WorldWideScience

Sample records for energetic environmental applications

  1. Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2013-01-01

    Highlights: ► Applying exergy, economic, environment and sustainability analyses to the GDHSs. ► Assessing energy and exergy efficiencies, economic and environmental impacts. ► Calculating the energy and exergy efficiencies of 34.86% and 48.78%, respectively. ► Proposing GDHSs as the most economic heating system. ► Providing a significant contribution towards reducing the emissions of air pollution. - Abstract: This study deals with an energetic and exergetic analysis as well as economic and environmental evaluations of Afyon geothermal district heating system (AGDHS) in Afyon, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. And, for economic and environmental evaluations, actual data are obtained from the Technical Departments. The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. For system performance analysis and improvement, both energy and exergy efficiencies of the overall AGDHS are determined to be 34.86% and 48.78%, respectively. The efficiency improvements in heat and power systems can help achieving energy security in an environmentally acceptable way by reducing the emissions that might otherwise occur. Present application has shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and makes a significant contribution towards reducing the emissions of air pollution.

  2. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  3. Medical, energetic, environmental applications

    International Nuclear Information System (INIS)

    2007-01-01

    The boron neutron capture therapy (BNCT) project at ENEA is mainly based on the TAPIRO experimental nuclear reactor and (more recently) also on the TRIGA reactor, both located at ENEA Casaccia. TAPIRO has two facilities: an epithermal column (EPIMED) constructed for research on deep tumours, such as glioblastoma, and a thermal column (HYTHOR) mainly used in collaboration with the Legnaro National Laboratory (LNL) of the National Institute of Nuclear Physics (INFN) and with the University of Padua for in vivo radiobiological studies and neutron microdosimetry. The feasibility of using the thermal column of the TRIGA reactor to treat explanted livers with BNCT is being studied. The collaboration with INFN Pavia and the University of Pavia on applying BNCT to lung tumours continued. In 2007 the final agreement from the Italian Agency for Environmental Protection and Technical Services (APAT) was obtained and the reactor operating conditions with the EPIMED facility were established. As described in the 2006 Progress Report, the epithermal neutron beam (neutron energy between 1 eV and 10 keV) entering the reactor hall has been shielded by a bunker of limited volume, appropriate for beam characterisation with the reactor operating at a maximum 10% of nominal power (5 kW). The use of nuclear power in space is technically feasible but, due to the remote risk of an accident at launch or in the event of an uncontrolled re-entry, it still remains politically unacceptable. Nevertheless, small and safe nuclear reactors could generate 30-60 kW of electrical power for a period of 10-15 years even in the case of a deep space mission, where conventional energy conversion devices are useless or inefficient. Furthermore, the standard space systems for electrical power generation (photoelectric conversion and radioactive thermal generator) are unable to sustain similar performances even in orbital conditions. A carefully designed nuclear reactor for space application could also be

  4. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  5. Natural gas fuelled vehicles, energetic and environmental problems

    International Nuclear Information System (INIS)

    Ciancia, A.; Pede, G.

    1998-03-01

    The present report deals with the analysis and the presentation of the main problems concerning the introduction of the natural gas fuel for vehicles. The offer and demand side of the NGV market are analyzed, together with the presently available NG fuelled vehicles and the status of the technology for engines and on-board storage systems, with particular regard to the energetic and environmental performance of the system. Finally the NGV market development is presented, and the actors on the stage, showing the opportunities together with the possible obstacle to a wider diffusion of this technology [it

  6. Nuclear energy I, Non-energetic applications; Energia Nuclear I, Aplicaciones no energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J; Navarrete T, M; Cabrera M, L; Arandia, P A; Arriola S, H [Facultad de Quimica, 04510 Mexico D.F. (Mexico)

    1986-07-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( {approx} 20 MeV/reaction), heavy nucleus fusion ({approx} 200 MeV/reaction) and nucleons annihilation ( {approx} 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  7. Energetic utilisation of biomass in Hungary

    International Nuclear Information System (INIS)

    Barotfi, I.

    1994-01-01

    Energetic utilisation of biomass has been known since prehistoric times and was only pushed into the background by the technological developments of the last century. The energy crisis and, more recently, environmental problems have now brought it back to the fore, and efforts are being made worldwide to find modern technical applications for biomass and contribute to its advance. (orig.) [de

  8. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  9. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  10. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  11. Natural gas in Mexico and its perspectives as a clean energetic

    International Nuclear Information System (INIS)

    Penilla, Rodolfo Navarro

    1994-01-01

    In Mexico, the natural gas market is characterized by stable consumption and growing perspectives in the demand, due to the entrance in vigor of news environmental norms, as soon as, the benefits from the natural gas are as energetic for many applications in several sectors and like a clean fountain of energy proper for the environmental protection plans. (author)

  12. Biogas - energetical and environmental point of view

    International Nuclear Information System (INIS)

    Skele, A.; Upitis, A.; Kristapsons, M.; Goizevskis, O.; Ziemelis, I.

    2003-01-01

    Energy sector has been one of the most important priorities since reestablishment of independence of Latvia. The deficiency of energy resources in Latvia has created a need to assess all the possibilities to utilise all possibilities to utilise all the energy resources, including the biological ones, to motivate the trends in the development of energetic in Latvia. A huge non-utilised reserve in Latvia is methane fermentation of organic agricultural and municipal residue and sewage from food industry. The organic mass of solid and liquid waste of different origin and its energetic potential for rural region have been investigated. The work deals with an integrated system of the utilisation of agricultural waste with the anaerobic (biogas) and the thermal processes. Presently the anaerobic waste utilisation, in combination with the production of biogas and organic fertiliser, is considered as one of the energetically most efficient and environment-friendly ways of organic fertiliser utilisation (authors)

  13. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste.

  14. Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Science.gov (United States)

    McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.

    2014-01-01

    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to

  15. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  16. Trigeneration in food retail: An energetic, economic and environmental evaluation for a supermarket application

    International Nuclear Information System (INIS)

    Sugiartha, N.; Tassou, S.A.; Chaer, I.; Marriott, D.

    2009-01-01

    This paper presents results on the evaluation of energy utilisation efficiency and economic and environmental performance of a micro-gas turbine (MGT) based trigeneration system for supermarket applications. A spreadsheet energy model has been developed for the analysis of trigeneration systems and a 2800 m 2 sales area supermarket was selected for the feasibility study. Historical energy demand data were used for the analysis, which considered factors such as the fraction of the heat output used to drive the absorption chillers, the chiller COP and the difference between electricity and gas prices. The results showed that energy and environmental benefits can be obtained from the application of trigeneration systems to supermarkets compared to conventional systems. The payback period of natural gas driven trigeneration systems and greenhouse gas emissions savings will depend on the relative gas and electricity prices and the COP of the vapour compression and absorption systems. It was also shown that operation at full electrical output gives a better performance than a heat load-following strategy due to the reduction of the electrical generation efficiency of the MGT unit at part load conditions.

  17. Environmentally benign destruction of waste energetic materials (EMs)

    International Nuclear Information System (INIS)

    Schneider, R. L.; Donahue, B. A.

    1998-01-01

    Studies by the U. S. Army Corps of Engineers during 1991-1997 involving various methods for the destruction of waste generated by pyrotechnic, explosive and propellant materials are described. The methods assessed and evaluated include controlled incineration (CI), wet air oxidation (WAO), and hydrothermal oxidation (HTO), using a U.S. Army triple-base propellant as the initial common standard for all destructor comparative testing. All three of these methods has special feed line restrictions requiring mechanical diminution and comminution of the energetic material which, for safety reasons, cannot be used with contaminated heterogeneous production wastes. Supercritical fluid extraction with carbon dioxide, alkaline hydrolysis, electrolysis and fluid cutting with very high pressure water jets and liquid nitrogen are alternate technologies that were evaluated as pre-treatment for production wastes. Wet air oxidation and electrochemical reduction studies were conducted using the U.S. Navy double propellant NOSIH-AA2, which contains a lead-based ballistic modifier. Wet air oxidation and hydrothermal oxidation studies were done using potassium dinitramide phase-stabilized nitrate as an oxidizer. All of these technologies are considered to be suitable for the environmentally benign destruction of pyrotechnic materials, including fireworks. 17 refs., 8 tabs., 4 figs

  18. Innovative reuse of drinking water sludge in geo-environmental applications.

    Science.gov (United States)

    Caniani, D; Masi, S; Mancini, I M; Trulli, E

    2013-06-01

    In recent years, the replacement of natural raw materials with new alternative materials, which acquire an economic, energetic and environmental value, has gained increasing importance. The considerable consumption of water has favoured the increase in the number of drinking water treatment plants and, consequently, the production of drinking water sludge. This paper proposes a protocol of analyses capable of evaluating chemical characteristics of drinking water sludge from surface water treatment plants. Thereby we are able to assess their possible beneficial use for geo-environmental applications, such as the construction of barrier layers for landfill and for the formation of "bio-soils", when mixed with the stabilized organic fraction of municipal solid waste. This paper reports the results of a study aimed at evaluating the quality and environmental aspects of reconstructed soils ("bio-soil"), which are used in much greater quantities than the usual standard, for "massive" applications in environmental actions such as the final cover of landfills. The granulometric, chemical and physical analyses of the sludge and the leaching test on the stabilized organic fraction showed the suitability of the proposed materials for reuse. The study proved that the reuse of drinking water sludge for the construction of barrier layers and the formation of "bio-soils" reduces the consumption of natural materials, the demand for landfill volumes, and offers numerous technological advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Stopping powers of energetic electrons penetrating condensed matter-theory and application

    International Nuclear Information System (INIS)

    Tan Zhenyu; Xia Yueyuan

    2004-01-01

    In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed. (authors)

  20. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  1. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  2. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  3. Economic, Energetic, and Environmental Impact Evaluation of the Water Discharge Networks from Mining Works

    Directory of Open Access Journals (Sweden)

    Andrei Cristian Rada

    2018-01-01

    Full Text Available Sustainable development represents an optimistic scenario for the evolution of contemporary civilization. The object of this paper is to define certain evaluation criteria regarding the performances of water discharge networks from mining works, and propose a method for aggregating the specific indicators for monetary costs, energetic costs, and environmental impact-related costs. The global pollution index (GPI represents a method for assessing environment health status or pollution levels. The GPI quantitatively expresses this status based on its index, which results from a ratio between the ideal value and the given value of certain quality indices that are considered specific for the analyzed environmental factors at certain moments. The proposed method in this paper tries to perform a synergistic aggregation of the balance sheet of harmfulness and classic balance sheets for matter and energy for an industrial process.

  4. Energetics and Application of Heterotrophy in Acetogenic Bacteria.

    Science.gov (United States)

    Schuchmann, Kai; Müller, Volker

    2016-07-15

    Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Nuclear energetics as environmentally affable source - present and and future

    International Nuclear Information System (INIS)

    Suchomel, J.

    2002-01-01

    In this paper the situation in nuclear energetics in the world in 2000 year is presented. Climatic changes initiated by burning of the fossil fuels an influence of nuclear energetics are discussed. Author informs that European Union and U.S.A. supports developing of nuclear energetics. Nuclear phobia from radiation risk of some inhabitants is compared with risks of other man activities. Possibilities of the electricity production by alternative sources are compared. Liability of the Slovak Republic for decommissioning of two reactor of the V-1 Jaslovske Bohunice NPP in 2006 and 2008, which is compared with the Program of safety improvement of these reactors are discussed. Author and Slovak Nuclear Society accept gladly the suggestion of government of the Slovak Republic that they reassess this liability. The best alternative for decommissioned Jaslovske Bohunice NPP will be the completion of the 3 rd and 4 th blocks of the Mochovce NPP

  6. The energetic characterization of pineapple crown leaves.

    Science.gov (United States)

    Braga, R M; Queiroga, T S; Calixto, G Q; Almeida, H N; Melo, D M A; Melo, M A F; Freitas, J C O; Curbelo, F D S

    2015-12-01

    Energetic characterization of biomass allows for assessing its energy potential for application in different conversion processes into energy. The objective of this study is to physicochemically characterize pineapple crown leaves (PC) for their application in energy conversion processes. PC was characterized according to ASTM E871-82, E1755-01, and E873-82 for determination of moisture, ash, and volatile matter, respectively; the fixed carbon was calculated by difference. Higher heating value was determined by ASTM E711-87 and ash chemical composition was determined by XRF. The thermogravimetric and FTIR analyses were performed to evaluate the thermal decomposition and identify the main functional groups of biomass. PC has potential for application in thermochemical processes, showing high volatile matter (89.5%), bulk density (420.8 kg/m(3)), and higher heating value (18.9 MJ/kg). The results show its energy potential justifying application of this agricultural waste into energy conversion processes, implementing sustainability in the production, and reducing the environmental liabilities caused by its disposal.

  7. Natural gas in Mexico and its perspectives as a clean energetic; El gas natural en Mexico y sus perspectivas como energetico limpio

    Energy Technology Data Exchange (ETDEWEB)

    Penilla, Rodolfo Navarro [Instituto Mexicano de Ingenieros Quimicos, Mexico, DF (Mexico)

    1994-12-31

    In Mexico, the natural gas market is characterized by stable consumption and growing perspectives in the demand, due to the entrance in vigor of news environmental norms, as soon as, the benefits from the natural gas are as energetic for many applications in several sectors and like a clean fountain of energy proper for the environmental protection plans. (author)

  8. Lightweight energetic particle detector EPONA and its performance on Giotto

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.; Kirsch, E.; Thompson, A.; O' Sullivan, D.; Wenzel, K.-P.

    1987-06-01

    A lightweight energetic particle detector system (EPONA/EPA) is described which was designed to operate in those novel environmental conditions (i) characterised by the varying solar aspect angles and temperatures pertaining during the cruise phase of the Giotto spacecraft and (ii) during the dust bombardment characterising closest approach (approx. 600 km) to the nucleus of comet Halley. Representative data, illustrating the functioning of EPONA during both the Giotto cruise phase and at comet encounter, are represented. The instrument has a wide range of applications to other space experiments where reliable plasma diagnostics are required.

  9. Energy saving actions in the Italian industry : An analysis on the energetic and environmental consequences; Interventi di razionalizzazione energetica nell`industria italiana analisi delle ricadute energetico-ambientali

    Energy Technology Data Exchange (ETDEWEB)

    Di Franco, N [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia; Faberi, S [ISIS, Istituto di Studio per l` Informatica e i Sistemi, Rome (Italy)

    1996-08-01

    In this work the consequences of an energetic diagnoses campaign, lead by ENEA in about 600 small-medium Italian factories, have been analysed. The goal of the study is to determine the amount of global energy saving that the national industry can achieve, and, in addition, to specify the most efficacious actions for every productive field. Besides economic and energetic savings, positive environmental consequences owing to energetic diagnoses have been considered. Payback times, in spite of low present prices of energy, are interesting (about 2/3 years for the most important enterprises). Global energy savings have been calculated; they show an amount of about 6-8 Mtep per year, that corresponds to 20-27 % of total energetic consumptions of Italian industry.

  10. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  11. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  12. Energetic integration of processes: a case of practical application in the petroleum exploitation and production area in Mexico

    International Nuclear Information System (INIS)

    Rangel D, H.; Rodriguez T, M.A.

    1994-01-01

    The energetic integration of processes also called Pinch technology has reached the maturity by means of its development and application in different parts of the world, producing enormous savings in energy and capital, nevertheless. In Latin America countries, particularly in Mexico, not much is done respect of its practical application, and for this reason, the majority of the industrial processes operate with high costs of energy and capital. The infrastructure of the Mexican Petroleum Industry represents a great potential to make efficient the use of materials and energetic resources. In this work, with a vision of saving energy and capital, the traditional process of crude oil dehydration is analyzed. By means of the application of Pinch technology there were proposed modifications to the existing process, intended for the saving of energy and capital and to avoid unnecessary consumption of cooling water. (Author)

  13. Introduction to global energetic problems

    International Nuclear Information System (INIS)

    Gicquel, R.

    1992-01-01

    This book gives a view on global energetic problems and proposes a thorough economic analysis on principle aspects taken into account: energy supply, depending energy sources and available technologic channels, relationships between macro-economy and energy demand, new size of energy problems (environmental effects, overcosts of renewable energy sources, necessity of an high technologic development...). 38 refs

  14. Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Nguyen, Ch.

    2009-12-01

    The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear plasma. Reaching these two goals is the general motivation for this work. More specifically, our focus is on one type of instability, the Beta Alfven Eigenmode (BAE), which can be driven by energetic particles and impact on the confinement of both energetic and thermal particles. In this work, we study the characteristics of BAEs analytically and derive its dispersion relation and structure. Next, we analyze the linear stability of the mode in the presence of energetic particles. First, a purely linear description is used, which makes possible to get an analytical linear criterion for BAE destabilization in the presence of energetic particles. This criterion is compared with experiments conducted in the Tore-Supra tokamak. Secondly, because the linear analysis reveals some features of the BAE stability which are subject to a strong nonlinear modification, the question is raised of the possibility of a sub-critical activity of the mode. We propose a simple scenario which makes possible the existence of meta-stable modes, verified analytically and numerically. Such a scenario is found to be relevant to the physics and scales characterizing BAEs. (author)

  15. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    Science.gov (United States)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher

  16. Aerial energetic residue data from JBER C4 testing

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aerially-collected energetic residues from surface detonation of C4. This dataset is associated with the following publication: Walsh, M., B. Gullett, M. Walsh, M....

  17. Prospective Symbiosis of Green Chemistry and Energetic Materials.

    Science.gov (United States)

    Kuchurov, Ilya V; Zharkov, Mikhail N; Fershtat, Leonid L; Makhova, Nina N; Zlotin, Sergey G

    2017-10-23

    A global increase in environmental pollution demands the development of new "cleaner" chemical processes. Among urgent improvements, the replacement of traditional hydrocarbon-derived toxic organic solvents with neoteric solvents less harmful for the environment is one of the most vital issues. As a result of the favorable combination of their unique properties, ionic liquids (ILs), dense gases, and supercritical fluids (SCFs) have gained considerable attention as suitable green chemistry media for the preparation and modification of important chemical compounds and materials. In particular, they have a significant potential in a specific and very important area of research associated with the manufacture and processing of high-energy materials (HEMs). These large-scale manufacturing processes, in which hazardous chemicals and extreme conditions are used, produce a huge amount of hard-to-dispose-of waste. Furthermore, they are risky to staff, and any improvements that would reduce the fire and explosion risks of the corresponding processes are highly desirable. In this Review, useful applications of almost nonflammable ILs, dense gases, and SCFs (first of all, CO 2 ) for nitration and other reactions used for manufacturing HEMs are considered. Recent advances in the field of energetic (oxygen-balanced and hypergolic) ILs are summarized. Significant attention is paid to the SCF-based micronization techniques, which improve the energetic performance of HEMs through an efficient control of the morphology and particle size distribution of the HEM fine particles, and to useful applications of SCFs in HEM processing that makes them less hazardous. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  19. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Heijden, Antoine E.D.M. van der; Creyghton, Yves L.M.; Marino, Emanuela; Bouma, Richard H.B.; Scholtes, Gert J.H.G.; Duvalois, Willem [TNO Defence, Security and Safety, P. O. Box 45, 2280 AA Rijswijk (Netherlands); Roelands, Marc C.P.M. [TNO Science and Industry, P. O. Box 342, 7300 AH Apeldoorn (Netherlands)

    2008-02-15

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive containing these energetic materials becomes. The application of submicron or nanometric energetic materials is generally considered to further decrease the sensitiveness of explosives. In order to assess the product quality of energetic materials, a range of analytical techniques is available. Recent attempts within the Reduced-sensitivity RDX Round Robin (R4) have provided the EM community a better insight into these analytical techniques and in some cases a correlation between product quality and shock initiation of plastic bonded explosives containing (RS-)RDX was identified, which would provide a possibility to discriminate between conventional and reduced sensitivity grades. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Quinquennial National Program (1990-1994) for the Energetic Modernization

    International Nuclear Information System (INIS)

    1990-01-01

    The Mexican Energetics Sector currently has the eighth possition regarding reserves of hydrocarbons and the sixth regarding oil production, the installed capacity in electricity matters is among the first 20 of the world. The Program established first, a general balance of the situation in which the energetics sector lays today. It also points out the strategic role that this sector holds, as well an on the solutions to the problems faced. This Program establishes the objectives pursued by the energetics sector and that are as follows: to guarantee enough supply of energetics, to strenghten the link between the energetics sector and economy, society and environmental protection, to consolidate an energetics sector that is more current and better integrated. This Program presents the proposal to tend to five priorities: productivity, saving and effective use of energy, financing of the development and expansion of the offer, to diversify sources, as well as an efficient participation in international markets. In the chapter the effort regarding supply and demand of energy, it is evident that the effort made to expand the offer must be great, facing the total demand of energy demonstrated by the figures. For 1994 this demmand is of 31 - 36 % greater to that observed in 1988. Lastly, two statistic documents are enclosed, one historic, with general pointers of the sector, and another with the basic variables for national energy balance

  1. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  2. Radiation hormesis: an ecological and energetic perspective.

    Science.gov (United States)

    Parsons, P A

    2001-09-01

    Organisms in natural habitats are exposed to an array of environmental stresses, which all have energetic costs. Under this ecological scenario, hormesis for ionizing radiation becomes an evolutionary expectation at exposures substantially exceeding background. This conclusion implies that some relaxation of radiation protection criteria is worthy of serious consideration. Copyright 2001 Harcourt Publishers Ltd.

  3. The Prudent Parent : Energetic Adjustments in Avian Breeding

    NARCIS (Netherlands)

    Drent, R.H.; Daan, S.

    1980-01-01

    1. Energetics of reproduction in birds is reviewed with the question in mind how the parent adjusts its effort in relation to prevailing environmental conditions in order to maximize the output of young in its lifetime. Emphasis is on proximate controls, rather than ultimate factors measurable in

  4. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Multilanguage Web application to assess biomass energy production: economic and energetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berruto, Remigio; Busato, Patrizia; Piccarolo, Pietro [University of Turin (Italy). Dipt. di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA)], E-mail: remigio.berruto@unito.it

    2008-07-01

    One of the main difficulties in the development of biomass supply chains is the lack of reliable and complete information, which is needed to carry out a correct feasibility study. The aim of the research is contributing to knowledge which can be exploited in designing and evaluating biomass supply chains, within a standardized system approach. For this purpose has been implemented by DEIAFA a Web application - www.energyfarm.unito.it - to investigate the biomass supply chains under the technical, economic and energetic aspects. The first set of procedures allow the evaluation of field and logistic operations related to biomass cultivation, harvest and transport to the point of use. Another set of procedures refers to the feasibility study of biomass power plant. All procedures share a common database, ensuring their proper integration. EnergyFarm{sup R} represents a step toward the standardization of data and calculation procedures. In the future, it will be possible to foresee also in the same application the computing of the results with different standards (ASAE, EU, etc.). The interface to the application is provided in English and Italian languages. (author)

  6. Laser shock ignition of porous silicon based nano-energetic films

    International Nuclear Information System (INIS)

    Plummer, A.; Gascooke, J.; Shapter, J.; Kuznetsov, V. A.; Voelcker, N. H.

    2014-01-01

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity

  7. Laser shock ignition of porous silicon based nano-energetic films

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, A.; Gascooke, J.; Shapter, J. [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Kuznetsov, V. A., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh 5111 (Australia); Voelcker, N. H., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [Mawson Institute, University of South Australia, 5095, Mawson Lakes (Australia)

    2014-08-07

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity.

  8. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  9. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  10. Leaked filters for energetic and angular dependence corrections of thermoluminescent response

    International Nuclear Information System (INIS)

    Manzoli, Jose Eduardo; Shammas, Gabriel Issa Jabra; Campos, Vicente de Paulo de

    2007-01-01

    Many thermoluminescent materials has been developed and used for photon personal dosimetry but no one has all desired characteristics alone. These characteristics include robustness, high sensitivity, energy photon independence, large range of photon energy detection, good reproducibility and small fading. The phosphors advantages begin to be more required and its disadvantages have became more apparent, in a global market more and more competitive. Calcium Sulfate Dysprosium doped (CaSO 4 :Dy) and Calcium Fluoride Manganese doped (CaF 2 :Mn) phosphor Thermoluminescent Dosimeters (TLDs) have been used by many laboratories. They are used in environmental and area monitoring, once they present more sensibility than other phosphors, like LiF:Mg. Theirs main disadvantage is the strong energetic dependence response, which must be corrected for theirs application in routine, where the kind of photon radiation is unknown a priori. An interesting way to make this correction is to interject a leaked filter between the beam and the phosphor, where the beam could strike the phosphor at any angle. In order to reduce the energetic dependence on any incidence angle, this work presents experimental and simulation studies on some filter geometries. It was made TL readings and simulations on TL responses to photon irradiations with gamma rays of 60 Co and X-rays of 33; 48 and 118 keV, on many incidence angles from zero to ninety degrees. The results pointed out the best filter thicknesses and widths, in order to optimize the correction of energetic dependence for the studied geometries. (author)

  11. Energetic policy versus environmental policy: what the missing link?; Politica energetica versus politica ambiental: qual o elo perdido?

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Francisco del Moral; Bermann, Celio [Universidadede Sao Paulo (PPGE/IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa de Pos- Graduacao em Energia], emails: fhernandez@usp.br, cbermann@iee.usp.br

    2010-07-01

    The energy and fuel obtaining process must be understand as a political concept and a socially built one. Such a process should be understood taking in account social impacts, environmental issues, land struggles. There are plenty of empirical examples able to identify flows, directions and speedy up enterprises when extracting matter and energy conversion within areas of high social and environmental sensibility. The infra-structure expansion over traditional people areas, high biodiversity mapped regions and environmental sensibility areas are expression of the capital intensive accumulation process and must be legitimated in one way or another. Simultaneously two way processes occur: in one hand the use of land, riverside areas and natural landscapes to generate electrical energy and fuel obtaining an in the other hand the abandon of original usage for the land. Specifically, in the Amazon rain forest area it is evident that the mentioned flows are supported by the natural wealthy. So, the analyses under a scientific approach, elaborating theories, demonstrations and occurrences documentation are necessary. Two preliminary expectations are posted by the article: 1) Discuss the implications due to the creation of energetic reserve areas over traditional people regions; 2) Produce a preliminary picture of demands over natural resources and respective social conflicts based on significant selected cases. (author)

  12. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applications Discusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen storage, dye-sensitized solar cells, lithium-ion batteries, and supercapacitors Explores environmental applications of electrospun fibers, such as the use of electrospinning-issued materials in membranes for water and air purification, as well as in sensors and biosensors for pollution control Beneficial to both academic and industrial audiences, Electrospinning for Advanced Energy and Environmental Applications present...

  13. Environmentally Benign Stab Detonators

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A E

    2006-07-07

    implementation of energetic sol-gel coated metallic multilayers, as new small IIDs will result in dramatically reduced environmental risks and improved worker and user safety risks without any sacrifice in the performance of the device. The proposed effort is designed to field an IID that is free of toxic (e.g., tetrazene) and heavy metal constituents (e.g., lead styphnate, lead azide, barium nitrate, and antimony sulfides) present in the NOL-130 initiating mixture and in the lead azide transfer charge of current stab detonators. The preferred materials for this project are nanocomposites consisting of thin foils of metallic multilayers, composed of nanometer thick regions of different metals, coated with a sol-gel derived energetic material. The favored metals for the multilayers will be main-group and early transition metals such as, but not limited to, boron, aluminum, silicon, titanium, zirconium, and nickel. Candidate sol-gel energetic materials include iron (III) oxide/aluminum nanocomposites. It should be noted that more traditional materials than sol-gel might also be used with the flash metals. The metallic multilayers undergo an exothermic transition to a more stable intermetallic alloy with the appropriate mechanical or thermal stimulus. This exothermic transition has sufficient output energy to initiate the more energy dense sol-gel energetic material, or other candidate materials. All of the proposed initiation mix materials and their reaction by products have low toxicity, are safe to handle and dispose of, and provide much less environmental and health concerns than the current composition. We anticipate that the technology and materials proposed here will be produced successfully in production scale with very competitive costs with existing IIDs, when amortized over the production lifetime. The sol-gel process is well known and used extensively in industry for coatings applications. All of the proposed feedstock components are mass-produced and have relatively

  14. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  15. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  16. Energetic endpoints provide early indicators of life history effects in a freshwater gastropod exposed to the fungicide, pyraclostrobin

    International Nuclear Information System (INIS)

    Fidder, Bridgette N.; Reátegui-Zirena, Evelyn G.; Olson, Adric D.; Salice, Christopher J.

    2016-01-01

    Organismal energetics provide important insights into the effects of environmental toxicants. We aimed to determine the effects of pyraclostrobin on Lymnaea stagnalis by examining energy allocation patterns and life history traits. Juvenile snails exposed to pyraclostrobin decreased feeding rate and increased apparent avoidance behaviors at environmentally relevant concentrations. In adults, we found that sublethal concentrations of pyraclostrobin did not affect reproductive output, however, there were significant effects on developmental endpoints with longer time to hatch and decreased hatching success in pyraclostrobin-exposed egg masses. Further, there were apparent differences in developmental effects depending on whether mothers were also exposed to pyraclostrobin suggesting this chemical can exert intergenerational effects. Pyraclostrobin also affected protein and carbohydrate content of eggs in mothers that were exposed to pyraclostrobin. Significant effects on macronutrient content of eggs occurred at lower concentrations than effects on gross endpoints such as hatching success and time to hatch suggesting potential value for these endpoints as early indicators of ecologically relevant stress. These results provide important insight into the effects of a common fungicide on important endpoints for organismal energetics and life history. - Highlights: • We exposed a freshwater snail to relevant concentrations of pyraclostrobin. • We monitored energetic and life history endpoints. • Pyraclostrobin affected feeding, hatching success and egg macronutrient content. • Energetic-based endpoints may provide valuable insight to toxic effects. - The fungicide pyraclostrobin at environmentally relevant concentrations effects a range of life history and energetic endpoints in the freshwater snail, Lymnaea stagnalis.

  17. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.

    1999-01-18

    The current stockpile of energetic materials requiring disposal contains about half a million tons. Through 2001, over 2.1 million tons are expected to pass through the stockpile for disposal. Safe and environmentally acceptable methods for disposing of these materials are needed. This project is developing safe, economical, and environmentally sound processes using biocatalyst (enzymes) to degrade energetic materials and to convert them into economically valuable products. Alternative methods for destroying these materials are hazardous, environmentally unacceptable, and expensive. These methods include burning, detonation, land and sea burial, treatment at high temperature and pressure, and treatment with harsh chemicals. Enzyme treatment operates at room temperature and atmospheric pressure in a water solution.

  18. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms.

    Science.gov (United States)

    Swanson, David L; McKechnie, Andrew E; Vézina, François

    2017-12-01

    Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.

