WorldWideScience

Sample records for energetic agn outburst

  1. AN ENERGETIC AGN OUTBURST POWERED BY A RAPIDLY SPINNING SUPERMASSIVE BLACK HOLE OR AN ACCRETING ULTRAMASSIVE BLACK HOLE

    International Nuclear Information System (INIS)

    McNamara, B. R.; Kazemzadeh, F.; Kirkpatrick, C. C.; Rafferty, D. A.; Birzan, L.; Nulsen, P. E. J.; Wise, M. W.

    2009-01-01

    Powering the 10 62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion with a 10% mass-to-energy conversion efficiency implies that its putative supermassive black hole (SMBH) grew by ∼6 x 10 8 M sun over the past 100 Myr. Guided by data at several wavelengths, we place upper limits on the amount of cold gas and star formation near the nucleus of 9 M sun and sun yr -1 , respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the inner several kpc must have been consumed by its SMBH at the rate of ∼3-5 M sun yr -1 during the past 100 Myr while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10 11 M sun . Furthermore, its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ∼5 x 10 9 M sun black hole. We suggest instead that the active galactic nucleus (AGN) outburst is powered by angular momentum released from a rapidly spinning black hole. The rotational energy and power available from a spinning black hole are consistent with the cavity and shock energetics inferred from X-ray observations. A maximally spinning 10 9 M sun black hole contains enough rotational energy, ∼10 62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10 10 M sun . The host galaxy's unusually large 3.8 kpc stellar core radius (light deficit) may

  2. Modeling AGN outbursts from supermassive black hole binaries

    Directory of Open Access Journals (Sweden)

    Tanaka T.

    2012-12-01

    Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

  3. The energetics of AGN radiation pressure-driven outflows

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.; Maiolino, R.

    2018-05-01

    The increasing observational evidence of galactic outflows is considered as a sign of active galactic nucleus (AGN) feedback in action. However, the physical mechanism responsible for driving the observed outflows remains unclear, and whether it is due to momentum, energy, or radiation is still a matter of debate. The observed outflow energetics, in particular the large measured values of the momentum ratio (\\dot{p}/(L/c) ˜ 10) and energy ratio (\\dot{E}_k/L ˜ 0.05), seems to favour the energy-driving mechanism; and most observational works have focused their comparison with wind energy-driven models. Here, we show that AGN radiation pressure on dust can adequately reproduce the observed outflow energetics (mass outflow rate, momentum flux, and kinetic power), as well as the scalings with luminosity, provided that the effects of radiation trapping are properly taken into account. In particular, we predict a sublinear scaling for the mass outflow rate (\\dot{M} ∝ L^{1/2}) and a superlinear scaling for the kinetic power (\\dot{E}_k ∝ L^{3/2}), in agreement with the observational scaling relations reported in the most recent compilation of AGN outflow data. We conclude that AGN radiative feedback can account for the global outflow energetics, at least equally well as the wind energy-driving mechanism, and therefore both physical models should be considered in the interpretation of future AGN outflow observations.

  4. Duty-cycle and energetics of remnant radio-loud AGN

    Science.gov (United States)

    Turner, Ross J.

    2018-05-01

    Deriving the energetics of remnant and restarted active galactic nuclei (AGNs) is much more challenging than for active sources due to the complexity in accurately determining the time since the nucleus switched-off. I resolve this problem using a new approach that combines spectral ageing and dynamical models to tightly constrain the energetics and duty-cycles of dying sources. Fitting the shape of the integrated radio spectrum yields the fraction of the source age the nucleus is active; this, in addition to the flux density, source size, axis ratio, and properties of the host environment, provides a constraint on dynamical models describing the remnant radio source. This technique is used to derive the intrinsic properties of the well-studied remnant radio source B2 0924+30. This object is found to spend 50_{-12}^{+14} Myr in the active phase and a further 28_{-5}^{+6} Myr in the quiescent phase, have a jet kinetic power of 3.6_{-1.7}^{+3.0}× 10^{37} W, and a lobe magnetic field strength below equipartition at the 8σ level. The integrated spectra of restarted and intermittent radio sources are found to yield a `steep-shallow' shape when the previous outburst occurred within 100 Myr. The duty-cycle of B2 0924+30 is hence constrained to be δ < 0.15 by fitting the shortest time to the previous comparable outburst that does not appreciably modify the remnant spectrum. The time-averaged feedback energy imparted by AGNs into their host galaxy environments can in this manner be quantified.

  5. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Department of Astronomy and Center for Galaxy EVolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-12-20

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  6. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters

    Science.gov (United States)

    Tang, Xiaping; Churazov, Eugene

    2017-07-01

    We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind active galactic nucleus feedback in the intracluster medium. For a given density and pressure of the medium, the spatial structure and energy partition at a given time tage (since the onset of the outburst) are fully determined by the total injected energy Einj and the duration tb of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. We studied the energy partition during such transition with different combinations of Einj and tb. For an instantaneous outburst with tb → 0, which corresponds to the extension of classic Sedov-Taylor solution with counter-pressure, the fraction of energy that can be carried away by sound waves is ≲12 per cent of Einj. As tb increases, the solution approaches the 'slow piston' limit, with the fraction of energy in sound waves approaching zero. We then repeat the simulations using radial density and temperature profiles measured in Perseus and M87/Virgo clusters. We find that the results with a uniform medium broadly reproduce an outburst in more realistic conditions once proper scaling is applied. We also develop techniques to map intrinsic properties of an outburst (Einj, tb and tage) to the observables like the Mach number of the shock and radii of the shock and ejecta. For the Perseus cluster and M87, the estimated (Einj, tb and tage) agree with numerical simulations tailored for these objects with 20-30 per cent accuracy.

  7. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  8. Evidence for ultra-fast outflows in radio-quiet AGNs: III - location and energetics

    OpenAIRE

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultra-fast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ~0.0003-0.03pc (~10^2-10^4 r_s) from the central black hole, consistent with what is exp...

  9. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  10. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  11. RAiSE III: 3C radio AGN energetics and composition

    Science.gov (United States)

    Turner, Ross J.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-03-01

    Kinetic jet power estimates based exclusively on observed monochromatic radio luminosities are highly uncertain due to confounding variables and a lack of knowledge about some aspects of the physics of active galactic nuclei (AGNs). We propose a new methodology to calculate the jet powers of the largest, most powerful radio sources based on combinations of their size, lobe luminosity, and shape of their radio spectrum; this approach avoids the uncertainties encountered by previous relationships. The outputs of our model are calibrated using hydrodynamical simulations and tested against independent X-ray inverse-Compton measurements. The jet powers and lobe magnetic field strengths of radio sources are found to be recovered using solely the lobe luminosity and spectral curvature, enabling the intrinsic properties of unresolved high-redshift sources to be inferred. By contrast, the radio source ages cannot be estimated without knowledge of the lobe volumes. The monochromatic lobe luminosity alone is incapable of accurately estimating the jet power or source age without knowledge of the lobe magnetic field strength and size, respectively. We find that, on average, the lobes of the Third Cambridge Catalogue of Radio Sources (3C) have magnetic field strengths approximately a factor three lower than the equipartition value, inconsistent with equal energy in the particles and the fields at the 5σ level. The particle content of 3C radio lobes is discussed in the context of complementary observations; we do not find evidence favouring an energetically dominant proton population.

  12. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters II: impact of thermal conduction.

    Science.gov (United States)

    Tang, Xiaping; Churazov, Eugene

    2018-04-01

    We analyze the impact of thermal conduction on the appearance of a shock-heated gas shell which is produced when a spherically symmetric outburst of a supermassive black hole inflates bubbles of relativistic plasma at the center of a galaxy cluster. The presence of the hot and low-density shell can be used as an ancillary indicator for a high rate of energy release during the outburst, which is required to drive strong shocks into the gas. Here we show that conduction can effectively erase such shell, unless the diffusion of electrons is heavily suppressed. We conclude that a more robust proxy to the energy release rate is the ratio between the shock radius and bubble radius. We also revisited the issue of sound waves dissipation induced by thermal conduction in a scenario, where characteristic wavelength of the sound wave is set by the total energy of the outburst. For a fiducial short outburst model, the dissipation length does not exceed the cooling radius in a typical cluster, provided that the conduction is suppressed by a factor not larger than ˜100. For quasi-continuous energy injection neither the shock-heated shell nor the outgoing sound wave are important and the role of conduction is subdominant.

  13. Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming, E-mail: liangyf@pmo.ac.cn, E-mail: jin@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Science, Nanjing, 210008 (China)

    2017-02-10

    GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.

  14. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  15. Energetics of the molecular gas in the H2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

    Science.gov (United States)

    Nesvadba, N. P. H.; Boulanger, F.; Salomé, P.; Guillard, P.; Lehnert, M. D.; Ogle, P.; Appleton, P.; Falgarone, E.; Pineau Des Forets, G.

    2010-10-01

    We present a detailed analysis of the gas conditions in the H2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M⊙ yr-1) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~10-50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H2 line emission is factors 10-100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~-1800 km s-1 and a mass outflow rate of 30-40 M⊙ yr-1, which cannot be explained by star formation. The mechanical power implied by the wind, of order 1043 erg s-1, is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 107-8 yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥1011 M⊙ could generally be regulated through a fundamentally similar form of “maintenance-phase” AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer.

  16. Partitioning the Outburst Energy of a Low Eddington Accretion Rate AGN at the Center of an Elliptical Galaxy: The Recent 12 Myr History of the Supermassive Black Hole in M87

    Energy Technology Data Exchange (ETDEWEB)

    Forman, W.; Jones, C.; Kraft, R.; Vikhlinin, A. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85740 Garching (Germany); Heinz, S., E-mail: wrf@cfa.harvard.edu [University of Wisconsin, Madison, Wisconsin (United States)

    2017-08-01

    M87, the active galaxy at the center of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole (SMBH) with a hot, gas-rich environment. A deep Chandra observation of M87 exhibits an approximately circular shock front (13 kpc radius, in projection) driven by the expansion of the central cavity (filled by the SMBH with relativistic radio-emitting plasma) with projected radius ∼1.9 kpc. We combine constraints from X-ray and radio observations of M87 with a shock model to derive the properties of the outburst that created the 13 kpc shock. Principal constraints for the model are (1) the measured Mach number ( M ∼ 1.2), (2) the radius of the 13 kpc shock, and (3) the observed size of the central cavity/bubble (the radio-bright cocoon) that serves as the piston to drive the shock. We find that an outburst of ∼5 × 10{sup 57} erg that began about 12 Myr ago and lasted ∼2 Myr matches all the constraints. In this model, ∼22% of the energy is carried by the shock as it expands. The remaining ∼80% of the outburst energy is available to heat the core gas. More than half the total outburst energy initially goes into the enthalpy of the central bubble, the radio cocoon. As the buoyant bubble rises, much of its energy is transferred to the ambient thermal gas. For an outburst repetition rate of about 12 Myr (the age of the outburst), 80% of the outburst energy is sufficient to balance the radiative cooling.

  17. Outbursts of symbiotic novae

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Truran, J.W.

    1983-01-01

    We discuss possible conditions under which thermonuclear burning episodes in the hydrogen-rich envelopes of accreting white dwarfs give rise to outbursts similar in nature to those observed in the symbiotic stars AG Peg, RT Ser, RR Tel, AS 239, V1016 Cyg, V1329 Cyg, and HM Sge. In principle, thermonuclear runaways involving low-luminosity white dwarfs accreting matter at low rates produce configurations that evolve into A--F supergiants at maximum visual light and which resemble the outbursts of RR Tel, RT Ser, and AG peg. Very weak, nondegenerage hydrogen shell flashes on white dwarfs accreting matter at high rates (M> or approx. =10 -8 M/sub sun/ yr -1 ) do not produce cool supergiants at maximum, and may explain the outbursts in V1016 Cyg, V1329 Cyg, and HM Sge. The low accretion rates demanded for systems developing strong hydrogen shell flashes on low-luminsoity white dwarfs are not compatible with observations of ''normal'' quiescent symbiotic stars. The extremely slow outbursts of symbiotic novae appear to be typical of accreting white dwarfs in wide binaries, which suggests that the outbursts of classical novae may be accelerated by the interaction of the expanding white dwarf envelope with its close binary companion

  18. Cometary outbursts, a brief survey

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D W [Sheffield Univ. (UK). Dept. of Physics

    1975-12-01

    Cometary outbursts, sudden increases in brightness which last for about a month, are still something of a mystery. The subject is treated under the following headings: the characteristics of outbursts (form, duration, mass loss and energy; probability of occurrence; distribution in the solar system; temporal periodicities in outbursts); possible production mechanisms for outbursts (pressure release from gas pockets; explosive radicals; amorphous ice; impact cratering by boulders; break-up of nucleus; nuclear crushing).

  19. The classical nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1988-01-01

    The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab

  20. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-04-20

    We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagram dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.

  1. On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1

    Science.gov (United States)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    2017-10-01

    We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.

  2. Nucleosynthesis in nova outbursts

    International Nuclear Information System (INIS)

    Iliadis, C.; Azuma, R.E.; Buchmann, L.

    1994-02-01

    Astronomical observations have shown that He, CNO material and/or heavy elements are considerably enriched in certain nova ejecta relative to solar matter. The heavy element enrichments can be explained by the dredge-up of matter from an underlying ONeMg white dwarf and subsequent redistribution of the material by the rp-process. The proton capture reactions on 32 S and 36 A r important for hydrogen burning during nova outbursts have been measured experimentally. The derived stellar reaction rates have been incorporated into large-scale network calculations and the astrophysical consequences are discussed. (author)

  3. Nucleosynthesis in nova outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Iliadis, C [TRIUMF, Vancouver, BC (Canada); [Univ. of Toronto, McLennan Physical Labs., Toronto, ON (Canada); Azuma, R E [Univ. of Toronto, McLennan Physical Lab., Toronto, ON (Canada); Buchmann, L [TRIUMF, Vancouver, BC (Canada); and others

    1994-02-01

    Astronomical observations have shown that He, CNO material and/or heavy elements are considerably enriched in certain nova ejecta relative to solar matter. The heavy element enrichments can be explained by the dredge-up of matter from an underlying ONeMg white dwarf and subsequent redistribution of the material by the rp-process. The proton capture reactions on 32{sup S} and 36{sup A}r important for hydrogen burning during nova outbursts have been measured experimentally. The derived stellar reaction rates have been incorporated into large-scale network calculations and the astrophysical consequences are discussed. (author) 17 refs., 2 figs.

  4. Outbursts in Symbiotic Binaries

    Science.gov (United States)

    Sonneborn, George (Technical Monitor); Kenyon, Scott J.

    2004-01-01

    Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence. If most symbiotic stars undergo thermonuclear eruptions, then symbiotics are probably poor candidates for type I supernovae. However, they can then provide approx. 10% of the material which stars recycle back into the interstellar medium. If disk instabilities are the dominant eruption mechanism, symbiotics are promising type Ia candidates but recycle less material into the interstellar medium.

  5. GLAST and AGN Science

    Science.gov (United States)

    Reyes, Luis C.

    2006-04-01

    The Large Area Telescope (LAT) on board GLAST (Gamma-ray Large Area Space Telescope) is an instrument under construction to study the gamma-ray sky in the energy range 20 MeV to >300 GeV with special interest in the previously unexplored region between a few GeV and a few hundred GeV. Among the high energy gamma-ray sources in the sky, the Blazar-class of AGNs are distinguished because of their brightness and very short term variability. GLAST's improved sensitivity with respect to previous missions will increase the number of known AGN gamma-ray sources from about 100 to thousands, with redshifts up to z>4. Science returns with GLAST include: examination of the blazar sequence model, test of leptonic and hadronic models for particle acceleration, physics of relativistic jets, and evolution of Blazar AGNs population with cosmic time. Special consideration will be given to the possibility of using the large size of the GLAST Blazar catalog to distinguish intrinsic spectra of AGNs from the redshift dependent effects of attenuation by the Extragalactic Background Light (EBL). A measured attenuation as a function of AGN redshift would constitute and effective and unique probe to the optical-UV EBL.

  6. Radio outbursts in extragalactic sources

    International Nuclear Information System (INIS)

    Kinzel, W.M.

    1989-01-01

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior

  7. AGN Heating in Simulated Cool-core Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bryan, Greg L., E-mail: yuanlium@umich.edu [Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York, NY 10027 (United States)

    2017-10-01

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss. However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.

  8. AGN Science with AGIS

    Science.gov (United States)

    Coppi, Paolo

    2009-05-01

    AGIS, a proposed future gamma-ray telescope consisting of a square km array of 50 atmospheric Cherenkov telescopes, will provide a powerful new view of the high energy universe. The combination of its increased sensitivity (a factor 10 over current observatories), increased survey capabilities, and a low energy threshold (<30 GeV) that allows observations at energies not subject to absorption on extragalactic background light will result in a dramatic increase in the number of AGN accessible at high energies. The overall number of ``TeV blazar" AGN, those detected by current ground-based observatories, should increase by a factor 30 or more with a corresponding increase in the number of these that can be monitored at high statistical significance to test emission models rigorously. More excitingly, AGIS may also begin to pick up entirely new classes of AGN such as radio galaxies with X-ray emitting hotspots at large distances from the central engine, providing further insight into the outflows from AGN. The low AGIS threshold energy will also allow significant source overlap with objects detected by the recently launched Fermi gamma-ray space observatory at lower, GeV energies. AGIS will significantly improve on the localization and variability monitoring of the Fermi sources it sees.

  9. DAVs: Red Edge and Outbursts

    Science.gov (United States)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500Kred edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  10. Comet 29P/SW1 outburst

    Science.gov (United States)

    Trigo-Rodriguez, Josep M.

    2008-10-01

    The present outburst experienced by this Centaur (#IAUC 8978) is the brightest detected since September 2004 [for more details see Trigo-Rodriguez et al. (2008) A&A485, pp. 599-606]. In the previously reported work the outburst frequency was established in 7.3 outbursts/year, typically reaching a +13 maximum magnitude or less.

  11. Outflow Kinematics Manifested by the Hα Line: Gas Outflows in Type 2 AGNs. IV

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeun; Woo, Jong-Hak; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-08-20

    Energetic ionized gas outflows driven by active galactic nuclei (AGNs) have been studied as a key phenomenon related to AGN feedback. To probe the kinematics of the gas in the narrow-line region, [O iii] λ 5007 has been utilized in a number of studies showing nonvirial kinematic properties due to AGN outflows. In this paper, we statistically investigate whether the H α emission line is influenced by AGN-driven outflows by measuring the kinematic properties based on the H α line profile and comparing them with those of [O iii]. Using the spatially integrated spectra of ∼37,000 Type 2 AGNs at z < 0.3 selected from the Sloan Digital Sky Survey DR7, we find a nonlinear correlation between H α velocity dispersion and stellar velocity dispersion that reveals the presence of the nongravitational component, especially for AGNs with a wing component in H α . The large H α velocity dispersion and velocity shift of luminous AGNs are clear evidence of AGN outflow impacts on hydrogen gas, while relatively smaller kinematic properties compared to those of [O iii] imply that the observed outflow effect on the H α line is weaker than the case of [O iii].

  12. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  13. Simultaneous Chandra and NuSTAR Observations of the Highly Obscured AGN Candidate in NGC660.

    Science.gov (United States)

    Annuar, Ady

    2014-09-01

    We are using NuSTAR to undertake a detailed investigation of the obscured AGN population at D<15Mpc. Our latest target is NGC660 where the presence of an AGN has been ambiguous. However, recently it was observed to undergo a radio outburst which reveals a bright continuum source (Argo et al. 2015), coincident with Chandra 2-8 keV emission from one of the three point sources near the nucleus (<5"). This confirms and pinpoints the X-ray position of the AGN. Comparisons of the Chandra flux with the radio emission and other multiwavelength luminosity indicators indicate that the X-ray flux is suppressed, suggesting that it is absorbed by a high column of gas. A NuSTAR observation for this object has been scheduled as part of our program. The requested Chandra observation is essential to unambiguously constrain the AGN and isolate it from other sources at <8 keV. When combined with NuSTAR, we will then be able to accurately characterise the 0.5-30 keV spectrum of the AGN for the first time.

  14. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  15. Fueling the AGN

    Science.gov (United States)

    Combes, F.

    Active Galactic Nuclei are fueled from material (gas or stars) that are in general far away from the gravitational influence of the central black hole, the engine thought to be responsible for their activity. The required material has a lot of angular momentum that, a priori, is quite difficult to evacuate. The various dynamical mechanisms that may play a role in this game are reviewed, including m = 2 perturbations (bars and spirals), m = 1 perturbations (spirals, warps, lopsidedness), and tidal interactions between galaxies and mergers. In the latest stages of the merger, a binary black hole could be formed, and its influence on the dynamics and fueling is discussed. Starbursts are often associated with AGN, and the nature of their particular connection, and their role in the nuclear fueling is described. Evolution of the fueling efficiency with redshift is addressed.

  16. Fading AGN Candidates: AGN Histories and Outflow Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C.; Maksym, W. Peter [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Lintott, Chris J. [Astrophysics, Oxford University and Adler Planetarium, 1300 S. Lakeshore Drive, Chicago, IL 60605 (United States); Bennert, Vardha N.; Scott, Bryan; Showley, Charles; Flatland, Kelsi [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Chojnowski, S. Drew [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Moiseev, Alexei; Smirnova, Aleksandrina [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz, 369167 (Russian Federation); Schawinski, Kevin; Sartori, Lia F. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Straße 27, CH-8093 Zurich (Switzerland); Urry, C. Megan [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Pancoast, Anna [Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Schirmer, Mischa, E-mail: wkeel@ua.edu [Gemini Observatory, La Serena (Chile)

    2017-02-01

    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Q {sub ion} derived from photoionization balance in the brightest pixels in H α at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Q {sub ion} values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2×10{sup 4} yr before the direct view of the nucleus. The e -folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and

  17. Fading AGN Candidates: AGN Histories and Outflow Signatures

    International Nuclear Information System (INIS)

    Keel, William C.; Maksym, W. Peter; Lintott, Chris J.; Bennert, Vardha N.; Scott, Bryan; Showley, Charles; Flatland, Kelsi; Chojnowski, S. Drew; Moiseev, Alexei; Smirnova, Aleksandrina; Schawinski, Kevin; Sartori, Lia F.; Urry, C. Megan; Pancoast, Anna; Schirmer, Mischa

    2017-01-01

    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Q ion derived from photoionization balance in the brightest pixels in H α at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Q ion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2×10 4 yr before the direct view of the nucleus. The e -folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission

  18. AGN Clustering in the BAT Sample

    Science.gov (United States)

    Powell, Meredith; Cappelluti, Nico; Urry, Meg; Koss, Michael; BASS Team

    2018-01-01

    We characterize the environments of local growing supermassive black holes by measuring the clustering of AGN in the Swift-BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.012MASS galaxies, we constrain the halo occupation distribution (HOD) of the full sample with unprecedented sensitivity, as well as in bins of obscuration with matched luminosity distributions. In doing so, we find that AGN tend to reside in galaxy groups, agreeing with previous studies of AGN throughout a large range of luminosity and redshift. We also find evidence that obscured AGN tend to reside in denser environments than unobscured AGN.

  19. The broad-band SEDs of four `hypervariable' AGN

    Science.gov (United States)

    Collinson, James S.; Ward, Martin J.; Lawrence, Andy; Bruce, Alastair; MacLeod, Chelsea L.; Elvis, Martin; Gezari, Suvi; Marshall, Philip J.; Done, Chris

    2018-03-01

    We present an optical-to-X-ray spectral analysis of four `hypervariable' AGN (HVAs) discovered by comparing Pan-STARRS data to that from the Sloan Digital Sky Survey over a 10 yr baseline (Lawrence et al.). There is some evidence that these objects are X-ray loud for their corresponding UV luminosities, but given that we measured them in a historic high state, it is not clear whether to take the high state or low state as typical of the properties of these HVAs. We estimate black hole masses based on Mg II and H α emission line profiles, and either the high- or low-state luminosities, finding mass ranges log (MBH/M⊙) = 8.2-8.8 and log (MBH/M⊙) = 7.9-8.3, respectively. We then fit energy-conserving models to the spectral energy distributions (SEDs), obtaining strong constraints on the bolometric luminosity and αOX. We compare the SED properties with a larger, X-ray selected AGN sample for both of these scenarios, and observe distinct groupings in spectral shape versus luminosity parameter space. In general, the SED properties are closer to normal if we assume that the low state is representative. This supports the idea that the large slow outbursts may be due to extrinsic effects (for example microlensing) as opposed to accretion rate changes, but a larger sample of HVAs is needed to be confident of this conclusion.

  20. Observations of classical novae in outburst

    Science.gov (United States)

    Starrfield, S.; Stryker, L. L.; Sonneborn, G.; Sparks, Warren M.; Ferland, Gary; Wagner, R. M.; Williams, R. E.; Gehrz, Robert D.; Ney, Edward P.; Kenyon, Scott

    1988-01-01

    The IUE obtained ultraviolet data on novae in outburst. The characteristics of every one of the outbursts are different. Optical and infrared data on many of the same novae were also obtained. Three members of the carbon-oxygen class of novae are presented.

  1. Discovery of 21 New Changing-look AGNs: Study on Evolution of AGNs and AGN Host Galaxies

    Science.gov (United States)

    Yang, Qian; Wu, Xuebing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Shangguan, Jinyi; Yao, Su; Wang, Bingquan; Joshi, Ravi; Green, Richard F.; Wang, Feige; Feng, Xiaotong; Fu, Yuming; Yang, Jinyi; Liu, Yuanqi

    2018-01-01

    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 Survey Explorer (WISE), were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at higher than 3σ confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared colors W1‑W2 become redder when the objects become brighter in the W1 band, possibly due to a stronger hot dust contribution in the W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs. The rare CL AGNs provide exceptional cases for the black hole and host stellar velocity dispersion relation studies at higher redshift. The faint state spectrum can be used to obtain the host stellar velocity dispersion without contamination from AGN component, and the bright state spectrum can be used to calculate the black hole mass with broad Balmer emission lines. The images at the non-AGN phase of CL AGNs are useful for studies of AGN host galaxies avoiding contamination from the luminous central engines.

  2. Heavily Obscured AGN with SIMBOL-X

    International Nuclear Information System (INIS)

    Ceca, R. Della; Caccianiga, A.; Severgnini, P.

    2009-01-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  3. Heavily Obscured AGN with SIMBOL-X

    Science.gov (United States)

    Della Ceca, R.; Caccianiga, A.; Severgnini, P.

    2009-05-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  4. Remnant radio-loud AGN in the Herschel-ATLAS field

    Science.gov (United States)

    Mahatma, V. H.; Hardcastle, M. J.; Williams, W. L.; Brienza, M.; Brüggen, M.; Croston, J. H.; Gurkan, G.; Harwood, J. J.; Kunert-Bajraszewska, M.; Morganti, R.; Röttgering, H. J. A.; Shimwell, T. W.; Tasse, C.

    2018-04-01

    Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (-1.5≤slant α ^{1400}_{150}≤slant -0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.

  5. Dwarf novae in outburst: modelling the observations

    International Nuclear Information System (INIS)

    Pringle, J.E.; Verbunt, F.

    1986-01-01

    Time-dependent accretion-disc models are constructed and used to calculate theoretical spectra in order to try to fit the ultraviolet and optical observations of outbursts of the two dwarf novae VW Hydri and CN Orionis. It is found that the behaviour on the rise to outburst is the strongest discriminator between theoretical models. The mass-transfer burst model is able to fit the spectral behaviour for both objects. The disc-instability model is unable to fit the rise to outburst in VW Hydri, and gives a poor fit to the observations of CN Orionis. (author)

  6. Review of the classical nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.; Sparks, W.M.

    1986-06-01

    Observational studies have not only identified a new class of novae but theoretical simulations of this class have been found to be in excellent agreement with the observations. This new class consists of outbursts occurring on ONeMg white dwarfs in close binar systems in contrast to the other outbursts which are occurring on CO white dwarfs. We also review the effects of the β + -unstable nuclei and show how their presence has a major effect on the evolution. 77 refs

  7. Non-thermal AGN models

    Energy Technology Data Exchange (ETDEWEB)

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  8. The BAT AGN Spectroscopic Survey (BASS)

    Science.gov (United States)

    Koss, Michael

    2017-08-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at zpast studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics.

  9. Search for neutrinos from TANAMI observed AGN using Fermi lightcurves wit ANTARES

    International Nuclear Information System (INIS)

    Fehn, Kerstin

    2015-01-01

    Active galactic nuclei (AGN) are promising candidates for hadronic acceleration. The combination of radio, gamma ray and neutrino data should give information on their properties, especially concerning the sources of the high-energetic cosmic rays. Assuming a temporal correlation of gamma and neutrino emission in AGN the background of neutrino telescopes can be reduced using gamma ray lightcurves. Thereby the sensitivity for discovering cosmic neutrino sources is enhanced. In the present work a stacked search for a group of AGN with the ANTARES neutrino telescope in the Mediterranean is presented. The selection of AGN is based on the source sample of TANAMI, a multiwavelength observation program (radio to gamma rays) of extragalactic jets southerly of -30 declination. In the analysis lightcurves of the gamma satellite Fermi are used. In an unbinned maximum likelihood approach the test statistic in the background only case and in the signal and background case is determined. For the investigated 10% of data of ANTARES within the measurement time between 01.09.2008 and 30.07.2012 no significant excess is observed. So on the total flux of the AGN of the stacked search an upper limit can be set.

  10. Nucleosynthesis and the nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.

    1995-01-01

    A nova outburst is the consequence of the accretion of hydrogen rich material onto a white dwarf and it can be considered as the largest hydrogen bomb in the Universe. The fuel is supplied by a secondary star in a close binary system while the strong degeneracy of the massive white dwarf acts to contain the gas during the early stages of the explosion. The containment allows the temperature in the nuclear burning region to exceed 10 8 K under all circumstances. As a result a major fraction of CNO nuclei in the envelope are transformed into β + -unstable nuclei. We discuss the effects of these nuclei on the evolution. Recent observational studies have shown that there are two compositional classes of novae; one which occurs on carbon-oxygen white dwarfs, and a second class that occurs on oxygen-neon-magnesium white dwarfs. In this review we will concentrate on the latter explosions since they produce the most interesting nucleosynthesis. We report both on the results of new observational determinations of nova abundances and, in addition, new hydrodynamic calculations that examine the consequences of the accretion process on 1.0M circle-dot , 1.25M circle-dot , and 1.35M circle-dot white dwarfs. Our results show that novae can produce 22 Na, 26 Al, and other intermediate mass nuclei in interesting amounts. We will present the results of new calculations, done with updated nuclear reaction rates and opacities, which exhibit quantitative differences with respect to published work

  11. AGN feedback in action? - outflows and star formation in type 2 AGNs

    Science.gov (United States)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  12. The Close AGN Reference Survey (CARS)

    Science.gov (United States)

    Husemann, B.; Tremblay, G.; Davis, T.; Busch, G.; McElroy, R.; Neumann, J.; Urrutia, T.; Krumpe, M.; Scharwächter, J.; Powell, M.; Perez-Torres, M.; The CARS Team

    2017-09-01

    The role of active galactic nuclei (AGN) in the evolution of galaxies remains a mystery. The energy released by these accreting supermassive black holes can vastly exceed the entire binding energy of their host galaxies, yet it remains unclear how this energy is dissipated throughout the galaxy, and how that might couple to the galaxy's evolution. The Close AGN Reference Survey (CARS) is a multi-wavelength survey of a representative sample of luminous Type I AGN at redshifts 0.01 connection. These AGN are more luminous than very nearby AGN but are still close enough for spatially resolved mapping at sub-kpc scales with various state- of-the art facilities and instruments, such as VLT-MUSE, ALMA, JVLA, Chandra, SOFIA, and many more. In this article we showcase the power of CARS with examples of a multi-phase AGN outflow, diverse views on star formation activity and a unique changing-look AGN. CARS will provide an essential low-redshift reference sample for ongoing and forthcoming AGN surveys at high redshift.

  13. SWIFT BAT Survey of AGN

    Science.gov (United States)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  14. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  15. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    Science.gov (United States)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  16. Studying AGN Jets At Extreme Angular Resolution

    Science.gov (United States)

    Bruni, Gabriele

    2016-10-01

    RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.

  17. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  18. Toward a Unified AGN Structure

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis

    2012-01-01

    We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.

  19. Statistical analysis of dwarf nova outbursts

    International Nuclear Information System (INIS)

    Gicger, A.

    1987-01-01

    Correlation between maximum brightness, outburst width, lengths of preceding and following intervals has been studied for 14 dwarf novae (mostly from southern sky). Significant correlations (ρ ≥ 0.4) occur only in 16 per cent of cases, what confirms earlier results of Szkody and Mattei (1984). Global correlations have also been studied between mean photometric parameters and binary system parameters using a sample including over 30 objects. The most interesting result is the strong correlation (ρ = +0.94) between the orbital period and the outburst duration. It implies that the quantity α(z 0 /r) 2 is approximately constant for all dwarf novae. Using typical estimates for z 0 /r we get α = 0.2. 30 refs., 1 figs., 2 tabs. (author)

  20. The Many Routes to AGN Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Morganti, Raffaella, E-mail: morganti@astron.nl [ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo (Netherlands); Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands)

    2017-11-29

    The energy released by Active Galactic Nuclei (AGN) in the form of radiation, winds, or radio plasma jets, is known to impact on the surrounding interstellar medium. The result of these processes, known as AGN (negative) feedback, is suggested to prevent gas, in and around galaxies, from cooling, and to remove, or at least redistribute, gas by driving massive and fast outflows, hence playing a key role in galaxy evolution. Given its importance, a large effort is devoted by the astronomical community to trace the effects of AGN on the surrounding gaseous medium and to quantify their impact for different types of AGN. This review briefly summarizes some of the recent observational results obtained in different wavebands, tracing different phases of the gas. I also summarize the new insights they have brought, and the constraints they provide to numerical simulations of galaxy formation and evolution. The recent addition of deep observations of cold gas and, in particular, of cold molecular gas, has brought some interesting surprises and has expanded our understanding of AGN and AGN feedback.

  1. The many routes to AGN feedback

    Science.gov (United States)

    Morganti, Raffaella

    2017-11-01

    The energy released by Active Galactic Nuclei (AGN) in the form of radiation, winds or radio plasma jets, is known to impact on the surrounding interstellar medium. The result of these processes, known as AGN (negative) feedback, is suggested to prevent gas, in and around galaxies, from cooling, and to remove, or at least redistribute, gas by driving massive and fast outflows, hence playing a key role in galaxy evolution. Given its importance, a large effort is devoted by the astronomical community to trace the effects of AGN on the surrounding gaseous medium and to quantify their impact for different types of AGN. This review briefly summarizes some of the recent observational results obtained in different wavebands, tracing different phases of the gas. I also summarise new insights they have brought, and the constraints they provide to numerical simulations of galaxy formation and evolution. The recent addition of deep observations of cold gas and, in particular, of cold molecular gas, has brought some interesting surprises and has expanded our understanding of AGN and AGN feedback.

  2. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Gammie, Charles

    2013-01-01

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the d ead zone ) . We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R ∼< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  3. VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Gammie, Charles, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu, E-mail: gammie@illinois.edu [Department of Astronomy, University of Illinois Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States)

    2013-02-20

    We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the {sup d}ead zone{sup )}. We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models, which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, R {approx}< 0.5 AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.

  4. Geological structure of strata and the occurence of gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Koewing, K

    1977-10-20

    Geological conditions which may have an influence on gas outbursts are depth, rank, type of formation, tectonic stresses, and the petrological form of the neighboring rock. The risk of outbursts is greater if there are dirt bands in the seam, since the coal can slide on these. Tectonically disturbed zones in seams containing more than 9 cu m of gas per ton are especially dangerous. Tectonic stress is not necessarily an indication of the severity of outbursts. Gas and sandstone outbursts do not depend on tectonic disturbance; outburst-prone sandstones have a greater pore volume and lower strength than normal. Almost all outbursts from the floor occur where the strata immediately below are impervious to gas and sandstone is present lower down. (In German)

  5. [Transfer of the AGnES concept to the regular German health-care system: legal evaluation, reimbursement, qualification].

    Science.gov (United States)

    van den Berg, N; Kleinke, S; Heymann, R; Oppermann, R F; Jakobi, B; Hoffmann, W

    2010-05-01

    According to an amendment of German social security legislation, the AGnES concept of delegation of certain tasks of medical care, especially house calls, by general practitioners (GPs) to qualified practice employees (AGnES employees), will be transferred into the regular German health care system from January 2009 onward. The concept was developed to support GPs in regions with imminent gaps in primary care. Patient data, the specifically delegated and all other activities carried out by the AGnES employees in the AGnES projects were digitally documented. Additionally, the participating GPs, AGnES employees and patients underwent a set of standardised interviews. A curriculum to qualify the AGnES employees and to define the requirements needed was developed. A legal assessment of all delegated activities was carried out, and an economical model to calculate the necessary allowance was calculated. In seven model projects in four federal states in Germany, 11,228 house calls were carried out involving 1,424, mostly multimorbid, patients (mean age: 78.6 years). A modular structured curriculum, considering the basic education and acquired competences, was developed. It allows for an individual qualification of the AGnES employees. The result of the legal assessment was the central relevance of the qualification of the practice employees according to the AGnES curriculum as the essential condition for carrying out the entire range of activities of the AGnES concept. The economic model revealed euro 21.58 for a house call by an AGnES employee. The underlying model referred to underserved regions. A successful transfer of the AGnES concept with a high standard of quality into regular health-care depends on several factors. Of particular importance is the specific qualification of the practice employees, which is a central legal condition for the delegation of medical tasks from GPs to AGnEs employees. A second determining factor is also an adequate reimbursement within

  6. Orbital Light Curves of UU Aquarii in Stunted Outburst

    Science.gov (United States)

    Robertson, J. W.; Honeycutt, R. K.; Henden, A. A.; Campbell, R. T.

    2018-02-01

    Stunted outbursts are ∼0.ͫ6 eruptions, typically lasting 5–10 days, which are found in some novalike cataclysmic variables, including UU Aqr. The mechanism responsible for stunted outbursts is uncertain but is likely related to an accretion disk instability or to variations in the mass transfer rate. A campaign to monitor the eclipse light curves in UU Aqr has been conducted in order to detect any light curve distortions due to the appearance of a hot spot on the disk at the location of the impact point of the accretion stream. If stunted outbursts are due to a temporary mass transfer enhancement, then predictable deformations of the orbital light curve are expected to occur during such outbursts. This study used 156 eclipses on 135 nights during the years 2000–2012. During this interval, random samples found the system to be in stunted outbursts 4%–5% of the time, yielding ∼7 eclipses obtained during some stage of stunted outburst. About half of the eclipses obtained during stunted outbursts showed clear evidence for hot spot enhancement, providing strong evidence that the stunted outbursts in UU Aqr are associated with mass transfer variations. The other half of the eclipses during stunted outburst showed little or no evidence for hot spot enhancement. Furthermore, there were no systematic changes in the hot spot signature as stunted outbursts progressed. Therefore, we have tentatively attributed the changes in hot spot visibility during stunted outburst to random blobby accretion, which likely further modulates the strength of the accretion stream on orbital timescales.

  7. AGN feedback compared: jets versus radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-06-01

    Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

  8. Characterisation of a candidate dual AGN

    Science.gov (United States)

    Lena, D.; Panizo-Espinar, G.; Jonker, P. G.; Torres, M.; Heida, M.

    2018-05-01

    We present Chandra and optical observations of a candidate dual AGN discovered serendipitously while searching for recoiling black holes via a cross-correlation between the serendipitous XMM source catalog (2XMMi) and SDSS-DR7 galaxies with a separation no larger than ten times the sum of their Petrosian radii. The system has a stellar mass ratio M1/M2 ≈ 0.7. One of the galaxies (Source 1) shows clear evidence for AGN activity in the form of hard X-ray emission and optical emission-line diagnostics typical of AGN ionisation. The nucleus of the other galaxy (Source 2) has a soft X-ray spectrum, bluer colours, and optical emission line ratios dominated by stellar photoionisation with a "composite" signature, which might indicate the presence of a weak AGN. When plotted on a diagram with X-ray luminosity vs [OIII] luminosity both nuclei fall within the locus defined by local Seyfert galaxies. From the optical spectrum we estimate the electron densities finding n1 active nature of Source 1 can be established with confidence, whether the nucleus of Source 2 is active remains a matter of debate. Evidence that a faint AGN might reside in its nucleus is, however, tantalising.

  9. X-ray Outburst in Mira A

    OpenAIRE

    Karovska, M.; Schlegel, E.; Hack, W.; Wood, B.

