides from fuel cycle facilities. Methods currently available to estimate the energetics and mass airborne release from the four types of non-nuclear explosive events (fast and slow physical explosions and fast and slow chemical explosions) are reviewed. The likelihood that fast physical explosions will occur in fuel cycle facilities appears to be remote and this type of explosion is not considered. Methods to estimate the consequences of slow physical and fast chemical explosions are available. Methods to estimate the consequences of slow chemical explosions are less well defined

  8. Magnetic trapping of energetic particles on open dayside boundary layer flux tubes

    International Nuclear Information System (INIS)

    Cowley, S.W.H.; Lewis, Z.V.

    1990-01-01

    Both simple as well as detailed empirical magnetic models of the Earth's dayside magnetosphere suggest that field lines near the magnetopause boundary in the noon quadrant (∼ 09:00 to ∼ 15:00 M.L.T.) possess an unusual property due to the compressive effect of the impinging solar wind flow, namely that the equatorial region represents a local maximum in the magnetic field strength, and not a minimum as elsewhere in the magnetosphere. In this region the field lines can therefore support two distinct particle populations, those which bounce across the equator between mirror points on either side, and those which are trapped about the off-equatorial field strength minima and are confined to one side of the equator. When these field lines become magnetically open due to the occurrence of magnetic reconnection at the equatorial magnetopause, the former particles will rapidly escape into the magnetosheath by field-aligned flow, while the latter population may be sustained within the boundary layer over many bounce periods, as the flux tubes contract and move tailward. Consequently, trapped distributions of energetic particles may commonly occur on open field lines in the dayside boundary layer in the noon quadrant, particularly at high latitudes. The existence of such particles is thus not an infallible indicator of the presence of closed magnetic field lines in this region. At earlier and later local times, however, the boundary layer field lines revert to possessing a minimum in the field strength at the equator. (author)

  9. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  10. Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth

    Directory of Open Access Journals (Sweden)

    Z. Wu

    2013-07-01

    Full Text Available This study examines the hygroscopicity of newly formed particles (diameters range 25–45 nm during two atmospheric new particle formation (NPF events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010 field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6 nm h−1. During the same period, the growth rate calculated based on one site data is 5.0 nm h−1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.

  11. Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Revallo, M.; Bochníček, Josef; Hejda, Pavel

    2009-01-01

    Roč. 7, April (2009), S04004/1-S04004/7 ISSN 1542-7390 R&D Projects: GA AV ČR(CZ) IAA300120608; GA AV ČR 1QS300120506 Institutional research plan: CEZ:AV0Z30120515 Keywords : neural networks * coronal mass ejections * energetic particles * flares * radio emissions * magnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.845, year: 2009

  12. Event-by-event particle multiplicity fluctuations in Pb-Pb collisions with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Arslandok, Mesut [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    The study of event-by-event fluctuations of identified hadrons may reveal the degrees of freedom of the strongly interacting mater created in heavy-ion collisions. Particle identification that is based on the measurement of the specific ionization energy loss dE/dx works well on a statistical basis, however, suffers from ambiguities when applied on the event-by-event level. A novel experimental technique called the ''Identity Method'' was recently proposed to overcome such limitations. The method follows a probabilistic approach using the inclusive dE/dx distributions measured in the ALICE TPC, and determines the moments of the multiplicity distributions by an unfolding procedure. In this contribution, the status of an event-by-event fluctuation analysis that applies the Identity Method to Pb-Pb data from ALICE is presented.

  13. Van Allen Probes Measurements of Energetic Particle Deep Penetration Into the Low L Region (L Storm on 8 April 2016

    Science.gov (United States)

    Zhao, H.; Baker, D. N.; Califf, S.; Li, X.; Jaynes, A. N.; Leonard, T.; Kanekal, S. G.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    Using measurements from the Van Allen Probes, a penetration event of tens to hundreds of keV electrons and tens of keV protons into the low L shells (L electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L shells, should be MLT localized.

  14. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles

    International Nuclear Information System (INIS)

    Sato, T.; Kataoka, R.; Yasuda, H.; Yashiro, S.; Kuwabara, T.; Shiota, D.; Kubo, Y.

    2014-01-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect air crews from additional SEP exposure. When galactic cosmic rays (GCRs) or solar energetic particles (SEPs) are incident on the atmosphere, they can induce air showers by producing various secondary particles. These secondary particles can reach conventional flight altitudes (∼12 km); hence, air crews are exposed to enhanced levels of radiation. The most important difference between GCR and SEP exposure arises from their temporal variations and dose rates; GCRs induce continuous exposure with low dose rates, usually up to several μSv h -1 , whereas SEPs produce pulsed exposure with high dose rates, occasionally >1 mSv h -1 , though such severe events rarely occur. Thus, subsequent evaluation is sufficient for estimating the aircrew dose due to GCR exposure, whereas forecasting is desirable for SEP exposure. Several calculation codes, e.g. CARI-6(3), EPCARD(4), JISCARD-EX(5), and PCAIRE(6), have been developed for post-exposure evaluation of GCR doses. On the other hand, empirical and phenomenological models have been developed for real-time or

  15. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  16. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  17. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tooprakai, P. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Seripienlert, A.; Ruffolo, D.; Chuychai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Matthaeus, W. H., E-mail: david.ruf@mahidol.ac.th [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-11-10

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  18. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    International Nuclear Information System (INIS)

    Tooprakai, P.; Seripienlert, A.; Ruffolo, D.; Chuychai, P.; Matthaeus, W. H.

    2016-01-01

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  19. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Directory of Open Access Journals (Sweden)

    Semkova Jordanka

    2014-01-01

    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.

  20. Statistical study of plasma sheet dynamics using ISEE 1 and 2 energetic particle flux data

    International Nuclear Information System (INIS)

    Dandouras, J.; Reme, H.; Saint-Marc, A.; Sauvaud, J.A.; Parks, G.K.; Anderson, K.A.; Lin, R.P.

    1986-01-01

    During magnetospheric substorms, satellites embedded in the plasma sheet often detect transient dropouts of plasma and energetic particle fluxes, a phenomemon generally interpreted as indicating the exit of the satellite into the magnetospheric lobe due to a plasma sheet thinning. In order to determine the large-scale dynamics of the near-earth plasma sheet during substorms, three satellite years of ISEE 1 and 2 energetic particle flux data (1.5 and 6 keV), corresponding to 461 particle flux dropouts, have been analyzed. The principal results show that flux dropouts can be observed anywhere in the nightside plasma sheet, independent of the satellite's geocentric distance (for R>12R/sub E/), magnetic local time (except near the magnetospheric flanks) and estimated distance to the neutral sheet. Furthermore, flux dropouts can be observed for any combination of the AE index value and the satellite's distance to the neutral sheet, which shows that the plasma sheet is dynamic even during weak magnetospheric disturbances. Substorms during which the satellites, though situated in the plasma sheet, did not detect any flux dropout, have also been examined, and it is found that the plasma sheet thickness can locally remain unaffected by substorm development for AE index values up to at least 1000 nT. The predictions of the two major plasma sheet thinning models, i.e., the near-tail X-type magnetic neutral line formation model and the MHD rarefaction wave propagation model, are compared to the experimental results, and it is concluded that neither model can account for all of the observations; plasma sheet dynamics are more complex. Phenomenologically, this study suggests that multiple pinching of the plasma sheet and/or large-amplitude three-dimensional plasma sheet oscillations are important in plasma sheet dynamics

  1. A Two Species Bump-On-Tail Model With Relaxation for Energetic Particle Driven Modes

    Science.gov (United States)

    Aslanyan, V.; Porkolab, M.; Sharapov, S. E.; Spong, D. A.

    2017-10-01

    Energetic particle driven Alfvén Eigenmodes (AEs) observed in present day experiments exhibit various nonlinear behaviours varying from steady state amplitude at a fixed frequency to bursting amplitudes and sweeping frequency. Using the appropriate action-angle variables, the problem of resonant wave-particle interaction becomes effectively one-dimensional. Previously, a simple one-dimensional Bump-On-Tail (BOT) model has proven to be one of the most effective in describing characteristic nonlinear near-threshold wave evolution scenarios. In particular, dynamical friction causes bursting mode evolution, while diffusive relaxation may give steady-state, periodic or chaotic mode evolution. BOT has now been extended to include two populations of fast particles, with one dominated by dynamical friction at the resonance and the other by diffusion; the relative size of the populations determines the temporal evolution of the resulting wave. This suggests an explanation for recent observations on the TJ-II stellarator, where a transition between steady state and bursting occured as the magnetic configuration varied. The two species model is then applied to burning plasma with drag-dominated alpha particles and diffusion-dominated ICRH accelerated minority ions. This work was supported by the US DoE and the RCUK Energy Programme [Grant Number EP/P012450/1].

  2. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  3. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    Science.gov (United States)

    Swimm, R.; Garrett, H. B.; Jun, I.; Evans, R. W.

    2004-12-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances from the planet Jupiter from 8 to 28 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron radiation with longitude. We also develop a model of the electron flux with respect to distance normal to the magnetic equatorial plane as a function of the distance from Jupiter.