  19. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    Science.gov (United States)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  20. Envirobiosens. New trends in bio-sensing for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, S. [Cranfield Biothechnology Centre, Cranfield University (United Kingdom); Cosnier, S. [Universite Joseph-Fourier, Grenoble I, Lab. d' Electrochimie Organique et de Photochimie Redox, UMR CNRS 5630, 38 (France); Magner, E. [Limerick University, Dept. of Chemical and Environmental Sciences (Ireland)] [and others

    2000-07-01

    The development of useful sensor systems to monitor multiple pollutants is needed for many environmental applications like the pollution monitoring and processing. The advantages of chemical sensors, bio-sensors and bio-mimetic systems should be exploited to fill specific niche applications in environmental engineering. Sensors offer particular advantages as they can be used for rapid field assessment of pollution risks, including the effects of pollutant mixtures. This conference reviews the current state of the art for bio-sensors operating in the environment and in environmental processes to develop bio-sensors practical applications in the environmental technology. The papers are presented in three parts: enzymatic sensors for environmental monitoring; affinity sensors for environmental application; cell and tissue sensors for environmental analysis, future prospects. (A.L.B.)

  1. Geomorphological applications of environmental radionuclides

    International Nuclear Information System (INIS)

    Quine, T.A.; Walling, D.

    1998-01-01

    Geomorphologists have shown increasing interest in environmental radionuclides since pioneering studies by Ritchie and McHenry in the USA and Campbell, Longmore and Loughran in Australia. Environmental radionuclides have attracted this interest because they provide geomorphologists with the means to trace sediment movement within the landscape. They, therefore, facilitate investigation of subjects at the core of geomorphology, namely the rates and patterns of landscape change. Most attention has been focussed on the artificial radionuclide caesium-137 ( 137 Cs) but more recently potential applications of the natural radionuclides lead-210 ( 210 Pb) and beryllium-7( 7 Be) have been investigated (Walling et al., 1995; Wallbrink and Murray, 1996a, 1996b). The origin, characteristics and applications of these radionuclides are summarised. These radionuclides are of value as sediment tracers because of three important characteristics: a strong affinity for sediment; a global distribution and the possibility of measurement at low concentration. Geomorphological applications of environmental radionuclides provide unique access to detailed qualitative data concerning landscape change over a range of timescales

  2. Simulating polar bear energetics during a seasonal fast using a mechanistic model.

    Directory of Open Access Journals (Sweden)

    Paul D Mathewson

    Full Text Available In this study we tested the ability of a mechanistic model (Niche Mapper™ to accurately model adult, non-denning polar bear (Ursus maritimus energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal's energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change.

  3. Simulating polar bear energetics during a seasonal fast using a mechanistic model.

    Science.gov (United States)

    Mathewson, Paul D; Porter, Warren P

    2013-01-01

    In this study we tested the ability of a mechanistic model (Niche Mapper™) to accurately model adult, non-denning polar bear (Ursus maritimus) energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal's energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change.

  4. Applications of neural networks in environmental and energy sciences and engineering. Proceedings of the 1995 workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-12-31

    These proceedings contain edited versions of the technical presentations of the Workshop on Environmental and Energy Applications of Neural Networks, held on March 30--31, 1995, in Richland, Washington. The purpose of the workshop was to provide a forum for discussing environmental, energy, and biomedical applications of neural networks. Panels were held to discuss various research and development issues relating to real-world applications in each of the three areas. The applications covered in the workshop were: Environmental applications -- modeling and predicting soil, air and water pollution, environmental sensing, spectroscopy, hazardous waste handling and cleanup; Energy applications -- process monitoring and optimization of power systems, modeling and control of power plants, environmental monitoring for power systems, power load forecasting, fault location and diagnosis of power systems; and Biomedical applications -- medical image and signal analysis, medical diagnosis, analysis of environmental health effects, and modeling biological systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Selected environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    2001-01-01

    NAA is very useful for the determination of trace and minor elements in many environmental applications. While instrumental NAA (INAA) has a number of valid applications in this field, radiochemical NAA (RNAA) prior to, or post irradiation provides some significant advantages. One of the major focus points for environmental applications of NAA is to assess the magnitude of various pollutants. This paper discusses doing this via two methods, namely air monitoring and biological monitoring. (author)

  6. Food environments select microorganisms based on selfish energetic behavior

    Directory of Open Access Journals (Sweden)

    Diego eMora

    2013-11-01

    Full Text Available Nutrient richness, and specifically the abundance of mono- and disaccharides that characterize several food matrixes, such as milk and grape juice, has allowed the speciation of lactic acid bacteria and yeasts with a high fermentation capacity instead of energetically favorable respiratory metabolism. In these environmental contexts, rapid sugar consumption and lactic acid or ethanol production, accumulation and tolerance, together with the ability to propagate in the absence of oxygen, are several of the ‘winning’ traits that have apparently evolved and become specialized to perfection in these fermenting microorganisms. Here, we summarize and discuss the evolutionary context that has driven energetic metabolism in food-associated microorganisms, using the dairy species Lactococcus lactis and Streptococcus thermophilus among prokaryotes and the bakers’ yeast Saccharomyces cerevisiae among eukaryotes as model organisms.

  7. Energetic technologies and environmental impact

    International Nuclear Information System (INIS)

    2001-01-01

    This monograph is a collective work by scientist from CIEMAT (Spanish centre for research on energy, environment and technology). By reviewing the central topics of their own work, the authors present a world-wide update of the state of the arts of the different technologies involved in energy production. The chapters fo through the more promising technologies related to the diverse energy sources, from the nuclear to the renewable and chemical a large gamut of energy supply ways is revised. The analysis of the production technologies is accompanied by considerations of the environmental implications, an aspect to wich a whole part of the volume is devoted. The book begins with a foreword by Dr. Felix Yndurain, former General Director of CIEMAT and follows with a general introduction to the main topics, that are presented in three parts, with specific introductions. There is also a closing fourth part that includes some additional activities where more basic and technical developments are included. The first part is devoted to energy of nuclear origin. In two separate sections, fission and fusion technologies are covered. The fission section points towards the present day problems of nuclear plants (ageing, accidents, risk analysis, etc.), reprocessing of the nuclear fuel, radioactive wastes and environmental radioactivity. The fusion section contains a critical account of the present and expected developments of the fusion reactors together with an exposition of the related plasma physics problems. The second part comprises two sections devoted to energy generation of renewable and chemical origin, respectively. Tehcnologies for solar, wind and biomass energies are thoroughly exposed along the renewable energy section whereas the chemical energy section is devoted to the modern technologies of clean fossil fuel combustion and gasification, as well as to the new appealing subject of direct electric generation with fuel cells. The main environmental and social

  8. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  9. Parametric Analysis of the Exergoeconomic Operation Costs, Environmental and Human Toxicity Indexes of the MF501F3 Gas Turbine

    Directory of Open Access Journals (Sweden)

    Edgar Vicente Torres-González

    2016-08-01

    Full Text Available This work presents an energetic, exergoeconomic, environmental, and toxicity analysis of the simple gas turbine M501F3 based on a parametric analysis of energetic (thermal efficiency, fuel and air flow rates, and specific work output, exergoeconomic (exergetic efficiency and exergoeconomic operation costs, environmental (global warming, smog formation, acid rain indexes, and human toxicity indexes, by taking the compressor pressure ratio and the turbine inlet temperature as the operating parameters. The aim of this paper is to provide an integral, systematic, and powerful diagnostic tool to establish possible operation and maintenance actions to improve the gas turbine’s exergoeconomic, environmental, and human toxicity indexes. Despite the continuous changes in the price of natural gas, the compressor, combustion chamber, and turbine always contribute 18.96%, 53.02%, and 28%, respectively, to the gas turbine’s exergoeconomic operation costs. The application of this methodology can be extended to other simple gas turbines using the pressure drops and isentropic efficiencies, among others, as the degradation parameters, as well as to other energetic systems, without loss of generality.

  10. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    Science.gov (United States)

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  11. Environmental school aids to the energetic education; La escuela ambiental contribuye a la educacion energetica

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, B. A. C.; Coto, C. J. M.

    2004-07-01

    Elementary school is a propitious space to contribute to knowledge and adoption of habits related to the use of environmentally friendly energies. This article refers to a methodological strategy used in education for renewable energies, specifically solar energy, within the framework of the environmental school. Its objective is to share a successful strategy to diffuse the thermal applications of solar energy for home and school. (Author)

  12. Environmental and conservation considerations for electron curing

    International Nuclear Information System (INIS)

    Nablo, S.V.; Fletcher, P.M.

    1992-01-01

    This paper reviews the more important features of electron curing pertaining to environmental protection and conservation. The high electrical conversion efficiencies of these devices measured at output power levels to 200 kilowatts are reviewed with attention to energy transport to the product. The comparative energetics of free radical initiated addition chemistry with that of the more conventional condensation polymerized systems are presented. Some details of recent studies of the repulpability and de-inkability of electron cured products are presented with mill scale trials showing successful recycling with up to 75 % EB processed material in the waste. The ability of energetic electrons to effectively replace toxic chemicals such as H 2 O 2 and ethylene oxide in product sterilization will be presented with a discussion of the regulatory aspects of this process for medical device applications. (author)

  13. Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 3

    National Research Council Canada - National Science Library

    Pennington, Judith

    2003-01-01

    .... The objective of this project, initiated in FYOO and planned for completion in FYO5, was to determine the potential for environmental contamination from residues of energetic materials on ranges...

  14. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already

  15. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  16. 34 CFR 75.601 - Applicant's assessment of environmental impact.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Applicant's assessment of environmental impact. 75.601... Conditions Must Be Met by a Grantee? Construction § 75.601 Applicant's assessment of environmental impact. An applicant shall include with its application its assessment of the impact of the proposed construction on...

  17. Controlled Vocabulary Service Application for Environmental Data Store

    Science.gov (United States)

    Ji, P.; Piasecki, M.; Lovell, R.

    2013-12-01

    In this paper we present a controlled vocabulary service application for Environmental Data Store (EDS). The purpose for such application is to help researchers and investigators to archive, manage, share, search, and retrieve data efficiently in EDS. The Simple Knowledge Organization System (SKOS) is used in the application for the representation of the controlled vocabularies coming from EDS. The controlled vocabularies of EDS are created by collecting, comparing, choosing and merging controlled vocabularies, taxonomies and ontologies widely used and recognized in geoscience/environmental informatics community, such as Environment ontology (EnvO), Semantic Web for Earth and Environmental Terminology (SWEET) ontology, CUAHSI Hydrologic Ontology and ODM Controlled Vocabulary, National Environmental Methods Index (NEMI), National Water Information System (NWIS) codes, EPSG Geodetic Parameter Data Set, WQX domain value etc. TemaTres, an open-source, web -based thesaurus management package is employed and extended to create and manage controlled vocabularies of EDS in the application. TemaTresView and VisualVocabulary that work well with TemaTres, are also integrated in the application to provide tree view and graphical view of the structure of vocabularies. The Open Source Edition of Virtuoso Universal Server is set up to provide a Web interface to make SPARQL queries against controlled vocabularies hosted on the Environmental Data Store. The replicas of some of the key vocabularies commonly used in the community, are also maintained as part of the application, such as General Multilingual Environmental Thesaurus (GEMET), NetCDF Climate and Forecast (CF) Standard Names, etc.. The application has now been deployed as an elementary and experimental prototype that provides management, search and download controlled vocabularies of EDS under SKOS framework.

  18. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  19. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  20. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  1. Energetic balance and air pollutant emissions estimates in the Aburra Valley, 1999: A preliminary approximation

    International Nuclear Information System (INIS)

    Molina Perez; Francisco; Saavedra Duque, Marcela; Obregon Cardona Mauricio

    2003-01-01

    Based on the application of Material Fluxes Analysis, this paper presents the composition of the energetic basket in Valle de Aburra during 1999 and the atmospheric emissions caused by the consumption of those energetic materials. Basically, it was found that the daily energetic consumption of the system was 43,2 Tcal that generated 716 ton. by day of atmospheric contaminants as an output. The results show that the main energetic materials that participate in the global metabolism of the system, was those consumed in the transportation sector (gasoline and diesel). Therefore transportation sector contributes with the principal load of contaminants represented by carbon monoxide that overtake the 77,6% of the whole emissions

  2. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  3. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  4. Engineering noble metal nanomaterials for environmental applications

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  5. Engineering noble metal nanomaterials for environmental applications.

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-07

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  6. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  7. Continuous engineering of nano-cocrystals for medical and energetic applications

    Science.gov (United States)

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-10-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  8. Selection of low-risk design guidelines for energetic events

    International Nuclear Information System (INIS)

    Ferguson, D.; Marchaterre, J.; Graham, J.

    1982-01-01

    This paper recommends the establishment of specific design guidelines for protection against potential, but low-probability, energetic events. These guidelines recognize the plant protective features incorporated to prevent such events, as well as the inherent capability of the plant to accommodate a certain level of energy release. Further, their application is recommended within the context of necessary standardized and agreed-upon acceptance criteria which are less restrictive than ASME code requirements. The paper provides the background upon which the selection of the design is made, including the characterization of energetic events dependent on various core-design parameters, and including the necessity of a low-risk design balanced between prevention of accidents and the mitigation of consequences

  9. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    Science.gov (United States)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; hide

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  10. Determination of commercially valuable characteristics of plant varieties for energetic use during the state examination

    Directory of Open Access Journals (Sweden)

    В. В. Баликіна

    2014-12-01

    Full Text Available The analysis of commercially valuable indices of plant varieties for energetic use was carried out and the necessity to determine energetic indices during the state scientific-and-technical examination is substantiated. In order to explain the requirements for registration of new varieties of energy crops concerning the defi nition of indices of ability for distribution, the collection of species and hybrid forms of willow was used. Factors that prove the economic and environmental advantages of energy willow cultivation for biofuel are specifi ed.

  11. Novel approach to the preparation of organic energetic film for microelectromechanical systems and microactuator applications.

    Science.gov (United States)

    Wang, Jun; Zhang, Wenchao; Wang, Lianwei; Shen, Ruiqi; Xu, Xing; Ye, Jiahai; Chao, Yimin

    2014-07-23

    An activated RDX-Fe2O3 xerogel in a Si-microchannel plate (MCP) has been successfully prepared by a novel propylene epoxide-mediated sol-gel method. A decrease of nearly 40 °C in decomposition temperature has been observed compared with the original cyclotrimethylene trinitramine (RDX). The RDX-Fe2O3 xerogel can release gas and solid matter simultaneously, and the ratio of gas to solid can be tailored easily by changing the initial proportions of RDX and FeCl3·6H2O, which significantly enhances the explosive and propulsion effects and is of great benefit to the applications. The approach, which is simple, safe, and fully compatible with MEMS technology, opens a new route to the introduction of organic energetic materials to a silicon substrate.

  12. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  13. 10 CFR 63.24 - Updating of application and environmental impact statement.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Updating of application and environmental impact statement... Updating of application and environmental impact statement. (a) The application must be as complete as... the time a construction authorization was issued. (c) DOE shall supplement its environmental impact...

  14. Metagenomic applications in environmental monitoring and bioremediation.

    Science.gov (United States)

    Techtmann, Stephen M; Hazen, Terry C

    2016-10-01

    With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.

  15. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  16. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly-energetic

  17. Cogeneration: A solution from energetical auditoring. Cogeneracion: hipotesis de solucion en auditorias energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Gomara Martinez, E; Riesco Leal, P

    1993-01-01

    An energetical auditor provides the solutions to avoid environmental problems generated from the consumption of a determined fuel and reduces fuel consumption. One of the solutions is changing the energy source or introducing cogeneration. The author introduces under the point of view of an auditor the reasons to use to generation. (Author)

  18. Possibilities of 50 years experience application of design activity of 'Energoprojekt-Warsaw' for nuclear energetics in future

    International Nuclear Information System (INIS)

    Roguska, M.; Grzebula, K.; Patrycy, A.

    2000-01-01

    The 50 year experience in design activity for energetics can be profitable for Polish nuclear energetics in the future. Especially previous works on nuclear power plant localization, design of nuclear technique objects and system of quality assurance certified (ISO 9001-1994) can give the solid base for design of future nuclear power plant in Poland when needed

  19. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  20. Concepts of the First Law of Thermodynamic and of Energy. As analysis methods of energetic system operation

    International Nuclear Information System (INIS)

    Hernandez, L.F.

    1998-01-01

    The technologies developed from 1973 on rational use, conservation and efficiency in the use of energy updated in a framework of sustain ability energetic and environment protection, it has not taken into account the concepts of quality of energy within of any energetic system (Source - Technology - Final Use), neither the favorable economic and technical implications of adopting the concepts of the Exergy and of exegetic efficiency, derivatives from the Second Law of the Thermodynamic, those which should be included as methods in the environmental and economic technical evaluations of an energetic system. This article presents the basic development of the concepts referenced from the Zero Law of the Thermodynamic, illustrating with examples the advantages to incorporate them as valuation and comparison parameters

  1. Environmental applications for biosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Catherine N. [Department Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Boulevard W., Montreal, Quebec, H3G 1M8 (Canada)]. E-mail: mulligan@civil.concordia.ca

    2005-01-01

    Biosurfactants are surfactants that are produced extracellularly or as part of the cell membrane by bacteria, yeasts and fungi. Examples include Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, one of the few yeasts to produce biosurfactants, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. This review includes environmental applications of these biosurfactants for soil and water treatment. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. However, more information is needed to be able to predict and model their behaviour. Full scale tests will be required. The role of biosurfactants in natural attenuation processes has not been determined. Very little information is available concerning the influence of soil components on the remediation process with biosurfactants. As most of the research until now has been performed with rhamnolipids, other biosurfactants need to be investigated as they may have more promising properties. - More information is needed to be able to predict and model the behaviour of biosurfactants.

  2. Environmental applications for biosurfactants

    International Nuclear Information System (INIS)

    Mulligan, Catherine N.

    2005-01-01

    Biosurfactants are surfactants that are produced extracellularly or as part of the cell membrane by bacteria, yeasts and fungi. Examples include Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, one of the few yeasts to produce biosurfactants, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. This review includes environmental applications of these biosurfactants for soil and water treatment. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. However, more information is needed to be able to predict and model their behaviour. Full scale tests will be required. The role of biosurfactants in natural attenuation processes has not been determined. Very little information is available concerning the influence of soil components on the remediation process with biosurfactants. As most of the research until now has been performed with rhamnolipids, other biosurfactants need to be investigated as they may have more promising properties. - More information is needed to be able to predict and model the behaviour of biosurfactants

  3. The selection of low-risk design guidelines for energetic events

    International Nuclear Information System (INIS)

    Fergusson, Donald; Marchaterre, John; Graham, John

    1982-01-01

    This paper recommends the establishment of specific design guidelines for protection against potential, but low probability, energetic events. These guidelines recognize the plant protective features incorporated to prevents such events, as well as the inherent capability of the plant to accommodate a certain level of energy release. Further, their application is recommended within the context of necessary standardized and agreed upon acceptance criteria which are less restrictive than ASME code requirements. The paper provides the background upon which the selection of the design is made, including the characterization of energetic events dependent on various core-design parameters, and including the necessity of a low-risk design balanced between prevention of accidents and the mitigation of consequences

  4. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  5. Environmental application of radiation grafting

    International Nuclear Information System (INIS)

    Tamada, Masao

    2007-01-01

    Adsorbent having high selectivity against a certain metal ion was synthesized by means of radiation-induced graft polymerization for the purpose of environmental application. The resulting adsorbents were utilized for the removal of toxic metal from scallop waste and the collection of uranium from seawater. As a novel application of grafting, the biodegradability of poly-hydroxybutylate was controlled by grafting. The biodegradability could be depressed by the graft chain and then recovered by external stimuli such as thermal and chemical treatments. (author)

  6. Environmental sustainability in the Brazilian energetic sector

    International Nuclear Information System (INIS)

    Mendonca, Mario Jorge Cardoso de

    1999-01-01

    The article discusses the following issues of energy consumption and environmental sustainability in Brazil: decomposition of industrial energy consumption, energy intensity, energy demand, decomposition aggregate energy, gas emission intensities, statistical measures of un-sustainability, greenhouse gases and strategies for mitigating global warming

  7. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    Science.gov (United States)

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  8. Automated quantitative micro-mineralogical characterization for environmental applications

    Science.gov (United States)

    Smith, Kathleen S.; Hoal, K.O.; Walton-Day, Katherine; Stammer, J.G.; Pietersen, K.

    2013-01-01

    Characterization of ore and waste-rock material using automated quantitative micro-mineralogical techniques (e.g., QEMSCAN® and MLA) has the potential to complement traditional acid-base accounting and humidity cell techniques when predicting acid generation and metal release. These characterization techniques, which most commonly are used for metallurgical, mineral-processing, and geometallurgical applications, can be broadly applied throughout the mine-life cycle to include numerous environmental applications. Critical insights into mineral liberation, mineral associations, particle size, particle texture, and mineralogical residence phase(s) of environmentally important elements can be used to anticipate potential environmental challenges. Resources spent on initial characterization result in lower uncertainties of potential environmental impacts and possible cost savings associated with remediation and closure. Examples illustrate mineralogical and textural characterization of fluvial tailings material from the upper Arkansas River in Colorado.

  9. Natural gas fuelled vehicles, energetic and environmental problems; Il gas naturale in autotrazione, aspetti energetici ed ambientali

    Energy Technology Data Exchange (ETDEWEB)

    Ciancia, A; Pede, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt.Energia

    1998-03-01

    The present report deals with the analysis and the presentation of the main problems concerning the introduction of the natural gas fuel for vehicles. The offer and demand side of the NGV market are analyzed, together with the presently available NG fuelled vehicles and the status of the technology for engines and on-board storage systems, with particular regard to the energetic and environmental performance of the system. Finally the NGV market development is presented, and the actors on the stage, showing the opportunities together with the possible obstacle to a wider diffusion of this technology. [Italiano] Il rapporto e` dedicato all`esposizione ed all`analisi delle principali tematiche afferenti all`introduzione del metano nel settore dell`autotrazione. Vengono quindi esaminati nell`ordine la situazione del mercato della domanda e dell`offerta di metano, le realizzazioni veicolari oggi disponibili, la tecnologia e le prestazioni dei motori alimentati a metano e quelle dei sistemi di accumulo a bordo, l`impatto ambientale di questi veicoli. Vengono infine trattati i temi dello sviluppo del mercato e degli attori di questo sviluppo, evidenziandone i possibili sbocchi insieme agli ostacoli che ne limitano la diffusione.

  10. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim

    2005-01-01

    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  11. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.

    Science.gov (United States)

    Kirschman, Lucas J; McCue, Marshall D; Boyles, Justin G; Warne, Robin W

    2017-09-15

    Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13 C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13 C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13 C-labelled protein stores. These results

  12. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  13. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  14. 10 CFR 60.24 - Updating of application and environmental impact statement.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Updating of application and environmental impact statement... environmental impact statement. (a) The application shall be as complete as possible in the light of information... was issued. (c) The DOE shall supplement its environmental impact statement in a timely manner so as...

  15. Dosimetric studies in the Institute of Energetic Techniques from the Polytechnic University of Catalunna

    International Nuclear Information System (INIS)

    Ortega, X.; Ginjaume, M.

    1998-01-01

    The University Institute for Energetic Techniques from the Polytechnic University of Catalunya in Barcelona develops its activities in the field of dosimetry in two main facilities which are: a calibration laboratory and a thermoluminescent dosimetry laboratory. Activities can be divided into three areas of action based on radiation levels analyzed: environmental, operational and clinical dosimetry

  16. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  17. A comparative study on energetic, exergetic and environmental performance assessments of novel M-Cycle based air coolers for buildings

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2012-01-01

    Highlights: ► Applying exergy, environment and sustainability analyses to the three (novel M-Cycle based) air coolers. ► Assessing energy and exergy efficiencies, environmental impact and sustainability. ► Proposing System II (using PV-based electricity) as the most environmentally friendly air cooler. ► Proposing System III (using coal-based electricity) as the most efficient air cooler. - Abstract: In this study, three various novel air coolers based on M-Cycle are evaluated using energy and exergy analyses based efficiency assessments along with environmental impact and sustainability parameters. The M-Cycle systems are considered to cool a building room air while their inlet air parameters are same, but outlet cooled air parameters are different. Systems I and III draw electricity directly taken from an electric grid in the building while System II, which is stand alone system, produces and draws electricity from its solar PV panels. In the energy analysis, wet bulb effectiveness, cooling capacity, Coefficient of Performance (energetic COP) and Primary Energy Ratio (PER) are found. In the exergy analysis, exergy input and output rates, exergy loss rate, exergy destruction rate, Exergetic Coefficient of Performance (COP ex ), Primary Exergy Ratio (PE x R) and exergy efficiency are obtained for six different dead state temperatures changing between 10 °C and 35 °C. Also, sustainability assessments of the systems are obtained using sustainability index (SI) tool for these various dead state temperatures. Finally, environmental assessments of the systems are calculated from their greenhouse gas (GHG) emissions (gCO 2 /kW h) due to their electricity consumptions. Maximum exergy efficiencies and sustainability assessments are found to be 35.13% and 1.5415 for System III and 34.94% and 1.5372 for System II, respectively. GHG emissions of the systems are calculated to be 2119.68 gCO 2 /day, 153.6 gCO 2 /day and 3840 gCO 2 /day for Systems I, II and III

  18. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  19. Environmental Monitoring Curriculum System and Application-Oriented Training

    Science.gov (United States)

    Wang, Jing-Ping; Wang, Xin-Hong

    2016-01-01

    Through building the environmental monitoring curriculum system for application-oriented talents, the comprehensive design and practice were constructed from the syllabus, textbooks, web-based courses, top-quality courses, test paper bank, open laboratory and scientific research etc. The aims are to promote environmental science professional,…

  20. Application of radiotracers in environmental studies

    International Nuclear Information System (INIS)

    Rathore, V.S.

    1994-01-01

    An attempt has been made to present recently emerging trends in the applicability of radiotracers in environmental studies. Since the topic is of general interest and still in the infancy, basic aspects of sampling, instrumentation and methodology are also covered

  1. Multi-criteria decision analysis in environmental sciences: ten years of applications and trends.

    Science.gov (United States)

    Huang, Ivy B; Keisler, Jeffrey; Linkov, Igor

    2011-09-01

    Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Multi-criteria decision analysis (MCDA) emerged as a formal methodology to face available technical information and stakeholder values to support decisions in many fields and can be especially valuable in environmental decision making. This study reviews environmental applications of MCDA. Over 300 papers published between 2000 and 2009 reporting MCDA applications in the environmental field were identified through a series of queries in the Web of Science database. The papers were classified by their environmental application area, decision or intervention type. In addition, the papers were also classified by the MCDA methods used in the analysis (analytic hierarchy process, multi-attribute utility theory, and outranking). The results suggest that there is a significant growth in environmental applications of MCDA over the last decade across all environmental application areas. Multiple MCDA tools have been successfully used for environmental applications. Even though the use of the specific methods and tools varies in different application areas and geographic regions, our review of a few papers where several methods were used in parallel with the same problem indicates that recommended course of action does not vary significantly with the method applied. Published by Elsevier B.V.

  2. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir

    2014-01-01

    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  3. FOOD SELF-SUFFICIENCY OF THE EUROPEAN UNION COUNTRIES – ENERGETIC APPROACH

    Directory of Open Access Journals (Sweden)

    Arkadiusz Sadowski

    2016-06-01

    Full Text Available The paper covers the issues of a basic social need, namely alimentation. The aim of the research is to evaluate the energetic food self-sufficiency and its changes in the European Union countries. The research has been conducted using the author’s methodology basing on the amount of energy produced and consumed in 1990-2009. The analyses proved that within the considered period, the European Union became an importer of net energy comprised in agricultural products. The excess in produced energy was mainly observed by the countries of European lowland. Moreover in most of the countries, a decrease in the analyzed factor was observed when compared with the 1990-1999 period. On the other hand, in relation to the new member states the increase in food energetic self-sufficiency was observed. The conclusion has been drawn that, while the general food self-sufficiency is mainly determined by environmental factors, its dynamics is primarily influenced by the factors connected with agricultural policy.

  4. 19th JANNAF Safety and Environmental Protection Subcommittee Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, J. E. (Editor); Becker, D. L. (Editor)

    2002-01-01

    This volume, the first of two volumes, is a compilation of 22 unclassified/unlimited technical papers presented at the 19th Joint Army-Navy-NASA-Air Force (JANNAF) Safety & Environmental Protection Subcommittee Meeting. The meeting was held 18-21 March 2002 at the Sheraton Colorado Springs Hotel, Colorado Springs, Colorado. Topics covered include green energetic materials and life cycle pollution prevention; space launch range safety; propellant/munitions demilitarization, recycling, and reuse: and environmental and occupational health aspects of propellants and energetic materials.

  5. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  6. Energetical fly ashes – separation and utilization of metallic valuable components

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2000-12-01

    Full Text Available In the contribution, methods of separating metals – Fe, Al, Ge from energetic wastes – fly ashes are presented along with further possibilities of utilization of particular valuable components for industrial purposes.In the contribution, properties of energetic wastes are presented influencing the contents, separability, and utilizability of metal-bearing valuable components. From among physical properties these are grain size distribution and surface area. Chemical properties are characterized by elements contained in combusted coal whose content after combustion is increased 2 to 4 times, depending on the content of ash and combustible matters in original coal. Mineralogical properties of energetic wastes are determined by the combustion process conditions in the course of which mineral novelties are produced in concentrations suitable for separation.In the contribution, methods of separation and utilization of metals such as Fe, Al, Ge are described. From literature information on the processing of Fe component, as well as from results of experiments made at the Department of Mineral Processing and Environmental Protection, Technical University of Kosice follows that the highest concentration and mass yield of the component can be obtained from black coal fly ashes produced in smelting boilers. The content of Al in Slovak energetic wastes is lower than the 30 % Al2O3 limit that conditions an economic technological processing. Only in the case of black coal fly ash from TEKO Kosice and EVO Vojany was the Al2O3 content of 32.93 %. Therefore, in an indirect way – by separating the residues of uncombusted coal and magnetite Fe – the content of Al in fly ash was increased.For Ge, a principle of selective sizing has been utilized.A complex utilization of energetic wastes, that is the separation of metallic components, elimination of particular metals and the subsequent treatment of nonmetallic residue, should be an effective solution in various

  7. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  8. The environmental behavior and chemical fate of energetic compounds (TNT, RDX, tetryl) in soil and plant systems

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Harvey, S.D.; Fellows, R.J.