    2005-01-01

    We report here the Chandra ACIS-S detection of a bright soft X-ray transient in the Mira AB interacting symbiotic-like binary. We resolved the system for the first time in the X-rays. Using Chandra and HST images we determined that the unprecedented outburst is likely associated with the cool AGB star (Mira A), the prototype of Mira-type variables. X-rays have never before been detected from an AGB star, and the recent activity signals that the system is undergoing dramatic changes. The total...

  10. Spectral evolution of dwarf nova outbursts

    International Nuclear Information System (INIS)

    Cannizzo, J.K.; Kenyon, S.J.

    1987-01-01

    The disk instability model for dwarf nova eruptions is investigated by computing the spectral development of the accretion disk through a complete limit cycle. Observed stellar spectra are used to model the radiation emitted by optically thick annuli within the disc. The general findings agree with those of Smak (1984) and Pringle et al. (1986). It is suggested that the dwarf nova oscillations might be a source of information concerning the evolution of the inner disk and that detailed observations of this phenomenon can be used to test various outburst mechanisms. 74 references

  11. The BAT AGN Spectroscopic Survey (BASS) DR1-Spectral Measurements, Derived Quantities, and AGN Demographics

    Science.gov (United States)

    Koss, Michael; BASS Team

    2018-01-01

    We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey (BASS). We analyze optical spectra of the majority of AGN (77%, 641/836) detected based on their 14-195 keV emission in the 70-month Swift BAT all-sky catalog. This includes redshift determination, absorption and emission line measurements, and black hole mass and accretion rate estimates for the majority of obscured and un-obscured AGN (74%, 473/641) with 340 measured for the first time. With ~90% of sources at z10^21.9 cm^-2. Seyfert 1.9 show a range of column densities. Compared to narrow line AGN in the SDSS, the X-ray selected AGN have a larger fraction of dusty host galaxies suggesting these types of AGN are missed in optical surveys. Using the most sensitive [OIII]/Hbeta and [NII]/Halpha emission line diagnostic, about half of the sources are classified as Seyferts, ~15% reside in dusty galaxies that lack an Hbeta detection, but for which the line upper limits imply either a Seyfert or LINER, ~15% are in galaxies with weak or no emission lines despite high quality spectra, and a few percent each are LINERS, composite galaxies, HII regions, or in known beamed AGN.

  12. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cjpace@indiana.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  13. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    International Nuclear Information System (INIS)

    Pace, Cameron; Salim, Samir

    2014-01-01

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  14. The AGN Population in Nearby Galaxies

    International Nuclear Information System (INIS)

    Filho, Mercedes; Barthel, Peter; Ho, Luis

    2006-01-01

    In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galaxies, we have compiled radio data for the LINERs, composite LINER,/Hn and Seyfert galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample). Our results show an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. By comparing the radio luminosity function of the LINERs, composite LINER/Hll and Seyferts galaxies in the Palomar sample with those of selected moderate-redshift AGN, we fhd that our sources naturally extend the radio luminosity function of powerful AGN down to powers of about 10 times that of Sgr A*

  15. Can CMB Surveys Help the AGN Community?

    Directory of Open Access Journals (Sweden)

    Bruce Partridge

    2017-08-01

    Full Text Available Contemporary projects to measure anisotropies in the cosmic microwave background (CMB are now detecting hundreds to thousands of extragalactic radio sources, most of them blazars. As a member of a group of CMB scientists involved in the construction of catalogues of such sources and their analysis, I wish to point out the potential value of CMB surveys to studies of AGN jets and their polarization. Current CMB projects, for instance, reach mJy sensitivity, offer wide sky coverage, are “blind” and generally of uniform sensitivity across the sky (hence useful statistically, make essentially simultaneous multi-frequency observations at frequencies from 30 to 857 GHz, routinely offer repeated observations of sources with interesting cadences and now generally provide polarization measurements. The aim here is not to analyze in any depth the AGN science already derived from such projects, but rather to heighten awareness of their promise for the AGN community.

  16. Soft x-ray emission from classical novae in outburst

    International Nuclear Information System (INIS)

    Starrfield, S.; Krautter, J.; MacDonald, J.

    1989-01-01

    Theoretical modeling of novae in outburst predicts that they should be active emitters of radiation at soft x-ray wavelengths twice during their outburst. The first time occurs very early in the outburst when only a very sensitive all sky survey will be able to detect them. This period lasts only a few hours for the very fastest novae. They again become bright in x-rays late in the outburst when the remnant object becomes very hot and is still luminous. Both simulations and observations show that novae can remain very hot for months to years. It is important to observe them at these late times because a measurement both of the flux and temperature can provide information about the mass of the white dwarf, the turn-off time scale, and the energy budget of the outburst. 8 refs., 2 figs

  17. Radon monitoring for the prediction of mine outbursts

    International Nuclear Information System (INIS)

    Lebecka, J.; Wysocka, M.; Chalupnik, S.

    1993-01-01

    Observations of changes of concentrations of radon in gases occurring in coal seams prone to instantaneous outbursts of coal and gas have been performed. Gas samples have been taken from specially drilled boreholes. In coal seams prone to outbursts strong variations of radon concentration have been found, while in seams where no outbursts occurred radon concentration was much more stable. In all cases outbursts were always preceded by very low concentrations of radon, which raised again afterwards. Similar observations are performed in coal mines where a strong hazard of shocks accompanied by rock bursts occur which is caused by mining activity. Obtained results indicate the possibility of using radon as supporting indicator for prediction of instantaneous outbursts and rock bursts and may be worth-while for prevention of these catastrophes. (author). 9 refs, 2 figs

  18. Search for AGN neutrinos with the Soudan 2 detector

    International Nuclear Information System (INIS)

    DeMuth, D.M.

    1997-05-01

    Several authors have presented models for neutrino production from Active Galactic Nuclei (AGN) that allow for the possibility of AGN neutrinos outnumbering the atmospheric neutrino flux for energies in excess of 30 TeV. Preliminary results from a search for high energy neutrinos from AGN using the underground Soudan 2 Detector are presented

  19. NEAR-IR STUDIES OF RECURRENT NOVA V745 SCORPII DURING ITS 2014 OUTBURST

    International Nuclear Information System (INIS)

    Banerjee, D. P. K.; Joshi, Vishal; Venkataraman, V.; Ashok, N. M.; Raj, A.; Marion, G. H.; Hsiao, E. Y.

    2014-01-01

    The recurrent nova V745 Scorpii underwent its third known outburst on 2014 February 6. Infrared monitoring of the eruption on an almost daily basis, starting from 1.3 days after discovery, shows the emergence of a powerful blast wave generated by the high velocity nova ejecta exceeding 4000 km s –1 plowing into its surrounding environment. The temperature of the shocked gas is raised to a high value exceeding 10 8 K immediately after outburst commencement. The energetics of the outburst clearly surpass those of similar symbiotic systems like RS Oph and V407 Cyg which have giant secondaries. The shock does not show a free-expansion stage but rather shows a decelerative Sedov-Taylor phase from the beginning. Such strong shock fronts are known to be sites for γ-ray generation. V745 Sco is the latest nova, apart from five other known novae, to show γ-ray emission. It may be an important testbed to resolve the crucial question of whether or not all novae are generically γ-ray emitters by virtue of having a circumbinary reservoir of material that is shocked by the ejecta rather than γ-ray generation being restricted to only symbiotic systems with a shocked red giant (RG) wind. The lack of a free-expansion stage favors V745 Sco to have a density enhancement around the white dwarf (WD), above that contributed by a RG wind. Our analysis also suggests that the WD in V745 Sco is very massive and a potential progenitor for a future SN Ia explosion

  20. AGN Heating Through Cavities and Shocks

    NARCIS (Netherlands)

    Nulsen, P.E.J.; Jones, C.; Forman, W.R.; David, L.P.; McNamara, B.R.; Rafferty, D.A.; Bîrzan, L.; Wise, M.

    2007-01-01

    Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak

  1. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  2. AGN Feedback Compared: Jets versus Radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-03-01

    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 1043 and 1046 erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20% in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01 - 0.1 M⊙/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.

  3. AGN UNIFICATION AT z ∼ 1: u - R COLORS AND GRADIENTS IN X-RAY AGN HOSTS

    International Nuclear Information System (INIS)

    Mark Ammons, S.; Rosario, David J. V.; Koo, David C.

    2011-01-01

    We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond ∼1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z ∼ 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.

  4. Observational Signatures Of Agn Feedback Across Cosmic Time

    Science.gov (United States)

    Wylezalek, Dominika

    2017-06-01

    While many compelling models of AGN feedback exist, there is no clear data-driven picture of how winds are launched, how they propagate through the galaxy and what impact they have on the galactic gas. Recent work suggests that AGN luminosity plays an important role. The following described projects focus on understanding the power, reach and impact of feedback processes exerted by AGN of different power. I first describe recent efforts in our group of relating feedback signatures in powerful quasars to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history. Feedback signatures seem to be best observable in gas-rich galaxies where the coupling of the AGN-driven wind to the gas is strongest, in agreement with recent simulations. But how and where does this quenching happen? Is it accomplished through the mechanical action of jets or through nuclear winds driven by radiation pressure? Finally, I show that AGN signatures and AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of a galaxy hosting a low/intermediate-luminosity AGN. Using data from the new SDSS-IV MaNGA survey, we have developed a new AGN selection algorithm tailored to IFU data and we are uncovering a much more nuanced picture of AGN activity allowing us to discover AGN signatures at large distances from the galaxy center. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and feedback signatures related to them. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.

  5. HOW DOES RADIO AGN FEEDBACK FEED BACK?

    International Nuclear Information System (INIS)

    De Young, David S.

    2010-01-01

    The possible role of radio active galactic nucleus (AGN) 'feedback' in conventional hierarchical cosmological models has become widely discussed. This paper examines some of the details of how such feedback might work. A basic requirement is the conversion of radio AGN outflow energy into heating of the circumgalactic medium in a time comparable to the relevant cooling times. First, the class of radio AGN relevant to this process is identified as FR-I radio sources. Second, it is argued via comparisons with experimental data that these AGN outflows are strongly decelerated and become fully turbulent sonic or subsonic flows due to their interaction with the surrounding medium. Using this, a three-dimensional time-dependent calculation of the evolution of such turbulent magnetohydrodynamic flows is made to determine the time scale required for conversion of the turbulent energy into heat. This calculation, when coupled with observational data, suggests that the onset of heating can occur ∼10 8 yr after the fully turbulent flow is established, and this time is less than or comparable to the local cooling times in the interstellar or circumgalactic medium for many of these objects. The location of where heat deposition occurs remains uncertain, but estimates of outflow speeds suggest that heating may occur many tens of kpc from the center of the parent galaxy. Recent observations suggest that such radio AGN outflows may become dispersed on much larger scales than previously thought, thus possibly satisfying the requirement that heating occurs over a large fraction of the volume occupied by the circumgalactic gas.

  6. Dwarf novae in outburst: monitoring WX Hydri with IUE

    International Nuclear Information System (INIS)

    Hassall, B.J.M.; Pringle, J.E.; Verbunt, F.

    1985-01-01

    WX Hydri has been monitored with the IUE satellite. The data obtained during the beginning of an outburst show that the rise of the optical precedes that of the ultraviolet flux. The observations during quiescence, together with archival data, indicate that the ultraviolet continuum and line fluxes decrease steadily between outbursts. The implications of the observations for the theoretical models of dwarf nova outbursts are discussed. It is concluded that the variable mass transfer model can accommodate the observations, but that difficulties arise for the disc instability model. (author)

  7. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  8. Tracing Supermassive Black Hole Growth with Offset and Dual AGN

    Science.gov (United States)

    Comerford, Julia

    The growth of supermassive black holes is tied to the evolution of their host galaxies, but we are still missing a fundamental understanding of how and when supermassive black holes build up their mass. Black hole mass growth can be traced when the black holes are powered as active galactic nuclei (AGN), and AGN activity can be triggered by the stochastic accretion of gas or by gas inflows driven by galaxy mergers. Galaxy merger simulations make a series of predictions about the AGN that are triggered by mergers: (1) major mergers preferentially trigger higher-luminosity AGN, (2) minor mergers more often trigger AGN activity in one supermassive black hole while major mergers more often trigger AGN activity in both black holes in a merger, and (3) black hole mass growth peaks when the black holes approach the center (theory have been limited by the difficulty in defining a clean observational sample of AGN in galaxy mergers and the observational challenge of spatially resolving two AGN with small (dual AGN as a new observational tool that can be used to address how and when supermassive black hole mass growth occurs. A merger of two galaxies brings two supermassive black holes together, and the two black holes exist at kpc-scale separations for 100 Myr before ultimately merging. While the black holes are at kpc-scale separations, they are known as dual AGN when both of them are fueled as AGN and offset AGN when only one is fueled as an AGN. Since offset and dual AGN only occur in galaxy mergers, by their very definition, they provide a clean observational sample of black hole mass growth in galaxy mergers. The small, kpc-scale separations of offset and dual AGN also enable an observational test of black hole fueling near the centers of merger-remnant galaxies. The full potential of offset and dual AGN for such studies of black hole mass growth has not yet been realized, due to the small number of such systems known. To date, only 13 confirmed offset and dual AGN are

  9. Type Ia Supernovae: Energetics, Neutronization and Nucleosynthesis

    International Nuclear Information System (INIS)

    Truran, James W.; Calder, Alan C.; Townsley, Dean M.; Seitenzahl, Ivo R.; Peng, Fang; Vladimirova, Natalia; Lamb, Donald Q.; Brown, Edward F.

    2007-01-01

    The utility of Type Ia supernovae, not simply as probes of the distance scale but also as a means of constraining the properties of dark energy, demands a significant improvement in theoretical predictions of their properties in outburst. To this end, we have given substantial effort to quantifying the energetics and nucleosynthesis properties of deflagration fronts in the interiors of the putative carbon-oxygen white dwarf progenitors of Type Ia thermonuclear supernovae. We briefly review some essential features of our flame model and its properties in this paper and discuss its implications both for our multidimensional numerical simulations of SNe Ia and for nucleosynthesis (specifically 56Ni production) in SNe Ia and Galactic chemical evolution

  10. Ionized Outflows in 3-D Insights from Herbig-Haro Objects and Applications to Nearby AGN

    Science.gov (United States)

    Cecil, Gerald

    1999-01-01

    HST shows that the gas distributions of these objects are complex and clump at the limit of resolution. HST spectra have lumpy emission-line profiles, indicating unresolved sub-structure. The advantages of 3D over slits on gas so distributed are: robust flux estimates of various dynamical systems projected along lines of sight, sensitivity to fainter spectral lines that are physical diagnostics (reddening-gas density, T, excitation mechanisms, abundances), and improved prospects for recovery of unobserved dimensions of phase-space. These advantages al- low more confident modeling for more profound inquiry into underlying dynamics. The main complication is the effort required to link multi- frequency datasets that optimally track the energy flow through various phases of the ISM. This tedium has limited the number of objects that have been thoroughly analyzed to the a priori most spectacular systems. For HHO'S, proper-motions constrain the ambient B-field, shock velocity, gas abundances, mass-loss rates, source duty-cycle, and tie-ins with molecular flows. If the shock speed, hence ionization fraction, is indeed small then the ionized gas is a significant part of the flow energetics. For AGN'S, nuclear beaming is a source of ionization ambiguity. Establishing the energetics of the outflow is critical to determining how the accretion disk loses its energy. CXO will provide new constraints (especially spectral) on AGN outflows, and STIS UV-spectroscopy is also constraining cloud properties (although limited by extinction). HHO's show some of the things that we will find around AGN'S. I illustrate these points with results from ground-based and HST programs being pursued with collaborators.

  11. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  12. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    International Nuclear Information System (INIS)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K.

    2017-01-01

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  13. COST meeting - Polarization and AGN II - Abstracts and slides

    International Nuclear Information System (INIS)

    Kishimoto, M.; Rouan, D.; Tadhunter, C.; Lopez Rodriguez, E.; Braibant, L.; Pasetto, A.; Matt, G.; Afanasiev, V.; Lira, P.; Hutsemekers, D.; Sluse, D.; Marin, F.; Tamborra, F.; Yankova, K.; Laing, R.; Lico, R.; Agudo, I.; Hovatta, T.; Jermak, H.; Chen, X.; Myserlis, I.; Cellone, S.A.; Chidiac, C.; Chakraborty, N.; Bozhilov, V.

    2016-01-01

    This meeting is the 2. COST workshop on Polarization and Active Galactic Nuclei (AGN). Accreting supermassive black holes in active galactic nuclei are the most powerful, long-lasting sources in the universe. Emitting over ten orders of magnitude in photon energy or more, the radiation of AGN encodes information about a multitude of astrophysical processes: accretion, thermal and non-thermal radiative transfer, acceleration of outflows and jets, shock physics, special and general relativity. Observationally, AGN appear as numerous types and polarization studies have played a key role in establishing the idea of a unifying AGN geometry. The topics covered at the meeting include the following: 1) Polarimetry of AGN from the radio to gamma-rays; 2) Tools for modeling and data analysis of AGN polarization; 3) Polarization due to magnetic fields and dust in AGN; 4) Polarization of AGN inflows, outflows and jets; 5) Spectropolarimetry and polarization variability of AGN; and 6) From Sgr A* to the most luminous quasars: what can polarimetry do for AGN (super-)unification? This document is made up of the abstracts and slides of the presentations

  14. Look at Epilepsy: Electrical Outbursts in the Brain

    Science.gov (United States)

    ... November 2015 Print this issue A Look at Epilepsy Electrical Outbursts in the Brain En español Send us your comments When you hear the word epilepsy, you might think of intense seizures with muscle ...

  15. Outburst flood evolution at Russell Glacier, western Greenland

    DEFF Research Database (Denmark)

    Carrivick, Jonathan L.; Turner, Andy G.D.; Russell, Andrew J.

    2013-01-01

    Glacial lake outburst floods have produced a distinctive and widespread Quaternary record both onshore and offshore via widespread and intense geomorphological impacts, yet these impacts remain poorly understood due to a lack of modern analogues. This study therefore makes a systematic quantifica...... of including intermediary lakes. Modern hazard mitigation studies could usefully note the potential use of reservoirs as an outburst flood alleviation resource.......Glacial lake outburst floods have produced a distinctive and widespread Quaternary record both onshore and offshore via widespread and intense geomorphological impacts, yet these impacts remain poorly understood due to a lack of modern analogues. This study therefore makes a systematic...... quantification of the evolution of a bedrock-channelled outburst flood. Channel topography was obtained from digitised aerial photographs, a 5 m grid resolution DEM and bathymetric surveys. Flood inundation was measured in the field from dGPS measurements. Flood evolution was analysed with application...

  16. Physical Mechanism of Comet (and Asteroid) Outbursts: The Movie

    Science.gov (United States)

    Hartmann, W. K.

    2015-07-01

    A film made during impact experiments at NASA Ames illustrates a mechanism in which regolith can become gas charged and then erupt to create outbursts as observed on comets (and "asteroids" such as 2060 Chiron).

  17. The AGN-Star Formation Connection: Future Prospects with JWST

    Science.gov (United States)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Barro, Guillermo; Bonato, Matteo; Kocevski, Dale D.; Pérez-González, Pablo; Rieke, George H.; Rodríguez-Muñoz, Lucia; Sajina, Anna; Grogin, Norman A.; Mantha, Kameswara Bharadwaj; Pandya, Viraj; Pforr, Janine; Salvato, Mara; Santini, Paola

    2017-11-01

    The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z=1{--}2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 μm counts of SFGs, AGN/star-forming “Composites,” and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 μm, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z˜ 1{--}2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 μm PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by ˜35% for cases where the AGN provides half the IR luminosity and ˜50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of {λ }{Edd}˜ 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.

  18. The AGN Nature of LINER Nuclear Sources

    Energy Technology Data Exchange (ETDEWEB)

    Márquez, Isabel; Masegosa, Josefa [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain); González-Martin, Omaira [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia (Mexico); Hernández-Garcia, Lorena [Istituto di Astrofisica e Planetologia Spaziali, Rome (Italy); Pović, Mirjana [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain); Ethiopian Space Science and Technology Institute and Entoto Observatory and Research Center, Addis Ababa (Ethiopia); Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy and the Wise Observatory, Tel-Aviv University, Tel Aviv (Israel); Cazzoli, Sara; Olmo, Ascensión del, E-mail: isabel@iaa.es [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2017-11-16

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2–10keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN toward lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L{sub X}(2–10 keV) > 10{sup 41} erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison

  19. The AGN nature of LINER nuclear sources

    Science.gov (United States)

    Márquez, Isabel; Masegosa, Josefa; González-Martin, Omaira; Hernández-Garcia, Lorena; Pović, Mirjana; Netzer, Hagai; Cazzoli, Sara; del Olmo, Ascensión

    2017-11-01

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2-10 keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN towards lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L_X(2-10 keV) > 10^{41} erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison with both

  20. The AGN Nature of LINER Nuclear Sources

    International Nuclear Information System (INIS)

    Márquez, Isabel; Masegosa, Josefa; González-Martin, Omaira; Hernández-Garcia, Lorena; Pović, Mirjana; Netzer, Hagai; Cazzoli, Sara; Olmo, Ascensión del

    2017-01-01

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2–10keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN toward lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L X (2–10 keV) > 10 41 erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison with

  1. Developments in outburst prediction by microseismic monitoring from the surface

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A W; Styles, P; Jones, V K

    1987-01-01

    Violent outbursts of coal and firedamp affect production operations in most of the coal producing countries of the world, often leading to heavy loss of life. Significant changes in the pattern of Welsh outbursts from 1978 onwards are described with a far larger proportion occurring on longwall faces than was previously the case and with a much higher incidence of spontaneous outbursts, which carry a greater risk than those which are deliberately induced. The elaborate defences in use appeared inadequate to deal with the changing circumstances as methane based alarms only operated after the outburst phenomenon had initiated. An earlier warning of an incipient outburst was required and evidence suggested that seismic monitoring might provide this early warning. A surface located seismometer was installed giving radio transmitted signals to a tape recorder in the colliery control room. This provided promising historical records and led to five surface seismometer stations being commissioned feeding signals, suitably treated, to a micro-processor located in the mine control room. The programming of the micro-processor was arranged to give a real time alarm at pre-set levels of seismic activity in defined areas of the mine. Experience with the new predictive tool is described, as well as the use made of the new facility by management, including changed methods of outburst stress relief.

  2. AGN Feedback and Its Quenching Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Combes, Francoise, E-mail: francoise.combes@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, College de France, PSL, Sorbonne University UPMC, Paris (France)

    2017-09-21

    In the last decade, observations have accumulated on gas outflows in galaxies, and in particular massive molecular ones. The mass outflow rate is estimated between 1 and 5 times the star formation rate. For the highest maximal velocities, they are driven by AGN; these outflows are therefore a clear way to moderate or suppress star formation. Some of the most convincing examples at low redshift come from the radio mode, when the radio jets are inclined toward the galaxy plane, or expand in the hot intra-cluster medium, in cool core clusters. However, AGN feedback can also be positive in many occasions, and the net effect is difficult to evaluate. The quenching efficiency is discussed in view of recent observations.

  3. CERN Library | Agnes Chavez @ CERN | 3 May

    CERN Multimedia

    CERN Library

    2016-01-01

    Agnes Chavez is an artist and educator participating in a two-week research stay through the ATLAS Experiment at CERN.   Tuesday 3 May at 4 p.m. CERN Library (52 1-052) Artist/educator, Agnes Chavez will share video outcomes from Projecting Particles, an Art + Science + Education collaboration with ATLAS. The Sci-Art project combines the International Masterclass with Projection Art in a series of teen-led youth workshops and projection events. In this presentation Chavez will share her vision and describe the research and development behind the project, now in its third year.  For the Projecting pARTicles series of art installations she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspired by emerging particle physics theories. Chavez’s art experiments with data visualization, sound and projections to create participatory environments. She collaborates with programmers t...

  4. AGN Science with STROBE-X

    Science.gov (United States)

    Ballantyne, David; Balokovic, Mislav; Garcia, Javier; Koss, Michael; STROBE-X

    2018-01-01

    The probe concept STROBE-X, with its combination of large collecting area, wide-field monitor, broad bandpass, and rapid timing capability, is a powerful tool for studying many aspects of AGN astrophysics. This unique combination of features opens up the possibility for studying AGNs in ways current and other future missions are unable to accomplish. Here, we show a few of the novel new investigations made possible by STROBE-X: probing the structure of the BLR and torus with reverberation of the narrow Fe Kα line and line-of-sight column density, tracking changes in coronal parameters, investigating the origin of the soft excess, Fe Kα emission line surveys, and efficient Compton-thick characterization. Additional ideas and suggestions are always welcome and can be communicated to any member of the STROBE-X team.

  5. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  6. X-Ray Outburst from Young Star in McNeil's Nebula

    Science.gov (United States)

    2004-07-01

    sudden infall of matter onto the surface of the star from an orbiting disk of gas. In general, the coupling of the magnetic field of the star and the magnetic field of its circumstellar disk regulates the inflow of gas from the disk onto the star. This slow, steady inflow suddenly can become much more rapid if a large amount of gas accumulates in the disk, and the disk and the star are rotating at different rates. The differing rotation rates would twist and shear the magnetic field, storing up energy. This energy is eventually released in an energetic, X-ray producing outburst as the magnetic field violently rearranges back to a more stable state. During this period, a large amount of gas can fall onto the star, producing the observed optical and infrared outburst. A new buildup of gas in the disk could lead to a new outburst in the future. Such a scenario may explain why the brightness of McNeil's Nebula appears to vary with time. It is faintly present in surveys of this region of Orion in images taken in the 1960s, but absent from images taken in the 1950s and 1990s. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  7. Outbursts In Symbiotic Binaries (FUSE 2000)

    Science.gov (United States)

    Kenyon, Scott J.; Sonneborn, George (Technical Monitor)

    2002-01-01

    During the past year, we made good progress on analysis of FUSE observations of the symbiotic binary Z And. For background, Z And is a binary system composed of a red giant and a hot component of unknown status. The orbital period is roughly 750 days. The hot component undergoes large-scale eruptions every 10-20 yr. An outburst began several years ago, triggering this FUSE opportunity. First, we obtained an excellent set of ground-based optical data in support, of the FUSE observations. We used FAST, a high throughput low resolution spectrograph on the 1.5-m telescope at Mt. Hopkins, Arizona. A 300 g/ mm grating blazed at 4750 A, a 3 in. slit, and a thinned Loral 512 x 2688 CCD gave us spectra covering 3800-7500 A at a resolution of 6 A. The wavelength solution for each spectrum has a probable error of +/- 0.5 A or better. Most of the resulting spectra have moderate signal-to-noise, S/.N approx. greater than 30 per pixel. The time coverage for these spectra is excellent. Typically, we acquired spectra every 1-2 nights during dark runs at Mt. Hopkins. These data cover most of the rise and all of the decline of the recent outburst. The spectra show a wealth of emission lines, including H I, He I, He II, [Fe V11], and the Raman scattering bands at 6830 A and 7088 A. The Raman bands and other high ionization features vary considerably throughout the outburst. These features will enable us to correlate variations in the FUSE spectra with variations in the optical spectra. Second, we began an analysis of FUSE spectra of Z And. We have carefully examined the spectra, identifying real features and defects. We have identified and measured fluxes for all strong emission lines, including the O VI doublet at 1032 A and 1038 A. These and several other strong emission lines display pronounced P Cygni absorption components indicative of outgrowing gas. We will attempt to correlate these velocities with similar profiles observed on optical spectra. The line velocities - together

  8. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  9. Challenges in Finding AGNs in the Low Luminosity Regime

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  10. AGNES - safety reassessment of Paks NPP

    International Nuclear Information System (INIS)

    Gado, J.

    1995-01-01

    The main goal of the AGNES (Advanced General and New Evaluation of Safety) project for the reassessment of the safety of Paks Nuclear Power Plant, Hungary, was to improve the safety culture of the technology at Paks. A report was prepared on the reassessment of the Paks NPP safety. The analysis was divided into four groups: systems analysis, analysis of design basis accidents, severe accident analysis, and level 1 probabilistic safety analysis. Proposed safety enhancement measures are discussed. (N.T.)

  11. X-Rays and Infrared Selected AGN

    Science.gov (United States)

    Kirhakos, S. D.; Steiner, J. E.

    1990-11-01

    RESUMEN. En la busqueda de nucleos activos galacticos (NAG) oscurecidos, seleccionamos una tnuestra de galaxias ernisoras de rayos S infrarrojos, Ia mayoria de las cuales son vistas de perf ii. La 6ptica de la regi6n nuclear de las galaxias seleccionadas revelan que el 76% de ellas muestran lineas de emisi5n La clasificaci6n de los es- pectros de acuerdo a los anchos y a la intensidad de cocientes de lineas muestran que existen 34 NAG, 34 objetos de tipo de transici6n y 34 galaxias de la regi6n con nucleos de tipo regi6n H II. Entre los NAG, 3 son del tipo Seyfert I y las otras son del tipo 2. Sugerimos que los objetos identificados como NAG de llneas angostas son objetos tipo Seyfert I oscurecidos ABSTRACT. Looking for obscured active galactic nuclei (AGN), we selected a sample of infrarediX-rays emitting galaxies, mos"t of which are seen as edge-on. Optical spectroscopy of the nuclear region of the selected galaxies revealed that 76 % of them show emission l 'nes. Classification of the spectra according to the widths and line intensity ratios shows that there are 34 AGN, 34 transition type objects and 43 nuclear HIl-like region galaxies. Among the AGN, three are Seyfert type 1 and the others are type 2 objects. We suggest that the objects identified as narrow line AGN are obscured Seyfert 1. o'L : GALAXIES-ACTIVE - X-RAY S-GENERAL

  12. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Kochanek, C. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Eisenstein, D. J.; Caldwell, N.; Jones, C.; Murray, S. S.; Forman, W. R.; Green, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cool, R. J. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Assef, R. J.; Eisenhardt, P.; Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Jannuzi, B. T.; Dey, A. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Brown, M. J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Gonzalez, A. H. [Department of Astronomy, Bryant Space Science Center, University of Florida, Gainesville, FL 32611 (United States)

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples in all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.

  13. Impression Management Agnes Monica Melalui Akun Instagram (@Agnezmo)

    OpenAIRE

    Alim, Chelsea Amanda

    2014-01-01

    Penelitian ini dilakukan untuk menganalisa penggunaan taktik manajemen kesan yang dilakukan Agnes Monica melalui akun Instagram (@agnezmo). Agnes Monica sebagai seseorang yang berpengaruh, selalu menjadi bahan perbincangan publik, dan perhatian media sosial, memiliki kesan yang baik, termasuk melalui Instagram. Peneliti menggunakan metode analisis isi kuantitatif untuk menganalisa 45 post foto Instagram Agnes Monica, yang ada pada tanggal 1 Februari 2014 - 1 April 2014. Hasil penelitian ini ...

  14. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  15. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    International Nuclear Information System (INIS)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-01-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M ⊙ yr −1 . Deep polarimetry observations could confirm the reflection hypothesis

  16. Clustering Measurements of broad-line AGNs: Review and Future

    Directory of Open Access Journals (Sweden)

    Mirko Krumpe

    2014-12-01

    Full Text Available Despite substantial effort, the precise physical processes that lead to the growth of super-massive black holes in the centers of galaxies are still not well understood. These phases of black hole growth are thought to be of key importance in understanding galaxy evolution. Forthcoming missions such as eROSITA, HETDEX, eBOSS, BigBOSS, LSST, and Pan-STARRS will compile by far the largest ever Active Galactic Nuclei (AGNs catalogs which will allow us to measure the spatial distribution of AGNs in the universe with unprecedented accuracy. For the first time, AGN clustering measurements will reach a level of precision that will not only allow for an alternative approach to answering open questions in AGN and galaxy co-evolution but will open a new frontier, allowing us to precisely determine cosmological parameters. This paper reviews large-scale clustering measurements of broad line AGNs. We summarize how clustering is measured and which constraints can be derived from AGN clustering measurements, we discuss recent developments, and we briefly describe future projects that will deliver extremely large AGN samples which will enable AGN clustering measurements of unprecedented accuracy. In order to maximize the scientific return on the research fields of AGN and galaxy evolution and cosmology, we advise that the community develops a full understanding of the systematic uncertainties which will, in contrast to today’s measurement, be the dominant source of uncertainty.

  17. Hypercat - Hypercube of Clumpy AGN Tori

    Science.gov (United States)

    Nikutta, Robert; Lopez-Rodriguez, Enrique; Ichikawa, Kohei; Levenson, Nancy; Packham, Christopher C.

    2017-06-01

    Dusty tori surrounding the central engines of Active Galactic Nuclei (AGN) are required by the Unification Paradigm, and are supported by many observations, e.g. variable nuclear absorber (sometimes Compton-thick) in X-rays, reverberation mapping in optical/UV, hot dust emission and SED shapes in NIR/MIR, molecular and cool-dust tori observed with ALMA in sub-mm.While models of AGN torus SEDs have been developed and utilized for a long time, the study of the resolved emission morphology (brightness maps) has so far been under-appreciated, presumably because resolved observations of the central parsec in AGN are only possible very recently. Currently, only NIR+MIR interferometry is capable of resolving the nuclear dust emission (but not of producing images, until MATISSE comes online). Furthermore, MIR interferometry has delivered also puzzling results, e.g. that in some resolved sources the light emanates preferentially from polar directions above the "torus" system, and not from the equatorial plane, where most of the dust is located.We are preparing the release of a panchromatic, fully interpolable hypercube of brightness maps and projected dust images for a large number of CLUMPY torus models (Nenkova+2008), that will help facilitate studies of resolved AGN emission and dust morphologies. Together with the cube we will release a comprehensive set of open-source tools (Python) that will enable researches to work efficiently with this large hypercube:* easy sub-cube selection + memory-mapping (mitigating the too-big-for-RAM problem)* multi-dim image interpolation (get an image at any wavelength & model parameter combination)* simulation of observations with telescopes (compute/provide + apply a PSF) and interferometers (get visibilities)* analyze images with respect to the power contained at all scales and orientations (via 2D steerable wavelets), addressing the seemingly puzzling results mentioned aboveA series of papers is in preparation, aiming at solving the

  18. Evolution and Outbursts of Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S.-B. Qian

    2015-02-01

    Full Text Available Mass transfer and accretion are very important to understand the evolution and observational properties of cataclysmic variables (CVs. Due to the lack of an accretion disk, eclipsing profiles of polars are the best source to study the character of mass transfer in CVs. By analyzing long-term photometric variations in the eclipsing polar HU Aqr, the property of mass transfer and accretion are investigated. The correlation between the brightness state change and the variation of the ingress profile suggests that both the accretion hot spot and the accretion stream are produced instantaneously. The observations clearly show that it is the variation of mass transfer causing the brightness state changes that is a direct evidence of variable mass transfer in a CV. It is shown that it is the local dark-spot activity near the L1 point to cause the change of the mass transfer rather than the activity cycles of the cool secondary star. Our results suggest that the evolution of CVs is more complex than that predicted by the standard model and we should consider the effect of variable mass accretion in nova and dwarf nova outbursts.

  19. Fermi-LAT observation of nonblazar AGNs

    Science.gov (United States)

    Sahakyan, N.; Baghmanyan, V.; Zargaryan, D.

    2018-06-01

    Context. Fermi Large Area Telescope (Fermi-LAT) has recently detected γ-ray emission from active galactic nuclei (AGN) that do not show clear evidence for optical blazar characteristics or have jets pointing away from the observer (nonblazar AGNs). These are interesting γ-ray emitters providing an alternative approach to studying high energy emission processes. Aims: This paper investigates the spectral and temporal properties of γ-ray emission from nonblazar AGNs using the recent Fermi-LAT observational data. Methods: The data collected by Fermi-LAT during 2008-2015, from the observations of 26 nonblazar AGNs, including 11 Fanaroff-Riley Type I (FRI) and ten FRII radio galaxies and steep spectrum radio quasars (SSRQs) and five narrow line seyfert 1s (NLSy1s) are analysed using the new PASS 8 event selection and instrument response function. Possible spectral changes above GeV energies are investigated with a detailed spectral analysis. Light curves generated with normal and adaptive time bins are used to study the γ-ray flux variability. Results: Non-blazar AGNs have a γ-ray photon index in the range of 1.84-2.86 and a flux varying from a few times 10-9 photon cm-2 s-1 to 10-7 photon cm-2 s-1. Over long time periods, the power law provides an adequate description of the γ-ray spectra of almost all sources. Significant curvature is observed in the γ-ray spectra of NGC 1275, NGC 6251, SBS 0846 + 513, and PMN J0948 + 0022 and their spectra are better described by log parabola or by the power law with exponential cut-off models. The γ-ray spectra of PKS 0625-25 and 3C 380 show a possible deviation from a simple power-law shape, indicating a spectral cut-off around the observed photon energy of Ecut = 131.2 ± 88.04 GeV and Ecut = 55.57 ± 50.74 GeV, respectively. Our analysis confirms the previous finding of an unusual spectral turnover in the γ-ray spectrum of Cen A: the photon index changes from Γ = 2.75 ± 0.02 to 2.31 ± 0.1 at 2.35 ± 0.08 GeV. In the

  20. 2014–2015 MULTIPLE OUTBURSTS OF 15P/FINLAY

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru; Kwon, Yuna Grace; Kim, Yoonyoung; Lee, Myung Gyoon [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Kuroda, Daisuke; Yanagisawa, Kenshi [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Hanayama, Hidekazu; Miyaji, Takeshi [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Watanabe, Makoto [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama-si, Okayama 700-0005 (Japan); Akitaya, Hiroshi; Kawabata, Koji; Itoh, Ryosuke; Nakaoka, Tatsuya; Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan); Imai, Masataka [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan); Sarugaku, Yuki [Kiso Observatory, Institute of Astronomy, Graduate School of Science, The University of Tokyo, Mitake, Kiso-machi, Kiso, Nagano, 397-0101 (Japan); Ohta, Kouji [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Fukushima, Hideo [National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588 (Japan); Honda, Satoshi, E-mail: ishiguro@astro.snu.ac.kr [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); and others

    2016-12-01

    Multiple outbursts of a Jupiter-family comet (JFC), 15P/Finlay, occurred from late 2014 to early 2015. We conducted an observation of the comet after the first outburst and subsequently witnessed another outburst on 2015 January 15.6–15.7. The gas, consisting mostly of C{sub 2} and CN, and dust particles expanded at speeds of 1110 ± 180 m s{sup −1} and 570 ± 40 m s{sup −1} at a heliocentric distance of 1.0 au. We estimated the maximum ratio of solar radiation pressure with respect to the solar gravity β {sub max} = 1.6 ± 0.2, which is consistent with porous dust particles composed of silicates and organics. We found that 10{sup 8}–10{sup 9} kg of dust particles (assumed to be 0.3 μ m–1 mm) were ejected through each outburst. Although the total mass is three orders of magnitude smaller than that of the 17P/Holmes event observed in 2007, the kinetic energy per unit mass (10{sup 4} J kg{sup −1}) is equivalent to the estimated values of 17P/Holmes and 332P/2010 V1 (Ikeya–Murakami), suggesting that the outbursts were caused by a similar physical mechanism. From a survey of cometary outbursts on the basis of voluntary reports, we conjecture that 15P/Finlay-class outbursts occur >1.5 times annually and inject dust particles from JFCs and Encke-type comets into interplanetary space at a rate of ∼10 kg s{sup −1} or more.

  1. 2014–2015 MULTIPLE OUTBURSTS OF 15P/FINLAY

    International Nuclear Information System (INIS)

    Ishiguro, Masateru; Kwon, Yuna Grace; Kim, Yoonyoung; Lee, Myung Gyoon; Kuroda, Daisuke; Yanagisawa, Kenshi; Hanayama, Hidekazu; Miyaji, Takeshi; Watanabe, Makoto; Akitaya, Hiroshi; Kawabata, Koji; Itoh, Ryosuke; Nakaoka, Tatsuya; Yoshida, Michitoshi; Imai, Masataka; Sarugaku, Yuki; Ohta, Kouji; Kawai, Nobuyuki; Fukushima, Hideo; Honda, Satoshi

    2016-01-01

    Multiple outbursts of a Jupiter-family comet (JFC), 15P/Finlay, occurred from late 2014 to early 2015. We conducted an observation of the comet after the first outburst and subsequently witnessed another outburst on 2015 January 15.6–15.7. The gas, consisting mostly of C 2 and CN, and dust particles expanded at speeds of 1110 ± 180 m s −1 and 570 ± 40 m s −1 at a heliocentric distance of 1.0 au. We estimated the maximum ratio of solar radiation pressure with respect to the solar gravity β max  = 1.6 ± 0.2, which is consistent with porous dust particles composed of silicates and organics. We found that 10 8 –10 9 kg of dust particles (assumed to be 0.3 μ m–1 mm) were ejected through each outburst. Although the total mass is three orders of magnitude smaller than that of the 17P/Holmes event observed in 2007, the kinetic energy per unit mass (10 4 J kg −1 ) is equivalent to the estimated values of 17P/Holmes and 332P/2010 V1 (Ikeya–Murakami), suggesting that the outbursts were caused by a similar physical mechanism. From a survey of cometary outbursts on the basis of voluntary reports, we conjecture that 15P/Finlay-class outbursts occur >1.5 times annually and inject dust particles from JFCs and Encke-type comets into interplanetary space at a rate of ∼10 kg s −1 or more.