  4. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  5. Event-by-event fluctuations of the particle yield ratios in heavy-ion collisions at 20 - 158 AGeV

    Energy Technology Data Exchange (ETDEWEB)

    Kresan, Dmytro

    2010-12-22

    Non-statistical event-by-event fluctuations are considered as an important signal for the critical endpoint of the QCD phase diagram. Event-by-event fluctuations of different observables are thus investigated in detail in current experiments but are also an important observable to be studied at the future CBM experiment at FAIR. In this work we present the energy and centrality dependence of event-by-event fluctuations of particle yield ratios measured by the NA49 experiment in Pb+Pb collisions at 20-158 AGeV. Systematic studies of the influence of the dE/dx resolution on the particle identification and the centrality bin size were performed. Results can be compared to event-by-event fluctuations measured by NA49 for different observables such as or the mean charged particle multiplicity. Main results of these studies are an increase of absolute value of the dynamical particle ratio fluctuations with decreasing centrality for all considered ratios, saturation of the K/{pi} and K/p ratio fluctuations for peripheral Pb + Pb collisions at 158A GeV and scaling of the energy and centrality dependences of the p/{pi} ratio fluctuations with N{sub p}N{sub {pi}}. The measured energy and centrality dependences of the K/{pi} and K/p ratio fluctuations scale with N{sub K} in a different way. The saturation of the mentioned ratios fluctuations was attributed to the development of pronounced spike at zero in the eventwise ratio distributions, which, as was shown by Monte Carlo simulations, influence the measured fluctuations in the very peripheral Pb + Pb collisions at 158A GeV. In future, the CBM experiment at FAIR will investigate the intermediate region of the QCD phase diagram in great detail searching for the first order phase transition line and the expected critical endpoint. It is therefore important to closely investigate its sensitivity towards particle ratio fluctuations in Au+Au collisions at 10-45 AGeV beam energy. Detailed simulation studies are

  6. Plasma behavior during energetic electron streaming events: Further evidence for substorm-associated magnetic reconnection

    International Nuclear Information System (INIS)

    Bieber, J.W.; Stone, E.C.; Hones, E.W. Jr.; Baker, D.N.; Bame, S.J.

    1982-01-01

    A recent study showed that streaming energetic (>200 keV) electrons in Earth's magnetotail are statistically associated with southward magnetic fields and with enhancements of the AE index. It is shown here that the streaming electrons characteristically are preceded by aapprox.15 minute period of tailward plasma flow and followed by a dropout of the plasma sheet, thus demonstrating a clear statistical association between substorms and the classical signatures of magnetic reconnection and plasmoid formation. Additionally, a brief upward surge of mean electron energy preceded plasma dropout in several of the events studied, providing direct evidence of localized, reconnection-associated heating processes

  7. Time-dependent Perpendicular Transport of Energetic Particles for Different Turbulence Configurations and Parallel Transport Models

    Energy Technology Data Exchange (ETDEWEB)

    Lasuik, J.; Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)

    2017-09-20

    Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.

  8. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

    Directory of Open Access Journals (Sweden)

    M. Sinnhuber

    2018-01-01

    Full Text Available We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument for the years 2002–2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1–2 Gmol (109 mol NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5–1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by

  9. Injections of energetic particles into the magnetosphere. Consequences on deformations of distribution functions, and on gyro-resonance interactions

    International Nuclear Information System (INIS)

    Solomon, Jacques

    1977-01-01

    This research thesis addresses convection movements of energetic ionised particles in the Earth near magnetosphere (geocentric distances of about 2 to 10 Earth radii), and the interactions between these particles and waves they may generate. The author first recalls some notions dealing with cyclotron interactions between waves and particles, gives an example of dispersion relationship for these interactions, and indicates possible approximations for simplification purposes. The author also outlines the role of the hot and cold plasma with respect to densities in the wave amplification coefficient. Then, the author reports the study of wave amplification and of particle scattering. He tries to address the problem of waves-particles interaction through a self-consistent approach, i.e. by calculating simultaneously the spectral intensity of emitted waves and the particle distribution function resulting from their scattering. He more particularly addresses the case of a non-stationary interaction (relaxation) and of a stationary interaction. Complete calculations are performed for this last case. Radial and azimuth drift movements of hot particles under the influence of magnetic and static electric fields are then taken into account [fr

  10. Event generators in particle physics

    International Nuclear Information System (INIS)

    Sjostrand, Torbjorn

    1994-01-01

    This presentation gives an introduction to the topic of event generators in particle physics . The emphasis is on the physics aspects that have to be considered in the construction of a generator, and what lessons we have learned from comparisons with data. A brief survey of existing generators is also included. As illustration, a few topics of current interest are covered in a bit more detail: QCD uncertainties in W mass determinations and γp/γγ physics. (author)

  11. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf

    2016-01-01

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.

  12. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2016-09-15

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.

  13. Characteristics of Solar Energetic Ions as a Function of Longitude

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, MC 290-17, Pasadena, CA 91125 (United States); Mason, G. M., E-mail: cohen@srl.caltech.edu [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-07-10

    Since the 2006 launch of STEREO , multi-spacecraft studies have yielded several surprising results regarding the spread of solar energetic particles (SEPs) within the inner heliosphere. We have investigated the role of energy and ridigity, using ACE and STEREO 10 MeV n{sup −1} oxygen data to identify 41 large SEP events observed by two or three spacecraft. We calculated fluence spectra from ∼0.1 to >10 MeV n{sup −1} for H, He, O, and Fe for each event at the observing spacecraft (including SOHO and GOES ). The particle fluences at 0.3, 1, and 10 MeV n{sup −1} were examined as a function of the distance between the associated solar flare longitude and the spacecraft magnetic footpoints at the Sun to determine the longitudinal spread of particles and study how the distribution centers and widths depend on energy and charge-to-mass (Q/M) for the first time. On average, the three-spacecraft event distributions were centered at 22 ± 4° west of the flare site and were 43 ± 1° wide, though there was substantial variability, while the fit to the aggregate of the two-spacecraft event fluences yielded significantly wider distributions at 0.3 and 1 MeV n{sup −1}. The widths derived from both the three- and two-spacecraft events show an energy dependence with distributions narrowing with increasing energy, consistent with lower energy ions experiencing more field line co-rotation, or being accelerated over a larger portion of the CME-driven shock or for longer times as the shock expands. Surprisingly, no clear evidence was found for a Q/M dependence to the widths or centers suggesting that rigidity-related processes are not the dominant means of spreading particles in longitude.

  14. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  15. Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011) Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011)

    Science.gov (United States)

    Berk, H. L.

    2012-09-01

    The topic of the behaviour of energetic alpha particles in magnetic fusion confined plasmas is perhaps the ultimate frontier plasma physics issue that needs to be understood in the quest to achieve controlled power from the fusion reaction in magnetically confined plasmas. The partial pressure of alpha particles in a burning plasma will be ~5-10% of the total pressure and under these conditions the alpha particles may be prone to develop instability through Alfvénic interaction. This may lead, even with moderate alpha particle loss, to a burn quench or severe wall damage. Alternatively, benign Alfvénic signals may allow the vital information to control a fusion burn. The significance of this issue has led to extensive international investigations and a biannual meeting that began in Kyiv in 1989, followed by subsequent meetings in Aspenäs (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007) and Kyiv (2009). The meeting was initially entitled 'Alpha Particles in Fusion Research' and then was changed during the 1997 meeting to 'Energetic Particles in Magnetic Confinement Systems' in appreciation of the need to study the significance of the electron runaway, which can lead to the production of energetic electrons with energies that can even exceed the energy produced by fusion products. This special issue presents some of the mature interesting work that was reported at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was held in Austin, Texas, USA (7-11 September 2011). This meeting immediately followed a related meeting, the 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (5-7 September 2011). The meetings shared one day (7 September 2011) with presentations relevant to both groups. The presentations from most of the participants, as well as some preliminary versions of papers, are available at the

  16. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    Science.gov (United States)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  17. Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks

    International Nuclear Information System (INIS)

    Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.

    1994-01-01

    An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles

  18. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  19. DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS?

    International Nuclear Information System (INIS)

    Seripienlert, A.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2010-01-01

    In recent observations by the Advanced Composition Explorer, the intensity of solar energetic particles exhibits sudden, large changes known as dropouts. These have been explained in terms of turbulence or a flux tube structure in the solar wind. Dropouts are believed to indicate filamentary magnetic connection to a localized particle source near the solar surface, and computer simulations of a random-phase model of magnetic turbulence have indicated a spatial association between dropout features and local trapping boundaries (LTBs) defined for a two-dimensional (2D) + slab model of turbulence. Previous observations have shown that dropout features are not well associated with sharp magnetic field changes, as might be expected in the flux tube model. Random-phase turbulence models do not properly treat sharp changes in the magnetic field, such as current sheets, and thus cannot be tested in this way. Here, we explore the properties of a more realistic magnetohydrodynamic (MHD) turbulence model (2D MHD), in which current sheets develop and the current and magnetic field have characteristic non-Gaussian statistical properties. For this model, computer simulations that trace field lines to determine magnetic connection from a localized particle source indicate that sharp particle gradients should frequently be associated with LTBs, sometimes with strong 2D magnetic fluctuations, and infrequently with current sheets. Thus, the 2D MHD + slab model of turbulent fluctuations includes some realistic features of the flux tube view and is consistent with the lack of an observed association between dropouts and intense magnetic fields or currents.

  20. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    Science.gov (United States)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  1. Next generation multi-particle event generators for the MSSM

    International Nuclear Information System (INIS)

    Reuter, J.; Kilian, W.; Hagiwara, K.; Krauss, F.; Schumann, S.; Rainwater, D.