    1993-06-01

    Munitions materials can accumulate or cycle in terrestrial environs at production and manufacturing facilities and thus pose potential heath and environmental concerns. To address questions related to food chain accumulation, the environmental behavior of energetic compounds (2,4,6-trinitrotoluene,TNT; hexahydro-1,3,5-trinitro-1,3,5-triazine, RDX; 2,4,6-trinitrophenylmethylnitramine, tetryl) was evaluated. Emphasis was placed on determining the potential for soil/plant transfer of munitions residues, translocation and distribution within the plant, the extent to which compounds were metabolized following accumulation, and the chemical nature and form of accumulated residues. Both TNT and tetryl undergo extensive chemical transformation in soil, forming aminodinitrotoluene isomers and N-methyl-2,4,6-trinitroaniline residues, respectively, along with a series of unknowns. After 60 days, only 30% of the amended TNT and 8% of the amended tetryl remained unchanged in the soil. In contrast, 78% of the soil-amended RDX remained unchanged after 60 days. After 60 days, plants grown in soils containing 10 ppm residues contained from 5 μg TNT/g to 600 μg RDX/G fresh wt. tissue. TNT and tetryl residues were primarily accumulated in roots (75%), while RDX was concentrated in leaves and seed. The principal transport form for TNT (root to shoot) was an acid labile conjugate of aminodinitrotoluene; RDX was transported unchanged. On accumulation in roots and leaves, highly polar and non-extractable TNT metabolites dominated, with the aminodinitrotoluene isomers accounting for less than 20% of the residues present. Only a few percent were present as the parent TNT. RDX was partitioned similarly to TNT, with 8 to 30% of the RDX appearing as polar metabolites, 20--50% as parent RDX, and the balance as non-extractable residues. Tetryl was metabolized to N-methyl-2,4,6-trinitroaniline and a variety of polar metabolites

  9. Characterization and environmental evaluation of Atikokan coal fly ash for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeheyis, M.B.; Shang, J.Q.; Yanful, E.K. [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2008-09-15

    Coal fly ash from thermal power generating stations has become a valuable byproduct in various commercial and environmental applications due to its cementitious, alkaline, and pozzolanic properties. It is used as a raw material in cement production, and also as a replacement for cement in concrete production. This study provided physical, chemical, and mineralogical characterizations of fresh and landfilled coal fly ash from a thermal generation station in Ontario. Fly ash behaviour under various environmental conditions was examined. Tests were conducted to characterize fly ash acid neutralization capacity and heavy metal sorption capacity. The study showed that fresh and landfilled fly ash samples showed significant variations in morphology, mineralogy, and chemical composition. X-ray diffraction studies demonstrated that weathering of the fly ash caused the formation of secondary minerals. The study also showed that the heavy metals from both fresh and landfilled fly ash samples were below leachate criteria set by the provincial government. It was concluded that both fresh and landfilled fly ash are suitable for various environmental and engineering applications. 55 refs., 5 tabs., 11 figs.

  10. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  11. Selected industrial and environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    1999-01-01

    A review of the applications of Instrumental Neutron Activation Analysis (INAA) in the industrial and environmental fields is given. Detection limits for different applications are also given. (author)

  12. Environmental Response Management Application (ERMA®) Pacific Northwest

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Response Management Application (ERMA®) is a web-based Geographic Information System (GIS) tool that assists both emergency responders and...

  13. Environmental Response Management Application (ERMA®) Pacific Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Response Management Application (ERMA®) is a web-based Geographic Information System (GIS) tool that assists both emergency responders and...

  14. Environmental Response Management Application (ERMA®), Great Lakes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Response Management Application (ERMA®) is a web-based Geographic Information System (GIS) tool that assists both emergency responders and...

  15. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    2000-11-01

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  16. ERNE observations of energetic particles associated with Earth-directed coronal mass ejections in April and May, 1997

    Directory of Open Access Journals (Sweden)

    A. Anttila

    Full Text Available Two Earth-directed coronal mass ejections (CMEs, which were most effective in energetic (~1–50 MeV particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES, we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE, which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.

    Key words: Interplanetary physics (interplanetary shocks – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  17. The Energetic Demands and Planetary Footprint of Alternative Human Diets

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2005-12-01

    Agriculture is one of the major vehicles of human alteration of the planetary environment. Yet different diets vary vastly in terms of both their energetic demands and overall planetary footprint. We present a quantitative argument that demonstrates that plant-based diets exert vastly smaller planetary environmental cost than animal-based ones. We demonstrate that under a reasonable and readily defensible set of assumptions, a plant-based diet differs from the average American diet by as much energy as the difference between driving a compact and efficient sedan and a Sport Utility Vehicle.

  18. Aerosol particle charger and an SO2 reactor using energetic electrons

    International Nuclear Information System (INIS)

    Davis, R.H.

    1984-01-01

    Two properties of energetic electrons in gas, their high specific ionization and their production of radicals and other chemically active specie, have promising applications to the cleanup of flue gas from coal combustion. The copious ionization has been used in a test particle charger to electrically charge 1 and 3 μm particles for subsequent removal by electrostatic precipitation. Particle charge greater than 5 times the theoretical ionic charging value for 1 μm particles have been observed in a bi-electrode electron beam precharger in which the beam energy is matched with the electrode spacing. In another test device, pulsed streamer coronas have been used to release and to energize electrons which promote gas phase chemical reactions and remote sulfur dioxide from humid air with high efficiency. The energized electrons produce oxidant radicals and chemically active specie which convert the SO 2 into sulfuric acid mist. While reported separately here, the two applications of energetic electrons may be amenable to combination in an integrated system for the combined treatment of flue gas

  19. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  20. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  1. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  2. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  3. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  4. Research on Application of Internet of Things in the Disposal of Environmental Emergency

    Directory of Open Access Journals (Sweden)

    Zhu Yanju

    2015-01-01

    Full Text Available Internet of things is an important part of a new generation of information technology and also an important stage of Information Age. Application of Internet of things in the disposal of environmental emergency is an inevitable trend of application of Internet of things in the field of environmental protection. This paper summarizes the principle, process and application field of Internet of things, and focuses on the general frame-work of environmental emergency disposal system based on Internet of things and further analyses the factors of restricting application of Internet of things in the disposal of environmental emergency. At last, the suggestions and countermeasures to optimize environmental emergency disposal system are proposed.

  5. Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics

    Science.gov (United States)

    Guo, Fan

    2012-11-01

    (kinetic ions and fluid electrons) to investigate the acceleration of low-energy particles (often termed as "injection problem") at parallel shocks. We find that the accelerated particles always gain the first amount of energy by reflection and acceleration at the shock layer. The protons can move off their original field lines in the 3-D electric and magnetic fields. The results are consistent with the acceleration mechanism found in previous 1-D and 2-D simulations. In the second part of Chapter 3, we use a stochastic integration method to study diffusive shock acceleration in the existence of large-scale magnetic variations. We show that the 1-D steady state solution of diffusive shock acceleration can be significantly modified in this situation. The results suggest that the observations of anomalous cosmic rays by Voyager spacecraft can be explained by a 2-D shock that includes the large-scale magnetic field variations. In Chapter 4 we study electron acceleration at a shock passing into a turbulent magnetic field by using a combination of hybrid simulations and test-particle electron simulations. We find that the acceleration of electrons is greatly enhanced by including the effect of large-scale magnetic turbulence. Since the electrons mainly follow along the magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons interacting with the shock front multiple times. Ripples in the shock front occurring at various scales also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. We discuss the application of this process in interplanetary shocks and flare termination shocks. We also discuss the implication of this study to solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. The intensity correlation of electrons and ions in SEP events indicates that perpendicular or quasi

  6. Environmental impacts of energy utilization

    International Nuclear Information System (INIS)

    Prado, C.P.C. do; Orsini, C.M.Q.; Rodrigues, D.; Barolli, E.; Nogueira, F.R.; Bosco, F.A.R.; Tabacniks, M.H.; Artaxo Netto, P.E.

    1981-04-01

    A survey is done of the available data on the physical environmental impacts in Brazil, derived from energetic systems such as: petroleum, hydroelectricity, firewood, coal, ethanol, methanol and hydrogen. A critical evalution of these data is done with respect to the preservation of the environment. The necessity of studying the environmental impact of the utilization of ethanol, nuclear fuels and coal is stressed. (M.A.) [pt

  7. Environmental applications based on GIS and GRID technologies

    Science.gov (United States)

    Demontis, R.; Lorrai, E.; Marrone, V. A.; Muscas, L.; Spanu, V.; Vacca, A.; Valera, P.

    2009-04-01

    In the last decades, the collection and use of environmental data has enormously increased in a wide range of applications. Simultaneously, the explosive development of information technology and its ever wider data accessibility have made it possible to store and manipulate huge quantities of data. In this context, the GRID approach is emerging worldwide as a tool allowing to provision a computational task with administratively-distant resources. The aim of this paper is to present three environmental applications (Land Suitability, Desertification Risk Assessment, Georesources and Environmental Geochemistry) foreseen within the AGISGRID (Access and query of a distributed GIS/Database within the GRID infrastructure, http://grida3.crs4.it/enginframe/agisgrid/index.xml) activities of the GRIDA3 (Administrator of sharing resources for data analysis and environmental applications, http://grida3.crs4.it) project. This project, co-funded by the Italian Ministry of research, is based on the use of shared environmental data through GRID technologies and accessible by a WEB interface, aimed at public and private users in the field of environmental management and land use planning. The technologies used for AGISGRID include: - the client-server-middleware iRODS™ (Integrated Rule-Oriented Data System) (https://irods.org); - the EnginFrame system (http://www.nice-italy.com/main/index.php?id=32), the grid portal that supplies a frame to make available, via Intranet/Internet, the developed GRID applications; - the software GIS GRASS (Geographic Resources Analysis Support System) (http://grass.itc.it); - the relational database PostgreSQL (http://www.posgresql.org) and the spatial database extension PostGis; - the open source multiplatform Mapserver (http://mapserver.gis.umn.edu), used to represent the geospatial data through typical WEB GIS functionalities. Three GRID nodes are directly involved in the applications: the application workflow is implemented at the CRS4 (Pula

  8. Environmental effects of ash application in forest ecosystems

    DEFF Research Database (Denmark)

    Hansen, Mette

    of ashes being produced and the export of nutrients from the forests. This PhD project aims at investigating how ash application in forest ecosystems affects soil and soil solution properties and whether ash application can be used in a Danish context without environmental harm but with positive effects...

  9. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  10. Applications of nuclear technique in environmental and medical science

    International Nuclear Information System (INIS)

    Shi Xianfeng; Shen Hao; Liu Bo; Sun Minde; Yao Huiying; Zhou Shijun; Mi Yong

    2001-01-01

    The serious environmental pollution problem and application of the nuclear technique in environmental and medical sciences were discussed. The analysed results of the elemental distribution of particles in automobile exhaust, the aerosol particle of different size and the effect of Rare Earth on cells were reported. The authors can obtain some information related to element concentration. It offers a convenient method in inspecting the environmental pollution

  11. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; McCoy, M.W.

    1981-01-01

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  12. Eco-Environmental Factors in Green Roof Application in Indian Cities

    Science.gov (United States)

    Mukherjee, M.

    2014-09-01

    Green-roof is the cost-effective environmental mitigation strategy for urban areas [1]. Its application is limited in India primarily due to inadequate understanding about its cost-benefit analysis and technicalities of its maintenance. Increasing awareness about green roof can alter conservative attitude towards its application. So, this work presents a quantified study on green-roof types, cost and environmental benefits while considering different geo-urban climate scenarios for cities of Kolkata, Mumbai, Chennai and New Delhi. Cost estimation for extensive and intensive green-roof with reference to commonly used roof in urban India is also worked out. Attributes considered for environmental discussion are energy savings related to thermal heat gain through roof, roof-top storm-water drainage and sound attenuation. The comparative study confirms that further focused study on individual cities would identify city-specific objectives for green-roof application; strategies like awareness, capacity building programmes, incentives, demonstration projects etc. can be worked out accordingly for wider application of green-roof in Indian cities.

  13. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  14. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  15. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Pang, Long

    2015-11-03

    Ionic liquids (ILs) comprise mostly of organic salts with negligible vapor pressure and low flammability that are proposed as replacements for volatile solvents. ILs have been promoted as "green" solvents and widely investigated for their various applications. Although the utility of these chemicals is unquestionable, their toxic effects have attracted great attention. In order to manage their potential hazards and design environmentally benign ILs, understanding their environmental behavior, fate and effects is important. In this review, environmentally relevant issues of ILs, including their environmental application, environmental behavior and toxicity are addressed. In addition, also presented are the influence of ILs on the environmental fate and toxicity of other coexisting contaminants, important routes for designing nontoxic ILs and the techniques that might be adopted for the removal of ILs.

  16. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  17. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  18. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  19. Application in agriculture, forestry and environmental science

    International Nuclear Information System (INIS)

    Williams, J.; Holmes, J.W.; Williams, B. G.; Winkworth, R.E.

    1981-01-01

    This consideration of the applications of the neutron method in forestry, agriculture and environmental science, focusses on the analyses of the data which can be obtained with the neutron method and draws attention to problem situations associated with its use

  20. Environmental applications of biosurfactants: recent advances.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-18

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  1. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  2. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  3. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  4. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    International Nuclear Information System (INIS)

    Martin, Madhavi Z.; Labbe, Nicole; Andre, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a 'universal calibration curve'. In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants

  5. Environmental Response Management Application (ERMA®), Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Response Management Application (ERMA®) is a web-based Geographic Information System (GIS) tool that assists both emergency responders and...

  6. Dinosaur energetics: setting the bounds on feasible physiologies and ecologies

    OpenAIRE

    Clarke, Andrew

    2013-01-01

    The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would...

  7. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  8. Transport of energetic electrons in a fully ionized hydrogen plasma

    International Nuclear Information System (INIS)

    Bai, T.

    1982-01-01

    In order to study the behavior of energetic electrons in astrophysical plasmas, I derive relationships among the Coulomb energy loss, travel distance, and pitch angle deflection due to Coulomb collisions, which hold when the Coulomb energy loss is only a small fraction of the initial energy. By using these relationships, I develop a Monte Carlo method of calculating how the pitch angle and spatial distributions of the energetic electrons change in a uniformly magnetized plasma as these electrons lose energy by Coulomb collisions, including a scheme to include the effects of the nonuniformity of the ambient magnetic field. The resulting computational framework provides an efficient and flexible system for incroporating the effects of Coulomb collisions in realistic geometries. This method is applied to a beam of monoenergetic electrons released along the magnetic field lines. Implications of the present results and future applications of this Monte Carlo method are discussed. Subject headings: hydromagnetics: plasmas: Sun: flares

  9. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  10. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  11. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  12. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  13. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  14. The 5th conference of the South Pacific Environmental Radioactivity Association (SPERA). Environmental radioactivity and its application in environmental studies. Conference papers

    International Nuclear Information System (INIS)

    1998-01-01

    SPERA98 focused primarily on applications of environmental radionuclides in environmental studies and problem solving. The conference program included 7 sessions covering topics such as: soil erosion, waste disposal and treatment, atmospheric studies, radioactivity in water, human exposure pathways, sediment and atmospheric studies

  15. The 5th conference of the South Pacific Environmental Radioactivity Association (SPERA). Environmental radioactivity and its application in environmental studies. Conference papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    SPERA98 focused primarily on applications of environmental radionuclides in environmental studies and problem solving. The conference program included 7 sessions covering topics such as: soil erosion, waste disposal and treatment, atmospheric studies, radioactivity in water, human exposure pathways, sediment and atmospheric studies.

  16. ICP-MS applications for the analysis of geological materials and environmental samples

    International Nuclear Information System (INIS)

    Bendl, J.

    1997-01-01

    This work deals with applications of inductively coupled plasma - mass spectrometry applications for the analysis of geological materials and environmental samples. There are instrumentation, calibration, alternatives of sample introduction, interferences, trace elements analysis, rare earth elements and uranium and thorium, precious metals, isotopic analysis and environmental analysis discussed

  17. Energetic and economic evaluation of solar thermal and photovoltaic cooling system in Cuban hotel

    International Nuclear Information System (INIS)

    Díaz Torres, Yamile; Valdivia Nodal, Yarelis; Castellanos Molina, Luis Miguel; Torres del Toro, Migdalia; Monteagudo Llanes, José

    2015-01-01

    The present paper discusses the energetic and economic feasibility of using two configurations of solar cooling in a Cuban Hotel. The air conditioning hybrid system schemes are: conventional system (Chiller) interconnected in parallel with a solar- powered absorption cooling system (SACS); and a photovoltaic cooling system (PCS). There were analyzed by methodologies and thermodynamic principles governing these technologies. The results show that their uses are alternatives for reducing energy consumption and environmental impact. (full text)

  18. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Science.gov (United States)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  19. Environmental Applications of Biosurfactants: Recent Advances

    Directory of Open Access Journals (Sweden)

    Swaranjit Singh Cameotra

    2011-01-01

    Full Text Available Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  20. A population of highly energetic transient events in the centres of active galaxies

    Science.gov (United States)

    Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J.; Hutton, S. J.; Inserra, C.; Kangas, T.; Pastorello, A.; Reynolds, T.; Romero-Cañizales, C.; Smith, K. W.; Valenti, S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2017-12-01

    Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of 2.3 × 1052 erg. The slow evolution of its light curve and persistently narrow spectral lines over ˜ 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.

  1. Huddling behaviour and energetics of Sminthopsis spp. (Marsupialia, Dasyruidae) in response to environmental challenge.

    Science.gov (United States)

    Tomlinson, Sean; Withers, Philip C; Maloney, Shane K

    2014-04-10

    We describe how behavioural responses are an important adjunct to physiological responses for two dunnart marsupials that live in arid environments. Behavioural responses of the stripe-faced dunnart Sminthopsis macroura and the Ooldea dunnart Sminthopsis ooldea differed with acclimation to four ambient temperature (T(a)) regimes, 12 h:12 h of 5-15 °C, 12-22 °C, 18-28 °C and 25-35 °C. Aggression levels were low at regimes 5-15 °C and 12-22 °C, and high at regimes 18-28 °C and 25-35 °C. The proportion of S. macroura huddled in groups increased significantly with decreasing T(a) regime, but there was no aggregation by S. ooldea at low T(a) regimes. The energetic benefit of huddling by S. macroura was highest for pairs of dunnarts (27% saving compared with singles) and only 3% for triplets at T(a)=10 °C. Thermal conductance decreased for pairs but not triplets compared to singles. There were no energetic savings for S. ooldea with increased numbers, and thermal conductance was the same per individual for single, pairs and triplets, reflecting their lack of huddling behaviour. The flexible behavioural (huddling) responses of S. macroura may facilitate their capacity to occupy a broad geographical distribution, unlike S. ooldea, which had inflexible behavioural responses (no huddling) and has a more restricted geographical range. The phylogenetic relationships of the dunnarts suggest that social behaviours may have arisen only once in the most adaptable subgroup of the Sminthopsini. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  2. 18 CFR 380.12 - Environmental reports for Natural Gas Act applications.

    Science.gov (United States)

    2010-04-01

    ... effects of those hazards on the facility, and methods proposed to reduce the effects or risks. Resource... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Environmental reports... THE NATIONAL ENVIRONMENTAL POLICY ACT § 380.12 Environmental reports for Natural Gas Act applications...

  3. Overview: Applicability of U.S. environmental control technologies for Korea

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S.W. [DOE Pittsburgh Energy Technology Center, PA (United States)

    1994-12-31

    A review of the applicability of US environmental control technologies for Korea is presented in outline form. The following topics are discussed: PETC coal research activities, environmental costs, environmental challenges, Clean Air Act requirements, additional regulations for air toxics, clean coal technologies (CCT) approach, CCT help meet environmental challenges, utility options, research goals for advanced power systems, PETC Programs, the NO{sub x} SO process, flue gas cleanup program, air toxics emissions, and retrofit NO{sub x} control for coal-burning boilers.

  4. Regulatory standards applicable or relevant to the independent Hanford environmental surveillance and oversight program

    International Nuclear Information System (INIS)

    King, S.E.; Hendrickson, P.L.; Siegel, M.R.; Woodruff, M.G.; Belfiglio, J.; Elliott, R.W.

    1990-03-01

    The authors reviewed federal and state statutes and regulations, as well as Department of Energy (DOE) orders and other guidance material, for potential applicability to the environmental surveillance program conducted for the Hanford site by the Pacific Northwest Laboratory (PNL). There are no federal or state statutes or regulations which are directly applicable to the environmental surveillance program. However, other regulatory schemes, while not directly applicable to the environmental surveillance program, are important insofar as they are indicative of regulatory concern and direction. Because of the evolving nature of environmental regulations, this area needs to be closely monitored for future impact on environmental surveillance activities. 9 refs.,

  5. An automatic system to study sperm motility and energetics.

    Science.gov (United States)

    Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W

    2008-08-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the

  6. Energetic policies 2005-2030

    International Nuclear Information System (INIS)

    2008-01-01

    This power point exhibition shows the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, energetic prospective of Uruguay country, medium and long term perspectives.

  7. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  8. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  9. Industrial and environmental applications of nuclear analytical techniques. Report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The IAEA has programme the utilisation of nuclear analytical techniques (NATs), in particular for industrial and environmental applications. A major purpose is to help the developing Member States apply their analytical capabilities optimally for socio-economic progress and development. A large number of institutions in Europe, Africa, Latin America and Asia have established X ray fluorescence (XRF) and gamma ray measurement techniques and facilities for neutron activation analysis (NAA) have been initiated in institutions in these regions. Moreover, there is a growing interest among many institutes in applying more advanced analytical techniques, such as particle induced X ray emission (PIXE) and microanalytical techniques based on X ray emission induced by conventional sources or synchrotron radiation to the analysis of environmental and biological materials and industrial products. In order to define new areas of application of NATs and to extend the range of these techniques, a number of initiatives have recently been taken. It includes a workshop on industrial and environmental applications of nuclear analytical techniques, organized by the IAEA in Vienna, 7-11 September 1998. The main objectives of the workshop were as follows: (1) to review recent applications of NATs in industrial and environmental studies; (2) to identify emerging trends in methodologies and applications of NATs; (3) to demonstrate analytical capabilities of selected NATs. The following topics were reviewed during the workshop: (1) XRF and accelerator based analytical techniques; (2) portable XRF systems and their applications in industry, mineral prospecting and processing, (3) portable gamma ray spectrometers; and (4) NAA and its applications in industry and environmental studies. Micro-XRF and micro-PIXE methods and their applications in the above fields were also discussed, including aspects of synchrotron radiation induced X ray emission.

  10. Industrial and environmental applications of nuclear analytical techniques. Report of a workshop

    International Nuclear Information System (INIS)

    1999-11-01

    The IAEA has programme the utilisation of nuclear analytical techniques (NATs), in particular for industrial and environmental applications. A major purpose is to help the developing Member States apply their analytical capabilities optimally for socio-economic progress and development. A large number of institutions in Europe, Africa, Latin America and Asia have established X ray fluorescence (XRF) and gamma ray measurement techniques and facilities for neutron activation analysis (NAA) have been initiated in institutions in these regions. Moreover, there is a growing interest among many institutes in applying more advanced analytical techniques, such as particle induced X ray emission (PIXE) and microanalytical techniques based on X ray emission induced by conventional sources or synchrotron radiation to the analysis of environmental and biological materials and industrial products. In order to define new areas of application of NATs and to extend the range of these techniques, a number of initiatives have recently been taken. It includes a workshop on industrial and environmental applications of nuclear analytical techniques, organized by the IAEA in Vienna, 7-11 September 1998. The main objectives of the workshop were as follows: (1) to review recent applications of NATs in industrial and environmental studies; (2) to identify emerging trends in methodologies and applications of NATs; (3) to demonstrate analytical capabilities of selected NATs. The following topics were reviewed during the workshop: (1) XRF and accelerator based analytical techniques; (2) portable XRF systems and their applications in industry, mineral prospecting and processing, (3) portable gamma ray spectrometers; and (4) NAA and its applications in industry and environmental studies. Micro-XRF and micro-PIXE methods and their applications in the above fields were also discussed, including aspects of synchrotron radiation induced X ray emission

  11. Energetic matrix of Rio de Janeiro State, Brazil - 1994/2004

    International Nuclear Information System (INIS)

    1996-01-01

    This book has been structured into three parts and three appendices. In the first part, named Energetic matrix of Rio de Janeiro State, the most important economic and social aspects of the State and the methodology for elaboration of economic and energetic scenarios has been detailed. In the second part, an analysis of seven consumption sectors components of the energetic matrix structure ( industrial, transports, residential, commercial, energetic, agriculture and cattle-breeding, non energetic) has been performed, with the objective of providing information on the present status and future prospects of energy consumption by sectors up to 2004. Finally, in the third part, the energy supply of Rio de Janeiro State for the consumption sectors has been discussed

  12. Toxicity Determinations for Five Energetic Materials, Weathered and Aged in Soil, to the Collembolan Folsomia Candida

    Science.gov (United States)

    2015-03-01

    obtained from the Soil Fauna and Ecotoxicology Research Unit, Department of Terrestrial Ecology, National Environmental Research Institute (Silkeborg...AND AGED IN SOIL , TO THE COLLEMBOLAN FOLSOMIA CANDIDA ECBC-TR-1273 Carlton T. Phillips Ronald T. Checkai Roman G. Kuperman Michael Simini...for Five Energetic Materials, Weathered and Aged in Soil , to the Collembolan Folsomia candida 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  13. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    International Nuclear Information System (INIS)

    Shpotyuk, O.

    1997-01-01

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author)

  14. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.

    2007-01-01

    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  15. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  16. Energetic, exergetic, thermoeconomic and environmental analysis of various systems for the cogeneration of biogas produced by an urban wastewater treatment plant UWTP

    Energy Technology Data Exchange (ETDEWEB)

    Coble, J.J. [Nebrija Univ., Madrid (Spain). Industrial Engineering Dept.; Contreras, A. [Industrial Engineering College, Madrid (Spain). Chemistry Dept.

    2010-07-01

    General awareness that the world's energy resources are limited has meant that it is increasingly important to examine energy-saving devices and fuels more closely, in order to use our limited available resources in a more sustainable manner. With this in mind, we studied biogas from a UWTP, because it is a renewable fuel with a neutral contribution to CO2 emissions. We compared two technologies for using biogas as an energy source: cogeneration using either motor-generators or phosphoric acid fuel cells. The comparison was made from the energetic, exergetic, thermo-economic and environmental points of view, internalizing all the costs involved in each case. We used data supplied by the UWTP at the City of Madrid Plant Nursery, which uses motor-generators, and the UWTPs in Portland, Oregon, and in Red Hook, New York, which use a phosphoric acid fuel cell. The joint work carried out has been divided into three parts for publication purposes, and we present here the first of these, which refers to the energy analysis. (orig.)

  17. Electrospun nanofibers for energy and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Bin; Yu, Jianyong (eds.) [Donghua Univ., Shanghai (China). State Key Lab. for Modification of Chemical Fibers and Polymer Materials; Donghua Univ., Shanghai (China). Nanomaterials Research Center

    2014-10-01

    This book offers a comprehensive review of the latest advances in developing functional electrospun nanofibers for energy and environmental applications, which include fuel cells, lithium-ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis, structurally-colored fibers, oil spill cleanup, self-cleaning materials, adsorbents, and electromagnetic shielding.

  18. Environmental statement for Applications Technology Satellite program

    Science.gov (United States)

    1971-01-01

    The experiments, environmental impact, and applications of data collected by ATS are discussed. Data cover communications, navigation, meteorology, data collection (including data from small unattended remote stations such as buoys, seismology and hydrology monitors, etc.), geodesy, and scientific experiments to define the environment at synchronous orbit, and to monitor emissions from the sun.

  19. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  20. Energetics of dislocation nucleation under a nanoindenter

    International Nuclear Information System (INIS)

    Zhang Chuanli; Xu Guanshui

    2005-01-01

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip

  1. Energetics of dislocation nucleation under a nanoindenter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chuanli [College of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Xu Guanshui [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)]. E-mail: guanshui.xu@ucr.edu

    2005-07-25

    We present an analysis of dislocation nucleation under an idealized nanoindenter based on the variational boundary integral formulation of the Peierls-Nabarro dislocation model. By solving the embryonic dislocation profiles, corresponding to the relative displacements between the two adjacent atomic layers along the slip plane, we have determined the critical conditions for athermal dislocation nucleation as well as the activation energies required to thermally activate embryonic dislocations from their stable to unstable saddle point configurations. The effect of the size of the indenter on the energetics of dislocation nucleation is quantitatively characterized. The result is compared with a simplified analysis based on the application of the Rice model for dislocation nucleation at a crack tip.

  2. New environmental applications of radiation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1998-01-01

    The paper is a brief review of recent data on environmental applications of radiation technology obtained with participation of the author. It includes the results of the study on combined electron-beam and ozone treatment of municipal wastewater in the aerosol flow and electron-beam purification of water from heavy metals (lead, cadmium, mercury, chromium) by two methods (in the presence of formate as an OH radical scavenger or sorbents of inorganic and plant origins)

  3. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  4. Including environmental concerns in energy policies

    International Nuclear Information System (INIS)

    Potier, Michel

    2014-05-01

    In this article, the author comments the different impacts on the environment and risks related to energy, provided that all energies have an impact on the environment (renewable energies are generally cleaner than fossil energies) and these impacts can be on human health, ecosystems, buildings, crops, landscapes, and climate change. He comments the efforts made in the search for a higher energetic efficiency, and proposes an overview of the various available tools implemented by environmental policies in the energy sector: regulatory instruments, economic instruments, negotiated agreements, and informational instruments. He comments the implementation of an energetic taxing aimed at developing a greater respect of the environment

  5. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  6. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  7. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  8. Emerging applications of nanoparticles: Biomedical and environmental

    Science.gov (United States)

    Gulati, Shivani; Sachdeva, M.; Bhasin, K. K.

    2018-05-01

    Nanotechnology finds a wide range of applications from energy production to industrial fabrication processes to biomedical applications. Nanoparticles (NPs) can be engineered to possess unique compositions and functionalities to empower novel tools and techniques that have not existed previously in biomedical research. The unique size and shape dependent physicochemical properties along with their unique spectral and optical properties have prompted the development of a wide variety of potential applications in the field of diagnostics and medicines. In the plethora of scientific and technological fields, environmental safety is also a big concern. For this purpose, nanomaterials have been functionalized to cope up the existing pollution, improving manufacturing methods to reduce the generation of new pollution, and making alternative and more cost effective energy sources.

  9. Energetic certification in Europe

    International Nuclear Information System (INIS)

    1998-01-01

    At community level the problem of energy quality control in a building was introduced by EEC recommendation n. 93/76 in 1993. In this item are reported some notes on energetic certification in European countries [it

  10. Remote sensing sensors and applications in environmental resources mapping and modeling

    Science.gov (United States)

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  11. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Pedagogical University, Czestochowa (Poland)]|[Institute of Materials, Lvov (Ukraine)

    1997-12-31

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author). 16 refs, 1 tab.

  12. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  13. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  14. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    availabilities of their respective food sources (bacteria and fungi ), were also unaffected-or-increasing in soil with CL-20 treatments. This is...ENERGETIC MATERIALS EFFECTS ON ESSENTIAL SOIL PROCESSES: DECOMPOSITION OF ORCHARD...GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini

  15. Computational studies on energetic properties of nitrogen-rich ...

    Indian Academy of Sciences (India)

    Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles. LI XIAO-HONGa,b,∗ and ZHANG RUI-ZHOUa. aCollege of Physics and Engineering, Henan University of Science and Technology, Luoyang 471 003, China. bLuoyang Key Laboratory of Photoelectric Functional Materials, ...

  16. The Energetics of Economics (Money as access to Energy)

    OpenAIRE

    Ternyik, Stephen I.

    2013-01-01

    Money is being portrayed as temporal access to energy and a new methodical approach to the energetics of the human economy is introduced.The economic evolution of world system energetics is put into the historical focus of all global monetary civilization, reaching back to Sumerian city states.This long wave energetics of human economic action clearly points to the biophysical boundaries of the globalized monetary production economy which is also based on natural law.The future perspective of...

  17. Environmental and economic comparisons of manure application methods in farming systems.

    Science.gov (United States)

    Rotz, C A; Kleinman, P J A; Dell, C J; Veith, T L; Beegle, D B

    2011-01-01

    Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.