  2. The role of AGN feedback in galaxy evolution at high-redshift

    International Nuclear Information System (INIS)

    Collet, Cedric

    2014-01-01

    for repeated cycles of AGN outbursts, akin to what can be observed in local clusters of galaxies, which are prime examples of AGN feedback in the nearby Universe. (author)

  3. HOPS 383: AN OUTBURSTING CLASS 0 PROTOSTAR IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Safron, Emily J.; Megeath, S. Thomas; Booker, Joseph [Ritter Astrophysical Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Fischer, William J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Furlan, Elise; Rebull, Luisa M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Stanke, Thomas [European Southern Observatory, Garching bei München (Germany); Billot, Nicolas [Instituto de Radio Astronomía Milimétrica, Granada (Spain); Tobin, John J. [Leiden Observatory, Leiden (Netherlands); Ali, Babar [Space Science Institute, Boulder, CO (United States); Allen, Lori E. [National Optical Astronomy Observatory, Tucson, AZ (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Wilson, T. L., E-mail: wjfischer@gmail.com [Naval Research Laboratory, Washington, DC (United States)

    2015-02-10

    We report the dramatic mid-infrared brightening between 2004 and 2006 of Herschel Orion Protostar Survey (HOPS) 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 μm with a brightness increase also apparent at 4.5 μm. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K{sub s} imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L{sub ⊙}. Post-outburst time-series mid- and far-infrared photometry show no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a 6 year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.

  4. BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns

    Science.gov (United States)

    Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; Tacconi, Linda

    2018-04-01

    We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the A V to the hydrogen column densities ({N}{{H}}) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by A V toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1–1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction.

  5. Spectral-luminosity evolution of active galactic nuclei (AGN)

    Science.gov (United States)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  6. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  7. Constraints from the UV delay in dwarf nova outbursts

    International Nuclear Information System (INIS)

    Meyer, F.; Meyer-Hofmeister, E.

    1989-01-01

    Observations of outbursts of the dwarf nova system VW Hydri show a delay of the rise of the UV flux with respect to that of the optical flux. We discuss the difficulties in modeling this feature in the context of the accretion disk instability and propose a modified limit cycle based on the same value of the frictional parameter α for the cool disk before transition and the hot disk afterwards. This is in contrast with the idea that α must be lower on the cool than on the hot branch. For the modeling of the disk evolution we further assume a continuing depletion of the disk after outburst, which results in a delay of the change over to the hot state during the following outburst

  8. The inter-outburst behavior of cataclysmic variables

    International Nuclear Information System (INIS)

    Szkody, P.; Mattei, J.A.; Waagen, E.O.; Stablein, C.

    1990-01-01

    Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined

  9. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A UV to mid-IR study of AGN selection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sun Mi; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Jannuzi, Buell T. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  11. CERN Library | Agnes Chavez @ CERN | 17 March

    CERN Multimedia

    2015-01-01

    Agnes Chavez will present her work on Tuesday, 17 March 2015 at 4 p.m. in the Library (Builidng. 52-1-052) Coffee will be served from 3.30 p.m.   Agnes Chavez is an artist and educator participating in a two-week research stay organised by the ATLAS Experiment at CERN. Chavez is using the stay to develop her art and education project, Projecting pARTicles, which will be exploring particle physics through projection art. Chavez experiments with data visualization, sound and projection art to create participatory environments. She collaborates with programmers to create algorithmic drawings projected on to buildings, walls and spaces. This work explores our relationship with nature and technology, and how these and other sensory experiences determine how we perceive and interpret the world around us. For the Projecting pARTicles series she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspire...

  12. Physical Mechanism of Comet Outbursts: The Movie

    Science.gov (United States)

    Hartmann, William K.

    2014-11-01

    predicted for the Deep Impact experiment in Comet Tempel 1.The film is posted on the Planetary Science Institute website, www.psi.edu/hartmann. [1] Hartmann, W. K. 1993 Physical Mechanism of Comet Outbursts: An Experimental Result. Icarus 104, 226-233.

  13. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    Science.gov (United States)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  14. Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array

    Science.gov (United States)

    Nyland, K.; Harwood, J. J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G. V.; Davis, T. A.; Greene, J. E.; Kimball, A.; Lacy, M.; Lonsdale, Carol; Lonsdale, Colin; Maksym, W. P.; Molnár, D. C.; Morabito, L.; Murphy, E. J.; Patil, P.; Prandoni, I.; Sargent, M.; Vlahakis, C.

    2018-05-01

    Energetic feedback by active galactic nuclei (AGNs) plays an important evolutionary role in the regulation of star formation on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment, and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred kilometers) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGNs and their role in galaxy evolution. Here, we provide an overview of the science related to AGN feedback that will be possible in the ngVLA era and present new continuum ngVLA imaging simulations of resolved radio jets spanning a wide range of intrinsic extents. We also consider key computational challenges and discuss exciting opportunities for multiwavelength synergy with other next-generation instruments, such as the Square Kilometer Array and the James Webb Space Telescope. The unique combination of high-resolution, large collecting area, and wide frequency range will enable significant advancements in our understanding of the effects of jet-driven feedback on sub-galactic scales, particularly for sources with extents of a few parsec to a few kiloparsec, such as young and/or lower-power radio AGNs, AGNs hosted by low-mass galaxies, radio jets that are interacting strongly with the interstellar medium of the host galaxy, and AGNs at high redshift.

  15. Dwarf novae in outburst: simultaneous ultraviolet and optical observations of VW Hydri

    International Nuclear Information System (INIS)

    Schwarzenberg-Czerny, A.; Jones, D.H.P.; Ward, M.; Pringle, J.E.; Verbunt, F.

    1985-01-01

    Simultaneous spectrophotometry of the dwarf nova VW Hydri in the range 1200-7000 A is presented. The main set of observations cover one complete outburst, including the rise and the decline. Comparing these data with data from other outbursts of VW Hyi it is found that all the data can be interleaved. This underlines the similarity in the behaviour of the continuum flux distribution from outburst to outburst. In particular the discovery by previous authors that the outburst starts at optical wavelengths and spreads later to the ultraviolet is confirmed. (author)

  16. AGN outflows as neutrino sources: an observational test

    Science.gov (United States)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-04-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 "bona fide" AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Second, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23,264 AGN at z values (˜6 and 18 per cent respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  17. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617

    Science.gov (United States)

    Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.

    2014-06-01

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  18. On the 2011 Outburst of the Recurrent Nova T Pyxidis

    Directory of Open Access Journals (Sweden)

    L. Izzo

    2015-02-01

    Full Text Available We discuss the nebular phase emission during the 2011 outburst of the recurrent nova T Pyxidis and present preliminaryresults on the analysis of the line profiles. We also present some discussions about the binary system configurations and the X-ray emission, showing that the white dwarf mass should be larger than 0.8 MΘ.

  19. Signs of η Carinae Outburst in Artifacts of Ancient Bolivia

    Science.gov (United States)

    Teames, Sallie

    Recent HST and X-ray photos of η Carinae reveal the bipolar gaseous lobes--the Homunculus Nebula--created by the star's "Great Eruption of 1843." From debris gases on the outskirts beyond the two gaseous lobes, astrophysicists surmise an earlier outburst. The 1999 Chandra X-ray photo of the horseshoe-shaped outer nebula surrounding the bipolar lobes indicates an earlier outburst occurring over a thousand years ago. Because η Carinae is so far south, it is entirely possible that the outburst would not have been seen by the Chinese and other observers in the northern hemisphere. Researchers are looking for possible recordings by early southern hemisphere observers. Pre-Incan artifacts excavated in Bolivia may provide an answer. In the script and artwork carvings on a monolith stone statue, an artifact of the Tiahuanacan culture, are signs possibly depicting the earlier outburst of η Carinae--the recordings of a star that suddenly brightened in their night sky. Two small stones from the same era and also found on the south shore of Lake Titicaca may also show depictions related to this brightening.

  20. SAX J2103.5+4545 in outburst

    DEFF Research Database (Denmark)

    Galis, R.; Beckmann, V.; Bianchin, V.

    2008-01-01

    We report an intense hard X-ray outburst detected from the Be/ neutron star HMXB SAX J2103.5+4545 (Blay et al. 2004, A&A, 427, 293), which is known to be a pulsar. The source was detected during INTEGRAL observations of the Galactic Plane in the Cygnus region, starting at 2007-04-25T09:14 (UTC...

  1. Imaging AGN Feedback in NGC 3393 with CHEERS

    Science.gov (United States)

    Paggi, Alessandro; Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2016-04-01

    The CHandra Extended Emission-line Region Survey (CHEERS) is the 'ultimate' resolution X-ray imaging survey of nearby far-IR selected AGN. By comparing deep Chandra observations with complementary HST and radio data, we investigate the morphology of the extended narrow-line region on scales of <100 pc. We present new results on the gas surrounding the compton-thick AGN NGC 3393. The luminous extended narrow-line X-ray emission from this gas allows us to study the role and extent of AGN feedback as sub-kpc jets interact with the surrounding ISM.

  2. Automated spectral and timing analysis of AGNs

    Science.gov (United States)

    Munz, F.; Karas, V.; Guainazzi, M.

    2006-12-01

    % We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.

  3. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  4. FROM NEARBY LOW LUMINOSITY AGN TO HIGH REDSHIFT ...

    Indian Academy of Sciences (India)

    44

    6Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida ... We present detailed science cases that a large fraction of the Indian AGN ..... kiloparsec-scale radio study of the MOJAVE6 blazar sample. Kharb et al.

  5. Can double-peaked lines indicate merging effects in AGNs?

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2000-01-01

    Full Text Available The influence of merging effects in the central part of an Active Galactic Nucleus (AGN on the emission spectral line shapes are discussed. We present a model of close binary Broad Line Region. The numerical experiments show that the merging effects can explain double peaked lines. The merging effects may also be present in the center of AGNs, although they emit slightly asymmetric as well as symmetric and relatively stable (in profile shape spectral lines. Depending on the black hole masses and their orbit elements such model may explain some of the line profile shapes observed in AGNs. This work shows that if one is looking for the merging effects in the central region as well as in the wide field structure of AGNs, he should first pay attention to objects which have double peaked lines.

  6. Dramatic Outburst Reveals Nearest Black Hole

    Science.gov (United States)

    2000-01-01

    Scientists have discovered the closest black hole yet, a mere 1,600 light years from Earth. Its discovery was heralded by four of the most dramatic rapid X-ray intensity changes ever seen from one star. Astronomers from the Massachusetts Institute of Technology (MIT) and the National Science Foundation's National Radio Astronomy Observatory (NRAO) announced their findings at the American Astronomical Society's meeting in Atlanta. The black hole in the constellation Sagittarius, along with a normal star dubbed V4641 Sgr, form a violent system that briefly flooded part of our Milky Way Galaxy with X-rays and ejected subatomic particles moving at nearly the speed of light one day last September. At the peak of its X-ray output, V4641 Sgr was the brightest X-ray emitter in the sky. Astronomers call this type of system an X-ray nova because it suddenly becomes a bright source of X-rays, but this object shows characteristics never seen in an X-ray nova. "V4641 Sgr turns on and off so fast that it seems to represent a new subclass of X-ray novae," said Donald A. Smith, postdoctoral associate in MIT's Center for Space Research. Smith worked on data from this object with MIT principal research scientist Ronald Remillard and NRAO astronomer Robert Hjellming. "In X-rays, the intensity rose by a factor of more than 1,000 in seven hours, then dropped by a factor of 100 in two hours," Remillard said. The radio emission was seen as an image of an expanding "jet" of particles shooting out from the binary system. After reaching a maximum, the radio intensity dropped by a factor of nearly 40 within two days. "Radio telescopes give us a quick glimpse of something moving at a fantastically high velocity," Hjellming said. Black holes harbor enormous gravitational force that can literally rip the gas away from a nearby star. This transfer of gas is visible in many forms of radiation. Both orbiting X-ray telescopes and ground-based radio and optical telescopes saw the outburst of V4641

  7. Development of AGNES, a kinetics code for fissile solutions, 1

    International Nuclear Information System (INIS)

    Nakajima, Ken; Ohnishi, Nobuaki

    1986-01-01

    A kinetics code for fissile solutions, AGNES (Accidentally Generated Nuclear Excursion Simulation code), has been developed. This code calculates the radiolytic gas void effect as a reactivity feedback. Physical and calculative models of the radiolytic gas void are summarized and the usage of AGNES is described. In addition, some benchmark calculations were performed and results of calculations show good agreement with those of experiments. (author)

  8. Energetic certification in Europe

    International Nuclear Information System (INIS)

    1998-01-01

    At community level the problem of energy quality control in a building was introduced by EEC recommendation n. 93/76 in 1993. In this item are reported some notes on energetic certification in European countries [it

  9. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  10. Testing AGN unification via inference from large catalogs

    Science.gov (United States)

    Nikutta, Robert; Ivezic, Zeljko; Elitzur, Moshe; Nenkova, Maia

    2018-01-01

    Source orientation and clumpiness of the central dust are the main factors in AGN classification. Type-1 QSOs are easy to observe and large samples are available (e.g. in SDSS), but obscured type-2 AGN are dimmer and redder as our line of sight is more obscured, making it difficult to obtain a complete sample. WISE has found up to a million QSOs. With only 4 bands and a relatively small aperture the analysis of individual sources is challenging, but the large sample allows inference of bulk properties at a very significant level.CLUMPY (www.clumpy.org) is arguably the most popular database of AGN torus SEDs. We model the ensemble properties of the entire WISE AGN content using regularized linear regression, with orientation-dependent CLUMPY color-color-magnitude (CCM) tracks as basis functions. We can reproduce the observed number counts per CCM bin with percent-level accuracy, and simultaneously infer the probability distributions of all torus parameters, redshifts, additional SED components, and identify type-1/2 AGN populations through their IR properties alone. We increase the statistical power of our AGN unification tests even further, by adding other datasets as axes in the regression problem. To this end, we make use of the NOAO Data Lab (datalab.noao.edu), which hosts several high-level large datasets and provides very powerful tools for handling large data, e.g. cross-matched catalogs, fast remote queries, etc.

  11. A model for AGN variability on multiple time-scales

    Science.gov (United States)

    Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.

    2018-05-01

    We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.

  12. The effect of a tectonic stress field on coal and gas outbursts.

    Science.gov (United States)

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions.

  13. Outbursts from the secondary component in OJ 287 and the secondary spin-up

    Directory of Open Access Journals (Sweden)

    Pihajoki P.

    2012-12-01

    Full Text Available At the end of March 2012 a prominent optical outburst was observed in the binary black hole system OJ 287. It does not fit the expected sequence of outbursts from the primary component and the bremsstrahlung outbursts from the accretion disk impacts of the secondary component. These occur in a well established pattern repeated with an approximately 12 year interval. In this work we discuss the possibility that the outburst originates from the secondary black hole. The timing of the 2012 outburst relative to the expected sequence would make it a counterpart of the precursor outbursts in 1993 and 2004, which occured before the main pattern of outbursts. If so, it appears that a precursor occurs when the secondary reaches a constant level above the mean accretion disk level of the primary component. It may be that this encounter induces an outburst in the secondary which is nearly as prominent as the outbursts in the expected sequence. The strength of these outbursts depends strongly on the spin of the secondary. In this work we investigate the limits on the secondary spin-up and spin alignment from interaction with the accretion disk of the primary component and its magnetic field.

  14. The Swift/BAT AGN Spectroscopic Survey. IX. The Clustering Environments of an Unbiased Sample of Local AGNs

    Science.gov (United States)

    Powell, M. C.; Cappelluti, N.; Urry, C. M.; Koss, M.; Finoguenov, A.; Ricci, C.; Trakhtenbrot, B.; Allevato, V.; Ajello, M.; Oh, K.; Schawinski, K.; Secrest, N.

    2018-05-01

    We characterize the environments of local accreting supermassive black holes by measuring the clustering of AGNs in the Swift/BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.01 2MASS galaxies, and interpreting it via halo occupation distribution and subhalo-based models, we constrain the occupation statistics of the full sample, as well as in bins of absorbing column density and black hole mass. We find that AGNs tend to reside in galaxy group environments, in agreement with previous studies of AGNs throughout a large range of luminosity and redshift, and that on average they occupy their dark matter halos similar to inactive galaxies of comparable stellar mass. We also find evidence that obscured AGNs tend to reside in denser environments than unobscured AGNs, even when samples were matched in luminosity, redshift, stellar mass, and Eddington ratio. We show that this can be explained either by significantly different halo occupation distributions or statistically different host halo assembly histories. Lastly, we see that massive black holes are slightly more likely to reside in central galaxies than black holes of smaller mass.

  15. Multidimensional Simulations of Colliding Outbursts from very Massive Stars

    Science.gov (United States)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Massive stars that end their lives with helium cores in the range of 35 to 65 solar masses are known to produce repeated thermonuclear outbursts due to a recurring pair-instability. In some of these events, solar masses of material are ejected in repeated outbursts of several times 1050 erg each. Such models can be used to explain the strong mass loss rates at the last moment before the massive stars die. Collisions between these shells can sometimes produce very luminous transients. Previous 1D studies of these events produce thin,high-density shells as one ejection plows into another. We present the first multidimensional simulations of these collisions, we show that the development of a Rayleigh-Taylor instability truncates the growth of the high density spike and drives mixing between the shells.

  16. Determining air distribution during outbursts of gases and rocks

    Energy Technology Data Exchange (ETDEWEB)

    Struminski, A; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses use of the KPW-1 iterative and autocorrelation method developed by A. Struminski for forecasting effects of rock bursts on ventilation systems of underground coal mines with increased content of methane or carbon dioxide in coal seams and adjacent rock strata. The method is used for prediction of air flow changes caused by a rock burst accompanied by violent outburst of gases. Directions of air flow, flow rate and concentration of gases emitted from surrounding strata to mine workings are predicted. On the basis of this prediction concentration of gases from a coal outburst is determined for any point in a ventilation network. The prediction method is used for assessing hazards for coal mines during and after a rock burst. Use of the method is explained on the example of the Thorez and Walbrzych coal mines. Computer programs developed for ODRA and IBM/XT computers are discussed. 6 refs.

  17. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  18. Outburst Properties of V1504 Cyg and V344 Lyr

    Directory of Open Access Journals (Sweden)

    J. K. Cannizzo

    2015-02-01

    Full Text Available I begin by reviewing dwarf novae and the disk instability theory, and then present an overview of three ideas for producing superoutbursts in the SU UMa stars − the thermal tidal instability, irradiation-induced secondary mass overflow, and the plain vanilla disk limit cycle instability. I discuss the properties of the outbursts in two SU UMa systems observed by Kepler in the context of the three theories. I conclude with a look beyond the SU UMa systems.

  19. GBM Observations of Be X-Ray Binary Outbursts

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  20. Long-term photometric behaviour of outbursting AM CVn systems

    OpenAIRE

    Levitan, David; Groot, Paul J.; Prince, Thomas A.; Kulkarni, Shrinivas R.; Laher, Russ; Ofek, Eran O.; Sesar, Branimir; Surace, Jason

    2015-01-01

    The AM CVn systems are a class of He-rich, post-period minimum, semidetached, ultracompact binaries. Their long-term light curves have been poorly understood due to the few systems known and the long (hundreds of days) recurrence times between outbursts. We present combined photometric light curves from the Lincoln Near Earth Asteroid Research, Catalina Real-Time Transient Survey, and Palomar Transient Factory synoptic surveys to study the photometric variability of these systems over an almo...

  1. Optical spectroscopy of V404 Cyg during its latest outburst

    Science.gov (United States)

    Somogyi, Peter

    2016-01-01

    Low resolution spectra were obtained during the current outburst (announced in ATel #8453) of the microquasar V404 Cyg. Ten 600 sec exposures were obtained on 2015 Dec. 31 (JD 2457388.202 - 0.27) with a 250 mm Newtonian reflector using an LHires III spectrograph with 150 line/mm grating (R ~ 500) spanning 4500-7500A with the combined S/N ~ 10 (continuum at 6000A; calibration used the standard HD192640).

  2. GW LIBRAE: STILL HOT EIGHT YEARS POST-OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Mukadam, Anjum S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Gänsicke, Boris T.; Chote, Paul; Toloza, Odette [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Nelson, Peter; Myers, Gordon; Waagen, Elizabeth O. [AAVSO, 48 Bay State Road, Cambridge, MA 02138 (United States); Sion, Edward M. [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Sullivan, Denis J. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand); Townsley, Dean M., E-mail: szkody@astro.washington.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-08-01

    We report continued Hubble Space Telescope ( HST ) ultraviolet spectra and ground-based optical photometry and spectroscopy of GW Librae eight years after its largest known dwarf nova outburst in 2007. This represents the longest cooling timescale measured for any dwarf nova. The spectra reveal that the white dwarf still remains about 3000 K hotter than its quiescent value. Both ultraviolet and optical light curves show a short period of 364–373 s, similar to one of the non-radial pulsation periods present for years prior to the outburst, and with a similar large UV/optical amplitude ratio. A large modulation at a period of 2 hr (also similar to that observed prior to outburst) is present in the optical data preceding and during the HST observations, but the satellite observation intervals did not cover the peaks of the optical modulation, and so it is not possible to determine its corresponding UV amplitude. The similarity of the short and long periods to quiescent values implies that the pulsating, fast spinning white dwarf in GW Lib may finally be nearing its quiescent configuration.

  3. EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Armitage, Philip J., E-mail: pja@jilau1.colorado.edu [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States)

    2016-12-20

    EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because of the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.

  4. A window on stochastic processes and gamma-ray cosmology through spectral and temporal studies of AGN observed with H.E.S.S

    International Nuclear Information System (INIS)

    Biteau, J.

    2013-01-01

    Fifty years after the discovery that quasars are extragalactic sources, their bright cores (AGN) and the jets that some of them exhibit still have plenty of secrets to share, particularly through observations in the gamma-ray band. Above 100 GeV, Cherenkov telescopes such as H.E.S.S. have detected 50 AGN, mostly blazars, objects whose jets are pointed toward the observer. The detection of two faint ones, 1ES 1312-423 and SHBL J001355.9-185406, is described in this thesis. Their multiwavelength spectra are reproduced with a synchrotron self-Compton model. The γ rays emitted by blazars are partly absorbed by the extragalactic background light (EBL), the second most intense cosmological background, which carries the integrated history of star formation. The first detection of this absorption above 100 GeV is performed, enabling the measurement of the EBL peak-amplitude in the optical band at the 20% level. In addition to these spectral studies, the fast flux-variations of blazars are investigated using the outbursts of PKS 2155-304 seen by H.E.S.S.. The observation of a skewed flux distribution and of an R.M.S.-flux correlation are interpreted within a kinematic model, where the emission is a realization of a stochastic process. (author)

  5. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  6. On the Intermediate Line Region in AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Tek P.; Różańska, Agata; Hryniewicz, Krzysztof [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Czerny, Bozena [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Ferland, Gary J., E-mail: tek@camk.edu.pl [Department of Physics and Astronomy, The University of Kentucky, Lexington, KY (United States)

    2017-09-29

    In this paper we explore the intermediate line region (ILR) by using the photoionisation simulations of the gas clouds present at different radial distances from the center, corresponding to the locations from BLR out to NLR in four types of AGNs. We let for the presence of dust whenever conditions allow for dust existence. All spectral shapes are taken from the recent multi-wavelength campaigns. The cloud density decreases with distance as a power law. We found that the slope of the power law density profile does not affect the line emissivity radial profiles of major emission lines: Hβ, He II, Mg II, C III, and O III. When the density of the cloud at the sublimation radius is as high as 10{sup 11.5} cm{sup −3}, the ILR should clearly be seen in the observations independently of the shape of the illuminating radiation. Moreover, our result is valid for low ionization nuclear emission regions of active galaxies.

  7. The fourth outburst during the present active stage of symbiotic binary AG Dra

    Science.gov (United States)

    Galis, R.; Merc, J.; Vrastak, M.; Teyssier, F.; Lester, T.; Boyd, D.; Sims, W.; Leedjarv, L.

    2018-04-01

    The symbiotic system AG Dra regularly undergoes quiescent and active stages which consist of several outbursts repeating at about 360d interval (Galis et al. 2017, OEJV 180, 24). After seven years of flat quiescence following the 2006-08 major outbursts, in the late spring of 2015, AG Dra began rising again in brightness toward what appeared to be a new minor outburst (ATel #7582).

  8. Infrared variability of the BL lacertae object OJ287 since its outburst in 1983

    International Nuclear Information System (INIS)

    Gear, W.K.; Robson, E.I.; Brown, L.M.J.

    1986-01-01

    In early 1983, OJ287 was seen to undergo an outburst in its optical and infrared emission. The authors have monitored the near-infrared emission since the outburst. The fluxes have fluctuated considerably, with the lowest recordings being an order of magnitude less than those measured during the outburst. An excellent correlation between infrared flux and spectral index has been found; as the source gets fainter the spectrum gets steeper, and vice versa. (author)

  9. Accretion outbursts in self-gravitating protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Nelson, Richard P., E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu, E-mail: r.p.nelson@qmul.ac.uk [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-01

    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α{sub rd}) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α{sub rd} triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α{sub rd} = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot {sub acc}∼10{sup −8}--10{sup −7} M{sub ⊙} yr{sup −1} over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the

  10. Accretion outbursts in self-gravitating protoplanetary disks

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan; Nelson, Richard P.

    2014-01-01

    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α rd ) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α rd triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α rd = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot acc ∼10 −8 --10 −7 M ⊙ yr −1 over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the initial core angular momentum, which

  11. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  12. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    Science.gov (United States)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  13. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Leon-Tavares, Jonathan [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FI-02540, Kylmaelae (Finland); Chavushyan, Vahram H., E-mail: erika@astro.unam.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico)

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  14. Revisiting the `forbidden' region: AGN radiative feedback with radiation trapping

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.; Ricci, C.; Celotti, A.

    2018-06-01

    Active galactic nucleus (AGN) feedback, driven by radiation pressure on dust, is an important mechanism for efficiently coupling the accreting black hole to the surrounding environment. Recent observations confirm that X-ray selected AGN samples respect the effective Eddington limit for dusty gas in the plane defined by the observed column density versus the Eddington ratio, the so-called NH - λ plane. A `forbidden' region occurs in this plane, where obscuring clouds cannot be long-lived, due to the action of radiation pressure on dust. Here we compute the effective Eddington limit by explicitly taking into account the trapping of reprocessed radiation (which has been neglected in previous works), and investigate its impact on the NH - λ plane. We show that the inclusion of radiation trapping leads to an enhanced forbidden region, such that even Compton-thick material can potentially be disrupted by sub-Eddington luminosities. We compare our model results to the most complete sample of local AGNs with measured X-ray properties, and find good agreement. Considering the anisotropic emission from the accretion disc, we also expect the development of dusty outflows along the polar axis, which may naturally account for the polar dust emission recently detected in several AGNs from mid-infrared observations. Radiative feedback thus appears to be the key mechanism regulating the obscuration properties of AGNs, and we discuss its physical implications in the context of co-evolution scenarios.

  15. The joint fit of the BHMF and ERDF for the BAT AGN Sample

    Science.gov (United States)

    Weigel, Anna K.; Koss, Michael; Ricci, Claudio; Trakhtenbrot, Benny; Oh, Kyuseok; Schawinski, Kevin; Lamperti, Isabella

    2018-01-01

    A natural product of an AGN survey is the AGN luminosity function. This statistical measure describes the distribution of directly measurable AGN luminosities. Intrinsically, the shape of the luminosity function depends on the distribution of black hole masses and Eddington ratios. To constrain these fundamental AGN properties, the luminosity function thus has to be disentangled into the black hole mass and Eddington ratio distribution function. The BASS survey is unique as it allows such a joint fit for a large number of local AGN, is unbiased in terms of obscuration in the X-rays and provides black hole masses for type-1 and type-2 AGN. The black hole mass function at z ~ 0 represents an essential baseline for simulations and black hole growth models. The normalization of the Eddington ratio distribution function directly constrains the AGN fraction. Together, the BASS AGN luminosity, black hole mass and Eddington ratio distribution functions thus provide a complete picture of the local black hole population.

  16. Agnes Pockels: Life, Letters and Papers

    Science.gov (United States)

    Helm, Christiane A.

    2004-03-01

    Agnes Pockels (1862 - 1935) was a German woman, whose studies pioneered surface science. She was born in malaria infected North Italy while her father served in the Austrian army. Because he suffered adverse health effects, the family moved in1871 to Braunschweig (North Germany). There, Pockels went to high school. She was interested in science, but formal training was not available for girls. She took on the role of household manager and nurse as her parents' health deteriorated further. Her diary illustrates the difficulties she faced in trying to maintain her own health, the health of her parents and her scientific research at the same time. When Pockels was 18 or 19, she designed a ring tensiometer. Additionally, she found a new method to introduce water-insoluble compounds to the water surface by dissolving them in an organic solvent, and applying drops of the solution. Her surface film balance technique from 1882 is the basis for the method later developed by Langmuir. Since her experimental work was highly original and in a new field, she failed to get it recognized in her own country. When she was 28, she wrote to Lord Rayleigh, since she had read about his recent experiments in surface physics. Rayleigh was so impressed with her experimental methods and results that he had her letter translated from German and published it in Nature (1891). She continued her research on surface films, interactions of solutions and contact angles (more papers, 3 in Nature). Still, she did all experiments at home. With the death of her brother in 1913 and the onset of the war, she retired into private life. Thus she was surprised when she was awarded in her late 60ies with a honorary doctorate by the TU Braunschweig (1932) and the annual prize of the German Colloid Society (1931).

  17. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  18. Multi-phase outflows as probes of AGN accretion history

    Science.gov (United States)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  19. Compton-thick AGN at high and low redshift

    Science.gov (United States)

    Akylas, A.; Georgantopoulos, I.; Corral, A.; Ranalli, P.; Lanzuisi, G.

    2017-10-01

    The most obscured sources detected in X-ray surveys, the Compton-thick AGN present great interest both because they represent the hidden side of accretion but also because they may signal the AGN birth. We analyse the NUSTAR observations from the serendipitous observations in order to study the Compton-thick AGN at the deepest possible ultra-hard band (>10 keV). We compare our results with our SWIFT/BAT findings in the local Universe, as well as with our results in the CDFS and COSMOS fields. We discuss the comparison with X-ray background synthesis models finding that a low fraction of Compton-thick sources (about 15 per cent of the obscured population) is compatible with both the 2-10keV band results and those at harder energies.

  20. Coeval Starburst and AGN Activity in the CDFS

    Science.gov (United States)

    Brusa, M.; Fiore, F.

    2009-10-01

    Here we present a study on the host galaxies properties of obscured Active Galactic Nuclei (AGN) detected in the CDFS 1Ms observation and for which deep K-band observations obtained with ISAAC@VLT are available. The aim of this study is to characterize the host galaxies properties of obscured AGN in terms of their stellar masses, star formation rates, and specific star formation rates. To this purpose we refined the X-ray/optical association of 179 1 Ms sources in the MUSIC area, using a three-bands (optical, K, and IRAC) catalog for the counterparts search and we derived the rest frame properties from SED fitting. We found that the host of obscured AGN at z>1 are associated with luminous, massive, red galaxies with significant star formation rates episodes still ongoing in about 50% of the sample.

  1. Mid-infrared Variability of Changing-look AGNs

    International Nuclear Information System (INIS)

    Sheng, Zhenfeng; Wang, Tinggui; Jiang, Ning; Yang, Chenwei; Peng, Bo; Yan, Lin; Dou, Liming

    2017-01-01

    It is known that some active galactic nuclei (AGNs) transit from Type 1 to Type 2 or vice versa. There are two explanations for the so-called changing-look AGNs: one is the dramatic change of the obscuration along the line of sight, and the other is the variation of accretion rate. In this Letter, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing-look AGNs using the Wide-field Infrared Survey Explorer ( WISE ) and newly released Near-Earth Object WISE Reactivation data. The mid-infrared light curves of 10 objects echo the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather it supports the scheme of dramatic change in the accretion rate.

  2. Mid-infrared Variability of Changing-look AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhenfeng; Wang, Tinggui; Jiang, Ning; Yang, Chenwei; Peng, Bo [CAS Key Laboratory for Researches in Galaxies and Cosmology, University of Sciences and Technology of China, Hefei, Anhui 230026 (China); Yan, Lin [Caltech Optical Observatories, Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Dou, Liming, E-mail: shengzf@mail.ustc.edu.cn, E-mail: twang@ustc.edu.cn [Center for Astrophysics, Guangzhou University, Guangzhou 510006 (China)

    2017-09-01

    It is known that some active galactic nuclei (AGNs) transit from Type 1 to Type 2 or vice versa. There are two explanations for the so-called changing-look AGNs: one is the dramatic change of the obscuration along the line of sight, and the other is the variation of accretion rate. In this Letter, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing-look AGNs using the Wide-field Infrared Survey Explorer ( WISE ) and newly released Near-Earth Object WISE Reactivation data. The mid-infrared light curves of 10 objects echo the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather it supports the scheme of dramatic change in the accretion rate.

  3. Quasar outflow energetics from broad absorption line variability

    Science.gov (United States)

    McGraw, S. M.; Shields, J. C.; Hamann, F. W.; Capellupo, D. M.; Herbst, H.

    2018-03-01

    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in active galactic nucleus (AGN) feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P V broad absorption. The presence of P V BALs indicates that other BALs like C IV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ) BAL variations from 10 quasars in our sample over rest-frame time-scales between ≤0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally ≲ 1-10 pc from the SMBH using the transverse-motion scenario, and ≲ 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NH ≳ 1022 cm-2), yield outflow kinetic luminosities between ˜ 0.001 and 1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.

  4. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  5. Dynamics and Formation of Obscuring Tori in AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Bannikova, Elena Yu.; Sergeyev, Alexey V., E-mail: bannikova@astron.kharkov.ua [Institute of Radio Astronomy, National Academy of Science of Ukraine, Kharkiv (Ukraine); Institute of Astronomy, V. N. Karazin Kharkiv National University, Kharkiv (Ukraine)

    2017-12-12

    We considered the evolution of a self-gravitating clumpy torus in the gravitational field of the central mass of an active galactic nucleus (AGN) in the framework of the N-body problem. The initial conditions take into account winds with different opening angles. Results of our N-body simulations show that the clouds moving on orbits with a spread in inclinations and eccentricities form a toroidal region. The velocity of the clouds at the inner boundary of the torus is lower than in a disk model that can explain the observed rotation curves. We discuss the scenario of torus formation related with the beginning of the AGN stage.

  6. Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal

    Science.gov (United States)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.

    2018-05-01

    Ongoing and future radio surveys aim to trace the evolution of black hole growth and feedback from active galactic nuclei (AGNs) throughout cosmic time; however, there remain major uncertainties in translating radio luminosity functions into a reliable assessment of the energy input as a function of galaxy and/or dark matter halo mass. A crucial and long-standing problem is the composition of the radio-lobe plasma that traces AGN jet activity. In this paper, we carry out a systematic comparison of the plasma conditions in Fanaroff & Riley class I and II radio galaxies to demonstrate conclusively that their internal composition is systematically different. This difference is best explained by the presence of an energetically dominant proton population in the FRI, but not the FRII radio galaxies. We show that, as expected from this systematic difference in particle content, radio morphology also affects the jet-power/radio-luminosity relationship, with FRII radio galaxies having a significantly lower ratio of jet power to radio luminosity than the FRI cluster radio sources used to derive jet-power scaling relations via X-ray cavity measurements. Finally, we also demonstrate conclusively that lobe composition is unconnected to accretion mode (optical excitation class): the internal conditions of low- and high-excitation FRII radio lobes are indistinguishable. We conclude that inferences of population-wide AGN impact require careful assessment of the contribution of different jet subclasses, particularly given the increased diversity of jet evolutionary states expected to be present in deep, low-frequency radio surveys such as the LOFAR Two-Metre Sky Survey.

  7. Magnetic field interpretation for the outburst of CH Cygni

    International Nuclear Information System (INIS)

    Wdowiak, T.J.

    1977-01-01

    The possible appearance of kilogauss magnetic structure in and above the photosphere of a red giant during helium-shell flash is examined as a mechanism for the outburst of the apparently single star, CH Cyg. Strong magnetic fields created by dynamo action in a temporary connection zone of a red giant core, by virtue of their intrinsic buoyancy, would rise quickly to the stellar surface. It is suggested that if the field is coupled with the large-scale convective structure of the envelope, the energy contained and rate of release would be sufficient to produce the emission features of the spectrum of CH Cyg

  8. Flare stars of the Orion Nebula - spectra of an outburst

    International Nuclear Information System (INIS)

    Carter, B.D.; O'Mara, B.J.; Ross, J.E.

    1988-01-01

    For the first time, detailed, time-resolved spectra of a flare event of an Orion cluster flare star are presented. These spectra, covering ∼ λλ3600-4600, were obtained by using the Anglo-Australian Telescope with a fibre coupler to simultaneously monitor 23 flare stars in the region of the Orion Nebula. The flare spectra reveal continuous emission which filled in the photospheric Ca I 4226 A absorption, and hydrogen Balmer, Ca II H and K, He I 4026 A and He I 4471 A line emission. Overall, the spectral behaviour indicates similarities to strong outbursts of the classical dMe flare stars. (author)

  9. A new outburst of the recurrent neutron star transient SAX J1747.0-2853

    NARCIS (Netherlands)

    Brandt, S.; Chenevez, J.; Kuulkers, E.; Natalucci, L.; Fiocchi, M.T.; Tarana, A.; Shaw, S.; Beckmann, V.; Courvoisier, T.J.L.; Domingo, A.; Ebisawa, K.; Kretschmar, P.J.P.; Markwardt, C.; Oosterbroek, T.; Paizis, A.; Risquez, D.; Sanchez-Fernandez, C.; Wijnands, R.

    2007-01-01

    The recurrent transient neutron star system SAX J1747.0-2853 has in the past shown various outbursts with about 60 days duration. Recent observations with INTEGRAL reveal that SAX J1747.0-2853 shows increased activity which may mark the beginning of a new outburst. During the INTEGRAL Galactic Bulge

  10. Classification of coal seam outburst hazards and evaluation of the importance of influencing factors

    OpenAIRE

    Shi Xianzhi; Song Dazhao; Qian Ziwei

    2017-01-01

    Coal and gas outbursts are the result of several geological factors related to coal seam gas (coal seam gas pressure P, coal seam sturdiness coefficient f and coal seam gas content W), and these parameters can be used to classify the outburst hazard level of a coal seam.

  11. MAXI J1659-152: The shortest orbital period black-hole transient in outburst

    DEFF Research Database (Denmark)

    Kuulkers, E.; Kouveliotou, C.; Belloni, T.

    2013-01-01

    MAXI J1659−152 is a bright X-ray transient black-hole candidate binary system discovered in September 2010. We report here on MAXI, RXTE, Swift, and XMM-Newton observations during its 2010/2011 outburst. We find that during the first one and a half week of the outburst the X-ray light curves disp...

  12. Study on the propagation law of shock wave resulting from coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; ZHOU Ai-tao; ZHANG Pin; LI Chuan; GUO Yan-wei

    2011-01-01

    According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.

  13. Swift/BAT confirms the giant outburst of H 1417-624

    Science.gov (United States)

    Krimm, H. A.; Barthelmy, S. D.; Cummings, J. R.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.

    2018-04-01

    The Swift/BAT transient monitor confirms the current outburst from the Be/X-ray binary pulsar, H 1417-624 ( = 2S 1417-624) (Nakajima et al., ATel #11479). In the BAT 15-50 keV energy band, the outburst began approximately on 20 March 2018 (MJD 57467) and the count rate has been steadily rising since that time.