    2005-12-01

    We present a next generation of multi-particle Monte Carlo (MC) Event generators for LHC and ILC for the MSSM, namely the three program packages Madgraph/MadEvent, WHiZard/O'Mega and Sherpa/Amegic++. The interesting but difficult phenomenology of supersymmetric models at the upcoming colliders demands a corresponding complexity and maturity from simulation tools. This includes multi-particle final states, reducible and irreducible backgrounds, spin correlations, real emission of photons and gluons, etc., which are incorporated in the programs presented here. The framework of a model with such a huge particle content and as complicated as the MSSM makes strenuous tests and comparison of codes inevitable. Various tests show agreement among the three different programs; the tables of cross sections produced in these tests may serve as a future reference for other codes. Furthermore, first MSSM physics analyses performed with these programs are presented here. (orig.)

  2. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  3. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O. [Graduate school of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shinto, K. [IFMIF R and D Center, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Wada, M. [Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2012-02-15

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  4. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions

    Science.gov (United States)

    Kurudirek, Murat; Onaran, Tayfur

    2015-07-01

    Effective atomic numbers (Zeff) and electron densities (Ne) of some essential biomolecules have been calculated for total electron interaction, total proton interaction and total alpha particle interaction using an interpolation method in the energy region 10 keV-1 GeV. Also, the spectrum weighted Zeff for multi-energetic photons has been calculated using Auto-Zeff program. Biomolecules consist of fatty acids, amino acids, carbohydrates and basic nucleotides of DNA and RNA. Variations of Zeff and Ne with kinetic energy of ionizing charged particles and effective photon energies of heterogeneous sources have been studied for the given materials. Significant variations in Zeff and Ne have been observed through the entire energy region for electron, proton and alpha particle interactions. Non-uniform variation has been observed for protons and alpha particles in low and intermediate energy regions, respectively. The maximum values of Zeff have found to be in higher energies for total electron interaction whereas maximum values have found to be in relatively low energies for total proton and total alpha particle interactions. When it comes to the multi-energetic photon sources, it has to be noted that the highest Zeff values were found at low energy region where photoelectric absorption is the pre-dominant interaction process. The lowest values of Zeff have been shown in biomolecules such as stearic acid, leucine, mannitol and thymine, which have highest H content in their groups. Variation in Ne seems to be more or less the same with the variation in Zeff for the given materials as expected.

  5. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    Carbon nanostructures, especially carbon nanotubes (CNTs), have been envisaged to be the building blocks of a variety of nanoscale devices and materials. The inherent nanometer-size and ability of being either metallic or semiconductive of CNTs lead to their application in nanoelectronics. Excellent mechanical characteristics of CNTs suggest their use as structural reinforcements. However, to fully exploit the potential applications, effective means of tailoring CNT properties must be developed. Irradiation of materials with energetic particles beams (ions and electrons) is a standard and important tool for modifying material properties. Irradiation makes it possible to dope the samples, to create local amorphous region or vice versa, recrystallize the lattice and even drive a phase transition. In this paper, we report our results of (1) phase transfromation from carbon nanotubes to nanocrystalline diamond driven by hydrogen plasma, (2) onion-like nanostructure from carbon nanotubes driven by ion beams of several tens keV, and (3) amorphous carbon nanowire network formation by ion beam irradiation. Structural phase transformation from multiwalled carbon nanotubes to nanocrystalline diamond by hydrogen plasma post-treatment was carried out. Ultrahigh equivalent diamond nucleation density of more than 1011 nuclei/cm 2 was obtained. The diamond formation and growth mechanisms were proposed to be the consequence of the formation of sp3 bonded amorphous carbon clusters. The hydrogen chemisorption on curved graphite network and the energy deposited on CNTs by continuous impingement of activated molecular or atomic hydrogen are responsible for the formation of amorphous carbon matrix. Diamond nucleates and grows in the way similar to that of diamond chemical vapor deposition processes on amorphous carbon films. Furthermore, single crystalline diamond nanorods of 4-8 nm in diameter and up to 200 nm in length have been successfully synthesized by hydrogen plasma post

  6. Occurrence of high-beta superthermal plasma events in the close environment of Jupiter's bow shock as observed by Ulysses

    International Nuclear Information System (INIS)

    Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.

    2011-01-01

    The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'(β) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or even higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter β ep ) of the energetic ions'(20 keV to ∼5 MeV) to the magnetic field's in order to find occurrences of high-beta (β ep >1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.

  7. Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles

    Directory of Open Access Journals (Sweden)

    A. G. Yahnin

    1997-08-01

    Full Text Available According to observations, the discrete auroral arcs can sometimes be found, either deep inside the auroral oval or at the poleward border of the wide (so-called double auroral oval, which map to very different regions of the magnetotail. To find common physical conditions for the auroral-arc generation in these magnetotail regions, we study the spatial relationship between the diffuse and discrete auroras and the isotropic boundaries (IBs of the precipitating energetic particles which can be used to characterise locally the equatorial magnetic field in the tail. From comparison of ground observation of auroral forms with meridional profiles of particle flux measured simultaneously by the low-altitude NOAA satellites above the ground observation region, we found that (1 discrete auroral arcs are always situated polewards from (or very close to the IB of >30-keV electrons, whereas (2 the IB of the >30-keV protons is often seen inside the diffuse aurora. These relationships hold true for both quiet and active (substorm conditions in the premidnight-nightside (18-01-h MLT sector considered. In some events the auroral arcs occupy a wide latitudinal range. The most equatorial of these arcs was found at the poleward edge of the diffuse auroras (but anyway in the vicinity of the electron IB, the most poleward arcs were simultaneously observed on the closed field lines near the polar-cap boundary. These observations disagree with the notion that the discrete aurora originate exclusively in the near-Earth portion of plasma sheet or exclusively on the PSBL field lines. Result (1 may imply a fundamental feature of auroral-arc formation: they originate in the current-sheet regions having very curved and tailward-stretched magnetic field lines.

  8. Catalogue of {>} 55 MeV Wide-longitude Solar Proton Events Observed by SOHO, ACE, and the STEREOs at {≈} 1 AU During 2009 - 2016

    Science.gov (United States)

    Paassilta, Miikka; Papaioannou, Athanasios; Dresing, Nina; Vainio, Rami; Valtonen, Eino; Heber, Bernd

    2018-04-01

    Based on energetic particle observations made at {≈} 1 AU, we present a catalogue of 46 wide-longitude ({>} 45°) solar energetic particle (SEP) events detected at multiple locations during 2009 - 2016. The particle kinetic energies of interest were chosen as {>} 55 MeV for protons and 0.18 - 0.31 MeV for electrons. We make use of proton data from the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron Experiment (SOHO/ERNE) and the Solar Terrestrial Relations Observatory/High Energy Telescopes (STEREO/HET), together with electron data from the Advanced Composition Explorer/Electron, Proton, and Alpha Monitor (ACE/EPAM) and the STEREO/ Solar Electron and Proton Telescopes (SEPT). We consider soft X-ray data from the Geostationary Operational Environmental Satellites (GOES) and coronal mass ejection (CME) observations made with the SOHO/ Large Angle and Spectrometric Coronagraph (LASCO) and STEREO/ Coronagraphs 1 and 2 (COR1, COR2) to establish the probable associations between SEP events and the related solar phenomena. Event onset times and peak intensities are determined; velocity dispersion analysis (VDA) and time-shifting analysis (TSA) are performed for protons; TSA is performed for electrons. In our event sample, there is a tendency for the highest peak intensities to occur when the observer is magnetically connected to solar regions west of the flare. Our estimates for the mean event width, derived as the standard deviation of a Gaussian curve modelling the SEP intensities (protons {≈} 44°, electrons {≈} 50°), largely agree with previous results for lower-energy SEPs. SEP release times with respect to event flares, as well as the event rise times, show no simple dependence on the observer's connection angle, suggesting that the source region extent and dominant particle acceleration and transport mechanisms are important in defining these characteristics of an event. There is no marked difference between the speed

  9. High-resolution energetic particle measurements at 6.6 R/sub E/ 1. Electron micropulsations

    International Nuclear Information System (INIS)

    Higbie, P.R.; Belian, R.D.; Baker, D.N.

    1978-01-01

    The three papers dealing with data from satellites 1976--059A which we present in this issue represent the first publication of data from the new series of charged particle analyzer (CPA) instruments designed to measure energetic particle fluxes at geosynchronous altitudes. This first report presents new results on electron micropulsation phenomena and includes a concise description of the instrument. We often observe highly periodic modulations which persist for times as long as 2 hours in the spin-averaged counting rate data. These flux oscillations occur most frequently in the 30- to 300-keV electron data but are occasionally seen in higher-energy electron or low-energy proton data. The pitch angle distributions of the observed modulated fluxes may be either 'cigar-shaped' or 'pancake-shaped.' Oscillations at different energies are in phase, although the gross counting rate may be changing in an energy-time dispersive manner. The occurrence distribution of these modulations in local time suggests that they are related to Pc 5 geomagnetic micropulsations observed at ground stations

  10. The influence of the Kubo number on the transport of energetic particles

    International Nuclear Information System (INIS)

    Shalchi, A

    2016-01-01

    We discuss the interaction between charged energetic particles and magnetized plasmas by using analytical theory. Based on the unified nonlinear transport (UNLT) theory we compute the diffusion coefficient across a large scale magnetic field. To achieve analytical tractability we use a simple Gaussian approach to model the turbulent magnetic fields. We show that the perpendicular diffusion coefficient depends only on two parameters, namely the Kubo number and the parallel mean free path. We combine the aforementioned turbulence model with the UNLT theory and we solve the corresponding integral equation numerically to show how these two parameters control the perpendicular diffusion coefficient. Furthermore, we consider two extreme cases, namely the case of strong and suppressed pitch-angle scattering, respectively. For each case we consider small and large Kubo numbers to achieve a further simplification. All our analytical findings are compared with formulas which are known in diffusion theory. (paper)

  11. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  12. Center for Gyrokinetic/MHD Hybrid Simulation of Energetic Particle Physics in Toroidal Plasmas (CSEPP). Final report

    International Nuclear Information System (INIS)

    Chen, Yang

    2012-01-01

    At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global δf-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 α (0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects in the hybrid model we have studied a kinetic electron closure scheme for the fluid electron model. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E || , derived by combining the quasi-neutrality condition, the Ampere's equation and the v || moment of the gyrokinetic equations. A discretization method for the closure scheme is studied in detail for a three-dimensional shear-less slab plasma. It is found that for long-wavelength shear Alfven waves the kinetic closure scheme

  13. Cloud condensation nuclei droplet growth kinetics of ultrafine particles during anthropogenic nucleation events

    Science.gov (United States)

    Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.