  18. Interaction in the large energetic companies in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Janevski, Risto

    1999-01-01

    After disintegration of former power energetic system of Yugoslavia 1991, the Republic of Macedonia has faced enormous problems in the energetic field. It was necessary to realize all options in order to secure enough electric power for normal economic capacities function. In that course a direct involvement of five large companies, which represent very significant energetic subjects, will largely determine the future energetic conditions and circumstances in our country. These are the following companies: P.E. Electric Power Company Of Macedonia; OKTA Crude Oil Refinery; Heat Power Company; HEK Jugohrom; Fenimak. The paper presents the electric power consumption of these macro energetic companies during the period 1991-1998

  19. District heating in energetic and environmental politics

    Energy Technology Data Exchange (ETDEWEB)

    di Riscaldamento Urbano, Associazione Italiana

    1989-05-01

    A review is made of what was said at the Third Bi-annual Convention (Reggio Emilia, 24-25/11/88) of AIRU (the Italian Association for District Heating). In general, the seven papers presented dealt with the following points: the technology of primary energy supply, thermal energy production, energy distribution to users, environmental engineering and socio-economic factors. Emphasis was given to the themes: district heating in Italy within the framework of the 1988 National Energy Plan and the impact on energy marketing due to the future free trade system planned for the E.E.C. in 1992. A critical analysis is made of: forecasts of primary energy demand for the year 2000, plans for the reduction of dependency on foreign supplied petroleum, the promotion of the increased use of natural gas and methane and overall energy conservation measures as called for by the National Energy Plan.

  20. Phenomena accompanying gradient-B drift injection of energetic ions into Tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Jassby, D.L.

    1976-01-01

    The application of vertically asymmetric toroidal-field ripple, in order to permit the gradient B-drift injection and subsequent capture of energetic ions, results in a new radial diffusion of banana orbits. The nearly mono-kinetic velocity distribution of gradient B-drifting ions in the outer plasma region represents a large source of free energy; and the nonambipolar inward drift of these ions modifies the radial electric field

  1. Observations of Energetic Particle Escape at the Magnetopause: Early Results from the MMS Energetic Ion Spectrometer (EIS)

    Science.gov (United States)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; hide

    2016-01-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  2. Off-line supercritical fluid extraction-capillary GC applications in environmental analysis

    NARCIS (Netherlands)

    David, F.; Verschuere, M.; Sandra, P.J.F.

    1992-01-01

    The successful application of supercrit. fluid extn. for environmental samples requires that the extn. for environmental samples requires that the extn. conditions detd. for spiked samples must be optimized in order to overcome the solute-matrix interactions that are responsible for lower recoveries

  3. Geo-environmental applications for permeable sand-shredded tyre mixtures; Applications geoenvironnementales de melanges sable-pneu permeables

    Energy Technology Data Exchange (ETDEWEB)

    Tabbaa, A.A. [Cambridge Univ. (United Kingdom). Dept. of Engineering; Cogswell, C.A. [Formely Cambridge University Engineering Dept., Cambridge (United Kingdom); Al-Tabbaa, A.M.B. [Kings College London (United Kingdom)

    2000-07-01

    This paper presents details and results of recent work conducted on the geo-environmental applications of permeable sand-tyre mixtures. This work is part of an extensive research programme initiated by the first author on the use of waste tyre in various geotechnical and geo-environmental applications. The paper considers sand-tyre in mixed and layered sample configurations as part of active containment or landfill leachate collection system. The paper first investigates the level of leached copper and zinc from the tyre and its capacity to absorb paraffin. It then looks at the in-situ mixing of tyre with soil using a laboratory-scale auger. The work produced encouraging results and showed that tyre is a suitable waste material for use in the above applications. (authors)

  4. The energetic significance of cooking.

    Science.gov (United States)

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.

  5. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications.

    Science.gov (United States)

    Cao, Yi

    2015-09-01

    Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.

  6. Thermal and energetic constraints on ectotherm abundance: A global test using lizards

    Science.gov (United States)

    Buckley, L.B.; Rodda, G.H.; Jetz, W.

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales. ?? 2008 by the Ecological Society of America.

  7. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  8. Environmentally Friendly Pretreatment for Department of Defense Applications

    Science.gov (United States)

    2012-08-29

    Develop an environmentally friendly pretreatment system for multi-material Department of Defense applications ― Free of hexavalent chromium (Cr6...Zn phosphate and chrome wash primer •Two Zirconium pretreatment variations passed the 336 hr and 1000 hr B-117 outlined per MIL-DTL-53022 or MIL

  9. Sawteeth stabilization by energetic trapped ions

    International Nuclear Information System (INIS)

    Samain, A.; Edery, D.; Garbet, X.; Roubin, J.P.

    1991-01-01

    The analysis of a possible stabilization of sawteeth by a population of energetic ions is performed by using the Lagrangian of the electromagnetic perturbation. It is shown that the trapped component of such a population has a small influence compared to that of the passing component. The stabilization threshold is calculated assuming a non linear regime in the q=1 resonant layer. The energetic population must create a stable tearing structure if the average curvature effect on thermal particles in the layer is small. However, this effect decreases the actual threshold

  10. Radiation environmental impact assessment of the radioisotope's application on nuclear medical science

    International Nuclear Information System (INIS)

    Liu Hongshi

    2004-01-01

    The radiation environmental impact assessment of the radioisotope's application on nuclear medical science is introduced, including the assessment criteria, the assessment methods and the environmental impact assessment of three wastes emission. (authors)

  11. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  12. Very energetic photons at HERA

    International Nuclear Information System (INIS)

    Bawa, A.C.; Krawczyk, M.

    1991-01-01

    We show that every energetic photons in the backward direction can be produced in deep inelastic Compton scattering at HERA. Assuming a fixed energy of 9 GeV for the initial photons and 820 GeV for the protons a high rate is found for the production of final photons with a transverse momentum equal to 5 GeV/c and energy between 40 GeV and 300 GeV. These energetic photons arise mainly from the scattering of the soft gluonic constituents of the initial photon with quarks from the proton. They are produced in the backward direction in coincidence with a photon beam jet of energy ∝ 9 GeV in the forward direction. (orig.)

  13. ISO 14001 Environmental Management System and The Application to The Copper Sector

    Directory of Open Access Journals (Sweden)

    İrfan ERTUĞRUL

    2013-12-01

    Full Text Available This study presents firstly Environmental Management and Environmental Management Systems (EMS. The certification process of ISO 14001 EMS is described in the Copper Industry that begin the environmental activities by completely considering environment. Evaluating the environmental impacts of business, it is presented the process including EMS so as to dispose of waste, the creation of process, the application difficulties and the benefits of EMS.

  14. Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

    KAUST Repository

    Ahmed, Elaf

    2017-01-01

    Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication

  15. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    Science.gov (United States)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  16. Study of energetic dependence of LiF TLDs for photons

    International Nuclear Information System (INIS)

    Cavalieri, Tassio A.; Antunes, Paula C.G.; Paiva, Fabio; Branco, Isabela S.; Sena, Michelle K.S.; Siqueira, Paulo T.D.; Yoriyaz, Helio

    2015-01-01

    The LiF TLDs are widely used for photon dosimetry. However, in the most case the energetic dependence of these TLDs are not taken into account. This work is a preliminary study of energetic photon dependence in LiF TLD (TLD 700, enriched with 7 Li). For this study it was utilized a methodology already used in others works that seek understand the dependence energetic of TLD. It was utilized three different X-ray spectrum and a 137 Cs source; Beyond the calculus utilized in previous works, it was built the calibration curve for each spectrum to see the difference in dosimetry that the energetic dependence could cause. (author)

  17. Study of energetic dependence of LiF TLDs for photons

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio A.; Antunes, Paula C.G.; Paiva, Fabio; Branco, Isabela S.; Sena, Michelle K.S.; Siqueira, Paulo T.D.; Yoriyaz, Helio, E-mail: tcavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The LiF TLDs are widely used for photon dosimetry. However, in the most case the energetic dependence of these TLDs are not taken into account. This work is a preliminary study of energetic photon dependence in LiF TLD (TLD 700, enriched with {sup 7}Li). For this study it was utilized a methodology already used in others works that seek understand the dependence energetic of TLD. It was utilized three different X-ray spectrum and a {sup 137}Cs source; Beyond the calculus utilized in previous works, it was built the calibration curve for each spectrum to see the difference in dosimetry that the energetic dependence could cause. (author)

  18. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  19. Electrokinetic applications for environmental restoration, waste volume reduction, and contaminant containment systems

    International Nuclear Information System (INIS)

    Lomasney, H.L.; Lomasney, C.A.

    1996-01-01

    In the US and all over the world, following over 50 years of nuclear arms production operations, the magnitude of resultant environmental damage is only beginning to surface. The US Department of Energy estimates that by the year 2070, the total volume of high-level waste, transuranic waste, low-level waste, and low-level mixed waste, generated as a result of past and current nuclear activities, will exceed 20 million cubic meters. In Russia, it is reported that more than 30% of all groundwater is contaminated with agricultural and industrial chemical waste. Government agencies today are faced with the responsibility of developing technologies that are suitable for dealing with severe environmental contamination and accumulating waste inventories. In response to this demand, applications of electrokinetics have emerged in the field of environmental waste management as alternatives for environmental decontamination and ecological protection. Electrokinetics involves the movement of charged species under the influence of an applied electric field and is applicable in several areas of environmental waste management, including cleanup of soil and groundwater, barrier detection, and emergency or protective fencing. The worldwide interest in this technology has steadily escalated over the past decade. Today, state-of-the-art applications of electrokinetics have been demonstrated in the US, The Netherlands, Russia, The Ukraine, and India. This paper addresses the latest advances in the various applications of this technology as well as the most significant breakthroughs in the history of electrokinetics

  20. Agricultural methanization and use of energetic crops in co-digestion. Benefits/drawbacks and optimization. Final report

    International Nuclear Information System (INIS)

    2009-12-01

    This study aims at analysing benefits and drawbacks related to the use of energetic crops in co-digestion plants, these benefits and drawbacks being assessed from different points of view: energy production, economics, and environmental aspects, greenhouse gas emissions, concurrence with food production. The study is based on a literature survey which led to the building up of a database, on simulations of the use of different selected crops, and on a multi-criteria analysis

  1. Application of environmental isotope tracing technology to geothermal geochemistry

    International Nuclear Information System (INIS)

    Shang Yingnan

    2006-01-01

    This paper reviews the recent application and development of environmental isotope tracing technology to geothermal geochemistry in the following aspects: gas isotopes (He, C) tracing of warm springs; H, O isotope tracing on the origin and cause of geothermal water, environmental isotope dating of geothermal water, and the advantage of excess parameter of deuterium (d) in geothermal research. The author also suggests that isotope method should combine with other geological methods to expand its advantage. (authors)

  2. Enhancing Reactivity in Structural Energetic Materials

    Science.gov (United States)

    Glumac, Nick

    2017-06-01

    In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.

  3. Environmental and biological applications and implications of soft and condensed nanomaterials

    Science.gov (United States)

    Chen, Pengyu

    Recent innovations and growth of nanotechnology have spurred exciting technological and commercial developments of nanomaterails. Their appealing physical and physicochemical properties offer great opportunities in biological and environmental applications, while in the meantime may compromise human health and environmental sustainability through either unintentional exposure or intentional discharge. Accordingly, this dissertation exploits the physicochemical behavior of soft dendritic polymers for environmental remediation and condensed nano ZnO tetrapods for biological sensing (Chapter two-four), and further delineate the environmental implications of such nanomaterials using algae- the major constituent of the aquatic food chain-as a model system (Chapter five). This dissertation is presented as follows. Chapter one presents a general review of the characteristic properties, applications, forces dictating nanomaterials, and their biological and environmental implications of the most produced and studied soft and condensed nanomaterials. In addition, dendritic polymers and ZnO nanomaterials are thoroughly reviewed separately. Chapter two investigates the physicochemical properties of poly(amidoamine)-tris(hydroxymethyl)amidomethane- dendrimer for its potential applications in water purification. The binding mechanisms and capacities of this dendrimer in hosting major environmental pollutants including cationic copper, anionic nitrate, and polyaromatic phenanthrene are discussed. Chapter three exploits a promising use of dendrimers for removal of potentially harmful discharged nanoparticles (NPs). Specifically, fullerenols are used as a model nanomaterial, and their interactions with two different generations of dendrimers are studied using spectrophotometry and thermodynamics methods. Chapter four elucidates two novel optical schemes for sensing environmental pollutants and biological compounds using dendrimer-gold nanowire complex and gold-coated ZnO tetrapods

  4. Energetic endpoints provide early indicators of life history effects in a freshwater gastropod exposed to the fungicide, pyraclostrobin.

    Science.gov (United States)

    Fidder, Bridgette N; Reátegui-Zirena, Evelyn G; Olson, Adric D; Salice, Christopher J

    2016-04-01

    Organismal energetics provide important insights into the effects of environmental toxicants. We aimed to determine the effects of pyraclostrobin on Lymnaea stagnalis by examining energy allocation patterns and life history traits. Juvenile snails exposed to pyraclostrobin decreased feeding rate and increased apparent avoidance behaviors at environmentally relevant concentrations. In adults, we found that sublethal concentrations of pyraclostrobin did not affect reproductive output, however, there were significant effects on developmental endpoints with longer time to hatch and decreased hatching success in pyraclostrobin-exposed egg masses. Further, there were apparent differences in developmental effects depending on whether mothers were also exposed to pyraclostrobin suggesting this chemical can exert intergenerational effects. Pyraclostrobin also affected protein and carbohydrate content of eggs in mothers that were exposed to pyraclostrobin. Significant effects on macronutrient content of eggs occurred at lower concentrations than effects on gross endpoints such as hatching success and time to hatch suggesting potential value for these endpoints as early indicators of ecologically relevant stress. These results provide important insight into the effects of a common fungicide on important endpoints for organismal energetics and life history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  6. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  7. Environmental taxation. An overview

    International Nuclear Information System (INIS)

    Marcus, Vincent; Duboucher, Peggy; Ben Maid, Atika; Devaux, Jeremy; Nicklaus, Doris; Calvet, Melanie; Poupard, Christophe; Pourquier, Francois-Xavier; Vicard, Augustin; Monnoyer-Smith, Laurence

    2017-01-01

    This official publication proposes a detailed overview of the situation of environmental taxation in France. It first gives a general overview by discussing some key figures, by recalling the chronology of the main environmental taxation arrangements, and by discussing lessons learned from French and foreign experiments for an efficient, acceptable and consistent taxation. The second part proposes a detailed presentation of environmental taxation by distinguishing its main themes and objectives: struggle against climate change, reduction of air pollution and water pollution, and wastes, preservations and development of resources from biodiversity (soil artificialization, sustainable management of fauna and flora), efficient use of non renewable resources and of water (water resources, energetic and mineral raw materials). For each of these themes, the report presents the environmental problematic, and the existing arrangements, and proposes some elements of international comparison. The last part proposes a list of all environmental taxes

  8. Environmental costs of sugarcane agroecosystems; Custos ambientais de agroecossistemas da cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Renato de

    1997-07-01

    This thesis analyzes and evaluates sugarcane agroecosystems, taking into account the environmental implications and the use of natural resources as production factors. The costs are estimated in financial and energetic measures, from the implantation of the culture to the delivery of the cane to the mill. In order to perform the basic model, a business group, that presently represents the paradigm in Brazil, was selected and from those data on, scenarios of financial and energetic costs of alternative production systems were structured. The environmental aspects were evaluated as production factors and also include in the tables. Using the costs and the energetic tables, combined with the environmental implication data of the agroecosystems, three scenarios were established. The basic scenario takes into account the commercial energy used and the environment was not considered as a part of the production. In the second scenario the environmental impacts and the use of natural resources are estimated as production factors and involve costs. The third scenario simulates a situation where the agroecosystem is planned to be sustained and the environmental damages are minimized. The results indicated higher costs for the scenarios of inserting environmental costs than for the others scenarios. They also indicated that it is possible to achieve a profitable production in a sustainable ecosystem and that the differences of the energy amount between the systems remain still small, and that the sustainable perspective will only be attractive if it were based on the social definition of higher values to the natural environment. (author)

  9. Energetic particle pressure in intense ESP events

    Science.gov (United States)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  10. 76 FR 52656 - Rhode Island Department of Environmental Management; Notice of Preliminary Permit Application...

    Science.gov (United States)

    2011-08-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14211-000] Rhode Island Department of Environmental Management; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On June 10, 2011, the Rhode Island Department of Environmental Management...

  11. Shirley Basin Uranium Mill. Environmental report to accompany source material license application

    International Nuclear Information System (INIS)

    1975-12-01

    This document summarizes all of the environmental monitoring conducted by Utah. This Environmental Report consequently supplements and updates the information presented in the Source Material License application of August 18, 1970 and the Final Environmental Statement (FES) of December 1974. Water and air quality, liquid waste management, soil/vegetation monitoring, and reclamation are covered

  12. State of radiotracer application at the Division of Environmental Engineering, CDTN, NUCLEBRAS

    International Nuclear Information System (INIS)

    Aun, P.E.; Castro, J.O.N.M. de; Moreira, R.M.; Bandeira, J.V.

    1984-01-01

    The history and working phylosophy of the NUCLEBRAS division of environmental engineering are reported. Some aspects of tracer applications and of the tasks performed by the division of environmental engineering are described. (M.A.C.) [pt

  13. Application of physical and energetic approach to estimation and selection of atmospheric protection systems for energetic devices

    Directory of Open Access Journals (Sweden)

    Lysova Ekaterina

    2018-01-01

    Full Text Available The air basin of cities is subjected to considerable pollution, including waste gases generated during the production of thermal and electric energy by power plants. However, power plants are an indispensable element of the life support system on urban areas and they can not be taken out of the city, that means minimizing losses, both material and energy. Therefore, the problem of the correct choice of structural elements and operating characteristics of the process and a system for reducing air pollution is becoming very important. The paper analyzes the most well-known and practical scientific approaches to the selection of optimal measures to reduce air pollution, their advantages and disadvantages are revealed. The authors have singled out the physical and energetic approach as the most acceptable one. The approach is based on the theory of dispersed systems stability, the analysis of the main provisions which allowed us to systematize the parameters of properties, energy parameters and stability of gaseous pollutants formed during the operation of power plants and to construct a scheme for the transformation of gaseous pollutants for the process of reducing air pollution has been performed. At the same time, stability is the resultant criterion characterizing the gaseous pollutants behavior.

  14. Energetic assessment of soybean biodiesel obtainment in West ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Energetic outputs added up to 3,003.75 MJ and energy balance was 57,132.54 MJ. ... biodiesel, the study was divided into three stages: soybean farming, ... considering energetic consumptions with labor, seeds, diesel oil, ... model MF 283(4X2 TDA), power 63.2 kW (86 cv) in the engine, board weight.

  15. Applications of voltammetry in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, D.H.S.

    1985-01-01

    The wide-ranging applications of voltammetry to the analysis of trace metals and other ions of interest to environmental scientists are reviewed. It is concluded that the availability of modern microprocessor controlled instrumentation, capable of performing both anodic stripping and square wave voltammetry, provides a flexible and powerful technique to aid in solving analytical problems and carrying out routine analyses. The recent identification of many sensitizing agents which reduce detection limits to part per thousand million level, or below, is a further exciting development in this field.

  16. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  17. Present condition and countermeasures for nuclear application environmental impact assessment in Jiangsu province

    International Nuclear Information System (INIS)

    Dai Xia; Huang Xin

    2013-01-01

    In recent years, with the deepening of nuclear and radiation safety supervision, great advances have been made in nuclear application environmental impact assessment in Jiangsu province. But some problems and deficiencies still exist in management. This paper describes the present management situation of nuclear application environmental impact assessment, analysis and discusses the existing problems as well as their countermeasures. (authors)

  18. Sanitary landfill energetic potential analysis: a real case study

    International Nuclear Information System (INIS)

    Desideri, Umberto; Di Maria, Francesco; Leonardi, Daniela; Proietti, Stefania

    2003-01-01

    Waste disposal represents an important problem in developed countries. Many different techniques are available to reduce the amount of waste production and its environmental impact. In most cases, sanitary landfills have been and continue to be one of the most common ways to dispose of urban and industrial wastes. It is well known how landfilling produces an important environmental drawback due to gaseous, liquid and solid emissions that are dangerous for the environment. Landfill biogas emissions contain mainly carbon dioxide and methane. In particular, the methane concentration can be higher than 50% by volume. This means that the calorific value of sanitary landfill biogas can be higher than 18,000 kJ/N m 3 . The utilization of such gas as fuel for electrical and thermal energy production can be an important way to reduce the landfill impact on the environment and represent an easy way to use a renewable energy source. In the following, the amount and composition of the biogas produced in a sanitary landfill situated in central Italy have been analysed. Experimental results have been discussed, and an energetic potential evaluation has been performed

  19. Sanitary landfill energetic potential analysis: a real case study

    Energy Technology Data Exchange (ETDEWEB)

    Desideri, Umberto E-mail: umberto.desideri@unipg.it; Di Maria, Francesco E-mail: fdm@unipg.it; Leonardi, Daniela; Proietti, Stefania

    2003-07-01

    Waste disposal represents an important problem in developed countries. Many different techniques are available to reduce the amount of waste production and its environmental impact. In most cases, sanitary landfills have been and continue to be one of the most common ways to dispose of urban and industrial wastes. It is well known how landfilling produces an important environmental drawback due to gaseous, liquid and solid emissions that are dangerous for the environment. Landfill biogas emissions contain mainly carbon dioxide and methane. In particular, the methane concentration can be higher than 50% by volume. This means that the calorific value of sanitary landfill biogas can be higher than 18,000 kJ/N m{sup 3}. The utilization of such gas as fuel for electrical and thermal energy production can be an important way to reduce the landfill impact on the environment and represent an easy way to use a renewable energy source. In the following, the amount and composition of the biogas produced in a sanitary landfill situated in central Italy have been analysed. Experimental results have been discussed, and an energetic potential evaluation has been performed.

  20. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    Science.gov (United States)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  1. The application of image processing software: Photoshop in environmental design

    Science.gov (United States)

    Dong, Baohua; Zhang, Chunmi; Zhuo, Chen

    2011-02-01

    In the process of environmental design and creation, the design sketch holds a very important position in that it not only illuminates the design's idea and concept but also shows the design's visual effects to the client. In the field of environmental design, computer aided design has made significant improvement. Many types of specialized design software for environmental performance of the drawings and post artistic processing have been implemented. Additionally, with the use of this software, working efficiency has greatly increased and drawings have become more specific and more specialized. By analyzing the application of photoshop image processing software in environmental design and comparing and contrasting traditional hand drawing and drawing with modern technology, this essay will further explore the way for computer technology to play a bigger role in environmental design.

  2. Matching economical, energetic and environmental benefits: An analysis for hybrid CHCP-heat pump systems

    International Nuclear Information System (INIS)

    Cardona, Ennio; Piacentino, Antonio; Cardona, Fabio

    2006-01-01

    The optimization of design and operation of combined heat, cooling and power systems usually leads to select different plant lay-outs and size of components, depending on the adopted optimization criterion (maximum profit or energy saving or minimum environmental impact). This occurs when the current energy prices and the normative provisions supporting cogeneration are not able to coincide with the specific customer's interest and the overall 'social interest' for a reduction in energy consumption and in pollutants' emissions. At EU level, polygeneration is considered to have a large potential for residential and commercial buildings district network, for the tertiary sector and for industrial applications. In such applications, it is often convenient to integrate the trigeneration system with a reversible heat pump, because of a low ratio between electric demand and that for heating and cooling. In this paper, the design and operation of such hybrid systems is discussed. The results achievable through different operation modes are compared and, with reference to a 600-rooms hotel and a 300-beds hospital in Italy, the effects on plant design from an hour-by-hour optimization of plant operation are assessed. Finally, the need for a flexible support system for cogeneration plants is put into evidence and some criteria are listed for an effective regulation

  3. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  4. Environmental Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility: Environmental report

    International Nuclear Information System (INIS)

    1987-04-01

    The Environmental Standard Review Plan (ESRP) (NUREG-1300) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform environmental reviews of environmental reports prepared by applicants in support of license applications to construct and operate new low-level radioactive waste disposal facilities. The individual ESRPs that constitute this document identify the information considered necessary to conduct the review, the purpose and scope of the review, the analysis procedure and evaluation, the formal input to the environmental statement, and the references considered appropriate for each review. The ESRP is intended to ensure quality and uniformity of approach in individual reviews as well as compliance with the National Environmental Policy Act of 1969. In addition, the ESRP will make information about the environmental component of the licensing process more readily available and thereby will serve to improve the understanding of this process among the public, States and regional compacts, and the regulated community

  5. Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.

    2010-12-01

    The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  6. Energetic Ion Loss Diagnostic for the Wendelstein 7-AS Stellarator

    International Nuclear Information System (INIS)

    Darrow, D. S.; Werner, A.; Weller, A.

    2000-01-01

    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported

  7. Energetics of hydrogen bonding in proteins: a model compound study.

    OpenAIRE

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-...

  8. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  9. Reliability of non-lethal assessment methods of body composition and energetic status exemplified by applications to eel (Anguilla anguilla) and carp (Cyprinus carpio)

    DEFF Research Database (Denmark)

    Klefoth, Thomas; Skov, Christian; Aarestrup, Kim

    2013-01-01

    tNon-lethal assessments of proximate body composition of fish can help unravelling the physiologicaland condition-dependent mechanisms of individual responses to ecological challenges. Common non-lethal methods designed to index nutrient composition in fish include the relative condition factor (Kn......),bioelectric impedance-based assessments of body composition (BIA), and microwave-based “fat” meters(FM). Previous studies have revealed mixed findings as to the reliability of each of these. We compared theperformance of Kn, BIA and FM at different temperatures to predict energetic status of the whole bodiesof live eel...... approach isthe most suitable method to non-lethally estimate energetic status in both, carp and eel, whereas BIA is oflimited use for energetic measurements in the same species, in contrast to other reports in the literature...

  10. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  11. Magnesium-Based Micromotors: Water-Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications.

    Science.gov (United States)

    Chen, Chuanrui; Karshalev, Emil; Guan, Jianguo; Wang, Joseph

    2018-06-01

    The new capabilities and functionalities of synthetic micro/nanomotors open up considerable opportunities for diverse environmental and biomedical applications. Water-powered micromachines are particularly attractive for realizing many of these applications. Magnesium-based motors directly use water as fuel to generate hydrogen bubbles for their propulsion, eliminating the requirement of common toxic fuels. This Review highlights the development of new Mg-based micromotors and discusses the chemistry that makes it extremely attractive for micromotor applications. Understanding these Mg properties and its transient nature is essential for controlling the propulsion efficiency, lifetime, and overall performance. The unique and attractive behavior of Mg offers significant advantages, including efficient water-powered movement, remarkable biocompatibility, controlled degradation, convenient functionalization, and built-in acid neutralization ability, and has paved the way for multifunctional micromachines for diverse real-life applications, including operation in living animals. A wide range of such Mg motor-based applications, including the detection and destruction of environmental threats, effective in-vivo cargo delivery, and autonomous release, have been demonstrated. In conclusion, the current challenges, future opportunities, and performance improvements of the Mg-based micromotors are discussed. With continuous innovation and attention to key challenges, it is expected that Mg-based motors will have a profound impact on diverse biomedical and environmental applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Energetic solutions of Rock Sandpipers to harsh winter conditions rely on prey quality

    Science.gov (United States)

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis

    2018-01-01

    Rock Sandpipers Calidris ptilocnemis have the most northerly non-breeding distribution of any shorebird in the Pacific Basin (upper Cook Inlet, Alaska; 61°N, 151°W). In terms of freezing temperatures, persistent winds and pervasive ice, this site is the harshest used by shorebirds during winter. We integrated physiological, metabolic, behavioural and environmental aspects of the non-breeding ecology of Rock Sandpipers at the northern extent of their range to determine the relative importance of these factors in facilitating their unique non-breeding ecology. Not surprisingly, estimated daily energetic demands were greatest during January, the coldest period of winter. These estimates were greatest for foraging birds, and exceeded basal metabolic rates by a factor of 6.5, a scope of increase that approaches the maximum sustained rate of energetic output by shorebirds during periods of migration, but far exceeds these periods in duration. We assessed the quality of their primary prey, the bivalve Macoma balthica, to determine the daily foraging duration required by Rock Sandpipers to satisfy such energetic demands. Based on size-specific estimates of M. balthica quality, Rock Sandpipers require over 13 h/day of foraging time in upper Cook Inlet in January, even when feeding on the highest quality prey. This range approaches the average daily duration of mudflat availability in this region (c. 18 h), a maximum value that annually decreases due to the accumulation of shore-fast ice. Rock Sandpipers are likely to maximize access to foraging sites by following the exposure of ice-free mudflats across the upper Cook Inlet region and by selecting smaller, higher quality M. balthica to minimize foraging times. Ultimately, this unusual non-breeding ecology relies on the high quality of their prey resources. Compared with other sites across their range, M. balthica from upper Cook Inlet have relatively light shells, potentially the result of the region

  13. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    International Nuclear Information System (INIS)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act

  14. A-State-of-the-Art Report on Application of Radiation Technology to Environmental Pollution Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Kwang; Lee, Myun Joo

    2004-06-15

    Radiation technology has been rapidly developed for decades and its applicability also enlarged to many fields such as environmental protection, medical care, manufacturing industry, agriculture, and bio technology. In this report, we focused on the present situation of the development of radiation facilities and state-of-the-art on application of radiation to environmental pollution control including purification of flue gas, waste water treatment, and recycling of biological waste. We especially discussed the radiation technology for environmental pollution control and described the capability of its application to the industrial plants in Korea.

  15. Use of geothermal heat by means of energetic geostructures. Methodology to identify potential zones of application; Exploitation de la chaleur terrestre par des geostructures energetiques. Methodologie de determination des zones potentielles

    Energy Technology Data Exchange (ETDEWEB)

    Joliquin, P.

    2002-07-01

    This study focuses on the realisation of earth heat exchangers by means of so-called geostructures. These geostructures are works of concrete being in close contact with the ground and which are used for foundation or as retaining structures. The three main types of geostructures are piles, the walls and the foundation slabs. These structures can be equipped with a network of tubes where a liquid circulates to permit a heat exchange with the ground. In this case, they can be called energetic geostructures. To date, the use of this technology is rather limited in Switzerland. Therefore, the aim of this study is to increase its development, and a methodology to identify potential zones of application will be given for the purpose of energy planning. The correct land planning and the geotechnical properties of the ground are the two basic criteria to select the type of geostructure and its foundation conditions. Additional criteria like the thermal properties of the ground and the presence of groundwater will determine whether geostructures can be equipped with heat exchangers. Finally, the protection of the groundwater and thermal ground disturbances are possible criteria which could limit the application of energetic geostructures. To validate this methodology, six sites were selected in the canton of Geneva. Two of them ('La Chapelle - Les Sciers' and 'Frontenex - Gradelle'), were investigated by applying the above mentioned criteria. The conclusion is that the two sites represent potential zones for using energetic geostructures. Nevertheless, within the site 'La Chapelle - Les Sciers', the presence of an important groundwater resource was identified. To protect it, it is not permitted to pierce the impermeable layer above the aquifer, and therefore foundation depths must carefully be chosen by controlling the lengths of piles. (author)

  16. Environmental Applications of Nanotechnology

    Science.gov (United States)

    Keller, Arturo A.