  14. Grazing Eclipsing Dwarf Nova CW Monocerotis: Dwarf Nova-Type Outburst in a Possible Intermediate Polar?

    Science.gov (United States)

    Kato, Taichi; Uemura, Makoto; Kiyota, Seiichiro; Tanabe, Kenji; Koizumi, Mitsuo; Kida, Mayumi; Nishi, Yuichi; Tanaka, Sawa; Ueoka, Rie; Yasui, Hideki; Vanmunster, Tonny; Nogami, Daisaku; Yamaoka, Hitoshi

    2003-04-01

    We observed the 2002 October-November outburst of the dwarf nova CW Mon.The outburst showed a clear signature of a premaximum halt, and a more rapid decline after reaching the outburst maximum.On two separate occasions, during the premaximum stage and near the outburst maximum, shallow eclipses were recorded. This finding confirms the previously suggested possibility of the grazing eclipsing nature of this system.The separate occurrence of the eclipses and the premaximum halt can be understood as being the result of a combination of a two-step ignition of an outburst and the inside-out propagation of the heating wave.We detected a coherent short-period (0.02549d) signal on two subsequent nights around the optical maximum.This signal was likely present during the maximum phase of the 2000 January outburst.We interpret this signal as being a signature of the intermediate polar (IP) type pulses.The rather strange outburst properties, strong and hard X-ray emission, and the low luminosity of the outburst maximum might be understood as a consequence of the supposed IP nature.The ratio between the suggested spin period and the orbital period, however, is rather unusual for a system having an orbital period of ˜ 0.176 d.

  15. Comet 17P/Holmes: contrast in activity between before and after the 2007 outburst

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru; Kim, Yoonyoung; Warjurkar, Dhanraj S.; Ham, Ji-Beom [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Kim, Junhan [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Vaubaillon, Jeremie J. [Observatoire de Paris, I.M.C.C.E., Denfert Rochereau, Bat. A., F-75014 Paris (France); Ishihara, Daisuke [Department of Physics, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Sarugaku, Yuki; Hasegawa, Sunao [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Kasuga, Toshihiro; Watanabe, Jun-ichi [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Pyo, Jeonghyun [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Kuroda, Daisuke [National Institutes of Natural Sciences, Okayama Astrophysical Observatory, Kamogata-cho, Okayama 719-0232 (Japan); Ootsubo, Takafumi [Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Sakamoto, Makoto; Narusawa, Shin-ya; Takahashi, Jun [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Akisawa, Hiroki, E-mail: ishiguro@astro.snu.ac.kr [Himeji City Science Museum, Himeji, Hyogo 671-2222 (Japan)

    2013-11-20

    A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventional 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (≥1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s{sup –1} at a heliocentric distance of r{sub h} = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.

  16. Comet 17P/Holmes: contrast in activity between before and after the 2007 outburst

    International Nuclear Information System (INIS)

    Ishiguro, Masateru; Kim, Yoonyoung; Warjurkar, Dhanraj S.; Ham, Ji-Beom; Kim, Junhan; Usui, Fumihiko; Vaubaillon, Jeremie J.; Ishihara, Daisuke; Hanayama, Hidekazu; Sarugaku, Yuki; Hasegawa, Sunao; Kasuga, Toshihiro; Watanabe, Jun-ichi; Pyo, Jeonghyun; Kuroda, Daisuke; Ootsubo, Takafumi; Sakamoto, Makoto; Narusawa, Shin-ya; Takahashi, Jun; Akisawa, Hiroki

    2013-01-01

    A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventional 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (≥1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s –1 at a heliocentric distance of r h = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.

  17. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  18. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617

    Energy Technology Data Exchange (ETDEWEB)

    Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Jencson, J.; Holoien, T.W-S.; Basu, U.; Beacom, J. F.; Adams, S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Prieto, J. L. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Grupe, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Komossa, S. [Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Im, M. [CEOU/Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Szczygieł, D. M. [Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Brimacombe, J. [Coral Towers Observatory, Cairns, Queensland A-4870 (Australia); Campillay, A., E-mail: shappee@astronomy.ohio-state.edu [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); and others

    2014-06-10

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  19. TIDALLY INDUCED OUTBURSTS IN OJ 287 DURING 2005-2008

    International Nuclear Information System (INIS)

    Valtonen, M. J.; Nilsson, K.; Villforth, C.; Lehto, H. J.; Takalo, L. O.; Lindfors, E.; Sillanpaeae, A.; Hentunen, V.-P.; Mikkola, S.; Zola, S.; Drozdz, M.; Ogloza, W.; Winiarski, M.; Koziel, D.; Kurpinska-Winiarska, M.; Siwak, M.; Heidt, J.; Kidger, M.; Pursimo, T.; Wu, J.-H.

    2009-01-01

    The blazar OJ 287 has produced two major optical outburst events during the years 2005-2008. These are the latest in a series of outbursts that have occurred repeatedly at 12 year intervals since early 1900s. It has been possible to explain the historical light curve fairly well by using a binary black hole model where the secondary black hole impacts the accretion disk of the primary twice during the 12 year orbital cycle. We will ask here how well does the latest light-curve fit with this model. We use a 10 million particle disk to model the accretion disk of the primary black hole. The rate of transfer of particles through the 10 Schwarzschild radius cylinder around the primary is followed. The secondary induces an inward flow through this surface. The inward flow rate is compared with the historical light curve as well as with the most recent observations reported in this paper. The observations have been carried out by using a number of small and medium size telescopes in different locations in order to ensure a dense light-curve coverage. The 'inflow light curve' and the optical light curve of OJ 287 have a close resemblance to each other. It suggests that the tidally induced accretion flow is responsible for the main features of the optical light curve, with the exception of the quasi-periodic double peaks. It implies a close connection between the accretion disk and the jet where the optical synchrotron emission is presumably generated.

  20. Isotopic ratios in outbursting comet C/2015 ER61

    Science.gov (United States)

    Yang, Bin; Hutsemékers, Damien; Shinnaka, Yoshiharu; Opitom, Cyrielle; Manfroid, Jean; Jehin, Emmanuël; Meech, Karen J.; Hainaut, Olivier R.; Keane, Jacqueline V.; Gillon, Michaël

    2018-02-01

    Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0, 0) band and found that 12C/13C = 100 ± 15, 14N/15N = 130 ± 15. In addition, we determined the 14N/15N ratio from four pairs of NH2 isotopolog lines and measured 14N/15N = 140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets.

  1. Convection causes enhanced magnetic turbulence in accretion disks in outburst

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Shigenobu [Department of Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, Kanagawa 236-0001 (Japan); Blaes, Omer; Coleman, Matthew S. B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sano, Takayoshi, E-mail: shirose@jamstec.go.jp [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-05-20

    We present the results of local, vertically stratified, radiation magnetohydrodynamic (MHD) shearing box simulations of magneto-rotational instability (MRI) turbulence appropriate for the hydrogen ionizing regime of dwarf nova and soft X-ray transient outbursts. We incorporate the frequency-integrated opacities and equation of state for this regime, but neglect non-ideal MHD effects and surface irradiation, and do not impose net vertical magnetic flux. We find two stable thermal equilibrium tracks in the effective temperature versus surface mass density plane, in qualitative agreement with the S-curve picture of the standard disk instability model. We find that the large opacity at temperatures near 10{sup 4} K, a corollary of the hydrogen ionization transition, triggers strong, intermittent thermal convection on the upper stable branch. This convection strengthens the magnetic turbulent dynamo and greatly enhances the time-averaged value of the stress to thermal pressure ratio α, possibly by generating vertical magnetic field that may seed the axisymmetric MRI, and by increasing cooling so that the pressure does not rise in proportion to the turbulent dissipation. These enhanced stress to pressure ratios may alleviate the order of magnitude discrepancy between the α-values observationally inferred in the outburst state and those that have been measured from previous local numerical simulations of magnetorotational turbulence that lack net vertical magnetic flux.

  2. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  3. AGN Outflow Shocks on Bonnor–Ebert Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph; Rahman, Mubdi [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Bieri, Rebekka [Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris VI, 98 bis Boulevard Arago, F-75014 Paris (France)

    2017-04-20

    Feedback from active galactic nuclei (AGNs) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor–Ebert spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300 to 3000 km s{sup −1} and wind densities ranging from 0.5 to 10 m {sub p} cm{sup −3}. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01 pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but they also cause star formation to occur on a much shorter timescale and with increased velocities of the newly formed stars. We find a threshold ram pressure of ∼2 × 10{sup −8} dyn cm{sup −2} above which stars are not formed because the resulting clumps have internal velocities large enough to prevent collapse. Our results indicate that simultaneous positive and negative feedback will be possible in a single galaxy, as AGN wind parameters will vary with location within a galaxy.

  4. The search for red AGN with 2MASS

    Science.gov (United States)

    Cutri, R. M.; Nelson, B. O.; Kirkpatrick, J. D.; Huchra, J. P.; Smith, P. S.

    2001-01-01

    We present the results of a simple, highly efficient 2MASS color-based survey that has already discovered 140 previously unknown red AGN and QSOs. These objects are near-infrared-bright and relatively nearby; the media redshift of the sample is z=0.25, and all but two have z<0.7.

  5. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    Science.gov (United States)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our

  6. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    Science.gov (United States)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  7. AGNs with discordant optical and X-ray classification are not a physical family: diverse origin in two AGNs

    Science.gov (United States)

    Ordovás-Pascual, I.; Mateos, S.; Carrera, F. J.; Wiersema, K.; Barcons, X.; Braito, V.; Caccianiga, A.; Del Moro, A.; Della Ceca, R.; Severgnini, P.

    2017-07-01

    Approximately 3-17 per cent of active galactic nuclei (AGNs) without detected rest-frame UV/optical broad emission lines (type-2 AGN) do not show absorption in X-rays. The physical origin behind the apparently discordant optical/X-ray properties is not fully understood. Our study aims at providing insight into this issue by conducting a detailed analysis of the nuclear dust extinction and X-ray absorption properties of two AGNs with low X-ray absorption and with high optical extinction, for which a rich set of high-quality spectroscopic data is available from XMM-Newton archive data in X-rays and XSHOOTER proprietary data at UV-to-NIR wavelengths. In order to unveil the apparent mismatch, we have determined the AV/NH and both the supermassive black hole and the host galaxy masses. We find that the mismatch is caused in one case by an abnormally high dust-to-gas ratio that makes the UV/optical emission to appear more obscured than in the X-rays. For the other object, we find that the dust-to-gas ratio is similar to the Galactic one but the AGN is hosted by a very massive galaxy so that the broad emission lines and the nuclear continuum are swamped by the star light and difficult to detect.

  8. BAT AGN Spectroscopic Survey - III. An Observed Link Between AGN Eddington Ratio and Narrow-Emission-Line Ratios

    Science.gov (United States)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; hide

    2016-01-01

    We investigate the observed relationship between black hole mass (M(sub BH)), bolometric luminosity (L(sub bol)) and Eddington ratio (lambda(sub Edd)) with optical emission-line ratios ([N II] lambda6583/Halpha, [S II]lambda-lamda6716, 6731/Halpha, [O I] lamda6300/Halpha, [O III] lamda5007/Hbeta, [Ne III] lamda3869/Hbeta and He II lamda4686/Hbeta) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] lamda6583/Halpha ratio exhibits a significant correlation with lamda(sub Edd) (R(sub Pear) = -0.44, p-value 3 x 10(exp. -13) sigma = 0.28 dex), and the correlation is not solely driven by M(sub BH) or L(sub bol). The observed correlation between [N II] lamda6583/Halpha ratio and M(sub BH) is stronger than the correlation with L(sub bol), but both are weaker than the lamda(sub Edd) correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] lamda6583/Halpha is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure lambda(sub Edd) and thus M(sub BH) from the measured L(sub bol), even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  9. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-01-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z +3.6 -1.9 % to 18 +5 -5 %). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ∼3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9 +3 -2 % to 29 -19 +26 %). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs

  10. The fraction of AGNs in major merger galaxies and its luminosity dependence

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.

    2018-05-01

    We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.

  11. Hot spot in eclipsing dwarf nova IY Ursae Majoris during quiescence and normal outburst

    OpenAIRE

    Bakowska, K.; Olech, A.

    2016-01-01

    We present the analysis of hot spot brightness in light curves of the eclipsing dwarf nova IY Ursae Majoris during its normal outburst in March 2013 and in quiescence in April 2012 and in October 2015. Examination of four reconstructed light curves of the hot spot eclipses showed directly that the brightness of the hot spot changed significantly only during the outburst. The brightness of the hot spot, before and after the outburst, was on the same level. Hereby, based on the behaviour of the...

  12. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  13. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  14. High-velocity winds from a dwarf nova during outburst

    Science.gov (United States)

    Cordova, F. A.; Mason, K. O.

    1982-01-01

    An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.

  15. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Science.gov (United States)

    Mauche, Christopher W.

    2004-07-01

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  16. Flickering of the symbiotic variable CH Cygni during outburst

    Energy Technology Data Exchange (ETDEWEB)

    Slovak, M H [Texas Univ., Austin (USA). Dept. of Astronomy; Africano, J

    1978-11-01

    High-speed and conventional BVRI photometry are reported for the bright symbiotic variable CH Cygni (M6 IIIe), obtained during the course of a recent outburst. Unlike the quiescent symbiotic stars, the presence of flickering similar in nature to that seen in the cataclysmic variables has been confirmed during this active phase. The BVRI photometry for a sample of stars in the field is used to derive the reddening and the distance to CH Cyg. A composite energy distribution is derived from 0.35 to 11.0 ..mu..m which clearly establishes the existence of a variable, blue continuum. The lack of variability in the near infrared suggests that the blue continuum arises from a hot companion. A binary model including a subluminous hot companion accreting material from the stellar wind of an SRa variable is discussed to account for the observed photometric properties.

  17. Outburst flood evolution at Russell Glacier, western Greenland

    DEFF Research Database (Denmark)

    Carrivick, Jonathan; Russell, Andrew; Ingeman-Nielsen, Thomas

    2013-01-01

    of the evolution of a bedrockchannelled outburst flood. Channel topography was obtained from digitised aerial photographs, a 5m grid resolution DEM and bathymetric surveys. Flood inundation was measured in the field from dGPS measurements. Flood evolution was analysed with application of a numerical model. Novel...... to considerable flow recirculation during the rising stage of the flood, and after overtopping of the outlet are moderated in terms of peak discharge; (ii) may have a limited geomorphological impact if sediment supply due to antecedent geomorphological activity is limited; (iii) can have kinematic waves...... that are introduced to a flood via hydraulic ponding and these waves most likely account for distinctive ‘hydropeaking’, (iv) can have a hydrograph that evolves in shape down channel and through time in a complex manner dependant on channel topography, and (v) may develop a partitioning of flow regimes...

  18. Energetics of bacterial photosynthesis.

    Science.gov (United States)

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  19. Energetic cost of communication.

    Science.gov (United States)

    Stoddard, Philip K; Salazar, Vielka L

    2011-01-15

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs.

  20. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  1. Stochastic particle acceleration by plasma waves in AGN jets

    International Nuclear Information System (INIS)

    Li, Hui; Colgate, S.A.; Miller, J.A.

    1997-01-01

    The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves

  2. Announcment: Conference on Obscured AGN Across Cosmic Time

    Science.gov (United States)

    2006-12-01

    Current deep surveys, notably in X-rays and the mid-IR, are making it possible to carry out a census of essentially all the luminous AGN in the Universe. By pene-trating the obscuration that, in Type 2 sources, hides the nuclear regions in the UV to the near-IR spectrum, these new surveys are finding the radio quiet coun-terparts of the powerful radio galaxies.

  3. Clustering of galaxies around AGNs in the HSC Wide survey

    Science.gov (United States)

    Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori

    2018-01-01

    We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.

  4. Time-scale for turn-off of a nova after the outburst

    International Nuclear Information System (INIS)

    Starrfield, S.

    1979-01-01

    Theoretical and observational evidence is reviewed for the remnant from a nova outburst. Its evolution to burnout is described. Finally, the various physical mechanisms which can lead to an extended period of mass loss are discussed. 19 references

  5. Multicolor Photometry of 1SWASP J162117.36+441254.2 during the 2016 Outburst

    Science.gov (United States)

    Pit, N. V.; Pavlenko, E. P.; Antonyuk, K. A.; Belan, S. P.

    2017-06-01

    We present preliminary results of BVRcIc photometric observations of 1SWASP J162117.36+441254.2 during the 2016 outburst. Observations were carried out at 1.25-m telescope located in Crimean Astrophysical Observatory. Previously this star was thought as eclipsing variable of the W UMa-type until the outburst, but with the help of numerous worldwide observations this object was classified as the long-term dwarf nova. Our findings demonstrate the dramatic changes of the light curves profile in all color bands during the outburst. This can be interpreted as the presence of erupted accretion disk at the early stages of outburst and the emergence of ellipsoid effect of the secondary component of the system at a later stage.

  6. Giant planet migration during FU Orionis outbursts: 1D disc models

    Science.gov (United States)

    Dunhill, A. C.

    2018-05-01

    I present the results of semi-analytic calculations of migrating planets in young, outbursting circumstellar discs. Formed far out in the disc via gravitational fragmentation early on in its lifetime, these planets typically migrate at very slow rates and are therefore mostly expected to remain at large radii (such as is the case in HR 8799). I show that changes in the disc structure during FUor outbursts affect the planet's ability to maintain a gap and can allow a massive giant planet's semimajor axis to reduce by almost 5 per cent in a single outburst under the most optimistic conditions. Given that a single disc will likely undergo ˜10 such outbursts this process can significantly alter the expected radial distribution for GI-formed planets.

  7. The spectral energy distribution and nature of the symbiotic system AS 296 in outburst

    International Nuclear Information System (INIS)

    Munari, U.; Whitelock, P.A.

    1989-01-01

    Photometry covering the spectral range 0.36 to 5 μm is reported for the symbiotic star As 296 about two months after the onset of the first recorded nova-like outburst. Analysis of published pre-outburst photometry provides evidence for the presence of an accreting white dwarf of high luminosity. This information together with the new observations is used to eliminate, for the 1988 event, various mechanisms which have been suggested for the outbursts in symbiotic objects. It is shown that hydrogen burning of accreted material can produce the white dwarf luminosity during quiescence. The outburst is then the result of a thermonuclear runaway in the unburnt material. The evidence is somewhat conflicting on the question of degeneracy conditions prior to the thermonuclear runaway. (author)

  8. Development of a web-based, underground coalmine gas outburst information management system

    Energy Technology Data Exchange (ETDEWEB)

    Naj Aziz; Richard Caladine; Lucia Tome; Ken Cram; Devendra Vyas [University of Wollongong, NSW (Australia)

    2007-04-15

    The primary objective of this project was to develop an online coal mine outburst information management system to provide the coal mining industry with the necessary information and knowledge on outbursts via the World Wide Web. The Website has been constructed using the standard web format. Access to the site is by standard web browsers. The address of the site is http://www.uow.edu.au/eng/outburst. The website has 85 conference papers which were held in Australia, dating as far back as the 1980's, various seminar presentations, more than 250 references, a limited but important collection of international papers, direct links to ACARP and NERRDC publication lists, links to several leading organisations of particular interest in mine gas and outburst control. These links include both private and government organisations, and a forum for discussion.

  9. Black hole and neutron star soft X-ray transients: a hard X-ray view of their outbursts

    International Nuclear Information System (INIS)

    Yu, W.

    2004-01-01

    The RXTE public observations of the outbursts of black hole soft X-ray transients XTE J1550-564, XTE J1859+226, 4U 1630-47, XTE J1118+480, XTE J1650-500, and the neutron star soft X-ray transients 4U 1608-52, Aquila X-1, including a variable 'persistent' neutron star low mass X-ray binary 4U 1705-44, are summarized in this paper. The hard X-ray view of those outbursts, which is quite different from that of the soft X-ray band, suggests that there are several types of outbursts which result in different hard X-ray outburst profile - the outburst profiles are energy dependent. One type is the low/hard state outbursts, the other type is the outburst showing transitions from the low/hard state to the high/soft state, or to the intermediate or to the very high state. The later has an initial low/hard state, introducing the phenomena that the hard X-ray precedes the soft X-ray in the outburst rise. Such outbursts in XTE J1550-564, Aql X-1 and 4U 1705-44 support a two-accretion-flow model which involves one Keplerian disk flow and one sub-Keplerian flow for the initial outburst rise

  10. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    Science.gov (United States)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  11. Development of the criticality accident analysis code, AGNES

    International Nuclear Information System (INIS)

    Nakajima, Ken

    1989-01-01

    In the design works for the facilities which handle nuclear fuel, the evaluation of criticality accidents cannot be avoided even if their possibility is as small as negligible. In particular in the system using solution fuel like uranyl nitrate, solution has the property easily becoming dangerous form, and all the past criticality accidents occurred in the case of solution, therefore, the evaluation of criticality accidents becomes the most important item of safety analysis. When a criticality accident occurred in a solution fuel system, due to the generation and movement of radiolysis gas voids, the oscillation of power output and pressure pulses are observed. In order to evaluate the effect of criticality accidents, these output oscillation and pressure pulses must be calculated accurately. For this purpose, the development of the dynamic characteristic code AGNES (Accidentally Generated Nuclear Excursion Simulation code) was carried out. The AGNES is the reactor dynamic characteristic code having two independent void models. Modified energy model and pressure model, and as the benchmark calculation of the AGNES code, the results of the experimental analysis on the CRAC experiment are reported. (K.I.)

  12. The Kepler Light Curves of AGN: A Detailed Analysis

    Science.gov (United States)

    Smith, Krista Lynne; Mushotzky, Richard F.; Boyd, Patricia T.; Malkan, Matt; Howell, Steve B.; Gelino, Dawn M.

    2018-04-01

    We present a comprehensive analysis of 21 light curves of Type 1 active galactic nuclei (AGN) from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales that roughly correlate with black hole mass. These timescales are consistent with orbital timescales or free-fall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift, and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms–flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1%–10% level.

  13. Compton Reflection in AGN with Simbol-X

    Science.gov (United States)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  14. Formation and spatial distribution of hypervelocity stars in AGN outflows

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  15. Physical Conditions in Ultra-fast Outflows in AGN

    Science.gov (United States)

    Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.

    2018-01-01

    XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.

  16. SDSS IV MaNGA - Properties of AGN Host Galaxies

    Science.gov (United States)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  17. Different Accretion Heating of the Neutron Star Crust during Multiple Outbursts in MAXI J0556–332

    Science.gov (United States)

    Parikh, Aastha S.; Homan, Jeroen; Wijnands, Rudy; Ootes, Laura; Page, Dany; Altamirano, Diego; Degenaar, Nathalie; Brown, Edward F.; Cackett, Edward; Cumming, Andrew; Deibel, Alex; Fridriksson, Joel K.; Lin, Dacheng; Linares, Manuel; Miller, Jon M.

    2017-12-01

    The transient neutron star (NS) low-mass X-ray binary MAXI J0556‑332 provides a rare opportunity to study NS crust heating and subsequent cooling for multiple outbursts of the same source. We examine MAXI, Swift, Chandra, and XMM-Newton data of MAXI J0556‑332 obtained during and after three accretion outbursts of different durations and brightnesses. We report on new data obtained after outburst III. The source has been tracked up to ∼1800 days after the end of outburst I. Outburst I heated the crust strongly, but no significant reheating was observed during outburst II. Cooling from ∼333 eV to ∼146 eV was observed during the first ∼1200 days. Outburst III reheated the crust up to ∼167 eV, after which the crust cooled again to ∼131 eV in ∼350 days. We model the thermal evolution of the crust and find that this source required a different strength and depth of shallow heating during each of the three outbursts. The shallow heating released during outburst I was ∼17 MeV nucleon‑1 and outburst III required ∼0.3 MeV nucleon‑1. These cooling observations could not be explained without shallow heating. The shallow heating for outburst II was not well constrained and could vary from ∼0 to 2.2 MeV nucleon‑1, i.e., this outburst could in principle be explained without invoking shallow heating. We discuss the nature of the shallow heating and why it may occur at different strengths and depths during different outbursts.

  18. Pair-Matching of Radio-Loud and Radio-Quiet AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Kozieł-Wierzbowska, Dorota [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Stasińska, Grażyna [LUTH, Observatoire de Paris, Centre National de la Recherche Scientifique, Université Paris Diderot, Meudon (France); Vale Asari, Natalia [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Sikora, Marek [Nicolaus Copernicus Astronomical Center, Warsaw (Poland); Goettems, Elisa [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Wójtowicz, Anna, E-mail: dorota.koziel@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Krakow (Poland)

    2017-11-07

    Active galactic nuclei (AGNs) are known to cover an extremely broad range of radio luminosities and the spread of their radio-loudness is very large at any value of the Eddington ratio. This implies very diverse jet production efficiencies which can result from the spread of the black hole spins and magnetic fluxes. Magnetic fluxes can be developed stochastically in the innermost zones of accretion discs, or can be advected to the central regions prior to the AGN phase. In the latter case there could be systematic differences between the properties of galaxies hosting radio-loud (RL) and radio-quiet (RQ) AGNs. In the former case the differences should be negligible for objects having the same Eddington ratio. To study the problem we decided to conduct a comparison study of host galaxy properties of RL and RQ AGNs. In this study we selected type II AGNs from SDSS spectroscopic catalogs. Our RL AGN sample consists of the AGNs appearing in the Best and Heckman (2012) catalog of radio galaxies. To compare RL and RQ galaxies that have the same AGN parameters we matched the galaxies in black hole mass, Eddington ratio and redshift. We compared several properties of the host galaxies in these two groups of objects like galaxy mass, color, concentration index, line widths, morphological type and interaction signatures. We found that in the studied group RL AGNs are preferentially hosted by elliptical galaxies while RQ ones are hosted by galaxies of later type. We also found that the fraction of interacting galaxies is the same in both groups of AGNs. These results suggest that the magnetic flux in RL AGNs is advected to the nucleus prior to the AGN phase.

  19. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X. [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander (Spain); Ramos, A. Asensio; Almeida, C. Ramos [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain); Watson, M. G.; Blain, A. [Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Caccianiga, A.; Ballo, L. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Braito, V., E-mail: mateos@ifca.unican.es [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  20. X-ray Observation of XTE J2012+381 during the 1998 Outburst

    Indian Academy of Sciences (India)

    The outburst of X-ray transient source XTE J2012+381 was detected by the RXTE All-Sky Monitor on 1998 May 24th. Following the outburst, X-ray observations of the source were made in the 2-18keV energy band with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment (IXAE) on-board the Indian ...

  1. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  2. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  3. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  4. V899 MON: AN OUTBURSTING PROTOSTAR WITH A PECULIAR LIGHT CURVE, AND ITS TRANSITION PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Ninan, J. P.; Ojha, D. K.; Baug, T. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Bhatt, B. C.; Anupama, G. C. [Indian Institute of Astrophysics, Korama ngala, Bangalore 560 034 (India); Mohan, V. [Inter-University Centre for Astronomy and Astrophysics, Pune 411 007 (India); Ghosh, S. K. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Men’shchikov, A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Tamura, M. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Henning, Th., E-mail: ninan@tifr.res.in [Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-12-10

    We present a detailed study of V899 Mon (a new member in the FUors/EXors family of young low-mass stars undergoing outburst), based on our long-term monitoring of the source starting from 2009 November to 2015 April. Our optical and near-infrared photometric and spectroscopic monitoring recorded the source transitioning from its first outburst to a short-duration quiescence phase (<1 yr), and then returning to a second outburst. We report here the evolution of the outflows from the inner region of the disk as the accretion rate evolved in various epochs. Our high-resolution (R ∼ 37,000) optical spectrum could resolve interesting clumpy structures in the outflow traced by various lines. Change in far-infrared flux was also detected between two outburst epochs. Based on our observations, we constrained various stellar and envelope parameters of V899 Mon, as well as the kinematics of its accretion and outflow. The photometric and spectroscopic properties of this source fall between classical FUors and EXors. Our investigation of V899 Mon hints at instability associated with magnetospheric accretion being the physical cause of the sudden short-duration pause of the outburst in 2011. It is also a good candidate to explain similar short-duration pauses in outbursts of some other FUors/EXors sources.

  5. 1980 outburst of 4U 0115+63 (V635 Cassiopeiae)

    International Nuclear Information System (INIS)

    Kriss, G.A.; Cominsky, L.R.; Remillard, R.A.; Williams, G.; Thorstensen, J.R.

    1983-01-01

    Optical observations of the proposed Be companion star (V635 Cas) to the hard transient X-ray pulsar 4U 0115+63 have been used to predict the 1980 December X-ray outburst, thus confirming the identification. V635 Cas increased in brightness by 1.7 magnitudes over the three months preceding the X-ray outburst, and strong, variable Hα emission was always present. These results demonstrate for the first time that increased optical activity in the Be companion star can lead directly to a ''hard'' transient X-ray outburst. There is a delay of approx.60 days between the onset of optical activity and the X-ray outburst. This delay and the absence of orbital modulation of the 1980 X-ray outburst (or any of the previous X-ray outburst) rule out direct accretion from a stellar wind. We suggest that the delay represents the time for material near the X-ray source to form an accretion disk and move inward toward the neutron star surface, and we discuss the observational implications of this interpretation. Future observations of similar transient events may provide a firm basis for the study of accretion disk dynamics

  6. The outburst duration and duty cycle of GRS1915+105

    Science.gov (United States)

    Deegan, Patrick; Combet, Céline; Wynn, Graham A.

    2009-12-01

    The extraordinarily long outburst of GRS1915+105 makes it one of the most remarkable low-mass X-ray binaries (LMXBs). It has been in a state of constant outburst since its discovery in 1992, an eruption which has persisted ~100 times longer than those of more typical LXMBs. The long orbital period of GRS1915+105 implies that it contains large and massive accretion disc which is able to fuel its extreme outburst. In this paper, we address the longevity of the outburst and quiescence phases of GRS1915+105 using smooth particle hydrodynamics (SPH) simulations of its accretion disc through many outburst cycles. Our model is set in the two-α framework and includes the effects of the thermoviscous instability, tidal torques, irradiation by central X-rays and wind mass loss. We explore the model parameter space and examine the impact of the various ingredients. We predict that the outburst of GRS1915+105 should last a minimum of 20yr and possibly up to ~100yr if X-ray irradiation is very significant. The predicted recurrence times are of the order of 104yr, making the X-ray duty cycle a few 0.1 per cent. Such a low duty cycle may mean that GRS1915+105 is not an anomaly among the more standard LMXBs and that many similar, but quiescent, systems could be present in the Galaxy.

  7. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  8. New Insights into AGN Mass Outflows: Detailed Study of the Spectral Properties of NGC 4151

    Science.gov (United States)

    Denes Couto, Jullianna

    2017-08-01

    Active Galactic Nuclei (AGNs) exist in a few percent of all massive galaxies. It is believed that AGNs are powered by accretion of matter onto a supermassive black hole (SMBH), generating in the process huge amounts of radiation that span the entire electromagnetic spectrum. In turn, this also triggers the so-called AGN Feedback phenomenon, by inducing the formation of accretion disk winds (or outflows) that accelerate highly ionized gas outwards and affect the intergalactic medium of the host galaxy, reducing star formation rates and preventing bulge growth. It has been suggested that a dominant component of mass outflows is observable in the X-rays, and there are a limited number of detailed studies of single objects for which the relation between outflows and power of the central engine can be determined directly. The Seyfert 1.5 galaxy NGC 4151 is a great study candidate, given its proximity (14.077 Mpc, z = 0.0033), X-ray brightness and orientation. Over the past decades, it has been the target of many single and multiwavelength observations, and its heavily absorbed X-ray spectrum and complex absorption features have been extensively stud- ied and characterized. I have investigated the relationship between the long term X-ray spectral variability in and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble Space Telescope Imaging Spectrometer (STIS) Echelle and Chandra High Energy Transmission Grating Spectrometer (HETGS) with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" flux states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. The X-ray model consists of a broken powerlaw, neutral reflection and two dominant absorption components, a high and a low ionization component, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes

  9. ALMA HCN AND HCO{sup +} J  = 3 − 2 OBSERVATIONS OF OPTICAL SEYFERT AND LUMINOUS INFRARED GALAXIES: CONFIRMATION OF ELEVATED HCN-TO-HCO{sup +} FLUX RATIOS IN AGNS

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-12-01

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J  = 3 − 2 emission lines. The HCN and HCO{sup +} J  = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J  = 3 − 2 and HCO{sup +} J  = 3 − 2 emission lines are simultaneously covered, and HCN v {sub 2} = 1f J  = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v  = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J  = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J  = 1 − 0 and J  = 4 − 3.

  10. Energetic solar particles

    International Nuclear Information System (INIS)

    Biswas, M.

    1975-01-01

    In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H 2 , H 3 and He 3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)

  11. Polymers for combatting sudden outbursts in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, G P; Sukhanov, V V

    1988-02-01

    Describes investigations in coal mines in the Donetsk basin (hazardous because of the high methane presence, the risk of outbursts of coal and gas, underground fires and the high dust levels) with the aim of studying the toxic emissions of formaldehyde and methanol produced when a urea formaldehyde resin binder is applied to the coal seam. The measurements taken led to the following recommendations: the amount of free formaldehyde in the binder should be limited to 0.5%; the use of concentrated (50%) solutions should be limited to 10 l per ton of coal in areas where there are geologic faults; underground workings need ventilation of at least 200 m/sup 3//min; the binder should be introduced to the borehole separately from the water and hardener; individual protection measures and wet dusting should be used during coal extraction; a period of not less than 4 months should elapse between application of the resin and commencement of coal extraction; there should be at least 80 m between the point where the binder is applied and the coal face.

  12. Multi-wavelength observations of novae in outburst

    International Nuclear Information System (INIS)

    Starrfield, S.; Arizona State Univ., Tempe, AZ

    1989-01-01

    This review serves as the introduction to the observational studies of novae and I will mention a number of results that will be emphasized by other reviewers. Therefore, I will try to provide the physical framework for multi-wavelength observations as applied to studies of novae. I divide the outburst into phases based on the physical effects that are occurring at that time. The first phase is the rise to bolometric maximum and occurs on a convective time scale. The second phase is the rise to visual maximum and occurs on the time scale for the envelope to expand to ∼10 12 cm. The third phase is the time when the nova is emitting at constant bolometric luminosity, but declining optical magnitude, and it lasts until most of the accreted material has been either exhausted or eroded from the surface of the white dwarf. The fourth and final phase is the return is the return to quiescence (turn-off phase) and it occurs at the time that nuclear burning is ending. I will discuss each of these phases in turn and end with a discussion. 36 refs

  13. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  14. HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Mukadam, Anjum S.; Brown, Justin; Funkhouser, Kelsey [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Gänsicke, Boris T. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Henden, Arne [AAVSO, 49 Bay State Road, Cambridge, MA 02138 (United States); Sion, Edward M. [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Christian, Damian [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States); Falcon, Ross E. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Pyrzas, Stylianos, E-mail: szkody@astro.washington.edu, E-mail: anjum@astro.washington.edu, E-mail: boris.gaensicke@warwick.ac.uk, E-mail: arne@aavso.org, E-mail: edward.sion@villanova.edu, E-mail: Dean.M.Townsley@ua.edu, E-mail: damian.christian@csun.edu, E-mail: cylver@astro.as.utexas.edu, E-mail: stylianos.pyrzas@gmail.com [Instituto de Astronomia, Universidad Catolica del Norte, Avenida Angamos 0619, Antofagasta (Chile)

    2013-09-20

    Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible in the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.

  15. Two giant outbursts of V0332+53 observed with INTEGRAL

    Science.gov (United States)

    Ferrigno, Carlo; Ducci, Lorenzo; Bozzo, Enrico; Kretschmar, Peter; Kühnel, Matthias; Malacaria, Christian; Pottschmidt, Katja; Santangelo, Andrea; Savchenko, Volodymyr; Wilms, Jörn

    2016-10-01

    Context. In July 2015, the high-mass X-ray binary V0332+53 underwent a giant outburst, a decade after the previous one. V0332+53 hosts a strongly magnetized neutron star. During the 2004-2005 outburst, an anti-correlation between the centroid energy of its fundamental cyclotron resonance scattering features (CRSFs) and the X-ray luminosity was observed. Aims: The long (≈100 d) and bright (Lx ≈ 1038 erg s-1) 2015 outburst provided the opportunity to study the unique properties of the fundamental CRSF during another outburst and to study its dependence on the X-ray luminosity. Methods: The source was observed by the INTEGRAL satellite for ~330 ks. We exploit the spectral resolution at high energies of the SPectrometer on INTEGRAL (SPI) and the Joint European X-ray Monitors to characterize its spectral properties, focusing in particular on the CRSF-luminosity dependence. We complement the data of the 2015 outburst with those collected by SPI in 2004-2005, which have so far been left unpublished. Results: We find a highly significant anti-correlation of the centroid energy of the fundamental CRSF and the 3-100 keV luminosity of E1 ∝ -0.095(8)L37 keV. This trend is observed for both outbursts. We confirm the correlation between the width of the fundamental CRSF and the X-ray luminosity previously found in the JEM-X and IBIS dataset of the 2004-2005 outburst. By exploiting the RXTE/ASM and Swift/BAT monitoring data, we also report on the detection of a ~34 d modulation superimposed on the mean profiles and roughly consistent with the orbital period of the pulsar. We discuss possible interpretations of such variability.

  16. ¿Teología para agnósticos?

    Directory of Open Access Journals (Sweden)

    Sotelo Martínez, Igancio

    2002-04-01

    Full Text Available Not available

    Pretendo exponer de la manera más breve unas pocas razones que muestren que la teología concierne también al agnóstico. Por teología entiendo la reflexión sistemática en torno a la fe cristiana y por agnóstico, también en sentido muy amplio, aquel que no participa de esta fe. La tesis que defiendo es que no es necesaria la fe para interesarse por la teología; tiene sentido ocuparse de Dios sin creer en su existencia.
    ¿Por qué el agnóstico habría de ocuparse de la teología cuando el creyente parece que no la necesita? Cree antes de examinar reflexivamente su fe, que no depende de argumentos ni de demostraciones. Lo cierto es que la teología no conduce a la fe y hasta puede dudarse de si la fortalece. Conozco personas profundamente creyentes que huyen de las disquisiciones teológicas como de la peste. Viven la fe en una experiencia de amor al prójimoque no precisa de argumentos. Les basta acompañarse con las Sagradas Escrituras y de algunos libros piadosos o de espiritualidad. Cabría ampliar el horizonte de este artículo y preguntarse por el alcance y sentido que tenga la «reflexión sistemática» sobre Dios para aquellos que creen.
    En todo caso, no deja de ser paradójico intentar una defensa de la teología, cuando parece que les sobra, tanto a agnósticos como a creyentes; incluso la Iglesia ha encerrado a los teólogos en un gueto en el que, si bien gozan de mucha mayor libertad que en el pasado, la disfrutan en buena parte porque se han quedado sin audiencia. Escriben exclusivamente para los colegas que son los únicos que los leen. Claro que, dada la fragmentación actual de los saberes, lo mismo les ocurre a los demás especialistas.
    Si una buena parte de los creyentes se desentienden de la teología, ¿por qué habría de ocupar al agnóstico? Barrunto que una vindicación de la teología valga tanto para los unos como para los otros, pero en esta ocasión considero tan sólo las

  17. The first 62 AGN observed with SDSS-IV MaNGA - II: resolved stellar populations

    Science.gov (United States)

    Mallmann, Nícolas Dullius; Riffel, Rogério; Storchi-Bergmann, Thaisa; Barboza Rembold, Sandro; Riffel, Rogemar A.; Schimoia, Jaderson; da Costa, Luiz Nicolaci; Ávila-Reese, Vladimir; Sanchez, Sebastian F.; Machado, Alice D.; Cirolini, Rafael; Ilha, Gabriele S.; do Nascimento, Janaína C.

    2018-05-01

    We present spatially resolved stellar population age maps, average radial profiles and gradients for the first 62 Active Galactic Nuclei (AGN) observed with SDSS-IV MaNGA to study the effects of the active nuclei on the star formation history of the host galaxies. These results, derived using the STARLIGHT code, are compared with a control sample of non-active galaxies matching the properties of the AGN hosts. We find that the fraction of young stellar populations (SP) in high-luminosity AGN is higher in the inner (R≤0.5 Re) regions when compared with the control sample; low-luminosity AGN, on the other hand, present very similar fractions of young stars to the control sample hosts for the entire studied range (1 Re). The fraction of intermediate age SP of the AGN hosts increases outwards, with a clear enhancement when compared with the control sample. The inner region of the galaxies (AGN and control galaxies) presents a dominant old SP, whose fraction decreases outwards. We also compare our results (differences between AGN and control galaxies) for the early and late-type hosts and find no significant differences. In summary, our results suggest that the most luminous AGN seems to have been triggered by a recent supply of gas that has also triggered recent star formation (t ≤ 40 Myrs) in the central region.

  18. Hurricane Agnes rainfall and floods, June-July 1972

    Science.gov (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  19. Energetic policies 2005-2030

    International Nuclear Information System (INIS)

    2008-01-01

    This power point exhibition shows the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, energetic prospective of Uruguay country, medium and long term perspectives.

  20. Investigating the Temperature Problem in Narrow Line Emitting AGN

    Science.gov (United States)

    Jenkins, Sam; Richardson, Chris T.

    2018-06-01

    Our research investigates the physical conditions in gas clouds around the narrow line region of AGN. Specifically, we explore the necessary conditions for anomalously high electron temperatures, Te, in those clouds. Our 321 galaxy data set was acquired from SDSS DR14 after requiring S/N > 5.0 in [OIII] 4363 and S/N > 3.0 in all BPT diagram emission lines, to ensure both accurate Te and galaxy classification, with 0.04 study the effects these conditions have on gas cloud Te.

  1. Interstellar Scintillation and Scattering of Micro-arc-second AGN

    Directory of Open Access Journals (Sweden)

    David L. Jauncey

    2016-11-01

    Full Text Available The discovery of the first quasar 3C 273 led directly to the discovery of their variability at optical and radio wavelengths. We review the radio variability observations, in particular the variability found at frequencies below 1 GHz, as well as those exhibiting intra-day variability (IDV at cm wavelengths. Observations have shown that IDV arises principally from scintillation caused by scattering in the ionized interstellar medium of our Galaxy. The sensitivity of interstellar scintillation towards source angular sizes has provided a powerful tool for studying the most compact components of radio-loud AGN at microarcsecond and milliarcsecond scale resolution.

  2. Hot Coronae in Local AGN: Present Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Andrea Marinucci

    2018-04-01

    Full Text Available The nuclear X-ray emission in radio-quiet Active Galactic Nuclei (AGN is commonly believed to be due to inverse Compton scattering of soft UV photons in a hot corona. The radiation is expected to be polarized, the polarization degree depending mainly on the geometry and optical depth of the corona. Nuclear Spectroscopic Telescope Array (NuSTAR observations are providing for the first time high quality measurements of the coronal physical parameters—temperature and optical depth. We hereby review the NuSTAR results on the coronal physical parameters (temperature and optical depth and discuss their implications for future X-ray polarimetric studies.

  3. The jet of the Low Luminosity AGN of M81

    Directory of Open Access Journals (Sweden)

    Alberdi A.

    2013-12-01

    Full Text Available In this contribution, we summarize our main results of a big campaign of global VLBI observations of the AGN in M81 (M81* phase-referenced to the radio supernova SN 1993J. Thanks to the precise multi-epoch and multi-frequency astrometry, we have determined the normalized core-shift of the relativistic jet of M81* and estimated both the magnetic field and the particle density at the jet base. We have also found evidence of jet precession in M81* coming from the systematic time evolution of the jet orientation correlated with changes in the overall flux density.

  4. Monitoring AGNs with Hbeta Asymmetry with the Wyoming Infra-Red Observatory

    Science.gov (United States)

    Brotherton, Michael S.; Du, Pu; Wang, Jian-Min; Wang, Kai; Huang, Zhengpeng; Hu, Chen; Li, Yan-rong; Kasper, David H.; Chick, William T.; Nguyen, My L.; Maithil, Jaya; Hand, Derek; Bai, Jin-Ming; Ho, Luis

    2018-06-01

    We present preliminary results from two seasons of reverberation mapping of AGNs using the optical longslit spectrograph on the 2.3 meter WIRO telescope. The majority of the sample is part of our "Monitoring AGNs with Hbeta Asymmetry" project, also known as MAHA, which targets rarer AGNs with extremely asymmetric profiles that may provide new insights into the full diversity of size and structure of the broad-line region (BLR). Our hundreds of nights of telescope time provide dozens of epochs of spectra for approximately two dozen objects. Notably we find that many AGNs with broader asymmetric Hbeta emission lines possess time lags significantly shorter than expected for their luminosity in comparison to the majority of AGNs reverberation mapped.

  5. Towards A Complete Census of the Compton-thick AGN Population in our Cosmic Backyard

    Science.gov (United States)

    Annuar, Ady

    2016-09-01

    We propose for Chandra and NuSTAR observations of two local AGNs to characterise their obscuring properties. We are using Chandra and NuSTAR to form the first complete measurement of the column density (N_H) distribution of AGN at D35%. We also found that Chandra resolution is key in resolving the AGN from off-nuclear X-ray sources. When combined with NuSTAR, this allow us to accurately characterise the broadband spectrum of the AGN, and identify it as CT. These new observations will provide Chandra data for all D<15Mpc AGNs and boost up the N_H distribution up to 85% complete. This will be fully completed with future NuSTAR observations.

  6. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    Science.gov (United States)

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  7. The galactic center GeV excess from a series of leptonic cosmic-ray outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Evoli, Carmelo [Univ. Hamburg, Hamburg (Germany); Calore, Francesca [Univ. of Amsterdam, Amsterdam (Netherlands); Linden, Tim [Univ. of Chicago, Chicago, IL (United States); Weniger, Christoph [Univ. of Amsterdam, Amsterdam (Netherlands); Hooper, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States)

    2015-06-16

    It has been proposed that a recent outburst of cosmic-ray electrons could account for the excess of GeV-scale gamma rays observed from the region surrounding the Galactic Center. After studying this possibility in some detail, we identify scenarios in which a series of leptonic cosmic-ray outbursts could plausibly generate the observed excess. The morphology of the emission observed outside of ~1° – 2° from the Galactic Center can be accommodated with two outbursts, one which took place approximately ~106 years ago, and another (injecting only about 10% as much energy as the first) about ~105 years ago. The emission observed from the innermost ~1° – 2° requires one or more additional recent outbursts and/or a contribution from a centrally concentrated population of unresolved millisecond pulsars. Furthermore, in order to produce a spectrum that is compatible with the measured excess (whose shape is approximately uniform over the region of the excess), the electrons from the older outburst must be injected with significantly greater average energy than those injected more recently, enabling their spectra to be similar after ~106 years of energy losses.

  8. The Shape of Long Outbursts in U Gem Type Dwarf Novae from AAVSO Data

    Science.gov (United States)

    Cannizzo, John K.

    2012-01-01

    We search the American Association of Variable Star Observers (AAVSO) archives of the two best studied dwarf novae in an attempt to find light curves for long out bursts that are extremely well-characterized. The systems are U Gem and S8 Cyg. Our goal is to search for embedded precursors such as those that have been found recently in the high fidelity Kepler data for superoutbursts of some members of the 8U UMa subclass of dwarf novae. For the vast majority of AAV80 data, the combination of low data cadence and large errors associated with individual measurements precludes one from making any strong statement about the shape of the long outbursts. However, for a small number of outbursts, extensive long term monitoring with digital photometry yields high fidelity light curves. We report the finding of embedded precursors in two of three candidate long outbursts. This reinforces van Paradijs' finding that long outbursts in dwarf novae above the period gap and superoutbursts in systems below the period gap constitute a unified class. The thermal-tidal instability to account for superoutbursts in the SU UMa stars predicts embedded precursors only for short orbital period dwarf novae, therefore the presence of embedded precursors in long orbital period systems - U Gem and SS Cyg - argues for a more general mechanism to explain long outbursts.

  9. Investigations of outbursts and tremors in Polish collieries with application of radon measurements

    International Nuclear Information System (INIS)

    Wysocka, M.

    2010-01-01

    In the 80's and 90's of the last century some attempts were undertaken to apply specific radiometric methods to support the prediction of outbursts in collieries, located in Lower Silesian Coal Basin (LSCB) in south-western Poland. This idea was developed as an analogy to the application of radon changes in groundwater prior to earthquakes, and on this basis the hypothesis of variations of radon emanation from coal seams, preceding approaching outburst, was formulated. It has been stated, that a certain correlation between temporal and spatial variations of radon level and the level of outburst's hazard existed. Then, new investigations have been started in copper and coal mines with the hope to use radon as a tool for the prediction of another dynamic phenomena - tremors. In the case of these investigations, only weak evidences were found. In the last years the occurrence of outburst was noticed in the collieries of Upper Silesian Coal Basin (USCB). Therefore, we started observations of changes of radon concentration in gas, sampled from headings, driven in endangered coal seams. The goal of the research is an attempt to formulate '' radon index of outburst hazard '' to support other, routinely used, methods of the prediction of dangerous events. In this paper some results of investigations, done in collieries in LSCB and in copper mines are quoted to give the background for preliminary results of new research, ongoing in one of the coal mines in the Upper Silesia region. (authors)

  10. Recurrent Outbursts Revealed in 3XMM J031820.8-663034

    Science.gov (United States)

    Zhao, Hai-Hui; Weng, Shan-Shan; Wang, Jun-Xian

    2018-06-01

    3XMM J031820.8-663034, first detected by ROSAT in NGC 1313, is one of a few known transient ultraluminous X-ray sources (ULXs). In this paper, we present decades of X-ray data of this source from ROSAT, XMM-Newton, Chandra, and the Neil Gehrels Swift Observatory. We find that its X-ray emission experienced four outbursts since 1992, with a typical recurrent time ∼1800 days, an outburst duration ∼240–300 days, and a nearly constant peak X-ray luminosity ∼1.5 × 1039 erg s‑1. The upper limit of X-ray luminosity at the quiescent state is ∼5.6 × 1036 erg s‑1, and the total energy radiated during one outburst is ∼1046 erg. The spectra at the high luminosity states can be described with an absorbed disk blackbody, and the disk temperature increases with the X-ray luminosity. We compare its outburst properties with other known transient ULXs including ESO 243-49 HLX-1. As its peak luminosity only marginally puts it in the category of ULXs, we also compare it with normal transient black hole binaries. Our results suggest that the source is powered by an accreting massive stellar-mass black hole, and the outbursts are triggered by the thermal-viscous instability.

  11. Intense soft x-rays from RS Ophiuchi during the 1985 outburst

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.; Bode, M.F.; Barr, P.

    1985-01-01

    Intense soft x-ray emission with a characteristic temperature of a few million degrees has been detected from the recurrent nova RS Oph approximately two months after its January 1985 optical outburst. This is the first detection of x-rays from such a system at outburst. The x-radiation is interpreted as emission from circumstellar gas that is shock heated by the passage of the blast wave from the nova explosion. The rapid decline of the x-ray flux between about 60 and 90 days after the outburst probably occurs because the blast wave has reached the edge of the volume filled, between outbursts, by the stellar wind of the red giant component of the binary system. Residual x-ray emission detected from RS Oph 250 days after the outburst is interpreted as coming from the surface of a white dwarf, at a temperature of approx.300,000K, where thermonuclear burning is persisting. 7 refs., 3 figs

  12. Towards A Complete Census of the Compton-thick AGN population and the NH Distribution of AGN in the Local Universe.

    Science.gov (United States)

    Annuar, A.

    2015-09-01

    We present updated results from an ongoing project to establish the most unbiased census of the Compton- thick active galactic nucleus (CTAGN) population and the intrinsic column density (NH) distribution of the overall AGN population in the local universe, using a sample of mid-infrared (mid-IR) selected AGN within 15 Mpc. We find that 20% of the AGN in the sample are bona-fide CTAGN based upon hard X-ray studies (E > 10 keV). More candidates are then selected using multiwavelength techniques, i.e. mid-IR:X-ray and optical [OIII]5007:X-ray flux ratios. Based on these analyses along with evidence from previous literature, we initially find a further 25% of potential candidates. We then observed two of these candidates, NGC 5643 and NGC 3486, using NuSTAR and is able to confirm the former as a CTAGN and rule out the latter as an obscured AGN. This constrains the total CTAGN population in the sample to 25-40%, though it could potentially be as high as 65% accounting for those that still lack data. Finally, we use these results to estimate the intrinsic NH distribution of the local AGN population. Two more of our CTAGN candidates are scheduled to be observed by NuSTAR, bringing the completeness of hard X-ray energy data of the sample to 65%. This work provides a well-defined local benchmark for AGN unification studies.

  13. Evidence for an intense solar outburst in prehistory

    International Nuclear Information System (INIS)

    Peratt, A L; Yao, W F

    2008-01-01

    A past intense solar outburst and its effect on Earth was proposed by Gold (1962 Pontificiae Acad. Sci. Scr. Varia 25 159) who, along with others, based his hypotheses on strong astronomical and geophysical evidence. The discovery that objects from the Neolithic or Early Bronze Age carry patterns associated with high-current Z-pinches, as would result from an intense plasma impinging Earth, provides a possible insight into the origin and meaning of these ancient symbols produced by humans. Peratt (2003 Trans. Plasma Sci. 31 1192) dealt with the comparison of graphical and radiation data from high-current Z-pinches to petroglyphs, geoglyphs and megaliths. Peratt (2007 Trans. Plasma Sci. 35 778) focused primarily, but not exclusively, on petroglyphs of some 84 different morphologies; pictures found in laboratory experiments and carved on rock. These corresponded to mankind's visual observations of ancient aurora as might be produced if the solar wind had increased at times between one and two orders of magnitude, millennia ago (Gold 1962 Pontificiae Acad. Sci. Scr. Varia 25 159). In Peratt (2007 Trans. Plasma Sci. 35 778), the data were given on the source of light and its temporal change from a current-increasing Z-pinch or dense plasma focus aurora. Orientation and field-of-view data are given as surveyed and contributed from 139 countries, from sites and fields containing several millions of these objects, the latest data coming from a 300 km survey along the Orinoco river basin in Venezuela. In this paper, we include additional petroglyph figures derivable from experiment and computer. This information allows a reconstruction of the auroral form presumably associated with extreme geomagnetic storms and shows, based on existent geophysical evidence, relativistic electron flow inward at Earth's south polar axis and hypervelocity proton impacts around the north polar axis.

  14. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Alexander J.; Coil, Alison L.; Aird, James; Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cool, Richard J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Zhu Guangtun [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States)

    2013-06-10

    We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg{sup 2}. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that {approx}75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to {approx}90% when comparing against the deepest X-ray data, indicating that at most {approx}10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

  15. The mm-wave compact component of AGN

    Science.gov (United States)

    Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.

    2018-05-01

    mm-wave emission from Active Galactic Nuclei (AGN) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self absorption decreases with frequency, mm-waves probe smaller length scales than cm-waves. We report on 100 GHz (3 mm) observations with CARMA of 26 AGNs selected from the hard X-ray Swift/BAT survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4 - 10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.

  16. Testing the AGN Unification Model in the Infrared

    International Nuclear Information System (INIS)

    Ramos Almeida, C; Levenson, N A; Radomski, J T; Alonso-Herrero, A; Asensio Ramos, A; Rodríguez Espinosa, J M; Pérez García, A M; Packham, C; Mason, R; Díaz-Santos, T

    2012-01-01

    We present near-to-mid-infrared spectral energy distributions (SEDs) for 21 Seyfert galaxies, using subarcsecond resolution imaging data. Our aim is to compare the properties Seyfert 1 (Sy1) and Seyfert 2 (Sy2) tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear SEDs. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Active galactic nuclei (AGN) unification schemes account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Sy1 and Sy2 nuclei are intrinsically different. The Type 2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type 1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Sy2 tori have larger covering factors (C T = 0.95±0.02) and smaller escape probabilities than those of Sy1 (C T = 0.5±0.1). Thus, on the basis of the results presented here, the classification of a Seyfert galaxy may depend more on the intrinsic properties of the torus rather than on its mere inclination, in contradiction with the simplest unification model.

  17. Changing-Look AGNs or Short-Lived Radio Sources?

    Energy Technology Data Exchange (ETDEWEB)

    Wołowska, Aleksandra [Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń (Poland); Kunert-Bajraszewska, Magdalena; Mooley, Kunal [Centre for Astrophysical Surveys, University of Oxford, Oxford (United Kingdom); Hallinan, Gregg, E-mail: ola@astro.umk.pl [Cahill Center for Astronomy, California Institute of Technology, Pasadena, CA (United States)

    2017-11-17

    The evolution of extragalactic radio sources has been a fundamental problem in the study of active galactic nuclei for many years. A standard evolutionary model has been created based on observations of a wide range of radio sources. In the general scenario of the evolution, the younger and smaller Gigahertz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources become large-scale FRI and FRII objects. However, a growing number of observations of low power radio sources suggests that the model cannot explain all their properties and there are still some aspects of the evolutionary path that remain unclear. There are indications, that some sources may be short-lived objects on timescales of 10{sup 4}–10{sup 5} years. Those objects represent a new population of active galaxies. Here, we present the discovery of several radio transient sources on timescales of 5–20 yrs, largely associated with renewed AGN (Active Galactic Nucleus) activity. These changing-look AGNs possibly represent behavior typical for many active galaxies.

  18. Evidence for AGN feedback in low-mass galaxies

    Science.gov (United States)

    Masters, Karen; Penny, Sam; Smethurst, Rebecca; Krawczyk, Coleman; Nichol, Bob; SDSS-IV MaNGA

    2018-01-01

    Despite being the dominant galaxy population by number in groups and clusters, the formation and quenching mechanism of dwarf galaxies remains unknown. We present evidence for AGN feedback in a subset of 69 quenched low-mass galaxies (M* less than 5e9 Msun, fainter than Mr = -19) selected from the first two years of the MaNGA survey. The majority (85 per cent) of these quenched galaxies appear to reside in a group environment. We find 6 galaxies in our sample that appear to have an active AGN that is preventing on-going star-formation; this is the first time such a feedback mechanism has been observed in this mass range. Interestingly, five of these six galaxies have an ionised gas component that is kinematically offset from their stellar component, suggesting the gas is either recently accreted or outflowing. We hypothesise these six galaxies are low-mass equivalents to the “red geysers” observed in more massive galaxies. Of the other 62 galaxies in the sample, we find 8 do appear to have some low-level, residual star formation, or emission from hot, evolved stars. The remaining galaxies in our sample have no detectable ionised gas emission throughout their structures, consistent with them being quenched. I will show that despite being the "simplest" galaxies in our current models of galaxy formation, these quenched dwarf galaxies are a diverse population.

  19. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  20. Formation of Outburst Structure in Hot Dip Galvannealed Coatings on IF Steels

    Directory of Open Access Journals (Sweden)

    Kollárová, M.

    2007-01-01

    Full Text Available Outburst structure in two industrially produced hot dip galvanized interstitial free steel sheets for automotive industry after additional annealing has been examined. Ti IF steel was found to form weak outburst structure in the early stage of annealing, followed by frontal growth of Fe-Zn phases during further heating. The high reactivity of this steel was confirmed by rapid G-phase formation. Under the same conditions, Ti-Nb-P IF steel exhibited frontal growth of Fe-Zn compounds without G-phase formation due to relatively high phosphorous content, which is known as inhibitor of Fe-Zn reaction, but simultaneously significant occurrence of undesired outburst structures was recorded. It was assumed that the phosphorous content was insufficient and/or ferrite grain was very fine.

  1. An isotopic study of the role of carbon dioxide in outbursts in coal mines

    International Nuclear Information System (INIS)

    Smith, J.W.; Gould, K.W.

    1980-01-01

    The occurrence of instantaneous outbursting in the Bulli coal seam at the West Cliff Colliery, Appin, NSW can be correlated directly with an increase in concentration (0.5 to 75%) and a related decrease in the 13 C content (delta 13 C + 16 to -0.8% PDB) of the CO 2 in the seam gas. Two sources of CO 2 are required. The greater incidence of outbursting in CO 2 -rich zones is explained by the conversion to bicarbonate of cleat and fracture filling calcite deep within the coal and the transport of this bicarbonate in water to mine openings. The weakening of the resistance of the coal to shear by this removal of carbonate is an additional factor to be considered in assessing outbursting situations. (author)

  2. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  3. NuSTAR and SWIFT Observations of the Black Hole Candidate XTE J1908+094 during its 2013 Outburst

    DEFF Research Database (Denmark)

    Tao, Lian; Tomsick, John A.; Walton, Dominic J.

    2015-01-01

    The black hole (BH) candidate XTE J1908+094 went into outburst for the first time since 2003 in 2013 October. We report on an observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) and monitoring observations with Swift during the outburst. NuSTAR caught the source in the soft state...

  4. Short-term variability of dwarf nova SS Cyg during outbursts

    International Nuclear Information System (INIS)

    Voloshina, I; Metlov, V; Rovithis-Livaniou, H

    2009-01-01

    Here we report the results of CCD observations of classical dwarf nova SS Cyg carried out with the two 60-cm telescopes in Crimea during the last years. These observations cover a few outbursts in 2006, 2007 and 2008. Power spectrum analysis of our CCD data clearly shows the existence of rapid periodic oscillations in the light curve of SS Cyg at the stage of decline after maximum. CCD observations of SS Cyg in autumn 2006 outburst revealed oscillations with the two periods 10 s and 76 s, in November 2007 - with 41 s period and in January 2008 with 98 s. We interpret detected variations as quasi-periodic oscillations.

  5. Short-term variability of dwarf nova SS Cyg during outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Voloshina, I; Metlov, V; Rovithis-Livaniou, H, E-mail: vib@sai.msu.r [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Athens University, Zagrafos 15784, Athens (Greece)

    2009-06-01

    Here we report the results of CCD observations of classical dwarf nova SS Cyg carried out with the two 60-cm telescopes in Crimea during the last years. These observations cover a few outbursts in 2006, 2007 and 2008. Power spectrum analysis of our CCD data clearly shows the existence of rapid periodic oscillations in the light curve of SS Cyg at the stage of decline after maximum. CCD observations of SS Cyg in autumn 2006 outburst revealed oscillations with the two periods 10 s and 76 s, in November 2007 - with 41 s period and in January 2008 with 98 s. We interpret detected variations as quasi-periodic oscillations.

  6. 100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries

    Science.gov (United States)

    Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian

    2018-01-01

    Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.

  7. New outburst of the symbiotic nova AG Pegasi after 165 yr

    Science.gov (United States)

    Skopal, A.; Shugarov, S. Yu.; Sekeráš, M.; Wolf, M.; Tarasova, T. N.; Teyssier, F.; Fujii, M.; Guarro, J.; Garde, O.; Graham, K.; Lester, T.; Bouttard, V.; Lemoult, T.; Sollecchia, U.; Montier, J.; Boyd, D.

    2017-08-01

    Context. AG Peg is known as the slowest symbiotic nova, which experienced its nova-like outburst around 1850. After 165 yr, during June of 2015, it erupted again showing characteristics of the Z And-type outburst. Aims: The primary objective is to determine basic characteristics, the nature and type of the 2015 outburst of AG Peg. Methods: We achieved this aim by modelling the spectral energy distribution using low-resolution spectroscopy (330-750 nm; R = 500-1000), medium-resolution spectroscopy (420-720 nm; R 11 000), and UBVRCIC photometry covering the 2015 outburst with a high cadence. Optical observations were complemented with the archival HST and FUSE spectra from the preceding quiescence. Results: During the outburst, the luminosity of the hot component was in the range of 2-11 × 1037 (d/ 0.8 kpc)2 erg s-1, being in correlation with the light curve (LC) profile. To generate the maximum luminosity by the hydrogen burning, the white dwarf (WD) had to accrete at 3 × 10-7 M⊙ yr-1, which exceeds the stable-burning limit and thus led to blowing optically thick wind from the WD. We determined its mass-loss rate to a few × 10-6 M⊙ yr-1. At the high temperature of the ionising source, 1.5-2.3 × 105 K, the wind converted a fraction of the WD's photospheric radiation into the nebular emission that dominated the optical. A one order of magnitude increase of the emission measure, from a few × 1059 (d/ 0.8 kpc)2 cm-3 during quiescence, to a few × 1060 (d/ 0.8 kpc)2 cm-3 during the outburst, caused a 2 mag brightening in the LC, which is classified as the Z And-type of the outburst. Conclusions: The very high nebular emission and the presence of a disk-like H I region encompassing the WD, as indicated by a significant broadening and high flux of the Raman-scattered O vi 6825 Å line during the outburst, is consistent with the ionisation structure of hot components in symbiotic stars during active phases. Full Table 1 and Table 6 are only available at the CDS are

  8. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    Science.gov (United States)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  9. A MODEL FOR TYPE 2 CORONAL LINE FOREST (CLiF) AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Glidden, Ana [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Rose, Marvin; Elvis, Martin; McDowell, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-06-10

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii] λ 6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h / r .

  10. Detection of X-ray spectral state transitions in mini-outbursts of black hole transient GRS 1739-278

    Science.gov (United States)

    Yan, Zhen; Yu, Wenfei

    2017-10-01

    We report the detection of the state transitions and hysteresis effect in the two mini-outbursts of the black hole (BH) transient GRS 1739-278 following its 2014 major outburst. The X-ray spectral evolutions in these two mini-outbursts are similar to the major outburst in spite of their peak luminosities and the outburst durations are one order of magnitude lower. We found L_hard{-to-soft} and Lpeak,soft of the mini-outbursts also follow the correlation previously found in other X-ray binaries. L_hard{-to-soft} of the mini-outbursts is still higher than that of the persistent BH binary Cyg X-1, which supports that there is a link between the maximum luminosity a source can reach in the hard state and the corresponding non-stationary accretion represented by substantial rate of change in the mass accretion rate during flares/outbursts. The detected luminosity range of these two mini-outbursts is roughly in 3.5 × 10-5 to 0.015 (D/7.5 kpc)2(M/8M⊙) LEdd. The X-ray spectra of other BH transients at such low luminosities are usually dominated by a power-law component, and an anti-correlation is observed between the photon index and the X-ray luminosity below 1 per cent LEdd. So, the detection of X-ray spectral state transitions indicates that the accretion flow evolution in these two mini-outbursts of GRS 1739-278 are different from other BH systems at such low-luminosity regime.

  11. Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey

    Science.gov (United States)

    He, Zhicheng; Sun, Ai-Lei; Zakamska, Nadia L.; Wylezalek, Dominika; Kelly, Michael; Greene, Jenny E.; Rembold, Sandro B.; Riffel, Rogério; Riffel, Rogemar A.

    2018-05-01

    Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are shaped by the distribution of gas in the host galaxy and by the geometry of the circumnuclear obscuration, and thus they can be used to test the AGN unification model. In this work, we quantify the morphologies of the narrow-line regions in 308 nearby AGNs (z = 0 - 0.14, Lbol˜1042.4 - 44.1 erg s-1) from the MaNGA survey. Based on the narrow-line region maps, we find that a large fraction (81%) of these AGN have bi-conical NLR morphology. The distribution of their measured opening angles suggests that the intrinsic opening angles of the ionization cones has a mean value of 85-98° with a finite spread of 39-44° (1-σ). Our inferred opening angle distribution implies a number ratio of type I to type II AGN of 1:1.6-2.3, consistent with other measurements of the type I / type II ratio at low AGN luminosities. Combining these measurements with the WISE photometry data, we find that redder mid-IR color (lower effective temperature of dust) corresponds to stronger and narrower photo-ionized bicones. This relation is in agreement with the unification model that suggests that the bi-conical narrow-line regions are shaped by a toroidal dusty structure within a few pc from the AGN. Furthermore, we find a significant alignment between the minor axis of host galaxy disks and AGN ionization cones. Together, these findings suggest that obscuration on both circumnuclear (˜pc) and galactic (˜ kpc) scales are important in shaping and orienting the AGN narrow-line regions.

  12. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  13. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  14. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  15. Fossil shell emission in dying radio loud AGNs

    Science.gov (United States)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  16. Tracing the External Origin of the AGN Gas Fueling Reservoir

    Directory of Open Access Journals (Sweden)

    Sandra I. Raimundo

    2018-01-01

    Full Text Available Near-infrared observations of the active galaxy MCG–6-30-15 provide strong evidence that its molecular gas fueling reservoir is of external origin. MCG–6-30-15 has a counter-rotating core of stars within its central 400 pc and a counter-rotating disc of molecular gas that extends as close as ~50–100 pc from the central black hole. The gas counter-rotation establishes that the gas reservoir in the center of the galaxy originates from a past external accretion event. In this contribution we discuss the gas and stellar properties of MCG–6-30-15, its past history and how the findings on this galaxy can be used to understand AGN fueling in S0 galaxies with counter-rotating structures.

  17. Safety reassessment of the Paks NPP (the AGNES project)

    Energy Technology Data Exchange (ETDEWEB)

    Gado, J [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics; Bajsz, J; Cserhati, A; Elter, J [Paksi Atomeroemue Vallalat, Paks (Hungary); Hollo, E [Energiagazdalkodasi Intezet, Budapest (Hungary); Kovacs, K [EROTERV Engineering and Contractor Co (Hungary); Maroti, L [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics; Miko, S [Paksi Atomeroemue Vallalat, Paks (Hungary); Techy, Z [Energiagazdalkodasi Intezet, Budapest (Hungary); Vidovszky, I [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics

    1996-12-31

    The reassessment of the Paks NPP safety according to internationally recognized criteria of the Advanced General and New Evaluation of Safety (AGNES) project is outlined. The Paks NPP consists of four WWER-440/V-213 units. The following groups of analysis have been performed: system analysis and description; analysis of design basis accidents; severe accidents analysis; level 1 probabilistic safety analysis. Postulated accidents (PA) and Anticipated Operational Occurrences (AOO) are estimated in detail for the following initiating events: increase/decrease in secondary heat removal; decrease in primary coolant inventory; increase/decrease of reactor coolant inventory; reactivity and power distribution anomalies; analysis of transients with the failure of reactor scram (ATWS); pressurized thermal shock analyses. Severe accident analysis was made for the accidents on in-vessel phase and containment phase, for radioactive release and for accident management.

  18. Statistical Analysis of the Microvariable AGN Source Mrk 501

    Directory of Open Access Journals (Sweden)

    Alberto C. Sadun

    2018-02-01

    Full Text Available We report on the optical observations and analysis of the high-energy peaked BL Lac object (HBL, Mrk 501, at redshift z = 0.033. We can confirm microvariable behavior over the course of minutes on several occasions per night. As an alternative to the commonly understood dynamical model of random variations in intensity of the AGN, we develop a relativistic beaming model with a minimum of free parameters, which allows us to infer changes in the line of sight angles for the motion of the different relativistic components. We hope our methods can be used in future studies of beamed emission in other active microvariable sources, similar to the one we explored.

  19. Cloudy Skies over AGN: Observations with Simbol-X

    Science.gov (United States)

    Salvati, M.; Risaliti, G.

    2009-05-01

    Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.

  20. Bare AGN: an Unobscured View of the Innermost Accretion Geometry

    Science.gov (United States)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; Garcia, J.; Walton, D.

    2017-10-01

    In a systematic study of the relativistic reflection spectra and coronal properties for a sample of bare AGN we analyze high signal-to-noise spectra obtained with the XMM-Newton and NuSTAR observatories utilizing state-of-the-art reflection codes. Features of blurred reflection off an ionized accretion disk are modelled using different flavors of the relativistic ray-tracing code Relxill. We show that the more physically motivated and self-consistent lamp-post geometry is largely consistent with fits of broken power-law emissivity profiles. We provide good constraints on parameters describing the compact reprocessing corona, i.e., the reflection fraction and the lamp-post height. The latter are found to be prevalent within 1-10 r_{g}, while our models generally find close-to-maximal black hole spins. These results are discussed and compared with previous studies by Walton et al. (2013).

  1. Linear Polarization Properties of Parsec-Scale AGN Jets

    Directory of Open Access Journals (Sweden)

    Alexander B. Pushkarev

    2017-12-01

    Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  2. Safety reassessment of the Paks NPP (the AGNES project)

    International Nuclear Information System (INIS)

    Gado, J.; Hollo, E.; Kovacs, K.; Maroti, L.; Techy, Z.; Vidovszky, I.

    1995-01-01

    The reassessment of the Paks NPP safety according to internationally recognized criteria of the Advanced General and New Evaluation of Safety (AGNES) project is outlined. The Paks NPP consists of four WWER-440/V-213 units. The following groups of analysis have been performed: system analysis and description; analysis of design basis accidents; severe accidents analysis; level 1 probabilistic safety analysis. Postulated accidents (PA) and Anticipated Operational Occurrences (AOO) are estimated in detail for the following initiating events: increase/decrease in secondary heat removal; decrease in primary coolant inventory; increase/decrease of reactor coolant inventory; reactivity and power distribution anomalies; analysis of transients with the failure of reactor scram (ATWS); pressurized thermal shock analyses. Severe accident analysis was made for the accidents on in-vessel phase and containment phase, for radioactive release and for accident management

  3. Star-forming Galaxies as AGN Imposters? A Theoretical Investigation of the Mid-infrared Colors of AGNs and Extreme Starbursts

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.

    2018-05-01

    We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.

  4. Can blueshifted Agn spectra explain B L Lac objects

    International Nuclear Information System (INIS)

    Basu, D.

    2009-01-01

    B L Lac spectra are almost completely devoid of any emission line, and absorption features are often present based on which redshifts are estimated. Several models have been proposed to explain the spectra, including the unification scheme currently most popular among astronomers. However, there appear to be ambiguities, uncertainties and contradictory results in this model, and many questions remain unanswered. Also, it involves the process of artificially enhancing the continuum to be concentrated to a high level, by the relativistically beaming jet action, in order to submerge the emission lines, partly or completely, to make them appear weak or invisible. Additionally, the sample based on which B L Lac objects have been included in the unification scheme is rather small to be statistically viable. In this context, we present an alternative and much simpler interpretation of the observed spectra of B L Lac objects, both emission and absorption, as blueshifted lines in Agn. Original spectra of fifty six objects available in the current literature are re-analyzed. Nine of these show only a single weak emission line and no absorption feature, while thirty five exhibit no emission feature but several absorption lines, and another twelve show more than one emission line and, in some cases, several absorption lines. It is demonstrated that emission lines in most B L Lac objects are blueshifted out of the visible region, and, hence, not seen at all. Emission lines, when seen, and absorption lines, are blueshifted and are identified with search lines of longer wavelengths that are naturally weak. Blue shifts, in emission and absorption features, are determined for all objects. Various considerations lead to the conclusion that the blue shift interpretation of B L Lac spectra is superior to and more important than the redshift interpretation. A possible explanation of observed blue shifts is presented in the scenario of the ejection process, a well-recognized mechanism

  5. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    Science.gov (United States)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M

  6. The three-dimensional properties and energetics of radio-jet-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi; Stockton, Alan, E-mail: hsshih@ifa.hawaii.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawai' i 2680 Woodlawn Dr, Honolulu, HI 96822 (United States)

    2014-05-01

    Extended emission-line regions (EELRs), found around radio-loud sources, are likely outflows driven by one form of powerful active galactic nucleus (AGN) feedback mechanism. We seek to constrain the three-dimensional gas properties and the outflow energetics of the EELRs in this study. We used an integral field unit to observe EELRs around two samples of radio-loud AGNs with similar radio properties, but different orientations: a sample of quasars and a sample of radio galaxies. A morphological comparison suggests a scenario where the three-dimensional EELR gas distribution follows rough biconical shapes with wide opening angles. The average extent of the EELRs is ∼18.5 kpc. The estimated average mass of the EELRs, with reasonable assumptions for gas densities, is ∼3 × 10{sup 8} M {sub ☉}, and the average mass outflow rate is ∼30 M {sub ☉} yr{sup –1}. The EELRs around quasars and radio galaxies share similar kinematic properties. Both samples have velocity structures that display a range of complexities, they do not appear to correlate with the jet orientations, and both span a similar range of velocity dispersions. Around 30% of the detected EELRs show large-scale rotational motions, which may have originated from recent mergers involving gas-rich disk galaxies.

  7. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  8. About the wind energetics development

    International Nuclear Information System (INIS)

    Strebkov, D.S.; Kharitonov, V.P.; Murugov, V.P.; Sokol'skij, A.K.

    1996-01-01

    The review of wind power energetics state in USA, Europe, Russia is given. The data of EC on wind power plants production in different periods are presented. The directions of scientific-research works with the purpose of increasing the level of wind power industry of Russia corresponding to economics demands were elaborated. (author). 8 refs., 3 tabs

  9. Introduction to global energetic problems

    International Nuclear Information System (INIS)

    Gicquel, R.

    1992-01-01

    This book gives a view on global energetic problems and proposes a thorough economic analysis on principle aspects taken into account: energy supply, depending energy sources and available technologic channels, relationships between macro-economy and energy demand, new size of energy problems (environmental effects, overcosts of renewable energy sources, necessity of an high technologic development...). 38 refs

  10. FERMI GBM OBSERVATIONS OF V404 CYG DURING ITS 2015 OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A.; Veres, P.; Briggs, M. S.; Burns, E. [University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Wilson-Hodge, C. A.; Hui, M. [Marshall Space Flight Center, Huntsville, AL 35812 (United States); Homan, Jeroen [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Connaughton, V.; Finger, M. H., E-mail: peter.a.jenke@nasa.gov [Universities Space Research Association, Huntsville, AL 35805 (United States)

    2016-07-20

    V404 Cygni was discovered in 1989 by the Ginga X-ray satellite during its only previously observed X-ray outburst and soon after confirmed as a black hole binary. On 2015 June 15, the Gamma-ray Burst Monitor (GBM) triggered on a new outburst of V404 Cygni. We present 13 days of GBM observations of this outburst, including Earth occultation flux measurements and spectral and temporal analysis. The Earth occultation fluxes reached 30 Crab with detected emission to 100 keV and determined, via hardness ratios, that the source was in a hard state. At high luminosity, spectral analysis between 8 and 300 keV showed that the electron temperature decreased with increasing luminosity. This is expected if the protons and electrons are in thermal equilibrium during an outburst with the electrons cooled by the Compton scattering of softer seed photons from the disk. However, the implied seed photon temperatures are unusually high, suggesting a contribution from another source, such as the jet. No evidence of state transitions is seen during this time period. The temporal analysis reveals power spectra that can be modeled with two or three strong, broad Lorentzians, similar to the power spectra of black hole binaries in their hard state.

  11. Experimental Analyses of the Major Parameters Affecting the Intensity of Outbursts of Coal and Gas

    Science.gov (United States)

    Nie, W.; Peng, S. J.; Xu, J.; Liu, L. R.; Wang, G.; Geng, J. B.

    2014-01-01

    With an increase in mining depth and production, the intensity and frequency of outburst of coal and gas have a tendency to increase. Estimating the intensity of outbursts of coal and gas plays an important role because of its relation with the risk value. In this paper, we described the semiquantitative relations between major parameters and intensity of outburst based on physical experiments. The results showed increment of geostress simulated by horizontal load (from 1.4, 2.4, 3.2, to 3.4 MPa) or vertical load (from 2, 3, 3.6, to 4 MPa) improved the relative intensity rate (3.763–7.403% and 1.273–7.99%); the increment of porosity (from 1.57, 2.51, 3, to 3.6%) improved the relative intensity rate from 3.8 to 13.8%; the increment of gas pressure (from 0, 0.5, 0.65, 0.72, 1, to 1.5 Mpa) induced the relative intensity rate to decrease from 38.22 to 0%; the increment of water content (from 0, 2, 4, to 8%) caused the relative intensity rate to drop from 5.425 to 0.5%. Furthermore, sensitivity and range analysis evaluates coupled factors affecting the relative intensity. In addition, the distinction with initiation of outburst of coal and gas affected by these parameters is discussed by the relative threshold of gas content rate. PMID:25162042

  12. INTEGRAL observations of SAX J1808.4-3658 currently in outburst

    DEFF Research Database (Denmark)

    Del Santo, M.; Bozzo, E.; Kuulkers, E.

    2015-01-01

    The latest INTEGRAL Galactic Bulge monitoring (ATel #438) was performed during revolution 1529 on 2015 April 12 starting at 18:15 UT (57124.761 MJD) for a total of 12462 seconds. We report on the IBIS/ISGRI detection of the new outburst from the millisecond X-ray pulsar SAX J1808.4-3658 (ATels...

  13. Monitoring of the Y2K Outburst of Cyg X-3 with BeppoSAX

    Science.gov (United States)

    Palazzi, E.; dal Fiume, D.; Amati, L.; del Sordo, S.; Frontera, F.; Masetti, N.; Orlandini, M.; Santangelo, A.; Segreto, A.

    2001-09-01

    The latest outburst of Cyg X-3, occurred during year 2000, was extensively monitored with the BeppoSAX satellite, which observed the source 6 times at different brightness levels. We here report on these observations, in which the X-ray spectrum appears very complex and strongly evolving as the brightness of the object changes.

  14. ASAS-SN Discovery of a Bright Be Star Undergoing a Possible Outburst

    Science.gov (United States)

    Jayasinghe, T.; Stanek, K. Z.; Kochanek, C. S.; Thorstensen, J.; Rupert, J.; Prieto, J. L.; Shields, J. V.; Thompson, T. A.; Holoien, T. W.-S.; Shappee, B. J.; Dong, Subo

    2017-09-01

    As part of an ongoing effort by ASAS-SN project (Shappee et al. 2014; Kochanek et al. 2017) to characterize and catalog all bright variable stars (e.g., Jayasinghe et al. 2017, ATel #10634, #10677), we report the discovery of a bright Be star undergoing a possible outburst.

  15. Ultraviolet and optical observations of the dwarf novae VW and WX Hydri during outburst

    International Nuclear Information System (INIS)

    Hassall, B.J.M.; Pringle, J.E.; Schwarzenberge-Czerny, A.; Wade, R.A.; Whelan, J.A.J.; Hill, P.W.

    1983-01-01

    Simultaneous spectrophotometry in the range 1200-7000 A, of the dwarf novae at quiescence and maximum is presented. The continuum spectra are compared with the standard model disc spectrum and, with one exception, the fit is poor. The assumptions that the disc is both steady-state and blackbody are reconsidered and it is pointed out that a νsup(1/3) spectrum is not to be expected from a disc sufficiently small to be accommodated within these short binary period systems. On the rise to outburst the UV flux in VW Hydri is observed to lag at least one day behind the optical, supporting the mass accretion event explanation of dwarf nova outbursts. The behaviour of the UV and optical line features during outbursts is described, in particular, the P Cygni features observed in a super-outburst of WX Hydri, from which a mass loss rate is estimated, small compared with the mass transfer rate from the secondary star. (author)

  16. Faulkes Telescope monitoring of the current outburst of IGR J00291+5934

    NARCIS (Netherlands)

    Russell, D.M.; Lewis, F.; Linares, M.; Roche, P.; Maitra, D.

    2008-01-01

    As part of an optical monitoring project of low-mass X-ray binaries (Lewis et al. 2008, http://adsabs.harvard.edu/abs/2008AIPC.1010..204L), we report on recent observations just prior to, and during the current outburst of the millisecond X-ray pulsar IGR J00291+5934 (ATel #1660, #1664, #1665). The

  17. THE 2008 OUTBURST IN THE YOUNG STELLAR SYSTEM Z CMa: THE FIRST DETECTION OF TWIN JETS

    International Nuclear Information System (INIS)

    Whelan, E. T.; Dougados, C.; Bonnefoy, M.; Bouvier, J.; Chauvin, G.; Garcia, P. J. V.; Malbet, F.; Perrin, M. D.; Bains, I.; Redman, M. P.; Ray, T. P.; Bouy, H.; Benisty, M.; Grankvin, K.

    2010-01-01

    The Z CMa binary is understood to undergo both FU Orionis (FUOR) and EX Orionis (EXOR) type outbursts. While the SE component has been spectroscopically classified as an FUOR, the NW component, a Herbig Be star, is the source of the EXOR outbursts. The system has been identified as the source of a large outflow; however, previous studies have failed to identify the driver. Here, we present adaptive optics assisted [Fe II] spectro-images which reveal for the first time the presence of two small-scale jets. Observations made using OSIRIS at the Keck Observatory show the Herbig Be star to be the source of the parsec-scale outflow, which within 2'' of the source shows signs of wiggling and the FUOR to be driving a ∼0.''4 jet. The wiggling of the Herbig Be star's jet is evidence for an additional companion which could in fact be generating the EXOR outbursts, the last of which began in 2008. Indeed, the dynamical scale of the wiggling corresponds to a timescale of 4-8 years which is in agreement with the timescale of these outbursts. The spectro-images also show a bow-shock-shaped feature and possible associated knots. The origin of this structure is as of yet unclear. Finally, interesting low velocity structure is also observed. One possibility is that it originates in a wide-angle outflow launched from a circumbinary disk.

  18. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  19. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Science.gov (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  20. Swift observations of the accreting millisecond pulsar IGR J17498-2921 : From outburst to quiescence

    NARCIS (Netherlands)

    Linares, M.; Bozzo, E.; Altamirano, D.; Degenaar, N.; Wijnands, R.; Soleri, P.; Belloni, T.; Di Salvo, T.; D'Ai, A.; Papitto, A.; Riggio, A.; Burderi, L.

    Swift has been monitoring the accreting millisecond pulsar IGR J17498-2921 since the start of its outburst in 2011 August 12 (ATels #3551, #3555, #3556). We detected two X-ray bursts on Aug. 18 and 28. During the first ~12 days the average persistent XRT count rate remained approximately constant at

  1. Outburst from the SFXT IGR J17544-2619 detected by INTEGRAL

    DEFF Research Database (Denmark)

    Paizis, A.; Kuulkers, E.; Chenevez, J.

    2015-01-01

    During public INTEGRAL Galactic bulge monitoring observations (ATel #438) performed on 2015 February 20-21 at UT 23:04-02:45, we detected the SFXT IGR J17544-2619 (see ATel #7137 for the recent Swift detection of the source outburst). The source was detected using IBIS/ISGRI in the 18-40 keV rang...

  2. INTEGRAL observations of the BHC IGR J17091-3624 in outburst

    DEFF Research Database (Denmark)

    Capitanio, F.; Tramacere, A.; Del Santo, M.

    2011-01-01

    During the monitoring of the RX J1712.7-3946 region (PI. R. Terrier), INTEGRAL observed the currently ongoing outburst of the BHC IGRJ17091-3624 (Atels #3144, #3148, #3150). These observations were performed from 2011 Feb. 07 at 11:53 to 2011 Feb. 08 at 18:56 (UTC). The source was detected by IBI...

  3. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    Science.gov (United States)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zejda, M.; Michel, R.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.

    2017-10-01

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  4. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Zejda, M. [Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, CZ-611 37 Brno (Czech Republic); Michel, R., E-mail: qsb@ynao.ac.cn [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, México (Mexico)

    2017-10-20

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L {sub 1} region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  5. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    International Nuclear Information System (INIS)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.; Zejda, M.; Michel, R.

    2017-01-01

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  6. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BATSE

    Science.gov (United States)

    Woods, P.; Kouveliotou, C.; vanParadijs, J.; Briggs, M. S.; Wilson, C. A.; Deal, K. J.; Harmon, B. A.; Fishman, G. J.; Lewin, W. H.; Kommers, J.

    1998-01-01

    One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on Burst and Transient Source Experiment (BATSE) observations of both the persistent and burst emission for this second outburst and draw comparisons to the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux and burst fluence were all reduced in amplitude by a factor approximately 1.7. Despite these differences, the average burst occurrence rate and average burst durations were roughly the same through each outburst. Similar to the first outburst, no spectral evolution was found within bursts and the parameter alpha was very small at the start of the outburst (alpha = 2.1 +/- 1.7 on 1996 December 2). Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.

  7. Prospects for AGN Science using the ART-XC on the SRG Mission

    Science.gov (United States)

    Swartz, Douglas A.; Elsner, Ronald F.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Ramsey, Brian D.; Bonamente, Massimiliano

    2012-01-01

    The enhanced hard X-ray sensitivity provided by the Astronomical Roentgen Telescope to the Spectrum Roentgen Gamma mission facilitates the detection of heavily obscured and other hard-spectrum cosmic X-ray sources. The SRG all-sky survey will obtain large, statistically-well-defined samples of active galactic nuclei (AGN) including a significant population of local heavily-obscured AGN. In anticipation of the SRG all-sky survey, we investigate the prospects for refining the bright end of the AGN luminosity function and determination of the local black hole mass function and comparing the spatial distribution of AGN with large-scale structure defined by galaxy clusters and groups. Particular emphasis is placed on studies of the deep survey Ecliptic Pole regions.

  8. AGN feedback through UFO and galaxy-wide winds in the early Universe

    Science.gov (United States)

    Feruglio, C.; Piconcelli, E.; Bischetti, M.; Zappacosta, L.; Fiore, F.

    2017-10-01

    AGN feedback through massive molecular winds is today routinely observed in local AGN host galaxies, but not as such in the early universe. I will present the first evidence for a massive, AGN-driven molecular wind in the z 4 QSO APM08279, which also hosts the most well studied and persistent nuclear semi-raltivistic wind (UFO). This observation directly probes the expansion mechanism of a nuclear wind into the ISM on galaxy wide scales, that so far was constrained by a couple of other objects only (Feruglio et al. 2015, Tombesi et al. 2015). This result also opens the path toward the exploration of molecular AGN-driven winds at early epochs, close after the end of the Epoch of Reionisation (EoR).

  9. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    Science.gov (United States)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  10. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    Science.gov (United States)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  11. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  12. Optical Time-Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN

    Science.gov (United States)

    Smith, Krista Lynne

    Active galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux

  13. MULTIWAVELENGTH OBSERVATIONS OF V2775 Ori, AN OUTBURSTING PROTOSTAR IN L 1641: EXPLORING THE EDGE OF THE FU ORIONIS REGIME

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas; Kounkel, Marina [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Tobin, John J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stutz, Amelia M.; Henning, Thomas [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Ali, Babar [NHSC/IPAC/Caltech, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Remming, Ian; Manoj, P. [Department of Physics and Astronomy, 500 Wilson Boulevard, University of Rochester, Rochester, NY 14627 (United States); Stanke, Thomas [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Osorio, Mayra [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008, Granada (Spain); Wilson, T. L., E-mail: wfische@utnet.utoledo.edu [Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2012-09-01

    Individual outbursting young stars are important laboratories for studying the physics of episodic accretion and the extent to which this phenomenon can explain the luminosity distribution of protostars. We present new and archival data for V2775 Ori (HOPS 223), a protostar in the L 1641 region of the Orion molecular clouds that was discovered by Caratti o Garatti et al. to have recently undergone an order-of-magnitude increase in luminosity. Our near-infrared spectra of the source have strong blueshifted He I {lambda}10830 absorption, strong H{sub 2}O and CO absorption, and no H I emission, all typical of FU Orionis sources. With data from the Infrared Telescope Facility, the Two Micron All Sky Survey, the Hubble Space Telescope, Spitzer, the Wide-field Infrared Survey Explorer, Herschel, and the Atacama Pathfinder Experiment that span from 1 to 70 {mu}m pre-outburst and from 1 to 870 {mu}m post-outburst, we estimate that the outburst began between 2005 April and 2007 March. We also model the pre- and post-outburst spectral energy distributions of the source, finding it to be in the late stages of accreting its envelope with a disk-to-star accretion rate that increased from {approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} to {approx}10{sup -5} M{sub Sun} yr{sup -1} during the outburst. The post-outburst luminosity at the epoch of the FU Orionis-like near-IR spectra is 28 L{sub Sun }, making V2775 Ori the least luminous documented FU Orionis outburster with a protostellar envelope. The existence of low-luminosity outbursts supports the notion that a range of episiodic accretion phenomena can partially explain the observed spread in protostellar luminosities.

  14. X-ray outbursts and high-state episodes of HETE J1900.1-2455

    Science.gov (United States)

    Šimon, Vojtěch

    2018-06-01

    HETE J1900.1-2455 is an ultra-compact low-mass X-ray binary that underwent a long-lasting (about 10 yr) active state. The analysis presented here of its activity uses the observations of RXTE/ASM, Swift/BAT, and ISS/MAXI for investigating this active state and the relation of time evolution of fluxes in the hard and medium X-ray bands. We show that the variations of the flux of HETE J1900.1-2455 on the time-scales of days and weeks have the form both of the outbursts and occasional high-state episodes. These outbursts are accompanied by the large changes of the hardness of the spectrum in the surroundings of the peaks of their soft X-ray flux. The very strong peaks of these outbursts occur in the soft X-ray band (2-4 keV) and are accompanied by a large depression in the 15-50 keV band flux. We interpret these events as an occasional occurrence of a thermal-viscous instability of the accretion disc that gives rise to the outbursts similar to those in the soft X-ray transients. On the other hand, the 2-4 and the 15-50 keV band fluxes are mutually correlated in the high-state episodes, much longer than the outbursts. In the interpretation, the episodes of the X-ray high states of HETE J1900.1-2455 during the active state bear some analogy with the standstills in the Z Cam type of cataclysmic variables.

  15. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    International Nuclear Information System (INIS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-01-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude

  16. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    Science.gov (United States)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  17. AN EXTRAORDINARY OUTBURST OF THE MAGNETAR SWIFT J1822.3–1606

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Manoneeta; Göğüş, Ersin [Sabancı University, Faculty of Engineering and Natural Sciences, Orhanlı Tuzla 34956, İstanbul (Turkey)

    2015-08-20

    The 2011 outburst of Swift J1822.3–1606 was extraordinary; periodic modulations at the spin period of the underlying neutron star were clearly visible, remarkably similar to what is observed during the decaying tail of magnetar giant flares. We investigated the temporal characteristics of X-ray emission during the early phases of the outburst. We performed a periodicity search with the spectral hardness ratio (HR) and found a coherent signal near the spin period of the neutron star, but with a lag of about 3 radians. Therefore, the HR is strongly anti-correlated with the X-ray intensity, which is also seen in the giant flares. We studied the time evolution of the pulse profile and found that it evolves from a complex morphology to a much simpler shape within about a month. Pulse profile simplification also takes place during the giant flares, but on a much shorter timescale of about a few minutes. We found that the amount of energy emitted during the first 25 days of the outburst is comparable to what was detected in minutes during the decaying tail of giant flares. Based on these similarities, we suggest that the triggering mechanisms of the giant flares and the magnetar outbursts are likely the same. We propose that the trapped fireball that develops in the magnetosphere at the onset of the outburst radiates away efficiently in minutes in magnetars exhibiting giant flares, while in other magnetars, such as Swift J1822.3–1606, the efficiency of radiation of the fireball is not as high and, therefore, lasts much longer.

  18. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Wirström, Eva S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States)

    2016-04-10

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  19. Imprints of the large-scale structure on AGN formation and evolution

    Science.gov (United States)

    Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem

    2018-04-01

    Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.

  20. Flickering AGN can explain the strong circumgalactic O VI observed by COS-Halos

    Science.gov (United States)

    Oppenheimer, Benjamin D.; Segers, Marijke; Schaye, Joop; Richings, Alexander J.; Crain, Robert A.

    2018-03-01

    Proximity zone fossils (PZFs) are ionization signatures around recently active galactic nuclei (AGNs) where metal species in the circumgalactic medium remain overionized after the AGNs have shut off due to their long recombination time scales. We explore cosmological zoom hydrodynamic simulations, using the EAGLE (Evolution and Assembly of GaLaxies and their Environments) model paired with a non-equilibrium ionization and cooling module including time-variable AGN radiation to model PZFs around star-forming disc galaxies in the z ˜ 0.2 Universe. Previous simulations typically underestimated the O VI content of galactic haloes, but we show that plausible PZF models increase O VI column densities by 2 - 3 × to achieve the levels observed around COS-Halos star-forming galaxies out to 150 kpc. Models with AGN bolometric luminosities ≳ 1043.6erg s- 1, duty cycle fractions ≲ 10 per cent, and AGN lifetimes ≲ 106 yr are the most promising, because their supermassive black holes grow at the cosmologically expected rate and they mostly appear as inactive AGN, consistent with COS-Halos. The central requirement is that the typical star-forming galaxy hosted an active AGN within a time-scale comparable to the recombination time of a high metal ion, which for circumgalactic O VI is ≈107 yr. H I, by contrast, returns to equilibrium much more rapidly due to its low neutral fraction and does not show a significant PZF effect. O VI absorption features originating from PZFs appear narrow, indicating photoionization, and are often well aligned with lower metal ion species. PZFs are highly likely to affect the physical interpretation of circumgalactic high ionization metal lines if, as expected, normal galaxies host flickering AGN.

  1. Uncovering extreme AGN variability in serendipitous X-ray source surveys

    Science.gov (United States)

    Moran, Edward C.; Garcia Soto, Aylin; LaMassa, Stephanie; Urry, Meg

    2018-01-01

    Constraints on the duty cycle and duration of accretion episodes in active galactic nuclei (AGNs) are vital for establishing how most AGNs are fueled, which is essential for a complete picture of black hole/galaxy co-evolution. Perhaps the best handle we have on these activity parameters is provided by AGNs that have displayed dramatic changes in their bolometric luminosities and, in some cases, spectroscopic classifications. Given that X-ray emission is directly linked to black-hole accretion, X-ray surveys should provide a straightforward means of identifying AGNs that have undergone dramatic changes in their accretion states. However, it appears that such events are very rare, so wide-area surveys separated in time by many years are needed to maximize discovery rates. We have cross-correlated the Einstein IPC Two-Sigma Catalog with the ROSAT All-Sky Survey Faint Source Catalog to identify a sample of soft X-ray sources that varied by factors ranging from 7 to more than 100 over a ten year timescale. When possible, we have constructed long-term X-ray light curves for the sources by combining the Einstein and RASS fluxes with those obtained from serendipitous pointed observations by ROSAT, Chandra,XMM, and Swift. Optical follow-up observations indicate that many of the extremely variable sources in our sample are indeed radio-quiet AGNs. Interestingly, the majority of objects that dimmed between ~1980 and ~1990 are still (or are again) broad-line AGNs rather than“changing-look” candidates that have more subtle AGN signatures in their spectra — despite the fact that none of the sources examined thus far has returned to its highest observed luminosity. Future X-ray observations will provide the opportunity to characterize the X-ray behavior of these anonymous, extreme AGNs over a four decade span.

  2. The Discovery of an Outburst and Pulsed X-ray Flux from SMC X-2 from RXTE Observations

    CERN Document Server

    Corbet, R H D; Coe, M J; Laycock, S; Handler, G

    2001-01-01

    Rossi X-ray Timing Explorer All Sky Monitor observations of SMC X-2 show that the source experienced an outburst in January to April 2000 reaching a peak luminosity of greater than ~10^38 ergs s^-1. RXTE Proportional Counter Array observations during this outburst reveal the presence of pulsations with a 2.37s period. However, optical photometry of the optical counterpart showed the source to be still significantly fainter than it was more than half a year after the outburst in the 1970s when SMC X-2 was discovered.

  3. Multi-Frequency Databases for AGN Investigation—Results and Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    La Mura, Giovanni [Department of Physics and Astronomy, University of Padua, Padua (Italy); Berton, Marco [Department of Physics and Astronomy, University of Padua, Padua (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Chen, Sina; Ciroi, Stefano [Department of Physics and Astronomy, University of Padua, Padua (Italy); Congiu, Enrico [Department of Physics and Astronomy, University of Padua, Padua (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Cracco, Valentina; Frezzato, Michele; Rafanelli, Piero, E-mail: giovanni.lamura@unipd.it [Department of Physics and Astronomy, University of Padua, Padua (Italy)

    2017-10-17

    Active Galactic Nuclei (AGNs) are characterized by emission of radiation over more than 10 orders of magnitude in frequency. Therefore, the execution of extensive surveys of the sky, with different types of detectors, is providing the attractive possibility to identify and to investigate the properties of AGNs on very large statistical samples. Thanks to the large spectroscopic surveys that allow detailed investigation of many of these sources, we have the opportunity to place new constraints on the nature and evolution of AGNs and to investigate their relations with the host systems. In this contribution we present the results that can be obtained by using a new interactive catalog that we developed to investigate the range of AGN spectral energy distributions (SEDs). We present simple SED models based on data collected in the catalog and discuss their relations with optical spectra obtained by follow up observations. We compare our findings with the expectations based on the AGN Unification Model, and we discuss the perspectives of multi-wavelength approaches to address AGN related processes such as black hole accretion and acceleration of relativistic jets.

  4. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    International Nuclear Information System (INIS)

    Zhu, Yi-Nan; Wu, Hong

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M H i ), stellar mass (M * ), and H i-to-stellar mass ratio (M H i /M * ) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M H i or M H i /M * . The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  5. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  6. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  7. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  8. Very energetic photons at HERA

    International Nuclear Information System (INIS)

    Bawa, A.C.; Krawczyk, M.

    1991-01-01

    We show that every energetic photons in the backward direction can be produced in deep inelastic Compton scattering at HERA. Assuming a fixed energy of 9 GeV for the initial photons and 820 GeV for the protons a high rate is found for the production of final photons with a transverse momentum equal to 5 GeV/c and energy between 40 GeV and 300 GeV. These energetic photons arise mainly from the scattering of the soft gluonic constituents of the initial photon with quarks from the proton. They are produced in the backward direction in coincidence with a photon beam jet of energy ∝ 9 GeV in the forward direction. (orig.)

  9. The energetic significance of cooking.

    Science.gov (United States)

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.

  10. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    International Nuclear Information System (INIS)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-01-01

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion

  11. PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR

    Energy Technology Data Exchange (ETDEWEB)

    Aird, James; Coil, Alison L.; Moustakas, John; Smith, M. Stephen M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Blanton, Michael R.; Zhu Guangtun [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Burles, Scott M. [D.E. Shaw and Co., L.P., 20400 Stevens Creek Blvd., Suite 850, Cupertino, CA 95014 (United States); Cool, Richard J. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2012-02-10

    We present evidence that the incidence of active galactic nuclei (AGNs) and the distribution of their accretion rates do not depend on the stellar masses of their host galaxies, contrary to previous studies. We use hard (2-10 keV) X-ray data from three extragalactic fields (XMM-LSS, COSMOS, and ELAIS-S1) with redshifts from the Prism Multi-object Survey to identify 242 AGNs with L{sub 2-10keV} = 10{sup 42-44} erg s{sup -1} within a parent sample of {approx}25,000 galaxies at 0.2 < z < 1.0 over {approx}3.4 deg{sup 2} and to i {approx} 23. We find that although the fraction of galaxies hosting an AGN at fixed X-ray luminosity rises strongly with stellar mass, the distribution of X-ray luminosities is independent of mass. Furthermore, we show that the probability that a galaxy will host an AGN can be defined by a universal Eddington ratio distribution that is independent of the host galaxy stellar mass and has a power-law shape with slope -0.65. These results demonstrate that AGNs are prevalent at all stellar masses in the range 9.5< log M{sub *}/M{sub sun}<12 and that the same physical processes regulate AGN activity in all galaxies in this stellar mass range. While a higher AGN fraction may be observed in massive galaxies, this is a selection effect related to the underlying Eddington ratio distribution. We also find that the AGN fraction drops rapidly between z {approx} 1 and the present day and is moderately enhanced (factor {approx}2) in galaxies with blue or green optical colors. Consequently, while AGN activity and star formation appear to be globally correlated, we do not find evidence that the presence of an AGN is related to the quenching of star formation or the color transformation of galaxies.

  12. The Contribution of Compton-Thick AGN/ULIRGs to the X-Ray Background

    Science.gov (United States)

    Nardini, Emanuele

    Accretion onto the supermassive black holes located at the centre of Active Galactic Nuclei(AGN) is one of the most efficient power sources in the Universe, and provides a significant contribution to the energy radiated over cosmic times. The spectral shape of the X-ray background and its progressive resolution strongly suggests that most AGN are heavily obscured by large amounts of dust and gas. Their primary radiation field is reprocessed and re-emitted at longer wavelengths, driving a huge IR luminosity. Ultraluminous Infrared Galaxies (ULIRGs) are the local counterparts of the high-redshift (z sport the typical features of buried AGN in the mid-IR. IRAS 12127 1412 was observed for the first time in the X-rays by our group. Its Chandra spectrum clearly shows the signatures of AGN reflection at 2 10 keV. Similar properties were previously found in IRAS 00182 7112. Our Suzaku observations will allow to pinpont the AGN emission above 10 keV, and will provide fundamental information on the physical and geometrical structure of Compton-thick AGN embedded in a nuclear starburst. These sources are believed to experience the very initial phase of the AGN feedback on the surrounding environment, eventually leading to the formation of powerful optically- bright quasars. Besides this, we stress another remarkable opportunity related to the study of these two ULIRGs. Due to their really unique mid-IR and hard X-ray spectral properties, IRAS 00182 7112 and IRAS 12127 1412 can be considered as representative templates for a significant fraction of the obscured AGN population. Their broadband spectral energy distribution can then be used to calibrate new photometric diagnostics based on mid-IR colors and bolometric corrections, capable of selecting their faint counterparts within the IR deep fields. The wealth of data in the WISE and Spitzer archives will allow a complete census of this AGN subclass. The reflection efficiency inferred from our new Suzaku observations will make

  13. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  14. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  15. EVIDENCE FOR AN FU ORIONIS-LIKE OUTBURST FROM A CLASSICAL T TAURI STAR

    International Nuclear Information System (INIS)

    Miller, Adam A.; Poznanski, Dovi; Silverman, Jeffrey M.; Kleiser, Io K. W.; Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V.; Hillenbrand, Lynne A.; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert M.; Covey, Kevin R.; Rojas-Ayala, Barbara; Muirhead, Philip S.; Law, Nicholas M.; Dekany, Richard G.; Rahmer, Gustavo; Hale, David; Smith, Roger; Nugent, Peter

    2011-01-01

    We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHα 188-G4 and HBC 722). Prior to this outburst, LkHα 188-G4 was classified as a classical T Tauri star (CTTS) on the basis of its optical emission-line spectrum superposed on a K8-type photosphere and its photometric variability. The mid-infrared spectral index of LkHα 188-G4 indicates a Class II-type object. LkHα 188-G4 exhibited a steady rise by ∼1 mag over ∼11 months starting in August 2009, before a subsequent more abrupt rise of >3 mag on a timescale of ∼2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (1) an increase in brightness by ∼>4 mag, (2) a bright optical/near-infrared reflection nebula appeared, (3) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Hα which is characterized by a P Cygni profile, (4) near-infrared spectra resemble those of late K-M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H 2 O, and (5) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHα 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified CTTS LkHα 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.

  16. Near-infrared monitoring and modeling of V1647 Ori in its ongoing 2008–2012 outburst phase

    International Nuclear Information System (INIS)

    Raman, Veeman Venkata; Anandarao, Boddapati G.; Janardhan, Padmanabhan; Pandey, Rajesh

    2013-01-01

    We present results of the Mt Abu JHK photometric and HI Brackett γ line monitoring of the eruptive young stellar object V1647 Orionis (McNeil's Object) during its ongoing outburst phase in 2008–2012. We discuss JHK color patterns and extinction during the outburst and compare them with those from the previous outburst phase in 2004–2005 and in the intervening quiescent period that lasted about 2 yr. Commencing from early 2012, the object has shown a slow fading out in all the bands. We report brightness variations in the nearby Herbig-Haro object HH22 that are possibly associated with those in V1647 Ori. We also present modeling of the spectral energy distributions of V1647 Ori during both its recent outburst and its quiescent phase. The physical parameters of the protostar and its circumstellar environment obtained from the modeling indicate marked differences between the two phases

  17. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Heinis, S.; Gezari, S.; Kumar, S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  18. A fragilidade das Instituições Sociais e o rompimento da Ética no filme Agnes de Deus.

    OpenAIRE

    Marco Antonio Palermo Moretto

    2015-01-01

    Research about the fragilities of the social institutions in the movie Agnes of God and the ethic and moral. There are a mistery in the story:a murder of the baby inside the convent.  The young nun, Agnes killed her baby and a psichiatrist. Dra. Martha Livingstone  begans a investigation since the childhood of Agnes until the crime. The presence of the Superior Mother, Mirian Ruth is important to the story. She is an administrator and protect Agnes in many situations. Such social institutions...

  19. Disc-jet Coupling in the 2009 Outburst of the Black Hole Candidate H1743-322

    Science.gov (United States)

    Miller-Jones, J. C. A.; Sivakoff, G. R.; Altamirano, D.; Coriat, M.; Corbel, S.; Dhawan, V.; Krimm, H. A.; Remillard, R. A.; Rupen, M. P.; Russell, D. M.; hide

    2012-01-01

    We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts with a positive correlation outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near beginning the and end of an outburst

  20. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Rute F., E-mail: rdomingos@ipgp.fr [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Carreira, Sara [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Galceran, Josep [Department of Chemistry, University of Lleida and Agrotecnio, Rovira Roure 191, 25198 Lleida (Spain); Salaün, Pascal [School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L693 GP (United Kingdom); Pinheiro, José P. [LIEC/ENSG, UMR 7360 CNRS – Université de Lorraine, 15 Avenue du Charmois, 54500 Vandoeuvre-les-Nancy (France)

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu{sup 2+}) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration. - Highlights: • AGNES principles are valid at the vibrating gold microwire electrode (VGME). • VGME was successfully employed to quantify free Cu concentrations by using AGNES. • Stability constants of labile systems were in good agreement with predictions.

  1. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Rieke, G. H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Shi, Yong, E-mail: jianwei@email.arizona.edu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  2. Nuclear mid-infrared properties of nearby low-luminosity AGN

    International Nuclear Information System (INIS)

    Asmus, D; Duschl, W J; Hönig, S F; Gandhi, P; Smette, A

    2012-01-01

    We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGN's lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 μm emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 /amemission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR- X-ray correlation found previously for AGN is extended to a range from 10 40 to 10 45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR-X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.

  3. The Role of the Most Luminous Obscured AGNs in Galaxy Assembly at z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Petty, Sara [Green Science Policy Institute, Berkeley, CA 94709 (United States); Connolly, Brian [Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Efstathiou, Andreas [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Lacy, Mark [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stern, Daniel; Bridge, Carrie; Eisenhardt, Peter; Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lake, Sean; Tsai, Chao-Wei [Physics and Astronomy Department, University of California, Los Angeles, CA 90095 (United States); Jarrett, Tom [Department of Astronomy, University of Cape Town, 7700 Rondebosch, Capetown 7700 (South Africa); Benford, Dominic [Observational Cosmology Lab., Code 665, NASA at Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jones, Suzy [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Wu, Jingwen [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012 (China)

    2017-08-01

    We present Hubble Space Telescope WFC3 F160W imaging and infrared spectral energy distributions for 12 extremely luminous, obscured active galactic nuclei (AGNs) at 1.8 < z < 2.7 selected via “hot, dust-obscured” mid-infrared colors. Their infrared luminosities span (2–15) × 10{sup 13} L {sub ⊙}, making them among the most luminous objects in the universe at z ∼ 2. In all cases, the infrared emission is consistent with arising at least for the most part from AGN activity. The AGN fractional luminosities are higher than those in either submillimeter galaxies or AGNs selected via other mid-infrared criteria. Adopting the G , M {sub 20}, and A morphological parameters, together with traditional classification boundaries, infers that three-quarters of the sample are mergers. Our sample does not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, the asymmetries and effective radii of our sample are distributed identically to those of massive galaxies at z ∼ 2. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample includes examples of the massive galaxy population at z ∼ 2 that harbor a briefly luminous, “flickering” AGN and in which the G and M {sub 20} values have been perturbed due to either the AGN and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represents a small fraction of the immediate antecedents of compact star-forming galaxies at z ∼ 2.

  4. Yaku-cedar tells cosmic outbursts in ancient times. Anomalies of cosmic ray intensity in AD 774-775 and AD 993-994

    International Nuclear Information System (INIS)

    Miyake, Fusa; Masuda, Kimiaki

    2014-01-01

    Measurements of cosmogenic nuclides, which are radioisotopes produced by cosmic rays in the atmosphere, provide important information regarding extraterrestrial high-energy events. We present 14 C measurements in annual rings of Japanese cedar trees with 1- and 2-year resolutions, and a finding of two sudden increases of 14 C content by significant amount from AD 774 to 775 and AD 993 to 994. The short-term increases of radioactive nuclide production were also found in tree rings of Europe and Antarctic ice core. This strongly indicates that the anomalies were not due to local terrestrial events, but triggered by cosmic outbursts that affected the whole planet. Several conjectures have been made upon the origin of the events, e.g. nearby supernovae (∼200 pc), Galactic short gamma-ray bursts, and violent solar mass ejections like SPEs (solar proton events) or super flares. We investigated energetics and the frequencies of occurrence of the phenomena, and demonstrate that SPE is likely to be the origin of the two 14 C increase events. Astrophysical significances and impact to modern human society are also discussed. (author)

  5. Application of the third theory of quantification in coal and gas outburst forecast

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Qin, Y.; Zhang, X. [China University of Mining and Technology, Xuzhou (China). School of Resource and Geoscience Engineering

    2004-12-01

    The essential principles of the third theory of quantification are discussed. The concept and calculated method of reaction degree are put forward which extend the applying range and scientificalness of the primary reaction. Taking the Zhongmacun mine as example, on the base of analyzing the rules of gas geology synthetically and traversing the geological factors affecting coal and gas outburst. The paper adopts the method of combining statistical units with the third theory of quantification, screens out 8 sensitive geological factors from 11 geological indexes and carries through the work of gas geology regionalism to the exploited area of Zhongmacun according to the research result. The practice shows that it is feasible to apply the third theory of quantification to gas geology, which offers a new thought to screen the sensitive geological factors of gas outburst forecast. 3 refs., 3 figs., 3 tabs.

  6. Restablished Accretion in Post-outburst Classical Novae Revealed by X-rays

    Science.gov (United States)

    Hernanz, Margarita; Ferri, Carlo; Sala, Glòria

    2009-05-01

    Classical novae are explosions on accreting white dwarfs (hereinafter WDs) in cataclysmic variables (hereinafter CVs) a hydrogen thermonuclear runaway on top of the WD is responsible for the outburst. X-rays provide a unique way to study the turn-off of H-burning, because super soft X-rays reveal the hot WD photosphere, but also to understand how accretion is established again in the binary system. Observations with XMM-Newton of some post-outburst novae have revealed such a process, but a coverage up to larger energies -as Simbol-X will provide- is fundamental to well understand the characteristics of the binary system and of the nova ejecta. We present a brief summary of our results up to now and prospects for the Simbol-X mission.

  7. Periodic outburst floods from an ice-dammed lake in East Greenland.

    Science.gov (United States)

    Grinsted, Aslak; Hvidberg, Christine S; Campos, Néstor; Dahl-Jensen, Dorthe

    2017-08-30

    We report evidence of four cycles of outburst floods from Catalina Lake, an ice-dammed lake in East Greenland, identified in satellite imagery between 1966-2016. The lake measures 20-25 km 2 , and lake level drops 130-150 m in each event, corresponding to a water volume of 2.6-3.4 Gt, and a release of potential energy of 10 16  J, among the largest outburst floods reported in historical times. The drainage cycle has shortened systematically, and the lake filling rate has increased over each cycle, suggesting that the drainage pattern is changing due to climate warming with possible implications for environmental conditions in Scoresbysund fjord.

  8. The extreme carbon dioxide outburst at the Menzengraben potash mine 7 July 1953

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    Carbon dioxide is an asphyxiant and an irritant gas. An extreme outburst of carbon dioxide took place 7 July 1953 in a potash mine in the former East Germany. During 25 min, a large amount of CO2 was blown out of the mine shaft with great force. It was wind still and concentrated CO2 accumulated....... It is concluded that 1100–3900 tonnes of CO2 were blown out of the mine shaft, possibly with intensities around 4 tonnes/s. It is also concluded that the large majority of the gas escaped as a near-vertical high-velocity jet with only little loss of momentum due to impingement. The release was modelled using...... histories to date include sudden releases of CO2 of up to 50 tonnes only, far too small to provide a suitable empirical perspective on predicted hazard distances for CCS projects. The 1953 outburst contributes to filling this gap....

  9. a Synoptic Study of AN X-Ray Nova in Outburst

    Science.gov (United States)

    McClintock, Jeffrey

    Optical studies of X-ray novae in quiescence have yielded compelling evidence for black holes in binary systems. However, X-ray studies in quiescence are severely constrained by the near absence of high energy emission. Thus, further observational advances in black hole astrophysics require a substantial commitment to observe X-ray novae in outburst in just that spectral range accessible to XTE. We propose an agressive campaign of X-ray observations of the next non-pulsing X-ray nova that rises above 3 Crab at 2-10 keV. We further propose a coordinated and intensive campaign of optical and radio observations covering both hemispheres. The observations will provide a full temporal and spectral view of the outburst cycle.

  10. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    Science.gov (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  11. Limits and challenges to compiling and developing a database of glacial lake outburst floods

    Czech Academy of Sciences Publication Activity Database

    Emmer, Adam; Vilímek, V.; Huggel, C.; Klimeš, Jan; Schaub, Y.

    2016-01-01

    Roč. 13, feb (2016), s. 1579-1584 ISSN 1612-510X R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LG15007 Institutional support: RVO:67179843 ; RVO:67985891 Keywords : Database * Glacial lake outburst floods * GLOF * ICL/IPL activities * Natural hazards Subject RIV: EH - Ecology, Behaviour; DE - Earth Magnetism, Geodesy, Geography (USMH-B) Impact factor: 3.657, year: 2016

  12. Characterizing Outbursts and Nucleus Properties of Comet 29P/Schwassmann-Wachmann 1

    Science.gov (United States)

    Fernandez, Yanga

    2015-10-01

    Today's comets are remnant bodies leftover from the era of planet formation in our own Solar System. Therefore characterizing cometary structure and composition can give clues to the thermal, physical, and chemical environment of the protoplanetary disk. However before this long-term 'holy grail' of planetary astronomy can be achieved, we must understand cometary evolution so that we can know how comets have changed since their formation. The phenomenon of cometary activity, where a porous matrix of icy and rocky material turns into the gases and the dust grains we see in a comet's coma, remains a poorly-understood puzzle of short-term cometary evolution. We are in the midst of an ongoing project to understand cometary activity in a particular comet, 29P/Schwassmann-Wachmann 1, by taking advantage of existing imaging datasets that show the comet in outburst. Outbursts are useful for constraining the nucleus's spin state and the location of active areas. We propose here to analyze archival WFPC2 images of comet 29P obtained in March 1996 (Cycle 5, Project 5829), spanning 21 hours, that show the comet in outburst. These data are the highest-resolution imaging of this comet ever obtained while it was in outburst. We will analyze the morphology of the comet's dust coma to constrain properties of the nucleus and of the dust grains themselves. Additionally, we will analyze images taken in May 2000 (Cycle 8, Project 8274) that show the comet at its steady-state level of activity but may also allow us to place further constraints on the nucleus's active regions.

  13. Consequences and potential problems of operating room outbursts and temper tantrums by surgeons

    OpenAIRE

    Jacobs, George B.; Wille, Rosanne L.

    2012-01-01

    Background: Anecdotal tales of colorful temper tantrums and outbursts by surgeons directed at operating room nurses and at times other health care providers, like residents and fellows, are part of the history of surgery and include not only verbal abuse but also instrument throwing and real harassment. Our Editor-in-Chief, Dr. Nancy Epstein, has made the literature review of “Are there truly any risks and consequences when spine surgeons mistreat their predominantly female OR nursing staff/c...

  14. DETECTION OF REMNANT DUST CLOUD ASSOCIATED WITH THE 2007 OUTBURST OF 17P/HOLMES

    International Nuclear Information System (INIS)

    Ishiguro, Masateru; Kim, Yoonyoung; Kwon, Yuna G.; Sarugaku, Yuki; Kuroda, Daisuke; Maehara, Hiroyuki; Hanayama, Hidekazu; Takahashi, Jun; Terai, Tsuyoshi; Usui, Fumihiko; Vaubaillon, Jeremie J.; Morokuma, Tomoki; Kobayashi, Naoto; Watanabe, Jun-ichi

    2016-01-01

    This article reports a new optical observation of 17P/Holmes one orbital period after the historical outburst event in 2007. We detected not only a common dust tail near the nucleus but also a long narrow structure that extended along the position angle 274.°6 ± 0.°1 beyond the field of view (FOV) of the Kiso Wide Field Camera, i.e., >0.°2 eastward and >2.°0 westward from the nuclear position. The width of the structure decreased westward with increasing distance from the nucleus. We obtained the total cross section of the long extended structure in the FOV, C FOV  = (2.3 ± 0.5) × 10 10 m 2 . From the position angle, morphology, and mass, we concluded that the long narrow structure consists of materials ejected during the 2007 outburst. On the basis of the dynamical behavior of dust grains in the solar radiation field, we estimated that the long narrow structure would be composed of 1 mm–1 cm grains having an ejection velocity of >50 m s −1 . The velocity was more than one order of magnitude faster than that of millimeter–centimeter grains from typical comets around a heliocentric distance r h of 2.5 AU. We considered that sudden sublimation of a large amount of water-ice (≈10 30 mol s −1 ) would be responsible for the high ejection velocity. We finally estimated a total mass of M TOT  = (4–8) × 10 11 kg and a total kinetic energy of E TOT  = (1–6) × 10 15 J for the 2007 outburst ejecta, which are consistent with those of previous studies that were conducted soon after the outburst

  15. LONG-TERM EVOLUTION OF PROTOSTELLAR AND PROTOPLANETARY DISKS. I. OUTBURSTS

    International Nuclear Information System (INIS)

    Zhu Zhaohuan; Hartmann, Lee; Gammie, Charles F.; Book, Laura G.; Simon, Jacob B.; Engelhard, Eric

    2010-01-01

    As an initial investigation into the long-term evolution of protostellar disks, we explore the conditions required to explain the large outbursts of disk accretion seen in some young stellar objects. We use one-dimensional time-dependent disk models with a phenomenological treatment of the magnetorotational instability (MRI) and gravitational torques to follow disk evolution over long timescales. Comparison with our previous two-dimensional disk model calculations indicates that the neglect of radial effects and two-dimensional disk structure in the one-dimensional case makes only modest differences in the results; this allows us to use the simpler models to explore parameter space efficiently. We find that the mass infall rates typically estimated for low-mass protostars generally result in AU-scale disk accretion outbursts, as predicted by our previous analysis. We also confirm quasi-steady accretion behavior for high mass infall rates if the values of α-parameter for the MRI are small, while at this high accretion rate convection from the thermal instability may lead to some variations. We further constrain the combinations of the α-parameter and the MRI critical temperature, which can reproduce observed outburst behavior. Our results suggest that dust sublimation may be connected with full activation of the MRI. This is consistent with the idea that small dust captures ions and electrons to suppress the MRI. In a companion paper, we will explore both long-term outburst and disk evolution with this model, allowing for infall from protostellar envelopes with differing angular momenta.

  16. INTEGRAL observation of SWIFT J1756.9-2508 in outburst

    Science.gov (United States)

    Mazzola, S.; Bozzo, E.; Kuulkers, E.; Ferrigno, C.; Savchenko, V.; Ducci, L.

    2018-04-01

    Following the discovery of a new outburst from the accreting millisecond X-ray pulsar SWIFT J1756.9-2508 (ATel #11497, #11502, #11505), a dedicated target of opportunity observation with INTEGRAL was carried out from 2018 April 1 at 08:30 to 23:15 (UTC; total exposure time 85 ks). The source was detected in the 20-40 keV IBIS/ISGRI mosaic at a significance level of 20 sigma.

  17. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    Science.gov (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  18. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Koekemoer, Anton M.; Somerville, Rachel S.; Lotz, Jennifer M.; Dahlen, Tomas; Donley, Jennifer L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn [Max-Planck-Institut fuer extraterrestrische Physik, D-85748 Garching (Germany); Rangel, Cyprian; Laird, Elise S. [Astrophysics Group, Imperial College London, London, SW7 2AZ (United Kingdom); Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bournaud, Frederic [CEA, IRFU, SAp and Laboratoire AIM Paris-Saclay, F-91191 Gif-sur-Yvette (France); Conselice, Christopher J. [Centre for Astronomy and Particle Theory, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Dekel, Avishai, E-mail: kocevski@ucolick.org [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  19. Self-consistent two-phase AGN torus models⋆. SED library for observers

    Science.gov (United States)

    Siebenmorgen, Ralf; Heymann, Frank; Efstathiou, Andreas

    2015-11-01

    We assume that dust near active galactic nuclei (AGNs) is distributed in a torus-like geometry, which can be described as a clumpy medium or a homogeneous disk, or as a combination of the two (i.e. a two-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse interstellar medium. The dust-photon interaction is treated in a fully self-consistent three-dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGNs, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10 μm silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects in the library cover the observed range of mid-infrared colors of known AGNs. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find that pure AGN models fit the SED without needing to postulate starburst activity. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The SED

  20. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Science.gov (United States)

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  1. Lakes near the glacier Maliy Azau on the Elbrus (Central Caucasus: dynamics and outbursts

    Directory of Open Access Journals (Sweden)

    M. D. Dokukin

    2016-01-01

    Full Text Available The lake dynamics and the current state of them were analyzed on the basis of interpretation of aerial and satellite images of different years together with results of field surveys. Areas of six lakes existing in different years near the Maliy Azau Glacier had been determined. On August 22, 2011, the maximum area of one of the lakes was equal to 25.5 thousand m2. The first outburst was caused by the landslide deformations of the moraine massif forming a part of the lake basin, while the second one was a result of degradation of the lake ice dam and the water overflow on top of it. The present‑day lake dams (terminal‑moraine ramparts and medial moraine ridges are the result of the Maliy Azau Glacier advance in 1990s. The revealed feature of the lake dynamics on the mountain Elbrus was a drop of the water level and corresponding decrease of the lake areas in winter that was related to existence of the groundwater runoff into fractured volcanic rocks. At present, moraine dams of lakes and areas of the surface water runoff from the lakes are in stable condition due to which there is no threat of a lake outburst. However, the potential threat of outburst still remains because of high seismicity and possible volcanic activity in this region.

  2. ABSENCE OF SIGNIFICANT COOL DISKS IN YOUNG STELLAR OBJECTS EXHIBITING REPETITIVE OPTICAL OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hauyu Baobab; Hirano, Naomi; Takami, Michihiro; Dong, Ruobing [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Galván-Madrid, Roberto; Rodríguez, Luis F.; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM, A.P. 3-72, Xangari, Morelia, 58089 (Mexico); Vorobyov, Eduard I. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180, Vienna (Austria); Kóspál, Ágnes [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie Königstuhl, 17 D-69117 Heidelberg (Germany); Hashimoto, Jun [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 Japan (Japan); Hasegawa, Yasuhiro, E-mail: baobabyoo@gmail.com [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-01-10

    We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses M{sub dust} in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with M{sub dust} ∼ 9 × 10{sup −4}M{sub ⊙}. V1118 Ori has a marginal detection equivalent to M{sub dust} ∼ 6 × 10{sup −5}M{sub ⊙}. V1143 Ori has a non-detection also equivalent to M{sub dust} < 6 × 10{sup −5}M{sub ⊙}. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit M{sub dust} < 6 × 10{sup −6}M{sub ⊙}. We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.

  3. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  4. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Audibert, Anelise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); Combes, Françoise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); College de France, Paris (France); García-Burillo, Santiago [Observatorio Astronómico Nacional, Observatorio de Madrid, Madrid (Spain); Salomé, Philippe, E-mail: anelise.audibert@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France)

    2017-12-12

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″) CO survey of low luminosity AGN performed with the IRAM PdBI.

  5. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P., E-mail: jsbridge@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  6. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  7. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-01-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  8. Probing the gas fuelling and outflows in nearby AGN with ALMA

    Science.gov (United States)

    Audibert, Anelise; Combes, Françoise; García-Burillo, Santiago; Salomé, Philippe

    2017-12-01

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fuelling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g. the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5-1”) CO survey of low luminosity AGN performed with the IRAM PdBI.

  9. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Directory of Open Access Journals (Sweden)

    Anelise Audibert

    2017-12-01

    Full Text Available Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″ CO survey of low luminosity AGN performed with the IRAM PdBI.

  10. Energetics of the built environment

    Energy Technology Data Exchange (ETDEWEB)

    Yeang, K

    1974-07-01

    Energetics, the study of energy transformations within ecosystems, provide a useful framework for examining the relationships between the built environment (a manmade ecosystem) and the natural environment. Values are provided for using energy indices in modeling, comparing design alternatives, improving designed systems, conserving nonrenewable resources, comparing impacts, and studying energy utilization patterns as a whole. The accounting of the energy cost of a proposed project would provide additional criteria for evaluating the impact of human developments on the natural environment. (3 diagrams, 12 tables)

  11. Energetic particles in the heliosphere

    CERN Document Server

    Simnett, George M

    2017-01-01

    This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.

  12. Thermal-spectrum recriticality energetics

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1993-12-01

    Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature

  13. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  14. Structural energetics of noble metals

    International Nuclear Information System (INIS)

    Mujibur Rahman, S.M.

    1982-06-01

    Structural energetics of the noble metals, namely Cu, Ag, and Au are investigated by employing a single-parameter pseudopotential. The calculations show that the lowest energy for all of these metals corresponds to FCC - their observed crystal structure. The one-electron contribution to the free energy is found to dominate the structural prediction for these metals. The present investigation strongly emphasizes that the effects due to band hybridization and core-core exchange play a significant role on the structural stability of the noble metals. (author)

  15. Polarization and Structure of Relativistic Parsec-Scale AGN Jets

    International Nuclear Information System (INIS)

    Lyutikov, M

    2004-01-01

    mildly relativistic jets, when a counter jet can be seen, the polarization of the counter jet is preferentially orthogonal to the axis, unless the jet is strongly dominated by the toroidal magnetic field in its rest frame. (6) For resolved jets, the polarization pattern is not symmetric with respect to jet axis. Under certain conditions, this can be used to deduce the direction of the spin of the central object (black hole or disk), whether it is aligned or anti-aligned with the jet axis. (7) In resolved ''cylindrical shell'' type jets, the central parts of the jet are polarized along the axis, while the outer parts are polarized orthogonal to it, in accordance with observations. We conclude that large-scale magnetic fields can explain the salient polarization properties of parsec-scale AGN jets. Since the typical degrees of polarization are (le) 15%, the emitting parts of the jets must have comparable rest-frame toroidal and poloidal fields. In this case, most relativistic jets are strongly dominated by the toroidal magnetic field component in the observer's frame, B φ /B z ∼ Λ. We also discuss the possibility that relativistic AGN jets may be electromagnetically (Poynting flux) dominated. In this case, dissipation of the toroidal magnetic field (and not fluid shocks) may be responsible for particle acceleration

  16. Testing a double AGN hypothesis for Mrk 273

    Science.gov (United States)

    Iwasawa, K.; U, V.; Mazzarella, J. M.; Medling, A. M.; Sanders, D. B.; Evans, A. S.

    2018-04-01

    The ultra-luminous infrared galaxy (ULIRG) Mrk 273 contains two infrared nuclei, N and SW, separated by 1 arcsecond. A Chandra observation has identified the SW nucleus as an absorbed X-ray source with NH 4 × 1023 cm-2 but also hinted at the possible presence of a Compton-thick AGN in the N nucleus, where a black hole of 109 M⊙ is inferred from the ionized gas kinematics. The intrinsic X-ray spectral slope recently measured by NuSTAR is unusually hard (Γ 1.3) for a Seyfert nucleus, for which we seek an alternative explanation. We hypothesize a strongly absorbed X-ray source in N, of which X-ray emission rises steeply above 10 keV, in addition to the known X-ray source in SW, and test it against the NuSTAR data, assuming the standard spectral slope (Γ = 1.9). This double X-ray source model gives a good explanation of the hard continuum spectrum, deep Fe K absorption edge, and strong Fe K line observed in this ULIRG, without invoking the unusual spectral slope required for a single source interpretation. The putative X-ray source in N is found to be absorbed by NH = 1.4+0.7-0.4 × 1024 cm-2. The estimated 2-10 keV luminosity of the N source is 1.3 × 1043 erg s-1, about a factor of 2 larger than that of SW during the NuSTAR observation. Uncorrelated variability above and below 10 keV between the Suzaku and NuSTAR observations appears to support the double source interpretation. Variability in spectral hardness and Fe K line flux between the previous X-ray observations is also consistent with this picture.

  17. RAiSE II: resolved spectral evolution in radio AGN

    Science.gov (United States)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  18. RXTE Observation of 4U 1630-47 During its 1998 Outburst

    Science.gov (United States)

    Dieters, Stefan W.

    1999-01-01

    During the 1998 outburst of 4U 1630-47 it was extensively observed with the Rossi X-ray Timing Explorer (RXTE). In order to cover the outburst more thoroughly our data (Obs. ID: 30178-0[1-2]- ) were combined with those of Cui et al. (Obs. ID: 30188-02-). These observations were later compared with the complementary observations. Power density and energy spectra have been made for each observation. The data was used to place radio and hard X-ray observations within context. Analysis of SAX (Satellite per Astronomia a raggi X) and BATSE (Burst and Transient Source Experiment) data was also included within the study. The count rate and position in hardness-intensity, color-color diagrams and simple spectral fits are used to track the concurrent spectral changes. The source showed seven distinct types of timing behavior, most of which show differences with the canonical black hole spectral/timing states. In marked contrast to previous outbursts, we find quasi-periodic oscillation (QPO) signals during nearly all stages of the outburst with frequencies between 0.06 Hz and 14 Hz and a remarkable variety of other characteristics. In particular we find large (up to 23% rms) amplitude QPO on the early rise. Later, slow 0.1 Hz semi- regular short (- 5 sec), 9 to 16% deep dips dominate the light curve. At this time there are two QPOS, one stable near 13.5 Hz and the other whose frequency drops from 6-8 Hz to - 4.5 Hz during the dips. BeppoSAX observations during the very late declining phase show 4U 1630-47 in a low state. These results will shortly be published. We are completing a detailed analysis of the energy spectra (in preparation). The QPO/noise properties are being correlated with the concurrent spectral changes. Detailed studies of the QPO are being undertaken using sophisticated timing analysis methods. Finally a comparison with the other outbursts of 1630-47 is being made.

  19. The Outburst Decay of the Low Magnetic Field Magnetar SGR 0418+5729

    Science.gov (United States)

    Rea, N.; Israel, G. L.; Pons, J. A.; Turolla, R.; Viganò, D.; Zane, S.; Esposito, P.; Perna, R.; Papitto, A.; Terreran, G.; Tiengo, A.; Salvetti, D.; Girart, J. M.; Palau, Aina; Possenti, A.; Burgay, M.; Göğüş, E.; Caliandro, G. A.; Kouveliotou, C.; Götz, D.; Mignani, R. P.; Ratti, E.; Stella, L.

    2013-06-01

    We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: \\dot{P}=4(1)\\times 10^{-15} s s-1, significant at a ~3.5σ confidence level. This leads to a surface dipolar magnetic field of B dip ~= 6 × 1012 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ~1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ~0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10-11 to 1.2 × 10-14 erg s-1 cm-2. Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ~550 kyr, and a dipolar magnetic field at birth of ~1014 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.

  20. THE OUTBURST DECAY OF THE LOW MAGNETIC FIELD MAGNETAR SGR 0418+5729

    International Nuclear Information System (INIS)

    Rea, N.; Papitto, A.; Terreran, G.; Girart, J. M.; Palau, Aina; Caliandro, G. A.; Israel, G. L.; Pons, J. A.; Viganò, D.; Turolla, R.; Zane, S.; Esposito, P.; Tiengo, A.; Salvetti, D.; Perna, R.; Possenti, A.; Burgay, M.; Göğüş, E.; Kouveliotou, C.; Götz, D.

    2013-01-01

    We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: P-dot =4(1)×10 -15 s s –1 , significant at a ∼3.5σ confidence level. This leads to a surface dipolar magnetic field of B dip ≅ 6 × 10 12 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ∼1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ∼0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10 –11 to 1.2 × 10 –14 erg s –1 cm –2 . Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ∼550 kyr, and a dipolar magnetic field at birth of ∼10 14 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.

  1. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  2. The COS-AGN survey: Revealing the nature of circum-galactic gas around hosts of active galactic nuclei

    Science.gov (United States)

    Berg, Trystyn A. M.; Ellison, Sara L.; Tumlinson, Jason; Oppenheimer, Benjamin D.; Horton, Ryan; Bordoloi, Rongmon; Schaye, Joop

    2018-04-01

    Active galactic nuclei (AGN) are thought to play a critical role in shaping galaxies, but their effect on the circumgalactic medium (CGM) is not well studied. We present results from the COS-AGN survey: 19 quasar sightlines that probe the CGM of 20 optically-selected AGN host galaxies with impact parameters 80 frame equivalent widths EW≥124 mÅ) whilst many of the metal ions are not detected in individual sightlines. A sightline-by-sightline comparison between COS-AGN and the control sample yields no significant difference in EW distribution. However, stacked spectra of the COS-AGN and control samples show significant (>3σ) enhancements in the EW of both Siiii And Lyα at impact parameters >164 kpc by a factor of +0.45 ± 0.05 dex and >+0.75 dex respectively. The lack of detections of both high-ionization species near the AGN and strong kinematic offsets between the absorption systemic galaxy redshifts indicates that neither the AGN's ionization nor its outflows are the origin of these differences. Instead, we suggest the observed differences could result from either AGN hosts residing in haloes with intrinsically distinct gas properties, or that their CGM has been affected by a previous event, such as a starburst, which may also have fuelled the nuclear activity.

  3. An Orientation-Based Unification of Young Jetted AGN: The Case of 3C 286

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Brera Astronomical Observatory (INAF), Merate (Italy); Foschini, Luigi; Caccianiga, Alessandro [Brera Astronomical Observatory (INAF), Merate (Italy); Ciroi, Stefano [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Brera Astronomical Observatory (INAF), Merate (Italy); Cracco, Valentina; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: marco.berton@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy)

    2017-07-25

    In recent years, the old paradigm according to which only high-mass black holes can launch powerful relativistic jets in active galactic nuclei (AGN) has begun to crumble. The discovery of γ-rays coming from narrow-line Seyfert 1 galaxies (NLS1s), usually considered young and growing AGN harboring a central black hole with mass typically lower than 10{sup 8} M{sub ⊙}, indicated that also these low-mass AGN can produce powerful relativistic jets. The search for parent population of γ-ray emitting NLS1s revealed their connection with compact steep-spectrum sources (CSS). In this proceeding we present a review of the current knowledge of these sources, we present the new important case of 3C 286, classified here for the fist time as NLS1, and we finally provide a tentative orientation based unification of NLS1s and CSS sources.

  4. The Role of Turbulence in AGN Self-Regulation in Galaxy Clusters

    International Nuclear Information System (INIS)

    Scannapieco, Evan; Brueggen, Marcus

    2009-01-01

    Cool cores of galaxy clusters are thought to be heated by low-power active galactic nuclei (AGN), whose accretion is regulated by feedback. However, the interaction between the hot gas ejected by the AGN and the ambient intracluster medium is extremely difficult to simulate, as it involves a wide range of spatial scales and gas that is Rayleigh-Taylor (RT) unstable. Here we use a subgrid model for RT-driven turbulence to overcome these problems and present the first observationally-consistent hydrodynamical simulations of AGN self-regulation in galaxy clusters. For a wide range of parameter choices the cluster in our three-dimensional simulations regulates itself for at least several 10 9 years. Heating balances cooling through a string of outbreaks with a typical recurrence time of ≅80 Myrs, a timescale that depends only on the global cluster properties.

  5. An Orientation-Based Unification of Young Jetted AGN: The Case of 3C 286

    International Nuclear Information System (INIS)

    Berton, Marco; Foschini, Luigi; Caccianiga, Alessandro; Ciroi, Stefano; Congiu, Enrico; Cracco, Valentina; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    In recent years, the old paradigm according to which only high-mass black holes can launch powerful relativistic jets in active galactic nuclei (AGN) has begun to crumble. The discovery of γ-rays coming from narrow-line Seyfert 1 galaxies (NLS1s), usually considered young and growing AGN harboring a central black hole with mass typically lower than 10 8 M ⊙ , indicated that also these low-mass AGN can produce powerful relativistic jets. The search for parent population of γ-ray emitting NLS1s revealed their connection with compact steep-spectrum sources (CSS). In this proceeding we present a review of the current knowledge of these sources, we present the new important case of 3C 286, classified here for the fist time as NLS1, and we finally provide a tentative orientation based unification of NLS1s and CSS sources.

  6. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  7. Co-existence of two plasma phases in solar and AGN coronas

    Directory of Open Access Journals (Sweden)

    Kubičela A.

    1998-01-01

    Full Text Available Here we have juxtaposed two distant cosmic locations of the Sun and AGN where neutral hydrogen appears in a close connection with hot coronas. Besides the solar photosphere, chromosphere and prominences where the presence of neutral hydrogen is well established, its emission quite high in hot solar corona is still puzzling. Some of earlier observations where Hα emission in solar corona was detected in eclipse and in daily coronagraphic observations are reviewed. A proper theoretical explanation of this cold chromospheric-type emission in the hot corona does not exist yet. On the other side, a similar emission of hydrogen lines is present in Active Galactic Nuclei (AGNs. Much research work is currently being done in this field. We outline some of the concepts of the AGN structure prevailing in the astrophysics today.

  8. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    Science.gov (United States)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer

  9. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    Science.gov (United States)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    Lake Outburst Floods can evolve from complex process chains like avalanches of rock or ice that produce flood waves in a lake which may overtop and eventually breach glacial, morainic, landslide, or artificial dams. Rising lake levels can lead to progressive incision and destabilization of a dam, to enhanced ground water flow (piping), or even to hydrostatic failure of ice dams which can cause sudden outflow of accumulated water. These events often have a highly destructive potential because a large amount of water is released in a short time, with a high capacity to erode loose debris, leading to a powerful debris flow with a long travel distance. The best-known example of a lake outburst flood is the Vajont event (Northern Italy, 1963), where a landslide rushed into an artificial lake which spilled over and caused a flood leading to almost 2000 fatalities. Hazards from the failure of landslide dams are often (not always) fairly manageable: most breaches occur in the first few days or weeks after the landslide event and the rapid construction of a spillway - though problematic - has solved some hazardous situations (e.g. in the case of Hattian landslide in 2005 in Pakistan). Older dams, like Usoi dam (Lake Sarez) in Tajikistan, are usually fairly stable, though landsildes into the lakes may create floodwaves overtopping and eventually weakening the dams. The analysis and the mitigation of glacial lake outburst flood (GLOF) hazard remains a challenge. A number of GLOFs resulting in fatalities and severe damage have occurred during the previous decades, particularly in the Himalayas and in the mountains of Central Asia (Pamir, Tien Shan). The source area is usually far away from the area of impact and events occur at very long intervals or as singularities, so that the population at risk is usually not prepared. Even though potentially hazardous lakes can be identified relatively easily with remote sensing and field work, modeling and predicting of GLOFs (and also

  10. Type 2 Active Galactic Nuclei with Double-peaked [O III] Lines. II. Single AGNs with Complex Narrow-line Region Kinematics are More Common than Binary AGNs

    Science.gov (United States)

    Shen, Yue; Liu, Xin; Greene, Jenny E.; Strauss, Michael A.

    2011-07-01

    Approximately 1% of low-redshift (z interpreted as either due to kinematics, such as biconical outflows and/or disk rotation of the narrow line region (NLR) around single black holes, or due to the relative motion of two distinct NLRs in a merging pair of AGNs. Here, we report follow-up near-infrared (NIR) imaging and optical slit spectroscopy of 31 double-peaked [O III] type 2 AGNs drawn from the Sloan Digital Sky Survey (SDSS) parent sample presented in Liu et al. The NIR imaging traces the old stellar population in each galaxy, while the optical slit spectroscopy traces the NLR gas. These data reveal a mixture of origins for the double-peaked feature. Roughly 10% of our objects are best explained by binary AGNs at (projected) kpc-scale separations, where two stellar components with spatially coincident NLRs are seen. ~50% of our objects have [O III] emission offset by a few kpc, corresponding to the two velocity components seen in the SDSS spectra, but there are no spatially coincident double stellar components seen in the NIR imaging. For those objects with sufficiently high-quality slit spectra, we see velocity and/or velocity dispersion gradients in [O III] emission, suggestive of the kinematic signatures of a single NLR. The remaining ~40% of our objects are ambiguous and will need higher spatial resolution observations to distinguish between the two scenarios. Our observations therefore favor the kinematics scenario with a single AGN for the majority of these double-peaked [O III] type 2 AGNs. We emphasize the importance of combining imaging and slit spectroscopy in identifying kpc-scale binary AGNs, i.e., in no cases does one of these alone allow an unambiguous identification. We estimate that ~0.5%-2.5% of the z ~ 150 km s-1. Based in part on observations obtained with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile, and with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research

  11. Transcription regulation of the alpha-glucanase gene agn1 by cell separation transcription factor Ace2p in fission yeast

    NARCIS (Netherlands)

    Dekker, Nick; de Haan, Annett; Hochstenbach, Frans

    2006-01-01

    During the final stage of the cell division cycle in the fission yeast Schizosaccharomyces pombe, transcription factor Ace2p activates expression of genes involved in the separation of newly formed daughter cells, such as agn1+, which encodes the alpha-glucanase Agn1p. The agn1 promoter contains

  12. Obscured AGN at z similar to 1 from the zCOSMOS-Bright Survey : I. Selection and optical properties of a [Ne v]-selected sample

    NARCIS (Netherlands)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J. -P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovac, K.; Le Borgne, J. -F.; Le Brun, V.; Maier, C.; Pello, R.; Peng, Y.; Montero, E. Perez; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    Aims. The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z similar to 1 obscured AGN from optical spectroscopic surveys. Methods. A sample of 94 narrow-line AGN

  13. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin [CEOU—Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Pak, Soojong [School of Space Research, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Edge, Alastair, E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom)

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  14. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (AGN component and that of star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  15. The Origin of Fast Molecular Outflows in Quasars: Molecule Formation in AGN-Driven Galactic Winds

    Science.gov (United States)

    Richings, Alexander James; Faucher-Giguere, Claude-Andre

    2017-07-01

    Observations of AGN host galaxies have detected fast molecular outflows, with velocities up to 1000 km s-1. However, the origin of these molecular outflows is currently unclear. One possibility is that they are formed from molecular gas that is swept up from the host galaxy by the AGN wind. However, previous studies have suggested that molecular clouds that are swept up by an AGN wind are unlikely to survive being accelerated to such high velocities. An alternative scenario is that molecules may form within the AGN wind material itself. We present a suite of 3D hydrodynamic simulations of an idealised AGN wind that we have run to explore this scenario. These simulations are coupled to a time-dependent chemical model to follow the creation and destruction of molecules, including H2, CO, OH and HCO+. We find that molecules do form within the wind, with molecular outflow rates up to 140 M⊙ yr-1 after 1 Myr. This is sensitive to the ambient ISM density, metallicity, and AGN luminosity. We also compute observable CO emission lines from these simulations using a radiative transfer code in post-processing. The CO-derived outflow rates are comparable to those seen in observations, although the maximum line of sight velocities are a factor ≍2 lower than observed. We find a CO (1-0) to H2 conversion factor of αCO = 0.15 M⊙ (K km s-1 pc2)-1 at solar metallicity, 5 times lower than is typically assumed in observations of such systems.

  16. The ΓX-L/LEdd relation in BAT AGN Spectroscopic Survey (BASS)

    Science.gov (United States)

    Trakhtenbrot, Benny; Ricci, Claudio; Koss, Michael; Schawinski, Kevin; Mushotzky, Richard; Ueda, Yoshihiro; Veilleux, Sylvain; Lamperti, Isabella; Oh, Kyuseok; Treister, Ezequiel; Stern, Daniel; Harrison, Fiona; Balokovic, Mislav

    2018-01-01

    We present a study of the relation between accretion rate (in terms of L/LEdd) and shape of the hard X-ray spectral energy distribution (namely the photon index Γx) for a large sample of over 200 hard X-ray-selected, low-redshift active galactic nuclei (AGNs), drawn from the Swift/BAT AGN Spectroscopic Survey (BASS). This includes 30 AGNs for which black hole mass (and therefore L/LEdd) is measured directly through masers, spatially resolved gas or stellar dynamics, or reverberation mapping. The high-quality and broad energy coverage of the data provided through BASS allow us to examine several alternative determinations of both Γx and L/LEdd. We find very weak correlation between Γx and L/LEdd for the BASS sample as a whole, with best-fitting relations that are considerably shallower than those reported in previous studies. Moreover, we find no corresponding correlations among the subsets of AGN with different MBH determination methodology, and in particular those AGN with direct or single-epoch MBH estimates. This latter finding is in contrast to several previous studies which focused on z > 0.5 broad-line AGN. We conclude that this tension can be partially accounted for if one adopts a simplified, power-law X-ray spectral model, combined with L/LEdd estimates that are based on the continuum emission and on single-epoch broad-line spectroscopy in the optical regime. Given these findings, we highlight the limitations of using Γx as a probe of supermassive black hole evolution in deep extragalactic X-ray surveys.

  17. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    International Nuclear Information System (INIS)

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L.

    2012-01-01

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L 1.4GHz > 10 23 W Hz –1 ) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  18. A fragilidade das Instituições Sociais e o rompimento da Ética no filme Agnes de Deus.

    Directory of Open Access Journals (Sweden)

    Marco Antonio Palermo Moretto

    2015-04-01

    Full Text Available Research about the fragilities of the social institutions in the movie Agnes of God and the ethic and moral. There are a mistery in the story:a murder of the baby inside the convent.  The young nun, Agnes killed her baby and a psichiatrist. Dra. Martha Livingstone  begans a investigation since the childhood of Agnes until the crime. The presence of the Superior Mother, Mirian Ruth is important to the story. She is an administrator and protect Agnes in many situations. Such social institutions are showed as Family, Religion and the Justice. Methods are explained: questions and the hipnosis. Agnes has mistics experiences and reveal the conflict between cience and religion.

  19. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  20. Finding AGN in Deep X-ray Flux States with Swift

    OpenAIRE

    Grupe, Dirk; Komossa, S.; Bush, Mason; Pruett, Chelsea; Ernst, Sonny; Barber, Taylor; Carter, Jen; Schartel, Norbert; Rodriguez, Pedro; Santos-Lleó, Maria

    2015-01-01

    We report on our ongoing project of finding Active Galactic Nuclei (AGN) that go into deep X-ray flux states detected by Swift. Swift is performing an extensive study on the flux and spectral variability of AGN using Guest Investigator and team fill-in programs followed by triggering XMM_Newton for deeper follow-up observations. So far this program has been very successful and has led to a number of XMM-Newton follow up observations, including Mkn 335, PG 0844+349, and RX J2340.8-5329. Recent...

  1. Cosmological Evolution of the Central Engine in High-Luminosity, High-Accretion Rate AGN

    Directory of Open Access Journals (Sweden)

    Matteo Guainazzi

    2014-12-01

    Full Text Available In this paper I discuss the status of observational studies aiming at probing the cosmological evolution of the central engine in high-luminosity, high-accretion rate Active Galactic Nuclei (AGN. X-ray spectroscopic surveys, supported by extensive multi-wavelength coverage, indicate a remarkable invariance of the accretion disk plus corona system, and of their coupling up to redshifts z≈6. Furthermore, hard X-ray (E >10 keV surveys show that nearby Seyfert Galaxies share the same central engine notwithstanding their optical classication. These results suggest that the high-luminosity, high accretion rate quasar phase of AGN evolution is homogeneous over cosmological times.

  2. Identifying the subtle signatures of feedback from distant AGN using ALMA observations and the EAGLE hydrodynamical simulations

    Science.gov (United States)

    Scholtz, J.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; McAlpine, S.; Mullaney, J. R.; Stanley, F.; Simpson, J.; Theuns, T.; Bower, R. G.; Hickox, R. C.; Santini, P.; Swinbank, A. M.

    2018-03-01

    We present sensitive 870 μm continuum measurements from our ALMA programmes of 114 X-ray selected active galactic nuclei (AGN) in the Chandra Deep Field-South and Cosmic Evolution Survey fields. We use these observations in combination with data from Spitzer and Herschel to construct a sample of 86 X-ray selected AGN, 63 with ALMA constraints at z = 1.5-3.2 with stellar mass >2 × 1010 M⊙. We constructed broad-band spectral energy distributions in the infrared band (8-1000 μm) and constrain star-formation rates (SFRs) uncontaminated by the AGN. Using a hierarchical Bayesian method that takes into account the information from upper limits, we fit SFR and specific SFR (sSFR) distributions. We explore these distributions as a function of both X-ray luminosity and stellar mass. We compare our measurements to two versions of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations: the reference model with AGN feedback and the model without AGN. We find good agreement between the observations and that predicted by the EAGLE reference model for the modes and widths of the sSFR distributions as a function of both X-ray luminosity and stellar mass; however, we found that the EAGLE model without AGN feedback predicts a significantly narrower width when compared to the data. Overall, from the combination of the observations with the model predictions, we conclude that (1) even with AGN feedback, we expect no strong relationship between the sSFR distribution parameters and instantaneous AGN luminosity and (2) a signature of AGN feedback is a broad distribution of sSFRs for all galaxies (not just those hosting an AGN) with stellar masses above ≈1010 M⊙.

  3. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    Science.gov (United States)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; hide

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  4. Energetic evolution of cellular Transportomes

    DEFF Research Database (Denmark)

    Darbani, Behrooz; Kell, Douglas B.; Borodina, Irina

    2018-01-01

    of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues......) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5–6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants...... of modern mitochondrial solute carriers. Conclusions: The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important...

  5. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  6. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  7. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  8. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BASTE

    Science.gov (United States)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadus, Jan; Briggs, Michael S.; Wilson, C. A.; Deal, Kim; Harmon, B. A.; Fishman, G. J.; Lewin, W. H. G.; Kommers, J.

    1999-01-01

    One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on BATSE (Burst and Transient Source Experiment) observations of both the persistent and burst emission for this second outburst and draw comparisons with the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux, and burst fluence were all reduced in amplitude by a factor of approximately 1.7. Despite these differences, the two outbursts were very similar with respect to the burst occurrence rate, the durations and spectra of bursts, the absence of spectral evolution during bursts, and the evolution of the ratio alpha of average persistent to burst luminosity. Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.

  9. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    Science.gov (United States)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  10. Multiwavelength Variations of 3C 454.3 during the 2010 November to 2011 January Outburst

    Science.gov (United States)

    Wehrle, Ann E.; Marscher, Alan P.; Jorstad, Svetlana G.; Gurwell, Mark A.; Joshi, Manasvita; MacDonald, Nicholas R.; Williamson, Karen E.; Agudo, Iván; Grupe, Dirk

    2012-10-01

    We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from 2010 November through 2011 January. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at γ-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this data set, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation analysis of the millimeter, far-infrared, and γ-ray light curves show that the variations were essentially simultaneous, indicative of cospatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomogeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale "core," whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70% during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.

  11. MULTIWAVELENGTH VARIATIONS OF 3C 454.3 DURING THE 2010 NOVEMBER TO 2011 JANUARY OUTBURST

    International Nuclear Information System (INIS)

    Wehrle, Ann E.; Marscher, Alan P.; Jorstad, Svetlana G.; Joshi, Manasvita; MacDonald, Nicholas R.; Williamson, Karen E.; Agudo, Iván; Gurwell, Mark A.; Grupe, Dirk

    2012-01-01

    We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from 2010 November through 2011 January. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at γ-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this data set, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation analysis of the millimeter, far-infrared, and γ-ray light curves show that the variations were essentially simultaneous, indicative of cospatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomogeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale 'core', whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70% during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.

  12. Exploring the Connection between Parsec-scale Jet Activity and Broadband Outbursts in 3C 279

    Science.gov (United States)

    Rani, B.; Jorstad, S. G.; Marscher, A. P.; Agudo, I.; Sokolovsky, K. V.; Larionov, V. M.; Smith, P.; Mosunova, D. A.; Borman, G. A.; Grishina, T. S.; Kopatskaya, E. N.; Mokrushina, A. A.; Morozova, D. A.; Savchenko, S. S.; Troitskaya, Yu. V.; Troitsky, I. S.; Thum, C.; Molina, S. N.; Casadio, C.

    2018-05-01

    We use a combination of high-resolution very long baseline interferometry (VLBI) radio and multiwavelength flux density and polarization observations to constrain the physics of the dissipation mechanism powering the broadband flares in 3C 279 during an episode of extreme flaring activity in 2013–2014. Six bright flares superimposed on a long-term outburst are detected at γ-ray energies. Four of the flares have optical and radio counterparts. The two modes of flaring activity (faster flares sitting on top of a long-term outburst) present at radio, optical, and γ-ray frequencies are missing in X-rays. X-ray counterparts are only observed for two flares. The first three flares are accompanied by ejection of a new VLBI component (NC2), suggesting the 43 GHz VLBI core as the site of energy dissipation. Another new component, NC3, is ejected after the last three flares, which suggests that the emission is produced upstream from the core (closer to the black hole). The study therefore indicates multiple sites of energy dissipation in the source. An anticorrelation is detected between the optical percentage polarization (PP) and optical/γ-ray flux variations, while the PP has a positive correlation with optical/γ-ray spectral indices. Given that the mean polarization is inversely proportional to the number of cells in the emission region, the PP versus optical/γ-ray anticorrelation could be due to more active cells during the outburst than at other times. In addition to the turbulent component, our analysis suggests the presence of a combined turbulent and ordered magnetic field, with the ordered component transverse to the jet axis.

  13. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-01-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7 +132.6 –106.6 keV and E iso of 34.5 +2.0 –1.8 × 10 52 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = –2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5. 0 8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak -E iso and E src peak -E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  14. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  15. A simple way to improve AGN feedback prescription in SPH simulations

    Science.gov (United States)

    Zubovas, Kastytis; Bourne, Martin A.; Nayakshin, Sergei

    2016-03-01

    Active galactic nuclei (AGN) feedback is an important ingredient in galaxy evolution, however its treatment in numerical simulations is necessarily approximate, requiring subgrid prescriptions due to the dynamical range involved in the calculations. We present a suite of smoothed particle hydrodynamics simulations designed to showcase the importance of the choice of a particular subgrid prescription for AGN feedback. We concentrate on two approaches to treating wide-angle AGN outflows: thermal feedback, where thermal and kinetic energy is injected into the gas surrounding the supermassive black hole (SMBH) particle, and virtual particle feedback, where energy is carried by tracer particles radially away from the AGN. We show that the latter model produces a far more complex structure around the SMBH, which we argue is a more physically correct outcome. We suggest a simple improvement to the thermal feedback model - injecting the energy into a cone, rather than spherically symmetrically - and show that this markedly improves the agreement between the two prescriptions, without requiring any noticeable increase in the computational cost of the simulation.

  16. The contribution of unresolved radio-loud AGN to the extragalactic diffuse gamma-ray background

    DEFF Research Database (Denmark)

    Mucke, A.; Pohl, M.

    2000-01-01

    , and on the unification scheme of radio-loud AGN. According to this picture, blazars represent the beamed fraction of the Fanaroff-Riley radio galaxies (FR galaxies). The observed log N-log S distribution and redshift distribution of both FSRQs and BL Lacs constrain our model. Depending slightly on the evolutionary...

  17. The unification of powerful radio-loud AGN: the multi-wavelength balance

    NARCIS (Netherlands)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda; Rocca-Volmerange, Brigitte; Drouart, Guillaume

    2016-01-01

    Powerful radio-loud AGN, by virtue of their optically-thin low-frequency radio emission, represent unique targets in orientation-based unification studies, and in searches for orientation indicators and orientation invariants. Central in these efforts is the landmark Third Cambridge Catalog of Radio

  18. Line Shape Variability in a Sample of AGN with Broad Lines

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We give here a comparative review of the line shape variability in a sample of five type 1 AGNs, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy ...

  19. IC 3639 - A new bona fide Compton thick AGN unveiled by NuSTAR

    DEFF Research Database (Denmark)

    Boorman, Peter G.; Gandhi, P.; Alexander, D.

    2016-01-01

    We analyse high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5 -30 keV)....

  20. THE LICK AGN MONITORING PROJECT: PHOTOMETRIC LIGHT CURVES AND OPTICAL VARIABILITY CHARACTERISTICS

    International Nuclear Information System (INIS)

    Walsh, Jonelle L.; Bentz, Misty C.; Barth, Aaron J.; Minezaki, Takeo; Sakata, Yu; Yoshii, Yuzuru; Baliber, Nairn; Bennert, Vardha Nicola; Street, Rachel A.; Treu, Tommaso; Li Weidong; Filippenko, Alexei V.; Stern, Daniel; Brown, Timothy M.; Canalizo, Gabriela; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Woo, Jong-Hak

    2009-01-01

    The Lick AGN Monitoring Project targeted 13 nearby Seyfert 1 galaxies with the intent of measuring the masses of their central black holes using reverberation mapping. The sample includes 12 galaxies selected to have black holes with masses roughly in the range 10 6 -10 7 M sun , as well as the well-studied active galactic nucleus (AGN) NGC 5548. In conjunction with a spectroscopic monitoring campaign, we obtained broadband B and V images on most nights from 2008 February through 2008 May. The imaging observations were carried out by four telescopes: the 0.76 m Katzman Automatic Imaging Telescope, the 2 m Multicolor Active Galactic Nuclei Monitoring telescope, the Palomar 60 inch (1.5 m) telescope, and the 0.80 m Tenagra II telescope. Having well-sampled light curves over the course of a few months is useful for obtaining the broad-line reverberation lag and black hole mass, and also allows us to examine the characteristics of the continuum variability. In this paper, we discuss the observational methods and the photometric measurements, and present the AGN continuum light curves. We measure various variability characteristics of each of the light curves. We do not detect any evidence for a time lag between the B- and V-band variations, and we do not find significant color variations for the AGNs in our sample.

  1. CAIXA: a catalogue of AGN in the XMM-Newton archive. III. Excess variance analysis

    NARCIS (Netherlands)

    Ponti, G.; Papadakis, I.; Bianchi, S.; Guainazzi, M.; Matt, G.; Uttley, P.; Bonilla, N.F.

    2012-01-01

    Context. We report on the results of the first XMM-Newton systematic "excess variance" study of all the radio quiet, X-ray un-obscured AGN. The entire sample consist of 161 sources observed by XMM-Newton for more than 10 ks in pointed observations, which is the largest sample used so far to study

  2. Microvariability in AGNs: study of different statistical methods - I. Observational analysis

    Science.gov (United States)

    Zibecchi, L.; Andruchow, I.; Cellone, S. A.; Carpintero, D. D.; Romero, G. E.; Combi, J. A.

    2017-05-01

    We present the results of a study of different statistical methods currently used in the literature to analyse the (micro)variability of active galactic nuclei (AGNs) from ground-based optical observations. In particular, we focus on the comparison between the results obtained by applying the so-called C and F statistics, which are based on the ratio of standard deviations and variances, respectively. The motivation for this is that the implementation of these methods leads to different and contradictory results, making the variability classification of the light curves of a certain source dependent on the statistics implemented. For this purpose, we re-analyse the results on an AGN sample observed along several sessions with the 2.15 m 'Jorge Sahade' telescope (CASLEO), San Juan, Argentina. For each AGN, we constructed the nightly differential light curves. We thus obtained a total of 78 light curves for 39 AGNs, and we then applied the statistical tests mentioned above, in order to re-classify the variability state of these light curves and in an attempt to find the suitable statistical methodology to study photometric (micro)variations. We conclude that, although the C criterion is not proper a statistical test, it could still be a suitable parameter to detect variability and that its application allows us to get more reliable variability results, in contrast with the F test.

  3. CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?

    Energy Technology Data Exchange (ETDEWEB)

    Gaspari, M. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching (Germany); Brighenti, F. [Astronomy Department, University of Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Temi, P. [Astrophysics Branch, NASA/Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Ettori, S., E-mail: mgaspari@mpa-garching.mpg.de [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2014-03-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L {sub x}-T {sub x} relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R {sub 500}, while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L {sub x}-T {sub x} at T {sub 500} ≲ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit.

  4. AGN classification for X-ray sources in the 105 month Swift/BAT survey

    Science.gov (United States)

    Masetti, N.; Bassani, L.; Palazzi, E.; Malizia, A.; Stephen, J. B.; Ubertini, P.

    2018-03-01

    We here provide classifications for 8 hard X-ray sources listed as 'unknown AGN' in the 105 month Swift/BAT all-sky survey catalogue (Oh et al. 2018, ApJS, 235, 4). The corresponding optical spectra were extracted from the 6dF Galaxy Survey (Jones et al. 2009, MNRAS, 399, 683).

  5. IC 751: A New Changing Look AGN Discovered By NuSTAR

    DEFF Research Database (Denmark)

    Ricci, C.; Bauer, F. E.; Arevalo, P.

    2016-01-01

    We present results of five Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the type 2 active galactic nucleus (AGN) in IC 751, three of which were performed simultaneously with XMM-Newton or Swift/X-Ray Telescope. We find that the nuclear X-ray source underwent a clear transition f...

  6. CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?

    International Nuclear Information System (INIS)

    Gaspari, M.; Brighenti, F.; Temi, P.; Ettori, S.

    2014-01-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L x -T x relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R 500 , while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L x -T x at T 500 ≲ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit

  7. Using satellite images to monitor glacial-lake outburst floods: Lago Cachet Dos drainage, Chile

    Science.gov (United States)

    Friesen, Beverly A.; Cole, Christopher J.; Nimick, David A.; Wilson, Earl M.; Fahey, Mark J.; McGrath, Daniel J.; Leidich, Jonathan

    2015-01-01

    The U.S. Geological Survey (USGS) is monitoring and analyzing glacial-lake outburst floods (GLOFs) in the Colonia valley in the Patagonia region of southern Chile. A GLOF is a type of flood that occurs when water impounded by a glacier or a glacial moraine is released catastrophically. In the Colonia valley, GLOFs originating from Lago Cachet Dos, which is dammed by the Colonia Glacier, have recurred periodically since 2008. The water discharged during these GLOFs flows under or through the Colonia Glacier, into Lago Colonia and then the Río Colonia, and finally into the Río Baker—Chile's largest river in terms of volume of water.

  8. Impacts of the 2016 outburst flood on the Bhote Koshi River valley, central Nepal

    Science.gov (United States)

    Cook, Kristen; Andermann, Christoff; Gimbert, Florent; Hovius, Niels; Adhikari, Basanta

    2017-04-01

    The central Nepal Himalaya is a region of rapid erosion where fluvial processes are largely driven by the annual Indian Summer Monsoon, which delivers up to several meters of precipitation each year. However, the rivers in this region are also subject to rare catastrophic floods caused by the sudden failure of landslide or moraine dams. Because these floods happen rarely, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan rivers is poorly constrained. On the 5th of July, 2016, the Bhote Koshi River in central Nepal was hit by a glacial lake outburst flood (GLOF). The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. Overall, our observatory data span two monsoon seasons, allowing us to evaluate the impacts of the outburst flood relative to the annual monsoon flood. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. We map changes in the channel and associated mass wasting using rapidEye imagery from Oct. 2015 and Oct. 2016. We also use repeat terrestrial lidar scans to quantify the magnitude of change in multiple locations along the river channel and to measure bank

  9. Possibility of employing of radon emission and migration to forecast of sudden outburst

    International Nuclear Information System (INIS)

    Lebecka, J.; Lebecki, K.; Kobiela, Z.; Mnich, K.

    1991-01-01

    Presented paper is continuation of previous work published on the Conference in Beijing, 1987. During two years observations of changes in radon concentration have been extended to different workings, including sandstone. The radon emission from long drainage boreholes was measured, and the results have been used for the estimation of degasification of boreholes impact. The most essential result is the real possibility to use this phenomenon, that is the changes in radon emission, to forecast outbursts in coal seams and as a means of warning in sandstones

  10. Radio outburst from a massive (proto)star. When accretion turns into ejection

    Science.gov (United States)

    Cesaroni, R.; Moscadelli, L.; Neri, R.; Sanna, A.; Caratti o Garatti, A.; Eisloffel, J.; Stecklum, B.; Ray, T.; Walmsley, C. M.

    2018-05-01

    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims: As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods: We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/Submillimeter Array. Results: We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Conclusions: Our model fits indicate a significant increase in the jet opening angle and ionized mass loss rate with time. For the first time, we can estimate the ionization fraction in the jet and conclude that this must be low (memory of MalcolmWalmsley, who passed away before the present study could be completed. Without his insights and enlightened advice this work would have been impossible

  11. DETECTION OF REMNANT DUST CLOUD ASSOCIATED WITH THE 2007 OUTBURST OF 17P/HOLMES

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru; Kim, Yoonyoung; Kwon, Yuna G. [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Sarugaku, Yuki [Kiso Observatory, Institute of Astronomy, Graduate School of Science, The University of Tokyo, Mitake, Kiso-machi, Kiso, Nagano 397-0101 (Japan); Kuroda, Daisuke; Maehara, Hiroyuki [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Takahashi, Jun [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Terai, Tsuyoshi [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Vaubaillon, Jeremie J. [Observatoire de Paris, I.M.C.C.E., Denfert Rochereau, Bat. A., F-75014 Paris (France); Morokuma, Tomoki; Kobayashi, Naoto [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2016-01-20

    This article reports a new optical observation of 17P/Holmes one orbital period after the historical outburst event in 2007. We detected not only a common dust tail near the nucleus but also a long narrow structure that extended along the position angle 274.°6 ± 0.°1 beyond the field of view (FOV) of the Kiso Wide Field Camera, i.e., >0.°2 eastward and >2.°0 westward from the nuclear position. The width of the structure decreased westward with increasing distance from the nucleus. We obtained the total cross section of the long extended structure in the FOV, C{sub FOV} = (2.3 ± 0.5) × 10{sup 10} m{sup 2}. From the position angle, morphology, and mass, we concluded that the long narrow structure consists of materials ejected during the 2007 outburst. On the basis of the dynamical behavior of dust grains in the solar radiation field, we estimated that the long narrow structure would be composed of 1 mm–1 cm grains having an ejection velocity of >50 m s{sup −1}. The velocity was more than one order of magnitude faster than that of millimeter–centimeter grains from typical comets around a heliocentric distance r{sub h} of 2.5 AU. We considered that sudden sublimation of a large amount of water-ice (≈10{sup 30} mol s{sup −1}) would be responsible for the high ejection velocity. We finally estimated a total mass of M{sub TOT} = (4–8) × 10{sup 11} kg and a total kinetic energy of E{sub TOT} = (1–6) × 10{sup 15} J for the 2007 outburst ejecta, which are consistent with those of previous studies that were conducted soon after the outburst.

  12. Study of Cygnus X-3 at ultrahigh energies during the 1989 radio outbursts

    International Nuclear Information System (INIS)

    Alexandreas, D.E.; Allen, R.C.; Berley, D.; Biller, S.D.; Burman, R.L.; Cady, R.; Chang, C.Y.; Dingus, B.L.; Dion, G.M.; Ellsworth, R.W.; Goodman, J.A.; Haines, T.J.; Hoffman, C.M.; Lloyd-Evans, J.; Lu, X.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Stark, M.J.; Talaga, R.L.; Vishwanath, P.R.; Yodh, G.B.; Zhang, W.

    1990-01-01

    A unique feature of Cygnus X-3 is that occasionally it has large radio outbursts that begin very abruptly and last for several days. Several experiments in the past have claimed to observe signals above 1 TeV correlated with these radio bursts; the most recent bursts occurred in June and July 1989. No significant signal was observed by the CYGNUS experiment over time scales longer than a day during this time; a 90%-confidence-level limit of 3.0x10 -13 cm -2 s -1 is placed on the flux above 50 TeV during the period from 15 May to 31 July 1989

  13. Swift observations of SDSS J141118.31+481257.6 during its first detected outburst

    Science.gov (United States)

    Sandoval, L. E. Rivera; Maccarone, T.

    2018-05-01

    We report Swift observations of the AM CVn-type system SDSS J141118.31+481257.6 (RA=14:11:18.31, Dec=+48:12:57.6) during its first ever recorded outburst. The system was detected by Tadashi Kojima on 2018-May-20 with a V magnitude of 12.6 +- 0.2 (http://ooruri.kusastro.kyoto-u.ac.jp/mailarchive/vsnet-alert/22176), an increase of 7 mags compared to any previous measurement in the same filter.

  14. MAXI/GSC detection of a new outburst from SAX J1810.8-2609

    Science.gov (United States)

    Negoro, H.; Mihara, T.; Nakahira, S.; Yatabe, F.; Takao, Y.; Matsuoka, M.; Kawai, N.; Sugizaki, M.; Tachibana, Y.; Morita, K.; Sakamoto, T.; Serino, M.; Sugita, S.; Kawakubo, Y.; Hashimoto, T.; Yoshida, A.; Nakajima, M.; Sakamaki, A.; Maruyama, W.; Ueno, S.; Tomida, H.; Ishikawa, M.; Sugawara, Y.; Isobe, N.; Shimomukai, R.; Ueda, Y.; Tanimoto, A.; Morita, T.; Yamada, S.; Tsuboi, Y.; Iwakiri, W.; Sasaki, R.; Kawai, H.; Sato, T.; Tsunemi, H.; Yoneyama, T.; Yamauchi, M.; Hidaka, K.; Iwahori, S.; Kawamuro, T.; Yamaoka, K.; Shidatsu, M.

    2018-05-01

    We report a new X-ray outburst from the low-mass X-ray binary SAX J1810.8-2609 (aka V4722 Sgr; Ubertini et al. 1998, IAUC 6838) observed with MAXI/GSC. The enhancement was recognized from 2018 April 23 (MJD 58231), and X-ray count rates in the 2-4 keV and 4-10 keV bands peaked on April 26 at 0.085 +/- 0.008 c/s/cm2 ( 80 mCrab) and 0.096+/-0.008 c/s/cm2 ( 82 mCrab), respectively.

  15. Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. I. Low Angular Momentum Case

    Science.gov (United States)

    Yuan, Feng; Yoon, DooSoo; Li, Ya-Ping; Gan, Zhao-Ming; Ho, Luis C.; Guo, Fulai

    2018-04-01

    We investigate the effects of AGN feedback on the cosmological evolution of an isolated elliptical galaxy by performing two-dimensional high-resolution hydrodynamical numerical simulations. The inner boundary of the simulation is chosen so that the Bondi radius is resolved. Compared to previous works, the two accretion modes—namely, hot and cold, which correspond to different accretion rates and have different radiation and wind outputs—are carefully discriminated, and the feedback effects by radiation and wind in each mode are taken into account. The most updated AGN physics, including the descriptions of radiation and wind from the hot accretion flows and wind from cold accretion disks, are adopted. Physical processes like star formation and SNe Ia and II are taken into account. We study the AGN light curve, typical AGN lifetime, growth of the black hole mass, AGN duty cycle, star formation, and X-ray surface brightness of the galaxy. We compare our simulation results with observations and find general consistency. Comparisons with previous simulation works find significant differences, indicating the importance of AGN physics. The respective roles of radiation and wind feedback are examined, and it is found that they are different for different problems of interest, such as AGN luminosity and star formation. We find that it is hard to neglect any of them, so we suggest using the names “cold feedback mode” and “hot feedback mode” to replace the currently used ones.

  16. Searching for faint AGN in the CDFS: an X-ray (Chandra) vs optical variability (HST) comparison.

    Science.gov (United States)

    Georgantopoulos, I.; Pouliasis, E.; Bonanos, A.; Sokolovsky, K.; Yang, M.; Hatzidimitriou, D.; Bellas, I.; Gavras, P.; Spetsieri, Z.

    2017-10-01

    X-ray surveys are believed to be the most efficient way to detect AGN. Recently though, optical variability studies are claimed to probe even fainter AGN. We are presenting results from an HST study aimed to identify Active Galactic Nuclei (AGN) through optical variability selection in the CDFS.. This work is part of the 'Hubble Catalogue of Variables'project of ESA that aims to identify variable sources in the Hubble Source Catalogue.' In particular, we used Hubble Space Telescope (HST) z-band images taken over 5 epochs and performed aperture photometry to derive the lightcurves of the sources. Two statistical methods (standard deviation & interquartile range) resulting in a final sample of 175 variable AGN candidates, having removed the artifacts by visual inspection and known stars and supernovae. The fact that the majority of the sources are extended and variable indicates AGN activity. We compare the efficiency of the method by comparing with the 7Ms Chandra detections. Our work shows that the optical variability probes AGN at comparable redshifts but at deeper optical magnitudes. Our candidate AGN (non detected in X-rays) have luminosities of L_x<6×10^{40} erg/sec at z˜0.7 suggesting that these are associated with low luminosity Seyferts and LINERS.

  17. The XMM-Newton Wide Field Survey in the COSMOS Field: Redshift Evolution of AGN Bias and Subdominant Role of Mergers in Triggering Moderate-luminosity AGNs at Redshifts up to 2.2

    OpenAIRE

    Allevato, V.; Finoguenov, A.; Cappelluti, N.; Miyaji, T.; Hasinger, G.; Salvato, M.; Brusa, M.; Gilli, R.; Zamorani, G.; Shankar, F.; James, J. B.; McCracken, H. J.; Bongiorno, A.; Merloni, A.; Peacock, J. A.

    2011-01-01

    We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I_(AB) < 23 and spectroscopic redshifts z < 4, extracted from the 0.5–2 keV X-ray mosaic of the 2.13 deg^2 XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over t...

  18. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  19. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis

    Science.gov (United States)

    Nie, Yong; Liu, Qiao; Wang, Jida; Zhang, Yili; Sheng, Yongwei; Liu, Shiyin

    2018-05-01

    Glacial lake outburst floods (GLOFs) are a unique type of natural hazard in the cryosphere that may result in catastrophic fatalities and damages. The Himalayas are known as one of the world's most GLOF-vulnerable zones. Effective hazard assessments and risk management require a thorough inventory of historical GLOF events across the Himalayas, which is hitherto absent. Existing studies imply that numerous historical GLOF events are contentious because of discrepant geographic coordinates, names, or outburst time, requiring further verifications. This study reviews and verifies over 60 historical GLOF events across the Himalayas using a comprehensive method that combines literature documentations, archival remote sensing observations, geomorphological analysis, and field investigations. As a result, three unreported GLOF events were discovered from remote sensing images and geomorphological analysis. Eleven suspicious events were identified and suggested to be excluded. The properties of five outburst lakes, i.e., Degaco, Chongbaxia Tsho, Geiqu, Lemthang Tsho, and a lake on Tshojo Glacier, were corrected or updated. A total of 51 GLOF events were verified to be convincing, and these outburst lakes were classified into three categories according to their statuses in the past decades, namely disappeared (12), stable (30), and expanding (9). Statistics of the verified GLOF events show that GLOF tended to occur between April and October in the Himalayas. We suggest that more attention should be paid to rapidly expanding glacial lakes with high possibility of repetitive outbursts. This study also demonstrates the effectiveness of integrating remote sensing and geomorphic interpretations in identifying and verifying GLOF events in remote alpine environments. This inventory of GLOFs with a range of critical attributes (e.g., locations, time, and mechanisms) will benefit the continuous monitoring and prediction of potentially dangerous glacial lakes and contribute to

  20. The LLAMA Project: A SINFONI Study of Gas Outflows and Feeding in Local, X-ray Selected AGN

    Science.gov (United States)

    Shimizu, Thomas Taro; Davies, Richard; Burtscher, Leonard; Lin, Ming-yi

    2018-01-01

    We present new results from our survey of the inner few hundred parsecs of nearby galaxies as part of our Local Luminous AGN with Matched Analogues (LLAMA) project. AGN within the LLAMA sample were selected based on detection at ultra-hard X-rays (14-195 keV) by the Swift/Burst Alert Telescope ensuring the definitive presence of an AGN. We further imposed a redshift (z 42.5) cutoff to create a complete and volume-limited sample of nearby, luminous AGN. Inactive galaxies were chosen carefully by matching in redshift, host galaxy morphology, inclination, and stellar mass to create a clean sample with which to compare to the AGN. A subset of LLAMA AGN and inactive galaxies were observed with VLT/SINFONI using adaptive optics producing high spatial resolution integral field unit spectra in the H and K band. This unique IFU data allows for analysis of a suite of NIR emission lines including [FeII], H2 (1-0) S(1), [SiVI], and Br-gamma to probe the ionized and warm molecular gas in the circumnuclear region as well as CO absorption lines to probe the stellar disk. I will present initial results from our study including the prevalence of AGN outflows along with their geometry, kinematics, and mass outflow rates and compare the mass, state, and excitation mechanisms of circumnuclear gas between AGN and inactive galaxies. Finally, I will discuss our results in the context of AGN fuelling and feedback and provide insight on interpreting similar data at higher redshift.

  1. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  2. Hosts and environments of low luminosity active galaxies in the local universe: The care and feeding of weak AGN

    Science.gov (United States)

    Parejko, John Kenneth

    The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.

  3. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    International Nuclear Information System (INIS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  4. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  5. Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George

    2018-01-01

    Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.

  6. Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds

    Science.gov (United States)

    Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team

    2018-01-01

    A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.

  7. Ultraviolet/Optical Emission of the Ionized Gas in AGN: Diagnostics of the Ionizing Source and Gas Properties

    Directory of Open Access Journals (Sweden)

    Anna Feltre

    2017-11-01

    Full Text Available Spectroscopic studies of active galactic nuclei (AGN are powerful means of probing the physical properties of the ionized gas within them. In particular, near future observational facilities, such as the James Webb Space Telescope (JWST, will allow detailed statistical studies of rest-frame ultraviolet and optical spectral features of the very distant AGN with unprecedented accuracy. In this proceedings, we discuss the various ways of exploiting new dedicated photoionization models of the narrow-line emitting regions (NLR of AGN for the interpretation of forthcoming revolutionary datasets.

  8. A Multi-wavelength Analysis of Binary-AGN Candidate PSO J334.2028+01.4075

    OpenAIRE

    Foord, Adi; Gultekin, Kayhan; Reynolds, Mark; Ayers, Megan; Liu, Tingting; Gezari, Suvi; Runnoe, Jessie

    2017-01-01

    We present analysis of the first Chandra observation of PSO J334.2028+01.4075 (PSO J334), targeted as a binary-AGN candidate based on periodic variations of the optical flux. With no prior targeted X-ray coverage for PSO J334, our new 40 ksec Chandra observation allows for the opportunity to differentiate between a single or binary-AGN system, and if a binary, can characterize the mode of accretion. Simulations show that the two expected accretion disk morphologies for binary-AGN systems are ...

  9. Ultraviolet/Optical Emission of the Ionized Gas in AGN: Diagnostics of the Ionizing Source and Gas Properties

    Energy Technology Data Exchange (ETDEWEB)

    Feltre, Anna [Univ Lyon, Univ Lyon1, Ens de Lyon, Centre National de la Recherche Scientifique, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Charlot, Stephane [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Mignoli, Marco [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Bongiorno, Angela [INAF-Osservatorio Astronomico di Roma, Monteporzio Catone (Italy); Calura, Francesco [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Chevallard, Jacopo [Scientific Support Office, Directorate of Science and Robotic Exploration, European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk (Netherlands); Curtis-Lake, Emma [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Gilli, Roberto [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Plat, Adele, E-mail: anna.feltre@univ-lyon1.fr [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France)

    2017-11-02

    Spectroscopic studies of active galactic nuclei (AGN) are powerful means of probing the physical properties of the ionized gas within them. In particular, near future observational facilities, such as the James Webb Space Telescope (JWST), will allow detailed statistical studies of rest-frame ultraviolet and optical spectral features of the very distant AGN with unprecedented accuracy. In this proceedings, we discuss the various ways of exploiting new dedicated photoionization models of the narrow-line emitting regions (NLR) of AGN for the interpretation of forthcoming revolutionary datasets.

  10. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  11. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Yamaoka, Kazutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sayamihara 229-8558 (Japan); Tashiro, Makoto S., E-mail: urata@astro.ncu.edu.tw [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan)

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  12. POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana; Kocz, Jonathon; Prince, Thomas A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Horiuchi, Shinji [CSIRO Astronomy and Space Science, Canberra Deep Space Communications Complex, P.O. Box 1035, Tuggeranong, ACT 2901 (Australia); Lippuner, Jonas [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-01-01

    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected at S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.

  13. Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    Damodar Lamsal

    2016-01-01

    Full Text Available Chamlang South Tsho has been identified as one of the six high-priority glacial lakes in terms of glacial lake outburst flood (GLOF danger in Nepal Himalaya, despite the fact that no detailed investigations of the lake had been hitherto undertaken. We conducted detailed mapping of the lake and its surroundings along with field surveys in October 2009 to determine the developmental history of Chamlang South Tsho and to assess its potential for GLOF. The lake expanded rapidly between 1964 (0.04 km2 and 2000 (0.86 km2 and has been stable ever since. Future lake expansion is improbable as its sides are confined by relatively stable landforms. The lake is 87-m deep with a water volume of approximately 34.9–35.6 × 106 m3. Hanging glaciers on the steep surrounding mountain slopes and prominent seepage water in the terminal moraine dam could be potential triggers for a future outburst flood. Additionally, the debris-covered dead-ice dam, which is higher than the lake water level, is narrow and low; therefore, it could be overtopped easily by surge waves. Furthermore, the pronounced difference in elevation between the lake and the base of the terminal moraine dam makes the lake susceptible for a large flood.

  14. THE CONTINUING OUTBURST OF V1647 ORIONIS: WINTER/SPRING 2011 OBSERVATIONS

    International Nuclear Information System (INIS)

    Aspin, Colin

    2011-01-01

    We present optical and near-IR observations of the young eruptive variable star V1647 Orionis which illuminates McNeil's Nebula. In late 2003, V1647 Ori was observed to brighten by around 5 mag to r' = 17.7. In early 2006 the star faded back to its quiescent brightness of r' ∼ 23, however in mid-2008 it brightened yet again by ∼5 mag. Our new observations, taken in early 2011, show V1647 Ori to be in an elevated photometric state with an optical brightness similar to the value found at the start of the 2003 and 2008 outbursts. Optical images taken between 2008 and 2011 suggest that the star has remained in outburst from mid-2008 to the present. Hα and the far-red Ca II triplet lines remain in emission with Hα possessing a significant P Cygni profile. A self-consistent study of the accretion luminosity and rate using data taken in 2004, 2007, 2008, and 2011 indicates that when bright, V1647 Ori has values of 16 ± 2 L sun and (4 ± 2) x 10 -6 M sun yr -1 , respectively. We support the premise that the accretion luminosity and rate both declined by a factor of 2-3 during the 5 mag fading in 2007. However, a significant part of the fading was due to either variable extinction or dust reformation. We discuss these new observations in relation to previous published data and the classification schemes for young eruptive variables.

  15. Model Atmosphere Spectrum Fit to the Soft X-Ray Outburst Spectrum of SS Cyg

    Directory of Open Access Journals (Sweden)

    V. F. Suleimanov

    2015-02-01

    Full Text Available The X-ray spectrum of SS Cyg in outburst has a very soft component that can be interpreted as the fast-rotating optically thick boundary layer on the white dwarf surface. This component was carefully investigated by Mauche (2004 using the Chandra LETG spectrum of this object in outburst. The spectrum shows broad ( ≈5 °A spectral features that have been interpreted as a large number of absorption lines on a blackbody continuum with a temperature of ≈250 kK. Because the spectrum resembles the photospheric spectra of super-soft X-ray sources, we tried to fit it with high gravity hot LTE stellar model atmospheres with solar chemical composition, specially computed for this purpose. We obtained a reasonably good fit to the 60–125 °A spectrum with the following parameters: Teff = 190 kK, log g = 6.2, and NH = 8 · 1019 cm−2, although at shorter wavelengths the observed spectrum has a much higher flux. The reasons for this are discussed. The hypothesis of a fast rotating boundary layer is supported by the derived low surface gravity.

  16. X-Ray Observations of Magnetar SGR 0501+4516 from Outburst to Quiescence

    Science.gov (United States)

    Mong, Y.-L.; Ng, C.-Y.

    2018-01-01

    Magnetars are neutron stars having extreme magnetic field strengths. Study of their emission properties in quiescent state can help understand effects of a strong magnetic field on neutron stars. SGR 0501+4516 is a magnetar that was discovered in 2008 during an outburst, which has recently returned to quiescence. We report its spectral and timing properties measured with new and archival observations from the Chandra X-ray Observatory, XMM-Newton, and Suzaku. We found that the quiescent spectrum is best fit by a power-law plus two blackbody model, with temperatures of kT low ∼ 0.26 keV and kT high ∼ 0.62 keV. We interpret these two blackbody components as emission from a hotspot and the entire surface. The hotspot radius shrunk from 1.4 km to 0.49 km since the outburst, and there was a significant correlation between its area and the X-ray luminosity, which agrees well with the prediction by the twisted magnetosphere model. We applied the two-temperature spectral model to all magnetars in quiescence and found that it could be a common feature among the population. Moreover, the temperature of the cooler blackbody shows a general trend with the magnetar field strength, which supports the simple scenario of heating by magnetic field decay.

  17. State transitions in the 2001/2002 outburst of XTE J1650-500

    International Nuclear Information System (INIS)

    Rossi, S.; Homan, J.; Miller, J.M.; Belloni, T.

    2004-01-01

    We present a study of the X-ray transient and black hole candidate XTE J1650-500 during its 2001/2002 outburst. The source made two state transitions between the hard and soft states, at luminosity levels that differ by a factor of ∼5-10. The first transition, between hard and soft, lasted for ∼30 days and showed two parts; one part in which the spectral properties evolve smoothly away from the hard state and another that we identify as the 'steep power law state'. The two parts showed different behavior of the Fe K emission line and QPO frequencies. The second transition, from soft to hard, lasted only ∼15 days and showed no evidence of the presence of the 'steep power law state'. Comparing observations from the early rise and the decay of the outburst, we conclude that the source can be in the hard state in a range of more than 10 4 in luminosity. We briefly discuss the state transitions in the framework of a two-flow model

  18. Archival Investigation of Outburst Sites and Progenitors of Extragalactic Intermediate-Luminosity Mid-IR Transients

    Science.gov (United States)

    Bond, Howard

    2017-08-01

    Our team is using Spitzer in a long-term search for extragalactic mid-infrared (MIR) variable stars and transients-the SPIRITS project (SPitzer InfraRed Intensive Transients Survey). In this first exploration of luminous astrophysical transients in the infrared, we have discovered a puzzling new class. We call them SPRITEs: eSPecially Red Intermediate-luminosity Transient Events. They have maximum MIR luminosities between supernovae and classical novae, but are not detected in the optical to deep limits. To date, we have discovered more than 50 SPRITEs in galaxies out to 17 Mpc. In this Archival Research proposal, we request support in order to investigate the pre-eruption sites in HST images of some 3 dozen SPRITEs discovered to date, and an additional 2 dozen that we are likely to find until the end of Spitzer observing in late 2018. Our aims are (1) characterize the pre-outburst environments at HST resolution in the visible and near-IR, to understand the stellar populations, stellar ages and masses, and interstellar medium at the outburst sites; (2) search for progenitors; (3) help prepare the way for a better understanding of the nature of extragalactic IR transients that will be investigated by JWST.

  19. What Powers the 2006 Outburst of the Symbiotic Star BF Cygni?

    Directory of Open Access Journals (Sweden)

    A. Skopal

    2015-02-01

    Full Text Available BF Cygni is a classical symbiotic binary. Its optical light curve occasionally shows outbursts of the Z And-type, whose nature is not well understood. During the 2006 August, BF Cyg underwent the recent outburst, and continues its active phase to the present. The aim of this contribution is to determine the fundamental parameters of the hot component in the binary during the active phase. For this purpose we used a high- and low-resolution optical spectroscopy and the multicolour UBV RCIC photometry. Our photometric monitoring revealed that a high level of the star’s brightness lasts for unusually long time of > 7 years. A sharp violet-shifted absorption component and broad emission wings in the Hα profile developed during the whole active phase. From 2009, our spectra revealed a bipolar ejection from the white dwarf (WD. Modelling the spectral energy distribution (SED of the low-resolution spectra showed simultaneous presence of a warm (< 10 000 K disk-like pseudophotosphere and a strong nebular component of radiation (emission measure of ~1061 cm−3. The luminosity of the hot active object was estimated to > 5−8×103 Lʘ. Such high luminosity, sustained for the time of years, can be understood as a result of an enhanced transient accretion rate throughout a large disk, leading also to formation of collimated ejection from the WD.

  20. Dramatic change of the recurrence time and outburst parameters of the intermediate polar GK Persei

    Science.gov (United States)

    Šimon, V.

    2002-02-01

    This analysis has shown that the intermediate polar GK Per experienced a very striking evolution. Its outbursts became wider and brighter in the last five decades. These changes were accompanied by striking variations of the recurrence time T_C, from 385 days within the years 1948-1967 to 890 days in 1970. Nowadays, T_C displays a strong trend of linear increase. Decrease of irradiation of the disk by the WD, combined with the decrease of viscosity, offers a plausible explanation. It is argued that variations of the mass transfer rate are unlikely to play a major role. The morphology of the outburst light curves in the optical and the X-ray region is also studied. The decay branch in the optical remains remarkably similar for all the events while the largest changes of the light curve occur in the rising branch. This can be explained if the thermal instability may start at different distances from the disk center. The quiescent level of brightness does not display any secular trend in recent decades but a wave on the time scale of about 30 years with the full amplitude of 0.3 m_v, probably due to activity of the cool star, is detected. This research has made use of the AFOEV database, operated at CDS, France, and the observations provided by the ASM/RXTE team.

  1. Multiwavelength Picture of the Blazar S5 0716+714 during Its Brightest Outburst

    Directory of Open Access Journals (Sweden)

    Marina Manganaro

    2016-11-01

    Full Text Available S5 0716+714 is a well known BL Lac object, and one of the brightest and most active blazars. The discovery in the Very High Energy band (VHE, E > 100 GeV by MAGIC happened in 2008. In January 2015, the source went through the brightest optical state ever observed, triggering MAGIC follow-up and a VHE detection with ∼ 13 σ significance (ATel ♯ 6999 . Rich multiwavelength coverage of the flare allowed us to construct the broad-band spectral energy distribution of S5 0716+714 during its brightest outburst. In this work, we will present the preliminary analysis of MAGIC and Fermi-LAT data of the flaring activity in January and February 2015 for the HE (0.1 < HE < 300 GeV and VHE band, together with radio (Metsähovi, OVRO, VLBA, Effelsberg, sub-millimeter (SMA, optical (Tuorla, Perkins, Steward, AZT-8+ST7, LX-200, Kanata, X-ray and UV (Swift-XRT and UVOT, in the same time-window and discuss the time variability of the multiwavelength light curves during this impressive outburst.

  2. The FU Orionis outburst as a thermal accretion event: Observational constraints for protostellar disk models

    Science.gov (United States)

    Bell, K. R.; Lin, D. N. C.; Hartmann, L. W.; Kenyon, S. J.

    1995-01-01

    The results of the time-dependent disk models developed in Bell & Lin are compared with observed properties of FU Orionis variables. Specific models are fit to the light curves of Fu Ori, V1515 Cyg, and V1057 Cyg. The slow risetime of V1515 Cyg can be matched by a self-regulated outburst model. The rapid risetimes of FU Ori and V1057 Cyg can be fitted with the application of modest perturbations to the disk surface density. Model disks display spectral features characteristic of observed objects. The color evolution of V1057 Cyg is naturally explained if mass flux drops in the inner disk (r less than 1/4 AU) while remaining steady in the outer disk. The decrease in optical line width (rotational velocity) observed during the decay of V1057 Cyg may be accounted for by an outward-propagating ionization front. We predict that before final decay to the quiescent phase, short-wavelength line widths (lambda less than 1.5 microns) will again increase. It is suggested that FU Orionis outbursts primarily occur to systems during the embedded phase with ages less than several times 10(exp 5) yr.

  3. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    Science.gov (United States)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  4. Hydro energetic inventory study from Chapecozinho river

    International Nuclear Information System (INIS)

    Pimenta, S.C.; Sureck, M.A.A.; Nascimento, P.R.; Kawasaki, M.; Silva Felipe, R. da.

    1990-01-01

    The Hydro energetic Inventory Study in Chapecozinho River Basin, Brazil is described, comparing the proposed results in 1979 with the actual review in 1989. An analysis for solution the socio-economic and environment problems is also presented. (author)

  5. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  6. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  7. Modeling Thermal Ignition of Energetic Materials

    National Research Council Canada - National Science Library

    Gerri, Norman J; Berning, Ellen

    2004-01-01

    This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...

  8. Organization of the national energetic institutions

    International Nuclear Information System (INIS)

    Waltenberg, D.A.M.

    1983-01-01

    This text broaches, in a critical pourt of view, the organization of national energetic institutions, the need of a law revision, the problem of the rising of tariff and shows the decisions of GC01 [pt

  9. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    Science.gov (United States)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  10. THE XMM-NEWTON WIDE FIELD SURVEY IN THE COSMOS FIELD: REDSHIFT EVOLUTION OF AGN BIAS AND SUBDOMINANT ROLE OF MERGERS IN TRIGGERING MODERATE-LUMINOSITY AGNs AT REDSHIFTS UP TO 2.2

    International Nuclear Information System (INIS)

    Allevato, V.; Hasinger, G.; Salvato, M.; Finoguenov, A.; Brusa, M.; Bongiorno, A.; Merloni, A.; Cappelluti, N.; Miyaji, T.; Gilli, R.; Zamorani, G.; Comastri, A.; Shankar, F.; James, J. B.; Peacock, J. A.; McCracken, H. J.; Silverman, J.

    2011-01-01

    We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I AB 2 XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over time. We find evidence of a redshift evolution of the bias factor for the total population of XMM-COSMOS AGNs from b-bar ( z-bar =0.92)=2.30±0.11 to b-bar ( z-bar =1.94)=4.37±0.27 with an average mass of the hosting dark matter (DM) halos log M 0 (h -1 M sun ) ∼ 13.12 ± 0.12 that remains constant at all z 0 (h -1 M sun ) ∼ 13.28 ± 0.07 and log M 0 (h -1 M sun ) ∼ 13.00 ± 0.06 for BL/X-ray unobscured AGNs and NL/X-ray obscured AGNs, respectively. The theoretical models, which assume a quasar phase triggered by major mergers, cannot reproduce the high bias factors and DM halo masses found for X-ray selected BL AGNs with L BOL ∼ 2 x 10 45 erg s -1 . Our work extends up to z ∼ 2.2 the z ∼< 1 statement that, for moderate-luminosity X-ray selected BL AGNs, the contribution from major mergers is outnumbered by other processes, possibly secular ones such as tidal disruptions or disk instabilities.

  11. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  12. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  13. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  14. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  15. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  16. NuSTAR and XMM-Newton Observations of the 2015 Outburst Decay of GX 339-4

    Energy Technology Data Exchange (ETDEWEB)

    Stiele, H.; Kong, A. K. H., E-mail: hstiele@mx.nthu.edu.tw [National Tsing Hua University, Department of Physics and Institute of Astronomy, No. 101 Sect. 2 Kuang-Fu Road, 30013, Hsinchu, Taiwan (China)

    2017-07-20

    The extent of the accretion disk in the low/hard state of stellar mass black hole X-ray binaries remains an open question. There is some evidence suggesting that the inner accretion disk is truncated and replaced by a hot flow, while the detection of relativistic broadened iron emission lines seems to require an accretion disk extending fully to the innermost stable circular orbit. We present comprehensive spectral and timing analyses of six Nuclear Spectroscopic Telescope Array and XMM-Newton observations of GX 339–4 taken during outburst decay in the autumn of 2015. Using a spectral model consisting of a thermal accretion disk, Comptonized emission, and a relativistic reflection component, we obtain a decreasing photon index, consistent with an X-ray binary during outburst decay. Although we observe a discrepancy in the inner radius of the accretion disk and that of the reflector, which can be attributed to the different underlying assumptions in each model, both model components indicate a truncated accretion disk that resiles with decreasing luminosity. The evolution of the characteristic frequency in Fourier power spectra and their missing energy dependence support the interpretation of a truncated and evolving disk in the hard state. The XMM-Newton data set allowed us to study, for the first time, the evolution of the covariance spectra and ratio during outburst decay. The covariance ratio increases and steeps during outburst decay, consistent with increased disk instabilities.

  17. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2013-01-01

    This paper reports on a source of past carbon dioxide accidents which so far has only been sporadically mentioned in the literature. Violent and highly destructive outbursts of hundreds of tons of CO2 occurred regularly, if not routinely, in the now closed salt mines of the former DDR. The Menzen...

  18. 18 centimeter VLBI observations of the quasar NRAO 140 during and after a low-frequency outburst

    International Nuclear Information System (INIS)

    Marscher, A.P.; Broderick, J.J.; Padrielli, L.; Bartel, N.; Romney, J.D.; Virginia Polytechnic Institute and State Univ., Blacksburg; CNR, Istituto di Radioastronomia, Bologna, Italy; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA; Natitonal Radio Astronomy Observatory, Charlottesville, VA)

    1987-01-01

    VLBI and spectra observations have been used to identify the specific site of a low-frequency outburst in the quasar NRAO 140. The properties of the low-frequency variability in the quasar are compared with the predictions of several models. The refractive scintillation model alone does not account for the source's properties. 32 references

  19. The X-ray spectra of the black hole candidate 4U 1630-47 during its 2012 outburst

    NARCIS (Netherlands)

    Wang, Y.; Mendez, M.

    2015-01-01

    Diaz Trigo et al. (2013) reported the detection of three Doppler-shifted emission lines arising from baryonic matter in the jet of 4U 1630-47 during its 2012 outburst. Here we propose an alternative model that, without the need of the lines from the jet, and with less free parameters, fits the same

  20. Sedimentary and rock magnetic signatures and event scenarios of deglacial outburst floods from the Laurentian Channel Ice Stream

    Science.gov (United States)

    Leng, Wei; von Dobeneck, Tilo; Bergmann, Fenna; Just, Janna; Mulitza, Stefan; Chiessi, Cristiano M.; St-Onge, Guillaume; Piper, David J. W.

    2018-04-01

    Eastern Canadian margin sediments bear testimony to several catastrophic deglacial meltwater discharges from the retreating Laurentide Ice Sheet. The reddish-brown plumite layers deposited on the levees of the Laurentian Fan valleys have been recognized as indications of multiple outburst floods between Heinrich events 2 and 1. Five event layers have been consistently recorded in three new gravity cores retrieved on the SW Grand Banks slope and comply with the previously published Laurentian Fan core MD95-2029. The apparently huge extent of these outburst plumes around the Laurentian Fan as well as their causes and consequences are investigated in this study using physical properties, rock magnetic and grain-size analyses, together with seismoacoustic profiling. We provide the first detailed 14C ages of the outburst event sequence and discuss their recurrence intervals in the context of regional ice retreat. Compared to the hemipelagic interlayers, event layers have overall uniform and systematic changes of rock-magnetic properties. Hematite contents increase over time and proximally while magnetite grain sizes fine upwards and spatially away from the fan. Based on the sediment composition and load, we argue that these plumites were formed by recurrent erosion of glacial mud deposits in the Laurentian Channel by meltwater outbursts. Three alternative glaciological scenarios are evaluated: in each case, the provenance of the transported sediment is not an indicator of the precise source of the meltwater.