    2012-02-01

    Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.

  14. An operational integrated short-term warning solution for solar radiation storms: introducing the Forecasting Solar Particle Events and Flares (FORSPEF) system

    Science.gov (United States)

    Anastasiadis, Anastasios; Sandberg, Ingmar; Papaioannou, Athanasios; Georgoulis, Manolis; Tziotziou, Kostas; Jiggens, Piers; Hilgers, Alain

    2015-04-01

    We present a novel integrated prediction system, of both solar flares and solar energetic particle (SEP) events, which is in place to provide short-term warnings for hazardous solar radiation storms. FORSPEF system provides forecasting of solar eruptive events, such as solar flares with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. It also provides nowcasting of SEP events based on actual solar flare and CME near real-time alerts, as well as SEP characteristics (peak flux, fluence, rise time, duration) per parent solar event. The prediction of solar flares relies on a morphological method which is based on the sophisticated derivation of the effective connected magnetic field strength (Beff) of potentially flaring active-region (AR) magnetic configurations and it utilizes analysis of a large number of AR magnetograms. For the prediction of SEP events a new reductive statistical method has been implemented based on a newly constructed database of solar flares, CMEs and SEP events that covers a large time span from 1984-2013. The method is based on flare location (longitude), flare size (maximum soft X-ray intensity), and the occurrence (or not) of a CME. Warnings are issued for all > C1.0 soft X-ray flares. The warning time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective warning time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes. We discuss the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on the Sun and the interplanetary space, while the combined usage of solar flare and SEP forecasting methods upgrades FORSPEF to an integrated forecasting solution. This

  15. Nonlinear MHD and energetic particle modes in stellarators

    International Nuclear Information System (INIS)

    Strauss, H.R.; Fu, G.Y.; Park, W.; Breslau, J.; Sugiyama, L.E.

    2003-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas using multiple levels of physics, geometry and grid models. The M3D code has been applied to ideal, resistive, two fluid, and hybrid simulations of compact quasi axisymmetric stellarators. When β exceeds a threshold, moderate toroidal mode number (n ∼ 10) modes grow exponentially, clearly distinguishable from the equilibrium evolution. The β limits are significantly higher than the infinite mode number ballooning limits. In the presence of resistivity, these modes occur well below the ideal limit. Their growth rate scaling with resistivity is similar to tearing modes. At low resistivity, the modes couple to resistive interchanges, which are unstable in most stellarators. Two fluid simulations with M3D show that resistive modes can be stabilized by diamagnetic drift. The two fluid computations are done with a realistic value of the Hall parameter, the ratio of ion skin depth to major radius. Hybrid gyrokinetic simulations with energetic particles indicate that global shear Alfven TAE - like modes can be destabilized in stellarators. Computations in a two-period compact stellarator obtained a predominantly n=1 toroidal mode with the expected TAE frequency. It is found that TAE modes are more stable in the two-period compact stellarator that in a tokamak with the same q and pressure profiles. M3D combines a two dimensional unstructured mesh with finite element discretization in poloidal planes, and fourth order finite differencing in the toroidal direction. (author)

  16. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D.; Kaye, S.M.; LeBlanc, B.P.; Roquemore, A.L.

    2004-01-01

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E ∼ 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and

  17. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  18. A unified theory of resonant excitation of kinetic ballooning modes by energetic ions/alpha particles in tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1991-10-01

    A complete theory of wave-particle interactions is presented whereby both circulating and trapped energetic ions can destabilize kinetic ballooning modes in tokamaks. Four qualitatively different types of resonances, involving wave-precessional drift, wave-transit, wave-bounce, and precessional drift-bounce interactions, are identified, and the destabilization potential of each is assessed. For a characteristic slowing-down distribution function, the dominant interaction is that which taps those resonant ions with the highest energy. Implications of the theory for present and future generation fusion experiments are discussed. 16 refs

  19. Modeling the entry and trapping of solar energetic particles in the magnetosphere during the November 24-25, 2001 storm

    Science.gov (United States)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2009-04-01

    We have modeled the entry of solar energetic particles (SEPs) into the magnetosphere during the November 24-25, 2001 magnetic storm and the trapping of particles in the inner magnetosphere. The study used the technique of following many test particles, protons with energies greater than about 100 keV, in the electric and magnetic fields from a global magnetohydrodynamic (MHD) simulation of the magnetosphere during this storm. SEP protons formed a quasi-trapped and trapped population near and within geosynchronous orbit. Preliminary data comparisons show that the simulation does a reasonably good job of predicting the differential flux measured by geosynchronous spacecraft. Particle trapping took place mainly as a result of particles becoming non-adiabatic and crossing onto closed field lines. Particle flux in the inner magnetosphere increased dramatically as an interplanetary shock impacted and compressed the magnetosphere near 0600 UT, but long term trapping (hours) did not become widespread until about an hour later, during a further compression of the magnetosphere. Trapped and quasi-trapped particles were lost during the simulation by motion through the magnetopause and by precipitation, primarily the former. This caused the particle population near and within geosynchronous orbit to gradually decrease later on during the latter part of the interval.

  20. Characterization of SEP events at high heliographic latitudes

    International Nuclear Information System (INIS)

    Dalla, S.; Balogh, A.; Krucker, S.; Posner, A.; Mueller-Mellin, R.; Anglin, J.D.; Hofer, M.Y.; Marsden, R.G.; Sanderson, T.R.; Heber, B.; Zhang, M.; McKibben, R.B.

    2003-01-01

    Between February 2000 and May 2002, the Ulysses spacecraft made the first ever measurements of solar energetic particles (SEPs) at high heliographic latitudes. Nine large gradual SEP events were detected at latitudes greater than 45 deg., their signatures being clearest at high particle energies, i.e. protons >30 MeV and electrons >0.1 MeV. In this paper we measure the onset times of Ulysses high latitude events in several energy channels, and plot them versus inverse particle speed. We repeat the procedure for near Earth observations by Wind and SOHO. Velocity dispersion is observed in all the events near Earth and in most of them at Ulysses. The plots of onset times versus inverse speed allow to derive an experimental path length and time of release from the solar atmosphere. We find that the derived path lengths at Ulysses are longer than the length of a Parker spiral magnetic field line connecting it to the Sun, by a factor between 1.2-2.7. The time of particle release from the Sun is typically between 100 and 200 mins later than the release time derived from in-ecliptic measurements. Unlike near Earth observations, Ulysses measurements are therefore not compatible with scatter-free propagation from the Sun to the spacecraft

  1. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    Czech Academy of Sciences Publication Activity Database

    Kocharov, L.; Pohjolainen, S.; Mishev, A.; Reiner, M. J.; Lee, J.; Laitinen, T.; Didkovsky, L. V.; Pizzo, V. J.; Kim, R.; Klassen, A.; Karlický, Marian; Cho, K.; Gary, D. E.; Usoskin, I.; Valtonen, E. T.; Vainio, R.

    2017-01-01

    Roč. 839, č. 2 (2017), 79/1-79/21 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : coronal mass ejections * energetic charged-particles * magnetic-fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  2. Plasma and energetic electron flux variations in the Mercury 1 C event: Evidence for a magnetospheric boundary layer

    International Nuclear Information System (INIS)

    Christon, S.P.

    1989-01-01

    Near the outbound magnetopause crossing during the first encounter of Mariner 10 with the planet Mercury on March 29, 1974, large intensity, ∼ 6 s quasi-periodic variations in the intensity-time profile of the charged particle experiment's electron counting rate appeared as a series of peaks and valleys. The peaks have previously been interpreted as quasi-periodic burst sequences of mildly relativistic electrons, caused in one case by episodic ∼ 6-s magnetotail substorm reconnection events and in another case by multiple encounters with a substorm energized electron population drifting around Mercury with an ∼ 6 s drift period. In this paper, the authors offer a new and fundamentally different interpretation of the Mariner 10 energetic electron, plasma electron, and magnetic field data near the outbound magnetopause at Mercury 1. They show that magnetosheath-like boundary layer plasma was observed up to ∼ 360 km planetward of the dawn magnetopause crossing as sensed by the magnetometer. They show that observations of substorm enhanced > 35 keV electron flux (that previously interpreted as > 175 keV electrons) associated with the hot tenuous plasma sheet population were interleaved with ∼ 6 s period observations of a cold dense boundary layer plasma associated with a much lower > 35 keV electron flux. They argue that the ∼ 6 s temporal signature is due to variation of the thickness and/or position of the boundary layer plasma population. This explanation of the ∼ 6-s variations, based upon the analysis of the coincident responses of the magnetic field experiment and two independent charged particle instruments (at their highest temporal resolutions), finds a direct analogue in observations of Earth's magnetospheric boundary layer, although the time scales are significantly shorter at Mercury

  3. The first SEPServer event catalogue ~68-MeV solar proton events observed at 1 AU in 1996–2010

    Directory of Open Access Journals (Sweden)

    Rodríguez-Gasén Rosa

    2013-03-01

    Full Text Available SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP events and related electromagnetic (EM emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA for protons and time-shifting analysis (TSA for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s ≲ 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times

  4. The Longitudinal Properties of a Solar Energetic Particle Event Investigated Using Modern Solar Imaging

    Science.gov (United States)

    2012-06-10

    and white light) and the longitudinal extent of the SEP event in the heliosphere. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...The STEREO SECCHI data are pro- duced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France

  5. Sawteeth stabilization by energetic trapped ions

    International Nuclear Information System (INIS)

    Samain, A.; Edery, D.; Garbet, X.; Roubin, J.P.