    2014-07-01

    Engineered nanomaterials (ENMs) are currently used in many applications including agriculture (Gruère, 2012; Khot et al. 2012; Lopez-Moreno et al. 2010; Peralta-Videa et al. 2011; Zhao et al. 2012), aerogels (Bigall et al. 2009), aerospace (Baur and Silverman, 2007), automotive (Coelho et al. 2012; Presting and König, 2003; Salonitis et al. 2010), catalysts (Zhou et al. 2011), coatings, paints and pigments (Dhoke et al. 2009; Gopalakrishnan et al. 2011; Khanna, 2008), composites (Borchardt, 2003; Khanna and Bakshi, 2009; Petrov and Georgiev, 2012; Sahoo et al. 2010), construction (Lee et al. 2010), cosmetics (Musee, 2011; Sabitha et al. 2012; Singh and Nanda, 2012), electronics and optics (Alda et al. 2005; Avasthi et al. 2007; Song et al. 2012; Subramanian and Takhee, 2012), energy (Serrano et al. 2009), environmental remediation (Dionysiou 2004; Khin et al. 2012), filtration and purification (Dhakras, 2011; Savage and Diallo, 2005), food products (Blasco and Picó, 2011; Weiss et al. 2006), medical (Boisseau and Loubaton, 2011; Farokhzad and Langer, 2006), packaging (Silvestre et al. 2011), paper and board (Kharisov and Kharissova, 2010), plastics, security (Marín and Merkoçi, 2012), sensors (Ding et al. 2010; Duncan et al. 2012; Su et al. 2012; Tan et al. 2012), and textiles (Qian and Hinestroza, 2004; Wong et al. 2006), and research is underway on many new applications...

  17. The environmental health officer's role in the determination of wind turbine applications

    International Nuclear Information System (INIS)

    Spode, D.

    1993-01-01

    An account is given from the Local Authority Environmental Health view point about the application for Deli Wind Farm, Delabole, Cornwall, UK, which was the first such application we received and was approved and is now operational. Subsequently we have approved the application for Cold Northcott, have refused two other applications and a further two are being processed. The account will indicate the practical problems faced by Environment Health Officers in assessing applications and advising the decision makers. An indication of the information which the author considers it is essential to have included in the noise section of an environmental assessment is given and suggestions are made on the type of conditions which should be attached to any planning consent with a view to protecting occupiers of the closest dwelling, this being particularly important where the relevant separation distances give little room for error in getting the decision right. (author)

  18. Pesticide Environmental Accounting: A method for assessing the external costs of individual pesticide applications

    International Nuclear Information System (INIS)

    Leach, A.W.; Mumford, J.D.

    2008-01-01

    The Pesticide Environmental Accounting (PEA) tool provides a monetary estimate of environmental and health impacts per hectare-application for any pesticide. The model combines the Environmental Impact Quotient method and a methodology for absolute estimates of external pesticide costs in UK, USA and Germany. For many countries resources are not available for intensive assessments of external pesticide costs. The model converts external costs of a pesticide in the UK, USA and Germany to Mediterranean countries. Economic and policy applications include estimating impacts of pesticide reduction policies or benefits from technologies replacing pesticides, such as sterile insect technique. The system integrates disparate data and approaches into a single logical method. The assumptions in the system provide transparency and consistency but at the cost of some specificity and precision, a reasonable trade-off for a method that provides both comparative estimates of pesticide impacts and area-based assessments of absolute impacts. - A method to estimate the external costs of a pesticide application based on the ecotoxicology, environmental behaviour and application rate of an active ingredient

  19. High power accelerator for environmental application

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.

    2011-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  20. High power accelerator for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R.; Kim, S. M. [EB-TECH Co., Ltd., Yuseong-gu Daejeon (Korea, Republic of)

    2011-07-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  1. Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications.

    Science.gov (United States)

    Toyofuku, Masanori; Tashiro, Yosuke; Hasegawa, Yusuke; Kurosawa, Masaharu; Nomura, Nobuhiko

    2015-12-01

    Phospholipid vesicles play important roles in biological systems. Bacteria are one of the most abundant organisms on Earth, and bacterial membrane vesicles (MVs) were first observed 50 years ago. Many bacteria release MVs to the environment that mainly consist of the cell membrane and typically range from 20 to 400 nm in size. Bacterial MVs are involved in several biological functions, such as delivery of cargo, virulence and gene transfer. MVs can be isolated from laboratory culture and directly from the environment, indicating their high abundance in and impact on ecosystems. Many colloidal particles in the environment ranging in size from 1 nm to 1 μm have been reported but not characterized at the molecular level, and MVs remain to be explored. Hence, MVs can be considered terra incognita in environmental colloid research. Although MV biogenesis and biological roles are yet to be fully understood, the accumulation of knowledge has opened new avenues for their applications. Via genetic engineering, the MV yield can be greatly increased, and the components of MVs can be tailored. Recent studies have demonstrated that MVs have promising potential for applications such as drug delivery systems and nanobiocatalysts. For instance, MV vaccines have been extensively studied and have already been approved in Europe. Recent MV studies have evoked great interest in the fields of biology and biotechnology, but fundamental questions, such as their transport in the environment or physicochemical features of MVs, remain to be addressed. In this review, we present the current understanding of bacterial MVs and environmental perspectives and further introduce their applications. Copyright © 2015. Published by Elsevier B.V.

  2. Energetic ions and electrons and their acceleration processes in the magnetotail

    International Nuclear Information System (INIS)

    Scholer, M.

    1984-01-01

    Observations of energetic particle fluxes in the geomagnetic tail show that these particles exhibit a bursty appearance on all time scales. Often, however, the bursty appearance is merely due to multiple entries and exits of the spacecraft into and out of the plasma sheet which always contains varying fluxes of energetic particles. Observations of the suprathermal and high-energy component of the plasma sheet are discussed, and observations are presented of energetic particle bursts in the plasma sheet proper, which may be due to a locally ongoing acceleration process. Also discussed are energetic particle phenomena occurring near the edge of the plasma sheet, either during thinning or during recovery. Some recent results from the ISEE 3 deep tail mission bearing on energetic particle acceleration are presented, and the present status of the theory of particle acceleration within the magnetotail is briefly reviewed. 40 references

  3. Applications of SAR Interferometry in Earth and Environmental Science Research.

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  4. Recent progress of hybrid simulation for energetic particles and MHD

    International Nuclear Information System (INIS)

    Todo, Y.

    2013-01-01

    Several hybrid simulation models have been constructed to study the evolution of Alfven eigenmodes destabilized by energetic particles. Recent hybrid simulation results of energetic particle driven instabilities are presented in this paper. (J.P.N.)

  5. Rural energy for development: energetic investment evaluation using multi-sectorial models and the NTICs; Energie rurale pour le developpement

    Energy Technology Data Exchange (ETDEWEB)

    Bentaleb, N

    2002-12-15

    Based on field work carry out in Africa as well as on theoretical analyses from the perspective of sectoral representation of economies, this dissertation examines the impacts of energetic investments. It is divided in two main parts. The first part of the dissertation situates the role that rural energy plays for development from the standpoint of offer. In this part, the energetic situation of Southern countries is examined through rural needs and in the context of growing environmental awareness (Chapter 1). Then, the different actors in the energy sector are presented, taking into account the failure of governments to create the necessary infrastructure themselves (Chapter 2). Finally, the object of this study is investigated through what can be learned from informal economics (Chapter 3). In the second part of the dissertation, Chapter 4 examines the advantages and disadvantages of using multi-sectoral models for the subject of evaluating energetic investments. In Chapter 5, the sectoral representation is specified in a social accounting matrix. In addition, the IRIS software is presented, which has been developed in the framework of this thesis. Finally, in Chapter 6, the results of surveys realized in Burkina Faso and Morocco are presented and discussed. (author)

  6. Applications of scientific imaging in environmental toxicology

    Science.gov (United States)

    El-Demerdash, Aref M.

    The national goals of clean air, clean water, and healthy ecosystems are a few of the primary forces that drive the need for better environmental monitoring. As we approach the end of the 1990s, the environmental questions at regional to global scales are being redefined and refined in the light of developments in environmental understanding and technological capability. Research in the use of scientific imaging data for the study of the environment is urgently needed in order to explore the possibilities of utilizing emerging new technologies. The objective of this research proposal is to demonstrate the usability of a wealth of new technology made available in the last decade to providing a better understanding of environmental problems. Research is focused in two imaging techniques macro and micro imaging. Several examples of applications of scientific imaging in research in the field of environmental toxicology were presented. This was achieved on two scales, micro and macro imaging. On the micro level four specific examples were covered. First, the effect of utilizing scanning electron microscopy as an imaging tool in enhancing taxa identification when studying diatoms was presented. Second, scanning electron microscopy combined with energy dispersive x-ray analyzer were demonstrated as a valuable and effective tool for identifying and analyzing household dust samples. Third, electronic autoradiography combined with FT-IR microscopy were used to study the distribution pattern of [14C]-Malathion in rats as a result of dermal exposure. The results of the autoradiography made on skin sections of the application site revealed the presence of [ 14C]-activity in the first region of the skin. These results were evidenced by FT-IR microscopy. The obtained results suggest that the penetration of Malathion into the skin and other tissues is vehicle and dose dependent. The results also suggest the use of FT-IR microscopy imaging for monitoring the disposition of

  7. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review.

    Science.gov (United States)

    Xu, Xiaoyun; Zhao, Yinghao; Sima, Jingke; Zhao, Ling; Mašek, Ondřej; Cao, Xinde

    2017-10-01

    Biochar typically consists of both carbon and mineral fractions, and the carbon fraction has been generally considered to determine its properties and applications. Recently, an increasing body of research has demonstrated that mineral components inherent in biochar, such as alkali or alkaline earth metals in the form of carbonates, phosphates, or oxides, could also influence the properties and thus the applications. The review articles published thus far have mainly focused on multiple environmental and agronomic applications of biochar, including carbon sequestration, soil improvement, environmental remediation, etc. This review aims to highlight the indispensable role of the mineral fraction of biochar in these different applications, especially in environmental applications. Specifically, it provides a critical review of current research findings related to the mineral composition of biochar and the effect of the mineral fraction on the physicochemical properties, contaminant sorption, carbon retention and stability, and nutrient bioavailability of biochar. Furthermore, the role of minerals in the emerging applications of biochar, as a precursor for fuel cells, supercapacitors, and photoactive components, is also summarized. Overall, inherent minerals should be fully considered while determining the most appropriate application for any given biochar. A thorough understanding of the role of biochar-bound minerals in different applications will also allow the design or selection of the most suitable biochar for specific applications based on the consideration of feedstock composition, production parameters, and post-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Energetic Particles: From Sun to Heliosphere - and vice versa

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  9. Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems

    Science.gov (United States)

    Minotti, Luca; Savaré, Giuseppe

    2018-02-01

    We propose the new notion of Visco-Energetic solutions to rate-independent systems {(X, E,} d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction {δ} (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction.

  10. Applications of SAR Interferometry in Earth and Environmental Science Research

    Science.gov (United States)

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  11. Applications of SAR Interferometry in Earth and Environmental Science Research

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2009-03-01

    Full Text Available This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  12. Methodology to evaluate the energy associated to the industrial solid wastes: application in a metropolitan region of Campinas, Sao Paulo state, Brazil; Metodologia para avaliacao da energia associada ao residuo solido industrial: aplicacao a regiao metropolitada de Campinas

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Tereza Rosana Orrico [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Curso de Pos-graduacao em Planejamento de Sistemas Energeticos; Teixeira, Egle Novaes [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Civil, Arquitetura e Urbanismo; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Lab. de Hidrogenio

    2004-07-01

    The aim of this work is to the application of a methodology to evaluate the energy associated to the industrial solid wastes in the metropolitan region of Campinas. The methodological route proposed is: the characterization of the research area and the production/management of the industrial solid wastes; the energetic classification and the qualitative/quantitative research of the energy associated to the industrial solid wastes; and, the valuation of the applicability of the energetic utilization mechanisms proposed to the region. This methodology when applied at the Campinas metropolitan region proved to be valid and it resulted in a synthetically presentation of the social and environmental reality of the industrial sector and the destination of the wastes, as well as it indicated the potentialities related to the energetic utilization of the industrial solid waste in the region. With the obtained results it was shown the importance of the the production and the destination of the industrial solid wastes in the Campinas metropolitan region , and the meaning, in terms of electric potency, of the values of the energy associated to the wastes with a known factor of energetic conversion shown in the researched sample. (author)

  13. Running Economy from a Muscle Energetics Perspective

    Directory of Open Access Journals (Sweden)

    Jared R. Fletcher

    2017-06-01

    Full Text Available The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  14. Energetics of dislocation transformations in hcp metals

    International Nuclear Information System (INIS)

    Wu, Zhaoxuan; Yin, Binglun; Curtin, W.A.

    2016-01-01

    Dislocation core structures of hcp metals are highly complex and differ significantly among the hcp family. Some dislocations undergo unconventional transformations that have significant effects on the material plastic flow. Here, the energetics of dislocation dissociations are analyzed in a general anisotropic linear elastic theory framework for transformations in which changes in the partial Burgers vectors are small. Quantitative analyses on various transformations are made using DFT-computed stacking fault energies and partial Burgers vectors. Specifically, possible transformations of the mixed, edge, and screw 〈c+a〉 and screw 〈a〉 dislocations in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd) are studied. Climb dissociation of mixed or edge 〈c+a〉 dislocations to the Basal plane is energetically favorable in all 6 metals and thus only limited by thermal activation. The 〈c+a〉 screw dislocation is energetically preferable on Pyramidal I for Ti, Zr, and Re, and on Pyramidal II for Zn and Cd. In Mg, the energy difference between screw 〈c+a〉 on Pyramidal I and II planes is small, suggesting relatively easy cross-slip. For the screw 〈a〉, Basal dissociation is energetically favorable in Mg, Re, Zn and Cd, while Prism dissociation is strongly favorable in Ti and Zr. Only Ti, Zr and Re show a metastable state for dissociation on the Prism plane, and the energy difference between screw 〈a〉 on the Prism and Pyramidal I planes is relatively small in all systems, suggesting relatively easy cross-slip of 〈a〉 in Ti and Zr. The elastic analysis thus provides a single framework able to capture the controlling energetics for different dissociations and slip systems in hcp metals. When the calculated energy differences are very small, the results point to the need for detailed modeling of the atomistic core structure. Moreover, the analyses rationalize broad experimental observations on dominant slip systems and dislocation behaviours, and provide

  15. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  16. Experimental and computational study of dielectric barrier discharges for environmental applications

    Science.gov (United States)

    Aerts, Robby

    Air pollution has become a major global concern which affects all inhabitants of our precious earth. Nowadays it is fact that our climate is changing and the sea level is rising. Moreover, we are facing an energy crisis because all our fossil fuel resources will sooner or later be running empty. It is clear that drastic measures are needed to keep our planet as it is today for generations to come. One of these measures is the 20-20-20 targets imposed by the European Commission, which stimulates the research for environmental energy applications. In this PhD dissertation two environmental applications of plasma technology are investigated. The first one is the abatement of flue gases, and more specifically the destruction of volatile organic compounds (VOCs). The second one is the conversion of CO2 into valuable chemicals. Both of these applications suffer from a large energy cost under classical (thermodynamic) conditions, due to the chemical stability of these molecules. Plasma technology is quite promising to overcome these thermodynamic barriers. Plasmas allow reactions at different time-scales with different species, such as electrons, ions, radicals, molecules and excited species, creating new chemical pathways. Indeed, in a plasma the applied electrical energy is directly transferred to the electrons, which activate the gas by ionization, excitation and dissociation, hence creating reactive species (ions, excited species, radicals), that can further easily undergo other chemical reactions. Especially gas discharges, which are low temperature plasmas, show promising results in the destruction of pollutants at mild conditions. A common type of gas discharge is the dielectric barrier discharge (DBD) which has been successfully scaled up for industrial ozone generation and is widely investigated in the field of environmental applications. The complexity of DBDs creates difficulties for experimental diagnostics and therefore numerical studies can help to improve

  17. Accelerator mass spectrometry and its applications in environmental science

    International Nuclear Information System (INIS)

    Liu Kexin; Li Kun; Ma Hongji; Guo Zhiyu

    2001-01-01

    Some important work worldwide in environmental science, like urban air pollution, discharges of radioactive wastes from nuclear plants, and global climate change were introduced. Based on the improvements of facility and studies on 14 C dating method, a precision better than 0.5% has been reached for the PKUAMS. A large number of samples have been measured for the Xia-Shang-Zhou Chronology project. 14 C data of PKUAMS have made important contributions to creation of more reliable chronological table of Xia, Shang and Zhou dynasties. The improvements of PKUAMS are of benefit to the applications in environmental science in the future

  18. Analysis and verification of a prediction model of solar energetic proton events

    Science.gov (United States)

    Wang, J.; Zhong, Q.

    2017-12-01

    The solar energetic particle event can cause severe radiation damages near Earth. The alerts and summary products of the solar energetic proton events were provided by the Space Environment Prediction Center (SEPC) according to the flux of the greater than 10 MeV protons taken by GOES satellite in geosynchronous orbit. The start of a solar energetic proton event is defined as the time when the flux of the greater than 10 MeV protons equals or exceeds 10 proton flux units (pfu). In this study, a model was developed to predict the solar energetic proton events, provide the warning for the solar energetic proton events at least minutes in advance, based on both the soft X-ray flux and integral proton flux taken by GOES. The quality of the forecast model was measured against verifications of accuracy, reliability, discrimination capability, and forecast skills. The peak flux and rise time of the solar energetic proton events in the six channels, >1MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >100 MeV, were also simulated and analyzed.

  19. Environmental assessment of wood domestic heating. Synthetic report

    International Nuclear Information System (INIS)

    2005-12-01

    This report proposes a synthesis of the results of an environmental assessment of wood domestic heating. This study is based on a life cycle analysis which quantifies the impacts on the environment of all the related activities: fuel extraction, retailing, final use, and so on. Environmental impacts are assessed by means of different indicators: energetic assessment, greenhouse effect assessment, air pollution (acidification), water pollution (eutrophication), toxic material emissions in air and into the soils. Wood is compared to other heating sources (gas, fuel, electricity). Ways to improve this environmental assessment are discussed for the different types of wood (logs, pellets)

  20. Inferring repeat-protein energetics from evolutionary information.

    Directory of Open Access Journals (Sweden)

    Rocío Espada

    2017-06-01

    Full Text Available Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.

  1. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  2. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT)

    International Nuclear Information System (INIS)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun

    2016-01-01

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe 2 O 3 /MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe 2 O 3 (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe 2 O 3 /MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe 2 O 3 nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This strategy can be applied into other nanostructured

  3. Lasers: principles, applications and energetic measures

    International Nuclear Information System (INIS)

    Subran, C.; Sagaut, J.; Lapointe, S.

    2009-01-01

    After having recalled the principles of a laser and the properties of the laser beam, the authors describe the following different types of lasers: solid state lasers, fiber lasers, semiconductor lasers, dye lasers and gas lasers. Then, their applications are given. Very high energy lasers can reproduce the phenomenon of nuclear fusion of hydrogen atoms. (O.M.)

  4. Application of electron beams to environmental conservation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1992-01-01

    The paper is a review of current status of the application of electron beams to environmental conservation technology. Different aspects of radiation treatment of natural and polluted drinking water, radiation purification of industrial and municipal wastes, radiation treatment of sewage sludge and radiation purification of exhaust gases are considered. The special attention is paid to the respective pilot and industrial facilities. (author) 70 refs

  5. Modeling Thermal Ignition of Energetic Materials

    National Research Council Canada - National Science Library

    Gerri, Norman J; Berning, Ellen

    2004-01-01

    This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...

  6. Energetic adaptations persist after bariatric surgery in severely obese adolescents

    Science.gov (United States)

    Energetic adaptations induced by bariatric surgery have not been studied in adolescents or for extended periods postsurgery. Energetic, metabolic, and neuroendocrine responses to Roux-en-Y gastric bypass (RYGB) surgery were investigated in extremely obese adolescents. At baseline and at 1.5, 6, and...

  7. Catalyst-Free Biodiesel Production Methods: A Comparative Technical and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Oseweuba Valentine Okoro

    2018-01-01

    Full Text Available In response to existing global focus on improved biodiesel production methods via highly efficient catalyst-free high temperature and high pressure technologies, this study considered the comparative study of catalyst-free technologies for biodiesel production as an important research area. In this study, therefore, catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification and catalyst-free one step supercritical transesterification processes for biodiesel production have been evaluated via undertaking straight forward comparative energetic and environmental assessments. Energetic comparisons were undertaken after heat integration was performed since energy reduction has favourable effects on the environmental performance of chemical processes. The study confirmed that both processes are capable of producing biodiesel of high purity with catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification characterised by a greater energy cost than catalyst-free one step supercritical transesterification processes for an equivalent biodiesel productivity potential. It was demonstrated that a one-step supercritical transesterification for biodiesel production presents an energetically more favourable catalyst-free biodiesel production pathway compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. The one-step supercritical transesterification for biodiesel production was also shown to present an improved environmental performance compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. This is because of the higher potential environment impact calculated for the integrated subcritical lipid hydrolysis and supercritical esterification compared to the potential environment impact calculated for the supercritical transesterification process, when all material and energy flows are

  8. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    International Nuclear Information System (INIS)

    White, R.B.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked

  9. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  10. Some applications of fractal mathematics in the evaluation of environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    Thimm, H. F.; Poon, D. C.; McCormack, M.

    1997-11-01

    Application of fractal mathematics to commonly occurring environmental problems in the petroleum industry is discussed. Examples are provided to illustrate application of the technique. The specific examples cited involve the interpretation of mercury contamination data at a gas plant and the determination of the optimal volume of soil excavation at a contaminated site. 10 refs., 4 figs.

  11. Interaction in the large energetics companies in the Republic of Macedonia (Part 3)

    International Nuclear Information System (INIS)

    Janevski, Risto

    2000-01-01

    After the disintegration of former power energetic system of Yugoslavia 1991, the Republic of Macedonia has faced enormous problems in the energetic field. It was necessary to realize all options in order to secure enough electric power for normal economic capacities function. In that course a direct involvement of five large companies, which represent very significant energetic subjects, will largely determine the future energetic conditions and circumstances in our country. These are the following companies: P.E. Electric Power Co. of Macedonia; Heat Power Co.; HEK Jugohrom; Fenimak. In this paper the energetic system of the OKTA Crude Oil Refinery from 1991-1998 is analyzed, as well as its characteristics and plans for the future development

  12. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  13. The application of nuclear science technology to understanding and solving environmental problems

    International Nuclear Information System (INIS)

    Zuk, W.M.

    1997-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has for many years been involved in applying nuclear science-based and related technologies to the understanding of environmental processes and to the development and implementation of practical and effective solutions to site specific problems, for a broad spectrum of industry, government regulatory agencies, and other organisations in Australia, Europe, North and South America and South East Asia. ANSTO's environmental science program arose out of the need for research to predict, measure, evaluate and monitor the environmental impacts associated with : uranium mining and processing in Australia; the operation of the research reactor at Lucas Heights; and the safe treatment and disposal of radioactive and conventional wastes associated with these activities. The expertise developed in these activities, has found application to a much broader range of environmental concerns. This paper will present an overview of ANSTO's application of nuclear science-based techniques to, inter alia: coastal and marine studies; minesite rehabilitation; transport and geochemical modelling of radionuclides, heavy metals and organic chemicals in the geosphere; the application of naturally-occurring radionuclides and radioactive tracers to corrosion and sedimentation studies in the coastal environment; dating sediments, fish corals and archaeological samples; the understanding of the kinetics and the physiological responses of aquatic organisms to radionuclides and metals in the environment: and the use of aquatic organism as archival and 'realtime' monitors of pollutants

  14. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    Science.gov (United States)

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  15. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  16. Development and environmental applications of activated carbon cloths

    OpenAIRE

    Cukierman, Ana Lea

    2017-01-01

    Activated carbon cloths have received growing attention because they offer comparative advantages over the traditional powdered or granular forms of this well-known adsorbent, providing further potential uses for technological innovations in several fields. The present article provides an overview of research studies and advances concerned with the development of activated carbon cloths and their use as adsorbent in environmental applications, mostly reported in the last years. The influence ...

  17. Calcium polysulphide, its applications and emerging risk of environmental pollution-a review article.

    Science.gov (United States)

    Dahlawi, Saad Mohammed; Siddiqui, Samreen

    2017-01-01

    Easy availability, preparation technique, and economic value make calcium polysulphide (CaS x ) a very useful inorganic chemical for various field and industrial applications. In this article, disparate applications of CaS x solution have been reviewed to suggest potential and future consolidation. This article also encompasses the physiochemical properties and production of CaS x solution, with critical appraisal on research focusing on CaS x application in agriculture industries and removal of potentially toxic elements (PTEs) from the environment. The kinetics of CaS x , technical issues associated with optimization of its dosage and environmental fate is also discussed in detail. This study covers almost all of the peer-reviewed research that has been performed since 1914. Some of the critiques in this article include the lack of integration between the exposure effect and the efficiency of treatment method, effects of oxidizing environments on the long-term performance of CaS x solution, and kinetics of CaS x solution with the PTEs. The working model of CaS x with PTEs is still system dependent, and therefore cannot be used with other applications. The kinetics of CaS x is described in detail with various phase stoichiometric reactions. Environmental fate is discussed based on applications, government reports, peer-reviewed articles and kinetics of CaS x , which provides a clear picture of emerging contaminants in the environment in relation to the insect resistance and ecotoxicology. Real time, lab based research articles are needed to identify toxicity limits of CaS x in environment in order to describe its effective permissible limit in environmental system. This review article provides a risk assessment of environmental pollution by CaS x based on its physicochemical characteristic, stoichiometry, kinetics, field, and industrial applications.

  18. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Teresa R. Meachum

    2004-02-01

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  19. Discussion of environmental impact assessment for the nuclear technology application in hospital

    International Nuclear Information System (INIS)

    Li Shaoting; Xu Zhongyang

    2010-01-01

    Medical use of ionizing radiation has become the greatest artificial radiation in the world. Based on the characteristics of the nuclear technology application in hospital the content of the environmental impact assessment has been stated, including identification of the environmental impact factor, the standard, the environmental impact, control of the pollution as well. The dose of the medical staff which engaged in interventional operation and the accompanies of the patients which received nuclear medicine treatment should be focused on. (authors)

  20. Prompt Burst Energetics (PBE) experiment analyses using the SIMMER-II computer code

    International Nuclear Information System (INIS)

    Tomkins, J.L.; Hitchcock, J.T.; Young, M.F.

    1979-01-01

    Two of the Prompt Burst Energetics (PBE) in-pile experiments conducted at Sandia Laboratories PBE-5S and PBE-SG2, have been investigated with SIMMER-II. These two tests utilize fresh uranium oxide and fresh uranium carbide pins, respectively, in stagnant sodium. The purpose of the analysis is to investigate the applicability of SIMMER-II to this type of experiment. Qualitative agreement with measured data is seen for PBE-5S. PBE-SG2 results agree somewhat less well but demonstrate SIMMER-II's potential for describing fuel-coolant-interactions with further model development

  1. Radiational and energetic characteristics of diatomic molecules (data base)

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Pazyuk, E.A.; Stolyarov, A.V.

    1993-01-01

    Data base on radiational and energetic characteristics of diatomic molecules was created. The base consists of two parts: reference system and recommended data system. The reference system contains the information about studies of radiational and energetic parameters of more than 1500 electronic states and 1700 electron transfers for ∼ 350 diatomic molecules and their ions. The base bibliography includes ∼ 3000 publications. 11 refs., 1 figs

  2. Environmental and industrial applications of pulsed power systems

    International Nuclear Information System (INIS)

    Neau, E.L.

    1993-01-01

    The technology base formed by the development of high peak power simulators, laser drivers, free electron lasers (FEL's), and Inertial Confinement Fusion (ICF) drivers from the early 60's through the late 80's is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup applications and in supporting new types of industrial manufacturing processes. Some of these processes will require very high average beam power levels of hundreds of kilowatts to perhaps megawatts. In this paper we briefly discuss new technology capabilities and then concentrate on specific application areas that may benefit from the high specific energies and high average powers attainable with short-pulse machines

  3. POTENTIAL APPLICATION OF NANOMETALS IN ENVIRONMENTAL PROTECTION

    Directory of Open Access Journals (Sweden)

    Dagmara Malina

    2017-02-01

    Full Text Available In recent years, great interest in metallic nanoparticles has been observed, both because of their unlimited application possibilities, and also because of the unusual biological, chemical and physical features. It is expected that developments in nanotechnology will become the main promoter of scientific and technological innovations in the coming decades. Searching for a new and safe alternative to chemical pesticides, high hopes are associated with nanotechnology development. Particularly useful may be preparations containing nanoscale metal particles with strong antimicrobial properties. Importantly, safe and non-toxic for the plant components of biological origin may be used in nanoparticles synthesis. This article is a description of the potential applications of nanomaterials in environmental protection, which may become the basis for developing of new protection plant products with antimicrobial properties relative to plant pathogens and non-toxic to higher organisms.

  4. Energetic cost of communication.

    Science.gov (United States)

    Stoddard, Philip K; Salazar, Vielka L

    2011-01-15

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs.

  5. Using a Hydrological Model to Determine Environmentally Safer Windows for Herbicide Application

    Science.gov (United States)

    J.L. Michael; M.C. Smith; W.G. Knisel; D.G. Neary; W.P. Fowler; D.J. Turton

    1996-01-01

    A modification of the GLEAMS model was used to determine application windows which would optimise efficacy and environmental safety for herbicide application to a forest site. Herbicide/soil partition coefficients were determined using soil samples collected from the study site for two herbicides (imazapyr, Koc=46, triclopyr ester, K

  6. Energetic electron precipitation characteristics observed from Antarctica during a flux dropout event

    Science.gov (United States)

    Clilverd, Mark A.; Cobbett, Neil; Rodger, Craig J.; Brundell, James B.; Denton, Michael H.; Hartley, David P.; Rodriguez, Juan V.; Danskin, Donald; Raita, Tero; Spanswick, Emma L.

    2013-11-01

    from two autonomous VLF radio receiver systems installed in a remote region of the Antarctic in 2012 is used to take advantage of the juxtaposition of the L = 4.6 contour, and the Hawaii-Halley, Antarctica, great circle path as it passes over thick Antarctic ice shelf. The ice sheet conductivity leads to high sensitivity to changing D region conditions, and the quasi constant L shell highlights outer radiation belt processes. The ground-based instruments observed several energetic electron precipitation events over a moderately active 24 h period, during which the outer radiation belt electron flux declined at most energies and subsequently recovered. Combining the ground-based data with low and geosynchronous orbiting satellite observations on 27 February 2012, different driving mechanisms were observed for three precipitation events with clear signatures in phase space density and electron anisotropy. Comparison between flux measurements made by Polar-orbiting Operational Environmental Satellites (POES) in low Earth orbit and by the Antarctic instrumentation provides evidence of different cases of weak and strong diffusion into the bounce loss cone, helping to understand the physical mechanisms controlling the precipitation of energetic electrons into the atmosphere. Strong diffusion events occurred as the bounce loss cone. Two events had a factor of about 3 to 10 times more >30 keV flux than was reported by POES, more consistent with strong diffusion conditions.

  7. 75 FR 38800 - Jordan Hydroelectric Limited Partnership; Notice of Application Ready for Environmental Analysis...

    Science.gov (United States)

    2010-07-06

    ... Hydroelectric Limited Partnership; Notice of Application Ready for Environmental Analysis and Soliciting... following hydroelectric application has been filed with the Commission and is available for public... 13, 2009. d. Applicant: Jordan Hydroelectric Limited Partnership. e. Name of Project: Flannagan...

  8. Calculation of the energetics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Harding, L.B.; Shepard, R.L.; Harrison, R.J.

    1988-01-01

    To calculate the energetics of chemical reactions we must solve the electronic Schroedinger equation for the molecular conformations of importance for the reactive encounter. Substantial changes occur in the electronic structure of a molecular system as the reaction progresses from reactants through the transition state to products. To describe these changes, our approach includes the following three elements: the use of multiconfiguration self-consistent field wave functions to provide a consistent zero-order description of the electronic structure of the reactants, transition state, and products; the use of configuration interaction techniques to describe electron correlation effects needed to provide quantitative predictions of the reaction energetics; and the use of large, optimized basis sets to provide the flexibility needed to describe the variations in the electronic distributions. With this approach we are able to study reactions involving as many as 5--6 atoms with errors of just a few kcal/mol in the predicted reaction energetics. Predictions to chemical accuracy, i.e., to 1 kcal/mol or less, are not yet feasible, although continuing improvements in both the theoretical methodology and computer technology suggest that this will soon be possible, at least for reactions involving small polyatomic species. 4 figs.

  9. Defining criteria for good environmental journalism and testing their applicability: An environmental news review as a first step to more evidence based environmental science reporting.

    Science.gov (United States)

    Rögener, Wiebke; Wormer, Holger

    2017-05-01

    While the quality of environmental science journalism has been the subject of much debate, a widely accepted benchmark to assess the quality of coverage of environmental topics is missing so far. Therefore, we have developed a set of defined criteria of environmental reporting. This instrument and its applicability are tested in a newly established monitoring project for the assessment of pieces on environmental issues, which refer to scientific sources and therefore can be regarded as a special field of science journalism. The quality is assessed in a kind of journalistic peer review. We describe the systematic development of criteria, which might also be a model procedure for other fields of science reporting. Furthermore, we present results from the monitoring of 50 environmental reports in German media. According to these preliminary data, the lack of context and the deficient elucidation of the evidence pose major problems in environmental reporting.

  10. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    Science.gov (United States)

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  11. Environmental concepts in rural Honduras: A case study of their range and application within environmental education design

    Science.gov (United States)

    Bradford, Robert Sanders

    1998-12-01

    The rate of environmental degradation in the Third World continues to present residents of countries like Honduras with conditions that threaten the quality of life and ecological systems. How people conceptualize their environment could be a point of entry into a greater understanding of environmental problems. Through individual interviews and focus group discussions, this study comprises a qualitative examination of the environmental concepts of a sample of 75 rural Hondurans. Analysis of their concepts was used to construct a tentative interpretation of the rural Honduran worldview characteristics of Self, Other, Relationship, Classification, Causality, Time, and Space. The findings of this investigation indicated that rural Hondurans conceptualize their environment through the worldview lenses of survival and poverty, leading to a sense of fatalism when confronting the complex and multifaceted problems associated with quality of life and environmental quality. Analysis of concepts and worldview also indicated that rural Hondurans generally do not believe their environmental problems are solvable, nor do they appear to understand that these problems are also cultural problems whose solutions will most likely require some revision of their current worldview. An educational approach that fosters the integration of compatible environmental concepts into the rural Honduran worldview is recommended through the application of design strategies for a prospective environmental education process.

  12. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... Environmental Reports for Nuclear Power Plant License Renewal Applications AGENCY: Nuclear Regulatory Commission... for Nuclear Power Plant License Renewal Applications.'' This regulatory guide provides guidance to... renewal of a nuclear power plant operating license. Applicants should use this regulatory guide when...

  13. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    OpenAIRE

    Helena Prosen

    2014-01-01

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several...

  14. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-Situ Preparation of Poly(THF-co-GAP-Based Polyurethane Energetic Binders

    Directory of Open Access Journals (Sweden)

    Mingyang Ma

    2018-05-01

    Full Text Available Reactive energetic plasticizers (REPs coupled with hydroxy-telechelic poly(glycidyl azide-co-tetrahydrofuran (PGT-based energetic polyurethane (PU binders for use in solid propellants and plastic-bonded explosives (PBXs were investigated. The generation of gem-dinitro REPs along with a terminal alkyne stemmed from a series of finely designed approaches to not only satisfy common demands as conventional energetic plasticizers, but also to prevent the migration of plasticizers. The miscibility and rheological behavior of a binary mixture of PGT/REP with various REP fractions were quantitatively determined by differential scanning calorimetry (DSC and rheometer, respectively, highlighting the promising performance of REPs in the formulation process. The kinetics on the distinct reactivity of propargyl vs. 3-butynyl species of REPs towards the azide group of the PGT prepolymer in terms of Cu-free azide-alkyne 1,3-dipolar cycloaddition (1,3-DPCA was studied by monitoring 1H nuclear magnetic resonance spectroscopy and analyzing the activation energies (Ea obtained using DSC. The thermal stability of the finally cured energetic binders with the incorporation of REPs indicated that the thermal stability of the REP/PGT-based PUs was maintained independently of the REP content. The tensile strength and modulus of the PUs increased with an increase in the REP content. In addition, the energetic performance and sensitivity of REP and REP triazole species was predicted.

  15. Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program.

    Science.gov (United States)

    Savage, Nora; Thomas, Treye A; Duncan, Jeremiah S

    2007-10-01

    Since 2002, the US Environmental Protection Agency (EPA) has been funding research on the environmental aspects of nanotechnology through its Science to Achieve Results (STAR) grants program. In total, more than $25 million has been awarded for 86 research projects on the environmental applications and implications of nanotechnology. In the applications area, grantees have produced promising results in green manufacturing, remediation, sensors, and treatment using nanotechnology and nanomaterials. Although there are many potential benefits of nanotechnology, there has also been increasing concern about the environmental and health effects of nanomaterials, and there are significant gaps in the data needed to address these concerns. Research performed by STAR grantees is beginning to address these needs.

  16. Environmentally applications of invasive bivalves for water and wastewater decontamination.

    Science.gov (United States)

    Gomes, João; Matos, Ana; Quinta-Ferreira, Rosa M; Martins, Rui C

    2018-07-15

    The environmental and economic impact of invasive bivalve species implies the development of suitable pest management strategies. Chemical control is the most usual approach. However, the production of toxic intermediates as well as the unavoidable impact over non target biota is of special concern. Another approach consists on the physical removal of the animals from the invaded sites. The high biofiltration and bioaccumulation capacity of such animals make them interesting for the removal of contaminants from water and wastewater. In this context, environmental applications can be given for these pests encompassing nutrients removal for the recovery of eutrophic sites, water disinfection, organic and metal contaminants abatement. These approaches may be integrated with pest management where the physical removed animals from the invaded spots could be used for assembling biofilter for water and wastewater decontamination. However, some drawbacks must be addressed before proposing such alternative. In fact, the further spreading of the bivalves into non-invaded sites must be avoided. Moreover, some operational questions must be addressed such as the fate of contaminated animals after biofiltration. Bearing in mind the interesting results already available in this subject, this paper aims to critically overview literature regarding the environmental applications of invasive bivalves. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Environmental auditing: Theory and applications

    Science.gov (United States)

    Thompson, Dixon; Wilson, Melvin J.

    1994-07-01

    The environmental audit has become a regular part of corporate environmental management in Canada and is also gaining recognition in the public sector. A 1991 survey of 75 private sector companies across Canada revealed that 76% (57/75) had established environmental auditing programs. A similar survey of 19 federal, provincial, and municipal government departments revealed that 11% (2/19) had established such programs. The information gained from environmental audits can be used to facilitate and enhance environmental management from the single facility level to the national and international levels. This paper is divided into two sections: section one examines environmental audits at the facility/company level and discusses environmental audit characteristics, trends, and driving forces not commonly found in the available literature. Important conclusions are: that wherever possible, an action plan to correct the identified problems should be an integral part of an audit, and therefore there should be a close working relationship between auditors, managers, and employees, and that the first audits will generally be more difficult, time consuming, and expensive than subsequent audits. Section two looks at environmental audits in the broader context and discusses the relationship between environmental audits and three other environmental information gathering/analysis tools: environmental impact assessments, state of the environment reports, and new systems of national accounts. The argument is made that the information collected by environmental audits and environmental impact assessments at the facility/company level can be used as the bases for regional and national state of the environment reports and new systems of national accounts.

  18. 75 FR 63450 - Wilkesboro Hydroelectric Company; Notice of Application Ready for Environmental Analysis and...

    Science.gov (United States)

    2010-10-15

    ... Hydroelectric Company; Notice of Application Ready for Environmental Analysis and Soliciting Comments... hydroelectric application has been filed with the Commission and is available for public inspection. a. Type of.... Applicant: Wilkesboro Hydroelectric Company. e. Name of Project: W. Kerr Scott Hydropower Project. f...

  19. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Directory of Open Access Journals (Sweden)

    Helena Prosen

    2014-05-01

    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  20. Applications of liquid-phase microextraction in the sample preparation of environmental solid samples.

    Science.gov (United States)

    Prosen, Helena

    2014-05-23

    Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several innovative liquid-phase microextraction (LPME) techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME). Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  1. Feasibility study on application of new concept of environmental assessment to nuclear energy

    International Nuclear Information System (INIS)

    Lee, Young Eal; Lee, Kun Jai

    2000-01-01

    The existing environmental assessments of nuclear energy are focused on the two kinds of issues such as prevention of green house gas emission and radiological impact assessment. So, the comparative assessment of the other resources such as fossil fuels has been the main part and this result has been the side of nuclear power as the clean energy resource. However, now is when to develop the methodology that approaches to environmental assessment of energy in terms of the various environmental categories. Life Cycle Assessment (LCA) would be the effective environmental assessment tool, which is able to meet the necessity mentioned above. Also classification of the radiological impact and calculation of the environmental impact from the radioactive substances are indispensable as long as the nuclear energy is considered in the application of LCA for the utilization of energy in the industry. However, direct introduction of LCA to the nuclear energy is difficult more or less due to the absence of the methodology for the radiological impact assessment within the LCA framework. Therefore, this study suggests the new concept of environmental assessment. Also current status of development for the classification factor of radiological impact is introduced and investigates the feasibility of application of it to nuclear power generation system

  2. Organization of the national energetic institutions

    International Nuclear Information System (INIS)

    Waltenberg, D.A.M.

    1983-01-01

    This text broaches, in a critical pourt of view, the organization of national energetic institutions, the need of a law revision, the problem of the rising of tariff and shows the decisions of GC01 [pt

  3. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  4. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  5. Photovoltaic system criteria documents. Volume 3: Environmental issues and evaluation criteria for photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    The environmental issues and evaluation criteria relating to the suitability of sites proposed for photovoltaic (PV) system deployment are identified. The important issues are defined, briefly discussed and then developed into evaluation criteria. System designers are provided with information on the environmental sensitivity of PV systems in realistic applications, background material which indicates the applicability of the siting issues identified, and evaluation criteria are defined to facilitate the selection of sites that maximize PV system operation.

  6. Deflection type energy analyser for energetic electron beams in a beam-plasma system

    International Nuclear Information System (INIS)

    Michel, J.A.; Hogge, J.P.

    1988-11-01

    An energy analyser for the study of electron beam distribution functions in unmagnetized plasmas is described. This analyser is designed to avoid large electric fields which are created in multi-grid analysers and to measure directly the beam distribution function without differentiation. As an example of an application we present results on the propagation of an energetic beam (E b : 2.0 keV) in a plasma (n o : 1.10 10 cm -3 , T e : 1.4 eV) (author) 7 figs., 10 refs

  7. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  8. Nuclear analytical techniques and their application to environmental samples

    International Nuclear Information System (INIS)

    Lieser, K.H.

    1986-01-01

    A survey is given on nuclear analytical techniques and their application to environmental samples. Measurement of the inherent radioactivity of elements or radionuclides allows determination of natural radioelements (e.g. Ra), man-made radioelements (e.g. Pu) and radionuclides in the environment. Activation analysis, in particular instrumental neutron activation analysis, is a very reliable and sensitive method for determination of a great number of trace elements in environmental samples, because the most abundant main constituents are not activated. Tracer techniques are very useful for studies of the behaviour and of chemical reactions of trace elements and compounds in the environment. Radioactive sources are mainly applied for excitation of characteristic X-rays (X-ray fluorescence analysis). (author)

  9. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.

    Science.gov (United States)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-25

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

  10. Studies on time series applications in environmental sciences

    CERN Document Server

    Bărbulescu, Alina

    2016-01-01

    Time series analysis and modelling represent a large study field, implying the approach from the perspective of the time and frequency, with applications in different domains. Modelling hydro-meteorological time series is difficult due to the characteristics of these series, as long range dependence, spatial dependence, the correlation with other series. Continuous spatial data plays an important role in planning, risk assessment and decision making in environmental management. In this context, in this book we present various statistical tests and modelling techniques used for time series analysis, as well as applications to hydro-meteorological series from Dobrogea, a region situated in the south-eastern part of Romania, less studied till now. Part of the results are accompanied by their R code. .

  11. Plasma cleaning techniques and future applications in environmentally conscious manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1995-07-01

    Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

  12. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  13. Energetic ion diagnostics using neutron flux measurements during pellet injection

    International Nuclear Information System (INIS)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs

  14. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  15. EABOT - Energetic analysis as a basis for robust optimization of trigeneration systems by linear programming

    International Nuclear Information System (INIS)

    Piacentino, A.; Cardona, F.

    2008-01-01

    The optimization of synthesis, design and operation in trigeneration systems for building applications is a quite complex task, due to the high number of decision variables, the presence of irregular heat, cooling and electric load profiles and the variable electricity price. Consequently, computer-aided techniques are usually adopted to achieve the optimal solution, based either on iterative techniques, linear or non-linear programming or evolutionary search. Large efforts have been made in improving algorithm efficiency, which have resulted in an increasingly rapid convergence to the optimal solution and in reduced calculation time; robust algorithm have also been formulated, assuming stochastic behaviour for energy loads and prices. This paper is based on the assumption that margins for improvements in the optimization of trigeneration systems still exist, which require an in-depth understanding of plant's energetic behaviour. Robustness in the optimization of trigeneration systems has more to do with a 'correct and comprehensive' than with an 'efficient' modelling, being larger efforts required to energy specialists rather than to experts in efficient algorithms. With reference to a mixed integer linear programming model implemented in MatLab for a trigeneration system including a pressurized (medium temperature) heat storage, the relevant contribute of thermoeconomics and energo-environmental analysis in the phase of mathematical modelling and code testing are shown

  16. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  17. Synergetic Use of Crowdsourcing for Environmental Science Research, Applications and Education

    Science.gov (United States)

    Nair, U. S.; Thau, D.

    2015-12-01

    Environmental science research and applications often utilize information that is not readily available or routinely collected by government agencies. Whereas, the quality and quantity of environmental monitoring data is continually improving (e. g., spectral and spatial resolution of satellite imagery) contextual information needed to effectively utilize the data is sparse. Examples of such contextual information include ground truth data for land cover classification, presence/absence of species, prevalence of mosquito breeding sites and characteristics of urban land cover. Often, there are no agencies tasked with routine collection of such contextual information, which could be effectively collected through crowdsourcing. Crowdsourcing of such information, that is useful for environmental science research and applications, also provide opportunities for experiential learning at all levels of education. Appropriately designed crowdsourcing activity can be transform students from passive recipients of information to generators of knowledge. Multiple examples of synergistic use of crowdsourcing, developed by the Public Environmental Education and Research Apps (PEERA) group, at the University of Alabama in Huntsville will be presented. One example is crowdsourcing of land use and land cover (LULC) data using Open Data Kit (ODK) and associated analysis of satellite imagery using Google Earth Engine (GEE). Implementation of this activity as inquiry based learning exercise, for both middle school and for pre-service teachers will be discussed. Another example will detail the synergy between crowdsourcing for biodiversity mapping in southern India and environmental education. Other crowdsourcing activities that offer potential for synergy between research and public education will also be discussed.

  18. [Regional difference of NPK fertilizers application and environmental risk assessment in Jiangsu Province, China].

    Science.gov (United States)

    Liu, Qin-pu

    2015-05-01

    It is of great importance to have a deep understanding of the spatial distribution of NPK fertilizers application and the potential threat to the ecological environment in Jiangsu Province, which is helpful for regulating the rational fertilization, strengthening the fertilizer use risk management and guidance, and preventing agricultural non-point pollution. Based on the environmental risk assessment model with consideration of different impacts of N, P, K fertilizers on environment, this paper researched the regional differentiation characteristic and environmental risk of intensity of NPK fertilizer usages in Jiangsu. Analystic hierarchy process ( AHP) was used to determine the weithts of N, P, K. The environmental safety thresholds of N, P, K were made according to the standard of 250 kg · hm(-2) for the construction of ecological counties sponsered by Chinese government and the proportion of 1:0.5:0.5 for N:P:K surposed by some developed countries. The results showed that the intensity of NPK fertilizer application currently presented a gradually increasing trend from south to north of Jiangsu, with the extremum ratio of 3.3, and the extremum ratios of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer were 3.3, 4.5 and 4.4, respectively. The average proportion of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer of 13 cities in Jiangsu was 1:0.39:0.26. Their proportion was relatively in equilibrium in southern Jiangsu, but the nutrient structure disorder was serious in northern Jiangsu. In Jiangsu, the environmental risk index of fertilization averaged at 0.69 and in the middle-range of environmental risk. The environmental risk index of fertilizer application in southern and central Jiangsu was respectively at the low and moderate levels, while that of cities in northern Jiangsu was at the moderate, serious or severe level. In Jiangsu, the regional difference of fertilizer application and environmental risk assessment were

  19. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  20. Energetic particles at venus: galileo results.

    Science.gov (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G

    1991-09-27

    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  1. Application of Green Environmentally Friendly Materials in Food Packaging

    Directory of Open Access Journals (Sweden)

    Jixia Li

    2017-11-01

    Full Text Available With social development, requirements on the spiritual and material life have increased. However, some environmental issues appear, for example, in food packaging. Application of environment-friendly materials in food packaging has been more and more attractive. This study analyses the characteristics of degradable food packaging material and the existing problems, proposes the manufacturing of food packaging with poly(lactic acid/nanocrystalline cellulose composite material, tests its thermal and mechanical properties, and applies it to the design of food packaging. The results demonstrate that the thermal and mechanical properties of the material could satisfy the requirements of food packaging and that the material is applicable to the design of food packaging in the future. This work provides a reference for the application of green, environment-friendly materials in the design of food packaging.

  2. Energetic and economical comparison for biomass fuel

    International Nuclear Information System (INIS)

    Galins, A.; Grundulis, A.; Zihmane, K.

    2003-01-01

    The common agricultural biomass, such as wheat straw, rape straw, wheat small corn, wheat forage, rape oil cakes and other, we can use as fuel for heat production. The biomass application for burning depends on economical situation on agriculture and fuel market. Energetic and economical parameters of agricultural biomass are estimated and compared to wooden grain. As parameters for comparison used the biomass heat value Q (MJ/kg), specific cost per 1 kWh heat production C 0 (Ls/kWh) and the fuel consumption per 1 kWh heat production M 0 (kg/kWh). The rape oil cakes have best heat value (20.82 MJ/kg), but cheapest heat energy we can get from rape straw (0.0046 Ls/kWh). Expenses of heat production for forge wheat corn (0.011 Ls/kWh) are alike to wooden chip (0.0103 Ls/kWh) and wooden grain (0.0122 Ls/kWh) (authors)

  3. Starting of H9ANFNb(P91) steel tubing production for energetics in domestic steel-works; Uruchomienie w krajowych hutach produkcji rur ze stali H9AMFNb(P91) przeznaczonych dla energetyki

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, J. [Instytut Metalurgii Zelaza, Gliwice (Poland); Bieniek, K. [Huta Jednosc, Siemianowice Slaskie (Poland); Pogoda, K. [Huta Batory, Chorzow (Poland)

    1996-12-31

    The results of primary investigations and attempt of ferritic steel H9AMFNb production in domestic steel-works have been reported. The prototype series of tubes for energetic boilers have been tested and their mechanical properties determined. It has been found the applicability of the material for use in energetics. 9 refs, 4 figs, 3 tabs.

  4. CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, R.; Blanco, J.J.; Rodríguez-Pacheco, J. [SRG, Universidad de Alcalá, E-28871 Alcalá de Henares (Spain); Dresing, N.; Klassen, A.; Heber, B.; Banjac, S. [IEAP, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Lario, D. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Agueda, N. [Departament d' Astronomia i Meteorologia. Institut de Ciències del Cosmos. Universitat de Barcelona, E-08028 Barcelona (Spain); Malandraki, O. E., E-mail: raul.gomezh@uah.es [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-01-20

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  5. Deep energetic trap states in organic photovoltaic devices

    KAUST Repository

    Shuttle, Christopher G.; Treat, Neil D.; Douglas, Jessica D.; Frechet, Jean; Chabinyc, Michael L.

    2011-01-01

    The nature of energetic disorder in organic semiconductors is poorly understood. In photovoltaics, energetic disorder leads to reductions in the open circuit voltage and contributes to other loss processes. In this work, three independent optoelectronic methods were used to determine the long-lived carrier populations in a high efficiency N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) based polymer: fullerene solar cell. In the TPD co-polymer, all methods indicate the presence of a long-lived carrier population of ∼ 10 15 cm -3 on timescales ≤100 μs. Additionally, the behavior of these photovoltaic devices under optical bias is consistent with deep energetic lying trap states. Comparative measurements were also performed on high efficiency poly-3-hexylthiophene (P3HT): fullerene solar cells; however a similar long-lived carrier population was not observed. This observation is consistent with a higher acceptor concentration (doping) in P3HT than in the TPD-based copolymer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Deep energetic trap states in organic photovoltaic devices

    KAUST Repository

    Shuttle, Christopher G.

    2011-11-23

    The nature of energetic disorder in organic semiconductors is poorly understood. In photovoltaics, energetic disorder leads to reductions in the open circuit voltage and contributes to other loss processes. In this work, three independent optoelectronic methods were used to determine the long-lived carrier populations in a high efficiency N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) based polymer: fullerene solar cell. In the TPD co-polymer, all methods indicate the presence of a long-lived carrier population of ∼ 10 15 cm -3 on timescales ≤100 μs. Additionally, the behavior of these photovoltaic devices under optical bias is consistent with deep energetic lying trap states. Comparative measurements were also performed on high efficiency poly-3-hexylthiophene (P3HT): fullerene solar cells; however a similar long-lived carrier population was not observed. This observation is consistent with a higher acceptor concentration (doping) in P3HT than in the TPD-based copolymer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Applications of the Advanced Light Source to problems in the earth, soil, and environmental sciences report of the workshop

    International Nuclear Information System (INIS)

    1992-10-01

    This report discusses the following topics: ALS status and research opportunities; advanced light source applications to geological materials; applications in the soil and environmental sciences; x-ray microprobe analysis; potential applications of the ALS in soil and environmental sciences; and x-ray spectroscopy using soft x-rays: applications to earth materials

  9. An automatic system to study sperm motility and energetics

    OpenAIRE

    Shi, LZ; Nascimento, JM; Chandsawangbhuwana, C; Botvinick, EL; Berns, MW

    2008-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membr...

  10. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  11. Capturing the most energetic cosmic rays

    International Nuclear Information System (INIS)

    Mantsch, P.

    1999-01-01

    The methods of energy measurement applied to the most energetic cosmic rays are described. The rays are so rare that two gigantic systems of detectors are proposed to detect at least some of them (the Pierre Auger Project ). (Z.J.)

  12. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    Science.gov (United States)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  13. Energetic costs of performance in trained and untrained Anolis carolinensis lizards.

    Science.gov (United States)

    Lailvaux, Simon P; Wang, Andrew Z; Husak, Jerry F

    2018-03-12

    The energetic costs of performance constitute a non-trivial component of animals' daily energetic budgets. However, we currently lack an understanding of how those costs are partitioned among the various stages of performance development, maintenance, and production. We manipulated individual investment in performance by training Anolis carolinensis lizards for endurance or sprinting ability. We then measured energetic expenditure both at rest and immediately following exercise to test whether such training alters the maintenance and production costs of performance. Trained lizards had lower resting metabolic rates than controls, suggestive of a maintenance saving associated with enhanced performance as opposed to a cost. Production costs also differed, with sprint-trained lizards incurring the largest energetic performance cost and experiencing the longest recovery times compared to endurance trained and control animals. Although performance training modifies metabolism, production costs are probably the key drivers of trade-offs between performance and other life-history traits in this species. © 2018. Published by The Company of Biologists Ltd.

  14. Energetic proton generation in ultra-intense laser-solid interactions

    International Nuclear Information System (INIS)

    Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M. H.; Pennington, D.; MacKinnon, A.; Snavely, R.A.

    2001-01-01

    An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 10 20 W/cm 2 , high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors

  15. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  16. The application of nuclear and nuclear-related techniques for environmental pollution studies in Vietnam

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh

    1992-01-01

    The applicability of neutron activation analysis, X-ray fluorescence and other related techniques to environmental samples from Viet Nam has been investigated. Results show that multielemental analysis of environmental samples and the determination of heavy metal pollution in the environment is best performed by a combination of techniques. Preliminary results of studying the environmental pollution associated with solid wastes are reported. 4 refs, 5 figs, 17 tabs

  17. Application of Green Environmentally Friendly Materials in Food Packaging

    OpenAIRE

    Jixia Li

    2017-01-01

    With social development, requirements on the spiritual and material life have increased. However, some environmental issues appear, for example, in food packaging. Application of environment-friendly materials in food packaging has been more and more attractive. This study analyses the characteristics of degradable food packaging material and the existing problems, proposes the manufacturing of food packaging with poly(lactic acid)/nanocrystalline cellulose composite material, tests its therm...

  18. Contributions for the application of a phoswich detector on the analysis of environmental samples

    International Nuclear Information System (INIS)

    Dalaqua Junior, L.

    1989-01-01

    The characteristics of a phoswich detector and the parameters of the pulse shape descrimination system are evaluated aiming the application on environmental analysis by direct low level gamma ray spectrometry. The calibration curves and adjustments for the pulse discrimination, detector resolution and homogeneity measurements are presented. Background reduction and the 210 Pb detection eficiency on evaporated sources are evaluated. The results obtained demonstrates the application potentiality on the analysis of environmental samples due to a high detection eficiency and good geometry conditions to the measurements. (author) [pt

  19. Rural energetic development: cuban experience; El desarrollo energetico rural: experiencia cubana

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera Barciela, M [Secretariado Ejecutivo, Comision Nacional de Energia, La Habana(Cuba)

    1994-07-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life.

  20. Two economic, energetic, and environmental assessments of the French nuclear program

    International Nuclear Information System (INIS)

    Vielle, M.

    1996-01-01

    This paper presents two studies, which try to assess the economic, energy and environmental impact of the French nuclear program. First, the two models used are described briefly and then each study is discussed separately. The main results are summarized in the conclusion. (author). 4 refs., 5 tabs., 8 figs

  1. NIF: IFE applications, waste management and environmental impacts

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Kirchner, F.R.; Miley, G.H.; Petra, M.

    1996-01-01

    Although many energy sources have been suggested for the future, inertial confinement fusion (ICF) has been demonstrated as scientifically feasible and deserves support for continued development. The National Ignition Facility (NIF), proposed by US DOE, is a next step in that direction. NIF would use ICF technology to achieve ignition and energy gain that would allow the development and continued support of national security and other civilian applications including inertial fusion energy power plants. NIF would also guarantee US leadership in dense plasma research. Four sites are being considered for NIF: LLNL, Los Alamos, Sandia, and two NTS sites. An environmental evaluation was performed which considered all impacts. This paper provides the results of the waste management analyses conducted on the proposed NIF sites. Overall, the proposed construction and operation of NIF should qualify it as a low-hazard, non-nuclear radiological facility with minor onsite and negligible offsite environmental impacts

  2. Energy transport by energetic electrons released during solar flares. I - Thermal versus nonthermal processes

    Science.gov (United States)

    Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.

    1988-01-01

    The propagation of energetic electrons through a flaring flux tube is studied in an attempt to determine how the energy of the electrons is deposited in the flux tube. One-dimensional electrostatic particle simulations are used in the present investigation. As the energetic electrons propagate into the system, a return current of ambient plasma electrons and some of the energetic electrons is drawn into the energetic electron source. It is found that, as the ambient temperature relative to the ion temperature increases above about 3, the heated return-current electrons can excite ion-sound waves.

  3. About the wind energetics development

    International Nuclear Information System (INIS)

    Strebkov, D.S.; Kharitonov, V.P.; Murugov, V.P.; Sokol'skij, A.K.

    1996-01-01

    The review of wind power energetics state in USA, Europe, Russia is given. The data of EC on wind power plants production in different periods are presented. The directions of scientific-research works with the purpose of increasing the level of wind power industry of Russia corresponding to economics demands were elaborated. (author). 8 refs., 3 tabs

  4. A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath

    Science.gov (United States)

    Fuselier, Stephen A.

    1994-01-01

    Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.

  5. Environmental isotope applications in hydrology: an overview of the IAEA's activities, experiences, and prospects

    International Nuclear Information System (INIS)

    Yurtsever, Y.; Araguas, L.A.

    1993-01-01

    Development and applications of isotope methodologies in hydrology have been an integral part of the program component of the IAEA over the last three decades, within the framework of its overall activities related to peaceful nuclear applications. The use of environmental isotopes as a means of tracing water movement in the hydrology including surface and ground water is much of the Agency's work in this field. This paper provides an overview of the temporal and spatial variations of the above cited isotopes in precipitation based on the long-term data collected from the global network, and reviews the concepts and formulations of environmental isotope applications to specific problems in hydrology and hydrogeology. (Author)

  6. Simulation study of energetic ion transport due to Alfven eigenmodes in LHD plasma

    International Nuclear Information System (INIS)

    Todo, Yasushi; Nakajima, Noriyoshi; Osakabe, Masaki; Yamamoto, Satoshi; Spong, Donald A.