    1991-01-01

    The analysis of a possible stabilization of sawteeth by a population of energetic ions is performed by using the Lagrangian of the electromagnetic perturbation. It is shown that the trapped component of such a population has a small influence compared to that of the passing component. The stabilization threshold is calculated assuming a non linear regime in the q=1 resonant layer. The energetic population must create a stable tearing structure if the average curvature effect on thermal particles in the layer is small. However, this effect decreases the actual threshold

  6. Planck 2013 results X. Energetic particle effects: characterization, removal, and simulation

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Girard, D; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Mandolesi, N; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miniussi, A; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Mottet, S; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Racine, B; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Sanselme, L; Santos, D; Savini, G; Shellard, E P S; Spencer, L; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents the detection, interpretation and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). These interactions fall into two categories, heating the 0.1 K bolometer plate and glitches in each detector time stream. Glitch shapes are not simple single pole exponential decays and fall into a three families. The glitch shape for each family has been characterized empirically in flight data and removed from the detector time streams. The spectrum of the count rate/unit energy is computed for each family and a correspondence to where on the detector the particle hit is made. Most of the detected glitches are from galactic protons incident on the Si die frame supporting the micromachined bolometric detectors. At HFI, the particle flux is ~ 5 per square cm and per second and is dominated by protons incident on the spacecraft with an energy >39 MeV, leading to a rate of typically one event per second and per detector. Different categ...

  7. Identification of high-energetic particles by transition radiation

    International Nuclear Information System (INIS)

    Struczinski, W.

    1986-01-01

    This thesis gives a comprehensive survey on the application of the transition radiation for the particle identification. After a short historical review on the prediction and the detection of the transition radiation its theoretical foundations are more precisely explained. They form the foundations for the construction of an optimal transition radiation detector the principal construction of which is described. The next chapter shows some experiments by which the main predictions of the transition-radiation theory are confirmed. Then the construction and operation of two transition-radiation detectors are described which were applied at the ISR respectively SPS in the CERN in Geneva in complex experiments. The detector applied at the ISR served for the e ± identification. With two lithium radiators which were followed by xenon-filled proportional chambers an e/π separation of ≅ 10 -2 could be reached. The transition-radiation detector applied in the SPS was integrated into the European Hybrid Spectrometer. It served for the identification of high-energetic pions (> or approx. 90 GeV) against kaons and protons. With twenty units of carbon-fiber radiators which were followed by xenon-filled proportional chambers a π/K, p separation of better than 1:20 for momenta above 100 GeV could be reached. The cluster-counting method is then presented. Finally, a survey on the contemporary status in the development of transition-radiation detectors for the e/π separation is given. It is shown that by an about half a meter long detector the radiators of which consist of carbon fibers an e/π separation in the order of magnitude of ≅ 10 -2 can be reached. (orig./HSI) [de

  8. On the Link between the Release of Solar Energetic Particles Measured at Widespread Heliolongitudes and the Properties of the Associated Coronal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E. [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road Laurel, MD 20723 (United States); Riley, P., E-mail: david.lario@jhuapl.edu, E-mail: Nour.Eddine.Raouafi@jhuapl.edu, E-mail: ryunyoung.kwon@gmail.com, E-mail: pete@predsci.com [Predictive Science, 9990 Mesa Rim Road, Suite 170 San Diego, CA 92121 (United States)

    2017-10-01

    Under the paradigm that the main agents in the acceleration of solar energetic particles (SEPs) are shocks initially driven by coronal mass ejections, we analyze whether the properties of the shocks in the corona inferred from combining extreme-ultraviolet (EUV) and white-light (WL) observations from multiple vantage points together with magnetohydrodynamic (MHD) simulations of the corona can be used to determine the release of SEPs into different regions of the heliosphere and hence determine the longitudinal extent of the SEP events. We analyze the SEP events observed on 2011 November 3, 2013 April 11, and 2014 February 25 over a wide range of heliolongitudes. MHD simulations provide the characteristics of the background medium where shocks propagate, in particular the Alfvén and sound speed profiles that allow us to determine both the extent of the EUV waves in the low corona and the fast magnetosonic Mach number ( M {sub FM}) of the shocks. The extent of the EUV waves in the low corona is controlled by this background medium and does not coincide with the extent of the SEP events in the heliosphere. Within the uncertainties of (i) the extent and speed of the shock inferred from EUV and WL images and (ii) the assumptions made in the MHD models, we follow the evolution of M {sub FM} at the region of the shock magnetically connected to each spacecraft. The estimated release times of the first SEPs measured by each spacecraft does not coincide with the time when the M {sub FM} at this region exceeds a given threshold.

  9. On the Link between the Release of Solar Energetic Particles Measured at Widespread Heliolongitudes and the Properties of the Associated Coronal Shocks

    Science.gov (United States)

    Lario, D.; Kwon, R.-Y.; Riley, P.; Raouafi, N. E.

    2017-10-01

    Under the paradigm that the main agents in the acceleration of solar energetic particles (SEPs) are shocks initially driven by coronal mass ejections, we analyze whether the properties of the shocks in the corona inferred from combining extreme-ultraviolet (EUV) and white-light (WL) observations from multiple vantage points together with magnetohydrodynamic (MHD) simulations of the corona can be used to determine the release of SEPs into different regions of the heliosphere and hence determine the longitudinal extent of the SEP events. We analyze the SEP events observed on 2011 November 3, 2013 April 11, and 2014 February 25 over a wide range of heliolongitudes. MHD simulations provide the characteristics of the background medium where shocks propagate, in particular the Alfvén and sound speed profiles that allow us to determine both the extent of the EUV waves in the low corona and the fast magnetosonic Mach number (M FM) of the shocks. The extent of the EUV waves in the low corona is controlled by this background medium and does not coincide with the extent of the SEP events in the heliosphere. Within the uncertainties of (I) the extent and speed of the shock inferred from EUV and WL images and (II) the assumptions made in the MHD models, we follow the evolution of M FM at the region of the shock magnetically connected to each spacecraft. The estimated release times of the first SEPs measured by each spacecraft does not coincide with the time when the M FM at this region exceeds a given threshold.

  10. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts

    International Nuclear Information System (INIS)

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-01-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0–2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. - Highlights: • Dust particle size distributions had large differences for varying origins. • Dust originating from Taklimakan Desert was finer than that from Gobi Desert. • Effect of dust on the supermicron particles was obvious. • PM_1_0 concentrations increased by a factor of 3.4–25.6 during the dust event. - Dust particle size distributions had large differences for varying origins, which may be also related to other factors such as mixing between dust and urban emissions.

  11. Analysis of aluminum protective effect for female astronauts in solar particle events

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-01-01

    Full Text Available In order to ensure the health and safety of female astronauts in space, the risks of space radiation should be evaluated, and effective methods for protecting against space radiation should be investigated. In this paper, a dose calculation model is established for Chinese female astronauts. The absorbed doses of some organs in two historical solar particle events are calculated using Monte Carlo methods, and the shielding conditions are 0 gcm-2 and 5 gcm-2 aluminum, respectively. The calculated results are analysed, compared, and discussed. The results show that 5 gcm-2 aluminum cannot afford enough effective protection in solar particle events. Hence, once encountering solar particle events in manned spaceflight missions, in order to ensure the health and safety of female astronauts, they are not allowed to stay in the pressure vessel, and must enter into the thicker shielding location such as food and water storage cabin.

  12. Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies

    Science.gov (United States)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Malandraki, O.; Dröge, W.; Kartavykh, Y.

    2014-07-01

    Context. In February 2011, the two STEREO spacecrafts reached a separation of 180 degrees in longitude, offering a complete view of the Sun for the first time ever. When the full Sun surface is visible, source active regions of solar energetic particle (SEP) events can be identified unambiguously. STEREO, in combination with near-Earth observatories such as ACE or SOHO, provides three well separated viewpoints, which build an unprecedented platform from which to investigate the longitudinal variations of SEP events. Aims: We show an ensemble of SEP events that were observed between 2009 and mid-2013 by at least two spacecrafts and show a remarkably wide particle spread in longitude (wide-spread events). The main selection criterion for these events was a longitudinal separation of at least 80 degrees between active region and spacecraft magnetic footpoint for the widest separated spacecraft. We investigate the events statistically in terms of peak intensities, onset delays, and rise times, and determine the spread of the longitudinal events, which is the range filled by SEPs during the events. Energetic electron anisotropies are investigated to distinguish the source and transport mechanisms that lead to the observed wide particle spreads. Methods: According to the anisotropy distributions, we divided the events into three classes depending on different source and transport scenarios. One potential mechanism for wide-spread events is efficient perpendicular transport in the interplanetary medium that competes with another scenario, which is a wide particle spread that occurs close to the Sun. In the latter case, the observations at 1 AU during the early phase of the events are expected to show significant anisotropies because of the wide injection range at the Sun and particle-focusing during the outward propagation, while in the first case only low anisotropies are anticipated. Results: We find events for both of these scenarios in our sample that match the

  13. Relationship between energetic particles and plasmas in the distant plasma sheet

    International Nuclear Information System (INIS)

    Sarris, E.T.; Krimigis, S.M.; Lui, A.T.Y.; Ackerson, K.L.; Frank, L.A.; Williams, D.J.

    1981-01-01

    Measurements of ions from three different instruments on the IMP-7 and 8 spacecraft are combined to yield with differential energy spectra of ions over the entire energy range of approx.100 eV to 4 MeV in the earth's distant (approx.30 to approx.40 R/sub e/) plasma sheet. These spectra, obtained during times of relatively small bulk flow velocities, span the intensity range from approx.10 -5 to 10 5 (cm 2 sec sr keV) -1 , varying smoothly over the entire energy range both when the plasma is cold (approx.1 keV) and hot (approx.9 keV). Overall, the shape of the spectrum resembles a Maxwellian but with a high energy (> or approx. =50 keV) tail described well by a power law (proportionalE -7 ). The high energy tail is displaced in a parallel fashion to higher or lower intensities when the plasma is hot or cold, respectively. The transition between the Maxwellian and the power law occurs at Eapprox. =(g+1)kT. It is found that the energetic particle populations in the plasma sheet appear to be directly related to the mean thermal energies of the corresponding plasmas

  14. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    The proposer requested funding for laser equipment that would be used to study engineered nanometric energetic materials consisting of nanometer metal particles, passivation layers and oxidizing binders...

  15. Size evolution of ultrafine particles: Differential signatures of normal and episodic events

    International Nuclear Information System (INIS)

    Joshi, Manish; Khan, Arshad; Anand, S.; Sapra, B.K.

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. - Highlights: • Effect of firework emissions on atmospheric aerosol characteristics was studied. • Significant increase in ultrafine particle concentration was observed during firework bursting. • Size distribution evolution analysis of number concentration peaks has been performed. • Differential signatures of normal and episodic event were noted. - Notable increase in ultrafine particle concentration during firework bursting was seen. Normal and episodic event could be differentiated on the basis of size evolution analysis.

  16. Spatial distribution and occurrence probability of regional new particle formation events in eastern China

    Directory of Open Access Journals (Sweden)

    X. Shen

    2018-01-01

    Full Text Available In this work, the spatial extent of new particle formation (NPF events and the relative probability of observing particles originating from different spatial origins around three rural sites in eastern China were investigated using the NanoMap method, using particle number size distribution (PNSD data and air mass back trajectories. The length of the datasets used were 7, 1.5, and 3 years at rural sites Shangdianzi (SDZ in the North China Plain (NCP, Mt. Tai (TS in central eastern China, and Lin'an (LAN in the Yangtze River Delta region in eastern China, respectively. Regional NPF events were observed to occur with the horizontal extent larger than 500 km at SDZ and TS, favoured by the fast transport of northwesterly air masses. At LAN, however, the spatial footprint of NPF events was mostly observed around the site within 100–200 km. Difference in the horizontal spatial distribution of new particle source areas at different sites was connected to typical meteorological conditions at the sites. Consecutive large-scale regional NPF events were observed at SDZ and TS simultaneously and were associated with a high surface pressure system dominating over this area. Simultaneous NPF events at SDZ and LAN were seldom observed. At SDZ the polluted air masses arriving over the NCP were associated with higher particle growth rate (GR and new particle formation rate (J than air masses from Inner Mongolia (IM. At TS the same phenomenon was observed for J, but GR was somewhat lower in air masses arriving over the NCP compared to those arriving from IM. The capability of NanoMap to capture the NPF occurrence probability depends on the length of the dataset of PNSD measurement but also on topography around the measurement site and typical air mass advection speed during NPF events. Thus the long-term measurements of PNSD in the planetary boundary layer are necessary in the further study of spatial extent and the probability of NPF events. The spatial

  17. TDRS-1 single event upsets and the effect of the space environment

    International Nuclear Information System (INIS)

    Wilkinson, D.C.; Daughtridge, S.C.; Stone, J.L.; Sauer, H.H.; Darling, P.

    1991-01-01

    The systematic recording of Single Event Upsets on TDRS-1 from 1984 to 1990 allows correlations to be drawn between those upsets and the space environment. In this paper, ground based neutron monitor data are used to illustrate the long-term relationship between galactic cosmic rays and TDRS-1 upsets. The short-term effects of energetic solar particles are illustrated with space environment data from GOES-7

  18. Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    Science.gov (United States)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard,T. L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU'S. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU'S, very dose to the 243 observed SEU'S. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU

  19. Progress Towards a Benchtop Energetics Capability (BRIEFING CHARTS)

    National Research Council Canada - National Science Library

    Fajardo, Mario E; Lewis, William K

    2006-01-01

    The incorporation of nanometric (sub-micron size) metal fuel and oxidizer particles into energetic materials is a promising approach to increasing significantly the systems-level performance of munitions...

  20. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain

    Directory of Open Access Journals (Sweden)

    X. J. Shen

    2011-02-01

    Full Text Available Atmospheric particle number size distributions (size range 0.003–10 μm were measured between March 2008 and August 2009 at Shangdianzi (SDZ, a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass

  1. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    International Nuclear Information System (INIS)

    Park, Jinhye; Moon, Y.-J.; Lee, Harim

    2017-01-01

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are as follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  2. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinhye; Moon, Y.-J. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Lee, Harim, E-mail: jinhye@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2017-07-20

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are as follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  3. The energetic ion substorm injection boundary

    International Nuclear Information System (INIS)

    Lopez, R.E.; Sibeck, D.G.; McEntire, R.W.; Krimigis, S.M.

    1990-01-01

    The substorm injection boundary model has enjoyed considerable success in explaining plasma signatures in the near-geosynchronous region. However, the injection boundary has remained primarily a phenomenological model. In this paper the authors examine 167 dispersionless energetic ion injections which were observed by AMPTE CCE. The radial and local time distribution of the events as a function of Kp is qualitatively similar to that envisioned in the injection boundary model of Mauk and McIlwain (1974). They argue that particles observed during dispersionless injections are locally energized during the disruption of the cross-tail current sheet. Therefore they identify the injection boundary, as derived from the spatial distribution of dispersionless injections, with the earthward edge of the region of the magnetotail which undergoes current sheet disruption during the substorm expansion phase. The authors show that this qualitative model for the generation of the injection boundary can provide an explanation for the dispersionless nature, the double spiral shape, and the Kp dependence of the boundary

  4. Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We have analyzed high time resolution (\\geq6 s data during the onset and the decay phase of several energetic (\\geq35 keV ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \\sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  5. Inclusive charged particle distributions in deep inelastic scattering events at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-11-01

    A measurement of inclusive charged particle distributions in deep inelastic ep scattering for γ * p centre-of-mass energies 75 2 2 from the ZEUS detector at HERA is presented. The differential charged particle rates in the γ*p centre-of-mass system as a function of the scaled longitudinal momentum, x F , and of the transverse momentum, p* t and t 2 >, as a function of x F , W and Q 2 are given. Separate distributions are shown for events with (LRG) and without (NRG) a rapidity gap with respect to the proton direction. The data are compared with results from experiments at lower beam energies, with the naive quark parton model and with parton models including perturbative QCD corrections. The comparison shows the importance of the higher order QCD processes. Significant differences of the inclusive charged particle rates between NRG and LRG events at the same W are observed. The value of t 2 > for LRG events with a hadronic mass M X , which excludes the forward produced baryonic system, is similar to the t 2 > value observed in fixed target experiments at W∼M X . (orig.)

  6. Great SEP events and space weather: 2. Automatic determination of the solar energetic particle spectrum

    Science.gov (United States)

    Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zagnetko, Alexander; Zukerman, Igor

    In Applbaum et al. (2010) it was described how the "SEP-Search" program works automat-ically, determining on the basis of on-line one-minute NM data the beginning of a great SEP event. The "SEP-Search" next uses one-minute data in order to check whether or not the observed increase reflects the beginning of a real great SEP event. If yes, the program "SEP-Research/Spectrum" automatically starts to work on line. We consider two variants: 1) quiet period (no change in cut-off rigidity), 2) disturbed period (characterized with possible changing of cut-off rigidity). We describe the method of determining the spectrum of SEP in the 1st vari-ant (for this we need data for at least two components with different coupling functions). For the 2nd variant we need data for at least three components with different coupling functions. We show that for these purposes one can use data of the total intensity and some different mul-tiplicities, but that it is better to use data from two or three NM with different cut-off rigidities. We describe in detail the algorithms of the program "SEP-Research/Spectrum." We show how this program worked on examples of some historical great SEP events. The work of NM on Mt. Hermon is supported by Israel (Tel Aviv University and ISA) -Italian (UNIRoma-Tre and IFSI-CNR) collaboration.

  7. Dynamic SEP event probability forecasts

    Science.gov (United States)

    Kahler, S. W.; Ling, A.

    2015-10-01

    The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.

  8. Simulation of Alfvén eigenmode bursts using a hybrid code for nonlinear magnetohydrodynamics and energetic particles

    Science.gov (United States)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-03-01

    A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.

  9. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available The success of recombinant virus-like particles (VLPs for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines.

  10. Plasma and field observations of a compressional Pc 5 wave event

    International Nuclear Information System (INIS)

    Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Luehr, H.; Glassmeier, K.H.

    1987-01-01

    On October 24, 1984, the AMPTE/IRM satellite, on its inbound orbit in the 1,300 LT sector, observed a strong compressional Pc 5 event lasting for about an hour. The use of data from the full complement of detectors aboard the spacecraft allowed for detailed measurements of field and particle oscillations, with the latter covering energies from a few electron volts up to tens of keV (electrons) or even 1 MeV (protons). Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of in-phase events. But the energetic proton data also exhibited a new feature: Flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied. The low-energy particles showed clear signatures of gradient convection due to the wave electric field with the protons additionally undergoing gyration acceleration. The period of the pulsation decreased while the satellite was moving inward, in agreement with the individual L shell resonance model. But in contrast to earlier observations the periods of the compressional and transverse oscillations differed significantly (by ∼ 25%). The authors interpret this as Doppler shift due to spacecraft motion since in the present event the transverse oscillations did not have the purely radial (poloidal) polarization common to other published cases

  11. Zenith: A Radiosonde Detector for Rapid-Response Ionizing Atmospheric Radiation Measurements During Solar Particle Events

    Science.gov (United States)

    Dyer, A. C. R.; Ryden, K. A.; Hands, A. D. P.; Dyer, C.; Burnett, C.; Gibbs, M.

    2018-03-01

    Solar energetic particle events create radiation risks for aircraft, notably single-event effects in microelectronics along with increased dose to crew and passengers. In response to this, some airlines modify their flight routes after automatic alerts are issued. At present these alerts are based on proton flux measurements from instruments onboard satellites, so it is important that contemporary atmospheric radiation measurements are made and compared. This paper presents the development of a rapid-response system built around the use of radiosondes equipped with a radiation detector, Zenith, which can be launched from a Met Office weather station after significant solar proton level alerts are issued. Zenith is a compact, battery-powered solid-state radiation monitor designed to be connected to a Vaisala RS-92 radiosonde, which transmits all data to a ground station as it ascends to an altitude of 33 km. Zenith can also be operated as a stand-alone detector when connected to a laptop, providing real-time count rates. It can also be adapted for use on unmanned aerial vehicles. Zenith has been flown on the Met Office Civil Contingency Aircraft, taken to the European Organization for Nuclear Research-EU high energy Reference Field facility for calibration and launched on a meteorological balloon at the Met Office's weather station in Camborne, Cornwall, UK. During this sounding, Zenith measured the Pfotzer-Regener maximum to be at an altitude of 18-20 km where the count rate was measured to be 1.15 c s-1 cm-2 compared to 0.02 c s-1 cm-2 at ground level.

  12. Types of Lightning Discharges that Abruptly Terminate Enhanced Fluxes of Energetic Radiation and Particles Observed at Ground Level

    International Nuclear Information System (INIS)

    Chilingarian, A.; Khanikyants, Y.; Pokhsraryan, D.; Soghomonyan, S.; Mareev, E.; Rakov, V.

    2017-01-01

    We present ground-based measurements of thunderstorm-related enhancements of fluxes of energetic radiation and particles that are abruptly terminated by lightning discharges. All measurements were performed at an altitude of 3200 m above sea level on Mt. Aragats (Armenia). Lightning signatures were recorded using a network of five electric field mills, three of which were placed at the Aragats station, one at the Nor Amberd station (12.8 km from Aragats), and one at the Yerevan station (39 km from Aragats), and a wideband electric field measuring system with a useful frequency bandwidth of 50 Hz to 12 MHZ. It appears that the flux-enhancement termination is associated with close (within 10 km or so of the particle detector) -CGs and normal polarity ICs; that is, with lightning types which reduce the upward-directed electric field below the cloud and, hence, suppress the acceleration of electrons toward the ground. (author)

  13. Particle production in very-high-energy cosmic-ray emulsion chamber events: Usual and unusual events

    International Nuclear Information System (INIS)

    Costa, C.G.S.; Halzen, F.; Salles, C.

    1995-01-01

    We show that a simple scaling model of very forward particle production, consistent with accelerator and air shower data, can describe the overall features of the very-high-energy interactions recorded with emulsion chambers. The rapidity and transverse momentum distribution of the secondaries are quantitatively reproduced. This is somewhat surprising after numerous claims that the same data implied large scaling violations or new dynamics. Interestingly, we cannot describe some of the Centauro events, suggesting that these events are anomalous independently of their well-advertised unusual features such as the absence of neutral secondaries

  14. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  15. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    Science.gov (United States)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    interplanetary particles originating in such flare regions might be expected in all solar particle events.

  16. Observations of new particle formation events in the south-eastern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Kristina Plauškaitė

    2010-03-01

    Full Text Available New particle formation and growth were observed at a coastal site (Preila station, Lithuania during 1997 and 2000-2002. The total amountof data analysed covers 291 one-day periods, 45 (15% of which were long-term, new particle formation days. Short-term nucleationevents (from a few minutes to one hour and long-term events (from one to eight hours were identified. The mean particlegrowth rate, condensation sink and condensable vapour source rate during nucleation events were 3.9 nm h-1, 1.45 × 10-3 cm-3 s-1 and 7.5 × 104 cm-3 s-1 respectively.The average formation rate J10 was 0.4 cm-3 s-1. The nucleation events were accompaniedmainly by air masses transported from the north (43% and north-west (19%. Meteorological parameters and trace gas (O3, SO2,NO2 concentrations were also analysed. It was found that nucleation events are related to high levels of solar radiation.

  17. The topology dependence of charged particle multiplicities in three-jet events

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Becker, U; Buchmüller, O L; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1997-01-01

    A study of individual jet and whole-event charged particle multiplicities in three-jet events measured in e+e- annihilation at the Z reveals a significant topology dependence. Mean jet multiplicities are inadequately described by jet energies; interjet angles must also be specified. Quantitative tests suggest that it is necessary to use transverse-momentum-like scales to describe the data.

  18. Shock Geometry and Spectral Breaks in Large SEP Events

    Science.gov (United States)

    Li, G.; Zank, G. P.; Verkhoglyadova, Olga; Mewaldt, R. A.; Cohen, C. M. S.; Mason, G. M.; Desai, M. I.

    2009-09-01

    Solar energetic particle (SEP) events are traditionally classified as "impulsive" or "gradual." It is now widely accepted that in gradual SEP events, particles are accelerated at coronal mass ejection-driven (CME-driven) shocks. In many of these large SEP events, particle spectra exhibit double power law or exponential rollover features, with the break energy or rollover energy ordered as (Q/A)α, with Q being the ion charge in e and A the ion mass in units of proton mass mp . This Q/A dependence of the spectral breaks provides an opportunity to study the underlying acceleration mechanism. In this paper, we examine how the Q/A dependence may depend on shock geometry. Using the nonlinear guiding center theory, we show that α ~ 1/5 for a quasi-perpendicular shock. Such a weak Q/A dependence is in contrast to the quasi-parallel shock case where α can reach 2. This difference in α reflects the difference of the underlying parallel and perpendicular diffusion coefficients κ|| and κbottom. We also examine the Q/A dependence of the break energy for the most general oblique shock case. Our analysis offers a possible way to remotely examine the geometry of a CME-driven shock when it is close to the Sun, where the acceleration of particle to high energies occurs.

  19. Data Products From Particle Detectors On-Board NOAA's Newest Space Weather Monitor

    Science.gov (United States)

    Kress, B. T.; Rodriguez, J. V.; Onsager, T. G.

    2017-12-01

    NOAA's newest Geostationary Operational Environmental Satellite, GOES-16, was launched on 19 November 2016. Instrumentation on-board GOES-16 includes the new Space Environment In-Situ Suite (SEISS), which has been collecting data since 8 January 2017. SEISS is composed of five magnetospheric particle sensor units: an electrostatic analyzer for measuring 30 eV - 30 keV ions and electrons (MPS-LO), a high energy particle sensor (MPS-HI) that measures keV to MeV electrons and protons, east and west facing Solar and Galactic Proton Sensor (SGPS) units with 13 differential channels between 1-500 MeV, and an Energetic Heavy Ion Sensor (EHIS) that measures 30 species of heavy ions (He-Ni) in five energy bands in the 10-200 MeV/nuc range. Measurement of low energy magnetospheric particles by MPS-LO and heavy ions by EHIS are new capabilities not previously flown on the GOES system. Real-time data from GOES-16 will support space weather monitoring and first-principles space weather modeling by NOAA's Space Weather Prediction Center (SWPC). Space weather level 2+ data products under development at NOAA's National Centers for Environmental Information (NCEI) include the Solar Energetic Particle (SEP) Event Detection algorithm. Legacy components of the SEP event detection algorithm (currently produced by SWPC) include the Solar Radiation Storm Scales. New components will include, e.g., event fluences. New level 2+ data products also include the SEP event Linear Energy Transfer (LET) Algorithm, for transforming energy spectra from EHIS into LET spectra, and the Density and Temperature Moments and Spacecraft Charging algorithm. The moments and charging algorithm identifies electron and ion signatures of spacecraft surface (frame) charging in the MPS-LO fluxes. Densities and temperatures from MPS-LO will also be used to support a magnetopause crossing detection algorithm. The new data products will provide real-time indicators of potential radiation hazards for the satellite

  20. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  1. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  2. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  3. Solar particle induced upsets in the TDRS-1 attitude control system RAM during the October 1989 solar particle events

    International Nuclear Information System (INIS)

    Croley, D.R.; Garrett, H.B.; Murphy, G.B.; Garrard, T.L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU's. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU's, very close to the 243 observed SEU's

  4. In situ energetic particle observations at comet Halley recorded by instrumentation aboard the Giotto and Vega 1 missions

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O' Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.; Coates, A.

    1989-04-01

    Three important observations recorded in the energetic particle data secured at Halley's comet during March 1986 are reviewed. These include (a) quasi periodic variations of cometary ion fluxes observed inbound and outbound by both the EPONA instrument aboard Giotto and by the Tunde-M instrument aboard Vega 1. A possible explanation of the results in terms of a spin modulation of the outgassing rate of the nucleus is discussed; (b) by combining the EPONA data with JPA-IIS data it is possible to infer that the ion fluxes measured at encounter by EPONA were of the water group. These particles displayed energies in excess of those attained by the pick-up process acting alone. Comparisons between energy spectra prepared using the composite observational data and, corresponding, theoretically derived plots suggest that, downstream of the shock (inbound), stochastic (second-order-Fermi) acceleration may have contributed to energizing the particles; (c) large fluxes of electrons (E>300keV) and ions (E>3.5 MeV) were unexpectedly recorded by EPONA in the magnetic cavity. The observed enhancements (up to approximately three orders of magnitude) appear to be cometary in origin.

  5. In situ energetic particle observations at comet Halley recorded by instrumentation aboard the Giotto and Vega 1 missions

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.

    1989-01-01

    Three important observations recorded in the energetic particle data secured at Halley's comet during March 1986 are reviewed. These include (a) quasi periodic variations of cometary ion fluxes observed inbound and outbound by both the EPONA instrument aboard Giotto and by the Tunde-M instrument aboard Vega 1. A possible explanation of the results in terms of a spin modulation of the outgassing rate of the nucleus is discussed; (b) by combining the EPONA data with JPA-IIS data it is possible to infer that the ion fluxes measured at encounter by EPONA were of the water group. These particles displayed energies in excess of those attained by the pick-up process acting alone. Comparisons between energy spectra prepared using the composite observational data and, corresponding, theoretically derived plots suggest that, downstream of the shock (inbound), stochastic (second-order-Fermi) acceleration may have contributed to energizing the particles; (c) large fluxes of electrons (E>300keV) and ions (E>3.5 MeV) were unexpectedly recorded by EPONA in the magnetic cavity. The observed enhancements (up to approximately three orders of magnitude) appear to be cometary in origin

  6. On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE)

    Science.gov (United States)

    Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.

    2018-01-01

    In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of

  7. Collective Thomson scattering in tokamaks having energetic ions

    International Nuclear Information System (INIS)

    Myer, R.C.; Woskov, P.P.; Machuzak, J.S.; Sigmar, D.J.; Cohn, D.R.; Bretz, N.L.; Efthimion, P.C.; Colestock, P.L.

    1989-01-01

    The authors discuss how collective Thomson scattering (CTS), using high power gyrotrons or long wavelength lasers,m shows promise as a powerful non-intrusive diagnostic of fast-ion transport as it may be capable of measuring the fast-ion velocity distribution and density profile with good spatial and temporal resolution. In addition, CTS may be used as a diagnostic for detecting localized power deposition in the background plasma. High power CTS systems are presently being planned for TFTR, JET, and CIT. Recent theoretical analysis suggests that an energetic (200-800 keV) He 3 minority can be produced in TFTR by ion cyclotron heating (ICH). Such an energetic population would be useful for simulating the energetic alpha-particles produced in a burning plasma. Since the ICH generated distribution is non-Maxwellian, the authors generalize the theoretical analysis of CTS to allow for particle distributions which can be represented by various orthogonal polynomial expansions. They evaluate the efficacy of CTS in detecting a fast He 3 component and determine the sensitivity of the diagnostic to the details of the ion distribution. In particular, the effectiveness of a planned 56 GHz gyrotron CTS diagnostic for TFTR is evaluated

  8. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  9. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  10. Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves

    International Nuclear Information System (INIS)

    Voelk, H.J.; Morfill, G.E.; Forman, M.A.

    1981-01-01

    The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency

  11. Assessment of CRBR core disruptive accident energetics

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Bell, C.R.

    1984-03-01

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly

  12. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  13. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  14. Long-duration high-energy proton events observed by GOES in October 1989

    Directory of Open Access Journals (Sweden)

    A. Anttila

    1998-08-01

    Full Text Available We consider the prolonged injection of the high-energy (>10 MeV protons during the three successive events observed by GOES in October 1989. We apply a solar-rotation-stereoscopy approach to study the injection of the accelerated particles from the CME-driven interplanetary shock waves in order to find out how the effectiveness of the particle acceleration and/or escape depends on the angular distance from the shock axis. We use an empirical model for the proton injection at the shock and a standard model of the interplanetary transport. The model can reproduce rather well the observed intensity–time profiles of the October 1989 events. The deduced proton injection rate is highest at the nose of the shock; the injection spectrum is always harder near the Sun. The results seem to be consistent with the scheme that the CME-driven interplanetary shock waves accelerate a seed particle population of coronal origin.Key words. Interplanetary physics · Energetic particles · Solar physics · astrophysics and astronomy · Flares and mass ejections

  15. Fine particles from Independence Day fireworks events: chemical characterization and source apportionment

    Science.gov (United States)

    Zhang, J.; Lance, S.; Freedman, J. M.; Yele, S.; Crandall, B.; Wei, X.; Schwab, J. J.

    2017-12-01

    To study the impact of fireworks (FW) events on air quality, aerosol particles from FW displays were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and collocated instruments during the Independence Day holiday 2017 in Albany, NY. Three FW events were identified through potassium ion (K+) signals in the mass spectra. The largest FW event signal measured at two different locations was the Independence Day celebration in Albany, with maximum aerosol concentrations of about 55 ug/m3 at the downtown site and 35 ug/m3 at the uptown site. The aerosol concentration peaked at the uptown site about 2 hours later than at the downtown site. FW events resulted in significant increases in both organic and inorganic (K+, sulfate, chloride) compounds. Among the organics, Positive Matrix Factorization (PMF) identified one special FW organic aerosol factor (FW-OA), which was highly oxidized. The intense emission of FW particles from the Independence Day celebration contributed 76% of total PM1 at the uptown site. The aerosol and wind LiDAR measurements showed two distinct pollution sources, one from the Independence Day FW event in Albany, and another aerosol source transported from other areas, potentially associated with other town's FW events.

  16. Simulation study of energetic ion distribution during combined NBI and ICRF heating in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Kasilov, V.

    2006-01-01

    In the LHD, significant performances of ICRF heating (fundamental, minority heating regime) have been demonstrated and up to 500keV of energetic tail ions have been observed by fast neutral particle analysis (NPA). These measured results indicate a good property of energetic ion confinement in helical systems. From the 9th campaign of LHD experiment (FY2005) a new perpendicular NBI heating system (P<3MW) has been installed and an effective heating of perpendicularly injected beam ions by the higher harmonics ICRF heating is expected. ICRF heating generates highly energetic tail ions, which drift around the torus for a long time (typically on a collisional time scale). Thus, the behavior of these energetic ions is strongly affected by the characteristics of the drift motions, which depend on the magnetic field configuration. In particular, in a three-dimensional (3D) magnetic configuration, complicated drift motions of trapped particles would play an important role in the confinement of the energetic ions and the ICRF heating process. Therefore a global simulation of ICRF heating is necessary for the accurate modeling of the plasma heating process in a 3D magnetic configuration. In this paper we study the energetic ion distribution during combined NBI and 2nd harmonics ICRF heating in LHD using two global simulation codes: a full wave field solver TASK/WK and a drift kinetic equation solver GNET. GNET solves a linearized drift kinetic equation for energetic ions including complicated behavior of trapped particles in 5-D phase space. TASK/WM solves Maxwell's equation for RF wave electric field with complex frequency as a boundary value problem in the 3D magnetic configuration. (author)

  17. Build Your Own Particle Detector. Education and outreach through ATLAS LEGO models and events

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220289; The ATLAS collaboration

    2016-01-01

    To support the outreach activities of ATLAS institutes and to grasp people’s attention in science exhibitions and during public events, a very detailed model of the experiment built entirely out of LEGO bricks as well as an outreach programme using LEGO bricks to get people to think about particle detectors and involve them into a conversation about particle physics in general have been created. A large LEGO model, consisting of about 9500 pieces, has been exported to more than 55 ATLAS institutes and has been used in numerous exhibitions to explain the proportion and composition of the experiment to the public. As part of the Build Your Own Particle Detector programme (byopd.org) more than 15 events have been conducted, either involving a competition to design and build the best particle detector from a random pile of pieces or to take part in the construction of one of the large models, as part of a full day outreach event. Recently, miniature models of all four main LHC experiments, that will be used at ...

  18. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D. A.

    2011-01-01

    and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines...... not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data....

  19. Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere

    Science.gov (United States)

    Parker, L. N.; Minow, J. I.; Talaat, E. R.

    2016-12-01

    Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.

  20. Fast digital processor for event selection according to particle number difference

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Gus'kov, B.N.; Li Van Sun; Maksimov, A.N.; Parfenov, A.N.

    1978-01-01

    A fast digital processor for a magnetic spectrometer is described. It is used in experimental searches for charmed particles. The basic purpose of the processor is discriminating events in the difference of numbers of particles passing through two proportional chambers (PC). The processor consists of three units for detecting signals with PC, and a binary coder. The number of inputs of the processor is 32 for the first PC and 64 for the second. The difference in the number of particles discriminated is from 0 to 8. The resolution time is 180 ns. The processor is built in the CAMAC standard