    2008-01-01

    The creation of holes and clumps in an energetic ion energy spectrum associated with Alfven eigenmodes was examined using the neutral particle analyzer (NPA) on the LHD shot no.47645. The difference in slowing-down times between the holes and clumps suggested that the energetic ions were transported over 10% of the plasma minor radius. The spatial profile and frequency of the Alfven eigenmodes were analyzed with the AE3D code. The phase space structures of the energetic ions on the NPA line-of-sight were investigated with Poincare plots, where an oscillating Alfven eigenmode was employed for earth plot. The phase space regions trapped by the Alfven eigenmodes appeared as islands in the Poincare plots. The radial width of the islands corresponded to the transport distance of the energetic ions. Since island width depends on Alfven eigenmode amplitude, it was found that Alfven eigenmodes with amplitude δB r /B - 10 -3 transported energetic ions over 10% of the minor radius. (author)

  7. Energetics and magnetism of Co-doped GaN(0001) surfaces: A first-principles study

    International Nuclear Information System (INIS)

    Qin, Zhenzhen; Xiong, Zhihua; Chen, Lanli; Qin, Guangzhao

    2014-01-01

    A comprehensive first-principles study of the energetics, electronic, and magnetic properties of Co-doped GaN(0001) thin films are presented and the effect of surface structure on the magnetic coupling between Co atoms is demonstrated. It is found that Co atoms prefer to substitute the surface Ga sites in different growth conditions. In particular, a CoN/GaN interface structure with Co atoms replacing the first Ga layer is preferred under N-rich and moderately Ga-rich conditions, while CoGa x /GaN interface is found to be energetically stable under extremely Ga-rich conditions. It is worth noted that the antiferromagnetic coupling between Co atoms is favorable in clean GaN(0001) surface, but the existence of ferromagnetism would be expected to occur as Co concentration increased in Ga-bilayer GaN(0001) surface. Our study provides the theoretical understanding for experimental research on Co-doped GaN films and might promise the Co:GaN system potential applications in spin injection devices

  8. Analysis of energetic exploitation of straw in Vojvodina

    International Nuclear Information System (INIS)

    Dodic, Sinisa N.; Dodic, Jelena M.; Popov, Stevan D.; Zekic, Vladislav N.; Rodic, Vesna O.; Tica, Nedeljko Lj.

    2011-01-01

    The Autonomous Province of Vojvodina is an autonomous province in the Republic of Serbia. It is located in the northern part of the country, in the Pannonia plain. Vojvodina is an energy-deficient province. The average yearly quantity of the cellulose wastes in Vojvodina amounts to about 9 millions tons barely in the agriculture, and the same potential on the level of Serbia estimates to almost 13 million tons. This study gives the analysis of energetic exploitation of straws from stubble cereals processed in different forms. Costs for the equipment that uses biomass in the EU are approximately two times higher with respect to those for the equipment for combustion of natural gas or of fuel oil. Costs of investments for combustion of biomass in Vojvodina if compared with the cited data are approximately for 40-50% lower. The difference of the investment costs for the construction of such units is because units for straw combustion designed and constructed in our country, have neither the complicated devices for manipulation of fuels, nor the devices for the waste gasses processing. The definite conclusions about the economic justification of the energetic exploitation of stubble straws can be obtained only by comparison of costs of the so obtained energy, with the costs of energy obtained through the combustion of classical fuels. Previous comparisons were the most often based on the comparisons of value of prices of the equivalent straw quantity with the process of fuel oil of other classical fuels. Such the comparisons leaded to the very positive evaluations of the economical effects of straws, without taking into account the realizability of the named method. Namely, comparisons of straw and fuel oil hardly could lead to the conclusion that these two fuels are mutually substitutable. According to its physical properties, straw is most similar to firewood, but the preciousness and lacking of this the very resource excludes it from the comparative analysis, so

  9. Strong non-radial propagation of energetic electrons in solar corona

    Science.gov (United States)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  10. Energetic Cost of Ichthyophonus Infection in Juvenile Pacific Herring (Clupea pallasii

    Directory of Open Access Journals (Sweden)

    Johanna J. Vollenweider

    2011-01-01

    Full Text Available The energetic costs of fasting and Ichthyophonus infection were measured in juvenile Pacific herring (Clupea pallasii in a lab setting at three temperatures. Infected herring incurred significant energetic costs, the magnitude of which depended on fish condition at the time of infection (fat versus lean. Herring that were fed continually and were in relatively good condition at the time of infection (fat never stored lipid despite ad libitum feeding. In feeding herring, the energetic cost of infection was a 30% reduction in total energy content relative to controls 52 days post infection. Following food deprivation (lean condition, infection caused an initial delay in the compensatory response of herring. Thirty-one days after re-feeding, the energetic cost of infection in previously-fasted fish was a 32% reduction in total energy content relative to controls. Body composition of infected herring subsequently recovered to some degree, though infected herring never attained the same energy content as their continuously fed counterparts. Fifty-two days after re-feeding, the energetic cost of infection in previously-fasted fish was a 6% reduction in total energy content relative to controls. The greatest impacts of infection occurred in colder temperatures, suggesting Ichthyophonus-induced reductions in body condition may have greater consequences in the northern extent of herring's range, where juveniles use most of their energy reserves to survive their first winter.

  11. Energetic Cost of Ichthyophonus Infection in Juvenile Pacific Herring (Clupea pallasii).

    Science.gov (United States)

    Vollenweider, Johanna J; Gregg, Jake L; Heintz, Ron A; Hershberger, Paul K

    2011-01-01

    The energetic costs of fasting and Ichthyophonus infection were measured in juvenile Pacific herring (Clupea pallasii) in a lab setting at three temperatures. Infected herring incurred significant energetic costs, the magnitude of which depended on fish condition at the time of infection (fat versus lean). Herring that were fed continually and were in relatively good condition at the time of infection (fat) never stored lipid despite ad libitum feeding. In feeding herring, the energetic cost of infection was a 30% reduction in total energy content relative to controls 52 days post infection. Following food deprivation (lean condition), infection caused an initial delay in the compensatory response of herring. Thirty-one days after re-feeding, the energetic cost of infection in previously-fasted fish was a 32% reduction in total energy content relative to controls. Body composition of infected herring subsequently recovered to some degree, though infected herring never attained the same energy content as their continuously fed counterparts. Fifty-two days after re-feeding, the energetic cost of infection in previously-fasted fish was a 6% reduction in total energy content relative to controls. The greatest impacts of infection occurred in colder temperatures, suggesting Ichthyophonus-induced reductions in body condition may have greater consequences in the northern extent of herring's range, where juveniles use most of their energy reserves to survive their first winter.

  12. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction

  13. Los Alamos energetic particle sensor systems at geostationary orbit

    International Nuclear Information System (INIS)

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes

  14. Observation of energetic particle mode by using microwave reflectometer

    International Nuclear Information System (INIS)

    Tokuzawa, T.; Kawahata, K.; Sakakibara, S.; Toi, K.; Osakabe, M.; Yamamoto, S.

    2006-01-01

    Two heterodyne reflectometer systems are utilized for the fluctuation measurement in the Large Helical Device (LHD). By using the extraordinary polarized wave, we can measure the corresponding value to the combined fluctuation with the electron density and the magnetic field in the plasma core region even if the radial electron density profile is flat. E-band system has three channels of fixed frequencies of 78, 72, 65 GHz. The system is very convenient to observe magnetohydrodynamics (MHD) phenomena such as energetic particle driven Alfven eigenmodes, even if the system works as an interferometer mode. The detailed behaviour of the energetic particle mode is studied when low-n MHD burst is occurred. It seems to be caused that the spatial distribution of high energy particle is changed by such a MHD-burst. Also to know the radial distribution of MHD mode, frequency swept R-band reflectometer is applied for the first time. It seems to be successfully detected the energetic particle mode and toroidal Alfven eigenmode. (author)

  15. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    International Nuclear Information System (INIS)

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-01-01

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na + /K + -ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na + /K + -ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism

  16. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance, E-mail: naultran@msu.edu [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Abdul-Fattah, Hiba [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Mironov, Gleb G.; Berezovski, Maxim V. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Moon, Thomas W. [Ottawa-Carleton Institute of Biology, Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  17. 78 FR 27196 - Modification of Permit Application and Intent for Additional Public Scoping for an Environmental...

    Science.gov (United States)

    2013-05-09

    ... Application and Intent for Additional Public Scoping for an Environmental Impact Statement for the Port of... Mississippi State Port Authority (MSPA) for which an Environmental Impact Statement (EIS) is being prepared... Low-Income Populations; Executive Order 13045, Protection of Children from Environmental Health Risks...

  18. Energetic materials standards – Chemical compatibility

    NARCIS (Netherlands)

    Tuukkanen, I.M.; Bouma, R.H.B.

    2014-01-01

    Subgroup A Energetic Materials Team, SG/A (EMT), develops and maintains standards that are relevant to all life-cycle phases of ammunition/weapon systems. STANAG 4147 is the standard regarding chemical compatibility of explosives with munition components, and is a document of prime importance.

  19. Development and application of an environmentally friendly ductile alkali-activated composite

    NARCIS (Netherlands)

    Nedeljkovic, M.; Lukovic, M.; van Breugel, K.; Hordijk, D.A.; Ye, G.

    2018-01-01

    This paper presents a development of a ductile alkali-activated fly ash (FA) and ground granulated blast furnace slag (GBFS) based composite as an environmentally friendly material for structural concrete application. For this purpose, polyvinyl alcohol (PVA) fibres and sand aggregate were

  20. Workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.

    1995-03-01

    This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc.

  1. Workshop on environmental and energy applications of neural networks

    International Nuclear Information System (INIS)

    Hashem, S.

    1995-03-01

    This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc

  2. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  3. Understanding the Structure-Function Relationships of Dendrimers in Environmental and Biomedical Applications

    Science.gov (United States)

    Wang, Bo

    We are living an era wherein nanoparticles (NPs) have been widely applied in our lives. Dendrimers are special polymeric NPs with unique physiochemical properties, which have been intensely explored for a variety of applications. Current studies on dendrimers are bottlenecked by insufficient understandings of their structure and dynamic behaviors from a molecular level. With primarily computational approaches supplemented by many other experimental technics, this dissertation aims to establish structure-function relationships of dendrimers in environmental and biomedical applications. More specifically, it thoroughly investigates the interactions between dendrimers and different biomolecules including carbon-based NPs, metal-based NPs, and proteins/peptides. Those results not only provide profound knowledge for evaluating the impacts of dendrimers on environmental and biological systems but also facilitate designing next-generation functional polymeric nanomaterials. The dissertation is organized as following. Chapter 1 provides an overview of current progresses on dendrimer studies, where methodology of Discrete Molecular Dynamics (DMD), my major research tool, is also introduced. Two directions of utilizing dendrimers will be discussed in following chapters. Chapter 2 will focus on environmental applications of dendrimers, where two back-to-back studies are presented. I will start from describing some interesting observations from experiments i.e. dendrimers dispersed model oil molecules. Then, I will reveal why surface chemistries of dendrimers lead to different remediation efficiencies by computational modelings. Finally, I will demonstrate different scenarios of dendrimer-small molecules association. Chapter 3 is centered on dendrimers in the biomedical applications including two subtopics. In the first topic, we will discuss dendrimers as surfactants that modulating the interactions between proteins and NPs. Some fundamental concepts regarding to NPs

  4. An energetically consistent vertical mixing parameterization in CCSM4

    DEFF Research Database (Denmark)

    Nielsen, Søren Borg; Jochum, Markus; Eden, Carsten

    2018-01-01

    An energetically consistent stratification-dependent vertical mixing parameterization is implemented in the Community Climate System Model 4 and forced with energy conversion from the barotropic tides to internal waves. The structures of the resulting dissipation and diffusivity fields are compared......, however, depends greatly on the details of the vertical mixing parameterizations, where the new energetically consistent parameterization results in low thermocline diffusivities and a sharper and shallower thermocline. It is also investigated if the ocean state is more sensitive to a change in forcing...

  5. Energetic ion diagnostics using neutron flux measurements during pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  6. Collective Thomson scattering in tokamaks having energetic ions

    International Nuclear Information System (INIS)

    Myer, R.C.; Woskov, P.P.; Machuzak, J.S.; Sigmar, D.J.; Cohn, D.R.; Bretz, N.L.; Efthimion, P.C.; Colestock, P.L.

    1989-01-01

    The authors discuss how collective Thomson scattering (CTS), using high power gyrotrons or long wavelength lasers,m shows promise as a powerful non-intrusive diagnostic of fast-ion transport as it may be capable of measuring the fast-ion velocity distribution and density profile with good spatial and temporal resolution. In addition, CTS may be used as a diagnostic for detecting localized power deposition in the background plasma. High power CTS systems are presently being planned for TFTR, JET, and CIT. Recent theoretical analysis suggests that an energetic (200-800 keV) He 3 minority can be produced in TFTR by ion cyclotron heating (ICH). Such an energetic population would be useful for simulating the energetic alpha-particles produced in a burning plasma. Since the ICH generated distribution is non-Maxwellian, the authors generalize the theoretical analysis of CTS to allow for particle distributions which can be represented by various orthogonal polynomial expansions. They evaluate the efficacy of CTS in detecting a fast He 3 component and determine the sensitivity of the diagnostic to the details of the ion distribution. In particular, the effectiveness of a planned 56 GHz gyrotron CTS diagnostic for TFTR is evaluated

  7. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  8. The HTR, applications, economics and environmental aspects

    International Nuclear Information System (INIS)

    Barnert, H.; Schad, M.; Candeli, H.

    1990-01-01

    The High Temperature Reactor (HTR), as the only nuclear system producing high temperature heat up to 1000 deg. C, offers a wide variety of applications. Besides electricity production, via steam turbines and in future via gas turbines, there is: District heat with high efficiency, long distance energy for urban energy supply, high pressure injection steam production for enhanced oil recovery, medium range temperature heat direct application in chemical and related industry and last not least, high temperature application for the refinement of fossil energy carriers. Recent results of studies and programmes will be presented: Near term applications are identified, e.g. refineries and alumina industry with smaller HTR units. Another large market is the production of hydrogen, methanol and ammonia on the basis of natural gas, the relevant technology has been developed up to the pilot scale. The refinement of fossil energy carriers, in particular of coal, is subject of the R+D programme in the cooperation between German industrial companies and the Nuclear Research Center. The results are very promising and will be explained in detail. This programme will be continued. Objectives are: improvement of the technology and of the economics as well as environmental aspects, e.g. the reduction of emissions of carbon-dioxid. The topics of the programme deal with the different apparatus, e.g. steam methane reformer, steam coal gasifier, intermediate heat exchanger and last not least, the process heat HTR. (author)

  9. Examination of new environmental control applications.

    Science.gov (United States)

    Vincent, Claude; Drouin, Gilbert; Routhier, François

    2002-01-01

    The aim of this study was to examine the application of new Environmental Control Systems (ECSs) in the homes of users and caregivers. The research questions were: (1) Can new ECS applications improve the activities of daily living (ADL) of people with significant functional limitations who require personal assistance? (2) Can new ECS applications replace home services and lessen caregiver burden? To answer these questions, user satisfaction regarding ECS applications, impact on ADL, technical performance, and caregiver burden were examined. This collaborative investigation involving a local community health care center, a telephone monitoring service, an industrial partner, and a university research team used a case study approach. Five users with moderate cognitive problems or significant functional limitations who required personal assistance were chosen, along with their caregivers, for a 3-month in-home trial to test new ECS alternatives. The ECS in the study featured remote control functions (e.g., door lock release, outside intercom), specific verbal reminders (e.g., reminders to turn off stove elements), and automatic functions (e.g., night-lights in the bathroom and hallway). Information was collected in the users' homes with three standardized questionnaires and a company-designed questionnaire. The overall technical performance of the ECS was found to be in most cases moderately efficient. Participant satisfaction revealed that ECS alternatives needed improvement with respect to the service aspects such as follow-up services and repair/servicing. Caregiver burden was lessened for psychological aspects but not for physical tasks. Users seemed to have a positive perception of the impact of the ECS on many of their ADL. We learned six lessons from this 15-month case study, namely: (1) the use of remote control by people with moderate cognitive impairments was difficult; (2) verbal reminders were greatly appreciated; (3) the automatic ECS applications needed

  10. Elemental line scanning of an increment core using EDXRF: from fundamental research to environmental forensics applications

    Science.gov (United States)

    Kevin T. Smith; Jean Christophe Balouet; Gil Oudijk

    2008-01-01

    Environmental forensics seeks to determine the responsible parties for contamination from leaks or spills of petroleum or other toxic products. Dendrochemistry contributes to environmental forensics at the intersection of analytical chemistry, tree biology, and environmental responsibility. To be useful, dendrochemistry requires the rigorous application of analytical...

  11. Environmental Impacts of the Production and Application of Biochar - EuroChar Project

    Science.gov (United States)

    Rack, Mireille; Woods, Jeremy

    2014-05-01

    One of the potential benefits of biochar is carbon sequestration. To determine the overall net sequestration potential it is important to analyse the full supply chain, assessing both the direct and indirect emissions associated with the production and application of biochar. However, it is essential to also incorporate additional environmental impact categories to ensure the assessment of a more complete environmental impact profile. This paper uses a full life-cycle assessment (LCA) methodology to evaluate the results from the EuroChar, 'biochar for carbon sequestration and large-scale removal of GHG from the atmosphere', project. This EU Seventh Framework Programme project aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar, and in particular explore possible pathways for its introduction into modern agricultural systems in Europe. The LCA methodology, according to the ISO standards, is applied to the project-specific supply chains to analyse the environmental impacts of biochar production and application. Two conversion technologies for the production of biochar are assessed, gasification and hydrothermal carbonization (HTC), in order to provide conversion efficiencies and emission factors for the biochar production component of the supply chain. The selected feedstocks include those derived from waste residues and dedicated crops. For the end use stage, various forms and methods for biochar application are considered. In addition to the Global Warming Potential category, other environmental impact categories are also included in the analysis. The resulting 'feedstock * conversion technology' matrix provides nine pathways for the production and application of biochar, which are applied as a representative basis for the scenario modelling. These scenarios have been developed in order to assess the feedstock and land availability in Europe for the production and application of biochar and to give an order of

  12. Elements of the new energetic policy in Macedonia

    International Nuclear Information System (INIS)

    Tomovski, Aleksandar

    1995-01-01

    In the field of the energetic policy and development in both energy production and energy consumption in Macedonia, one can fill an uncertainty and development concept absence. It is clear that this is a result of the stress that Macedonian economy suffers from after the disintegration of the former Yugoslavia as a market and economic unit, as well as of the establishment of different economic and market norms. It is obvious that in the energetics, as one of the basic economic sectors,the situation has to be stabilized very soon as well as in advance analysed right decisions have to be made. (author). 1 ill

  13. Very High Performance High Nitrogen Energetic Ingredients and Energetic Polymers for Structural Components

    Science.gov (United States)

    2011-12-31

    13. SUPPLEMENTARY NOTES SoUoWtoo^ 14. ABSTRACT This project investigated new energetic materials for use with a triazole cured binder system ...The reaction was repeated using two equivalents of KH. An even more insoluble product was obtained. Figure 8 and 9 show the C-13 and N-15 CP/MAS...Sonnenberg, M. Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr

  14. Energetic optimization of the chilled water systems operation at hotels

    Directory of Open Access Journals (Sweden)

    Reineris Montero Laurencio

    2015-12-01

    Full Text Available The hotel exploitation, while continuing to satisfy the customers, needs to decrease the requests of electric power as the principal energy carrier. Solving issues regarding the occupation of a hotel integrally, taking the air conditioning as center of attention, which demands the bigger consumptions of electricity, results in a complex task. To solve this issue, a procedure was implemented to optimize the operation of the water-chilled systems. The procedure integrates an energy model with a strategy of low occupation following energetic criteria based on combinatorial-evolutionary criteria. To classify the information, the formulation of the tasks and the synthesis of the solutions, a methodology of analysis and synthesis of engineering is used. The energetic model considers the variability of the local climatology and the occupation of the selected rooms, and includes: the thermal model of the building obtained by means of artificial neural networks, the hydraulic model and the model of the compression work. These elements allow to find the variable of decision occupation, performing intermediate calculations to obtain the velocity of rotation in the centrifugal pump and the output temperature of the cooler water, minimizing the requirements of electric power in the water-chilled systems. To evaluate the states of the system, a combinatorial optimization is used through the following methods: simple exhaustive, stepped exhaustive or genetic algorithm depending on the quantity of variants of occupation. All calculation tasks and algorithms of the procedure were automated through a computer application.

  15. Energetic balance of castor oil methyl and ethyl esters; Balanco energetico de esteres metilicos e etilicos de oleo de mamona

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Neto, Jose Adolfo de; Cruz, Rosenira Serpa da; Alves, Jaenes Miranda; Pires, Monica de Moura; Robra, Sabine [Universidade Estadual de Santa Cruz, Ilheus BA (Brazil). Grupo Bioenergia e Meio Ambiente]. E-mails: jalmeida@uesc.br; Parente Junior, Expedito [Tecnologias Bioenergeticas Ltda. (TECBIO), Fortaleza, CE (Brazil); Fundacao Nucleo de Tecnologia Industrial (NUTEC), Fortaleza, CE (Brazil)]. E-mail: expeditojr@tecbio.com.br

    2004-07-01

    Castor oil (Ricinus communis L.) is one of the cultures chosen by the biodiesel federal and state programs to supply raw material for biodiesel production - a biofuel indicated as renewable and less pollutant than its fossil competitor. An energetic balance was performed based on LCA - Life Cycle Analysis principles and Input-Output Analysis, comparing the castor oil energy performance with others traditional cultures: colza (Brassica napus) in Europe and soybean (Glycine max) in the United States. Energy balance (O-I) was positive in both production ways (methyl and ethyl) independent of coproduct use allocation alternative. The relation Output-Input (O-I) calculated for castor oil biodiesel [1.3-2.9] was higher than the colza (1.2-1.9) and lower than the soybean (3.2--3.4), independent of the way and allocation of the used byproduct. Both indicators suggest the energy and environmental viability of the castor oil biodiesel, provided that high agricultural productivity (higher than 1.500 kg/ha year) can be guaranteed. The potentialization of the positive energetic and environmental effects depends on the adequate utilization of the coproducts and process residues, the improvement of the energy efficiency in the the castor oil and biodiesel processing and the implementation of efficient management in the use of the chemical inputs (specially the N), responsible for up 5% of the total energy input.

  16. Physics with energetic radioactive ion beams

    International Nuclear Information System (INIS)

    Henning, W.F.

    1996-01-01

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized

  17. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  18. 75 FR 4058 - CRD Hydroelectric, LLC; Notice of Application Ready for Environmental Analysis and Soliciting...

    Science.gov (United States)

    2010-01-26

    ... Hydroelectric, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments... hydroelectric application has been filed with the Commission and is available for public inspection. a. Type of.... Applicant: CRD Hydroelectric, LLC. e. Name of Project: Red Rock Hydroelectric Project. f. Location: On the...

  19. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  20. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    International Nuclear Information System (INIS)

    Yoon, Sangcheol; Hwang, Inchan; Park, Byoungchoo

    2015-01-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole–Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers. (paper)

  1. Local protoplanetary disk ionisation by T Tauri star energetic particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  2. Speciation analysis of 129I and its applications in environmental research

    DEFF Research Database (Denmark)

    Zhang, Luyuan; Hou, Xiaolin

    2013-01-01

    129I, a long-lived radionuclide, is important in view of geological repository of nuclear waste, and environmental tracing applications related to diverse natural processes of iodine. The environmental behaviors and bioavailability of 129I are highly related to its species. A number of methods have...... been reported for speciation analysis of 129I in a variety of environmental samples. These methods have been applied in many researches, including conversion processes of iodine species in marine and terrestrial systems, migration and retention of iodine in soil and sediment, geochemical cycling...

  3. Assessment of CRBR core disruptive accident energetics

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Bell, C.R.

    1984-03-01

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly

  4. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Science.gov (United States)

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  5. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI and iron oxide (Fe2O3/Fe3O4 nanoparticles (NPs and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.

  6. Quality and environmental aspects in relation to the application of pulverized fuel ash

    International Nuclear Information System (INIS)

    Berg, J.W. van den

    1991-01-01

    In the Netherlands pulverised coal from different parts of the world is used in 5 coalfired power stations which each have 1 to 3 boilers, which in turn are equipped with various types of burners. This causes a large variation in the composition of the pulverized fuel ash (PFA). The PFA is marketed in several areas, each of which has its own specific quality requirements. These requirements are partially dictated in standard specifications. In order to obtain insight into the quality of the PFA, samples are taken and analysed daily. Rules for certification, concerning the quality and the quality control of PFA for use in concrete in The Netherlands have been agreed upon. The environmental aspects in relation to the application of PFA concern the working conditions and health aspects during processing and the environmental impact when PFA is used as a building material. The Dutch legislation concerning the environmental consequences of the application of PFA and other secondary materials is currently under review. 3 tabs

  7. MOISTURE HUMIDITY EQUILIBRIUM OF WOOD CHIPS FROM ENERGETIC CROPS

    Directory of Open Access Journals (Sweden)

    Jan Barwicki

    2008-09-01

    Full Text Available Processes occurring during storage of wood chips for energetic or furniture industry purposes were presented. As a result of carried out investigations, dependences of temperature and relative humidity changes of surrounding air were shown. Modified Henderson equation can be utilized for computer simulation of storing and drying processes concerning wood chips for energetic and furniture industry purposes. It reflects also obtained results from experiments carried out with above mentioned material. Using computer simulation program we can examine different wood chips storing conditions to avoid overheating and loss problems.

  8. The application of system dynamics modelling to environmental health decision-making and policy - a scoping review.

    Science.gov (United States)

    Currie, Danielle J; Smith, Carl; Jagals, Paul

    2018-03-27

    Policy and decision-making processes are routinely challenged by the complex and dynamic nature of environmental health problems. System dynamics modelling has demonstrated considerable value across a number of different fields to help decision-makers understand and predict the dynamic behaviour of complex systems in support the development of effective policy actions. In this scoping review we investigate if, and in what contexts, system dynamics modelling is being used to inform policy or decision-making processes related to environmental health. Four electronic databases and the grey literature were systematically searched to identify studies that intersect the areas environmental health, system dynamics modelling, and decision-making. Studies identified in the initial screening were further screened for their contextual, methodological and application-related relevancy. Studies deemed 'relevant' or 'highly relevant' according to all three criteria were included in this review. Key themes related to the rationale, impact and limitation of using system dynamics in the context of environmental health decision-making and policy were analysed. We identified a limited number of relevant studies (n = 15), two-thirds of which were conducted between 2011 and 2016. The majority of applications occurred in non-health related sectors (n = 9) including transportation, public utilities, water, housing, food, agriculture, and urban and regional planning. Applications were primarily targeted at micro-level (local, community or grassroots) decision-making processes (n = 9), with macro-level (national or international) decision-making to a lesser degree. There was significant heterogeneity in the stated rationales for using system dynamics and the intended impact of the system dynamics model on decision-making processes. A series of user-related, technical and application-related limitations and challenges were identified. None of the reported limitations or challenges

  9. Application of WSP method in analysis of environmental samples

    International Nuclear Information System (INIS)

    Stacho, M.; Slugen, V.; Hinca, R.; Sojak, S.; Krnac, S.

    2014-01-01

    Detection of activity in natural samples is specific especially because of its low level and high background interferences. Reduction of background interferences could be reached using low background chamber. Measurement geometry in shape of Marinelli beaker is commonly used according to low level of activity in natural samples. The Peak Net Area (PNA) method is the world-wide accepted technique for analysis of gamma-ray spectra. It is based on the net area calculation of the full energy peak, therefore, it takes into account only a fraction of measured gamma-ray spectrum. On the other hand, the Whole Spectrum Processing (WSP) approach to the gamma analysis makes possible to use entire information being in the spectrum. This significantly raises efficiency and improves energy resolution of the analysis. A principal step for the WSP application is building up the suitable response operator. Problems are put in an appearance when suitable standard calibration sources are unavailable. It may be occurred in the case of large volume samples and/or in the analysis of high energy range. Combined experimental and mathematical calibration may be a suitable solution. Many different detectors have been used to register the gamma ray and its energy. HPGe detectors produce the highest resolution commonly available today. Therefore they are they the most often used detectors in natural samples activity analysis. Scintillation detectors analysed using PNA method could be also used in simple cases, but for complicated spectra are practically inapplicable. WSP approach improves resolution of scintillation detectors and expands their applicability. WSP method allowed significant improvement of the energetic resolution and separation of "1"3"7Cs 661 keV peak from "2"1"4Bi 609 keV peak. At the other hand the statistical fluctuations in the lower part of the spectrum highlighted by background subtraction causes that this part is still not reliably analyzable. (authors)

  10. Application of nanotechnologies and nanomaterials

    International Nuclear Information System (INIS)

    Vissokov, G.

    2011-01-01

    Full text: In the present report, we give a brief description of the present state, development, and application of nanotechnologies (NT) and nanomaterials (NM) in some key industries, such as chemical industry and power industry (nanocatalysts, and nanocatalysis, hydrogen storage and fuel cells, artificial photosynthesis and Gratzel's cell, energy efficiency, energy storage); fabrication of consolidated nanostructures (ceramic nano-materials, nanostructured coatings, production of low-combustibility plastics, nanostructured hard materials, nanostructures with colossal magnetoresistance); fabrication of ultra-high strength carbon fibres; nano-technologies for environmental protection (adsorption of heavy metals by self-ordered self-organized nano-structure ensembles, photocatalyric purification of liquids, fabrication of mesoporous materials, application of nanoporous polymers for water purification, nanoparticles and environment); medical applications; military applications and fight against terrorism; household applications; energetic and some other [1-7].; In 2010, the European Union and the governments of the USA and Japan each invested over $ 2 billion in nanoscience, which is ample evidence to substantiate the claim that the 21 st century will be the century of nanotechnologies. Some of the optimistic forecasts predict that in 2014 the total revenues from NT will exceed those brought by the information technologies and telecommunications combined. At present, more than 800 companies are involved in R&TD in this field (including giants such as Intel, IBM, Samsung, and Mitsubishi) while more than ten Nobel prizes were awarded for research in nanoscience

  11. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  12. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  13. Wrong directions of the energetic policy; Descaminhos da politica energetica

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Joaquim Francisco

    1997-12-31

    The energetic planning should take an important role in the formulation of the economic and social development policy of any country. This work presents the opinion of the author in relation to this issue in what concerns the Brazilian experience. Several actions considered wrong by the author, which were taken by the government in what concerns energetic policy are presented and their expected consequences in the near future are discussed 6 refs., 1 tab.

  14. Initial Screening of Environmentally Sustainable Surface Pretreatments for Adhesive Bonding Applications

    Science.gov (United States)

    2017-05-17

    13. SUPPLEMENTARY NOTES 14. ABSTRACT A methacrylate adhesive marketed for high-temperature applications was screened in combination with...conditioning = RT. Mode-of-failure = mixed - mode (MM). ........................................................................................ 26 Fig. B-3...moisture exposure conditions. Additionally, as environmental regulations force various chemicals from the commercial market , the pretreatments and

  15. Effects of sublethal exposure to lead on levels of energetic compounds in Procambarus clarkii (Girard, 1852)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Torreblanca, A.; Del Ramo, J.; Diaz-Mayans, J. (Univ. of Valencia (Spain))

    1994-05-01

    Lead is neither essential nor beneficial to living organisms; all existing data show that its metabolic effects are adverse. Lead is toxic to all phyla of aquatic biota. Most of the lead discharged into surface water is rapidly incorporated into suspended and bottom sediments. The American red crayfish, Procambarus clarkii, lives in a wide range of environmental conditions that include highly polluted waters. Lead present in take sediments can be available to aquatic animals such as P. clarkii because it is a detritivor and burrow into the sediment. In fact, we found remarkable levels of lead in tissues of P. clarkii caught in Albufera Lake and kept 15 days in clean water (e. g. 223 [mu]g/g dry weight in gills). Furthermore, P. clarkii has a high capacity for lead accumulation from water, and gills were the most important tissue of lead accumulation. Among effects that contaminants have on the physiology of the organisms, energetic state variables are important, since they will alter both survival and reproduction. Hepatopancreas is a major site for the energetic reserve in crayfish and is a site of lead accumulation, although metal concentration in this organ is not as high as gills. The purpose of this study was to examine changes in energy reserves in hepatopancreas and gills of the crayfish P. clarkii, in response to sublethal exposure to lead. Gills are directly exposed to contaminants in the environment, and they are the first organ showing alterations by the action of the contaminants. Hepatopancreas was also chosen due to both, its relevance in the energetic metabolism and its role in heavy metal detoxification mechanisms.

  16. Quantum technology past, present, future: quantum energetics (Conference Presentation)

    Science.gov (United States)

    Choi, Sang H.

    2017-04-01

    Since the development of quantum physics in the early part of the 1900s, this field of study has made remarkable contributions to our civilization. Some of these advances include lasers, light-emitting diodes (LED), sensors, spectroscopy, quantum dots, quantum gravity and quantum entanglements. In 1998, the NASA Langley Research Center established a quantum technology committee to monitor the progress in this area and initiated research to determine the potential of quantum technology for future NASA missions. The areas of interest in quantum technology at NASA included fundamental quantum-optics materials associated with quantum dots and quantum wells, device-oriented photonic crystals, smart optics, quantum conductors, quantum information and computing, teleportation theorem, and quantum energetics. A brief review of the work performed, the progress made in advancing these technologies, and the potential NASA applications of quantum technology will be presented.

  17. Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China); University of Chinese Academy of Sciences, Beijing (China); Rong, Junfeng [SINOPEC Research Institute of Petroleum Processing, Beijing (China); Chen, Hui; He, Chenliu; Wang, Qiang, E-mail: wangqiang@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China)

    2014-08-19

    Microalgae have been currently recognized as a group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids, and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO{sub 2} fixation, NO{sub x}, and wastewater treatment) and biorefinery has been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO{sub 2} and NO{sub x}) and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g., food, medicine, wastewater treatment, and flue gas treatment) with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.

  18. Current status and outlook in the application of microalgae in biodiesel production and environmental protection

    Directory of Open Access Journals (Sweden)

    Xin eZhang

    2014-08-01

    Full Text Available Microalgae have been currently recognized as one group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO2 fixation, NOX and wastewater treatment and biorefinery have been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO2 and NOX and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g. food, medicine, wastewater treatment and flue gas treatment with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.

  19. Application of environmental isotopes in water resources studies in Latin America

    International Nuclear Information System (INIS)

    Aravena, Ramon

    2001-01-01

    The development of urban centers and economical activities, such as agriculture and mining, in Latin America are intimately linked to the availability of water resources. The increasing demand for water and the risks associated to contamination have generated numerous studies related to the evaluation of water resources in this region. In the specific case of groundwater studies, environmental isotopes have played a significant role in these studies ( 18 O, 2 H, 14 C, 13 C). Groundwater provides about 50-60 % of the water resources used in Latin America. Large urban centers such as Lima (Peru), Managua (Nicaragua) and San Jose (Costa Rica) depend mainly on groundwater as a water supply for the population. The agriculture sector is also a major user of groundwater. The Isotope Hydrology Section of the International Atomic Energy Agency based in Vienna has mainly promoted the application of isotope techniques in Latin America. Most of these applications have focussed on the evaluation of the origin and residence time of the groundwater. The groundwater origin is intimately linked to recharge areas whose evaluation is key for the water balance of the aquifer. The evaluation of the groundwater residence time provides information that is relevant for the management of the groundwater system. This presentation will discuss the basic principles of the application of environmental isotopes in hydrology and it will review the current application of isotope techniques in Latin America. Case studies from different Latin American countries will be used to illustrate the main type of application of isotope techniques in groundwater studies in this region (au)

  20. 75 FR 352 - Enloe Hydroelectric Project; Notice of Application Ready for Environmental Analysis and...

    Science.gov (United States)

    2010-01-05

    ... Hydroelectric Project; Notice of Application Ready for Environmental Analysis and Soliciting Comments... hydroelectric application has been filed with the Commission and is available for public inspection. a. Type of... Utility District No. 1 of Okanogan County. e. Name of Project: Enloe Hydroelectric Project. f. Location...

  1. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  2. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  3. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    Science.gov (United States)

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  4. Study on Energetic Ions Behavior in Plasma Facing Materials at Lower Temperature

    International Nuclear Information System (INIS)

    Morimoto, Y.; Sugiyama, T.; Akahori, S.; Kodama, H.; Tega, E.; Sasaki, M.; Oyaidu, M.; Kimura, H.; Okuno, K.

    2003-01-01

    An apparatus equipped with X-ray Photoelectron Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS) was constructed to study interactions of energetic hydrogen isotopes with plasma facing materials. It is a remarkable feature of the apparatus that energetic ion implantation is carried out at around 150K to study reactions of energetic ions with matrix by suppressing the reactions of thermalized ions. Using this apparatus, TDS experiments for pyrolytic graphite implanted with energetic D 2 ions at 173 and 373K were carried out. The experimental results suggest that the deuterium implanted was released through a four-step release processes, involving three D 2 and one CD x (x = 2, 3 and 4) desorption processes. Two deuterium and CD x desorption processes were observed in the temperature range from 700 to 1200 K. In addition, a new deuterium desorption process was observed for the deuterium-implanted sample at 173 K. This has never been observed for deuterium-implanted graphite implanted at temperatures higher than room temperature

  5. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    Science.gov (United States)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  6. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  7. Bio-energetic rehabilitation of human health with use of therapeutic fasting

    International Nuclear Information System (INIS)

    Kechutkina, E.M.; Inyushin, V.M.; Asanov, D.R.

    2000-01-01

    The work devoted to study of mothers' and children's coming from ecologically unfavorable regions rehabilitation measures effectiveness and health improvement in condition of sanatorium-resort conditions. Comprehensive approach was developed in this direction. The approach includes of bio-energetic, psychologic, clearing measures in combination with weight-out faltering and observation of health status with help of electro-physiological methods. In result of conducted study and following analysis positive influence of hunger (in complex with resonance photoactivation bio-energetic excesses, psycho-training) process of bio-energetic rehabilitation of human health. It is concluded that most powerful energizing of reserve opportunities of body takes place at complete refusal from food and transition on internal nourishment (endogenous) that was confirm at 7-day festering by indexes of homeostasis shift

  8. Environmental Impacts of Large Scale Biochar Application Through Spatial Modeling

    Science.gov (United States)

    Huber, I.; Archontoulis, S.

    2017-12-01

    In an effort to study the environmental (emissions, soil quality) and production (yield) impacts of biochar application at regional scales we coupled the APSIM-Biochar model with the pSIMS parallel platform. So far the majority of biochar research has been concentrated on lab to field studies to advance scientific knowledge. Regional scale assessments are highly needed to assist decision making. The overall objective of this simulation study was to identify areas in the USA that have the most gain environmentally from biochar's application, as well as areas which our model predicts a notable yield increase due to the addition of biochar. We present the modifications in both APSIM biochar and pSIMS components that were necessary to facilitate these large scale model runs across several regions in the United States at a resolution of 5 arcminutes. This study uses the AgMERRA global climate data set (1980-2010) and the Global Soil Dataset for Earth Systems modeling as a basis for creating its simulations, as well as local management operations for maize and soybean cropping systems and different biochar application rates. The regional scale simulation analysis is in progress. Preliminary results showed that the model predicts that high quality soils (particularly those common to Iowa cropping systems) do not receive much, if any, production benefit from biochar. However, soils with low soil organic matter ( 0.5%) do get a noteworthy yield increase of around 5-10% in the best cases. We also found N2O emissions to be spatial and temporal specific; increase in some areas and decrease in some other areas due to biochar application. In contrast, we found increases in soil organic carbon and plant available water in all soils (top 30 cm) due to biochar application. The magnitude of these increases (% change from the control) were larger in soil with low organic matter (below 1.5%) and smaller in soils with high organic matter (above 3%) and also dependent on biochar

  9. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  10. 10 CFR 503.34 - Inability to comply with applicable environmental requirements.

    Science.gov (United States)

    2010-01-01

    ... requirements. 503.34 Section 503.34 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES... use of alternate fuels in compliance with applicable Federal or state environmental requirements, are... presented as part of a demonstration submitted under § 503.32 (Lack of alternate fuel supply). (2) Prior to...

  11. Energetics and efficiency of a molecular motor model

    International Nuclear Information System (INIS)

    Fogedby, Hans C; Svane, Axel

    2013-01-01

    The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al are analyzed from an analytical point of view. The model, which is based on protein friction with a track, is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor are addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10% in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action. (paper)

  12. 75 FR 65620 - Inglis Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting...

    Science.gov (United States)

    2010-10-26

    ... Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting Comments...: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The project would be... ready for environmental analysis at this time. l. The proposed 2.0-megawatt Inglis Hydropower Project...

  13. Development of Novel Environmentally Sustainable Binders for Energetic Formulations

    Science.gov (United States)

    2015-06-01

    the reaction by-products using silica gel chromatography proved very difficult on small scale, forecasting a serious challenge on the multi-gram scale...strategy. The product of the reaction was isolated by flash chromatography and fully characterized to confirm the results. P A G E | 21...Int. 2013, 96, 1372. (b) Sabnis, R. W. Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications, Wiley, 2010. (c) Bieniarz, C

  14. Long-lasting injection of solar energetic electrons into the heliosphere

    Science.gov (United States)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  15. Isotope applications in the environmental field

    International Nuclear Information System (INIS)

    DeWitt, R.

    1978-01-01

    Established uses of enriched isotopes in the environmental field were surveyed to determine future trends in isotope needs. Based on established isotope uses, on the projected increase in the pollution problem, and on the apparent social and economic pressure for pollution abatement, a significant demand for enriched isotopes appears to be developing for the assessment and control of air, water, and soil pollutants. Isotopic techniques will be used in combination with conventional methods of detection and measurement, such as gas chromatography, x-ray fluorescence, and atomic absorption. Recent advances in economical isotope separation methods, instrumentation, and methodology promise to place isotopic technology within the reach of most research and industrial institutions. Increased application of isotope techniques appears most likely to occur in areas where data are needed to characterize the movement, behavior, and fate of pollutants in the environment

  16. Application of improved topsis method to comprehensive assessment of radiological environmental quality

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2007-01-01

    TOPSIS is a method for multiobjective decision-making, which can be applied to comprehensive assessment of radiological environmental quality. This paper introduces the principle of TOPSIS method and sets up the model of improved TOPSIS method, discusses the application of improved TOPSIS method to comprehensive assessment of radiological environmental quality. This method sufficiently makes use of the information of the optimal matrix. Analysis of practical examples using MATLAB program shows that it is objectively reasonable and feasible to comprehensively assess radiological environmental quality by improved TOPSIS method. This paper also provides the result of optimum number of sites and compares it with optimal index method based on TOPSIS method and traditional method. (authors)

  17. Bases for an environmental liability management system: application to a repository for radioactive waste

    International Nuclear Information System (INIS)

    Tostes, Marcelo Mallat

    1999-03-01

    This thesis aims the establishment of conceptual bases for the development of Environmental Liability Management System - instruments designed to provide financial and managerial coverage to financial liabilities arising from activities that impact the environment. The document analyses the theories that link the evolution of economic thought and environment, as a means of establish the necessary framework for the development of up-to-date environmental policy instruments. From these concepts and from the analysis of environmental liability system being implemented in several countries, the bases for environmental liability systems development are drawn. Finally, a study is carried out on the application of these bases for the development of an environmental liability management system for a radioactive waste repository. (author)

  18. Hydro energetic inventory study from Chapecozinho river

    International Nuclear Information System (INIS)

    Pimenta, S.C.; Sureck, M.A.A.; Nascimento, P.R.; Kawasaki, M.; Silva Felipe, R. da.

    1990-01-01

    The Hydro energetic Inventory Study in Chapecozinho River Basin, Brazil is described, comparing the proposed results in 1979 with the actual review in 1989. An analysis for solution the socio-economic and environment problems is also presented. (author)

  19. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    The proposer requested funding for laser equipment that would be used to study engineered nanometric energetic materials consisting of nanometer metal particles, passivation layers and oxidizing binders...

  20. The necessity of environmental impact evaluation of petroleum flux in Salvador metropolitan region, Bahia

    International Nuclear Information System (INIS)

    Oliveira, J.G. de; Cunha, R.P.P. da; Lemos, A.L.M.; Leite, J.V.; Oliveira, L.M. de.

    1990-01-01

    This paper, through the analysis of the petrol flux's in a Regiao Metropolitana de Salvador (RMS), tries to identify the environmental impacts related to their activity from the research/extraction, production, storage and, transportation to the refinery. The Energetic and Environmental Diagnostic of the state of Bahia, in development by the Interdisciplinary Sector of Energy (SIEnergia-NST/UFBA) is the reference in which this work is inside. (author)

  1. The application of computer image analysis in life sciences and environmental engineering

    Science.gov (United States)

    Mazur, R.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.

    2014-04-01

    The main aim of the article was to present research on the application of computer image analysis in Life Science and Environmental Engineering. The authors used different methods of computer image analysis in developing of an innovative biotest in modern biomonitoring of water quality. Created tools were based on live organisms such as bioindicators Lemna minor L. and Hydra vulgaris Pallas as well as computer image analysis method in the assessment of negatives reactions during the exposition of the organisms to selected water toxicants. All of these methods belong to acute toxicity tests and are particularly essential in ecotoxicological assessment of water pollutants. Developed bioassays can be used not only in scientific research but are also applicable in environmental engineering and agriculture in the study of adverse effects on water quality of various compounds used in agriculture and industry.

  2. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  3. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    Science.gov (United States)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  5. Progress Towards a Benchtop Energetics Capability (BRIEFING CHARTS)

    National Research Council Canada - National Science Library

    Fajardo, Mario E; Lewis, William K

    2006-01-01

    The incorporation of nanometric (sub-micron size) metal fuel and oxidizer particles into energetic materials is a promising approach to increasing significantly the systems-level performance of munitions...

  6. Reflections on assumption of energetic politics. Viewpoint of a sceptial observer

    International Nuclear Information System (INIS)

    Taczanowski, S.; Pohorecki, W.

    2000-01-01

    The Polish assumptions of energetic politics up to 2020 have been critically assessed. Energy sources availability as well as predicted fuel prices have been discussed for interesting period. Fossil fuels and uranium have been taken into account. On the presented basis it has been concluded that rejection the nuclear option in Poland for energetics development plans up to 2020 seems to be a serious mistake

  7. Application of operating experience in environmental qualification program

    International Nuclear Information System (INIS)

    Lee, S.Y.; Wise, R.

    2000-01-01

    widely used by nuclear utilities in the past two decades. On the other hand, the use of operating experience has had limited application. In order to better position the use of operating experiences in nuclear power plants (NPP); this paper takes a rigorous review of the process involved in the EQ program and to formulate a set of equations to describe the EQ process. These equations identify the role of the methods used in achieving the EQ status. Consequently, these equations establish a baseline for the use of operating experiences in supplementing the qualification established by testing and analysis. This paper also formally defines the scope of using operating experience in EQ, and proposes a guide to compile, process and interpret data gathered such that they will be readily available to support the environmental qualification program. (author)

  8. Some new high energy materials and their formulations for specialized applications

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash [Directorate of Materials, DRDO HQrs, ' B' Wing, Sena Bhavan, New Delhi - 110 011 (India)

    2005-10-01

    Energetic materials form an integral part of most weapon systems and a large number of new high-energy materials: thermally stable explosives, high-performance explosives, melt-castable explosives, insensitive high explosives and energetic binders have been reported in the literature in recent years. Some explosive formulations based on these new energetic materials are also vaguely reported. This paper examines these materials and their formulations from the point of view of stability, reliability, safety and specific applications. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Energy crops on landfills: functional, environmental, and costs analysis of different landfill configurations.

    Science.gov (United States)

    Pivato, Alberto; Garbo, Francesco; Moretto, Marco; Lavagnolo, Maria Cristina

    2018-02-09

    The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.

  10. Kinetic and energetic analysis of lipid accumulation in batch culture of Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.G.; Rhee, J.S.

    1986-01-01

    Kinetic and energetic analyses were made to describe the accumulation of lipid Rhodotorula glutinis more quantitatively. Accumulation of lipid in yeast was controlled by kinetic factors. The energetic efficiency of lipid formation was higher than that of growth. 18 references.

  11. Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials

    Science.gov (United States)

    Piekiel, Nicholas William

    2012-01-01

    Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…

  12. Pesticide Environmental Accounting: a method for assessing the external costs of individual pesticide applications.

    Science.gov (United States)

    Leach, A W; Mumford, J D

    2008-01-01

    The Pesticide Environmental Accounting (PEA) tool provides a monetary estimate of environmental and health impacts per hectare-application for any pesticide. The model combines the Environmental Impact Quotient method and a methodology for absolute estimates of external pesticide costs in UK, USA and Germany. For many countries resources are not available for intensive assessments of external pesticide costs. The model converts external costs of a pesticide in the UK, USA and Germany to Mediterranean countries. Economic and policy applications include estimating impacts of pesticide reduction policies or benefits from technologies replacing pesticides, such as sterile insect technique. The system integrates disparate data and approaches into a single logical method. The assumptions in the system provide transparency and consistency but at the cost of some specificity and precision, a reasonable trade-off for a method that provides both comparative estimates of pesticide impacts and area-based assessments of absolute impacts.

  13. Effect of Neoclassical Transport Optimization on Energetic Ion Confinement in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamada, H.; Sasao, M.

    2004-01-01

    Confinement of energetic ions from neutral beam injection heating is investigated by changing the magnetic field configuration of the Large Helical Device from a classical heliotron configuration to an optimized neoclassical transport configuration to a level typical of ''advanced stellarators.'' The experimental results show the highest count rate of fast neutral particles not in the optimized configuration but in the inward-shifted one. The GNET simulation results show a relatively good agreement with the experimental results, and they also show a lower energy loss rate in the optimized configuration. This contradiction can be explained by the radial profile of the energetic ions. The relatively good agreement between experimental and simulation results suggest that ripple transport (neoclassical) dominates the energetic ion confinement and that the optimization process is effective in improving confinement in helical systems

  14. MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere.

    Science.gov (United States)

    Ho, George C; Krimigis, Stamatios M; Gold, Robert E; Baker, Daniel N; Slavin, James A; Anderson, Brian J; Korth, Haje; Starr, Richard D; Lawrence, David J; McNutt, Ralph L; Solomon, Sean C

    2011-09-30

    The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.

  15. THE EFFECT OF EXTERNAL TRANSPORT ON ENERGETIC EFFICIENCY OF BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Olga Anna Orynycz

    2017-03-01

    Full Text Available In several our publications energetic efficiency of biofuel production was defined as a ratio of the amount of energy obtained in a form of biofuel to the sum of energy contributions necessary to conduct production processes on all the production stages. It was also shown that such a definition enables subsequent inclusion of production steps due to additivity of reciprocals of energetic efficiency determined separately for each step. In the present work, several scenarios of the transport of biomass between plantation and industrial facility converting biomass into biofuel are considered, appropriate values of energetic efficiency are computed and compared. The analysis is confined to biodiesel production based on rapeseed. The results show substantial differences caused by various approaches to that stage of transport.

  16. A methodology for evaluating environmental impacts of railway freight transportation policies

    International Nuclear Information System (INIS)

    Lopez, Ignacio; Rodriguez, Javier; Buron, Jose Manuel; Garcia, Alberto

    2009-01-01

    Railway freight transportation presents a degree of complexity which frequently makes impossible to model it with sufficient precision. Currently, energetic and environmental impacts of freight transportation are usually modelled following average data, which do not reflect the characteristics of specific lines. These models allow qualitative approximations which may be used as criteria for designing high-level transportation policies: road-train modal shift, regional energetic planning or environmental policies. This paper proposes a methodology for estimating railway consumption associated to a specific railway line which yields a new degree of precision. It is based on estimating different contributions to railway consumption by a collection of factors, mobility, operation, or infrastructure-related. This procedure also allows applying the methodology for designing transportation policies in detail: evaluating impact of modal shift, consumption and pollutant emissions on a specific line, as well as the effect of building tunnels, reducing slopes, improving traffic control, etc. A comparison of the estimations given by the conventional approach and the proposed methodology is offered, as well as further comments on the results.

  17. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Bittelli, U.D.

    1988-01-01

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197 Au(n,γ) 198 Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115 In(n,n') 115m In) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58 Fe(n,γ) 59 Fe, 232 Th(n,γ) 233 Th, 197 Au(n,γ) 198 Au, 59 Co(n,γ) 60 Co, 54 Fe(n,p) 54 Mn, 24 Mg(n,p) 24 Na, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 115 In(n,n') 115m In. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor) [pt

  18. A hyperspectral image data exploration workbench for environmental science applications

    International Nuclear Information System (INIS)

    Woyna, M.A.; Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.

    1994-01-01

    The Hyperspectral Image Data Exploration Workbench (HIDEW) software system has been developed by Argonne National Laboratory to enable analysts at Unix workstations to conveniently access and manipulate high-resolution imagery data for analysis, mapping purposes, and input to environmental modeling applications. HIDEW is fully object-oriented, including the underlying database. This system was developed as an aid to site characterization work and atmospheric research projects

  19. A hyperspectral image data exploration workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Woyna, M.A.; Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.

    1994-08-01

    The Hyperspectral Image Data Exploration Workbench (HIDEW) software system has been developed by Argonne National Laboratory to enable analysts at Unix workstations to conveniently access and manipulate high-resolution imagery data for analysis, mapping purposes, and input to environmental modeling applications. HIDEW is fully object-oriented, including the underlying database. This system was developed as an aid to site characterization work and atmospheric research projects.

  20. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  1. Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere

    Science.gov (United States)

    Fok, Mei-Ching H.

    2011-01-01

    Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.

  2. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    Science.gov (United States)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  3. Report for MaRIE Drivers Workshop on needs for energetic material's studies.

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Energetic materials (i.e. explosives, propellants, and pyrotechnics) have complex mesoscale features that influence their dynamic response. Direct measurement of the complex mechanical, thermal, and chemical response of energetic materials is critical for improving computational models and enabling predictive capabilities. Many of the physical phenomena of interest in energetic materials cover time and length scales spanning several orders of magnitude. Examples include chemical interactions in the reaction zone, the distribution and evolution of temperature fields, mesoscale deformation in heterogeneous systems, and phase transitions. This is particularly true for spontaneous phenomena, like thermal cook-off. The ability for MaRIE to capture multiple length scales and stochastic phenomena can significantly advance our understanding of energetic materials and yield more realistic, predictive models.

  4. Status, problems and perspectives of the education on nuclear energetics and nuclear safety within the Technical University of Sofia

    International Nuclear Information System (INIS)

    Lakov, M.; Bonev, B.; Stoyanov, S.; Velev, V.

    2004-01-01

    Education on nuclear energetic within the Technical University of Sofia is conducted since 1966 within the framework of the specialty 'Thermal energetic' at that time, and since 1973, within the specialty 'Thermal and nuclear energetic'. In 1986 is opened a college on nuclear energetic teaching on specialty 'Nuclear Energetic' and 'Automation in Energetic'. Since 1998 the department 'Thermal and nuclear energetic' is the only one within the Republic of Bulgaria having the legal rights to train 'engineers-bachelors' and 'engineers-master of science' on 'Thermal and nuclear energetic', as well as doctors - engineers of the same specialty. The bachelor course is graduated from between 40 and 60 students annually. The training within the bachelor level is 4 years and finishes by defending diploma thesis. Part of the graduated bachelors (between 20 and 30 students) are closely specialized in the area of Nuclear Energetic. The specialization is trained through preparation of diploma thesis within the nuclear area. The master course has 3 semesters including preparation of diploma thesis. Within the master level are prepared 25 students annually. Within the sub-division 'Nuclear Energetic' are promulgated between 2 and 4 competitions for preparation of doctoral thesis annually. At the moment 7 students are preparing doctoral thesis. Graduated engineers on 'Nuclear Energetic' are engaged as operative personnel mainly in Kozloduy NPP. The rest of them are engaged within the engineering and scientific organizations, connected to nuclear energetic

  5. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    International Nuclear Information System (INIS)

    Dreizler, Andreas; Fried, Alan; Gord, James R.

    2007-01-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica

  6. Laser applications to chemical, security, and environmental analysis: introduction to the feature issue.

    Science.gov (United States)

    Seeger, Thomas; Dreier, Thomas; Chen, Weidong; Kearny, Sean; Kulatilaka, Waruna

    2017-04-10

    This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2016 Fifteenth Topical Meeting sponsored by the Optical Society of America.

  7. A new method for determining gas phase heat of formation of aromatic energetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad H. [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P. O. Box 83145/115 (Iran); Tehrani, Masoud K. [Department of Physics, Malek-ashtar University of Technology, Shahin-shahr P. O. Box 83145/115 (Iran)

    2007-04-15

    A new correlation is introduced for desk calculation of gas phase heat of formation of aromatic energetic compounds that contain the elements of carbon, hydrogen, nitrogen and oxygen. Predicted gas phase heats of formation for 26 energetic compounds have a root mean square of deviation from experiment of 20.67 kJ/mol, which is in good agreement with respect to measured values of oxygen-lean and oxygen-rich aromatic energetic compounds. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    He Qibing; Peng Qiyang; Qu Wenxiao

    1993-09-01

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  9. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    2001-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) ''counter'' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  10. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    1999-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) 'counter' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  11. Status of existing federal environmental risk-based standards applicable to Department of Energy operations

    International Nuclear Information System (INIS)

    Bilyard, G.R.; Jonas, R.J.; Wallo, A. III

    1991-01-01

    When conducting its environmental restoration, waste management, and decontamination and decommissioning activities, the US Department of Energy (DOE) must comply with a myriad of regulatory procedures and environmental standards. An assessment of the status of existing federal standards that may be applied to chemical and radioactive substances on DOE sites found substantial gaps and inconsistencies among the existing standards, and technical issues associated with the application of those standards. Of 271 chemical and radioactive substances found to be important across environmental media at the Hanford, Savannah River, and Oak Ridge Sites, 96 (35%) are unregulated by federal regulations and are not covered by DOE guidelines, 48 (18%) are covered by single federal standards or DOE guidelines, and 127 (47%) are covered by multiple regulations or DOE guidelines. Inconsistencies and technical issues among standards include the promulgation of different standards under different regulations for a given substance in an environmental medium, the application of standards for purposes other than originally intended, and the inability to meet standards because of technical limitations. Given the lack of a complete, consistent set of standards or generic procedures for determining applicable standards, and given the existence of inconsistencies and technical issues among the existing set of standards, DOE may be faced with lengthy negotiations of standards on a case-by-case basis. Such negotiations could result in inconsistent cleanup levels, high costs, potential delays, and missed regulatory milestones

  12. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  13. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    International Nuclear Information System (INIS)

    Voss, H.D.; Smith, L.G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes

  14. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.

  15. Energetic utilization of dietary fiber in pigs

    NARCIS (Netherlands)

    Rijnen, M.M.J.A.

    2003-01-01

    The energetic utilization of fermentable dietary fiber (fDF) of different fiber sources and its relation to physical activity and housing conditions was studied in three experiments. In all experiments the daily intake of digestible nutrients, nitrogen and energy balances, heat production, and

  16. Association between magnetic field fluctuations and energetic particle bursts in the earth's magnetotail

    Science.gov (United States)

    Lui, A. T. Y.; Krimigis, S. M.; Armstrong, T. P.

    1982-01-01

    The association between energetic protons (0.29-0.50 MeV) and simultaneous local fluctuations of magnetic field at 35 to 45 earth radii in the magnetotail is examined statistically with data from APL/JHU particle telescopes aboard IMP 7 and IMP 8. About four satellite years of 5.5 min averaged measurements are used in this study. In addition to confirming that the level of magnetic field fluctuations generally increases with the presence of energetic protons and their streaming anisotropy, it is found that increases in occurrence frequency of streaming of energetic protons are ordered far better by magnetic field fluctuations than by proximity to the neutral sheet. However, the presence of large magnetic field fluctuations (delta B greater than 5 nT or delta B/B greater than 50%) is neither a necessary nor a sufficient condition for the detection of large streaming in energetic protons.

  17. ARE THERE TWO DISTINCT SOLAR ENERGETIC PARTICLE RELEASES IN THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT EVENT?

    International Nuclear Information System (INIS)

    Ding, Liu-Guan; Jiang, Yong; Li, Gang

    2016-01-01

    We examine ion release times in the solar vicinity for the 2012 May 17 Ground Level Enhancement event using the velocity dispersion analysis method. In situ energetic proton data from Solar and Heliospheric Observatory (SOHO)/Energetic and Relativistic Nuclei and Electron and Geostationary Operational Environmental Satellite are used. We find two distinct releases of Solar Energetic Particles (SEPs) near the Sun, separated by ∼40 minutes. From soft X-ray observations, we find that the first release coincides with the solar flare eruption: the release starts from the flare onset and ends near the peak of the soft X-ray; type-III radio bursts also occur when the release starts. A type II radio burst may also start at the begining of the release. However, the associated Coronal Mass Ejection (CME) only has a height of 0.08R s from extrapolation of SOHO/LASCO data. At the start of the second release, the CME propagates to more than 8.4R s in height, and there are signatures of an enhanced type II radio burst. The time-integrated spectra for the two releases differ. The spectrum for the second release shows the common double-power-law feature of gradual SEP events. The spectrum for the first release does not resemble power laws because there is considerable modulation at lower energies. Based on our analysis, we suggest that SEPs of the first release were dominated by particles accelerated at the flare, and those of the second release were dominated by particles accelerated at the associated CME-driven shock. Our study may be important to understand certain extreme SEP events

  18. New Physics with Energetic Top Quarks

    CERN Document Server

    Andeen, Timothy; The ATLAS collaboration

    2018-01-01

    Many theories beyond the Standard Model predict new phenomena which decay to energetic top quarks. Searches for such new physics models are performed using the ATLAS experiment at the LHC using proton-proton collision data collected in 2015 and 2016 with a center-of-mass energy of 13 TeV. Selected recent results will be discussed.

  19. Industrial Application Of Environmentally Conscious Design

    DEFF Research Database (Denmark)

    McAloone, Timothy Charles

    in the design process is key to environmentally conscious design;- the environmental profile of a product is affected the most in the very early stages of the design process, particularly in the pre-specification stage, where tools for environmentally conscious design decision-making are lacking...... when companies have integrated environmental considerations into the design process.In the context of advanced practitioners of environmentally conscious design in the Western European and North American electrical/electronics industry sector, it is shown that:- the timing of environmental decisions...... into their product development processes. This starts with motivation, leading to widening communication and information flows and finally to whole-life thinking....

  20. 18 CFR 157.9 - Notice of application and notice of schedule for environmental review.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Notice of application and notice of schedule for environmental review. 157.9 Section 157.9 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC...