WorldWideScience

Sample records for endothelial-monocyte activating polypeptide

  1. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    Directory of Open Access Journals (Sweden)

    Margaret A Schwarz

    Full Text Available Endothelial-Monocyte Activating Polypeptide (EMAP II is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  2. Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin

    International Nuclear Information System (INIS)

    Schwarz, Margaret A.; Zheng, Hiahua; Liu, Jie; Corbett, Siobhan; Schwarz, Roderich E.

    2005-01-01

    Mature Endothelial-Monocyte Activating Polypeptide (mEMAP) II functions as a potent antiangiogenic peptide. Although the anti-tumor effect of mEMAP II has been described, little is known regarding its mechanism of action. Observations that mEMAP II induced apoptosis only in a subset of migrating and proliferating endothelial cells (EC) suggests a targeted effect on cells engaged in angiogenic activities which are known to rely upon cell adhesion and migration. Indeed, we demonstrate that mEMAP II inhibited fibronectin (FN) dependent microvascular EC (MEC) adhesion and spreading and we show that this depends upon the alpha5 beta1 integrin. Immunofluorescence analysis demonstrated that mEMAP II-dependent blockade of FN-alpha5 beta1 interactions was associated with disassembly of both actin stress fiber networks and FN matrix. These findings suggest that mEMAP II blocks MEC adhesion and spreading on fibronectin, via a direct interaction with the integrin alpha5 beta1, thus implicating that alpha5 integrin may be a mediator of mEMAP II's antiangiogenic function

  3. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  4. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  5. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    International Nuclear Information System (INIS)

    Lee, Dong Kun; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-01-01

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules

  6. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion.

    Directory of Open Access Journals (Sweden)

    Raghav Oberoi

    Full Text Available It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab-which is approved for several inflammatory disorders-on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions.Phorbol myristate acetate (PMA differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1 and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice.Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation.

  7. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells.

    Science.gov (United States)

    Goodman, Reyna S; Kirton, Christopher M; Oostingh, Gertie J; Schön, Michael P; Clark, Michael R; Bradley, J Andrew; Taylor, Craig J

    2008-02-15

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) plays an important role in leukocyte-endothelial cell adhesion and transmigration. Single nucleotide polymorphisms of PECAM-1 encoding amino acid substitutions at positions 98 leucine/valine (L/V), 536 serine/asparagine (S/N), and 643 arginine/glycine (R/G) occur in strong genetic linkage resulting in two common haplotypes (LSR and VNG). These PECAM-1 polymorphisms are associated with graft-versus-host disease after hematopoietic stem cell transplantation and with cardiovascular disease, but whether they influence PECAM-1 function is unknown. We examined the effect of homozygous and heterozygous expression of the PECAM-1 LSR and VNG genotypes on the adhesive interactions of peripheral blood monocytes and activated endothelial cell monolayers under shear stress in a flow-based cell adhesion assay. There was no difference in monocyte adhesion between the two homozygous genotypes of PECAM-1 but when monocytes expressed both alleles in heterozygous form, firm adhesion of monocytes to endothelial cells was markedly increased. PECAM-1 polymorphism expressed in homozygous or heterozygous form by endothelial cells did not influence monocyte adhesion. This is, to our knowledge, the first demonstration that PECAM-1 genotype can alter the level of monocyte binding to endothelial cells and a demonstration that heterozygous expression of a polymorphic protein may lead to altered function.

  8. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner.

    Science.gov (United States)

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria

    2016-10-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.

  9. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    Science.gov (United States)

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  11. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells

    International Nuclear Information System (INIS)

    Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. II

    1985-01-01

    Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. They show here the monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocyte,s and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an 125 I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes

  12. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong; Shusheng, Li

    2013-09-13

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.

  13. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  14. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  15. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine

    2008-01-01

    During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown...... to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...... rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept...

  16. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  17. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-12-01

    Full Text Available This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1

  18. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    International Nuclear Information System (INIS)

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  19. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-09-01

    Full Text Available Abstract Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs and monocytes (THP-1 cells. In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS generation; the production of interleukin (IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor (TNF-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2

  20. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  1. Lymphotoxin-α3 mediates monocyte-endothelial interaction by TNFR I/NF-κB signaling

    International Nuclear Information System (INIS)

    Suna, Shinichiro; Sakata, Yasuhiko; Shimizu, Masahiko; Nakatani, Daisaku; Usami, Masaya; Matsumoto, Sen; Mizuno, Hiroya; Ozaki, Kouichi; Takashima, Seiji; Takeda, Hiroshi; Tanaka, Toshihiro; Hori, Masatsugu; Sato, Hiroshi

    2009-01-01

    We recently reported that the single nucleotide polymorphisms of the lymphotoxin-(LT)α gene, a member of the tumor necrosis factor (TNF) family, are closely related to acute myocardial infarction; however, the precise mechanism of LTα signaling in atherogenesis remains unclear. We investigated the role of LTα3, a secreted homotrimer of LTα, in monocyte-endothelial cell adhesion using cultured human umbilical vein endothelial cells (HUVEC). We found that LTα3 induced cell adhesion molecules and activated NF-κB p50 and p65. LTα3 also induced phosphorylation of Akt, phosphorylation and degradation of IκB, nuclear translocation of p65, and increased adhesion of THP1 monocytes to HUVEC. These effects were mediated by TNF receptor (TNFR) I and attenuated by the phosphatidylinositol triphosphate-kinase (PI3K) inhibitors LY294002 and Wortmannin. Thus, LTα3 mediates the monocyte-endothelial interaction via the classical NF-κB pathway following TNFR I/PI3K activation, indicating it may play a role in the development of coronary artery disease.

  2. Importance of large conductance calcium-activated potassium channels (BKCa) in interleukin-1b-induced adhesion of monocytes to endothelial cells.

    Science.gov (United States)

    Burgazli, K M; Venker, C J; Mericliler, M; Atmaca, N; Parahuleva, M; Erdogan, A

    2014-01-01

    The present study investigated the role of the large conductance calcium-activated potassium channels (BKCa) in interleukin-1b (IL-1b) induced inflammation. Human umbilical vein endothelial cells (HUVECs) were isolated and cultured. Endothelial cell membrane potential measurements were accomplished using the fluorescent dye DiBAC4(3). The role of BKCa was assessed using iberiotoxin, a highly selective BKCa inhibitor. Changes in the calcium intracellular calcium were investigated using Fura-2-AM imaging. Fluorescent dyes DCF-AM and DAF-AM were further used in order to measure the formation of reactive oxygen species (ROS) and nitric oxide (NO) synthesis, respectively. Endothelial cell adhesion tests were conducted with BCECF-AM adhesion assay and tritium thymidine uptake using human monocytic cells (U937). Expression of cellular adhesion molecules (ICAM-1, VCAM-1) was determined by flow cytometer. Interleukin-1b induced a BKCa dependent hyperpolarization of HUVECs. This was followed by an increase in the intracellular calcium concentration. Furthermore, IL-1b significantly increased the synthesis of NO and ROS. The increase of intracellular calcium, radicals and NO resulted in a BKCa dependent adhesion of monocytes to HUVECs. Endothelial cells treated with IL-1b expressed both ICAM-1 and VCAM-1 in significantly higher amounts as when compared to controls. It was further shown that the cellular adhesion molecules ICAM-1 and VCAM-1 were responsible for the BKCa-dependent increase in cellular adhesion. Additionally, inhibition of the NADPH oxidase with DPI led to a significant downregulation of IL-1b-induced expression of ICAM and VCAM, as well as inhibition of eNOS by L-NMMA, and intracellular calcium by BAPTA. Activation of the endothelial BKCa plays an important role in the IL-1b-induced monocyte adhesion to endothelial cells.

  3. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes.

    Science.gov (United States)

    Liu, Xin; Xue, Yang; Sun, Jiao

    2010-01-01

    Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.

  4. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  5. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Yeon; Kim, Hyung Joon; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2017-01-01

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-induced monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.

  6. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  7. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein.

    Science.gov (United States)

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. Copyright © 2015. Published by Elsevier Inc.

  8. Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation.

    Science.gov (United States)

    Kourtzelis, Ioannis; Kotlabova, Klara; Lim, Jong-Hyung; Mitroulis, Ioannis; Ferreira, Anaisa; Chen, Lan-Sun; Gercken, Bettina; Steffen, Anja; Kemter, Elisabeth; Klotzsche-von Ameln, Anne; Waskow, Claudia; Hosur, Kavita; Chatzigeorgiou, Antonios; Ludwig, Barbara; Wolf, Eckhard; Hajishengallis, George; Chavakis, Triantafyllos

    2016-04-01

    Platelet-monocyte interactions are strongly implicated in thrombo-inflammatory injury by actively contributing to intravascular inflammation, leukocyte recruitment to inflamed sites, and the amplification of the procoagulant response. Instant blood-mediated inflammatory reaction (IBMIR) represents thrombo-inflammatory injury elicited upon pancreatic islet transplantation (islet-Tx), thereby dramatically affecting transplant survival and function. Developmental endothelial locus-1 (Del-1) is a functionally versatile endothelial cell-derived homeostatic factor with anti-inflammatory properties, but its potential role in IBMIR has not been previously addressed. Here, we establish Del-1 as a novel inhibitor of IBMIR using a whole blood-islet model and a syngeneic murine transplantation model. Indeed, Del-1 pre-treatment of blood before addition of islets diminished coagulation activation and islet damage as assessed by C-peptide release. Consistently, intraportal islet-Tx in transgenic mice with endothelial cell-specific overexpression of Del-1 resulted in a marked decrease of monocytes and platelet-monocyte aggregates in the transplanted tissues, relative to those in wild-type recipients. Mechanistically, Del-1 decreased platelet-monocyte aggregate formation, by specifically blocking the interaction between monocyte Mac-1-integrin and platelet GPIb. Our findings reveal a hitherto unknown role of Del-1 in the regulation of platelet-monocyte interplay and the subsequent heterotypic aggregate formation in the context of IBMIR. Therefore, Del-1 may represent a novel approach to prevent or mitigate the adverse reactions mediated through thrombo-inflammatory pathways in islet-Tx and perhaps other inflammatory disorders involving platelet-leukocyte aggregate formation.

  9. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003

    Science.gov (United States)

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.

    2017-01-01

    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  10. HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcγRs.

    Science.gov (United States)

    Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F

    2013-06-15

    Ab-mediated rejection (AMR) of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor-specific Ab binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the Ab. We investigated the mechanisms underlying monocyte recruitment by HLA class I (HLA I) Ab-activated endothelium. We used a panel of murine mAbs of different subclasses to crosslink HLA I on human aortic, venous, and microvascular endothelial cells and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine (m)IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. mIgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during AMR. We confirmed these observations using human HLA allele-specific mAbs and IgG purified from transplant patient sera. HLA I Abs universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during AMR. Importantly, the subclass of donor-specific Ab may influence its pathogenesis. These results imply that human IgG1 and human IgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions.

  11. Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection.

    Science.gov (United States)

    Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping; Kageyama, Shoichi; Fishbein, Michael C; Rozengurt, Enrique; Kupiec-Weglinski, Jerzy W; Reed, Elaine F

    2018-05-01

    Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1 -/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcγRs1

    Science.gov (United States)

    Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F

    2013-01-01

    Antibody-mediated rejection of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor specific antibody binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the antibody. We investigated the mechanisms underlying monocyte recruitment by HLA class I antibody-activated endothelium. We used a panel of murine monoclonal antibodies of different subclasses to crosslink HLA I on human aortic, venous and microvascular endothelial cells, and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. Mouse IgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during antibody mediated rejection. We confirmed these observations using human HLA allele specific monoclonal antibodies and IgG purified from transplant patient sera. HLA I antibodies universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during antibody-mediated rejection. Importantly, the subclass of donor specific antibody may influence its pathogenesis. These results imply that hIgG1 and hIgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions. PMID:23690477

  13. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  14. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    Science.gov (United States)

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Inhibitory Effects of Red Wine Extracts on Endothelial-Dependent Adhesive Interactions with Monocytes Induced by Oxysterols

    Directory of Open Access Journals (Sweden)

    Yuji Naito

    2004-01-01

    Full Text Available Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 muM increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols

  16. Entamoeba lysyl-tRNA synthetase contains a cytokine-like domain with chemokine activity towards human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Manuel Castro de Moura

    2011-11-01

    Full Text Available Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II. This Entamoeba EMAPII-like polypeptide (EELP is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity.

  17. Adropin Contributes to Anti-Atherosclerosis by Suppressing Monocyte-Endothelial Cell Adhesion and Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Kengo Sato

    2018-04-01

    Full Text Available Adropin, a peptide hormone expressed in liver and brain, is known to improve insulin resistance and endothelial dysfunction. Serum levels of adropin are negatively associated with the severity of coronary artery disease. However, it remains unknown whether adropin could modulate atherogenesis. We assessed the effects of adropin on inflammatory molecule expression and human THP1 monocyte adhesion in human umbilical vein endothelial cells (HUVECs, foam cell formation in THP1 monocyte-derived macrophages, and the migration and proliferation of human aortic smooth muscle cells (HASMCs in vitro and atherogenesis in Apoe−/− mice in vivo. Adropin was expressed in THP1 monocytes, their derived macrophages, HASMCs, and HUVECs. Adropin suppressed tumor necrosis factor α-induced THP1 monocyte adhesion to HUVECs, which was associated with vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 downregulation in HUVECs. Adropin shifted the phenotype to anti-inflammatory M2 rather than pro-inflammatory M1 via peroxisome proliferator-activated receptor γ upregulation during monocyte differentiation into macrophages. Adropin had no significant effects on oxidized low-density lipoprotein-induced foam cell formation in macrophages. In HASMCs, adropin suppressed the migration and proliferation without inducing apoptosis via ERK1/2 and Bax downregulation and phosphoinositide 3-kinase/Akt/Bcl2 upregulation. Chronic administration of adropin to Apoe−/− mice attenuated the development of atherosclerotic lesions in the aorta, with reduced the intra-plaque monocyte/macrophage infiltration and smooth muscle cell content. Thus, adropin could serve as a novel therapeutic target in atherosclerosis and related diseases.

  18. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  19. Human β-Defensin 3 Reduces TNF-α-Induced Inflammation and Monocyte Adhesion in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tianying Bian

    2017-01-01

    Full Text Available The aim of this study was to investigate the role of human β-defensin 3 (hBD3 in the initiation stage of atherosclerosis with human umbilical vein endothelial cells (HUVECs triggered by tumor necrosis factor- (TNF- α. The effects of hBD3 on TNF-α-induced endothelial injury and inflammatory response were evaluated. Our data revealed that first, hBD3 reduced the production of interleukin-6 (IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1, and macrophage migration inhibitory factor (MIF in HUVECs in a dose-dependent manner. In addition, hBD3 significantly prevented intracellular reactive oxygen species (ROS production by HUVECs. Second, western blot analysis demonstrated that hBD3 dose-dependently suppressed the protein levels of intracellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 in TNF-α-induced HUVECs. As a result, hBD3 inhibited monocyte adhesion to TNF-α-treated endothelial cells. Additionally, hBD3 suppressed TNF-α-induced F-actin reorganization in HUVECs. Third, hBD3 markedly inhibited NF-κB activation by decreasing the phosphorylation of IKK-α/β, IκB, and p65 subunit within 30 min. Moreover, the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK in the mitogen-activated protein kinase (MAPK pathway were also inhibited by hBD3 in HUVECs. In conclusion, hBD3 exerts anti-inflammatory and antioxidative effects in endothelial cells in response to TNF-α by inhibiting NF-κB and MAPK signaling.

  20. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  1. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells.

    Science.gov (United States)

    Horigome, Satoru; Yoshida, Izumi; Ito, Shihomi; Inohana, Shuichi; Fushimi, Kei; Nagai, Takeshi; Yamaguchi, Akihiro; Fujita, Kazuhiro; Satoyama, Toshiya; Katsuda, Shin-Ichi; Suzuki, Shinobu; Watai, Masatoshi; Hirose, Naoto; Mitsue, Takahiro; Shirakawa, Hitoshi; Komai, Michio

    2017-04-01

    The rhizome of Kaempferia parviflora (KP) is used in traditional Thai medicine. In this study, we investigated the effects of an ethanol KP extract and two of its components [5,7-dimethoxyflavone (DMF) and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (TMF)] on monocyte adhesion and cellular reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVECs), which provide an in vitro model of events relevant to the development and progression of atherosclerosis. RAW264.7 mouse macrophage-like cells were incubated with various concentrations of KP extract or polymethoxyflavonoids and stimulated with lipopolysaccharide prior to measuring nitrite levels in the culture media. Monocyte adhesion was evaluated by measuring the fluorescently labeled human monocytic leukemia THP-1 cells that is attached to tumor necrosis factor-α (TNF-α)-stimulated HUVECs. Cellular ROS production was assessed by measuring cellular antioxidant activity using pyocyanin-stimulated HUVECs. KP extract and DMF reduced nitrite levels (as indicator of nitric oxide production) in LPS-stimulated RAW264.7 cells and also inhibited THP-1 cell adhesion to HUVECs. These treatments induced mRNA expression of endothelial nitric oxide synthase in TNF-α-stimulated HUVECs and downregulated that of various cell adhesion molecules, inflammatory mediators, and endothelial function-related genes. Angiotensin-converting enzyme activity was inhibited by KP extract in vitro. Furthermore, KP extract, DMF, and TMF inhibited the production of cellular ROS in pyocyanin-stimulated HUVECs. KP extract, DMF, and TMF showed potential anti-inflammatory and antioxidant effects in these in vitro models, properties that would inhibit the development and progression of atherosclerosis.

  2. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium.

    Directory of Open Access Journals (Sweden)

    Seung Jin Lee

    Full Text Available Toll-like receptor 4 (TLR4 is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA, a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.

  3. Identification of a Monocyte Receptor on Herpesvirus-Infected Endothelial Cells

    Science.gov (United States)

    Etingin, Orli R.; Silverstein, Roy L.; Hajjar, David P.

    1991-08-01

    The adhesion of circulating blood cells to vascular endothelium may be an initial step in atherosclerosis, inflammation, and wound healing. One mechanism for promoting cell-cell adhesion involves the expression of adhesion molecules on the surface of the target cell. Herpes simplex virus infection of endothelium induces arterial injury and has been implicated in the development of human atherosclerosis. We now demonstrate that HSV-infected endothelial cells express the adhesion molecule GMP140 and that this requires cell surface expression of HSV glycoprotein C and local thrombin generation. Monocyte adhesion to HSV-infected endothelial cells was completely inhibited by anti-GMP140 antibodies but not by antibodies to other adhesion molecules such as VCAM and ELAM-1. The induction of GMP140 expression on HSV-infected endothelium may be an important pathophysiological mechanism in virus-induced cell injury and inflammation.

  4. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia

    Science.gov (United States)

    Monocyte activation and migration into the arterial wall are key events in atherogenesis associated with hypercholesterolemia. CD11c/CD18, a beta2 integrin expressed on human monocytes and a subset of mouse monocytes, has been shown to play a distinct role in human monocyte adhesion on endothelial c...

  5. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-01-01

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R -/- mice (control) or caveolin-1 -/- /LDL-R -/- mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1 -/- /LDL-R -/- mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor α-naphthoflavone (α-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  6. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    Science.gov (United States)

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  7. Methods for using polypeptides having cellobiohydrolase activity

    Science.gov (United States)

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polynucleotides encoding polypeptides having beta-glucosidase activity

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  9. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP.

    Science.gov (United States)

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Polypeptides having catalase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-05-02

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. ADMA induces monocyte adhesion via activation of chemokine receptors in cultured THP-1 cells.

    Science.gov (United States)

    Chen, Meifang; Li, Yuanjian; Yang, Tianlun; Wang, Yongjin; Bai, Yongping; Xie, Xiumei

    2008-08-01

    Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, is also an important inflammatory factor contributing to the development of atherosclerosis (AS). The present study was to test the effect of ADMA on angiotensin (Ang) II-induced monocytic adhesion. Human monocytoid cells (THP-1) or isolated peripheral blood monocyte cells (PBMCs) were incubated with Ang II (10(-6)M) or exogenous ADMA (30 microM) for 4 or 24h in the absence or presence of losartan or antioxidant PDTC. In cultured THP-1 cells, Ang II (10(-6)M) for 24h elevated the level of ADMA in the medium, upregulated the protein expression of protein arginine methyltransferase (PRMT) and decreased the activity of dimethylarginine dimethylaminohydrolase (DDAH). Both of Ang II and ADMA increased monocytic adhesion to human umbilical vein endothelial cells (HUVECs), elevated the levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and tumor necrosis factor (TNF)-alpha and upregulated CCR(2) and CXCR(2) mRNA expression, concomitantly with increase in reactive oxygen species (ROS) generation and activation of nuclear factor (NF)-kappaB. Pretreatment with losartan (10 microM) or PDTC (10 microM) abolished the effects mediated by Ang II or ADMA. In isolated PBMCs from healthy individuals, ADMA upregulated the expression of CXCR(2) mRNA, which was attenuated by losartan (10 microM), however, ADMA had no effect on surface protein expression of CCR(2). The present results suggest that ADMA may be involved in monocytic adhesion induced by Ang II via activation of chemokine receptors by ROS/NF-kappaB pathway.

  12. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Science.gov (United States)

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2018-02-06

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner

    OpenAIRE

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gr?ger, Marion; Fischer, Michael B.; Weber, Viktoria

    2016-01-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-diviny...

  15. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    2017-06-20

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  16. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    Science.gov (United States)

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Expression of adhesion molecules, monocyte interactions and oxidative stress in human endothelial cells exposed to wood smoke and diesel exhaust particulate matter

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Loft, Steffen; Roursgaard, Martin

    2012-01-01

    Toxicological effects of wood smoke particles are less investigated than traffic-related combustion particles. We investigated the effect of wood smoke particles, generated by smouldering combustion conditions, on human umbilical endothelial cells (HUVECs) co-cultured with or without monocytic TH...

  18. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-α-induced vascular endothelial dysfunction

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.; Chen, J.-W.; Chiang, H.-C.

    2007-01-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-α)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-α induces various biological effects on vascular cells, TNF-α dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-α concentrations, we adopted the lower TNF-α (0.2 ng/ml) to rule out the possible involvement of other TNF-α-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-α-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-α-induced nuclear factor-kappaB (NF-κB) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-α. Inhibition of ERK, JNK, or NF-κB attenuates TNF-α-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-α induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-κB in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-α. Although AP-1 activation by the lower TNF-α was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-α-induced adhesion molecule expression

  1. [Role of phosphoinositide 3 kinase/protein kinase B signal pathway in monocyte-endothelial adhesion induced by serum of rats with electrical burn].

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Zhang, Weidong; Xie, Qionghui; Xie, Weiguo

    2014-06-01

    To observe the change in phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signal pathway in monocytes as induced by serum of rats with electrical burn, and to explore the effects of PI3K/Akt pathway on monocyte-endothelial cell adhesion. Sixty-four SD rats of clean grade were inflicted with electrical burn for the collection of serum of rats with electrical burn; another group of twenty-four SD rats were used to obtain normal serum without treatment. (1) Human monocyte line THP-1 was routinely cultured. The THP-1 cells in logarithmic phase were divided into normal serum group (resuspended in RPMI 1640 medium with 20% normal rat serum) and burn serum group (resuspended with RPMI 1640 medium with 20% serum of rats with electrical burn) according to the random number table, with 6 wells in each group. Morphology of THP-1 cells in normal serum group was observed at post culture hour (PCH) 24, and that in burn serum group at PCH 3, 6, 24. The contents of TNF-α in culture supernatant were determined by double-antibody sandwich ELISA at the corresponding time point in each group. The state of Akt activation was determined by Western blotting at PCH 3, 6, 24. (2) Another portion of THP-1 cells were divided into 4 groups according to the random number table, with 6 wells in each group. Cells in normal serum group and burn serum group were given with the same culture condition as above; cells in normal serum+inhibitor group and burn serum+inhibitor group were cultured with the same culture conditions as in the former two groups correspondingly with addition of 100 nmol/L wortmannin in the nutrient solution. At PCH 3 and 6, THP-1 cells were added into the well with a monolayer of endothelial cell line EA.hy926 to observe the monocyte-endothelial cell adhesion. Data were processed with one-way analysis of variance and LSD- t test. (1) In normal serum group, THP-1 cells showed growth in suspension, with uniform shape at PCH 24. In burn serum group, the cell shape became

  2. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  3. An elevated serum level of endothelial monocyte activating polypeptide-II in patients with arterial hypertension with and without type 2 diabetes and obesity

    Directory of Open Access Journals (Sweden)

    Liliya Mogylnytska

    2016-07-01

    Conclusions: The revealed changes could reflect an endothelial dysfunction mostly pronounced in patients with arterial hypertension, type 2 diabetes mellitus and obesity. Hyperglycemia, dyslipidemia, insulin resistance, obesity appear to be significant contributing factors leading to the elevation of EMAP-II.

  4. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  5. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun; Song, Gyu-Yong; Chung, Young Chul; Roh, Seong Hwan; Jeong, Hye Gwang

    2006-01-01

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  6. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  8. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer.

    Science.gov (United States)

    Venneri, Mary Anna; De Palma, Michele; Ponzoni, Maurilio; Pucci, Ferdinando; Scielzo, Cristina; Zonari, Erika; Mazzieri, Roberta; Doglioni, Claudio; Naldini, Luigi

    2007-06-15

    Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes distinct from classical inflammatory monocytes and comprised within the less abundant "resident" population. These TIE2-expressing monocytes (TEMs) accounted for 2% to 7% of blood mononuclear cells in healthy donors and were distinct from rare circulating endothelial cells and progenitors. In human cancer patients, TEMs were observed in the blood and, intriguingly, within the tumors, where they represented the main monocyte population distinct from TAMs. Conversely, TEMs were hardly detected in nonneoplastic tissues. In vitro, TEMs migrated toward angiopoietin-2, a TIE2 ligand released by activated endothelial cells and angiogenic vessels, suggesting a homing mechanism for TEMs to tumors. Purified human TEMs, but not TEM-depleted monocytes, markedly promoted angiogenesis in xenotransplanted human tumors, suggesting a potentially critical role of TEMs in human cancer progression. Human TEMs may provide a novel, biologically relevant marker of angiogenesis and represent a previously unrecognized target of cancer therapy.

  9. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  10. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.

    Science.gov (United States)

    Vo, Thanh-Sang; Kim, Se-Kwon

    2013-10-09

    Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome

    Science.gov (United States)

    Khan, Ilvira M.; Pokharel, Yashashwi; Dadu, Razvan T.; Lewis, Dorothy E.; Hoogeveen, Ron C.; Wu, Huaizhu

    2016-01-01

    Context: Postprandial hyperlipidemia has been suggested to contribute to atherogenesis by inducing proinflammatory changes in monocytes. Individuals with metabolic syndrome (MS), shown to have higher blood triglyceride concentration and delayed triglyceride clearance, may thus have increased risk for development of atherosclerosis. Objective: Our objective was to examine fasting levels and effects of a high-fat meal on phenotypes of monocyte subsets in individuals with obesity and MS and in healthy controls. Design, Setting, Participants, Intervention: Individuals with obesity and MS and gender- and age-matched healthy controls were recruited. Blood was collected from participants after an overnight fast (baseline) and at 3 and 5 hours after ingestion of a high-fat meal. At each time point, monocyte phenotypes were examined by multiparameter flow cytometry. Main Outcome Measures: Baseline levels of activation markers and postprandial inflammatory response in each of the three monocyte subsets were measured. Results: At baseline, individuals with obesity and MS had higher proportions of circulating lipid-laden foamy monocytes than controls, which were positively correlated with fasting triglyceride levels. Additionally, the MS group had increased counts of nonclassical monocytes, higher CD11c, CX3CR1, and human leukocyte antigen-DR levels on intermediate monocytes, and higher CCR5 and tumor necrosis factor-α levels on classical monocytes in the circulation. Postprandial triglyceride increases in both groups were paralleled by upregulation of lipid-laden foamy monocytes. MS, but not control, subjects had significant postprandial increases of CD11c and percentages of IL-1β+ and tumor necrosis factor-α+ cells in nonclassical monocytes. Conclusions: Compared to controls, individuals with obesity and MS had increased fasting and postprandial monocyte lipid accumulation and activation. PMID:27575945

  12. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  13. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships.

    Science.gov (United States)

    Pucci, Ferdinando; Venneri, Mary Anna; Biziato, Daniela; Nonis, Alessandro; Moi, Davide; Sica, Antonio; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele

    2009-07-23

    We previously showed that Tie2-expressing monocytes (TEMs) have nonredundant proangiogenic activity in tumors. Here, we compared the gene expression profile of tumor-infiltrating TEMs with that of tumor-associated macrophages (TAMs), spleen-derived Gr1(+)Cd11b(+) neutrophils/myeloid-derived suppressor cells, circulating "inflammatory" and "resident" monocytes, and tumor-derived endothelial cells (ECs) by quantitative polymerase chain reaction-based gene arrays. TEMs sharply differed from ECs and Gr1(+)Cd11b(+) cells but were highly related to TAMs. Nevertheless, several genes were differentially expressed between TEMs and TAMs, highlighting a TEM signature consistent with enhanced proangiogenic/tissue-remodeling activity and lower proinflammatory activity. We validated these findings in models of oncogenesis and transgenic mice expressing a microRNA-regulated Tie2-GFP reporter. Remarkably, resident monocytes and TEMs on one hand, and inflammatory monocytes and TAMs on the other hand, expressed coordinated gene expression profiles, suggesting that the 2 blood monocyte subsets are committed to distinct extravascular fates in the tumor microenvironment. We further showed that a prominent proportion of embryonic/fetal macrophages, which participate in tissue morphogenesis, expressed distinguishing TEM genes. It is tempting to speculate that Tie2(+) embryonic/fetal macrophages, resident blood monocytes, and tumor-infiltrating TEMs represent distinct developmental stages of a TEM lineage committed to execute physiologic proangiogenic and tissue-remodeling programs, which can be co-opted by tumors.

  14. Strenuous physical exercise adversely affects monocyte chemotaxis

    DEFF Research Database (Denmark)

    Czepluch, Frauke S; Barres, Romain; Caidahl, Kenneth

    2011-01-01

    Physical exercise is important for proper cardiovascular function and disease prevention, but it may influence the immune system. We evaluated the effect of strenuous exercise on monocyte chemotaxis. Monocytes were isolated from blood of 13 young, healthy, sedentary individuals participating...... in a three-week training program which consisted of repeated exercise bouts. Monocyte chemotaxis and serological biomarkers were investigated at baseline, after three weeks training and after four weeks recovery. Chemotaxis towards vascular endothelial growth factor-A (VEGF-A) and transforming growth factor...

  15. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Directory of Open Access Journals (Sweden)

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  16. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    Science.gov (United States)

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  17. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    International Nuclear Information System (INIS)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-01-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4"+ T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  18. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor, E-mail: leonorhh@biomedicas.unam.mx

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  19. Statins attenuate polymethylmethacrylate-mediated monocyte activation.

    LENUS (Irish Health Repository)

    Laing, Alan J

    2012-02-03

    BACKGROUND: Periprosthetic osteolysis precipitates aseptic loosening of components, increases the risk of periprosthetic fracture and, through massive bone loss, complicates revision surgery and ultimately is the primary cause for failure of joint arthroplasty. The anti-inflammatory properties of HMG-CoA reductase inhibitors belonging to the statin family are well recognized. We investigated a possible role for status in initiating the first stage of the osteolytic cycle, namely monocytic activation. METHODS: We used an in vitro model of the human monocyte\\/macrophage inflammatory response to poly-methylmethacrylate (PMMA) particles after pretreat-ing cells with cerivastatin, a potent member of the statin family. Cell activation based upon production of TNF-alpha and MCP-1 cytokines was analyzed and the intracellular Raf-MEK-ERK signal transduction pathway was evaluated using western blot analysis, to identify its role in cell activation and in any cerivastatin effects observed. RESULTS: We found that pretreatment with cerivastatin significantly abrogates the production of inflammatory cytokines TNF-alpha and MCP-1 by human monocytes in response to polymethylmethacrylate particle activation. This inflammatory activation and attenuation appear to be mediated through the intracellular Raf-MEK-ERK pathway. INTERPRETATION: We propose that by intervening at the upstream activation stage, subsequent osteoclast activation and osteolysis can be suppressed. We believe that the anti-inflammatory properties of statins may potentially play a prophylactic role in the setting of aseptic loosening, and in so doing increase implant longevity.

  20. Transcriptional profiling of human monocytes identifies the inhibitory receptor CD300a as regulator of transendothelial migration.

    Directory of Open Access Journals (Sweden)

    Sharang Ghavampour

    Full Text Available Local inflammatory responses are characterized by the recruitment of circulating leukocytes from the blood to sites of inflammation, a process requiring the directed migration of leukocytes across the vessel wall and hence a penetration of the endothelial lining. To identify underlying signalling events and novel factors involved in these processes we screened for genes differentially expressed in human monocytes following their adhesion to and passage through an endothelial monolayer. Functional annotation clustering of the genes identified revealed an overrepresentation of those associated with inflammation/immune response, in particular early monocyte to macrophage differentiation. Among the gene products so far not implicated in monocyte transendothelial migration was the inhibitory immune receptor CD300a. CD300a mRNA and protein levels were upregulated following transmigration and engagement of the receptor by anti-CD300a antibodies markedly reduced monocyte transendothelial migration. In contrast, siRNA mediated downregulation of CD300a in human monocytes increased their rate of migration. CD300a colocalized and cosedimented with actin filaments and, when activated, caused F-actin cytoskeleton alterations. Thus, monocyte transendothelial migration is accompanied by an elevation of CD300a which serves an inhibitory function possibly required for termination of the actual transmigration.

  1. Alterations in calcium metabolism during human monocyte activation

    International Nuclear Information System (INIS)

    Scully, S.P.

    1984-01-01

    Human peripheral blood monocytes have been prepared from plateletpheresis residues by counterflow centrifugal elutriation in sufficient quantities to enable quantitative studies of cell calcium. Kinetic analysis of 45 Ca exchange data in resting monocytes was compatible with a model of cellular calcium containing three exchangeable calcium pools. These pools are thought to represent a putative ectocellular pool, a putative cytoplasmic chelated pool, and a putative organelle sequestered pool. Exposure of monocytes to the plant lectin Con A at a concentration that maximally simulated superoxide production caused an increase in the size and a doubling in the exchange rate of the putative cytoplasmic pool without a change in the other cellular pools. The cytoplasmic ionized calcium, [Ca]/sub i/, measured with the fluorescent probe, Quin 2 rose from a resting level of 83 nM to 165 mN within 30 sec of exposure to Con A. This increase in cytoplasmic calcium preceded the release of superoxide radicals. Calcium transport and calcium ATPase activities were identified and characterized in plasma membrane vesicles prepared from monocytes. Both activities were strictly dependent on ATP and Mg, had a Km/sub Ca/ in the submicromolar range and were stimulated by calmodulin. Thus, it seems that monocyte calcium is in a dynamic steady state that is a balance between efflux and influx rates, and that the activation of these cells results in the transition to a new steady state. The alteration in [Ca]/sub i/ that accompany the new steady state are essential for superoxide production by human monocytes

  2. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Laura Julia Starost

    2016-10-01

    Full Text Available Pertussis toxin (PTx, the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood–brain barrier (BBB in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218’s effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB.

  3. Platelet density per monocyte predicts adverse events in patients after percutaneous coronary intervention.

    Science.gov (United States)

    Rutten, Bert; Roest, Mark; McClellan, Elizabeth A; Sels, Jan W; Stubbs, Andrew; Jukema, J Wouter; Doevendans, Pieter A; Waltenberger, Johannes; van Zonneveld, Anton-Jan; Pasterkamp, Gerard; De Groot, Philip G; Hoefer, Imo E

    2016-01-01

    Monocyte recruitment to damaged endothelium is enhanced by platelet binding to monocytes and contributes to vascular repair. Therefore, we studied whether the number of platelets per monocyte affects the recurrence of adverse events in patients after percutaneous coronary intervention (PCI). Platelet-monocytes complexes with high and low median fluorescence intensities (MFI) of the platelet marker CD42b were isolated using cell sorting. Microscopic analysis revealed that a high platelet marker MFI on monocytes corresponded with a high platelet density per monocyte while a low platelet marker MFI corresponded with a low platelet density per monocyte (3.4 ± 0.7 vs 1.4 ± 0.1 platelets per monocyte, P=0.01). Using real-time video microscopy, we observed increased recruitment of high platelet density monocytes to endothelial cells as compared with low platelet density monocytes (P=0.01). Next, we classified PCI scheduled patients (N=263) into groups with high, medium and low platelet densities per monocyte and assessed the recurrence of adverse events. After multivariate adjustment for potential confounders, we observed a 2.5-fold reduction in the recurrence of adverse events in patients with a high platelet density per monocyte as compared with a low platelet density per monocyte [hazard ratio=0.4 (95% confidence interval, 0.2-0.8), P=0.01]. We show that a high platelet density per monocyte increases monocyte recruitment to endothelial cells and predicts a reduction in the recurrence of adverse events in patients after PCI. These findings may imply that a high platelet density per monocyte protects against recurrence of adverse events.

  4. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    Science.gov (United States)

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  5. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  6. Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis.

    Science.gov (United States)

    Yamaguchi, Yukie; Kuwana, Masataka

    2013-02-01

    New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.

  7. Cigarette smoke extract counteracts atheroprotective effects of high laminar flow on endothelial function

    Directory of Open Access Journals (Sweden)

    Sindy Giebe

    2017-08-01

    Full Text Available Tobacco smoking and hemodynamic forces are key stimuli in the development of endothelial dysfunction and atherosclerosis. High laminar flow has an atheroprotective effect on the endothelium and leads to a reduced response of endothelial cells to cardiovascular risk factors compared to regions with disturbed or low laminar flow. We hypothesize that the atheroprotective effect of high laminar flow could delay the development of endothelial dysfunction caused by cigarette smoking. Primary human endothelial cells were stimulated with increasing dosages of aqueous cigarette smoke extract (CSEaq. CSEaq reduced cell viability in a dose-dependent manner. The main mediator of cellular adaption to oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2 and its target genes heme oxygenase (decycling 1 (HMOX1 or NAD(PH quinone dehydrogenase 1 (NQO1 were strongly increased by CSEaq in a dose-dependent manner. High laminar flow induced elongation of endothelial cells in the direction of flow, activated the AKT/eNOS pathway, increased eNOS expression, phosphorylation and NO release. These increases were inhibited by CSEaq. Pro-inflammatory adhesion molecules intercellular adhesion molecule-1 (ICAM1, vascular cell adhesion molecule-1 (VCAM1, selectin E (SELE and chemokine (C-C motif ligand 2 (CCL2/MCP-1 were increased by CSEaq. Low laminar flow induced VCAM1 and SELE compared to high laminar flow. High laminar flow improved endothelial wound healing. This protective effect was inhibited by CSEaq in a dose-dependent manner through the AKT/eNOS pathway. Low as well as high laminar flow decreased adhesion of monocytes to endothelial cells. Whereas, monocyte adhesion was increased by CSEaq under low laminar flow, this was not evident under high laminar flow.This study shows the activation of major atherosclerotic key parameters by CSEaq. Within this process, high laminar flow is likely to reduce the harmful effects of CSEaq to a certain degree. The

  8. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  9. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    International Nuclear Information System (INIS)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  10. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-01-01

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-α-stimulated monocytes to endothelial cells and suppressed the TNF-α induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-α-induced nuclear factor-κB activation, which was attenuated by pretreatment with N G -nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: ► Puerarin induced the phosphorylation of eNOS and the production of NO. ► Puerarin activated eNOS through ER-dependent PI3-kinase and Ca 2+ -dependent AMPK. ► Puerarin-induced NO was involved in the inhibition of NF-kB activation. ► Puerarin may help for prevention of vascular dysfunction and diabetes.

  11. Mycobacterium leprae alters classical activation of human monocytes in vitro.

    Science.gov (United States)

    Fallows, Dorothy; Peixoto, Blas; Kaplan, Gilla; Manca, Claudia

    2016-01-01

    Macrophages play a central role in the pathogenesis of leprosy, caused by Mycobacterium leprae. The polarized clinical presentations in leprosy are associated with differential immune activation. In tuberculoid leprosy, macrophages show a classical activation phenotype (M1), while macrophages in lepromatous disease display characteristics of alternative activation (M2). Bacille Calmette-Guérin (BCG) vaccination, which protects against leprosy, can promote sustained changes in monocyte response to unrelated pathogens and may preferentially direct monocytes towards an M1 protective phenotype. We previously reported that M. leprae can dampen the response of naïve human monocytes to a strong inducer of pro-inflammatory cytokines, such as BCG. Here, we investigated the ability of the pathogen to alter the direction of macrophage polarization and the impact of BCG vaccination on the monocyte response to M. leprae. We show that in vitro exposure of monocytes from healthy donors to M. leprae interferes with subsequent M1 polarization, indicated by lower levels of M1-associated cytokine/chemokines released and reduced expression of M1 cell surface markers. Exposure to M. leprae phenolic glycolipid (PGL) 1, instead of whole bacteria, demonstrated a similar effect on M1 cytokine/chemokine release. In addition, we found that monocytes from 10-week old BCG-vaccinated infants released higher levels of the pro-inflammatory cytokines TNF-α and IL-1β in response to M. leprae compared to those from unvaccinated infants. Exposure to M. leprae has an inhibitory effect on M1 macrophage polarization, likely mediated through PGL-1. By directing monocyte/macrophages preferentially towards M1 activation, BCG vaccination may render the cells more refractory to the inhibitory effects of subsequent M. leprae infection.

  12. Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells

    Science.gov (United States)

    Hao, Wen-Rui; Sung, Li-Chin; Chen, Chun-Chao; Chen, Jin-Jer

    2018-01-01

    Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol. PMID:29854096

  13. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  14. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  15. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  16. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  17. Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS

    Science.gov (United States)

    Campbell, Jennifer H.; Burdo, Tricia H.; Autissier, Patrick; Bombardier, Jeffrey P.; Westmoreland, Susan V.; Soulas, Caroline; González, R. Gilberto; Ratai, Eva-Maria; Williams, Kenneth C.

    2011-01-01

    Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline's functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. PMID:21494695

  18. Leonurine protects against tumor necrosis factor-α-mediated inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Liu, Xinhua; Pan, Lilong; Wang, Xianli; Gong, Qihai; Zhu, Yi Zhun

    2012-05-01

    Leonurine, a bioactive alkaloid compound in Herba leonuri, has various pharmacological activities, including antioxidant and anti-apoptotic capacities. This study was conducted to test the hypothesis that leonurine was able to attenuate tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) activation and the underlying molecular mechanisms. Mitogen-activated protein kinases (MAPK) activation, nuclear factor-κB (NF-κB) activation, and inflammatory mediators expression were detected by Western blot or enzyme-liked immunosorbent assay, intracellular reactive oxygen species (ROS) and NF-κB p65 translocation were measured by immunofluorescence, endothelial cell-monocyte interaction was detected by microscope. Leonurine inhibited U937 cells adhesion to TNF-α-activated HUVEC in a concentration dependent manner. Treatment with leonurine blocked TNF-α-induced mRNA and protein expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), cyclooxygenase-2, and monocyte chemoattractant protein-1 in endothelial cells. In addition, leonurine attenuated TNF-α-induced intracellular ROS production in HUVEC. Furthermore, leonurine also suppressed the TNF-α-activated p38 phosphorylation and IκBα degradation. Subsequently, reduced NF-κB p65 phosphorylation, nuclear translocation, and DNA-binding activity were also observed. Our results demonstrated for the first time that the anti-inflammatory properties of leonurine in endothelial cells, at least in part, through suppression of NF-κB activation, which may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Vascular endothelial genes that are responsive to tumor necrosis factor-alpha in vitro are expressed in atherosclerotic lesions, including inhibitor of apoptosis protein-1, stannin, and two novel genes

    NARCIS (Netherlands)

    Horrevoets, A. J.; Fontijn, R. D.; van Zonneveld, A. J.; de Vries, C. J.; ten Cate, J. W.; Pannekoek, H.

    1999-01-01

    Activation and dysfunction of endothelial cells play a prominent role in patho-physiological processes such as atherosclerosis. We describe the identification by differential display of 106 cytokine-responsive gene fragments from endothelial cells, activated by monocyte conditioned medium or tumor

  20. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats

    Directory of Open Access Journals (Sweden)

    Yuko Inami

    2014-01-01

    Full Text Available Aim. Chronic kidney disease (CKD represents endothelial dysfunction. Monocyte adhesion is recognized as the initial step of arteriosclerosis. Indoxyl sulfate (IS is considered to be a risk factor for arteriosclerosis in CKD. Oral adsorbent AST-120 retards deterioration of renal function, reducing accumulation of IS. In the present study, we determined the monocyte adhesion in the adenine-induced uremic rats in vivo and effects of AST-120 on the adhesion molecules. Methods. Twenty-four rats were divided into control, control+AST-120, adenine, and adenine+AST-120 groups. The number of monocytes adherent to the endothelium of thoracic aorta by imaging the entire endothelial surface and the mRNA expressions of adhesion and atherosclerosis-related molecules were examined on day 49. The mRNA expressions of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells were also examined. Results. Adenine increased the number of adherent monocytes, and AST-120 suppressed the increase. The monocyte adhesion was related to serum creatinine and IS in sera. Overexpression of VCAM-1 and TGF-β1 mRNA in the arterial walls was observed in uremic rats. IS induced increase of the ICAM-1 and VCAM-1 mRNA expressions in vitro. Conclusion. It appears that uremic condition introduces the monocyte adhesion to arterial wall and AST-120 might inhibit increasing of the monocyte adherence with CKD progression.

  1. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  2. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients.

    Directory of Open Access Journals (Sweden)

    Petronela Ancuta

    2008-06-01

    Full Text Available Elevated plasma lipopolysaccharide (LPS, an indicator of microbial translocation from the gut, is a likely cause of systemic immune activation in chronic HIV infection. LPS induces monocyte activation and trafficking into brain, which are key mechanisms in the pathogenesis of HIV-associated dementia (HAD. To determine whether high LPS levels are associated with increased monocyte activation and HAD, we obtained peripheral blood samples from AIDS patients and examined plasma LPS by Limulus amebocyte lysate (LAL assay, peripheral blood monocytes by FACS, and soluble markers of monocyte activation by ELISA. Purified monocytes were isolated by FACS sorting, and HIV DNA and RNA levels were quantified by real time PCR. Circulating monocytes expressed high levels of the activation markers CD69 and HLA-DR, and harbored low levels of HIV compared to CD4(+ T-cells. High plasma LPS levels were associated with increased plasma sCD14 and LPS-binding protein (LBP levels, and low endotoxin core antibody levels. LPS levels were higher in HAD patients compared to control groups, and were associated with HAD independently of plasma viral load and CD4 counts. LPS levels were higher in AIDS patients using intravenous heroin and/or ethanol, or with Hepatitis C virus (HCV co-infection, compared to control groups. These results suggest a role for elevated LPS levels in driving monocyte activation in AIDS, thereby contributing to the pathogenesis of HAD, and provide evidence that cofactors linked to substance abuse and HCV co-infection influence these processes.

  3. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  4. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  5. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  6. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  7. Extracellular Histones Increase Tissue Factor Activity and Enhance Thrombin Generation by Human Blood Monocytes.

    Science.gov (United States)

    Gould, Travis J; Lysov, Zakhar; Swystun, Laura L; Dwivedi, Dhruva J; Zarychanski, Ryan; Fox-Robichaud, Alison E; Liaw, Patricia C

    2016-12-01

    Sepsis is characterized by systemic activation of inflammatory and coagulation pathways in response to infection. Recently, it was demonstrated that histones released into the circulation by dying/activated cells may contribute to sepsis pathology. Although the ability of extracellular histones to modulate the procoagulant activities of several cell types has been investigated, the influence of histones on the hemostatic functions of circulating monocytes is unknown. To address this, we investigated the ability of histones to modulate the procoagulant potential of THP-1 cells and peripheral blood monocytes, and examined the effects of plasmas obtained from septic patients to induce a procoagulant phenotype on monocytic cells. Tissue factor (TF) activity assays were performed on histone-treated THP-1 cells and blood monocytes. Exposure of monocytic cells to histones resulted in increases in TF activity, TF antigen, and phosphatidylserine exposure. Histones modulate the procoagulant activity via engagement of Toll-like receptors 2 and 4, and this effect was abrogated with inhibitory antibodies. Increased TF activity of histone-treated cells corresponded to enhanced thrombin generation in plasma determined by calibrated automated thrombography. Finally, TF activity was increased on monocytes exposed to plasma from septic patients, an effect that was attenuated in plasma from patients receiving unfractionated heparin (UFH). Our studies suggest that increased levels of extracellular histones found in sepsis contribute to dysregulated coagulation by increasing TF activity of monocytes. These procoagulant effects can be partially ameliorated in sepsis patients receiving UFH, thereby identifying extracellular histones as a potential therapeutic target for sepsis treatment.

  8. CD16+ monocytes and skewed macrophage polarization toward M2 type hallmark heart transplant acute cellular rejection

    NARCIS (Netherlands)

    T.P.P. van den Bosch (Thierry); K. Caliskan (Kadir); M.D. Kraaij (Marina); A.A. Constantinescu (Alina); O.C. Manintveld (Olivier); P.J. Leenen (Pieter); J. von der Thusen (Jan); M.C. Clahsen-van Groningen (Marian); C.C. Baan (Carla); A.T. Rowshani (Ajda)

    2017-01-01

    textabstractBackground: During acute heart transplant rejection, infiltration of lymphocytes and monocytes is followed by endothelial injury and eventually myocardial fibrosis. To date, no information is available on monocyte-macrophage-related cellular shifts and their polarization status during

  9. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Science.gov (United States)

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  10. Monocytic leukemias.

    Science.gov (United States)

    Shaw, M T

    1980-05-01

    The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.

  11. Effects of 17β-estradiol on the release of monocyte chemotactic protein-1 and MAPK activity in monocytes stimulated with peritoneal fluid from endometriosis patients.

    Science.gov (United States)

    Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Na, Young-Jin; Kwak, Jong-Young; Lee, Kyu-Sup

    2012-03-01

    Hormones and inflammation have been implicated in the pathological process of endometriosis; therefore, we investigated the combined effects of 17β-estradiol (E2) and peritoneal fluid obtained from patients with endometriosis (ePF) or a control peritoneal fluid (cPF) obtained from patients without endometriosis on the release of monocyte chemotactic protein-1 (MCP-1) by monocytes and the role of signaling pathways. Monocytes were cultured with ePF and cPF in the presence of E2; the MCP-1 levels in the supernatants were then measured by ELISA. In addition, mitogen activated protein kinase (MAPK) activation was measured by Western blotting of phosphorylated proteins. E2 down-regulated MCP-1 release by lipopolysaccharide- or cPF-treated monocytes, but failed to suppress its release by ePF-treated monocytes. The release of MCP-1 by ePF- and cPF-treated monocytes was efficiently abrogated by p38 mitogen activated protein kinase (MAPK) inhibitors; however, the MCP-1 release by cPF-treated monocytes, but not by ePF-treated monocytes, was blocked by a MAPK kinase inhibitor. In addition, ePF and cPF induced the phosphorylation of extracellular stress regulated kinase (ERK)1/2, p38 MAPK and c-Jun N-terminal kinase (JNK). E2 decreased the phosphorylation of p38 MAPK, but not ERK1/2 in ePF-treated monocytes; however, E2 decreased the phosphorylation of p38 MAPK, ERK1/2 and JNK in cPF-treated monocytes. The ability of E2 to modulate MCP-1 production is impaired in ePF-treated monocytes, which may be related to regulation of MAPK activity. These findings suggest that the failure of E2 to suppress ePF-treated production of MCP-1 may be involved in the pathogenesis of endometriosis. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  12. Niacin results in reduced monocyte adhesion in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Tavintharan, S; Woon, K; Pek, L T; Jauhar, N; Dong, X; Lim, S C; Sum, C F

    2011-03-01

    Patients with type 2 diabetes have increased expression of cell adhesion molecules (CAMs). CAMs and monocyte adhesion mediate essential processes in atherogenesis. It remains unclear if monocytes from patients on niacin have reduced adhesion function. We studied the variation of monocyte adhesion in patients with type 2 diabetes and low HDL-cholesterol, taking either extended release niacin (Niaspan®, Abbott Laboratories) or controls not on niacin. Biochemical parameters including adiponectin, CAMs and fresh monocytes from whole blood for adhesion assays, were studied at baseline and 12-weeks. Niacin 1500 mg daily raised HDL-cholesterol from 0.8 mmol/l (95% CI: 0.7-0.9) to 0.9 mmol/l (95% CI: 0.8-1.1), p=0.10, and significantly reduced PECAM-1 by 24.9% (95% CI: 10.9-39.0; p<0.05), increased adiponectin by 30.5% (95% CI: 14.1-47.0; p<0.05), with monocyte adhesion reduced by 9.2% (95%CI: 0.7-17.7; p<0.05) in endothelial cells treated in basal conditions, and 7.8% (95% CI: 3.1-12.5; p<0.05) after TNF-α stimulation. Monocytes isolated from patients on niacin had reduced adhesion to endothelial cells. Our findings suggest niacin has broad range of effects apart from lipid-modification, and these could be important in cardiovascular risk reduction. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Dual mechanisms of NF-κB inhibition in carnosol-treated endothelial cells

    International Nuclear Information System (INIS)

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.; Wung, B.-S.; Huang, G.-D.; Jian, T.-Y.; Sun, Y.-W.

    2010-01-01

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IκBα in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-β phosphorylation in pretreatments of less than 3 h. In TNFα-treated ECs, NF-κB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFα-induced singling pathways through the inhibition of IKK-β activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.

  14. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection

    OpenAIRE

    van den Bosch, Thierry P. P.; Caliskan, Kadir; Kraaij, Marina D.; Constantinescu, Alina A.; Manintveld, Olivier C.; Leenen, Pieter J. M.; von der Th?sen, Jan H.; Clahsen-van Groningen, Marian C.; Baan, Carla C.; Rowshani, Ajda T.

    2017-01-01

    textabstractBackground: During acute heart transplant rejection, infiltration of lymphocytes and monocytes is followed by endothelial injury and eventually myocardial fibrosis. To date, no information is available on monocyte-macrophage-related cellular shifts and their polarization status during rejection. Here, we aimed to define and correlate monocyte-macrophage endomyocardial tissue profiles obtained at rejection and time points prior to rejection, with corresponding serial blood samples ...

  15. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    2012-10-01

    Full Text Available Different etiologies such as drug toxicity, acute viral hepatitis B or acetaminophen poisoning can cause acute liver injury (ALI or even acute liver failure (ALF. Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF, interleukin-6 (IL-6, IL-1-beta or monocyte chemoattractant protein 1 (MCP-1, CCL2 as well as activating other non-parenchymal liver cells, e.g. endothelial or hepatic stellate cells (HSC. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g. via caspase activation, but also activate protective signaling pathways, e.g. via nuclear factor kappa B (NF-kB. Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+ monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1 are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.

  16. Effects of Platelets on Platelet Concentrate Product on the Activation of Human Peripheral Blood Monocyte Cells

    Directory of Open Access Journals (Sweden)

    N Sadat Razavi Hoseini

    2016-02-01

    Full Text Available Introduction: Monocytes can interact with platelets due to their surface molecules such as P-selectin glycoprotein ligand-1 (PSGL-1, and form monocyte-platelet complex. In the present study, the effects of platelets interaction of platelet concentrates (PCs and peripheral blood monocytes were investigated in vitro as a model to predict the probable interactions of these cells and consequently activation of monocytes. Methods: In this experimental study, units of whole blood and PCs were prepared from Tehran Blood Transfusion Center. After isolation of monocytes from the whole blood, these cells were treated with PC- derived platelets. The activation of monocytes was assessed before and after treatment by the analysis of the respiratory burst of monocytes using dihydrorhodamine 123 (DHR-123. The study data were analyzed using the non-parametric test of Wilcoxon. Results: The purity of monocytes was determined as 86.1±2 using NycoPrep method. The respiratory burst of monocytes was increased after exposure with platelets. In fact, the difference was significant when platelets were used on the 5th day of storage (P=0.001. Conclusions: The study findings revealed that platelets have an efficient capacity to stimulate and activate monocytes. The possible involvement of molecules in the interaction of platelet-monocyte demand to be further studied in future.

  17. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mytych, Jennifer, E-mail: jennifermytych@gmail.com [Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Wos, Izabela; Solek, Przemyslaw; Koziorowski, Marek [Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland); Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa (Poland)

    2017-01-15

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we show that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.

  18. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    International Nuclear Information System (INIS)

    Mytych, Jennifer; Wos, Izabela; Solek, Przemyslaw; Koziorowski, Marek

    2017-01-01

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we show that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.

  19. Thioredoxin 80-Activated-Monocytes (TAMs) Inhibit the Replication of Intracellular Pathogens

    DEFF Research Database (Denmark)

    Cortes-Bratti, Ximena; Brasseres, Eugenie; Herrera-Rodriquez, Fabiola

    2011-01-01

    Background: Thioredoxin 80 (Trx80) is an 80 amino acid natural cleavage product of Trx, produced primarily by monocytes. Trx80 induces differentiation of human monocytes into a novel cell type, named Trx80-activated-monocytes (TAMs). Principal Findings: In this investigation we present evidence...... for a role of TAMs in the control of intracellular bacterial infections. As model pathogens we have chosen Listeria monocytogenes and Brucella abortus which replicate in the cytosol and the endoplasmic reticulum respectively. Our data indicate that TAMs efficiently inhibit intracellular growth of both L...... in TAMs compared to that observed in control cells 24 h post-infection, indicating that TAMs kill bacteria by preventing their escape from the endosomal compartments, which progress into a highly degradative phagolysosome. Significance: Our results show that Trx80 potentiates the bactericidal activities...

  20. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    International Nuclear Information System (INIS)

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-01-01

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  1. Synthesis of sFlt-1 by platelet-monocyte aggregates contributes to the pathogenesis of preeclampsia

    Science.gov (United States)

    Major, Heather D.; Cambell, Robert A.; Silver, Robert M.; Branch, D. Ware; Weyrich, Andrew S.

    2014-01-01

    Objective Soluble fms-like tyrosine kinase (sFlt-1) is an important mediator in the pathogenesis of preeclampsia. We sought to determine if platelet-monocyte aggregates (PMAs) produced sFlt-1 and if PMAs contributed to sFlt-1 production in preeclampsia. Study Design Case-control study of sFlt-1 release from PMAs using blood samples from women with preeclampsia matched by gestational age to pregnant controls. A third group of nonpregnant, reproductive-age women comprised an additional control group. Experiments were also performed using blood from non-pregnant women to elucidate if inducing PMAs could stimulate sFlt-1 production, and if so, to determine the necessary receptors and pathways. Results Women with preeclampsia had increased total Flt-1 concentrations in platelets and monocytes at baseline compared to pregnant controls (25 vs. 10 pg/ml, p=0.0003). sFlt-1 production was elicited from monocytes incubated with thrombin-activated platelets from non-pregnant women. sFlt-1 production was regulated at the transcriptional level by p38 and NF-κB dependent pathways. Conclusion Activated platelets in preeclampsia bind monocytes to generate sFlt-1. PMAs are a previously unrecognized source of sFlt-1 that may contribute to endothelial dysfunction and systemic inflammation commonly observed in preeclampsia. PMID:24440566

  2. Development of pro-inflammatory phenotype in monocytes after engulfing Hb-activated platelets in hemolytic disorders.

    Science.gov (United States)

    Singhal, Rashi; Chawla, Sheetal; Rathore, Deepak K; Bhasym, Angika; Annarapu, Gowtham K; Sharma, Vandana; Seth, Tulika; Guchhait, Prasenjit

    2017-02-01

    Monocytes and macrophage combat infections and maintain homeostatic balance by engulfing microbes and apoptotic cells, and releasing inflammatory cytokines. Studies have described that these cells develop anti-inflammatory properties upon recycling the free-hemoglobin (Hb) in hemolytic conditions. While investigating the phenotype of monocytes in two hemolytic disorders-paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD), we observed a high number of pro-inflammatory (CD14 + CD16 hi ) monocytes in these patients. We further investigated in vitro the phenotype of these monocytes and found an estimated 55% of CD14 + cells were transformed into the CD14 + CD16 hi subset after engulfing Hb-activated platelets. The CD14 + CD16 hi monocytes, which were positive for both intracellular Hb and CD42b (platelet marker), secreted significant amounts of TNF-α and IL-1β, unlike monocytes treated with only free Hb, which secreted more IL-10. We have shown recently the presence of a high number of Hb-bound hyperactive platelets in patients with both diseases, and further investigated if the monocytes engulfed these activated platelets in vivo. As expected, we found 95% of CD14 + CD16 hi monocytes with both intracellular Hb and CD42b in both diseases, and they expressed high TNF-α. Furthermore our data showed that these monocytes whether from patients or developed in vitro after treatment with Hb-activated platelets, secreted significant amounts of tissue factor. Besides, these CD14 + CD16 hi monocytes displayed significantly decreased phagocytosis of E. coli. Our study therefore suggests that this alteration of monocyte phenotype may play a role in the increased propensity to pro-inflammatory/coagulant complications observed in these hemolytic disorders-PNH and SCD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  4. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    Science.gov (United States)

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Directory of Open Access Journals (Sweden)

    Devyn D Gilette

    2014-04-01

    Full Text Available Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.

  6. Investigation of Gelatin Polypeptides of Jellyfish (Rhopilema esculentum for Their Antioxidant Activity in vitro

    Directory of Open Access Journals (Sweden)

    Yong-Liang Zhuang

    2010-01-01

    Full Text Available Jellyfish gelatin was hydrolyzed by different proteases to obtain antioxidative polypeptides. The gelatin hydrolysate obtained by progressive hydrolysis using trypsin and Properase E exhibited the highest hydrolysis degree and antioxidant activity. Three series of gelatin polypeptides (SCP1, SCP2 and SCP3 were obtained by ultrafiltrating the gelatin hydrolysate through molecular mass cut-off membranes of 10, 6 and 2 kDa, respectively. Amino acid composition analysis showed that SCP3 had the highest total hydrophobic amino acid content. The in vitro antioxidant tests demonstrated that SCP2 had the strongest hydroxyl radical and hydrogen peroxide scavenging activities and metal chelating ability, while SCP3 showed the highest reducing power, antioxidant activity in linoleic acid emulsion system and superoxide anion radical scavenging activity. The results support the feasibility of jellyfish gelatin as a natural antioxidant polypeptide provider, and enzymatic hydrolysis and ultrafiltration could be potent future processing technologies to utilize the abundant jellyfish resource.

  7. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2010-04-15

    The hereditary disorder alpha-1 antitrypsin (AAT) deficiency results from mutations in the SERPINA1 gene and presents with emphysema in young adults and liver disease in childhood. The most common form of AAT deficiency occurs because of the Z mutation, causing the protein to fold aberrantly and accumulate in the endoplasmic reticulum (ER). This leads to ER stress and contributes significantly to the liver disease associated with the condition. In addition to hepatocytes, AAT is also synthesized by monocytes, neutrophils, and epithelial cells. In this study we show for the first time that the unfolded protein response (UPR) is activated in quiescent monocytes from ZZ individuals. Activating transcription factor 4, X-box binding protein 1, and a subset of genes involved in the UPR are increased in monocytes from ZZ compared with MM individuals. This contributes to an inflammatory phenotype with ZZ monocytes exhibiting enhanced cytokine production and activation of the NF-kappaB pathway when compared with MM monocytes. In addition, we demonstrate intracellular accumulation of AAT within the ER of ZZ monocytes. These are the first data showing that Z AAT protein accumulation induces UPR activation in peripheral blood monocytes. These findings change the current paradigm regarding lung inflammation in AAT deficiency, which up until now was derived from the protease-anti-protease hypothesis, but which now must include the exaggerated inflammatory response generated by accumulated aberrantly folded AAT in circulating blood cells.

  8. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  9. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  10. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression.

    Science.gov (United States)

    Calabriso, Nadia; Scoditti, Egeria; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-03-01

    The aim of the study was to evaluate the vascular anti-inflammatory effects of polyphenolic extracts from two typical South Italy red wines, the specific contribution of individual polyphenols and the underlying mechanisms of action. Human endothelial cells were incubated with increasing concentrations (1-50 μg/mL) of Primitivo and Negroamaro polyphenolic extracts (PWPE and NWPE, respectively) or pure polyphenols (1-25 μmol/L), including hydroxycinnamic acids (p-coumaric, caffeic and caftaric acids), flavonols (kaempferol, quercetin, myricetin) or stilbenes (trans-resveratrol, trans-piceid) before stimulation with lipopolysaccharide. Through multiple assays, we analyzed the endothelial-monocyte adhesion, the endothelial expression of adhesion molecules (ICAM-1, VCAM-1 and E-Selectin), monocyte chemoattractant protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF), as well as ROS intracellular levels and the activation of NF-κB and AP-1. Both PWPE and NWPE, already at 1 μg/mL, inhibited monocyte adhesion to stimulated endothelial cells, a key event in triggering vascular inflammation. They down-regulated the expression of adhesion molecules, ICAM-1, VCAM-1, E-Selectin, as well as MCP-1 and M-CSF, at mRNA and protein levels. All polyphenols reduced intracellular ROS, and everything, except caftaric acid, inhibited the endothelial expression of adhesion molecules and MCP-1, although with different potency. Flavonols and resveratrol significantly reduced also the endothelial expression and release of M-CSF. The decrease in endothelial inflammatory gene expression was related to the inhibition of NF-κB and AP-1 activation but not to intracellular oxidative stress. This study showed multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts and indentified specific bioactive polyphenols which could counteract inflammatory diseases including atherosclerosis.

  11. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli.

    Science.gov (United States)

    Qiao, Huan; Liu, Yan; Veach, Ruth A; Wylezinski, Lukasz; Hawiger, Jacek

    2014-08-08

    A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists. © 2014 by The American Society for Biochemistry and Molecular Biology

  12. Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.

    Science.gov (United States)

    Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D

    2017-07-01

    Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.

  13. Plasminogen activator inhibitor-2 in patients with monocytic leukemia.

    Science.gov (United States)

    Scherrer, A; Kruithof, E K; Grob, J P

    1991-06-01

    Plasma and tumor cells from 103 patients with leukemia or lymphoma at initial presentation were investigated for the presence of plasminogen activator inhibitor-2 (PAI-2) antigen, a potent inhibitor of urokinase. PAI-2 was detected in plasma and leukemic cells of the 21 patients with leukemia having a monocytic component [acute myelomonocytic (M4), acute monoblastic (M5), and chronic myelomonocytic leukemias], and in the three patients with acute undifferentiated myeloblastic leukemia (M0). In contrast, this serine protease inhibitor was undetectable in 79 patients with other subtypes of acute myeloid leukemia or other hematological malignancies. Serial serum PAI-2 determinations in 16 patients with acute leukemia at presentation, during therapy, remission, and relapse revealed that in the five patients with M4-M5, elevated PAI-2 levels rapidly normalized under therapy and during remission, but increased again in the patients with a relapse associated with an M4-M5 phenotype. Thus, PAI-2 seems to be a marker highly specific for the active stages of monocytic leukemia, i.e. presentation and relapse. The presence of PAI-2 in the plasma and cells of patients with M0 may give a clue to a monocytic origin of these cells.

  14. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W

    2014-01-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here, for the ...

  15. Blood Monocyte Subsets and Selected Cardiovascular Risk Markers in Rheumatoid Arthritis of Short Duration in relation to Disease Activity

    Directory of Open Access Journals (Sweden)

    Ewa Klimek

    2014-01-01

    Full Text Available Objectives. To evaluate blood monocyte subsets and functional monocyte properties in patients with rheumatoid arthritis (RA of short duration in the context of cardiovascular (CV risk and disease activity. Methods. We studied conventional markers of CV risk, intima media thickness (IMT, and blood monocyte subsets in 27 patients aged 41 ± 10 years with RA of short duration (median 12 months and 22 healthy controls. The RA subjects were divided into low (DAS28: 2.6–5.1 and high (DAS28 > 5.1 disease activity. Results. RA patients exhibited increased levels of intermediate (CD14++CD16+ monocytes with decreased CD45RA expression compared to controls, increased counts of classical (CD14++CD16− monocytes, and decreased percentages of nonclassical (CD14+CD16++ monocytes. Patients with high disease activity had lower HLA DR expression on classical monocytes compared to low disease activity patients. There were no differences in monocyte subsets between subjects with DAS > 5.1 and DAS ≤ 5.1. There were no significant intergroup differences in IMT and the majority of classical CV risk factors. Conclusions. Patients with RA of short duration show alteration in peripheral blood monocyte subsets despite the fact that there is no evidence of subclinical atherosclerosis. Disease activity assessed with DAS28 was associated with impaired functional properties but not with a shift in monocyte subpopulations.

  16. Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors

    DEFF Research Database (Denmark)

    Hautmann, Matthias; Friis, Ulla G; Desch, Michael

    2007-01-01

    Besides of its functional role in the nervous system, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of cardiovascular function. Therefore, PACAP is a potent vasodilator in several vascular beds, including the renal vasculature. Because...

  17. Increased C-C chemokine receptor 2 gene expression in monocytes of severe obstructive sleep apnea patients and under intermittent hypoxia.

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Shih-Wei; Chang, Ying-Ling; Liao, Hsiang-Ruei; Lin, Yu-Sheng; Chao, I-Ju; Lin, Yuling; Pang, Jong-Hwei S

    2014-01-01

    Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. The chemotaxis and adhesion of monocytes to the endothelium in the early atherosclerosis is important. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the chemotaxis and adhesion of monocytes. Peripheral blood was sampled from 54 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of C-C chemokine receptor 2 (CCR2). The effect of intermittent hypoxia on the regulation and function of CCR2 was investigated on THP-1 monocytic cells and monocytes. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. Transwell filter migration assay and cell adhesion assay were performed to study the chemotaxis and adhesion of monocytes. Monocytic CCR2 gene expression was found to be increased in severe OSA patients and higher levels were detected after sleep. Intermittent hypoxia increased the CCR2 expression in THP-1 monocytic cells even in the presence of TNF-α and CRP. Intermittent hypoxia also promoted the MCP-1-mediated chemotaxis and adhesion of monocytes to endothelial cells. Furthermore, inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of monocytic CCR2 expression by intermittent hypoxia. This is the first study to demonstrate the increase of CCR2 gene expression in monocytes of severe OSA patients. Monocytic CCR2 gene expression can be induced under intermittent hypoxia which contributes to the chemotaxis and adhesion of monocytes.

  18. Protein energy malnutrition increases arginase activity in monocytes and macrophages.

    Science.gov (United States)

    Corware, Karina; Yardley, Vanessa; Mack, Christopher; Schuster, Steffen; Al-Hassi, Hafid; Herath, Shanthi; Bergin, Philip; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Kropf, Pascale

    2014-01-01

    Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

  19. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Ivanova

    2016-01-01

    Full Text Available Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient’s bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization.

  20. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Mary Anna Venneri

    Full Text Available Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs, which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1 normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, P<0.01; 2 prevents STZ-induced tissue inflammatory infiltration (4-fold increase in F4/80+ macrophages in diabetic vs. control mice by increasing renal and heart anti-inflammatory TEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P <0.01, and 11.6 ± 2.9% in CTRL mice; 3 reduces vascular inflammatory proteins (iNOS, COX2, VCAM-1 promoting tissue protection; 4 lowers monocyte adhesion to human endothelial cells in vitro through the TIE2 receptor. All these changes occurred independently from changes of glycemic status. In summary, we demonstrate that circulating renal and cardiac TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like to alternative (M2-like/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent

  1. (−-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Jieliang

    2012-07-01

    Full Text Available Abstract Background (−-Epigallocatechin gallate (EGCG is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS induces inflammatory cytokine production and impairs blood–brain barrier (BBB integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs and BBB permeability. Methods The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2 was determined by quantitative real time PCR (qRT-PCR and ELISA. Intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule (VCAM in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin and immunofluorescence staining (Claudin 5 and ZO-1. The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER. NF-kB activation was measured by luciferase assay. Results EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5 in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG. Conclusions Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

  2. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Science.gov (United States)

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the

  3. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Directory of Open Access Journals (Sweden)

    Helena Messlinger

    2018-01-01

    Full Text Available Activated natural killer (NK cells release interferon (IFN-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani. When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells

  4. In vivo imaging of monocyte trafficking with 18F-fluorodeoxyglucose labeled monocytes

    International Nuclear Information System (INIS)

    Paik, Jin Young; Lee, Kyung Han; Han, Yu Mi; Choe, Yearn Seong; Kim, Byung Tae

    2000-01-01

    Since the ability to monitor in vivo monocyte trafficking would contribute to our understanding of the pathophysiology of various inflammatory disorders, we investigated the feasibility of labeling human monocytes with 18 F-FDG. Human monocytes were separated by Ficoll/Hypaque gradient and purity was assessed by flow cytometry. The influence of insulin and/or glucose on labeling efficiency was evaluated. Cell viability and activation was measured with trypan blue exclusion and hydrogen peroxide assays, respectively. Label stability was measured for up to 18 hr, and the effect of insulin pre-incubation on FDG washout was investigated. PET images were acquired in SD rats at various time points after injection of FDG labeled monocytes. Monocytes were >85% pure, and labeling efficiency was 35% for 1x106 cells after 40 min incubation with 2 mCi 18 F-FDG without insulin. Pre-incubation with 10∼100 nM insulin significantly increased FDG uptake which reached 400% of baseline levels, whereas presence of glucose or serum decreased FDG uptake. Labeled cells were >90% viable for up to 22 hr, and the labeling process did appear to significantly activate cells, Washout studies however, demonstrated gradual washout of the FDG from monocytes after initial uptake PET images of FDG labeled monocytes in SD rats showed consistent findings. Utilizing insulin effects on cellular glucose metabolism may be a feasible way of labeling monocytes with 18 F-FDG for PET imaging. However, gradual washout of FDG after initial uptake poses as a potential problem which needs to be addressed before practical application

  5. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  7. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  8. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    Directory of Open Access Journals (Sweden)

    van Doorn Ruben

    2012-06-01

    Full Text Available Abstract Background The sphingosine 1-phosphate (S1P receptor modulator FTY720P (Gilenya® potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. Conclusion Our

  9. Effect of tributyltin on mammalian endothelial cell integrity.

    Science.gov (United States)

    Botelho, G; Bernardini, C; Zannoni, A; Ventrella, V; Bacci, M L; Forni, M

    2015-01-01

    Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  11. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.

    Science.gov (United States)

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-05-27

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.

  12. Total hip and knee replacement surgery results in changes in leukocyte and endothelial markers

    Directory of Open Access Journals (Sweden)

    Maclean Kirsty M

    2010-01-01

    Full Text Available Abstract Background It is estimated that over 8 million people in the United Kingdom suffer from osteoarthritis. These patients may require orthopaedic surgical intervention to help alleviate their clinical condition. Investigations presented here was to test the hypothesis that total hip replacement (THR and total knee replacement (TKR orthopaedic surgery result in changes to leukocyte and endothelial markers thus increasing inflammatory reactions postoperatively. Methods During this 'pilot study', ten test subjects were all scheduled for THR or TKR elective surgery due to osteoarthritis. Leukocyte concentrations were measured using an automated full blood count analyser. Leukocyte CD11b (Mac-1 and CD62L cell surface expression, intracellular production of H2O2 and elastase were measured as markers of leukocyte function. Von Willebrand factor (vWF and soluble intercellular adhesion molecule-1 (sICAM-1 were measured as markers of endothelial activation. Results The results obtained during this study demonstrate that THR and TKR orthopaedic surgery result in similar changes of leukocyte and endothelial markers, suggestive of increased inflammatory reactions postoperatively. Specifically, THR and TKR surgery resulted in a leukocytosis, this being demonstrated by an increase in the total leukocyte concentration following surgery. Evidence of leukocyte activation was demonstrated by a decrease in CD62L expression and an increase in CD11b expression by neutrophils and monocytes respectively. An increase in the intracellular H2O2 production by neutrophils and monocytes and in the leukocyte elastase concentrations was also evident of leukocyte activation following orthopaedic surgery. With respect to endothelial activation, increases in vWF and sICAM-1 concentrations were demonstrated following surgery. Conclusion In general it appeared that most of the leukocyte and endothelial markers measured during these studies peaked between days 1

  13. Platelet degranulation and monocyte-platelet complex formation are increased in the acute and convalescent phases after ischaemic stroke or transient ischaemic attack.

    LENUS (Irish Health Repository)

    McCabe, Dominick J H

    2004-06-01

    Flow cytometric studies suggest that platelets are activated in ischaemic stroke or transient ischaemic attack (TIA). However, few studies have measured circulating leucocyte-platelet complexes in this patient population. Whole blood flow cytometry was used to quantify the expression of CD62P-, CD63-, and PAC1-binding, and the percentages of leucocyte-platelet complexes in acute (1-27 d, n = 79) and convalescent (79-725 d, n = 70) ischaemic cerebrovascular disease (CVD) patients compared with controls without CVD (n = 27). We performed a full blood count, and measured plasma levels of soluble P-selectin, soluble E-selectin, and von Willebrand factor antigen (VWF:Ag) as additional markers of platelet and\\/or endothelial cell activation. The median percentage CD62P expression and the median percentage monocyte-platelet complexes were higher in both acute and convalescent CVD patients than controls (P <\\/= 0.02). The mean white cell count and mean VWF:Ag levels were significantly elevated in the acute and convalescent phases after ischaemic stroke or TIA (P <\\/= 0.02). Otherwise, there was no significant increase in any other marker of platelet or endothelial activation in CVD patients. There was a positive correlation between the percentage expression of CD62P and the percentages of both neutrophil-platelet and monocyte-platelet complexes in the acute phase, and the percentages of all leucocyte-platelet complexes in the convalescent phase after ischaemic CVD. This study provides evidence for ongoing excessive platelet and\\/or endothelial activation in ischaemic CVD patients despite treatment with antithrombotic therapy.

  14. Monocyte activation in HIV/HCV coinfection correlates with cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    Full Text Available Coinfection with human immunodeficiency virus (HIV and hepatitis C virus (HCV challenges the immune system with two viruses that elicit distinct immune responses. Chronic immune activation is a hallmark of HIV infection and an accurate indicator of disease progression. Suppressing HIV viremia by antiretroviral therapy (ART effectively prolongs life and significantly improves immune function. HIV/HCV coinfected individuals have peripheral immune activation despite effective ART control of HIV viral load. Here we examined freshly isolated CD14 monocytes for gene expression using high-density cDNA microarrays and analyzed T cell subsets, CD4 and CD8, by flow cytometry to characterize immune activation in monoinfected HCV and HIV, and HIV-suppressed coinfected subjects. To determine the impact of coinfection on cognition, subjects were evaluated in 7 domains for neuropsychological performance, which were summarized as a global deficit score (GDS. Monocyte gene expression analysis in HIV-suppressed coinfected subjects identified 43 genes that were elevated greater than 2.5 fold. Correlative analysis of subjects' GDS and gene expression found eight genes with significance after adjusting for multiple comparisons. Correlative expression of six genes was confirmed by qPCR, five of which were categorized as type 1 IFN response genes. Global deficit scores were not related to plasma lipopolysaccharide levels. In the T cell compartment, coinfection significantly increased expression of activation markers CD38 and HLADR on both CD4 and CD8 T cells but did not correlate with GDS. These findings indicate that coinfection is associated with a type 1 IFN monocyte activation profile which was further found to correlate with cognitive impairment, even in subjects with controlled HIV infection. HIV-suppressed coinfected subjects with controlled HIV viral load experiencing immune activation could benefit significantly from successful anti-HCV therapy and may be

  15. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Venneri, Mary Anna; Giannetta, Elisa; Panio, Giuseppe; De Gaetano, Rita; Gianfrilli, Daniele; Pofi, Riccardo; Masciarelli, Silvia; Fazi, Francesco; Pellegrini, Manuela; Lenzi, Andrea; Naro, Fabio; Isidori, Andrea M

    2015-01-01

    Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type) tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i) affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ)-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD) expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs), which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1) normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, PTEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like) to alternative (M2-like)/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent end-organ diabetic complications.

  16. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  17. Carrageenan activates monocytes via type-specific binding with interleukin-8: an implication for design of immuno-active biomaterials.

    Science.gov (United States)

    Chan, Weng-I; Zhang, Guangpan; Li, Xin; Leung, Chung-Hang; Ma, Dik-Lung; Dong, Lei; Wang, Chunming

    2017-02-28

    Polymers that can activate the immune system may become useful biomaterials tools, given that the mechanisms underlying their actions are well understood. Herein, we report a novel type of interaction between polymers and immune cells - in studying the influence of the three major types of carrageenan (CGN) polysaccharides on monocyte behaviour in vitro, we found only the λ-type induced monocyte adhesion and this action requires the presence of an adequate amount of serum. Further analyses indicated λ-CGN bound interleukin-8 (IL-8) in the serum and activated the cultured monocytes through an IL-8-dependent pathway. This is the first demonstration that a polymer, with a renowned immunostimulatory effect, activates the immune system via binding and harnessing the function of a specific cytokine in the microenvironment. This is a new mechanism underlying polymer-immunity interactions that may shed light on future design and application of biomaterials tools targeting the immune system for a wide variety of therapeutic applications.

  18. Biosynthesis of human sialophorins and analysis of the polypeptide core

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Kenney, D.; Rosen, F.S.

    1987-01-01

    Biosynthesis was examined of sialophorin (formerly called gpL115) which is altered in the inherited immunodeficiency Wiskott-Aldrich syndrome. Sialophorin is greater than 50% carbohydrate, primarily O-linked units of sialic acid, galactose, and galactosamine. Pulse-labeling with [ 35 S]methionine and chase incubation established that sialophorin is synthesized in CEM lymphoblastoid cells as an Mr 62,000 precursor which is converted within 45 min to mature glycosylated sialophorin, a long-lived molecule. Experiments with tunicamycin and endoglycosidase H demonstrated that sialophorin contains N-linked carbohydrate (approximately two units per molecule) and is therefore an N,O-glycoprotein. Pulse-labeling of tunicamycin-treated CEM cells together with immunoprecipitation provided the means to isolate the [ 35 S]-methionine-labeled polypeptide core of sialophorin and determine its molecular weight (58,000). This datum allowed us to express the previously established composition on a per molecule basis and determine that sialophorin molecules contain approximately 520 amino acid residues and greater than or equal to 100 O-linked carbohydrate units. A recent study showed that various blood cells express sialophorin and that there are two molecular forms: lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin. Biosynthesis of the two forms was compared by using sialophorin of CEM cells and sialophorin of MOLT-4 cells (another lymphoblastoid line) as models for lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin, respectively. The time course of biosynthesis and the content of N units were found to be identical for the two sialophorin species. [ 35 S]Methionine-labeled polypeptide cores of CEM sialophorin and MOLT sialophorin were isolated and compared by electrophoresis, isoelectrofocusing, and a newly developed peptide mapping technique

  19. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  20. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Blankenberg, F.G. [Div. of Pediatric Radiology, Stanford, CA (United States); Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A. [Division of Cardiovascular Medicine, Department of Medicine, Stanford, California (United States); Tait, J.F. [Dept. of Laboratory Medicine, Univ. of Washington, Seattle (United States); Post, A.M.; Strauss, H.W. [Div. of Nuclear Medicine, Stanford Univ., CA (United States)

    2001-12-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  1. Detection of early atherosclerosis with radiolabeled monocyte chemoattractant protein-1 in prediabeteic Zucker rats

    International Nuclear Information System (INIS)

    Blankenberg, F.G.; Wen, P.; Dai, M.; Zhu, D.; Panchal, S.N.; Valantine, H.A.; Tait, J.F.; Post, A.M.; Strauss, H.W.

    2001-01-01

    Background: Migration of monocytes into the arterial wall is an early finding of atherosclerosis. Monocytes are attracted to sites of vascular endothelial cell injury, the initiating event in the development of atheromatous disease, by a chemokine known as monocyte chemoattractant protein-1 (MCP-1). Injured vascular endothelial and smooth muscle cells selectively secrete MCP-1. Objective: This study was performed to determine if radiolabeled MCP-1 would co-localize at sites of monocyte/macrophage concentration in an experimental model of transplant-induced vasculopathy in diabetic animals. Materials and methods: Hearts from 3-month-old male Zucker rats, heterozygote (Lean) or homozygote (Fat) for the diabetes-associated gene fa, were transplanted into the abdomens of genetically matched recipients. Lean and Fat animals were then fed normal or high-fat diets for 90 days. Results: At 90 days significant increases (P < 0.013) of MCP-1 graft uptake were seen at imaging and confirmed on scintillation gamma well counting studies in Lean (n = 5) and Fat (n = 12) animals, regardless of diet, 400 % and 40 %, above control values, respectively. MCP-1 uptake of native and grafted hearts correlated with increased numbers of perivascular macrophages (P < 0.02), as seen by immunostaining with an antibody specific for macrophages (ED 2). Conclusion: Radiolabeled MCP-1 can detect abnormally increased numbers of perivascular mononuclear cells in native and grafted hearts in prediabetic rats. MCP-1 may be useful in the screening of diabetic children for early atherosclerotic disease. (orig.)

  2. Filarial excretory-secretory products induce human monocytes to produce lymphangiogenic mediators.

    Directory of Open Access Journals (Sweden)

    Tiffany Weinkopff

    2014-07-01

    Full Text Available The nematodes Wuchereria bancrofti and Brugia spp. infect over 120 million people worldwide, causing lymphedema, elephantiasis and hydrocele, collectively known as lymphatic filariasis. Most infected individuals appear to be asymptomatic, but many exhibit sub-clinical manifestations including the lymphangiectasia that likely contributes to the development of lymphedema and elephantiasis. As adult worm excretory-secretory products (ES do not directly activate lymphatic endothelial cells (LEC, we investigated the role of monocyte/macrophage-derived soluble factors in the development of filarial lymphatic pathology. We analyzed the production of IL-8, IL-6 and VEGF-A by peripheral blood mononuclear cells (PBMC from naïve donors following stimulation with filarial ES products. ES-stimulated PBMCs produced significantly more IL-8, IL-6 and VEGF-A compared to cells cultured in medium alone; CD14(+ monocytes appear to be the primary producers of IL-8 and VEGF-A, but not IL-6. Furthermore, IL-8, IL-6 and VEGF-A induced in vitro tubule formation in LEC Matrigel cultures. Matrigel plugs supplemented with IL-8, IL-6, VEGF-A, or with supernatants from ES-stimulated PBMCs and implanted in vivo stimulated lymphangiogenesis. Collectively, these data support the hypothesis that monocytes/macrophages exposed to filarial ES products may modulate lymphatic function through the secretion of soluble factors that stimulate the vessel growth associated with the pathogenesis of filarial disease.

  3. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  4. The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*

    Science.gov (United States)

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-01-01

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153

  5. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  6. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  7. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Science.gov (United States)

    Forget, Mary A; Voorhees, Jeffrey L; Cole, Sara L; Dakhlallah, Duaa; Patterson, Ivory L; Gross, Amy C; Moldovan, Leni; Mo, Xiaokui; Evans, Randall; Marsh, Clay B; Eubank, Tim D

    2014-01-01

    Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2), the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs) with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression.

  8. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells are critically important for antiviral immunity. Devastating viruses like porcine reproductive and respiratory syndrome virus (PRRSV) are capable of directly infecting these cells, subverting host immunity. Monocyte-derived DCs (mDCs) are major target cells in ...

  9. Endothelial microparticles (EMP in physiology and pathology

    Directory of Open Access Journals (Sweden)

    Ewa Sierko

    2015-08-01

    Full Text Available Endothelial microparticles (EMP are released from endothelial cells (ECs in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF – a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes, leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9 at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 – components of the classical pathway – suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

  10. Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a+ Monocytic Cells upon Adhesion to Endothelial Cells.

    Science.gov (United States)

    Laval, Kathlyn; Favoreel, Herman W; Poelaert, Katrien C K; Van Cleemput, Jolien; Nauwynck, Hans J

    2015-11-01

    via cell-associated viremia in peripheral blood mononuclear cells (PBMC) and subsequently infects the endothelial cells (EC) of the pregnant uterus or central nervous system, leading in some cases to abortion and/or neurological disorders. Recently, we demonstrated that CD172a(+) monocytic carrier cells serve as a "Trojan horse" to facilitate EHV-1 spread from blood to target organs. Here, we investigated the mechanism underlying the transmission of EHV-1 from CD172a(+) cells to EC. We demonstrated that EHV-1 infection induces cellular changes in CD172a(+) cells, promoting their adhesion to EC. We found that both cell-to-cell contacts and the secretion of soluble factors by EC activate EHV-1 replication in CD172a(+) cells. This facilitates transfer of cytoplasmic viral material to EC, resulting mainly in a nonproductive infection. Our findings give new insights into how EHV-1 may spread to EC of target organs in vaccinated horses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  13. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    Science.gov (United States)

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  14. Pro-inflammatory capacity of classically activated monocytes relates positively to muscle mass and strength.

    Science.gov (United States)

    Beenakker, Karel G M; Westendorp, Rudi G J; de Craen, Anton J M; Slagboom, Pieternella E; van Heemst, Diana; Maier, Andrea B

    2013-08-01

    In mice, monocytes that exhibit a pro-inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro-inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study. Pro-inflammatory capacity of M1 monocytes was assessed by ex vivo stimulation of whole blood with Toll-like receptor (TLR) 4 agonist lipopolysaccharide (LPS) and TLR-2/1 agonist tripalmitoyl-S-glycerylcysteine (Pam₃Cys-SK₄), both M1 phenotype activators. Cytokines that stimulate M1 monocyte response (IFN-γ and GM-CSF) as well as cytokines that are secreted by M1 monocytes (IL-6, TNF-α, IL-12, and IL-1β) were measured. Analyses were adjusted for age, height, and body fat mass. Upon stimulation with LPS, the cytokine production capacity of INF-γ, GM-CSF, and TNF-α was significantly positively associated with lean body mass, appendicular lean mass and handgrip strength in men, but not in women. Upon stimulation with Pam₃Cys-SK₄, IL-6; TNF-α; and Il-1β were significantly positively associated with lean body mass and appendicular lean in women, but not in men. Taken together, this study shows that higher pro-inflammatory capacity of M1 monocytes upon stimulation is associated with muscle characteristics and sex dependent. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  15. Novel keto-phospholipids are generated by monocytes and macrophages, detected in cystic fibrosis, and activate peroxisome proliferator-activated receptor-γ.

    Science.gov (United States)

    Hammond, Victoria J; Morgan, Alwena H; Lauder, Sarah; Thomas, Christopher P; Brown, Sarah; Freeman, Bruce A; Lloyd, Clare M; Davies, Jane; Bush, Andrew; Levonen, Anna-Liisa; Kansanen, Emilia; Villacorta, Luis; Chen, Y Eugene; Porter, Ned; Garcia-Diaz, Yoel M; Schopfer, Francisco J; O'Donnell, Valerie B

    2012-12-07

    12/15-Lipoxygenases (LOXs) in monocytes and macrophages generate novel phospholipid-esterified eicosanoids. Here, we report the generation of two additional families of related lipids comprising 15-ketoeicosatetraenoic acid (KETE) attached to four phosphatidylethanolamines (PEs). The lipids are generated basally by 15-LOX in IL-4-stimulated monocytes, are elevated on calcium mobilization, and are detected at increased levels in bronchoalveolar lavage fluid from cystic fibrosis patients (3.6 ng/ml of lavage). Murine peritoneal macrophages generate 12-KETE-PEs, which are absent in 12/15-LOX-deficient mice. Inhibition of 15-prostaglandin dehydrogenase prevents their formation from exogenous 15-hydroxyeicosatetraenoic acid-PE in human monocytes. Both human and murine cells also generated analogous hydroperoxyeicosatetraenoic acid-PEs. The electrophilic reactivity of KETE-PEs is shown by their Michael addition to glutathione and cysteine. Lastly, both 15-hydroxyeicosatetraenoic acid-PE and 15-KETE-PE activated peroxisome proliferator-activated receptor-γ reporter activity in macrophages in a dose-dependent manner. In summary, we demonstrate novel peroxisome proliferator-activated receptor-γ-activating oxidized phospholipids generated enzymatically by LOX and 15-prostaglandin dehydrogenase in primary monocytic cells and in a human Th2-related lung disease. The lipids are a new family of bioactive mediators from the 12/15-LOX pathway that may contribute to its known anti-inflammatory actions in vivo.

  16. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Cao, Yi; Roursgaard, Martin

    2015-01-01

    The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important...... in the development of cardiovascular diseases. The NMs used were five TiO2 NMs with different charge, size and crystal structure, coated and uncoated ZnO NMs and Ag which were tested in a wide concentration range. There were major differences between the types of NMs; exposure to ZnO and Ag resulted in cytotoxicity...... and increased gene expression levels of HMOX1 and IL8. The intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) expression were highest in TiO2 NM-exposed cells. There was increased adhesion of THP-1 monocytic cells onto HUVECs with Ag exposure. None of the NMs increased...

  17. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  18. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  19. The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid.

    Science.gov (United States)

    Ma, Xiao-Zhen; Pang, Zheng-Da; Wang, Jun-Hong; Song, Zheng; Zhao, Li-Mei; Du, Xiao-Jun; Deng, Xiu-Ling

    2018-05-21

    Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca 2+ -activated K + (K Ca 3.1) channels play an important role in cell migration. However, the role of K Ca 3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of K Ca 3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of K Ca 3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific K Ca 3.1 channel blocker, TRAM-34, or K Ca 3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and K Ca 3.1 siRNA. These results demonstrate for the first time that PA upregulates K Ca 3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Monocyte Trafficking to the Brain with Stress and Inflammation: A Novel Axis of Immune-to-Brain Communication that Influences Mood and Behavior

    Directory of Open Access Journals (Sweden)

    Eric S Wohleb

    2015-01-01

    Full Text Available Psychological stressors cause physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD, revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses.

  1. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    Science.gov (United States)

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation

  2. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    Science.gov (United States)

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis

    Directory of Open Access Journals (Sweden)

    Charlie Bridgewood

    2018-02-01

    Full Text Available The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  4. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis.

    Science.gov (United States)

    Bridgewood, Charlie; Fearnley, Gareth W; Berekmeri, Anna; Laws, Philip; Macleod, Tom; Ponnambalam, Sreenivasan; Stacey, Martin; Graham, Anne; Wittmann, Miriam

    2018-01-01

    The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα) and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  5. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    Directory of Open Access Journals (Sweden)

    Lopez-Lastra Marcelo

    2011-05-01

    Full Text Available Abstract Background Andes virus (ANDV, a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9 that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC. Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs

  6. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF.

    Science.gov (United States)

    Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang

    2011-08-01

    We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.

  7. The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria.

    Directory of Open Access Journals (Sweden)

    Lis R V Antonelli

    2014-09-01

    Full Text Available Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+CD16- (classical, CD14(+CD16(+ (inflammatory, and CD14loCD16(+ (patrolling cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+ cells, in particular the CD14(+CD16(+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+CD16(+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+CD16(+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.

  8. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Myojo

    Full Text Available Because endothelial nitric oxide synthase (eNOS has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177 in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172 and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP. Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  9. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant.

    Directory of Open Access Journals (Sweden)

    Martina Bauer

    Full Text Available Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs. In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs. Furthermore, monocytes accumulated DNA double-strand breaks (DSBs following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective

  10. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: Effects upon IκB and Nrf2

    International Nuclear Information System (INIS)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.; Tzeng, T.-T.; Sun, Y.-W.; Wung, B.-S.

    2008-01-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNFα-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-κB, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein IκB-α, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNFα-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods

  11. Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Jacobsen, Nicklas Raun

    2016-01-01

    Free palmitic acid (PA) is a potential pro-atherogenic stimulus that may aggravate particle-mediated cardiovascular health effects. We hypothesized that the presence of PA can aggravate oxidative stress and endothelial activation induced by multi-walled carbon nanotube (MWCNT) exposure in vitro. We...... measured in the lower chamber on HUVECs and THP-1 cells. The exposure to MWCNTs, including a short (NM400) and long (NM402) type of entangled fibers, was associated with elevated levels of reactive oxygen species as well as a decrease in the intracellular glutathione concentration in HUVEC and A549...

  12. Can TIE-2 expressing monocytes represent a novel marker for hepatocellular carcinoma?

    Science.gov (United States)

    Dapas, Barbara; Grassi, Mario; Grassi, Gabriele

    2014-08-01

    Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is a global health problem representing the sixth most common cancer and the third cause of cancer related death worldwide. The number of deaths per year in HCC is comparable to the incidence number, underlying the aggressive behavior of HCC and the modest efficacy of available curative treatments. Effective HCC treatment is problematic also due to the lack of early and specific diagnostic markers. In this regard, particular interest has been put on the tyrosine kinase with Ig and endothelial growth factor (EGF) homology domains 2 (TIE2), a receptor of angiopoietins, predominantly present on endothelial cells but also observed on monocytes [TIE-2-expressing monocytes (TEMs)]. Recently, a work by Matsubara et al. showed that the amount of circulating TEMs is higher in hepatitis virus C (HCV)/HCC patients compared to HCV patients or healthy subjects. Additionally the authors showed that TEMs have a diagnostic potential for HCC. Whereas the molecular mechanisms responsible for this observation remain elusive and further studies are necessary to confirm this finding, the work of Matsubara et al. may contribute to the identification of a novel HCC prognostic and diagnostic marker.

  13. Nanoparticles as Antituberculosis Drugs Carriers: Effect on Activity Against Mycobacterium tuberculosis in Human Monocyte-Derived Macrophages

    International Nuclear Information System (INIS)

    Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B.

    2000-01-01

    This is the first report evaluating the nanoparticle delivery system for three antituberculosis drugs: isoniazid, rifampin, and streptomycin. The typical particle size is 250 nm. We studied accumulation of these drugs in human monocytes as well as their antimicrobial activity against Mycobacterium tuberculosis residing in human monocyte-derived macrophages. Nanoparticle encapsulation increased the intracellular accumulation (cell-association) of all three tested drugs, but it enhanced the antimicrobial activity of isoniazid and streptomycin only. On the other hand, the activity of encapsulated rifampin against intracellular bacteria was not higher than that of the free drug

  14. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Science.gov (United States)

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  15. Heterogeneity of Bovine Peripheral Blood Monocytes

    Directory of Open Access Journals (Sweden)

    Jamal Hussen

    2017-12-01

    Full Text Available Peripheral blood monocytes of several species can be divided into different subpopulations with distinct phenotypic and functional properties. Herein, we aim at reviewing published work regarding the heterogeneity of the recently characterized bovine monocyte subsets. As the heterogeneity of human blood monocytes was widely studied and reviewed, this work focuses on comparing bovine monocyte subsets with their human counterparts regarding their phenotype, adhesion and migration properties, inflammatory and antimicrobial functions, and their ability to interact with neutrophilic granulocytes. In addition, the differentiation of monocyte subsets into functionally polarized macrophages is discussed. Regarding phenotype and distribution in blood, bovine monocyte subsets share similarities with their human counterparts. However, many functional differences exist between monocyte subsets from the two species. In contrast to their pro-inflammatory functions in human, bovine non-classical monocytes show the lowest phagocytosis and reactive oxygen species generation capacity, an absent ability to produce the pro-inflammatory cytokine IL-1β after inflammasome activation, and do not have a role in the early recruitment of neutrophils into inflamed tissues. Classical and intermediate monocytes of both species also differ in their response toward major monocyte-attracting chemokines (CCL2 and CCL5 and neutrophil degranulation products (DGP in vitro. Such differences between homologous monocyte subsets also extend to the development of monocyte-derived macrophages under the influence of chemokines like CCL5 and neutrophil DGP. Whereas the latter induce the differentiation of M1-polarized macrophages in human, bovine monocyte-derived macrophages develop a mixed M1/M2 macrophage phenotype. Although only a few bovine clinical trials analyzed the correlation between changes in monocyte composition and disease, they suggest that functional differences between

  16. Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16+ Monocytes.

    Science.gov (United States)

    Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N'Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César

    2016-10-15

    A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16 + monocytes with a poor activation profile. In survivors, CD16 + monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a...

  18. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen-Bo [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China); Shen, Xun, E-mail: shenxun@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China)

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  19. [New drug developments of snake venom polypeptides and progress].

    Science.gov (United States)

    Fu, Sihai; Feng, Mei; Xiong, Yan

    2017-11-28

    The value of snake venom polypeptides in clinical application has drawn extensive attention, and the development of snake polypeptides into new drugs with anti-tumor, anti-inflammatory, antithrombotic, analgesic or antihypertensive properties has become the recent research hotspot. With the rapid development of molecular biology and biotechnology, the mechanisms of snake venom polypeptides are also gradually clarified. Numerous studies have demonstrated that snake venom polypeptides exert their pharmacological effects by regulating ion channels, cell proliferation, apoptosis, intracellular signaling pathway, and expression of cytokine as well as binding to relevant active sites or receptors.

  20. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Mary A Forget

    Full Text Available Reports demonstrate the role of M-CSF (CSF1 in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2, the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor

  1. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    International Nuclear Information System (INIS)

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J.

    2006-01-01

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1β intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38 + cells. DON-induced p38 activation occurred exclusively in the CD14 + monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response

  2. Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory cytokines, and support monocyte-to-osteoclast cell induction.

    Science.gov (United States)

    Pasquier, Jennifer; Thomas, Binitha; Hoarau-Véchot, Jessica; Odeh, Tala; Robay, Amal; Chidiac, Omar; Dargham, Soha R; Turjoman, Rebal; Halama, Anna; Fakhro, Khalid; Menzies, Robert; Jayyousi, Amin; Zirie, Mahmoud; Al Suwaidi, Jassim; Rafii, Arash; Malik, Rayaz A; Talal, Talal; Abi Khalil, Charbel

    2017-11-27

    Circulating microparticles (MPs) are major mediators in cardiovascular complications of type 2 diabetes (T2D); however, their contribution to Charcot foot (CF) disease is not known. Here, we purified and assessed the origin, concentration and content of circulating MPs from 33 individuals: 11 with T2D and acute CF, 11 T2D patients with equivalent neuropathy and 11 non-diabetic controls. First, we demonstrated that there were no differences in the distribution of MPs of endothelial, platelet origin among the 3 groups. However, MPs from leukocytes and monocytes origin were increased in CF patients. Moreover, we demonstrated that monocytes-derived MPs originated more frequently from intermediate and non-classical monocytes in CF patients. Five cytokines (G-CSF, GM-CSF, IL-1-ra, IL-2 and IL-16) were significantly increased in MPs from acute CF patients. Applying ingenuity pathways analysis, we found that those cytokines interacted well and induced the activation of pathways that are involved in osteoclast formation. Further, we treated THP-1 monocytes and monocytes sorted from healthy patients with CF-derived MPs during their differentiation into osteoclasts, which increased their differentiation into multinucleated osteoclast-like cells. Altogether, our study suggests that circulating MPs in CF disease have a high content of inflammatory cytokines and could increase osteoclast differentiation in vitro.

  3. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis......, and 36 had no CNS involvement. The concentration of TPpA, which is a nonspecific marker for cell proliferation, was significantly higher in patients with CNS metastases than in those without it (P less than .0001; Mann-Whitney test). A tentative cutoff value for CNS metastases was set at 95 U/L TPp...... metastases, no correlation was found between TPpA activity in corresponding CSF and blood samples (correlation coefficient, Spearman's rho = .4; P greater than .1). In three patients treated for leptomeningeal carcinomatosis, the measurements of CSF TPpA showed correlation between the presence of tumor cells...

  4. Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Hasselbalch, Hans C; Nielsen, Claus H

    2013-01-01

    ), Escherichia coli LPS, or intact Porphyromonas gingivalis. Addition of platelets activated by thrombin-receptor-activating peptide enhanced IL-10 production induced by LPS (p gingivalis (p ....05), and P. gingivalis (p gingivalis-stimulated cultures (p ... of activated platelets. Adherence of platelets increased TG- and TT-induced IL-10 secretion by monocytes (p gingivalis (p

  5. Hyperglycemia Induces Toll-Like Receptor-2 and -4 Expression and Activity in Human Microvascular Retinal Endothelial Cells: Implications for Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Uthra Rajamani

    2014-01-01

    Full Text Available Diabetic retinopathy (DR causes visual impairment in working age adults and hyperglycemia-mediated inflammation is central in DR. Toll-like receptors (TLRs play a key role in innate immune responses and inflammation. However, scanty data is available on their role in DR. Hence, in this study, we examined TLR2 and TLR4 mRNA and protein expression and activity in hyperglycemic human retinal endothelial cells (HMVRECs. HMVRECs were treated with hyperglycemia (HG or euglycemia and mRNA and protein levels of TLR-2, TLR-4, MyD88, IRF3, and TRIF as well as NF-κB p65 activation were measured. IL-8, IL-1β, TNF-α and MCP-1, ICAM-1, and VCAM-1 as well as monocyte adhesion to HMVRECs were also assayed. HG (25 mM significantly induced TLR2 and TLR4 mRNA and protein in HMVRECs. It also increased both MyD88 and non-MyD88 pathways, nuclear factor-κB (NF-κB, biomediators, and monocyte adhesion. This inflammation was attenuated by TLR-4 or TLR-2 inhibition, and dual inhibition by a TLR inhibitory peptide as well as TLR2 and 4 siRNA. Additionally, antioxidant treatment reduced TLR-2 and TLR4 expression and downstream inflammatory markers. Collectively, our novel data suggest that hyperglycemia induces TLR-2 and TLR-4 activation and downstream signaling mediating increased inflammation possibly via reactive oxygen species (ROS and could contribute to DR.

  6. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  7. Anti-Inflammatory Activity of Marine Ovothiol A in an In Vitro Model of Endothelial Dysfunction Induced by Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Immacolata Castellano

    2018-01-01

    Full Text Available Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs from women affected by gestational diabetes (GD and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor-α-stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.

  8. Blood monocyte oxidative burst activity in acute P. falciparum malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Theander, T G

    1989-01-01

    The release of superoxide anion from blood monocytes was studied in eight patients with acute primary attack P. falciparum malaria. Before treatment a significant enhancement of the oxidative burst prevailed, which contrasts with previous findings of a depressed monocyte chemotactic responsiveness...

  9. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  10. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-01-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  11. Monocytes can be induced by lipopolysaccharide-triggered T lymphocytes to express functional factor VII/VIIa protease activity

    OpenAIRE

    1984-01-01

    In the present study we demonstrate that human monocytes can be induced by the model stimulus, lipopolysaccharide (LPS), to produce and assemble on their surface functional Factor VII/VIIa. This protease was not induced in relatively purified monocytes alone following exposure to LPS; but was induced in the presence of Leu-3a positive helper/inducer T cells. The Factor VII/VIIa protease activity represented 35-40% of the potential initiating activity for the extrinsic coagulation pathway and ...

  12. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  13. Activation of Wnt/β-Catenin Pathway in Monocytes Derived from Chronic Kidney Disease Patients

    Science.gov (United States)

    Al-Chaqmaqchi, Heevy Abdulkareem Musa; Moshfegh, Ali; Dadfar, Elham; Paulsson, Josefin; Hassan, Moustapha; Jacobson, Stefan H.; Lundahl, Joachim

    2013-01-01

    Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients. PMID:23935909

  14. Activation of Wnt/β-catenin pathway in monocytes derived from chronic kidney disease patients.

    Directory of Open Access Journals (Sweden)

    Heevy Abdulkareem Musa Al-Chaqmaqchi

    Full Text Available Patients with chronic kidney disease (CKD have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m(2 and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients.

  15. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    Science.gov (United States)

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  16. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  17. The proliferative human monocyte subpopulation contains osteoclast precursors

    Science.gov (United States)

    Lari, Roya; Kitchener, Peter D; Hamilton, John A

    2009-01-01

    Introduction Immediate precursors of bone-resorbing osteoclasts are cells of the monocyte/macrophage lineage. Particularly during clinical conditions showing bone loss, it would appear that osteoclast precursors are mobilized from bone marrow into the circulation prior to entering tissues undergoing such loss. The observed heterogeneity of peripheral blood monocytes has led to the notion that different monocyte subpopulations may have special or restricted functions, including as osteoclast precursors. Methods Human peripheral blood monocytes were sorted based upon their degree of proliferation and cultured in macrophage colony-stimulating factor (M-CSF or CSF-1) and receptor activator of nuclear factor-kappa-B ligand (RANKL). Results The monocyte subpopulation that is capable of proliferation gave rise to significantly more multinucleated, bone-resorbing osteoclasts than the bulk of the monocytes. Conclusions Human peripheral blood osteoclast precursors reside in the proliferative monocyte subpopulation. PMID:19222861

  18. Soluble CD163, a product of monocyte/macrophage activation, is inversely associated with haemoglobin levels in placental malaria.

    Directory of Open Access Journals (Sweden)

    Caroline Lin Lin Chua

    Full Text Available In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163 is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations. sCD163 levels were negatively correlated with birth weight only in the placental compartment (r = -0.145, p = 0.03 and were inversely correlated with maternal haemoglobin concentrations, both in peripheral blood (r = -0.238, p = 0.0004 and in placental blood (r = -0.259, p = 0.0001. These inverse relationships suggest a potential role for monocyte/macrophage activation in the pathogenesis of malaria in pregnancy, particularly in relation to malaria-associated anaemia.

  19. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes.

    Science.gov (United States)

    Steinhagen, Folkert; Zillinger, Thomas; Peukert, Konrad; Fox, Mario; Thudium, Marcus; Barchet, Winfried; Putensen, Christian; Klinman, Dennis; Latz, Eicke; Bode, Christian

    2018-04-01

    Type I interferon (IFN) is a critical mediator of autoimmune diseases such as systemic lupus erythematosus (SLE) and Aicardi-Goutières Syndrome (AGS). The recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of type I IFN in response to cytosolic DNA and is potentially linked to SLE and AGS. Suppressive oligodeoxynucleotides (ODN) containing repetitive TTAGGG motifs present in mammalian telomeres have proven useful in the treatment of autoimmune diseases including SLE. In this study, we demonstrate that the suppressive ODN A151 effectively inhibits activation of cGAS in response to cytosolic DNA, thereby inhibiting type I IFN production by human monocytes. In addition, A151 abrogated cGAS activation in response to endogenous accumulation of DNA using TREX1-deficient monocytes. We demonstrate that A151 prevents cGAS activation in a manner that is competitive with DNA. This suppressive activity of A151 was dependent on both telomeric sequence and phosphorothioate backbone. To our knowledge this report presents the first cGAS inhibitor capable of blocking self-DNA. Collectively, these findings might lead to the development of new therapeutics against IFN-driven pathologies due to cGAS activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Zhang

    Full Text Available BACKGROUND: Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages. METHODOLOGY/PRINCIPAL FINDINGS: The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT carriers and 78 immune activated (IA patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16(+ subsets, which were closely associated with serum alanine aminotransferase (ALT levels and the liver histological activity index (HAI scores. In addition, the increased CD16(+ monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16(- monocytes/macrophages. Furthermore, peripheral blood CD16(+ monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores. CONCLUSIONS: These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease.

  1. Tissue Factor-Expressing Tumor-Derived Extracellular Vesicles Activate Quiescent Endothelial Cells via Protease-Activated Receptor-1

    Directory of Open Access Journals (Sweden)

    Sara P. Y. Che

    2017-11-01

    Full Text Available Tissue factor (TF-expressing tumor-derived extracellular vesicles (EVs can promote metastasis and pre-metastatic niche formation, but the mechanisms by which this occurs remain largely unknown. We hypothesized that generation of activated factor X (FXa by TF expressed on tumor-derived EV could activate protease-activated receptors (PARs on non-activated endothelial cells to induce a pro-adhesive and pro-inflammatory phenotype. We obtained EV from TF-expressing breast (MDA-MB-231 and pancreatic (BxPC3 and Capan-1 tumor cell lines. We measured expression of E-selectin and secretion of interleukin-8 (IL-8 in human umbilical vein endothelial cells after exposure to EV and various immunologic and chemical inhibitors of TF, FXa, PAR-1, and PAR-2. After 6 h of exposure to tumor-derived EV (pretreated with factor VIIa and FX in vitro, endothelial cells upregulated E-selectin expression and secreted IL-8. These changes were decreased with an anti-TF antibody, FXa inhibitors (FPRCK and EGRCK, and PAR-1 antagonist (E5555, demonstrating that FXa generated by TF-expressing tumor-derived EV was signaling through endothelial PAR-1. Due to weak constitutive PAR-2 expression, these endothelial responses were not induced by a PAR-2 agonist peptide (SLIGKV and were not inhibited by a PAR-2 antagonist (FSLLRY after exposure to tumor-derived EV. In conclusion, we found that TF-expressing cancer-derived EVs activate quiescent endothelial cells, upregulating E-selectin and inducing IL-8 secretion through generation of FXa and cleavage of PAR-1. Conversion of resting endothelial cells to an activated phenotype by TF-expressing cancer-derived EV could promote cancer metastases.

  2. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator

    International Nuclear Information System (INIS)

    Vlaicu, Philip; Mertins, Philipp; Mayr, Thomas; Widschwendter, Peter; Ataseven, Beyhan; Högel, Bernhard; Eiermann, Wolfgang; Knyazev, Pjotr; Ullrich, Axel

    2013-01-01

    Tumor-associated macrophages (TAM) promote malignant progression, yet the repertoire of oncogenic factors secreted by TAM has not been clearly defined. We sought to analyze which EGFR- and STAT3-activating factors are secreted by monocytes/macrophages exposed to tumor cell-secreted factors. Following exposure of primary human monocytes and macrophages to supernatants of a variety of tumor cell lines, we have analyzed transcript and secreted protein levels of EGFR family ligands and of STAT3 activators. To validate our findings, we have analyzed TAM infiltration levels, systemic and local protein levels as well as clinical data of primary breast cancer patients. Primary human monocytes and macrophages respond to tumor cell-derived factors by secreting EGFR- and STAT3-activating ligands, thus inducing two important oncogenic pathways in carcinoma cells. Tumor cell-secreted factors trigger two stereotype secretory profiles in peripheral blood monocytes and differentiated macrophages: monocytes secrete epiregulin (EREG) and oncostatin-M (OSM), while macrophages secrete heparin-binding EGF-like growth factor (HB-EGF) and OSM. HB-EGF and OSM cooperatively induce tumor cell chemotaxis. HB-EGF and OSM are co-expressed by TAM in breast carcinoma patients, and plasma levels of both ligands correlate strongly. Elevated HB-EGF levels accompany TAM infiltration, tumor growth and dissemination in patients with invasive disease. Our work identifies systemic markers for TAM involvement in cancer progression, with the potential to be developed into molecular targets in cancer therapy

  3. Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes.

    Science.gov (United States)

    Jin, Xia; Xu, Hua; McGrath, Michael S

    2018-01-01

    Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 μM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.

  4. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

    Science.gov (United States)

    Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W

    2017-08-18

    Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  6. Stimulation of monocytes by placental microparticles involves Toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells

    Directory of Open Access Journals (Sweden)

    Marianne Simone Joerger-Messerli

    2014-04-01

    Full Text Available Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggests a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro.STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR and fluorescence microscopy.STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activation was blocked.Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  7. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection.

    Science.gov (United States)

    van den Bosch, Thierry P P; Caliskan, Kadir; Kraaij, Marina D; Constantinescu, Alina A; Manintveld, Olivier C; Leenen, Pieter J M; von der Thüsen, Jan H; Clahsen-van Groningen, Marian C; Baan, Carla C; Rowshani, Ajda T

    2017-01-01

    During acute heart transplant rejection, infiltration of lymphocytes and monocytes is followed by endothelial injury and eventually myocardial fibrosis. To date, no information is available on monocyte-macrophage-related cellular shifts and their polarization status during rejection. Here, we aimed to define and correlate monocyte-macrophage endomyocardial tissue profiles obtained at rejection and time points prior to rejection, with corresponding serial blood samples in 25 heart transplant recipients experiencing acute cellular rejection. Additionally, 33 healthy individuals served as control. Using histology, immunohistochemistry, confocal laser scan microscopy, and digital imaging expression of CD14, CD16, CD56, CD68, CD80, and CD163 were explored to define monocyte and macrophage tissue profiles during rejection. Fibrosis was investigated using Sirius Red stainings of rejection, non-rejection, and 1-year biopsies. Expression of co-stimulatory and migration-related molecules on circulating monocytes, and production potential for pro- and anti-inflammatory cytokines were studied using flow cytometry. At tissue level, striking CD16+ monocyte infiltration was observed during rejection ( p  rejection compared to barely present CD68+CD80+ M1 macrophages. Rejection was associated with severe fibrosis in 1-year biopsies ( p  rejection status, decreased frequencies of circulating CD16+ monocytes were found in patients compared to healthy individuals. Rejection was reflected by significantly increased CD54 and HLA-DR expression on CD16+ monocytes with retained cytokine production potential. CD16+ monocytes and M2 macrophages hallmark the correlates of heart transplant acute cellular rejection on tissue level and seem to be associated with fibrosis in the long term.

  8. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model

    Science.gov (United States)

    Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo

    2017-01-01

    In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased

  9. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  10. Procoagulant Activity of Blood and Endothelial Cells via Phosphatidylserine Exposure and Microparticle Delivery in Patients with Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Ying Su

    2018-03-01

    Full Text Available Background/Aims: The mechanisms for thrombosis in diabetic retinopathy (DR are complex and need to be further elucidated. The purpose of this study was to test phosphatidylserine (PS exposure on microparticles (MPs and MP-origin cells from the circulation and to analyze cell-/MP-associated procoagulant activity (PCA in DR patients. Methods: PS-positive MPs and cells from healthy controls (n = 20 and diabetic patients (n = 60 were analyzed by flow cytometry and confocal microscopy. Clotting time and purified coagulation complex assays were used to measure PCA. Results: PS exposure on platelets and monocytes was higher in proliferative DR (PDR patients than in non-PDR patients or controls. The highest levels of MPs (derived from platelets [30%], erythrocytes [13%], leukocytes [28%], and endothelial cells [10%] were found in patients with PDR. In addition, PS exposure on blood cells and shed MPs in DR patients led to significantly increased FXa and FIIa generation, fibrin formation, and markedly shortened coagulation time. Moreover, lactadherin reduced 70% of PCA by blocking PS, while an anti-tissue factor antibody had a smaller effect. Conclusion: Our results confirmed that PCA in DR patients may be partly ascribed to PS exposure and MP release from blood and endothelial cells. Lactadherin may act as an efficient anticoagulant factor in this process.

  11. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.; Li, Y.P.; He, F.; Liu, X.Q.; Zhang, J.Y. [Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2015-04-28

    Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group (n=20). Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD), CD34{sup +} monocyte count, and endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05) and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05). RIPre activated STAT-3 and increased CD34{sup +} endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells.

  12. Vascular endothelial growth factor (VEGF and monocyte chemoattractant protein (MCP-1 levels unaltered in symptomatic atherosclerotic carotid plaque patients from North India

    Directory of Open Access Journals (Sweden)

    Dheeraj eKhurana

    2013-04-01

    Full Text Available We aimed to identify the role of vascular endothelial growth factor(VEGF and monocyte chemoattractant protein(MCP-1 as a serum biomarker of symptomatic carotid atherosclerotic plaque in North Indian population. Individuals with symptomatic carotid atherosclerotic plaque have high risk of ischemic stroke. Previous studies from western countries have shown an association between VEGF and MCP-1 levels and the incidence of ischemic stroke. In this study, venous blood from 110 human subjects was collected, 57 blood samples of which were obtained from patients with carotid plaques, 38 neurological controls without carotid plaques and another 15 healthy controls who had no history of serious illness. Serum VEGF and MCP-1 levels were measured using commercially available enzyme-linked immunosorbent assay(ELISA. We also correlated the data clinically and carried out risk factor analysis based on the detailed questionnaire obtained from each patient. For risk factor analysis, a total of 70 symptomatic carotid plaque cases and equal number of age and sex matched healthy controls were analyzed. We found that serum VEGF levels in carotid plaque patients did not show any significant change when compared to either of the controls. Similarly, there was no significant upregulation of monocyte chemoattractant protein-1 in the serum of these patients. The risk factor analysis revealed that hypertension, diabetes, and physical inactivity were the main correlates of carotid atherosclerosis(p<0.05. Prevalence of patients was higher residing in urban areas as compared to rural region. We also found that patients coming from mountaineer region were relatively less vulnerable to cerebral atherosclerosis as compared to the ones residing at plain region. We conclude that the pathogenesis of carotid plaques may progress independent of these inflammatory molecules. In parallel, risk factor analysis indicates hypertension, diabetes and sedentary lifestyle as the most

  13. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    , simplified by the M1-M2 dichotomy of classically activated (M1), pro-inflammatory cells and alternatively activated (M2), anti-inflammatory cells. Macrophages, however, display a large degree of flexibility and are able to switch between activation states (1). The hemoglobin scavenger receptor CD163...... is expressed exclusively on monocytes and macrophages, and its expression is strongly induced by anti-inflammatory stimuli like IL10 and glucocorticoid, making CD163 an ideal M2 macrophage marker (2). Furthermore a soluble variant of CD163 (sCD163) is shed from the cell surface to plasma by protease mediated.......058-5139) (panti-inflammatory state.   CONCLUSION: We present a CD163-derived macrophage activation switch (MAcS)-index, which seems able to differentiate between (predominantly) pro-inflammatory and anti-inflammatory macrophage activation. The index needs...

  14. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure

    DEFF Research Database (Denmark)

    Bjerre, M.; Kistorp, C.; Hansen, T.K.

    2010-01-01

    CRP), endothelial activation (soluble E-selectin, sEsel)), endothelial damage/dysfunction (von Willebrand factor, vWf) and insulin resistance (IR) and prognosis in CHF remains unknown. Design. We investigated the association(s) between plasma sMAC, hsCRP, sEsel, vWf and IR (assessed by homeostatic model assessment...

  15. Mosaic HIV envelope immunogenic polypeptides

    Science.gov (United States)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  16. A high-fat meal promotes lipid-load and apolipoprotein B-48 receptor transcriptional activity in circulating monocytes.

    Science.gov (United States)

    Varela, Lourdes M; Ortega, Almudena; Bermudez, Beatriz; Lopez, Sergio; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G

    2011-05-01

    The postprandial metabolism of dietary fats results in the production of apolipoprotein B-48 (apoB48)-containing triglyceride-rich lipoproteins (TRLs), which cause rapid receptor-mediated macrophage lipid engorgement via the apoB48 cell surface receptor (apoB48R). Monocytes circulate together with apoB48-containing TRLs in the postprandial bloodstream and may start accumulating lipids even before their migration to tissues and differentiation to macrophages. We sought to determine whether circulating monocytes are equipped with apoB48R and whether, in the postprandial state, circulating monocytes accumulate lipids and modulate apoB48R transcriptional activity after intake of a high-fat meal. In a crossover design, we studied the effect of a high-fat meal on fasting and postprandial concentrations of triglycerides, free fatty acids, cholesterol, and insulin in 12 healthy men. TRLs and monocytes were freshly isolated at fasting, hourly until the postprandial peak, and at the late postprandial phase. TRLs were subjected to triglycerides, apoB48, and apolipoprotein B-100 analyses; and lipid accumulation and apoB48R mRNA expression levels were measured in monocytes. Monocytes showed a time-dependent lipid accumulation in response to the high-fat meal, which was paralleled by an increase in apoB48R mRNA expression levels. These effects were coincident only with an increase in apoB48-containing TRLs in the postprandial phase and were also observed ex vivo in freshly isolated monocytes incubated with apoB48-containing TRLs. In a setting of abundant plasma apoB48-containing TRLs, these findings highlight the role of dietary fat in inducing lipid accumulation and apoB48R gene transcription in circulating monocytes.

  17. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  18. Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.

    Science.gov (United States)

    Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten

    2016-10-01

    Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Hesse, D; Limborg, S

    2012-01-01

    , monocytes and dendritic cells (DC) in relation to disease activity in MS patients treated with GA. Methods: Flow cytometry was used to study the activation of CD4+ T cells and T cell subsets (CD25high and CD26high cells), monocytes and DCs in a cross-sectional study of 39 untreated and 29 GA-treated MS......Background: Treatment with glatiramer acetate (GA) modestly decreases disease activity in multiple sclerosis (MS). The mechanism of action is incompletely understood and differences in the response to treatment between individuals may exist. Objective: To study the activation of CD4+ T cells...... (Bonferroni-corrected p=0.0005). The hazard ratio of relapse was 1.32 (95% confidence interval 1.05–1.64) per 1% increase in CD40+ DCs. Patients treated with GA had fewer CD4+ T cells expressing surface markers associated with T helper type 1 effector responses and more CD4+ T cells expressing surface markers...

  20. Death of Monocytes through Oxidative Burst of Macrophages and Neutrophils: Killing in Trans.

    Directory of Open Access Journals (Sweden)

    Viviane Ponath

    Full Text Available Monocytes and their descendants, macrophages, play a key role in the defence against pathogens. They also contribute to the pathogenesis of inflammatory diseases. Therefore, a mechanism maintaining a balance in the monocyte/macrophage population must be postulated. Our previous studies have shown that monocytes are impaired in DNA repair, rendering them vulnerable to genotoxic stress while monocyte-derived macrophages are DNA repair competent and genotoxic stress-resistant. Based on these findings, we hypothesized that monocytes can be selectively killed by reactive oxygen species (ROS produced by activated macrophages. We also wished to know whether monocytes and macrophages are protected against their own ROS produced following activation. To this end, we studied the effect of the ROS burst on DNA integrity, cell death and differentiation potential of monocytes. We show that monocytes, but not macrophages, stimulated for ROS production by phorbol-12-myristate-13-acetate (PMA undergo apoptosis, despite similar levels of initial DNA damage. Following co-cultivation with ROS producing macrophages, monocytes displayed oxidative DNA damage, accumulating DNA single-strand breaks and a high incidence of apoptosis, reducing their ability to give rise to new macrophages. Killing of monocytes by activated macrophages, termed killing in trans, was abolished by ROS scavenging and was also observed in monocytes co-cultivated with ROS producing activated granulocytes. The data revealed that monocytes, which are impaired in the repair of oxidised DNA lesions, are vulnerable to their own ROS and ROS produced by macrophages and granulocytes and support the hypothesis that this is a mechanism regulating the amount of monocytes and macrophages in a ROS-enriched inflammatory environment.

  1. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Villadsen, Klaus; Østrem, Ragnhild Garborg

    2017-01-01

    constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated or activated endothelial cells, as well as in co-culture of endothelial cells...... and macrophages. There was unaltered secretion of cytokines following exposure of peptide-conjugated liposomes to endothelial cells, indicating that the materials were not inflammogenic. Liposomes with a peptide targeting the fibronectin receptor (integrin α5β1) were more effective in targeting of activated....... Therefore, this study demonstrates the feasibility of constructing a peptide-conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells....

  2. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

    Directory of Open Access Journals (Sweden)

    Svensson S

    2014-02-01

    Full Text Available Sara Svensson,1,2 Magnus Forsberg,1,2 Mats Hulander,1,2 Forugh Vazirisani,1,2 Anders Palmquist,1,2 Jukka Lausmaa,2,3 Peter Thomsen,1,2 Margarita Trobos1,21Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 2BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; 3SP Technical Research Institute of Sweden, Borås, SwedenAbstract: The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth

  3. Leptospira interrogans activation of peripheral blood monocyte glycolipoprotein demonstrated in whole blood by the release of IL-6

    Directory of Open Access Journals (Sweden)

    F. Dorigatti

    2005-06-01

    Full Text Available Glycolipoprotein (GLP from pathogenic serovars of Leptospira has been implicated in the pathogenesis of leptospirosis by its presence in tissues of experimental animals with leptospirosis, the inhibition of the Na,K-ATPase pump activity, and induced production of cytokines. The aims of the present study were to investigate the induction of IL-6 by GLP in peripheral blood mononuclear cells (PBMC and to demonstrate monocyte stimulation at the cellular level in whole blood from healthy volunteers. PBMC were stimulated with increasing concentrations (5 to 2500 ng/ml of GLP extracted from the pathogenic L. interrogans serovar Copenhageni, lipopolysaccharide (positive control or medium (negative control, and supernatants were collected after 6, 20/24, and 48 h, and kept at -80ºC until use. Whole blood was diluted 1:1 in RPMI medium and cultivated for 6 h, with medium, GLP and lipopolysaccharide as described above. Monensin was added after the first hour of culture. Supernatant cytokine levels from PBMC were measured by ELISA and intracellular IL-6 was detected in monocytes in whole blood cultures by flow-cytometry. Monocytes were identified in whole blood on the basis of forward versus side scatter parameters and positive reactions with CD45 and CD14 antibodies. GLP ( > or = 50 ng/ml-induced IL-6 levels in supernatants were detected after 6-h incubation, reaching a peak after 20/24 h. The percentage of monocytes staining for IL-6 increased with increasing GLP concentration. Thus, our findings show a GLP-induced cellular activation by demonstrating the ability of GLP to induce IL-6 and the occurrence of monocyte activation in whole blood at the cellular level.

  4. Polypeptide profiles of human oocytes and preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  5. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    Science.gov (United States)

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  6. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  7. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  8. Effect of intravenous plasma transfusion on granulocyte and monocyte oxidative and phagocytic activity in dairy calves with failure of passive immunity.

    Science.gov (United States)

    Yang, Victoria C; Rayburn, Maire C; Chigerwe, Munashe

    2017-12-01

    Plasma administration has been recommended in calves older than 48h with failure of passive immunity (FPI) to provide immunity consistent with adequate colostral ingestion. However, the protective serum immunoglobulin G (IgG) concentrations (≥1000mg/dL) of plasma derived IgG only lasts up to 12h. In addition to IgG, maternally derived colostral cells also confer immunity. The objective of the study was to determine the effect of intravenous plasma transfusion on granulocyte and monocyte oxidative and phagocytic activity in calves with FPI. Twenty-seven, one day-old, Jersey calves were assigned into 3 groups. The colostral (CL, N=9) group received 3L of colostrum once by oroesophageal tubing. Two other groups of calves received 1L of colostrum once by oroesophageal tubing and were assigned based on their health status (sick or non-sick) at 4days of age, as the sick-group (SG, N=7) or the non-sick (NG, N=11) groups. At 4days of age, the SG and NG groups were administered plasma intravenously at 30mL/kg. Granulocyte and monocyte oxidative and phagocytic activity was determined by flow cytometry. There was no significant difference in the granulocyte and monocyte oxidative or phagocytic activity among the 3 groups (P>0.05). Plasma administration had no significant effect on the oxidative or phagocytic activity of granulocytes or monocytes. In clinical practice, plasma administration for enhancing oxidative or phagocytic activity of granulocytes or monocytes, alone, might not be justified in calves with FPI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Gene delivery of therapeutic polypeptides to brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    . Results: mRNA expression of proteins with neuroprotective potential in RBEC were enabled. Their expression patters were compared with those of RBE4 and HeLa cells using RT-qPCR analyzes. The evidence for protein synthesis and secretion was obtained by detection of FLAG-tagged to the C-terminal of any......Background: The potential for treatment of chronic disorders affecting the CNS is complicated by the inability of several drugs to cross the blood-brain barrier (BBB). None-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints...... in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion into the brain. Aim: The aim of the present study was to investigate the possibility of transfection to primary rat brain capillary endothelial cells (RBEC) for recombinant protein synthesis...

  10. Monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues

    Energy Technology Data Exchange (ETDEWEB)

    Zwadlo, G.; Schlegel, R.; Sorg, C.

    1986-07-15

    A monoclonal antibody is described that was generated by immunizing mice with cultured human blood monocytes. The antibody (27E10) belongs to the IgG1 subclass and detects a surface antigen at M/sub r/ 17,000 that is found on 20% of peripheral blood monocytes. The antigen is increasingly expressed upon culture of monocytes, reaching a maximum between days 2 and 3. Stimulation of monocytes with interferon-..gamma.. (IFN-..gamma..), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and lipopolysaccharide (LPS) Ylalanine (fMLP) increased the 27E10 antigen density. The amount of 27E10-positive cells is not or is only weakly affected. The antigen is absent from platelets, lymphotyces, and all tested human cell lines, yet it cross-reacts with 15% of freshly isolated granulocytes. By using the indirect immunoperoxidase technique, the antibody is found to be negative on cryostat sections of normal human tissue (skin, lung, and colon) and positive on only a few monocyte-like cells in liver and on part of the cells of the splenic red pulp. In inflammatory tissue, however, the antibody is positive on monocytes/macrophages and sometimes on endothelial cells and epidermal cells, depending on the stage and type of inflammation, e.g., BCG ranulomas are negative, whereas psoriasis vulgaris, atopic dermatitis, erythrodermia, pressure urticaria, and periodontitis contain positively staining cells. In contact eczemas at different times after elicitation (6 hr, 24 hr, and 72 hr), the 27E10 antigen is seen first after 24 hr on a few infiltrating monocytes/macrophages, which increase in numbers after 72 hr.

  11. Altered monocyte activation markers in Tourette’s syndrome: a case–control study

    Directory of Open Access Journals (Sweden)

    Matz Judith

    2012-05-01

    Full Text Available Abstract Background Infections and immunological processes are likely to be involved in the pathogenesis of Tourette’s syndrome (TS. To determine possible common underlying immunological mechanisms, we focused on innate immunity and studied markers of inflammation, monocytes, and monocyte-derived cytokines. Methods In a cross-sectional study, we used current methods to determine the number of monocytes and levels of C-reactive protein (CRP in 46 children, adolescents, and adult patients suffering from TS and in 43 healthy controls matched for age and sex. Tumor necrosis factor alpha (TNF-alpha, interleukin 6 (IL-6, soluble CD14 (sCD14, IL1-receptor antagonist (IL1-ra, and serum neopterin were detected by immunoassays. Results We found that CRP and neopterin levels and the number of monocytes were significantly higher in TS patients than in healthy controls. Serum concentrations of TNF-alpha, sIL1-ra, and sCD14 were significantly lower in TS patients. All measured values were within normal ranges and often close to detection limits. Conclusions The present results point to a monocyte dysregulation in TS. This possible dysbalance in innate immunity could predispose to infections or autoimmune reactions.

  12. UDP-[14C]glucose-labelable polypeptides from pea: Possible components of glucan synthase I activity

    International Nuclear Information System (INIS)

    Ray, P.M.; Dhugga, K.S.; Gallaghar, S.R.

    1989-01-01

    A membrane-bound polypeptide doublet of about 40 kD can be rapidly labeled with UDP-[ 14 C]glucose under the assay conditions for glucan synthase I (GS-I). Label seems covalently bound, and chases when unlabeled UDPG is added; it might represent a covalent intermediate in polysaccharide synthesis. Labeling and GS-I activity show several common features: they co-sediment with Golgi membranes in sucrose gradients; they depend similarly on Mg 2+ or Mn 2+ (not Ca 2+ ); they decrease dramatically from stem apex to base, and are higher in epidermis than internal tissue; they show similar sensitivities to several inhibitors. But the doublet still labels after polysaccharide-synthesizing activity has been destroyed by Triton X-100. The doublet polypeptides might be glucosyl tranferases whose ability to transfer glucose units to a glucan chain is detergent-sensitive, but to accept glucose from UDPG is not; or they might be detergent-insensitive primary glucose acceptors, from which a distinct, detergent-sensitive transferase(s) move(s) these units to glucan chains

  13. Polypeptide structure of a human dermal fibroblast-activating factor (FAF) derived from the U937 cultured line of human monocyte-like cells

    International Nuclear Information System (INIS)

    Cooke, M.P.; Allar, W.J.; Goetzl, E.J.; Dohlman, J.G.

    1986-01-01

    Six liter batches of 1 x 10 6 U937 cells/ml of serum-free RPMI medium were incubated with 100 ng/ml of phorbol myristate acetate for 48 hr at 37 0 C in 5% CO 2 in air to generate FAFs, as quantified by the stimulation of uptake of [ 3 H]thymidine by quiescent human dermal fibroblasts. Filtration of the supernatants on Sephadex G-75 resolved two FAFs of approximately 40,000 and 10-13,000 daltons. The latter principle was purified to homogeneity by sequential Sephadex G-50 filtration, revealing an apparent m.w. of 7-8000, Mono-Q FPLC anion-exchange chromatography with a linear gradient from 20 mM Tris-HCl (pH 8.3) to 0.5 M NaCl-20 mM Tris-HCl in 30 min, and two cycles of high-performance liquid chromatography (HPLC) on a 300 A pore 10 μm C4 column at 1 ml/min with 0.05% trifluoroacetic acid (TFA) in water to 30:70 (v:v) and then to 60:40 (v:v) acetonitrile: 0.05% TFA linearly in 15 min and 30 min, respectively, The FAF activity eluted from HPLC in a sharp peak of O.D. 215 nm at 45% acetonitrile. Analyses of amino acid composition of the highly purified 7-8000 dalton FAF-U937 revealed 37% hydrophobic, 14% basic, and 21% acidic or amide residues, as well as one tryrosine and one methionine. This U937 cell-derived FAF appears to be a unique acidic polypeptide growth factor

  14. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  15. Activated ovarian endothelial cells promote early follicular development and survival.

    Science.gov (United States)

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  16. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor

    International Nuclear Information System (INIS)

    Antalis, T.M.; Clark, M.A.; Barnes, T.; Lehrbach, P.R.; Devine, P.L.; Schevzov, G.; Goss, N.H.; Stephens, R.W.; Tolstoshev, P.

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A) + RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the λ P/sub L/ promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated M/sub r/ of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators

  17. XIAP reverses various functional activities of FRNK in endothelial cells

    International Nuclear Information System (INIS)

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-01-01

    Highlights: ► FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. ► XIAP binds the FRNK domain of FAK. ► XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. ► XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  18. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.

    Science.gov (United States)

    Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-08-01

    Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.

  19. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    Science.gov (United States)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  20. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  1. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  2. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs

    International Nuclear Information System (INIS)

    Hanecak, R.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1982-01-01

    Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH 2 -coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins in vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X

  3. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain

    Directory of Open Access Journals (Sweden)

    Kushchayev SV

    2012-09-01

    Full Text Available Sergiy V Kushchayev,1 Tejas Sankar,1 Laura L Eggink,4,5 Yevgeniya S Kushchayeva,5 Philip C Wiener,1,5 J Kenneth Hoober,5,6 Jennifer Eschbacher,3 Ruolan Liu,2 Fu-Dong Shi,2 Mohammed G Abdelwahab,4 Adrienne C Scheck,4 Mark C Preul11Neurosurgery Research Laboratory, 2Neuroimmunology Laboratory, 3Department of Pathology, 4Neurooncology Research, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, 5School of Life Sciences, Arizona State University, Tempe, 6Susavion Biosciences, Inc, Tempe, AZ, USAObjectives: Immunotherapy with immunostimulants is an attractive therapy against gliomas. C-type lectin receptors specific for galactose/N-acetylgalactosamine (GCLR regulate cellular differentiation, recognition, and trafficking of monocyte-derived cells. A peptide mimetic of GCLR ligands (GCLRP was used to activate blood monocytes and populations of myeloid-derived cells against a murine glioblastoma.Methods: The ability of GCLRP to stimulate phagocytosis by human microglia and monocyte-derived cells of the brain (MDCB isolated from a human glioblastoma was initially assessed in vitro. Induction of activation markers on blood monocytes was assayed by flow cytometry after administration of GCLRP to naive mice. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells and were randomized for tumor size by magnetic resonance imaging, which was also used to assess increase in tumor size. Brain tumor tissues were analyzed using flow cytometry, histology, and enzyme-linked immunosorbent assay with respect to tumor, peritumoral area, and contralateral hemisphere regions.Results: GCLRP exhibited strong stimulatory effect on MDCBs and blood monocytes in vitro and in vivo. GCLRP was associated with an increased percentage of precursors of dendritic cells in the blood (P = 0.003, which differentiated into patrolling macrophages in tumoral (P = 0.001 and peritumoral areas (P = 0.04, rather than into dendritic cells

  4. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells

    Science.gov (United States)

    Kobayashi, Hideki; Butler, Jason M.; O'Donnell, Rebekah; Kobayashi, Mariko; Ding, Bi-Sen; Bonner, Bryant; Chiu, Vi K.; Nolan, Daniel J.; Shido, Koji; Benjamin, Laura; Rafii, Shahin

    2010-01-01

    Endothelial cells establish an instructive vascular niche that reconstitutes haematopoietic stem and progenitor cells (HSPCs) through release of specific paracrine growth factors, known as angiocrine factors. However, the mechanism by which endothelial cells balance the rate of proliferation and lineage-specific differentiation of HSPCs is unknown. Here, we demonstrate that Akt activation in endothelial cells, through recruitment of mTOR, but not the FoxO pathway, upregulates specific angiocrine factors that support expansion of CD34−Flt3− KLS HSPCs with long-term haematopoietic stem cell (LT-HSC) repopulation capacity. Conversely, co-activation of Akt-stimulated endothelial cells with p42/44 MAPK shifts the balance towards maintenance and differentiation of the HSPCs. Selective activation of Akt1 in the endothelial cells of adult mice increased the number of colony forming units in the spleen and CD34−Flt3− KLS HSPCs with LT-HSC activity in the bone marrow, accelerating haematopoietic recovery. Therefore, the activation state of endothelial cells modulates reconstitution of HSPCs through the upregulation of angiocrine factors, with Akt–mTOR-activated endothelial cells supporting the self-renewal of LT-HSCs and expansion of HSPCs, whereas MAPK co-activation favours maintenance and lineage-specific differentiation of HSPCs. PMID:20972423

  5. MONOCYTES AND MACROPHAGES IN PREGNANCY AND PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    2014-06-01

    Full Text Available Preeclampsia is an important complication in pregnancy, characterized byhypertension and proteinuria in the second half of pregnancy. Generalizedactivation of the inflammatory response is thought to play a role in thepathogenesis of preeclampsia. Monocytes may play a central role in thisinflammatory response. Monocytes are short lived cells, that mature in thecirculation and invade into tissues upon an inflammatory stimulus anddevelop into macrophages. Macrophages are abundantly present in theendometrium and play a role in implantation and placentation in normalpregnancy. In preeclampsia, these macrophages appear to be present in largernumbers and are also activated. In the present review we focused on the roleof monocytes and macrophages in the pathophysiology of preeclampsia.

  6. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults

    Directory of Open Access Journals (Sweden)

    Trautwein Christian

    2010-06-01

    Full Text Available Abstract Background Recent experimental approaches have unraveled essential migratory and functional differences of monocyte subpopulations in mice. In order to possibly translate these findings into human physiology and pathophysiology, human monocyte subsets need to be carefully revisited in health and disease. In analogy to murine studies, we hypothesized that human monocyte subsets dynamically change during ageing, potentially influencing their functionality and contributing to immunosenescence. Results Circulating monocyte subsets, surface marker and chemokine receptor expression were analyzed in 181 healthy volunteers (median age 42, range 18-88. Unlike the unaffected total leukocyte or total monocyte counts, non-classical CD14+CD16+ monocytes significantly increased with age, but displayed reduced HLA-DR and CX3CR1 surface expression in the elderly. Classical CD14++CD16- monocyte counts did not vary dependent on age. Serum MCP-1 (CCL2, but not MIP1α (CCL3, MIP1β (CCL4 or fractalkine (CX3CL1 concentrations increased with age. Monocyte-derived macrophages from old or young individuals did not differ with respect to cytokine release in vitro at steady state or upon LPS stimulation. Conclusions Our study demonstrates dynamic changes of circulating monocytes during ageing in humans. The expansion of the non-classical CD14+CD16+ subtype, alterations of surface protein and chemokine receptor expression as well as circulating monocyte-related chemokines possibly contribute to the preserved functionality of the monocyte pool throughout adulthood.

  7. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.

    Science.gov (United States)

    Kim, Hong Seok; Asmis, Reto

    2017-08-01

    MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Phagocytosis of haemozoin (malarial pigment enhances metalloproteinase-9 activity in human adherent monocytes: Role of IL-1beta and 15-HETE

    Directory of Open Access Journals (Sweden)

    Giribaldi Giuliana

    2008-08-01

    Full Text Available Abstract Background It has been shown previously that human monocytes fed with haemozoin (HZ or trophozoite-parasitized RBCs displayed increased matrix metalloproteinase-9 (MMP-9 enzyme activity and protein/mRNA expression and increased TNF production, and showed higher matrix invasion ability. The present study utilized the same experimental model to analyse the effect of phagocytosis of: HZ, delipidized HZ, beta-haematin (lipid-free synthetic HZ and trophozoites on production of IL-1beta and MMP-9 activity and expression. The second aim was to find out which component of HZ was responsible for the effects. Methods Native HZ freshly isolated from Plasmodium falciparum (Palo Alto strain, Mycoplasma-free, delipidized HZ, beta-haematin (lipid-free synthetic HZ, trophozoites and control meals such as opsonized non-parasitized RBCs and inert latex particles, were fed to human monocytes. The production of IL-1beta by differently fed monocytes, in presence or absence of specific MMP-9 inhibitor or anti-hIL-1beta antibodies, was quantified in supernatants by ELISA. Expression of IL-1beta was analysed by quantitative real-time RT-PCR. MMP-9 activity and protein expression were quantified by gelatin zymography and Western blotting. Results Monocytes fed with HZ or trophozoite-parasitized RBCs generated increased amounts of IL-1beta and enhanced enzyme activity (in cell supernatants and protein/mRNA expression (in cell lysates of monocyte MMP-9. The latter appears to be causally related to enhanced IL-1beta production, as enhancement of both expression and enzyme activity were abrogated by anti-hIL-1beta Abs. Upregulation of IL-1beta and MMP-9 were absent in monocytes fed with beta-haematin or delipidized HZ, indicating a role for HZ-attached or HZ-generated lipid components. 15-HETE (15(S,R-hydroxy-6,8,11,13-eicosatetraenoic acid a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem-catalysis was identified as one mediator

  9. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  10. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    Science.gov (United States)

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  11. In vitro gamma irradiation of some purified polypeptide hormones and their biological and radioimmunological activity

    International Nuclear Information System (INIS)

    Hromadova, M.; Macho, L.; Strbak, V.; Vigas, M.; Mikulaj, L.

    1979-01-01

    Some polypeptide hormones (adrenocorticotropin - ACTH, human and bovine growth hormone - GH, human menopausal gonadotropin - HMG, human luteinizing hormone - LH, and bovine thyrotropin - TSH) were irradiated either with 2.5 or 12.5 Mrad (1.1 Mrad/h) or both and their biological activity or immunoreactivity was tested within few days or 3 to 5 months after irradiation. Biological activity of irradiated ACTH (estimation of corticosterone released into medium by incubated adrenals - Saffran and Schally 1955) was not decreased in both time intervals tested. Ten days after irradiation of bovine GH no changes in biological activity (tibia test - Wilhelmi 1973) were found. No decrease of biological activity of irradiated HMG (augmentation of ovarian and uterine weight - Butt 1973) was found 4 months after irradiation and, finaly, no decrease of bovine TSH activity (radioiodine release from prelabelled thyroid in mice - McKenzie 1958) was found 2 to 30 days after irradiation with 2.5 Mrad, while a decrease was observed after 12.5 Mrad. Three to five months after irradiation, however, there was a decrease of biological activity after both doses. The immunological reactivity of irradiated HMG and LH did not differ from that of nonirradiated samples. The same was found with human GH after 2.5 Mrad, while a decrease of reactivity after 12.5 Mrad was detected. It was concluded that, in most of cases, the sterilizing dose of gamma radiation (2.5 Mrad) did not affect the biological activity of polypeptide hormones and that their sensitivity to irradiation appears to differ. (author)

  12. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  13. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    Science.gov (United States)

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  14. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    Science.gov (United States)

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  15. Endothelial Activation: The Ang/Tie Axis in Sepsis

    Directory of Open Access Journals (Sweden)

    Aleksandra Leligdowicz

    2018-04-01

    Full Text Available Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.

  16. Unlike PPARγ, PPARα or PPARβ/δ activation does not promote human monocyte differentiation toward alternative macrophages

    International Nuclear Information System (INIS)

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-01-01

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPARγ promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPARβ/δ in this process has been reported only in mice and no data are available for PPARα. Here, we show that in contrast to PPARγ, expression of PPARα and PPARβ/δ overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPARγ, PPARα or PPARβ/δ activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPARα and PPARβ/δ do not appear to modulate the alternative differentiation of human macrophages.

  17. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1.

    Directory of Open Access Journals (Sweden)

    Yanhua Liu

    Full Text Available Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB. In this study, we found that percentage of apoptotic cells in peripheral blood monocytes from patients with active TB was lower than that from healthy controls (p<0.001. To understand whether microRNAs can modulate apoptosis of monocytes, we investigated differentially expressed microRNAs in patients with active TB. miR-582-5p was mainly expressed in monocytes and was upregulated in patients with active TB. The apoptotic percentage of THP-1 cells transfected with miR-582-5p mimics was significantly lower than those transfected with negative control of microRNA mimics (p<0.001, suggesting that miR-582-5p could inhibit apoptosis of monocytes. To our knowledge, the role of miR-582-5p in regulating apoptosis of monocytes has not been reported so far. Systematic bioinformatics analysis indicated that FOXO1 might be a target gene for miR-582-5p and its 3'UTR contains potential binding sites for miR-582-5p. To determine whether miR-582-5p could influence FOXO1 expression, miR-582-5p mimics or negative control of microRNA mimics were transfected into THP-1 cells. RT-PCR and western blot analysis showed that the miR-582-5p could suppress both FOXO1 mRNA and protein expression. Co-transfection of miR-582-5p and FOXO1 3'UTR-luciferase reporter vector into cells demonstrated that significant decrease in luciferase activity was only found in reporter vector that contained a wild type sequence of FOXO1 3'UTR, suggesting that miR-582-5p could directly target FOXO1. In conclusion, miR-582-5p inhibited apoptosis of monocytes by down-regulating FOXO1 expression and might play an important role in regulating anti-M. tuberculosis directed immune responses.

  18. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  19. Lactic acid delays the inflammatory response of human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Katrin, E-mail: katrin.peter@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Rehli, Michael, E-mail: michael.rehli@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Singer, Katrin, E-mail: katrin.singer@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Renner-Sattler, Kathrin, E-mail: kathrin.renner-sattler@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); Kreutz, Marina, E-mail: marina.kreutz@ukr.de [Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany); RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg (Germany)

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.

  20. Lactic acid delays the inflammatory response of human monocytes

    International Nuclear Information System (INIS)

    Peter, Katrin; Rehli, Michael; Singer, Katrin; Renner-Sattler, Kathrin; Kreutz, Marina

    2015-01-01

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genes was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors

  1. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1.

    Science.gov (United States)

    Liu, Yanhua; Jiang, Jing; Wang, Xinjing; Zhai, Fei; Cheng, Xiaoxing

    2013-01-01

    Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB). In this study, we found that percentage of apoptotic cells in peripheral blood monocytes from patients with active TB was lower than that from healthy controls (pmicroRNAs can modulate apoptosis of monocytes, we investigated differentially expressed microRNAs in patients with active TB. miR-582-5p was mainly expressed in monocytes and was upregulated in patients with active TB. The apoptotic percentage of THP-1 cells transfected with miR-582-5p mimics was significantly lower than those transfected with negative control of microRNA mimics (pmicroRNA mimics were transfected into THP-1 cells. RT-PCR and western blot analysis showed that the miR-582-5p could suppress both FOXO1 mRNA and protein expression. Co-transfection of miR-582-5p and FOXO1 3'UTR-luciferase reporter vector into cells demonstrated that significant decrease in luciferase activity was only found in reporter vector that contained a wild type sequence of FOXO1 3'UTR, suggesting that miR-582-5p could directly target FOXO1. In conclusion, miR-582-5p inhibited apoptosis of monocytes by down-regulating FOXO1 expression and might play an important role in regulating anti-M. tuberculosis directed immune responses.

  2. Measles virus-specified polypeptides in infected cells

    International Nuclear Information System (INIS)

    Vainionpaepae, R.

    1979-01-01

    The synthesis of wild-type measles virus-specified polypeptides in Vero cells in pulse-chase experiments, in cells with synchronized protein synthesis by high salt concentration, and in the presence of proteolytic enzyme inhibitors was analyzed by polyacrylamide slab-gel electrophoresis. Six major (L, G, 2, NP, 5 and M) structural polypeptides were identified in infected cells. The results of pulse-chase experiments suggested that most of the structural polypeptides were synthesized at their final length. Polypeptide M was found to be sensitive to trypsin. In TLCK-treated cells its molecular weight was about 1000-2000 daltons higher than in untreated cells. A minor virus-specific polypeptide with a molecular weight of about 23,000 was found as a very faint and diffuse band. In addition, three nonstructural polypeptides with molecular weights of 65,000, 38,000 and 18,000 were also detected. The experiments with proteolytic enzyme inhibitors and with synchronized protein synthesis suggested that the polypeptide with a molecular weight of 65,000 might be a precursor of the structural polypeptide 5. (author)

  3. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.

    Science.gov (United States)

    Yamauchi, Fumio; Kamioka, Yuji; Yano, Tetsuya; Matsuda, Michiyuki

    2016-09-15

    Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    Science.gov (United States)

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.

  5. Transfecting Human Monocytes with RNA.

    Science.gov (United States)

    Dannull, Jens; Nair, Smita K

    2016-01-01

    Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.

  6. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages.

    Science.gov (United States)

    González, O A; Ebersole, J L; Huang, C B

    2010-04-01

    Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes

  7. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Prion protein induced signaling cascades in monocytes

    International Nuclear Information System (INIS)

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Schmalzbauer, Ruediger; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A.

    2006-01-01

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP C ), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP C fusion proteins synthesized with a human Fc-tag. PrP C fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK 1,2 and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP C in monocytes and macrophages

  9. Impaired activity of adherens junctions contributes to endothelial dilator dysfunction in ageing rat arteries.

    Science.gov (United States)

    Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas A

    2017-08-01

    Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old

  10. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    Science.gov (United States)

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    Science.gov (United States)

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  12. Cinnamic Acid Is Partially Involved in Propolis Immunomodulatory Action on Human Monocytes

    Directory of Open Access Journals (Sweden)

    Bruno José Conti

    2013-01-01

    Full Text Available Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci. The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs, HLA-DR, and CD80. Cytokine production (TNF-α and IL-10 and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities.

  13. IL-4 induces cAMP and cGMP in human monocytic cells

    Directory of Open Access Journals (Sweden)

    B. Dugas

    1995-01-01

    Full Text Available Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min and cAMP (20 – 25 min in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1 IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2 cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive.

  14. Respective roles and interactions of T-lymphocyte and PGE2-mediated monocyte suppressive activities in human newborns and mothers at the time of delivery

    International Nuclear Information System (INIS)

    Durandy, A.; Fischer, A.; Mamas, S.; Dray, F.; Griscelli, C.

    1982-01-01

    Recently the concept of a poorly functional humoral immune response in the newborn was proposed. Data have been presented indicating that the impaired newborn B cell maturation, as shown in vitro in a pokeweed mitogen-induced B cell maturation system, is due both to an immaturity of lymphocyte subsets and to an increased suppressive T activity. In the present work, we present evidence that there exists a predominance of a naturally occurring T lymphocyte suppressive activity in the cord blood in that the removal of the suppressive activity by irradiation allows a normal maturation of newborn B cells. Such normal maturation of newborn B cells can also be obtained using mixed cultures of adult T cells and newborn B cells. Newborn suppressor T cells belong to both EA gamma (+) and EA gamma (-) fractions, and it is not known whether these two groups do or do not belong to different subsets. The PGE2-dependent monocyte suppressive activity does not play any role in the suppression observed in newborns since newborn monocytes are poorly suppressive and since they produce a smaller amount of PGE2 than adult monocytes. Some observations suggest, on the contrary, that the suppressive T lymphocytes can regulate the level of the PGE2-dependent monocyte suppressive activity. It should be noticed that similar observations about T lymphocyte and PGE2-dependent monocyte suppressive activities have been made at the same time using mothers' cells. These observations suggest the possibility that such changes in B cell immune regulation may result from an interaction between maternal and fetal lymphoid cells

  15. High Cellular Monocyte Activation in People Living With Human Immunodeficiency Virus on Combination Antiretroviral Therapy and Lifestyle-Matched Controls Is Associated With Greater Inflammation in Cerebrospinal Fluid

    NARCIS (Netherlands)

    Booiman, Thijs; Wit, Ferdinand W.; Maurer, Irma; de Francesco, Davide; Sabin, Caroline A.; Harskamp, Agnes M.; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Kootstra, Neeltje A.; Schouten, J.; Kooij, K. W.; van Zoest, R. A.; Elsenga, B. C.; Janssen, F. R.; Heidenrijk, M.; Zikkenheiner, W.; van der Valk, M.; Booiman, T.; Harskamp-Holwerda, A. M.; Boeser-Nunnink, B.; Maurer, I.; Mangas Ruiz, M. M.; Girigorie, A. F.; Villaudy, J.; Frankin, E.; Pasternak, A.; Berkhout, B.; van der Kuyl, T.; Portegies, P.; Schmand, B. A.; Geurtsen, G. J.; ter Stege, J. A.; Klein Twennaar, M.; Majoie, C. B. L. M.; Caan, M. W. A.; Su, T.; Weijer, K.; Bisschop, P. H. L. T.; Kalsbeek, A.; Wezel, M.; Visser, I.; Ruhé, H. G.; Franceschi, C.; Garagnani, P.

    2017-01-01

    Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). A cross-sectional analysis of cellular and soluble markers of monocyte activation, coagulation,

  16. Robust Identification of Developmentally Active Endothelial Enhancers in Zebrafish Using FANS-Assisted ATAC-Seq.

    Science.gov (United States)

    Quillien, Aurelie; Abdalla, Mary; Yu, Jun; Ou, Jianhong; Zhu, Lihua Julie; Lawson, Nathan D

    2017-07-18

    Identification of tissue-specific and developmentally active enhancers provides insights into mechanisms that control gene expression during embryogenesis. However, robust detection of these regulatory elements remains challenging, especially in vertebrate genomes. Here, we apply fluorescent-activated nuclei sorting (FANS) followed by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to identify developmentally active endothelial enhancers in the zebrafish genome. ATAC-seq of nuclei from Tg(fli1a:egfp) y1 transgenic embryos revealed expected patterns of nucleosomal positioning at transcriptional start sites throughout the genome and association with active histone modifications. Comparison of ATAC-seq from GFP-positive and -negative nuclei identified more than 5,000 open elements specific to endothelial cells. These elements flanked genes functionally important for vascular development and that displayed endothelial-specific gene expression. Importantly, a majority of tested elements drove endothelial gene expression in zebrafish embryos. Thus, FANS-assisted ATAC-seq using transgenic zebrafish embryos provides a robust approach for genome-wide identification of active tissue-specific enhancer elements. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    Science.gov (United States)

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  18. Intermediate Monocytes but Not TIE2-Expressing Monocytes Are a Sensitive Diagnostic Indicator for Colorectal Cancer

    Science.gov (United States)

    Schauer, Dominic; Starlinger, Patrick; Reiter, Christian; Jahn, Nikolaus; Zajc, Philipp; Buchberger, Elisabeth; Bachleitner-Hofmann, Thomas; Bergmann, Michael; Stift, Anton; Gruenberger, Thomas; Brostjan, Christine

    2012-01-01

    We have conducted the first study to determine the diagnostic potential of the CD14++CD16+ intermediate monocytes as compared to the pro-angiogenic subset of CD14++CD16+TIE2+ TIE2-expressing monocytes (TEMs) in cancer. These monocyte populations were investigated by flow cytometry in healthy volunteers (N = 32) and in colorectal carcinoma patients with localized (N = 24) or metastatic (N = 37) disease. We further determined blood levels of cytokines associated with monocyte regulation. The results revealed the intermediate monocyte subset to be significantly elevated in colorectal cancer patients and to show the highest frequencies in localized disease. Multivariate regression analysis identified intermediate monocytes as a significant independent variable in cancer prediction. With a cut-off value at 0.37% (intermediate monocytes of total leukocytes) the diagnostic sensitivity and specificity ranged at 69% and 81%, respectively. In contrast, TEM levels were elevated in localized cancer but did not differ significantly between groups and none of the cytokines correlated with monocyte subpopulations. Of interest, in vitro analyses supported the observation that intermediate monocytes were more potently induced by primary as opposed to metastatic cancer cells which may relate to the immunosuppressive milieu established in the advanced stage of metastatic disease. In conclusion, intermediate monocytes as compared to TIE2-expressing monocytes are a more sensitive diagnostic indicator of colorectal cancer. PMID:22973451

  19. Intermediate monocytes but not TIE2-expressing monocytes are a sensitive diagnostic indicator for colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Dominic Schauer

    Full Text Available We have conducted the first study to determine the diagnostic potential of the CD14++CD16+ intermediate monocytes as compared to the pro-angiogenic subset of CD14++CD16+TIE2+ TIE2-expressing monocytes (TEMs in cancer. These monocyte populations were investigated by flow cytometry in healthy volunteers (N = 32 and in colorectal carcinoma patients with localized (N = 24 or metastatic (N = 37 disease. We further determined blood levels of cytokines associated with monocyte regulation. The results revealed the intermediate monocyte subset to be significantly elevated in colorectal cancer patients and to show the highest frequencies in localized disease. Multivariate regression analysis identified intermediate monocytes as a significant independent variable in cancer prediction. With a cut-off value at 0.37% (intermediate monocytes of total leukocytes the diagnostic sensitivity and specificity ranged at 69% and 81%, respectively. In contrast, TEM levels were elevated in localized cancer but did not differ significantly between groups and none of the cytokines correlated with monocyte subpopulations. Of interest, in vitro analyses supported the observation that intermediate monocytes were more potently induced by primary as opposed to metastatic cancer cells which may relate to the immunosuppressive milieu established in the advanced stage of metastatic disease. In conclusion, intermediate monocytes as compared to TIE2-expressing monocytes are a more sensitive diagnostic indicator of colorectal cancer.

  20. Modulation of the expression of chondroitin sulfate proteoglycan in stimulated human monocytes

    International Nuclear Information System (INIS)

    Uhlin-Hansen, L.; Eskeland, T.; Kolset, S.O.

    1989-01-01

    Proteoglycan biosynthesis was studied in human monocytes and monocyte-derived macrophages (MDM) after exposure to typical activators of the monocyte/macrophage system: interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA). By morphological examination, both monocytes and MDM were stimulated by these activators. Treatment with IFN-gamma resulted in a slight decrease in the expression of [35S]chondroitin sulfate proteoglycan (CSPG) in both monocytes and MDM, whereas LPS treatment increased the [35S]CSPG expression 1.8 and 2.2 times, respectively. PMA, in contrast, decreased the CSPG expression 0.4 times in monocytes, whereas MDM were stimulated to increase the biosynthesis 1.9 times. An increase in the sulfate density of the chondroitin sulfate chains was evident following differentiation of monocytes into MDM due to the expression of disulfated disaccharide units of the chondroitin sulfate E type (CS-E). However, monocytes exposed to PMA did also express disaccharides of the chondroitin sulfate E type. Furthermore, the expression of CS-E in MDM was increased 2 times following PMA treatment. An inactive phorbol ester, phorbol 12,13-diacetate, did not affect the expression of CS-E in either monocytes or MDM when compared with control cultures, suggesting that protein kinase C-dependent signal pathways may be involved in the regulation of sulfation of CSPG. Exposure to LPS or IFN-gamma did not lead to any changes in the sulfation of the chondroitin sulfate chains

  1. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    Science.gov (United States)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  2. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  3. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2015-06-01

    Full Text Available A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD- 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h and/or microbiological (S. Typhi bacteremia endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-. Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD- were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h. Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  4. Transcriptome analysis of monocyte-HIV interactions

    Directory of Open Access Journals (Sweden)

    Tran Huyen

    2010-06-01

    macrophages can contribute to sustained chronic immune activation during HIV infection, e.g. through the perturbation of cytokine and chemokine networks 141516. With the acknowledged notion of chronic immune activation as a paradoxical driving force of immune suppression 17, this pro-inflammatory macrophage phenotype during HIV infection may be a crucial parameter in disease progression. Yet other macrophage dysfunctions are associated with more peripheral HIV- or ART-associated disorders such as atherosclerosis 18, lipodystrophy 19, and metabolic syndrome during HIV infection and/or combination ART 2021. Monocytes, for their part, are much less permissive to infection with HIV, both in vitro 22 and in vivo, where estimates of infected circulating monocytes are consistently low 2324. Circulating monocytes represent the most accessible primary model for macrophage dysfunction during HIV infection, however, and are furthermore of sufficient importance to study in their own right. Infectious virus can be recovered from circulating monocytes, both in untreated patients 24 and in patients undergoing long-term successful combination ART 25. Additionally, the circulating monocyte pool as a whole does seem to be affected during HIV infection, despite the low frequency of actually infected monocytes. Transcriptome studies, in particular, show a form of hybrid phenotype exhibiting both increased and decreased pro-inflammatory features 2627. This modulation of the non-infected monocyte population could be due to the virus itself through mechanisms which do not require direct infection 28, or to other factors contributing to (aberrant immune activation occurring during HIV infection, such as perturbed cytokine networks 29 or other inflammatory stimulants 30. Several key factors in the described dysregulated processes have been identified 1831, but many molecular components remain elusive. Furthermore, other aspects of HIV and combination ART pathogenesis in which monocyte

  5. Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes

    Science.gov (United States)

    Hossain, Mohammad B.; Conrad, Charles A.; Aldape, Kenneth D.; Fuller, Gregory N.; Marini, Frank C.; Alonso, Marta M.; Idoate, Miguel Angel; Gilbert, Mark R.; Fueyo, Juan; Gomez-Manzano, Candelaria

    2014-01-01

    The addition of anti-angiogenic therapy to the few treatments available to patients with malignant gliomas was based on the fact that these tumors are highly vascularized and on encouraging results from preclinical and clinical studies. However, tumors that initially respond to this therapy invariably recur with the acquisition of a highly aggressive and invasive phenotype. Although several myeloid populations have been associated to this pattern of recurrence, a specific targetable population has not been yet identified. Here, we present evidence for the accumulation of Tie2-expressing monocytes/macrophages (TEMs) at the tumor/normal brain interface of mice treated with anti-VEGF therapies in regions with heightened tumoral invasion. Furthermore, we describe the presence of TEMs in malignant glioma surgical specimens that recurred after bevacizumab treatment. Our studies showed that TEMs enhanced the invasive properties of glioma cells and secreted high levels of gelatinase enzymatic proteins. Accordingly, Tie2+MMP9+ monocytic cells were consistently detected in the invasive tumor edge upon anti-VEGF therapies. Our results suggest the presence of a specific myeloid/monocytic subpopulation that plays a pivotal role in the mechanism of escape of malignant gliomas from anti-VEGF therapies and therefore constitutes a new cellular target for combination therapies in patients selected for anti-angiogenesis treatment. PMID:24809734

  6. Inflammatory Ly6Chigh Monocytes Protect against Candidiasis through IL-15-Driven NK Cell/Neutrophil Activation.

    Science.gov (United States)

    Domínguez-Andrés, Jorge; Feo-Lucas, Lidia; Minguito de la Escalera, María; González, Leticia; López-Bravo, María; Ardavín, Carlos

    2017-06-20

    Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6C high monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans. We found that efficient anti-Candida immunity required a collaborative response between the spleen and kidney, which relied on type I interferon-dependent IL-15 production by spleen inflammatory Ly6C high monocytes to drive efficient activation and GM-CSF release by spleen NK cells; this in turn was necessary to boost the Candida killing potential of kidney neutrophils. Our findings unveil a role for IL-15 as a critical mediator in defense against systemic candidiasis and hold promise for the design of IL-15-based antifungal immunotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Adding exercise to rosuvastatin treatment: influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population.

    Science.gov (United States)

    Coen, Paul M; Flynn, Michael G; Markofski, Melissa M; Pence, Brandt D; Hannemann, Robert E

    2010-12-01

    Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16⁻) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model.

    Directory of Open Access Journals (Sweden)

    Rie Kawabe-Yako

    Full Text Available BACKGROUND: Cilostazol(CLZ has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM-derived endothelial progenitor cell (EPC contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for

  9. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes

    Science.gov (United States)

    Glennie, Nelson D.; Volk, Susan W.

    2017-01-01

    Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis. PMID:28419151

  10. UV cross-linking of polypeptides associated with 3'-terminal exons

    International Nuclear Information System (INIS)

    Stolow, D.T.; Berget, S.M.

    1990-01-01

    Association of nuclear proteins with chimeric vertebrate precursor RNAs containing both polyadenylation signals and an intron was examined by UV cross-linking. One major difference in cross-linking pattern was observed between this chimeric precursor RNA and precursors containing only polyadenylation or splicing signals. The heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptide C cross-linked strongly to sequences downstream of the A addition site in polyadenylation precursor RNA containing only the polyadenylation signal from the simian virus 40 (SV40) late transcription unit. In contrast, the hnRNP C polypeptide cross-linked to chimeric RNA containing the same SV40 late poly(A) cassette very poorly, at a level less than 5% of that observed with the precursor RNA containing just the poly(A) site. Observation that cross-linking of the hnRNP C polypeptide to elements within the SV40 late poly(A) site was altered by the presence of an upstream intron suggests differences in the way nuclear factors associate with poly(A) sites in the presence and absence of an upstream intron. Cross-linking of C polypeptide to chimeric RNA increased with RNAs mutated for splicing or polyadenylation consensus sequences and under reaction conditions (high magnesium) that inhibited polyadenylation. Furthermore, cross-linking of hnRNP C polypeptide to precursors containing just the SV40 late poly(A) site was eliminated in the presence of competing poly(U); polyadenylation, however, was unaffected. Correlation of loss of activity with high levels of hnRNP C polypeptide cross-linking raises questions about the specificity of the interaction between the hnRNP C polypeptide and polyadenylation precursor RNAs in vitro

  11. Distinct functional programming of human fetal and adult monocytes.

    Science.gov (United States)

    Krow-Lucal, Elisabeth R; Kim, Charles C; Burt, Trevor D; McCune, Joseph M

    2014-03-20

    Preterm birth affects 1 out of 9 infants in the United States and is the leading cause of long-term neurologic handicap and infant mortality, accounting for 35% of all infant deaths in 2008. Although cytokines including interferon-γ (IFN-γ), interleukin-10 (IL-10), IL-6, and IL-1 are produced in response to in utero infection and are strongly associated with preterm labor, little is known about how human fetal immune cells respond to these cytokines. We demonstrate that fetal and adult CD14(+)CD16(-) classical monocytes are distinct in terms of basal transcriptional profiles and in phosphorylation of signal transducers and activators of transcription (STATs) in response to cytokines. Fetal monocytes phosphorylate canonical and noncanonical STATs and respond more strongly to IFN-γ, IL-6, and IL-4 than adult monocytes. We demonstrate a higher ratio of SOCS3 to IL-6 receptor in adult monocytes than in fetal monocytes, potentially explaining differences in STAT phosphorylation. Additionally, IFN-γ signaling results in upregulation of antigen presentation and costimulatory machinery in adult, but not fetal, monocytes. These findings represent the first evidence that primary human fetal and adult monocytes are functionally distinct, potentially explaining how these cells respond differentially to cytokines implicated in development, in utero infections, and the pathogenesis of preterm labor.

  12. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Rogier M Thurlings

    2009-11-01

    Full Text Available Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA, a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man.We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT. We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO. Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4 x 10(-3 (0.95-5.1 x 10(-3 % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion.The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.

  13. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    International Nuclear Information System (INIS)

    Takegami, T.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have also revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9

  14. Clinical characteristics of inflammation-associated depression: Monocyte gene expression is age-related in major depressive disorder.

    Science.gov (United States)

    Grosse, Laura; Carvalho, Livia A; Wijkhuijs, Annemarie J M; Bellingrath, Silja; Ruland, Tillmann; Ambrée, Oliver; Alferink, Judith; Ehring, Thomas; Drexhage, Hemmo A; Arolt, Volker

    2015-02-01

    Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRβ genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/β ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients depression (recurrent type, onset depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Tolerance of monocytes and macrophages in response to bacterial endotoxin

    Directory of Open Access Journals (Sweden)

    Ewelina Wiśnik

    2017-03-01

    Full Text Available Monocytes belong to myeloid effector cells, which constitute the first line of defense against pathogens, also called the nonspecific immune system and play an important role in the maintenance of tissue homeostasis. In response to stimulation, monocytes differentiate into macrophages capable of microorganism phagocytosis and secrete factors that play a key role in the regulation of immune responses. However excessive exposure of monocytes/macrophages to the lipopolysaccharide (LPS of Gram negative bacteria leads to the acquisition of immune tolerance by these cells. Such state results from disruption of different biological processes, for example intracellular signaling pathways and is accompanied by a number of disease states (immune, inflammatory or neoplastic conditions. Regulation of monocytes/macrophages activity is controlled by miRNAs, which are involved in the modulation of immune tolerance acquired by these cells. Moreover, the tolerance to endotoxin is conditioned by the posttranscriptional processes and posttranslational epigenetic modifications leading to the impairment of normal immune response for example by alterations in the expression of many genes encoding immune signaling mediators. The aim of this paper is to provide an overview existing knowledge on the modulation of activity of monocytes/macrophages in response to bacterial endotoxin and impaired immune responses.

  16. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  17. Differential induction from X-irradiated human peripheral blood monocytes to dendritic cells

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Takahashi, Kenji; Monzen, Satoru; Kashiwakura, Ikuo

    2008-01-01

    Dendritic cells (DCs) are a type of antigen-presenting cell which plays an essential role in the immune system. To clarify the influences of ionizing radiation on the differentiation to DCs, we focused on human peripheral blood monocytes and investigated whether X-irradiated monocytes can differentiate into DCs. The non-irradiated monocytes and 5 Gy-irradiated monocytes were induced into immature DCs (iDCs) and mature DCs (mDCs) with appropriate cytokine stimulation, and the induced cells from each monocyte expressed each DC-expressing surface antigen such as CD40, CD86 and HLA-DR. However, the expression levels of CD40 and CD86 on the iDCs derived from the 5 Gy-irradiated monocytes were higher than those of iDCs derived from non-irradiated monocytes. Furthermore, the mDCs derived from 5 Gy-irradiated monocytes had significantly less ability to stimulate allogeneic T cells in comparison to the mDCs derived from non-irradiated monocytes. There were no significant differences in the phagocytotic activity of the iDCs and cytokines detected in the supernatants conditioned by the DCs from the non-irradiated and irradiated monocytes. These results suggest that human monocytes which are exposed to ionizing radiation can thus differentiate into DCs, but there is a tendency that X-irradiation leads to an impairment of the function of DCs. (author)

  18. M1 and M2 Monocytes in Rheumatoid Arthritis: A Contribution of Imbalance of M1/M2 Monocytes to Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Shoichi Fukui

    2018-01-01

    Full Text Available ObjectivesWe investigated the relationships among M1 monocytes, M2 monocytes, osteoclast (OC differentiation ability, and clinical characteristics in patients with rheumatoid arthritis (RA.MethodsPeripheral blood mononuclear cells (PBMCs were isolated from RA patients and healthy donors, and we then investigated the number of M1 monocytes or M2 monocytes by fluorescence-activated cell sorting. We also obtained and cultured CD14-positive cells from PBMCs from RA patients and healthy donors to investigate OC differentiation in vitro.ResultsForty RA patients and 20 healthy donors were included. Twenty-two patients (55% were anticitrullinated protein antibody (ACPA positive. The median M1/M2 ratio was 0.59 (0.31–1.11, interquartile range. There were no significant differences between the RA patients and healthy donors. There was a positive correlation between the M1/M2 ratio and the differentiated OC number in vitro in RA patients (ρ = 0.81, p < 0.001. The ACPA-positive patients had significantly higher M1/M2 ratios in vivo (p = 0.028 and significantly greater numbers of OCs in vitro (p = 0.005 than the ACPA-negative patients. Multivariable regression analysis revealed that the M1/M2 ratio was the sole significant contribution factor to in vitro osteoclastogenesis. RA patients with M1/M2 ratios >1 (having relatively more M1 monocytes had higher C-reactive protein and erythrocyte sedimentation rates than RA patients with M1/M2 ratios ≤1. M1-dominant monocytes in vitro produced higher concentrations of interleukin-6 upon stimulation with lipopolysaccharide than M2 monocytes.ConclusionM1/M2 monocytes imbalance strongly contributes to osteoclastogenesis of RA patients. Our findings cast M1 and M2 monocyte subsets in a new light as a new target of treatments for RA to prevent progression of osteoclastic bone destruction.

  19. Anti-TNF-α activity of Portulaca oleracea in vascular endothelial cells.

    Science.gov (United States)

    Lee, An Sook; Kim, Jin Sook; Lee, Yun Jung; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation plays a key role in the pathogenesis and progression of atherosclerosis, a main complication of diabetes. The present study investigated whether an aqueous extract of Portulaca oleracea (AP) prevents the TNF-α-induced vascular inflammatory process in the human umbilical vein endothelial cell (HUVEC). The stimulation of TNF-α induced overexpression of adhesion molecules affects vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1 and E-selectin for example. However, AP significantly suppressed TNF-α-induced over-expression of these adhesion molecules in a dose-dependent manner. In addition, pretreatment with AP dose-dependently reduced an increase of the adhesion of HL-60 cells to TNF-α-induced HUVEC. Furthermore, we observed that stimulation of TNF-α significantly increased intracellular reactive oxygen species (ROS) production. However, pretreatment with AP markedly blocked TNF-α-induced ROS production in a dose-dependent manner. The western blot and immunofluorescence analysis showed that AP inhibited the translocation of p65 NF-κB to the nucleus. In addition, AP suppressed the TNF-α-induced degradation of IκB-α and attenuated the TNF-α-induced NF-κB binding. AP also effectively reduced TNF-α-induced mRNA expressions of monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-8 in a dose-dependent manner. Taken together, AP prevents the vascular inflammatory process through the inhibition of intracellular ROS production and NF-κB activation as well as the reduction of adhesion molecule expression in TNF-α-induced HUVEC. These results suggested that AP might have a potential therapeutic effect by inhibiting the vascular inflammation process in vascular diseases such as atherosclerosis.

  20. Effect of cigarette smoke on monocyte procoagulant activity: Focus on platelet-derived brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S

    2017-01-01

    Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.

  1. Green fluorescent protein (GFP color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1 transfected endothelial modification.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND: Human Parvovirus B19 (PVB19 has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. METHODS AND FINDINGS: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP color reporter gene in the non-structural segment 1 (NS1 of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304. The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1 and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147 were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber. NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; P<0.05 and induces endothelial expression of EMMPRIN/CD147 (CD147: mean ± SEM: NS1-GFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; P<0.05 compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05. The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR analysis. CONCLUSIONS: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  2. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    International Nuclear Information System (INIS)

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-01-01

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O 2 ·- generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67 phox siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91 phox knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47 phox , p67 phox and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67 phox siRNA. Exposure of MPMVEC obtained from gp91 phox knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to

  3. Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14

    Directory of Open Access Journals (Sweden)

    Alexander Witte

    2017-03-01

    Full Text Available Objective: Platelets are a major source of chemokines. Here, we demonstrate for the first time that platelets express significant amounts of CXCL14 and disclose powerful effects of platelet-derived CXCL14 on monocyte and endothelial migration. Methods: The expression of CXCL14 in platelets and in the supernatant of activated platelets was analysed by immunoblotting, ELISA, and flow cytometry. The effect of platelet-derived CXCL14 on monocyte migration was evaluated using a modified Boyden chamber. The effect of CXCL14 on monocyte phagocytosis was tested by using fluorochrome-labelled E.coli particles. The effect of platelet-derived CXCL14 on endothelial migration was explored by the use of an endothelial scratch assay. Results: Hitherto unrecognized expression of CXCL14 in human and murine platelets was uncovered by immunoblotting. Activation with platelet agonists such as adenosine-di-phosphate (ADP, collagen-related peptide (CRP, or thrombin-receptor activating peptide (TRAP, increased CXCL14 surface expression (flow cytometry and release into the supernatant (immunoblotting, ELISA. Since CXCL14 is known to be chemotactic for CD14+ monocytes, we investigated the chemotactic potential of platelet-derived CXCL14 on human monocytes. Activated platelet supernatant induced monocyte migration, which was counteracted upon neutralization of platelet-derived CXCL14 as compared to IgG control. Blocking of the chemokine receptor CXCR4, but not CXCR7, reduced the number of migratory monocytes towards recombinant CXCL14, suggesting the involvement of CXCR4 in the CXCL14-directed monocyte chemotaxis. Recombinant CXCL14 enhanced the phagocytic uptake of E.coli particles by monocytes. In scratch assays with cultured endothelial cells (HUVECs, platelet-derived CXCL14 counteracted the pro-angiogenic effects of VEGF, supporting its previously recognized angiostatic potential. Conclusions: Platelets are a relevant source of CXCL14. Platelet-derived CXCL14 at the

  4. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2011-01-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  5. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomas P

    2012-02-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  6. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling.

    Science.gov (United States)

    Vogel, Megan E; Idelman, Gila; Konaniah, Eddy S; Zucker, Stephen D

    2017-04-01

    Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice and elucidate the molecular processes underlying this effect. Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross-linking of endothelial vascular cell adhesion molecule 1 (VCAM-1) or intercellular adhesion molecule 1 (ICAM-1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM-1 and ICAM-1 signaling. When administered to Ldlr -/- mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin-treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM-1 or ICAM-1 expression. Bilirubin suppresses atherosclerotic plaque formation in Ldlr -/- mice by disrupting endothelial VCAM-1- and ICAM-1-mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  7. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Microparticle Shedding by Erythrocytes, Monocytes and Vascular Smooth Muscular Cells Is Reduced by Aspirin in Diabetic Patients.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Suades, Rosa; Padró, Teresa; Vilahur, Gemma; Peña, Esther; Ybarra, Juan; Pou, Jose M; Badimon, Lina

    2016-07-01

    Diabetes mellitus is associated with an enhanced risk for cardiovascular disease and its prevalence is increasing. Diabetes induces metabolic stress on blood and vascular cells, promoting platelet activation and vascular dysfunction. The level of vascular cell activation can be measured by the number and phenotype of microparticles found in the circulation. The aim of this study was to investigate the effect of a platelet-inhibitory dose of aspirin on the number and type of microparticles shed to the circulation. Forty-three diabetic patients were enrolled in the study and received a daily dose of 100mg of aspirin for 10 days to cover the average platelet life-span in the circulation. Before and after the intervention period, circulating microparticles were characterized and quantified by flow cytometry. Type 1 diabetic patients had about twice the number of tissue factor-positive circulating microparticles (derived both from platelets and monocytes) and endothelial-derived E-selectin positive microparticles than type 2 diabetic patients. Aspirin therapy significantly inhibited platelets since cyclooxygenase 1 derived thromboxane generation levels were reduced by 99%. Microparticles derived from erythrocytes, activated monocytes, and smooth muscle cells were significantly reduced after 10 days of aspirin administration. These results indicate that: a) vascular and blood cells in type 1 diabetic patients are exposed to more sustained stress shown by their specific microparticle origin and levels; b) aspirin therapy inhibits vascular wall cell activation and microparticle shedding, and c) the effects of aspirin are similar in type 1 and 2 diabetes. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Sensor to detect endothelialization on an active coronary stent

    Directory of Open Access Journals (Sweden)

    Coffey Arthur C

    2010-11-01

    Full Text Available Abstract Background A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process. Sensors on several stent struts could give information about the heterogeneity of healing across the stent. Methods A piezoelectric microcantilever was insulated with parylene and demonstrated as an endothelialization detector for incorporation within an active coronary stent. After initial characterization, endothelial cells were plated onto the cantilever surface. After they attached to the surface, they caused an increase in mass, and thus a decrease in the resonant frequencies of the cantilever. This shift was then detected electrically with an LCR meter. The self-sensing, self-actuating cantilever does not require an external, optical detection system, thus allowing for implanted applications. Results A cell density of 1300 cells/mm2 on the cantilever surface is detected. Conclusions We have developed a self-actuating, self-sensing device for detecting the presence of endothelial cells on a surface. The device is biocompatible and functions reliably in ionic liquids, making it appropriate for implantable applications. This sensor can be placed along the struts of a coronary stent to detect when the struts have been covered with a layer of endothelial cells and are no longer available surfaces for clot formation. Anti-platelet therapy can be adjusted in real-time with respect to a patient's level of healing and hemorrhaging risks.

  10. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall.

    Science.gov (United States)

    Schulz, C; von Brühl, M-L; Barocke, V; Cullen, P; Mayer, K; Okrojek, R; Steinhart, A; Ahmad, Z; Kremmer, E; Nieswandt, B; Frampton, J; Massberg, S; Schmidt, R

    2011-05-01

    Platelets play a central role in hemostasis, in inflammatory diseases such as atherosclerosis, and during thrombus formation following vascular injury. Thereby, platelets interact intensively with monocytes and enhance their recruitment to the vascular wall. To investigate the role of the extracellular matrix metalloproteinase inducer (EMMPRIN) in platelet-monocyte interactions. Isolated human monocytes were perfused in vitro over firmly adherent platelets to allow investigation of the role of EMMPRIN in platelet-monocyte interactions under flow conditions. Monocytes readily bound to surface-adherent platelets. Both antibody blockade and gene silencing of monocyte EMMPRIN substantially attenuated firm adhesion of monocytes to platelets at arterial and venous shear rates. In vivo, platelet interactions with the murine monocyte cell line ANA-1 were significantly decreased when ANA-1 cells were pretreated with EMMPRIN-silencing small interfering RNA prior to injection into wild-type mice. Using intravital microscopy, we showed that recruitment of EMMPRIN-silenced ANA-1 to the injured carotid artery was significantly reduced as compared with control cells. Further silencing of EMMPRIN resulted in significantly fewer ANA-1-platelet aggregates in the mouse circulation as determined by flow cytometry. Finally, we identified glycoprotein (GP)VI as a critical corresponding receptor on platelets that mediates interaction with monocyte EMMPRIN. Thus, blocking of GPVI inhibited the effect of EMMPRIN on firm monocyte adhesion to platelets under arterial flow conditions in vitro, and abrogated EMMPRIN-mediated platelet-monocyte aggregate formation in vivo. EMMPRIN supports platelet-monocyte interactions and promotes monocyte recruitment to the arterial wall. Therefore, EMMPRIN might represent a novel target to reduce vascular inflammation and atherosclerotic lesion development. © 2011 International Society on Thrombosis and Haemostasis.

  11. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David

    2015-09-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding Ncarboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

  12. Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity.

    Directory of Open Access Journals (Sweden)

    Shubha Murthy

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions.

  13. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  14. Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition into Profibrotic Macrophages.

    Directory of Open Access Journals (Sweden)

    Chiara Barisione

    Full Text Available The uremic toxin Indoxyl-3-sulphate (IS, a ligand of Aryl hydrocarbon Receptor (AhR, raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation.Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed.IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2 and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1, via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression.IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.

  15. Acute radiation effects on the content and release of plasminogen activator activity in cultured aortic endothelial cells

    International Nuclear Information System (INIS)

    Ts'ao, C.H.; Ward, W.F.

    1985-01-01

    Confluent monolayers from three lines of bovine aortic endothelial cells were exposed to a single dose of 10 Gy of 60 Co γ rays. Seventy-two hours later, the morphology of the irradiated and sham-irradiated monolayers was examined, and cellular DNA and protein contents were determined. In addition, the release of plasminogen activator (PA) activity into the culture media and PA activity in the cell lysates were assayed. DNA and protein contents in the irradiated monolayers were reduced to 43-50% and 72-95% of the control levels, respectively. These data indicate that radiation induced cell loss (detachment and/or lysis) from the monolayer, with hypertrophy of surviving (attached) cells to preserve the continuity of the monolayer surface. Total PA activity (lysate plus medium) in the irradiated dishes was reduced to 50-75% of the control level. However, when endothelial PA activity was expressed on the basis of DNA content, the irradiated monolayers from two of the three cell lines contained significantly more PA activity than did sham-irradiated monolayers. These data suggest that fibrinolytic defects observed in irradiated tissues in situ may be attributable at least in part to a radiation-induced inhibition of PA release by vascular endothelial cells

  16. Nonclassical Ly6C− Monocytes Drive the Development of Inflammatory Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Alexander V. Misharin

    2014-10-01

    Full Text Available Different subsets and/or polarized phenotypes of monocytes and macrophages may play distinct roles during the development and resolution of inflammation. Here, we demonstrate in a murine model of rheumatoid arthritis that nonclassical Ly6C− monocytes are required for the initiation and progression of sterile joint inflammation. Moreover, nonclassical Ly6C− monocytes differentiate into inflammatory macrophages (M1, which drive disease pathogenesis and display plasticity during the resolution phase. During the development of arthritis, these cells polarize toward an alternatively activated phenotype (M2, promoting the resolution of joint inflammation. The influx of Ly6C− monocytes and their subsequent classical and then alternative activation occurs without changes in synovial tissue-resident macrophages, which express markers of M2 polarization throughout the course of the arthritis and attenuate joint inflammation during the initiation phase. These data suggest that circulating Ly6C− monocytes recruited to the joint upon injury orchestrate the development and resolution of autoimmune joint inflammation.

  17. Pituitary adenylate cyclase-activating polypeptide: occurrence and relaxant effect in female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Alm, P; Hannibal, J

    1995-01-01

    The distribution, localization, and smooth muscle effects of pituitary adenylate cyclase-activating polypeptide (PACAP) were studied in the human female genital tract. The concentrations of PACAP-38 and PACAP-27 were measured by radioimmunoassays, and both peptides were found throughout the genital...... was observed. The findings suggest a smooth muscle regulatory role of PACAP in the human female reproductive tract....... tract. The highest concentrations of PACAP-38 were detected in the ovary, the upper part of vagina, and the perineum. The concentrations of PACAP-27 were generally low, in some regions below the detection limit and in other regions 1 to 5% of the PACAP-38 concentrations. Immunocytochemistry revealed...

  18. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  19. Treatment of platelets with riboflavin and ultraviolet light mediates complement activation and suppresses monocyte interleukin-12 production in whole blood.

    Science.gov (United States)

    Loh, Y S; Dean, M M; Johnson, L; Marks, D C

    2015-11-01

    Pathogen inactivation (PI) and storage may alter the immunomodulatory capacity of platelets (PLTs). The aim of this study was to examine the effect of PI (Riboflavin and ultraviolet light treatment) and storage on the capacity of PLTs to induce cytokine responses in recipient inflammatory cells. A pool and split design was used to prepare untreated and PI-treated buffy coat-derived platelet concentrates (PCs). Samples were taken on days 2 and 7 postcollection and incubated with ABO/RhD-matched fresh whole blood for 6 h with or without lipopolysaccharide (LPS). The intracellular production of IP-10, MCP-1, MIP-1α, IL-8, IL-6, IL-10, IL-12, TNF-α and MIP-1β in monocytes and neutrophils was assessed using flow cytometry. Complement proteins in PLT supernatants were measured using a cytometric bead array. PLTs and PLT supernatant (both untreated and PI-treated) resulted in modulation of intracellular MIP-1β and IL-12 production in monocytes. Compared to untreated PLTs, PI-treated PLTs resulted in significantly lower LPS-induced monocyte IL-12 production (day 7). The concentration of C3a and C5a (and their desArg forms) was significantly increased in PLT supernatants following PI. PI results in decreased LPS-induced monocyte IL-12 production and increased complement activation. The association between platelet-induced complement activation and IL-12 production warrants further investigation. © 2015 International Society of Blood Transfusion.

  20. Monocyte functions in diabetes mellitus

    DEFF Research Database (Denmark)

    Geisler, C; Almdal, T; Bennedsen, J

    1982-01-01

    The aim of this study was to investigate the functions of monocytes obtained from 14 patients with diabetes mellitus (DM) compared with those of monocytes from healthy individuals. It was found that the total number of circulating monocytes in the 14 diabetic patients was lower than that from...... for the elucidation of concomitant infections in diabetic patients are discussed....

  1. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  2. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  3. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    Science.gov (United States)

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition

    Directory of Open Access Journals (Sweden)

    Mariusz P. Madej

    2017-06-01

    Full Text Available Production and activity of interleukin (IL-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli and Gram-positive (Lactobacillus acidophilus bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2 and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management

  5. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions.

    Science.gov (United States)

    Coffelt, Seth B; Tal, Andrea O; Scholz, Alexander; De Palma, Michele; Patel, Sunil; Urbich, Carmen; Biswas, Subhra K; Murdoch, Craig; Plate, Karl H; Reiss, Yvonne; Lewis, Claire E

    2010-07-01

    TIE2-expressing monocytes/macrophages (TEM) are a highly proangiogenic subset of myeloid cells in tumors. Here, we show that circulating human TEMs are already preprogrammed in the circulation to be more angiogenic and express higher levels of such proangiogenic genes as matrix metalloproteinase-9 (MMP-9), VEGFA, COX-2, and WNT5A than TIE2(-) monocytes. Additionally, angiopoietin-2 (ANG-2) markedly enhanced the proangiogenic activity of TEMs and increased their expression of two proangiogenic enzymes: thymidine phosphorylase (TP) and cathepsin B (CTSB). Three "alternatively activated" (or M2-like) macrophage markers were also upregulated by ANG-2 in TEMs: interleukin-10, mannose receptor (MRC1), and CCL17. To investigate the effects of ANG-2 on the phenotype and function of TEMs in tumors, we used a double-transgenic (DT) mouse model in which ANG-2 was specifically overexpressed by endothelial cells. Syngeneic tumors grown in these ANG-2 DT mice were more vascularized and contained greater numbers of TEMs than those in wild-type (WT) mice. In both tumor types, expression of MMP-9 and MRC1 was mainly restricted to tumor TEMs rather than TIE2(-) macrophages. Furthermore, tumor TEMs expressed higher levels of MRC1, TP, and CTSB in ANG-2 DT tumors than WT tumors. Taken together, our data show that although circulating TEMs are innately proangiogenic, exposure to tumor-derived ANG-2 stimulates these cells to exhibit a broader, tumor-promoting phenotype. As such, the ANG-2-TEM axis may represent a new target for antiangiogenic cancer therapies. Copyright 2010 AACR.

  6. Pharmacodynamic Monitoring of Tacrolimus-based Immunosuppression in CD14+ Monocytes after Kidney Transplantation

    NARCIS (Netherlands)

    N.M. Kannegieter (Nynke); D.A. Hesselink (Dennis); M. Dieterich (Marjolein); G.N. de Graav (Gretchen); R. Kraaijeveld (Rens); A.T. Rowshani (Ajda); P.J. Leenen (Pieter); C.C. Baan (Carla)

    2017-01-01

    markdownabstractBackground: Monocytes significantly contribute to ischemia-reperfusion injury and allograft rejection after kidney transplantation. However, the knowledge about the effects of immunosuppressive drugs on monocyte activation is limited. Conventional pharmacokinetic methods for

  7. Persistent Inflammation and Endothelial Activation in HIV-1 Infected Patients after 12 Years of Antiretroviral Therapy

    DEFF Research Database (Denmark)

    Rönsholt, Frederikke F; Ullum, Henrik; Katzenstein, Terese L

    2013-01-01

    The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART).......The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART)....

  8. The acute monocytic leukemias: multidisciplinary studies in 45 patients.

    Science.gov (United States)

    Straus, D J; Mertelsmann, R; Koziner, B; McKenzie, S; de Harven, E; Arlin, Z A; Kempin, S; Broxmeyer, H; Moore, M A; Menendez-Botet, C J; Gee, T S; Clarkson, B D

    1980-11-01

    The clinical and laboratory features of 37 patients with variants of acute monocytic leukemia are described. Three of these 37 patients who had extensive extramedullary leukemic tissue infiltration are examples of true histiocytic "lymphomas." Three additional patients with undifferentiated leukemias, one patient with refractory anemia with excess of blasts, one patient with chronic myelomonocytic leukemia, one patient with B-lymphocyte diffuse "histiocytic" lymphoma and one patient with "null" cell, terminal deoxynucleotidyl transferase-positive lymphoblastic lymphoma had bone marrow cells with monocytic features. Another patient had dual populations of lymphoid and monocytoid leukemic cells. The true monocytic leukemias, acute monocytic leukemia (AMOL) and acute myelomonocytic leukemia (AMMOL), are closely related to acute myelocytic leukemia (AML) morphologically and by their response to chemotherapy. like AML, the leukemic cells from the AMMOL and AMOL patients form leukemic clusters in semisolid media. Cytochemical staining of leukemic cells for nonspecific esterases, presence of Fc receptor on the cell surface, phagocytic ability, low TdT activity, presence of surface "ruffles" and "ridges" on scanning EM, elevations of serum lysozyme, and clinical manifestations of leukemic tissue infiltration are features which accompanied monocytic differentiation in these cases.

  9. Polypeptide synthesis in alphavirus-infected aedes albopictus cells during the establishment of persistent infection

    International Nuclear Information System (INIS)

    Richardson, M.A.; Boulton, R.W.; Raghow, R.S.; Dalgarno, L.

    1980-01-01

    Polypeptide synthesis was examined in mosquito cells during the establishment of a persistent infection with two alphaviruses, Ross River virus (RRV) and Semliki Forest virus (SFV), and in vertebrate cells cytopathically-infected with the same viruses. In Aedes albopictus cells, RRV reached peak titres at 34-48 hours p.i. At 12 hours 85 per cent of cells assayed as infected by infective centre assay; by 48 hours when persistence was established, virus production was reduced and <5 per cent of cells assayed as infected. There was not shutdown of host polypeptide synthesis during infection. Viral polypeptide synthesis was maximal between 10 and 24 hours p.i. The major viral polypeptides labelled were nucleocapsid protein and envelope protein(s).The precursor polypeptide p95 which was prominent in infected BHK cells was not detected in mosquito cells. Similar results were obtained on SFV infection. During the establishment of persistence there was a coordinate decline in the synthesis of RRV polypeptides, reaching undetectable levels by 72 hours p.i. Subculturing persistently-infected cells led to a small increase in viral polypeptide synthesis and virus titre. In contrast, during RRV growth in BHK cells host protein synthesis was severely inhibited and by 9-11 hours p.i. virus-specific polypeptide synthesis represented more than 90 per cent of total protein synthetic activity. (author)

  10. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Guangxin Yuan

    2018-01-01

    Full Text Available Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.

  11. Association between sympathoadrenal activation, fibrinolysis, and endothelial damage in septic patients

    DEFF Research Database (Denmark)

    Johansson, Pär I; Haase, Nicolai; Perner, Anders

    2014-01-01

    for Severe Sepsis/Septic Shock trial who were expected not to receive catecholamines at screening preintervention (baseline) and had baseline blood sampled. Clinical, outcome data, and measurements of plasma concentration (p-) biomarkers reflecting sympathoadrenal activation, endothelial activation......-type plasminogen activator, and plasminogen activator inhibitor 1 (PAI-1) and negatively with PAI-1/tissue-type plasminogen activator ratio (all PPAI-1 (all P

  12. Radiation effects on cultured human monocytes and on monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Buescher, E.S.; Gallin, J.I.

    1984-01-01

    Prior to administration, leukocyte transfusions are commonly irradiated with up to 5,000 R to eliminate lymphocytes and thereby prevent graft-versus-host disease in the recipient. It has been widely believed that phagocytes are resistant to this irradiation. In a recent report, it was noted that phagocyte oxidative metabolism was compromised during preparation of white cells for transfusion. As part of the effort to examine the basis for this inhibition of phagocyte function during white cell preparation, an assessment was made of the effects of irradiation on the long-lived monocytes that have been shown to persist at inflammatory foci posttransfusion. Human monocytes were irradiated for up to 3 min, receiving 2,500-5,000 R. This irradiation damaged human monocytes, significantly decreasing their in vitro survival for the first 3 wk of culture, and growth as assessed by two-dimensional cell size measurements during the first 2 wk of culture. Despite smaller cell size, total cell protein was significantly increased over time in irradiated cultures. Extracellular release of lysozyme and beta-glucuronidase per cell was not affected by irradiation, but extracellular lactate dehydrogenase (LDH) release was significantly increased after irradiation. Irradiated monocytes killed Listeria monocytogenes at a slower rate than the nonirradiated controls. Thus, the data indicate that irradiation in doses used to prevent graft-versus-host disease in leukocyte transfusion recipients has a deleterious effect on in vitro human monocyte survival and function

  13. Captopril increases the intensity of monocyte infection by Trypanosoma cruzi and induces human T helper type 17 cells.

    Science.gov (United States)

    Coelho dos Santos, J S; Menezes, C A S; Villani, F N A; Magalhães, L M D; Scharfstein, J; Gollob, K J; Dutra, W O

    2010-12-01

    The anti-hypertensive drug captopril is used commonly to reduce blood pressure of patients with severe forms of Chagas disease, a cardiomyopathy caused by chronic infection with the intracellular protozoan Trypanosoma cruzi. Captopril acts by inhibiting angiotensin-converting enzyme (ACE), the vasopressor metallopeptidase that generates angiotensin II and promotes the degradation of bradykinin (BK). Recent studies in mice models of Chagas disease indicated that captopril can potentiate the T helper type 1 (Th1)-directing natural adjuvant property of BK. Equipped with kinin-releasing cysteine proteases, T. cruzi trypomastigotes were shown previously to invade non-professional phagocytic cells, such as human endothelial cells and murine cardiomyocytes, through the signalling of G protein-coupled bradykinin receptors (B(2) KR). Monocytes are also parasitized by T. cruzi and these cells are known to be important for the host immune response during infection. Here we showed that captopril increases the intensity of T. cruzi infection of human monocytes in vitro. The increased parasitism was accompanied by up-regulated expression of ACE in human monocytes. While T. cruzi infection increased the expression of interleukin (IL)-10 by monocytes significantly, compared to uninfected cells, T. cruzi infection in association with captopril down-modulated IL-10 expression by the monocytes. Surprisingly, studies with peripheral blood mononuclear cells revealed that addition of the ACE inhibitor in association with T. cruzi increased expression of IL-17 by CD4(+) T cells in a B(2) KR-dependent manner. Collectively, our results suggest that captopril might interfere with host-parasite equilibrium by enhancing infection of monocytes, decreasing the expression of the modulatory cytokine IL-10, while guiding development of the proinflammatory Th17 subset. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  14. Sympathetic Release of Splenic Monocytes Promotes Recurring Anxiety Following Repeated Social Defeat.

    Science.gov (United States)

    McKim, Daniel B; Patterson, Jenna M; Wohleb, Eric S; Jarrett, Brant L; Reader, Brenda F; Godbout, Jonathan P; Sheridan, John F

    2016-05-15

    Neuroinflammatory signaling may contribute to the pathophysiology of chronic anxiety disorders. Previous work showed that repeated social defeat (RSD) in mice promoted stress-sensitization that was characterized by the recurrence of anxiety following subthreshold stress 24 days after RSD. Furthermore, splenectomy following RSD prevented the recurrence of anxiety in stress-sensitized mice. We hypothesize that the spleen of RSD-exposed mice became a reservoir of primed monocytes that were released following neuroendocrine activation by subthreshold stress. Mice were subjected to subthreshold stress (i.e., single cycle of social defeat) 24 days after RSD, and immune and behavioral measures were taken. Subthreshold stress 24 days after RSD re-established anxiety-like behavior that was associated with egress of Ly6C(hi) monocytes from the spleen. Moreover, splenectomy before RSD blocked monocyte trafficking to the brain and prevented anxiety-like behavior following subthreshold stress. Splenectomy, however, had no effect on monocyte accumulation or anxiety when determined 14 hours after RSD. In addition, splenocytes cultured 24 days after RSD exhibited a primed inflammatory phenotype. Peripheral sympathetic inhibition before subthreshold stress blocked monocyte trafficking from the spleen to the brain and prevented the re-establishment of anxiety in RSD-sensitized mice. Last, β-adrenergic antagonism also prevented splenic monocyte egress after acute stress. The spleen served as a unique reservoir of primed monocytes that were readily released following sympathetic activation by subthreshold stress that promoted the re-establishment of anxiety. Collectively, the long-term storage of primed monocytes in the spleen may have a profound influence on recurring anxiety disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Elevated Atherosclerosis-Related Gene Expression, Monocyte Activation and Microparticle-Release Are Related to Increased Lipoprotein-Associated Oxidative Stress in Familial Hypercholesterolemia

    DEFF Research Database (Denmark)

    Hjuler Nielsen, Morten; Irvine, Helle; Vedel, Simon

    2015-01-01

    OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate the hypoth......OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate...... in subjects with heterozygous familial hypercholesterolemia (FH), in particular in the presence of Achilles tendon xanthomas (ATX). APPROACH AND RESULTS: We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT) and Achilles tendon (AT......LDL-C-CD36 interaction was increased in FH, especially in ATX+ subjects. Monocyte chemokine receptor CX3CR1 was identified as an independent contributor to IMT. CONCLUSIONS: Our data support that lipoprotein-associated oxidative stress is involved in accelerated atherosclerosis in FH, particularly...

  16. High Cellular Monocyte Activation in People Living With Human Immunodeficiency Virus on Combination Antiretroviral Therapy and Lifestyle-Matched Controls Is Associated With Greater Inflammation in Cerebrospinal Fluid

    NARCIS (Netherlands)

    Booiman, Thijs; Wit, Ferdinand W N M; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A; Harskamp, Agnes M; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Kootstra, Neeltje A; Kalsbeek, A.

    2017-01-01

    BACKGROUND: Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). METHODS: A cross-sectional analysis of cellular and soluble markers of monocyte

  17. Maturation and demise of human primary monocytes by carbon nanotubes

    Science.gov (United States)

    De Nicola, Milena; Mirabile Gattia, Daniele; Traversa, Enrico; Ghibelli, Lina

    2013-06-01

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 μm) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses.

  18. Maturation and demise of human primary monocytes by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    De Nicola, Milena, E-mail: milena.de.nicola@uniroma2.it [University of Rome ' Tor Vergata' , Department of Biology (Italy); Mirabile Gattia, Daniele, E-mail: daniele.mirabile@enea.it [UTTMAT, ENEA-C.R. Casaccia (Italy); Traversa, Enrico, E-mail: Enrico.Traversa@kaust.edu.sa [King Abdullah University of Science and Technology (KAUST), Division of Physical Science and Engineering (Saudi Arabia); Ghibelli, Lina, E-mail: ghibelli@uniroma2.it [University of Rome ' Tor Vergata' , Department of Biology (Italy)

    2013-06-15

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 {mu}m) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses.

  19. Maturation and demise of human primary monocytes by carbon nanotubes

    International Nuclear Information System (INIS)

    De Nicola, Milena; Mirabile Gattia, Daniele; Traversa, Enrico; Ghibelli, Lina

    2013-01-01

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10–50 nm, length up to 10 μm) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses.

  20. Maturation and demise of human primary monocytes by carbon nanotubes

    KAUST Repository

    De Nicola, Milena D.

    2013-05-17

    The possibility of exploiting carbon nanotubes (CNT) in biomedical practices requires thorough analysis of the chemical or bulk effects they may exert on the immune system, the complex network that recognizes and eliminates foreign particles. In particular, the phagocytosing ability of cells belonging to the monocyte/macrophage lineage may render these immune cells an ideal toxicological target of pristine CNT, which may form aggregates of size exceeding monocyte/macrophage phagocytosing plasticity. To shed light on this issue, we analyzed the effects that pristine multi-walled CNT (MWCNT) without metal or biological impurities exert on survival and activation of freshly explanted human peripheral blood monocytes, analyzing in parallel the non-phagocytosing lymphocytes, and using graphite as control carbon material. MWCNT (diameter 10-50 nm, length up to 10 μm) exert two different toxic effects on mononuclear leukocytes: a minor apoptogenic effect (on lymphocytes > monocytes), and a major, apoptosis-independent effect that exclusively and deeply affect monocyte homeostasis. Analysis of monocyte number, adhesion, redox equilibrium, and the differentiation markers CD14 and CD11b reveals that MWCNT cause the selective disappearance of phagocytosis-competent monocytes by mechanisms related to the presence of large nanoparticle aggregates, suggesting phenomena of bulk toxicity possibly consisting of frustrated phagocytosis. At the same time, MWCNT stimulate adhesion of the phagocytosis-incompetent monocytes, and their differentiation toward a peculiar maturation asset. These observations point out novel mechanisms of CNT toxicity, renewing concerns that they may impair the innate immune system deranging the inflammatory responses. © 2013 Springer Science+Business Media Dordrecht.

  1. Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes

    DEFF Research Database (Denmark)

    Navarrete Santos, A; Roentsch, J; Danielsen, E M

    2000-01-01

    as in adhesion and cell-cell interactions. Here, we report for the first time that aminopeptidase N/CD13 in monocytes is partially localized in detergent-insoluble membrane microdomains enriched in cholesterol, glycolipids, and glycosylphosphoinositol-anchored proteins, referred to as "rafts." Raft fractions...... of monocytes were characterized by the presence of GM1 ganglioside as raft marker molecule and by the high level of tyrosine-phosphorylated proteins. Furthermore, similar to polarized cells, rafts in monocytic cells lack Na(+), K(+)-ATPase. Cholesterol depletion of monocytes by methyl-beta-cyclodextrin greatly...... reduces raft localization of aminopeptidase N/CD13 without affecting ala-p-nitroanilide cleaving activity of cells....

  2. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    2008-04-01

    Full Text Available HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  3. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes.

    Science.gov (United States)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-11-14

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.

  4. Elastolytic activity of human blood monocytes characterized by a new monoclonal antibody against human leucocyte elastase. Relationship to rheumatoid arthritis

    DEFF Research Database (Denmark)

    Jensen, H S; Christensen, L D

    1990-01-01

    The leucocyte elastase of human blood monocytes was investigated by applying a new monoclonal antibody which did not block the enzyme activity against elastin. In a fixed population of mononuclear cells (MNC) and using fluorescence activated cell sorting (FACS), the human leucocyte elastase (HLE...

  5. Leishmania infection modulates beta-1 integrin activation and alters the kinetics of monocyte spreading over fibronectin

    Science.gov (United States)

    Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d’ El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington LC

    2015-01-01

    Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55–89] μm2 for uninfected and 41 [34–51] μm2 for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm2 s−1 ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm2 s−1 ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis. PMID:26249106

  6. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  7. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    Science.gov (United States)

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  8. Vitamin D Receptor Activation Mitigates the Impact of Uremia on Endothelial Function in the 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    J. Ruth Wu-Wong

    2010-01-01

    Full Text Available Endothelial dysfunction increases cardiovascular disease risk in chronic kidney disease (CKD. This study investigates whether VDR activation affects endothelial function in CKD. The 5/6 nephrectomized (NX rats with experimental chronic renal insufficiency were treated with or without paricalcitol, a VDR activator. Thoracic aortic rings were precontracted with phenylephrine and then treated with acetylcholine or sodium nitroprusside. Uremia significantly affected aortic relaxation (−50.0±7.4% in NX rats versus −96.2±5.3% in SHAM at 30 M acetylcholine. The endothelial-dependent relaxation was improved to –58.2±6.0%, –77.5±7.3%, and –90.5±4.0% in NX rats treated with paricalcitol at 0.021, 0.042, and 0.083 g/kg for two weeks, respectively, while paricalcitol at 0.042 g/kg did not affect blood pressure and heart rate. Parathyroid hormone (PTH suppression alone did not improve endothelial function since cinacalcet suppressed PTH without affecting endothelial-dependent vasorelaxation. N-omega-nitro-L-arginine methyl ester completely abolished the effect of paricalcitol on improving endothelial function. These results demonstrate that VDR activation improves endothelial function in CKD.

  9. Inability of newborns' or pregnant women's monocytes to suppress pokeweed mitogen-induced responses

    International Nuclear Information System (INIS)

    Durandy, A.; Fischer, A.; Griscelli, C.

    1982-01-01

    Although an excess of human adult blood adherent cells inhibits the pokeweed mitogen- (PWM) induced normal adult lymphocyte proliferation and B cell maturation into immunoglobulin-containing cells (ICC), adherent cells collected from newborn infants or pregnant women at time of delivery were unable to exert a similar suppressor activity. After activation by Concanavalin A (Con A), newborns' and pregnant women's adherent cells acquired a suppressor activity comparable to that of control adult adherent cells. The adherent suppressor cell was shown to be radioresistant (3000 rad), indicating its probable monocytic orgin. Both monocyte-suppressor activities (MSA) observed in adulthood (spontaneously) and in the neonatal period (after activation) were dependent on prostaglandin E 2 (PGE 2 ) secretion, because they were abolished by indomethacin or a specific anti-PGE 2 anti-serum. Expression of MSA appeared to be under a negative regulation exerted by naturally occurring T suppressor lymphocytes present in the blood of newborns or pregnant women, because incubation of adult monocytes or Con A-activated newborn monocytes with newborns' or pregnant women's T lymphocytes resulted in a dramatic decrease of their MSA. These results strongly suggest that the lack of MSA in the neonatal period and in late pregnancy is a consequence of activation of T suppressor lymphocytes

  10. Hormonal regulation of Na+/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin

    2011-10-01

    Na- and K-dependent ATPase (Na,K-ATPase) in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in these cells. Mouse corneal endothelial cells were exposed to dexamethasone or insulin. ATPase activity was evaluated by spectrophotometric measurement, and pump function was measured using an Ussing chamber. Western blotting and immunocytochemistry were performed to measure the expression of the Na,K-ATPase α1-subunit. Dexamethasone increased Na,K-ATPase activity and the pump function of endothelial cells. Western blot analysis indicated that dexamethasone increased the expression of the Na,K-ATPase α1-subunit but decreased the ratio of active to inactive Na,K-ATPase α1-subunit. Insulin increased Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were transient and blocked by protein kinase C inhibitors and inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A). Western blot analysis indicated that insulin decreased the amount of inactive Na,K-ATPase α1-subunit, but the expression of total Na,K-ATPase α1-subunit was unchanged. Immunocytochemistry showed that insulin increased cell surface expression of the Na,K-ATPase α1-subunit. Our results suggest that dexamethasone and insulin stimulate Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells was mediated by Na,K-ATPase synthesis and an increased enzymatic activity because of dephosphorylation of Na,K-ATPase α1-subunits. The effect of insulin is mediated by the protein kinase C, PP1, and/or PP2A pathways.

  11. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  12. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere.

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  13. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  14. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit.

    Science.gov (United States)

    Bocan, T M; Rosebury, W S; Mueller, S B; Kuchera, S; Welch, K; Daugherty, A; Cornicelli, J A

    1998-02-01

    Oxidant signalling and lipoprotein oxidation may play important roles in atherosclerotic lesion development. Given coincident localization of 15-lipoxygenase (15-LO), stereospecific products of 15-LO and epitopes of modified LDL in atherosclerotic lesions, we hypothesized that inhibition of 15-LO by PD146176, an inhibitor of 15-LO with an IC50 in cells or isolated enzyme of 0.5-0.8 microM, may limit atherosclerotic lesion development through regulation of monocyte-macrophage enrichment. Rabbits exposed to chronic endothelial denudation of the iliac-femoral artery were meal-fed a 0.25% cholesterol (C), 3% peanut oil (PNO), 3% coconut oil (CNO) diet twice daily with and without 175 mg/kg PD146176 for 12 weeks. In a second study, atherosclerotic lesions were pre-established in rabbits through chronic endothelial denudation and meal-fed a 0.5% C, 3% PNO, 3% CNO diet for 9 weeks and a 0% C/fat diet for 6 weeks prior to an 8 week administration of PD146176 at 175 mg/kg, q.d. Plasma total and lipoprotein cholesterol exposure were similar in control and PD146176-treated animals in both studies but PD146176 increased plasma triglyceride exposure 2- to 4-fold. Plasma PD146176 concentrations ranged from 99 to 214 ng/ml at 2 h post-dose. In the progression study, the iliac-femoral monocyte-macrophage area was reduced 71%, cross-sectional lesion area was unchanged and cholesteryl ester (CE) content was reduced 63%. In the regression study, size and macrophage content of iliac-femoral, fibrous plaque-like lesions were decreased 34%, CE content was reduced 19% and gross extent of thoracic aortic lesions were reduced 41%. We conclude that PD146176 can limit monocyte macrophage enrichment of atherosclerotic lesions and can attenuate development of fibrofoamy and fibrous plaque lesions in the absence of changes in plasma total or lipoprotein cholesterol concentrations.

  15. Muscle sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Yrsa Bergmann Sverrisdóttir

    Full Text Available BACKGROUND: Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals. METHODS AND RESULTS: In 10 healthy normotensive subjects (3 f/7 m, (age 37+/-11 yrs, (BMI 24+/-3 kg/m(2 direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index, was within the normal range (1.9-3.3 and MSNA was as expected for age and gender (13-44 burst/minute. RH-PAT index was inversely related to MSNA (r = -0.8, p = 0.005. RH-PAT index and MSNA were reciprocally related to time (h/week spent on physical activity (p = 0.005 and p = 0.006 respectively and platelet concentration (PLT (p = 0.02 and p = 0.004 respectively. CONCLUSIONS: Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular

  16. Fatty Acid Oxidation Compensates for Lipopolysaccharide-Induced Warburg Effect in Glucose-Deprived Monocytes

    Directory of Open Access Journals (Sweden)

    Nora Raulien

    2017-05-01

    Full Text Available Monocytes enter sites of microbial or sterile inflammation as the first line of defense of the immune system and initiate pro-inflammatory effector mechanisms. We show that activation with bacterial lipopolysaccharide (LPS induces them to undergo a metabolic shift toward aerobic glycolysis, similar to the Warburg effect observed in cancer cells. At sites of inflammation, however, glucose concentrations are often drastically decreased, which prompted us to study monocyte function under conditions of glucose deprivation and abrogated Warburg effect. Experiments using the Seahorse Extracellular Flux Analyzer revealed that limited glucose supply shifts monocyte metabolism toward oxidative phosphorylation, fueled largely by fatty acid oxidation at the expense of lipid droplets. While this metabolic state appears to provide sufficient energy to sustain functional properties like cytokine secretion, migration, and phagocytosis, it cannot prevent a rise in the AMP/ATP ratio and a decreased respiratory burst. The molecular trigger mediating the metabolic shift and the functional consequences is activation of AMP-activated protein kinase (AMPK. Taken together, our results indicate that monocytes are sufficiently metabolically flexible to perform pro-inflammatory functions at sites of inflammation despite glucose deprivation and inhibition of the LPS-induced Warburg effect. AMPK seems to play a pivotal role in orchestrating these processes during glucose deprivation in monocytes.

  17. Suppression of blood monocyte and neutrophil chemotaxis in acute human malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Kharazmi, A; Theander, T G

    1986-01-01

    tested monocyte chemotactic responsiveness in 19 patients with acute primary attack malaria. In addition, the neutrophil chemotaxis was measured in 12 patients. Before the initiation of antimalarial treatment a significant depression of monocyte chemotaxis was observed in approximately half...... of the patients when compared with healthy control subjects. The depression was found in Plasmodium falciparum malaria as well as in P. vivax or P. ovale malaria patients. The defective responsiveness was not receptor specific, since the responses towards casein and zymosan activated serum proved to be equally...... of treatment, and nearly normalized after 7 days (87% of controls). Furthermore, monocyte phagocytic and candidacidal activities were assessed in the same patients on admission and during the follow-up. In contrast to chemotaxis, these functions were normal in all of the patients whenever measured...

  18. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  19. Analysis of correlations between selected endothelial cell activation markers, disease activity, and nailfold capillaroscopy microvascular changes in systemic lupus erythematosus patients.

    Science.gov (United States)

    Ciołkiewicz, Mariusz; Kuryliszyn-Moskal, Anna; Klimiuk, Piotr Adrian

    2010-02-01

    The aim of the study was to evaluate the correlation between selected serum endothelial cell activation markers such as vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble thrombomodulin (sTM), soluble E-selectin (sE-selectin), disease activity, and microvascular changes determined by nailfold capillaroscopy in patients with systemic lupus erythematosus (SLE). Serum levels of VEGF, ET-1, sTM, and sE-selectin were determined by an enzyme-linked immunosorbent assay in 80 SLE patients. The disease activity was measured with Systemic Lupus Erythematosus Disease Activity Index score. Nailfold capillaroscopy was performed in all patients. Positive correlation was found between VEGF and both ET-1 (r = 0.294, p nailfold capillaroscopy (r = 0.458, p nailfold capillaroscopy. The relationship between changes in nailfold capillaroscopy, endothelial cell activation markers, and the clinical activity of SLE points to an important role of microvascular abnormalities in the clinical manifestation of the disease.

  20. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  1. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells.

    Science.gov (United States)

    García-Morales, Verónica; Luaces-Regueira, María; Campos-Toimil, Manuel

    2017-12-01

    3',5'-Cyclic adenosine monophosphate (cAMP) exerts an endothelium-dependent vasorelaxant action by stimulating endothelial NO synthase (eNOS) activity, and the subsequent NO release, through cAMP protein kinase (PKA) and exchange protein directly activated by cAMP (Epac) activation in endothelial cells. Here, we have investigated the mechanism by which the cAMP-Epac/PKA pathway activates eNOS. cAMP-elevating agents (forskolin and dibutyryl-cAMP) and the joint activation of PKA (6-Bnz-cAMP) and Epac (8-pCPT-2'-O-Me-cAMP) increased cytoplasmic Ca 2+ concentration ([Ca 2+ ] c ) in ≤30% of fura-2-loaded isolated human umbilical vein endothelial cells (HUVEC). However, these drugs did not modify [Ca 2+ ] c in fluo-4-loaded HUVEC monolayers. In DAF-2-loaded HUVEC monolayers, forskolin, PKA and Epac activators significantly increased NO release, and the forskolin effect was reduced by inhibition of PKA (Rp-cAMPs), Epac (ESI-09), eNOS (L-NAME) or phosphoinositide 3-kinase (PI3K; LY-294,002). On the other hand, inhibition of CaMKII (KN-93), AMPK (Compound C), or total absence of Ca 2+ , was without effect. In Western blot experiments, Serine 1177 phosphorylated-eNOS was significantly increased in HUVEC by cAMP-elevating agents and PKA or Epac activators. In isolated rat aortic rings LY-294,002, but not KN-93 or Compound C, significantly reduced the vasorelaxant effects of forskolin in the presence of endothelium. Our results suggest that Epac and PKA activate eNOS via Ser 1177 phosphorylation by activating the PI3K/Akt pathway, and independently of AMPK or CaMKII activation or [Ca 2+ ] c increase. This action explains, in part, the endothelium-dependent vasorelaxant effect of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Directory of Open Access Journals (Sweden)

    Genevieve E Martin

    Full Text Available Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women.This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+ T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays.HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001, soluble CD163 (sCD163, p = 0.001, sCD14 (p = 0.022, neopterin (p = 0.029 and an increased proportion of CD16(+ monocytes (p = 0.009 compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+ monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002 suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+ T lymphocytes.Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  3. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Science.gov (United States)

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  4. Statins affect the presentation of endothelial chemokines by targeting to multivesicular bodies.

    Directory of Open Access Journals (Sweden)

    Johanna Hol

    Full Text Available BACKGROUND: In addition to lowering cholesterol, statins are thought to beneficially modulate inflammation. Several chemokines including CXCL1/growth-related oncogene (GRO-α, CXCL8/interleukin (IL-8 and CCL2/monocyte chemoattractant protein (MCP-1 are important in the pathogenesis of atherosclerosis and can be influenced by statin-treatment. Recently, we observed that atorvastatin-treatment alters the intracellular content and subcellular distribution of GRO-α in cultured human umbilical vein endothelial cells (HUVECs. The objective of this study was to investigate the mechanisms involved in this phenomenon. METHODOLOGY/ PRINCIPAL FINDINGS: The effect of atorvastatin on secretion levels and subcellular distribution of GRO-α, IL-8 and MCP-1 in HUVECs activated by interleukin (IL-1β were evaluated by ELISA, confocal microscopy and immunoelectron microscopy. Atorvastatin increased the intracellular contents of GRO-α, IL-8, and MCP-1 and induced colocalization with E-selectin in multivesicular bodies. This effect was prevented by adding the isoprenylation substrate GGPP, but not the cholesterol precursor squalene, indicating that atorvastatin exerts these effects by inhibiting isoprenylation rather than depleting the cells of cholesterol. CONCLUSIONS/ SIGNIFICANCE: Atorvastatin targets inflammatory chemokines to the endocytic pathway and multivesicular bodies and may contribute to explain the anti-inflammatory effect of statins at the level of endothelial cell function.

  5. Anthocyanin-Rich Extract from Red Chinese Cabbage Alleviates Vascular Inflammation in Endothelial Cells and Apo E−/− Mice

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Joo

    2018-03-01

    Full Text Available Anthocyanins, the most prevalent flavonoids in red/purple fruits and vegetables, are known to improve immune responses and reduce chronic disease risks. In this study, the anti-inflammatory activities of an anthocyanin-rich extract from red Chinese cabbage (ArCC were shown based on its inhibitory effects in cultured endothelial cells and hyperlipidemic apolipoprotein E-deficient mice. ArCC treatment suppressed monocyte adhesion to tumor necrosis factor-α-stimulated endothelial cells. This was validated by ArCC’s ability to downregulate the expression and transcription of endothelial adhesion molecules, determined by immunoblot and luciferase promoter assays, respectively. The regulation of adhesion molecules was accompanied by transcriptional inhibition of nuclear factor-κB, which restricted cytoplasmic localization as shown by immunocytochemistry. Administration of ArCC (150 or 300 mg/kg/day inhibited aortic inflammation in hyperlipidemic apolipoprotein E-deficient mice, as shown by in vivo imaging. Immunohistochemistry and plasma analysis showed that the aortas from these mice exhibited markedly lower leukocyte infiltration, reduced plaque formation, and lower concentrations of blood inflammatory cytokines than those observed in the control mice. The results suggest that the consumption of anthocyanin-rich red Chinese cabbage is closely correlated with lowering the risk of vascular inflammatory diseases.

  6. Lipopolysaccharide regulated protein expression is only partly impaired in monocytes from patients with type I diabetes

    Directory of Open Access Journals (Sweden)

    Abke Sabine

    2006-03-01

    Full Text Available Abstract Background Monocytes play an important role in innate immunity and atherosclerosis. A disturbed secretion of cytokines in lipopolysaccharide (LPS activated monocytes from type 1 diabetes (T1D patients has been described and may contribute to the impaired inflammatory response in these individuals. In the present study the influence of LPS on five different proteins with a function in immunity and atherosclerosis was analyzed in monocytes from controls and T1D patients. Methods Monocytes were isolated from controls and T1D patients and the LPS-stimulated increase of IL-6, CXCL8, monocyte chemotactic protein 1 (CCL2, MCP-1 and superoxide dismutase (SOD 2, as well as the LPS-mediated decrease of apolipoprotein E (Apo E in primary human monocytes from controls and T1D patients was determined. Results CCL2 and IL-6 secretion in response to LPS was found significantly reduced in monocytes from T1D patients when compared to controls whereas basal CCL2 release was similar in control and T1D cells. In contrast, CXCL8 and apolipoprotein E secretion and SOD 2 expression upon LPS stimulation is similar from T1D and control monocytes. Conclusion These data indicate that LPS-mediated protein expression is only partly disturbed in monocytes from T1D patients. Reduced secretion of IL-6 and CCL2 in activated monocytes of these patients may contribute to an impaired inflammatory response and vascular disease.

  7. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders

    Directory of Open Access Journals (Sweden)

    Hohlfeld Reinhard

    2011-10-01

    Full Text Available Abstract Background Clinical trials evaluating anti-CD20-mediated B-cell depletion in multiple sclerosis (MS and neuromyelitis optica (NMO generated encouraging results. Our recent studies in the MS model experimental autoimmune encephalomyelitis (EAE attributed clinical benefit to extinction of activated B-cells, but cautioned that depletion of naïve B-cells may be undesirable. We elucidated the regulatory role of un-activated B-cells in EAE and investigated whether anti-CD20 may collaterally diminish regulatory B-cell properties in treatment of neuroimmunological disorders. Methods Myelin oligodendrocyte glycoprotein (MOG peptide-immunized C57Bl/6 mice were depleted of B-cells. Functional consequences for regulatory T-cells (Treg and cytokine production of CD11b+ antigen presenting cells (APC were assessed. Peripheral blood mononuclear cells from 22 patients receiving anti-CD20 and 23 untreated neuroimmunological patients were evaluated for frequencies of B-cells, T-cells and monocytes; monocytic reactivity was determined by TNF-production and expression of signalling lymphocytic activation molecule (SLAM. Results We observed that EAE-exacerbation upon depletion of un-activated B-cells closely correlated with an enhanced production of pro-inflammatory TNF by CD11b+ APC. Paralleling this pre-clinical finding, anti-CD20 treatment of human neuroimmunological disorders increased the relative frequency of monocytes and accentuated pro-inflammatory monocyte function; when reactivated ex vivo, a higher frequency of monocytes from B-cell depleted patients produced TNF and expressed the activation marker SLAM. Conclusions These data suggest that in neuroimmunological disorders, pro-inflammatory APC activity is controlled by a subset of B-cells which is eliminated concomitantly upon anti-CD20 treatment. While this observation does not conflict with the general concept of B-cell depletion in human autoimmunity, it implies that its safety and

  8. Interactions of TLR4 and PPARγ, Dependent on AMPK Signalling Pathway Contribute to Anti-Inflammatory Effects of Vaccariae Hypaphorine in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Haijian Sun

    2017-07-01

    Full Text Available Background /Aims: Accumulating evidence indicates that endothelial inflammation is one of the critical determinants in pathogenesis of atherosclerotic cardiovascular disease. Our previous studies had demonstrated that Vaccariae prevented high glucose or oxidative stress-triggered endothelial dysfunction in vitro. Very little is known about the potential effects of hypaphorine from Vaccariae seed on inflammatory response in endothelial cells. Methods: In the present study, we evaluated the anti-inflammatory effects of Vaccariae hypaphorine (VH on lipopolysaccharide (LPS-challenged endothelial EA.hy926 cells. The inflammatory cytokines including tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, monocyte chemoattractant protein 1 (MCP-1 and vascular cellular adhesion molecule-1 (VCAM-1 were measured by real-time PCR (RT-PCR. The expressions of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, toll-like receptor 4 (TLR4, peroxisome proliferator-activated receptor γ (PPARγ were detected by Western blotting or immunofluorescence. Results: We showed that LPS stimulated the expressions of TNF-α, IL-1β, MCP-1, VCAM-1 and TLR4, but attenuated the phosphorylation of AMPK and ACC as well as PPARγ protein levels, which were reversed by VH pretreatment. Moreover, we observed that LPS-upregulated TLR4 protein expressions were inhibited by PPARγ agonist pioglitazone, and the downregulated PPARγ expressions in response to LPS were partially restored by knockdown of TLR4. The negative regulation loop between TLR4 and PPARγ response to LPS was modulated by AMPK agonist AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine or A769662. Conclusions: Taken together, our results suggested that VH ameliorated LPS-induced inflammatory cytokines production in endothelial cells via inhibition of TLR4 and activation of PPARγ, dependent on AMPK signalling pathway.

  9. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  10. Phase transitions in polypeptides: analysis of energy fluctuations

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    The helix random coil transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids is studied in vacuo using the Langevin molecular dynamics approach. The influence of side chain radicals on internal energy and heat capacity of the polypeptides is discussed. The heat...... of simulation time. This study provides a comparison of methods for the description of structural transitions in polypeptides....

  11. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia.

    Science.gov (United States)

    Tsai, Hsing-Hua; Lin, Chin-Pu; Lin, Yi-Hui; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-12-01

    Exercise training improves endothelium-dependent vasodilation, whereas hypoxic stress causes vascular endothelial dysfunction. Monocyte-derived endothelial progenitor cells (Mon-EPCs) contribute to vascular repair process by differentiating into endothelial cells. This study investigates how high-intensity interval (HIT) and moderate-intensity continuous (MCT) exercise training affect circulating Mon-EPC levels and EPC functionality under hypoxic condition. Sixty healthy sedentary males were randomized to engage in either HIT (3-min intervals at 40 and 80 % VO 2max for five repetitions, n = 20) or MCT (sustained 60 % VO 2max , n = 20) for 30 min/day, 5 days/week for 6 weeks, or to a control group (CTL) that did not received exercise intervention (n = 20). Mon-EPC characteristics and EPC functionality under hypoxic exercise (HE, 100 W under 12 % O 2 ) were determined before and after HIT, MCT, and CTL. The results demonstrated that after the intervention, the HIT group exhibited larger improvements in VO 2peak , estimated peak cardiac output (Q C ), and estimated peak perfusions of frontal cerebral lobe (Q FC ) and vastus lateralis (Q VL ) than the MCT group. Furthermore, HIT (a) increased circulating CD14 ++ /CD16 - /CD34 + /KDR + (Mon-1 EPC) and CD14 ++ /CD16 + /CD34 + /KDR + (Mon-2 EPC) cell counts, (b) promoted the migration and tube formation of EPCs, (c) diminished the shedding of endothelial (CD34 - /KDR + /phosphatidylserine + ) cells, and (d) elevated plasma nitrite plus nitrate, stromal cell-derived factor-1, matrix metalloproteinase-9, and vascular endothelial growth factor-A concentrations at rest or following HE, compared to those of MCT. In addition, Mon-1 and -2 EPC counts were directly related to VO 2peak and estimated peak Q C , Q FC , and Q VL . HIT is superior to MCT for improving hemodynamic adaptation and Mon-EPC production. Moreover, HIT effectively enhances EPC functionality and suppresses endothelial injury undergoing hypoxia.

  12. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yae Jin Yoon

    Full Text Available Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs, also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1 activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference-mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.

  13. Studies on the mechanism of endogenous pyrogen production. III. Human blood monocytes.

    Science.gov (United States)

    Bodel, P

    1974-10-01

    The characteristics of pyrogen production and release by human blood monocytes were investigated. A dose-response assay of monocyte pyrogen in rabbits indicated a linear relationship of temperature elevation to dose of pyrogen at lower doses. Monocytes did not contain pyrogen when first obtained, nor did they release it spontaneously even after 5 days of incubation in vitro. Pyrogen production was apparent 4 h after stimulation by endotoxin or phagocytosis, and continued for 24 h or more. Puromycin, an inhibitor of protein synthesis, prevented both initiation and continuation of pyrogen production and release. Pyrogen-containing supernates retained most pyrogenic activity during overnight incubation even in the presence of activated cells. Lymphocytes appeared to play no role in either initiation or continuation of pyrogen production in these studies.

  14. Anti-inflammatory and vasoprotective activity of a retroviral-derived peptide, homologous to human endogenous retroviruses: endothelial cell effects.

    Directory of Open Access Journals (Sweden)

    George J Cianciolo

    Full Text Available Malignant and inflammatory tissues sometimes express endogenous retroviruses or their proteins. A highly-conserved sequence from retroviral transmembrane (TM proteins, termed the "immunosuppressive domain (ID", is associated with inhibition of immune and inflammatory functions. An octadecapeptide (MN10021 from the ID of retroviral TM protein p15E inhibits in vitro release of pro-inflammatory cytokines and increases synthesis of anti-inflammatory IL-10. We sought to determine if MN10021 has significant in vivo effects. MN10021, prepared by solid-phase synthesis, was dimerized through a naturally-occurring, carboxy-terminal cysteine. In vivo anti-inflammatory activity was determined using a murine model of sodium periodate (NaIO(4-induced peritonitis. In vivo vasoprotective effects were determined using: (1 a carrageenan-induced model of disseminated intravascular coagulation (DIC in mice; (2 a reverse passive Arthus model in guinea pigs; and (3 vasoregulatory effects in spontaneously hypertensive rats (SHR. In vitro studies included: (1 binding/uptake of MN10021 using human monocytes, cultured fibroblasts, and vascular endothelial cells (VEC; (2 gene expression by RT-PCR of MN10021-treated VEC; and (3 apoptosis of MN10021-treated VEC exposed to staurosporine or TNF-α. One-tenth nmol MN10021 inhibits 50 percent of the inflammatory response in the mouse peritonitis model. Furthermore, 73 nmol MN10021 completely protects mice in a lethal model of carrageenan-induced DIC and inhibits vascular leak in both the mouse DIC model and a guinea pig reverse passive Arthus reaction. MN10021 binds to and is taken up in a specific manner by both human monocytes and VEC but not by cultured human fibroblasts. Surprisingly, orally-administered MN10021 lowers blood pressure in SHR rats by 10-15% within 1 h suggesting a direct or indirect effect on the vascular endothelium. MN10021 and derived octapeptides induce iNOS (inducible nitric oxide synthase mRNA in VEC

  15. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    Science.gov (United States)

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    Science.gov (United States)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  17. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  18. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  19. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    International Nuclear Information System (INIS)

    Lin, Ming-Chung; Chen, Chia-Ling; Yang, Tsan-Tzu; Choi, Pui-Ching; Hsing, Chung-Hsi; Lin, Chiou-Feng

    2012-01-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  20. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  1. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

    Science.gov (United States)

    Smith, Kathrine J; Petit, Chantal M; Aubart, Kelly; Smyth, Martin; McManus, Edward; Jones, Jo; Fosberry, Andrew; Lewis, Ceri; Lonetto, Michael; Christensen, Siegfried B

    2003-02-01

    Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.

  2. Monocyte activation, brain-derived neurotrophic factor (BDNF), and S100B in bipolar offspring: a follow-up study from adolescence into adulthood.

    Science.gov (United States)

    Mesman, Esther; Hillegers, Manon Hj; Ambree, Oliver; Arolt, Volker; Nolen, Willem A; Drexhage, Hemmo A

    2015-02-01

    There is increasing evidence that both immune and neurochemical alterations are involved in the pathogenesis of bipolar disorder; however, their precise role remains unclear. In this study, we aimed to evaluate neuro-immune changes in a prospective study on children of patients with bipolar disorder. Bipolar offspring, from the prospective Dutch bipolar offspring study (n = 140), were evaluated cross-sectionally within a longitudinal context at adolescence, young adulthood, and adulthood. We examined the expression of 44 inflammation-related genes in monocytes, the cytokines pentraxin 3 (PTX3), chemokine ligand 2 (CCL2), and interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) and S100 calcium binding protein B (S100B) in the serum of bipolar offspring and healthy controls. During adolescence, bipolar offspring showed increased inflammatory gene expression in monocytes, high serum PTX3 levels, but normal CCL2 levels. BDNF levels were decreased, while S100B levels were normal. During young adulthood, monocyte activation remained, although to a lesser degree. Serum PTX3 levels remained high, and signs of monocyte migration became apparent through increased CCL2 levels. BDNF and S100B levels were not measured. At adulthood, circulating monocytes had lost their activation state, but CCL2 levels remained increased. Both BDNF and S100B were now increased. Abnormalities were independent of psychopathology state at all stages. This study suggests an aberrant neuro-immune state in bipolar offspring, which followed a dynamic course from adolescence into adulthood and was present irrespective of lifetime or future mood disorders. We therefore assumed that the aberrant neuro-immune state reflects a general state of vulnerability for mood disorders rather than being of direct predictive value. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. CD14(hi)CD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so.

    Science.gov (United States)

    Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony

    2015-07-07

    With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits

  4. Speeding up pyrogenicity testing: Identification of suitable cell components and readout parameters for an accelerated monocyte activation test (MAT).

    Science.gov (United States)

    Stoppelkamp, Sandra; Würschum, Noriana; Stang, Katharina; Löder, Jasmin; Avci-Adali, Meltem; Toliashvili, Leila; Schlensak, Christian; Wendel, Hans Peter; Fennrich, Stefan

    2017-02-01

    Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1β, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1β and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance

    DEFF Research Database (Denmark)

    Ottesen, B; Fahrenkrug, J

    1995-01-01

    Vasoactive intestinal polypeptide, a neuropeptide with wide distribution in the central and peripheral nervous system, has a broad spectrum of biologic actions. The demonstration of vasoactive intestinal polypeptide containing nerve fibers within the female and male genital tract 17 years ago...... indicated a putative role for this peptide in the local nervous control of reproductive functions. The genes encoding the preprovasoactive intestinal polypeptide precursor molecule and the vasoactive intestinal polypeptide receptor have been identified. The gene expression has been studied by the use...... in the genital tracts (i.e., blood flow and nonvascular smooth muscle relaxation). In the ovary vasoactive intestinal polypeptide seems to play an important role as regulator and/or modulator of folliculogenesis and steroidogenesis. In the male genital tract vasoactive intestinal polypeptide seems to participate...

  6. Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and Ca2+ in the U937 monocyte cell line.

    Science.gov (United States)

    Chang, Young-Ja; Lee, Yun-Kyung; Lee, Eun-Hee; Park, Jeong-Ju; Chung, Sung-Kee; Im, Dong-Soon

    2006-08-01

    We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and Ca2+ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and Ca2+ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and Ca2+, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and Ca(2+)-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

  7. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    Science.gov (United States)

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.

  8. miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages.

    Science.gov (United States)

    Liu, Yanhua; Wang, Ruo; Jiang, Jing; Yang, Bingfen; Cao, Zhihong; Cheng, Xiaoxing

    2015-10-01

    Tuberculosis (TB) is a serious infectious disease that most commonly affects the lungs. Macrophages are among the first line defenders against establishment of Mycobacterium tuberculosis infection in the lungs. In this study, we found that activation and cytokine production in monocyte-derived macrophages (MDM) from patients with active TB was impaired. miR-223 expression was significantly elevated in monocytes and MDM from patients with TB compared with healthy controls. To determine the functional role of miR-223 in macrophages, stable miR-223-expressing and miR-223 antisense-expressing U937 cells were established. Compared with empty vector controls, expression of IL-1β, IL-6, TNF-α and IL-12p40 genes was significantly higher in miR-223 antisense-expressing U937 cells, but lower in miR-223-expressing U937 cells. miR-223 can negatively regulate activation of NF-κB by inhibition of p65 phosphorylation and nuclear translocation. It is concluded that miR-223 can regulate macrophage function by inhibition of cytokine production and NF-κB activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. TLR4 accessory molecule RP105 (CD180 regulates monocyte-driven arteriogenesis in a murine hind limb ischemia model.

    Directory of Open Access Journals (Sweden)

    Antonius J N M Bastiaansen

    Full Text Available AIMS: We investigated the role of the TLR4-accessory molecule RP105 (CD180 in post-ischemic neovascularization, i.e. arteriogenesis and angiogenesis. TLR4-mediated activation of pro-inflammatory Ly6Chi monocytes is crucial for effective neovascularization. Immunohistochemical analyses revealed that RP105+ monocytes are present in the perivascular space of remodeling collateral arterioles. As RP105 inhibits TLR4 signaling, we hypothesized that RP105 deficiency would lead to an unrestrained TLR4-mediated inflammatory response and hence to enhanced blood flow recovery after ischemia. METHODS AND RESULTS: RP105-/- and wild type (WT mice were subjected to hind limb ischemia and blood flow recovery was followed by Laser Doppler Perfusion Imaging. Surprisingly, we found that blood flow recovery was severely impaired in RP105-/- mice. Immunohistochemistry showed that arteriogenesis was reduced in these mice compared to the WT. However, both in vivo and ex vivo analyses showed that circulatory pro-arteriogenic Ly6Chi monocytes were more readily activated in RP105-/- mice. FACS analyses showed that Ly6Chi monocytes became activated and migrated to the affected muscle tissues in WT mice following induction of hind limb ischemia. Although Ly6Chi monocytes were readily activated in RP105-/- mice, migration into the ischemic tissues was hampered and instead, Ly6Chi monocytes accumulated in their storage compartments, bone marrow and spleen, in RP105-/- mice. CONCLUSIONS: RP105 deficiency results in an unrestrained inflammatory response and monocyte over-activation, most likely due to the lack of TLR4 regulation. Inappropriate, premature systemic activation of pro-inflammatory Ly6Chi monocytes results in reduced infiltration of Ly6Chi monocytes in ischemic tissues and in impaired blood flow recovery.

  10. Monocyte transferrin-iron uptake in hereditary hemochromatosis

    International Nuclear Information System (INIS)

    Sizemore, D.J.; Bassett, M.L.

    1984-01-01

    Transferrin-iron uptake by peripheral blood monocytes was studied in vitro to test the hypothesis that the relative paucity of mononuclear phagocyte iron loading in hereditary hemochromatosis results from a defect in uptake of iron from transferrin. Monocytes from nine control subjects and 17 patients with hemochromatosis were cultured in the presence of 59Fe-labelled human transferrin. There was no difference in 59Fe uptake between monocytes from control subjects and monocytes from patients with hemochromatosis who had been treated by phlebotomy and who had normal body iron stores. However, 59Fe uptake by monocytes from iron-loaded patients with hemochromatosis was significantly reduced compared with either control subjects or treated hemochromatosis patients. It is likely that this was a secondary effect of iron loading since iron uptake by monocytes from treated hemochromatosis patients was normal. Assuming that monocytes in culture reflect mononuclear phagocyte iron metabolism in vivo, this study suggests that the relative paucity of mononuclear phagocyte iron loading in hemochromatosis is not related to an abnormality in transferrin-iron uptake by these cells

  11. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  12. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    International Nuclear Information System (INIS)

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-01-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  13. MCPIP1-induced autophagy mediates ischemia/reperfusion injury in endothelial cells via HMGB1 and CaSR.

    Science.gov (United States)

    Xie, Xiaolong; Zhu, Tiebing; Chen, Lulu; Ding, Shuang; Chu, Han; Wang, Jing; Yao, Honghong; Chao, Jie

    2018-01-29

    Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a important role in ischemia/reperfusion (I/R) injury. Autophagy is involved in activating endothelial cells in response to I/R. However, researchers have not clearly determined whether MCPIP1 mediates I/R injury in endothelial cells via autophagy, and its downstream mechanism remains unclear. Western blotting analyses and immunocytochemistry were applied to detect protein levels were detected in HUVECs. An in vitro scratch assay was used to detect cell migration. Cells were transfected with siRNAs to knockdown MCPIP1 and high mobility group box 1 (HMGB1) expression. The pharmacological activator of autophagy rapamycin and the specific calcium-sensing receptor (CaSR) inhibitor NPS-2143 were used to confirm the roles of autophagy and CaSR in I/R injury. I/R induced HMGB1 and CaSR expression, which subsequently upreguated the migration and apoptosis of HUVECs and coincided with the increase of autophagy. HMGB1 was involved in cell migration, whereas CaSR specifically participated in I/R-induced HUVEC apoptosis. Based on these findings, I/R-induced MCPIP1 expression regulates the migration and apoptosis of HUVECs via HMGB1 and CaSR, respectively, suggesting a new therapeutic targetof I/R injury.

  14. Effects on DPPH inhibition of egg-white protein polypeptides treated by pulsed electric field technology.

    Science.gov (United States)

    Wang, Ke; Wang, Jia; Liu, Bolong; Lin, Songyi; Zhao, Ping; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-05-01

    Egg-white protein polypeptides are potentially used as a functional ingredient in food products. In this study, the effects on DPPH inhibition of egg-white protein polypeptides ranging from 10 to 30 kDa treated by pulsed electric field (PEF) technology were investigated. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) inhibition (%) was used to evaluate the antioxidant activity of polypeptides. In order to develop and optimize a pulsed electric field (PEF) mathematical model for improving the antioxidant activity, we have investigated three variables, including concentration (6, 8 and 10 mg mL(-1)), electric field intensity (10, 20 and 30 kV cm(-1)) and pulse frequency (2000, 2350 and 2700 Hz) and subsequently optimized them by response surface methodology (RSM). The concentration (8 mg mL(-1)), electric field intensity (10 kV cm(-1)) and pulse frequency (2000 Hz) were found to be the optimal conditions under which the DPPH inhibition increased 28.44%, compared to the sample without PEF treatment. Both near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyze the change of functional groups. The results showed that PEF technology could improve the antioxidant activity of antioxidant polypeptides from egg-white protein under the optimized conditions. © 2012 Society of Chemical Industry.

  15. Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production.

    Science.gov (United States)

    Eger, M; Hussen, J; Koy, M; Dänicke, S; Schuberth, H-J; Breves, G

    2016-03-01

    The peripartal period of dairy cows is characterized by negative energy balance and higher incidences of infectious diseases such as mastitis or metritis. With the onset of lactation, milk production is prioritized and large amounts of glucose are transported into the mammary gland. Decreased overall energy availability might impair the function of monocytes acting as key innate immune cells, which give rise to macrophages and dendritic cells and link innate and adaptive immunity. Information on glucose requirements of bovine immune cells is rare. Therefore, this study aims to evaluate glucose transporter expression of the 3 bovine monocyte subsets (classical, intermediate, and nonclassical monocytes) and monocyte-derived macrophages and to identify influences of the peripartal period. Blood samples were either collected from nonpregnant healthy cows or from 16 peripartal German Holstein cows at d -14, +7, and +21 relative to parturition. Quantitative real-time PCR was applied to determine mRNA expression of glucose transporters (GLUT) 1, GLUT3, and GLUT4 in monocyte subsets and monocyte-derived macrophages. The low GLUT1 and GLUT3 expression in nonclassical monocytes was unaltered during differentiation into macrophages, whereas in classical and intermediate monocytes GLUT expression was downregulated. Alternatively activated M2 macrophages consumed more glucose compared with classically activated M1 macrophages. The GLUT4 mRNA was only detectable in unstimulated macrophages. Neither monocytes nor macrophages were insulin responsive. In the peripartum period, monocyte GLUT1 and GLUT3 expression and the GLUT3/GLUT1 ratio were negatively correlated with lactose production. The high-affinity GLUT3 transporter appears to be the predominant glucose transporter on bovine monocytes and macrophages, especially in the peripartal period when blood glucose levels decline. Glucose transporter expression in monocytes is downregulated as a function of lactose production, which

  16. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Qilong Wang

    2011-02-01

    Full Text Available Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK by mitochondria-derived reactive oxygen species (ROS is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG. Treatment of BAEC with 2-DG (5 mM for 24 hours or with low concentrations of H(2O(2 (100 µM induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.

  17. Seasonal superoxide overproduction and endothelial activation in guinea-pig heart; seasonal oxidative stress in rats and humans.

    Science.gov (United States)

    Konior, Anna; Klemenska, Emilia; Brudek, Magdalena; Podolecka, Ewa; Czarnowska, Elżbieta; Beręsewicz, Andrzej

    2011-04-01

    Seasonality in endothelial dysfunction and oxidative stress was noted in humans and rats, suggesting it is a common phenomenon of a potential clinical relevance. We aimed at studying (i) seasonal variations in cardiac superoxide (O(2)(-)) production in rodents and in 8-isoprostane urinary excretion in humans, (ii) the mechanism of cardiac O(2)(-) overproduction occurring in late spring/summer months in rodents, (iii) whether this seasonal O(2)(-)-overproduction is associated with a pro-inflammatory endothelial activation, and (iv) how the summer-associated changes compare to those caused by diabetes, a classical cardiovascular risk factor. Langendorff-perfused guinea-pig and rat hearts generated ~100% more O(2)(-), and human subjects excreted 65% more 8-isoprostane in the summer vs. other seasons. Inhibitors of NADPH oxidase, xanthine oxidase, and NO synthase inhibited the seasonal O(2)(-)-overproduction. In the summer vs. other seasons, cardiac NADPH oxidase and xanthine oxidase activity, and protein expression were increased, the endothelial NO synthase and superoxide dismutases were downregulated, and, in guinea-pig hearts, adhesion molecules upregulation and the endothelial glycocalyx destruction associated these changes. In guinea-pig hearts, the summer and a streptozotocin-induced diabetes mediated similar changes, yet, more severe endothelial activation associated the diabetes. These findings suggest that the seasonal oxidative stress is a common phenomenon, associated, at least in guinea-pigs, with the endothelial activation. Nonetheless, its biological meaning (regulatory vs. deleterious) remains unclear. Upregulated NADPH oxidase and xanthine oxidase and uncoupled NO synthase are the sources of the seasonal O(2)(-)-overproduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety.

    Science.gov (United States)

    Reader, B F; Jarrett, B L; McKim, D B; Wohleb, E S; Godbout, J P; Sheridan, J F

    2015-03-19

    The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Caffeine-water-polypeptide interaction in aqueous solution

    Science.gov (United States)

    Ghabi, Habib; Dhahbi, Mahmoud

    1999-04-01

    The interaction of caffeine monomer with the synthetic polypeptides polyasparagine (pAg) and polyaspartic acid (pAsp) was studied by UV spectrophotometry. The results show that different types of interactions are possible depending on the nature of polypeptide. The form of the complex was discussed.

  20. Oxidative Mechanisms of Monocyte-Mediated Cytotoxicity

    Science.gov (United States)

    Weiss, Stephen J.; Lobuglio, Albert F.; Kessler, Howard B.

    1980-01-01

    Human monocytes stimulated with phorbol myristate acetate were able to rapidly destroy autologous erythrocyte targets. Monocyte-mediated cytotoxicity was related to phorbol myristate acetate concentration and monocyte number. Purified preparations of lymphocytes were incapable of mediating erythrocyte lysis in this system. The ability of phorbol myristate acetate-stimulated monocytes to lyse erythrocyte targets was markedly impaired by catalase or superoxide dismutase but not by heat-inactivated enzymes or albumin. Despite a simultaneous requirement for superoxide anion and hydrogen peroxide in the cytotoxic event, a variety of hydroxyl radical and singlet oxygen scavengers did not effect cytolysis. However, tryptophan significantly inhibited cytotoxicity. The myeloperoxidase inhibitor cyanide enhanced erythrocyte destruction, whereas azide reduced it modestly. The inability of cyanide to reduce cytotoxicity coupled with the protective effect of superoxide dismutase suggests that cytotoxicity is independent of the classic myeloperoxidase system. We conclude that monocytes, stimulated with phorbol myristate acetate, generate superoxide anion and hydrogen peroxide, which together play an integral role in this cytotoxic mechanism.

  1. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells.

    Science.gov (United States)

    Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F

    2013-12-01

    Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration. © 2013.

  2. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    Science.gov (United States)

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    R Bueno

    2005-08-01

    Full Text Available The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.

  4. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Endothelial activation and cardiometabolic profiles of treated and never-treated HIV infected Africans.

    Science.gov (United States)

    Fourie, C M T; Schutte, A E; Smith, W; Kruger, A; van Rooyen, J M

    2015-05-01

    The role the human immunodeficiency virus (HIV) and antiretroviral treatment on endothelial activation, and the subsequent relationship with cardiovascular disease, is not well understood. We investigated endothelial activation, inflammatory and cardiometabolic profiles, and measures of vascular structure and function of 66 antiretroviral treated (ART), 78 never-treated (no-ART) HIV infected and 165 HIV free Africans. Blood samples were obtained for biochemical analysis and blood pressure, pulse wave velocity (PWV) and carotid intima-media thickness (IMT) measurements were performed. The HIV infection duration was at least five years and the treatment 2.86±0.13 years. The intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) levels were elevated in the HIV infected groups compared to the controls. The odds of higher adhesion molecule levels were increased when HIV infected (especially in the no-ART group); OR no-ART vs. no-HIV: ICAM 3.92 (2.2-7.0); VCAM 16.2 (7.5-35). ICAM and VCAM associated with HIV status and interleukin-6 (IL-6) in the total group (all pART: β=-0.28, p=0.01; ART: β=-0.22, p=0.07) and TC (no-ART: β=-0.36, pART: β=-0.27, p=0.03). The ART group had an unfavourable lipid profile compared to the no-ART group. The inflammatory markers (C-reactive protein (CRP) and IL-6), PWV and IMT did not differ between the three groups. HIV infected Africans showed endothelial activation when compared to HIV free controls. The endothelial activation was not accompanied by increased inflammation (as measured with CRP and IL-6), arterial stiffness or sub-clinical atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Live Brugia malayi microfilariae inhibit transendothelial migration of neutrophils and monocytes.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Schroeder

    Full Text Available Lymphatic filariasis is a major tropical disease caused by the parasite Brugia malayi. Microfilariae (Mf circulate in the peripheral blood for 2-3 hours in synchronisation with maximal feeding of the mosquito vector. When absent from the peripheral blood, Mf sequester in the capillaries of the lungs. Mf are therefore in close contact with vascular endothelial cells (EC and may induce EC immune function and/or wound repair mechanisms such as angiogenesis. In this study, Mf were co-cultured with human umbilical vein EC (HUVEC or human lung microvascular EC (HLMVEC and the transendothelial migration of leukocyte subsets was analysed. In addition, the protein and/or mRNA expression of chemokine, cytokine and angiogenic mediators in endothelial cells in the presence of live microfilariae were measured by a combination of cDNA arrays, protein arrays, ELISA and fluorescence antibody tests.Surprisingly, our findings indicate that Mf presence partially blocked transendothelial migration of monocytes and neutrophils, but not lymphocytes. However, Mf exposure did not result in altered vascular EC expression of key mediators of the tethering stage of extravasation, such as ICAM-1, VCAM-1 and various chemokines. To further analyse the immunological function of vascular EC in the presence of Mf, we measured the mRNA and/or protein expression of a number of pro-inflammatory mediators. We found that expression levels of the mediators tested were predominantly unaltered upon B. malayi Mf exposure. In addition, a comparison of angiogenic mediators induced by intact Mf and Wolbachia-depleted Mf revealed that even intact Mf induce the expression of remarkably few angiogenic mediators in vascular EC. Our study suggests that live microfilariae are remarkably inert in their induction and/or activation of vascular cells in their immediate local environment. Overall, this work presents important insights into the immunological function of the vascular endothelium during

  7. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function

    Directory of Open Access Journals (Sweden)

    Campesi Ilaria

    2012-01-01

    Full Text Available Abstract Background Fertile women may be encouraged to use contraception during clinical trials to avoid potential drug effects on fetuses. However, hormonal contraception interferes with pharmacokinetics and pharmacodynamics and modifies internal milieus. Macrophages depend on the milieu to which they are exposed. Therefore, we assessed whether macrophage function would be affected by the use of combined oral contraceptives (OCs and if this influence depended on the androgenic or non-androgenic properties of progestin. Methods Healthy adult women were enrolled and stratified into two groups: women who did not use OCs (Fs and women treated with OCs (FOCs. FOCs were further stratified as a function of androgenic (FOCA+ and non-androgenic (FOCA- properties of progestins. Routine hematological, biochemical, inflammatory and endothelial dysfunction parameters were measured. Monocyte-derived macrophages (MDMs were evaluated for the expression and activity of estrogen receptors and androgen receptors, and release of tumor necrosis factor α (TNFα was measured from unstimulated and lipopolysaccharide-stimulated cells. Results As is already known, the use of OCs changed numerous parameters: the number of lymphocytes, iron levels, total iron-binding capacity of transferrin, triglycerides, high-density lipoprotein, total cholesterol, and C-reactive protein increased, while prothrombin time and alkaline phosphatase decreased. Hormonal levels also varied: cortisol was higher in FOCs, while luteinizing hormone, follicle-stimulating hormone, and testosterone were lower in FOCs. Asymmetric dimethylarginine, an index of endothelial function, was lower in FOC than in Fs, as were cysteine and bilirubin. The androgenic properties of progestins affected the activity of OCs: in particular, white blood cell count, hemoglobin, high-density lipoprotein and calcium were higher in FOCA- than in FOCA+, whereas percentage oxygen saturation and γ-glutamyl transpeptidase

  8. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... an endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence...

  9. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  10. Angiogenesis in mucous retention cyst: a human in vivo-like model of endothelial cell differentiation in mucous substrate.

    Science.gov (United States)

    Swelam, Wael; Ida-Yonemochi, Hiroko; Saku, Takashi

    2005-01-01

    Mucous retention cysts contain a mucous pool in the lumina, in which pure angiogenic processes are occasionally observed. By using this unique human material, our aim was to understand the in vivo angiogenic process. Fifteen surgical tissue samples of mucous retention cysts of the lip were examined for expression of vascular endothelial markers and extracellular matrix molecules by immunohistochemistry and in situ hybridization (ISH). Endothelial cells forming new vascular channels showed immunopositivities for CD31, CD34, vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). These newly formed capillaries were surrounded by tenascin-positive matrices and further by a dense infiltration of CD68-positive cells with foamy to epitheloid appearances. Some of these cells were simultaneously positive for CD34, VEGF, and one of its receptors, Flk-1, and they showed definite mRNA as well as protein signals for tenascin. In addition, these cells often tended to be aligned, which suggested tubule formation. The results suggest that monocyte/macrophage lineage cells are a major source for endothelial cells at least in mucous retention cysts and that tenascin produced by those cells plays an important role in differentiation of endothelial cells.

  11. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    International Nuclear Information System (INIS)

    Prach, Morag; Stone, Vicki; Proudfoot, Lorna

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form ( 2+ ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.

  12. Inhibitory effect of trans-caryophyllene (TC) on leukocyte-endothelial attachment.

    Science.gov (United States)

    Zhang, Zhen; Yang, Chunfeng; Dai, Xinlun; Ao, Yu; Li, Yumei

    2017-08-15

    trans-Caryophyllene (TC) is a major component found in the essential oils of many spices and foods/medicinal plants. It is a natural sesquiterpene and has been the subject of numerous studies. However, the effects of TC on vascular inflammation remain unknown. In this study, we reported that TC treatment in human umbilical vein endothelial cells (HUVECs) prevented attachment of monocytic leukemia cell line THP-1 cells to endothelial cells. In addition, in vivo results indicate that TC inhibited macrophage infiltration to the aortic surface and reduced total serum levels of cholesterol and triglycerides. Importantly, administration of TC could inhibit the induction of vascular cell adhesion molecule-1 (VCAM-1) both in vitro and in vivo. Notably, our data indicate that the inhibitory effects of TC on the expression of VCAM-1 are mediated by the JAK2/STAT1/IRF-1 pathway. TC is a specific agonist of the type 2 cannabinoid receptor (CB2R). Importantly, we further verified that the inhibitory effects of TC on the expression of IRF-1 and VCAM-1 are dependent on activation of CB2R. Inhibition of CB2R by either specific inhibitors or RNA interference abolished the inhibitory effects of TC on the expression of IRF-1 and VCAM-1. Our results suggest that TC might have a capacity to suppress the development of atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. An anti-cancer WxxxE-containing azurin polypeptide inhibits Rac1-dependent STAT3 and ERK/GSK-3β signaling in breast cancer cells.

    Science.gov (United States)

    Zhang, Zhe; Luo, Zhiyong; Min, Wenpu; Zhang, Lin; Wu, Yaqun; Hu, Xiaopeng

    2017-06-27

    In our previous study, we characterized a mycoplasmal small GTPase-like polypeptide of 240 amino acids that possesses an N-terminal WVLGE sequence. The N-terminal WVLGE sequence promotes activation of Rac1 and subsequent host cancer cell proliferation. To investigate the function of the WxxxE motif in the interaction with Rac1 and host tumor progression, we synthesized a 35-amino acid WVLGE-containing polypeptide derived from a cell-penetrating peptide derived from the azurin protein. We verified that the WVLGE-containing polypeptide targeted MCF-7 cells rather than MCF-10A cells. However, the WVLGE-containing polypeptide inhibited activation of Rac1 and induced cellular phenotypes that resulted from inhibition of Rac1. In addition, the WVLGE-containing polypeptide down-regulated phosphorylation of the STAT3 and ERK/GSK-3β signaling pathways, and this effect was abolished by either stimulation or inhibition of Rac1 activity. We also found that the WVLGE-containing polypeptide has a Rac1-dependent potential to suppress breast cancer growth in vitro and in vivo. We suggest that by acting as a Rac1 inhibitor, this novel polypeptide may be useful for the treatment of breast cancer.

  14. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.

    Science.gov (United States)

    Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M

    2009-02-01

    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.

  15. Transcellular lipoxygenase metabolism between monocytes and platelets

    Energy Technology Data Exchange (ETDEWEB)

    Bigby, T.D.; Meslier, N. (Univ. of California, San Francisco (USA))

    1989-09-15

    We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.

  16. Reduced Ang2 expression in aging endothelial cells

    International Nuclear Information System (INIS)

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-01-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  17. Reduced Ang2 expression in aging endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ebenbauer, B. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Kaun, C.; Maurer, G. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Huber, K. [Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); 3rd Medical Department, Wilhelminenhospital, Vienna (Austria); Sigmund Freud University, Medical Faculty, Vienna (Austria); Wojta, J. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Core Facilities, Medical University of Vienna, Vienna (Austria)

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  18. Role of insulin in regulation of Na+-/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Akune, Yoko; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo; Tsubota, Kazuo

    2010-08-01

    The Na(+)-/K(+)-dependent ATPase (Na,K-ATPase) expressed in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. The role of insulin in the regulation of Na,K-ATPase activity and pump function in corneal endothelial cells was investigated. Confluent monolayers of mouse corneal endothelial cells were exposed to insulin. ATPase activity was evaluated by spectrophotometric measurement of phosphate released from ATP with the use of ammonium molybdate; Na,K-ATPase activity was defined as the portion of total ATPase activity sensitive to ouabain. Pump function was measured with the use of a Ussing chamber; pump function attributable to Na,K-ATPase activity was defined as the portion of the total short-circuit current sensitive to ouabain. Western blot analysis and immunocytochemistry were performed to measure the expression of the Na,K-ATPase alpha(1)-subunit. Insulin increased the Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were blocked by protein kinase C (PKC) inhibitors and protein phosphatases 1 and 2A inhibitor. Western blot analysis indicated that insulin decreased the ratio of the inactive Na,K-ATPase alpha(1)-subunit. Immunocytochemistry indicated that insulin increased the cell surface expression of the Na,K-ATPase alpha(1)-subunit. These results suggest that insulin increases the Na,K-ATPase activity and pump function of cultured corneal endothelial cells. The effect of insulin is mediated by PKC and presumably results in the activation of PP1, 2A, or both, which are essential for activating Na,K-ATPase by alpha(1)-subunit dephosphorylation.

  19. Chemical dampening of Ly6C(hi) monocytes in the periphery produces anti-depressant effects in mice.

    Science.gov (United States)

    Zheng, Xiao; Ma, Sijing; Kang, An; Wu, Mengqiu; Wang, Lin; Wang, Qiong; Wang, Guangji; Hao, Haiping

    2016-01-19

    The involvement of systemic immunity in depression pathogenesis promises a periphery-targeting paradigm in novel anti-depressant discovery. However, relatively little is known about druggable targets in the periphery for mental and behavioral control. Here we report that targeting Ly6C(hi) monocytes in blood can serve as a strategy for anti-depressant purpose. A natural compound, ginsenoside Rg1 (Rg1), was firstly validated as a periphery-restricted chemical probe. Rg1 selectively suppressed Ly6C(hi) monocytes recruitment to the inflamed mice brain. The proinflammatory potential of Ly6C(hi) monocytes to activate astrocytes was abrogated by Rg1, which led to a blunted feedback release of CCL2 to recruit the peripheral monocytes. In vitro study demonstrated that Rg1 pretreatment on activated THP-1 monocytes retarded their ability to trigger CCL2 secretion from co-cultured U251 MG astrocytes. CCL2-triggered p38/MAPK and PI3K/Akt activation were involved in the action of Rg1. Importantly, in mice models, we found that dampening Ly6C(hi) monocytes at the periphery ameliorated depression-like behavior induced by neuroinflammation or chronic social defeat stress. Together, our work unravels that blood Ly6C(hi) monocytes may serve as the target to enable remote intervention on the depressed brain, and identifies Rg1 as a lead compound for designing drugs targeting peripheral CCL2 signals.

  20. Myelosuppression of Thrombocytes and Monocytes Is Associated with a Lack of Synergy between Chemotherapy and Anti-VEGF Treatment

    Directory of Open Access Journals (Sweden)

    Patrick Starlinger

    2011-05-01

    Full Text Available Purpose: Chemotherapeutic agents that have shown improved patient outcome when combined with anti-vascular endothelial growth factor (VEGF therapy were recently identified to induce the mobilization of proangiogenic Tie-2-expressing monocytes (TEMs and endothelial progenitor cells (EPCs by platelet release of stromal cell-derived factor 1α (SDF-1α. VEGF blockade was found to counteract cell mobilization. We aimed to determine why agents like gemcitabine do not elicit TEM and EPC recruitment and may therefore lack synergy with anti-VEGF therapy. Experimental Design: Locally advanced pancreatic cancer patients (n = 20 were monitored during 16 weeks of neoadjuvant therapy. Treatment was based on gemcitabine with or without the addition of bevacizumab. Blood levels of proangiogenic cell populations and angiogenesis factors were determined in 2-week intervals. Results: The lack of EPC mobilization during gemcitabine therapy was associated with severe thrombocytopenia and reduced SDF-1α blood concentrations. Furthermore, myelosuppression by gemcitabine correlated significantly with loss of TEMs. With respect to angiogenic factors stored and released by platelets, plasma levels of the angiogenesis inhibitor thrombospondin 1 (TSP-1 were selectively decreased and correlated significantly with thrombocytopenia in response to gemcitabine therapy. Conclusions: A thorough literature screen identified thrombocytopenia as a common feature of chemotherapeutic agents that lack synergy with anti-VEGF treatment. Our results on gemcitabine therapy indicate that myelosuppression (in particular, with respect to thrombocytes and monocytes interferes with the mobilization of proangiogenic cell types targeted by bevacizumab and may further counteract antiangiogenic therapy by substantially reducing the angiogenesis inhibitor TSP-1.

  1. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    Science.gov (United States)

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.

  2. Physical fitness and activity, metabolic profile, adipokines and endothelial function in children.

    Science.gov (United States)

    Penha, Jociene Terra da; Gazolla, Fernanda Mussi; Carvalho, Cecília Noronha de Miranda; Madeira, Isabel Rey; Rodrigues-Junior, Flávio; Machado, Elisabeth de Amorim; Sicuro, Fernando Lencastre; Farinatti, Paulo; Bouskela, Eliete; Collett-Solberg, Paulo Ferrez

    2018-05-29

    The prevalence of obesity is increasing. The aim of this study was to investigate if there is endothelial dysfunction in children with normal or excess weight, and whether the metabolic profile, adipokines, and endothelial dysfunction would be more strongly associated with physical fitness or with physical activity levels. Cross-sectional study involving children aged 5-12 years. The evaluation included venous occlusion plethysmography, serum levels of adiponectin, leptin and insulin, lipid profile, physical activity score (PAQ-C questionnaire), and physical fitness evaluation (Yo-Yo test). A total of 62 children participated in this study. Based on the body mass index, 27 were eutrophic, 10 overweight and 25 obese. Triglycerides, LDL cholesterol, HOMA-IR, and leptin were higher in the obese and excess-weight groups compared to the eutrophic group (pPAQ-C. The Yo-Yo test was significantly associated with HDL cholesterol (rho=-0.41; p=0.01), and this association remained after adjusting for body mass index z-score (rho=0.28; p=0.03). This study showed that endothelial dysfunction is already present in obese children, suggesting a predisposition to atherosclerotic disease. Moreover, HDL cholesterol levels were correlated with physical fitness, regardless of body mass index. Copyright © 2018. Published by Elsevier Editora Ltda.

  3. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation

    NARCIS (Netherlands)

    Gordon, Emma J; Fukuhara, Daisuke; Weström, Simone; Padhan, Narendra; Sjöström, Elisabet O; van Meeteren, Laurens|info:eu-repo/dai/nl/299142353; He, Liqun; Orsenigo, Fabrizio; Dejana, Elisabetta; Bentley, Katie; Spurkland, Anne; Claesson-Welsh, Lena

    2016-01-01

    Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the

  4. PTEN differentially regulates expressions of ICAM-1 and VCAM-1 through PI3K/Akt/GSK-3β/GATA-6 signaling pathways in TNF-α-activated human endothelial cells.

    Science.gov (United States)

    Tsoyi, Konstantin; Jang, Hwa Jin; Nizamutdinova, Irina Tsoy; Park, Kyungok; Kim, Young Min; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Chang, Ki Churl

    2010-11-01

    Phosphotase and tensin homolog deleted on chromosome 10 (PTEN) is a potent negative regulator of PI3K/Akt pathway. Here, we tried to elucidate the role of PTEN in the regulation of endothelial adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1, induced by TNF-α in human endothelial cells (ECs). Transfection with PTEN overexpressing vector resulted in the significant decrease in phosphorylation of Akt in TNF-α-treated ECs. PTEN strongly inhibited VCAM-1 but not ICAM-1, however this inhibitory effect was reversed by co-transfection with constitutively active-Akt (CA-Akt-HA) in TNF-α-stimulated ECs. Additionally, silencing of PTEN with specific siRNA showed significant increase of phosphor-Akt compared with TNF-α alone treated ECs. siPTEN significantly upregulated VCAM-1 but was indifferent to ICAM-1 in TNF-α-treated cells. Further, chromatin immunoprecipitation (ChIP) assay showed that PTEN targets GATA-6 but not IRF-1 binding to VCAM-1 promoter. In addition, GATA-6 is associated with glycogen synthesis kinase-3beta (GSK-3β) which is in turn regulated by PTEN-dependent Akt activity. Finally, PTEN significantly prevented monocyte adhesion to TNF-α-induced ECs probably through VCAM-1 regulation. It is concluded that PTEN selectively inhibits expression of VCAM-1 but not ICAM-1 through modulation of PI3K/Akt/GSK-3β/GATA-6 signaling cascade in TNF-α-treated ECs. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Single-chain vascular endothelial growth factor variant with antagonist activity

    DEFF Research Database (Denmark)

    Boesen, Thomas P; Soni, Bobby; Schwartz, Thue W

    2002-01-01

    receptor molecules and inducing dimerization. By mixing two vascular endothelial growth factor monomers, each with different substitutions, heterodimers with only one active receptor binding site have previously been prepared. These heterodimers bind the receptor molecule but are unable to induce...... dimerization and activation. However, preparation of heterodimers is cumbersome, involving separate expression of different monomers, refolding the mixture, and separating heterodimers from homodimers. Here we show that a fully functional ligand can efficiently be expressed as a single protein chain containing...

  6. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  7. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Science.gov (United States)

    Zhang, Xun E; Adderley, Shaquria P; Breslin, Jerome W

    2016-01-01

    Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P)-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC) or human dermal microvascular endothelial cells (HDMEC) were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER) using an electrical cell-substrate impedance sensor (ECIS). The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET) biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  8. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Directory of Open Access Journals (Sweden)

    Xun E Zhang

    Full Text Available Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC or human dermal microvascular endothelial cells (HDMEC were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER using an electrical cell-substrate impedance sensor (ECIS. The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  9. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  10. Increased MCP-1 gene expression in monocytes of severe OSA patients and under intermittent hypoxia.

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Yuling; Ko, Wen-Shan; Pang, Jong-Hwei S

    2016-03-01

    Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. Monocyte chemoattractant protein-1 (MCP-1), as a critical factor for monocyte infiltration, is known to play a role in the development of atherosclerosis. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the MCP-1 expression of monocytes. Peripheral blood was sampled from 61 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of MCP-1. The effect of in vitro intermittent hypoxia on the regulation and function of MCP-1 was investigated on THP-1 monocytic cells and human monocytes. The mRNA and secreted protein levels were investigated by RT/real-time PCR and enzyme-linked immunosorbent assay, respectively. Monocytic MCP-1 gene expression was found to be increased significantly in severe OSA patients. In vitro intermittent hypoxia was demonstrated to increase the mRNA and protein expression levels of MCP-1 dose- and time-dependently in THP-1 monocytic cells. The MCP-1 mRNA expression in monocytes isolated from OSA patient was induced to a much higher level compared to that from normal control. Pre-treatment with inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of MCP-1 expression by intermittent hypoxia. This is the first study to demonstrate the increase of MCP-1 gene expression in monocytes of severe OSA patients. In addition, monocytic MCP-1 gene expression can be induced under intermittent hypoxia.

  11. Induction of autophagy is essential for monocyte-macrophage differentiation

    OpenAIRE

    Zhang, Yan; Morgan, Michael J.; Chen, Kun; Choksi, Swati; Liu, Zheng-gang

    2012-01-01

    Monocytes are programmed to undergo apoptosis in the absence of stimulation. Stimuli that promote monocyte-macrophage differentiation not only cause cellular changes, but also prevent the default apoptosis of monocytes. In the present study, we demonstrate that autophagy is induced when monocytes are triggered to differentiate and that the induction of autophagy is pivotal for the survival and differentiation of monocytes. We also show that inhibition of autophagy results in apoptosis of cell...

  12. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  13. Crosstalk between inflammation, iron metabolism and endothelial function in Behçet's disease.

    Science.gov (United States)

    Oliveira, Rita; Napoleão, Patricia; Banha, João; Paixão, Eleonora; Bettencourt, Andreia; da Silva, Berta Martins; Pereira, Dina; Barcelos, Filipe; Teixeira, Ana; Patto, José Vaz; Viegas-Crespo, Ana Maria; Costa, Luciana

    2014-01-01

    Behçet's disease (BD) is a rare chronic vasculitis of unclear etiology. It has been suggested that inflammatory response has an important role in BD pathophysiology. Herein, we aimed to study the interplay between inflammation, iron metabolism and endothelial function in BD and search for its putative association with disease activity. Twenty five patients clinically diagnosed with BD were selected and twenty four healthy age-sex matched individuals participated as controls. Results showed an increase of total number of circulating white blood cells and neutrophils, serum transferrin, total iron binding capacity, mieloperoxidase (MPO), ceruloplasmin (Cp), C reactive protein, β2 microglobulin and Cp surface expression in peripheral blood monocytes in BD patients comparatively to healthy individuals (p < 0,05). Of notice, the alterations observed were associated to disease activity status. No significant differences between the two groups were found in serum nitric oxide concentration. The results obtained suggest an important contribution from innate immunity in the pathogenesis of this disease. In particular, surface expression of leukocyte-derived Cp may constitute a new and relevant biomarker to understand BD etiology.

  14. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  15. Monocytes and macrophages in pregnancy and pre-eclampsia

    NARCIS (Netherlands)

    Faas, Marijke M.; Spaans, Floor; De Vos, Paul

    2014-01-01

    Preeclampsia is an important complication in pregnancy, characterized by hypertension and proteinuria in the second half of pregnancy. Generalized activation of the inflammatory response is thought to play a role in the pathogenesis of pre-eclampsia. Monocytes may play a central role in this

  16. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Chi, Liyi; Hu, Xiaojing; Zhang, Wentao; Bai, Tiao; Zhang, Linjing; Zeng, Hua; Guo, Ruirui; Zhang, Yanhai; Tian, Hongyan

    2017-01-01

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNA was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (Ang

  17. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul

    2002-01-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ( 18 F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes

  18. Clinical significance of nailfold capillaroscopy in systemic lupus erythematosus: correlation with endothelial cell activation markers and disease activity.

    Science.gov (United States)

    Kuryliszyn-Moskal, A; Ciolkiewicz, M; Klimiuk, P A; Sierakowski, S

    2009-01-01

    To evaluate whether nailfold capillaroscopy (NC) changes are associated with the main serum endothelial cell activation markers and the disease activity of systemic lupus erythematosus (SLE). Serum levels of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble E-selectin (sE-selectin), and soluble thrombomodulin (sTM) were determined by an enzyme-linked immunosorbent assay (ELISA) in 80 SLE patients and 33 healthy controls. Nailfold capillary abnormalities were seen in 74 out of 80 (92.5%) SLE patients. A normal capillaroscopic pattern or mild changes were found in 33 (41.25%) and moderate/severe abnormalities in 47 (58.75%) of all SLE patients. In SLE patients a capillaroscopic score >1 was more frequently associated with the presence of internal organ involvement (p 1 and controls. SLE patients with severe/moderate capillaroscopic abnormalities showed significantly higher VEGF serum levels than patients with mild changes (p < 0.001). Moreover, there was a significant positive correlation between the severity of capillaroscopic changes and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) (p < 0.005) as well as between capillaroscopic score and VEGF serum levels (p < 0.001). Our findings confirm the usefulness of NC as a non-invasive technique for the evaluation of microvascular involvement in SLE patients. A relationship between changes in NC, endothelial cell activation markers and clinical features of SLE suggest an important role for microvascular abnormalities in clinical manifestation of the disease.

  19. Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    2015-01-01

    Full Text Available Lipoarabinomannan (LAM is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients. Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses.

  20. Manufacture of endothelial colony-forming progenitor cells from steady-state peripheral blood leukapheresis using pooled human platelet lysate.

    Science.gov (United States)

    Siegel, Georg; Fleck, Erika; Elser, Stefanie; Hermanutz-Klein, Ursula; Waidmann, Marc; Northoff, Hinnak; Seifried, Erhard; Schäfer, Richard

    2018-05-01

    Endothelial colony-forming progenitor cells (ECFCs) are promising candidates for cell therapies. However, ECFC translation to the clinic requires optimized isolation and manufacture technologies according to good manufacturing practice (GMP). ECFCs were manufactured from steady-state peripheral blood (PB) leukapheresis (11 donors), using GMP-compliant technologies including pooled human platelet (PLT) lysate, and compared to human umbilical cord endothelial cells, human aortic endothelial cells, and human cerebral microvascular endothelial cells. Specific variables assessed were growth kinetics, phenotype, trophic factors production, stimulation of tube formation, and Dil-AcLDL uptake. ECFCs could be isolated from PB leukapheresis units with mean processed volume of 5411 mL and mean white blood cell (WBC) concentration factor of 8.74. The mean frequency was 1.44 × 10 -8 ECFCs per WBC, corresponding to a mean of 177.8 ECFCs per apheresis unit. Expandable for up to 12 cumulative population doublings, calculated projection showed that approximately 730 × 10 3 ECFCs could be manufactured from 1 apheresis unit. ECFCs produced epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor (VEGF)-A, PLT-derived growth factor-B, interleukin-8, and monocyte chemoattractant protein-1, featured high potential for capillary-like tubes formation, and showed no telomerase activity. They were characterized by CD29, CD31, CD44, CD105, CD117, CD133, CD144, CD146, and VEGF-R2 expression, with the most common subpopulation CD34+CD117-CD133-. Compared to controls, ECFCs featured greater Dil-AcLDL uptake and higher expression of CD29, CD31, CD34, CD44, CD144, and VEGF-R2. Here we show that isolation of ECFCs with proangiogenic profile from steady-state PB leukapheresis is feasible, marking a first step toward ECFC product manufacture according to GMP. © 2018 AABB.

  1. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Nadia Calabriso

    2016-08-01

    Full Text Available Matrix metalloproteinases (MMPs are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases’ activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5–25 μg/mL of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively or their specific components (0.5–25 μmol/L, before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  2. Monocyte Subsets in Schistosomiasis Patients with Periportal Fibrosis

    Directory of Open Access Journals (Sweden)

    Jamille Souza Fernandes

    2014-01-01

    Full Text Available A major issue with Schistosoma mansoni infection is the development of periportal fibrosis, which is predominantly caused by the host immune response to egg antigens. Experimental studies have pointed to the participation of monocytes in the pathogenesis of liver fibrosis. The aim of this study was to characterize the subsets of monocytes in individuals with different degrees of periportal fibrosis secondary to schistosomiasis. Monocytes were classified into classical (CD14++CD16−, intermediate (CD14++CD16+, and nonclassical (CD14+CD16++. The expressions of monocyte markers and cytokines were assessed using flow cytometry. The frequency of classical monocytes was higher than the other subsets. The expression of HLA-DR, IL-6, TNF-α, and TGF-β was higher in monocytes from individuals with moderate to severe fibrosis as compared to other groups. Although no differences were observed in receptors expression (IL-4R and IL-10R between groups of patients, the expression of IL-12 was lower in monocytes from individuals with moderate to severe fibrosis, suggesting a protective role of this cytokine in the development of fibrosis. Our data support the hypothesis that the three different monocyte populations participate in the immunopathogenesis of periportal fibrosis, since they express high levels of proinflammatory and profibrotic cytokines and low levels of regulatory markers.

  3. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  4. Myelosuppression of Thrombocytes and Monocytes Is Associated with a Lack of Synergy between Chemotherapy and Anti-VEGF Treatment1

    Science.gov (United States)

    Starlinger, Patrick; Brugger, Philipp; Schauer, Dominic; Sommerfeldt, Silvia; Tamandl, Dietmar; Kuehrer, Irene; Schoppmann, Sebastian F; Gnant, Michael; Brostjan, Christine

    2011-01-01

    Purpose Chemotherapeutic agents that have shown improved patient outcome when combined with anti-vascular endothelial growth factor (VEGF) therapy were recently identified to induce the mobilization of proangiogenic Tie-2-expressing monocytes (TEMs) and endothelial progenitor cells (EPCs) by platelet release of stromal cell-derived factor 1α (SDF-1α). VEGF blockade was found to counteract cell mobilization. We aimed to determine why agents like gemcitabine do not elicit TEM and EPC recruitment and may therefore lack synergy with anti-VEGF therapy. Experimental Design Locally advanced pancreatic cancer patients (n = 20) were monitored during 16 weeks of neoadjuvant therapy. Treatment was based on gemcitabine with or without the addition of bevacizumab. Blood levels of proangiogenic cell populations and angiogenesis factors were determined in 2-week intervals. Results The lack of EPC mobilization during gemcitabine therapy was associated with severe thrombocytopenia and reduced SDF-1α blood concentrations. Furthermore, myelosuppression by gemcitabine correlated significantly with loss of TEMs. With respect to angiogenic factors stored and released by platelets, plasma levels of the angiogenesis inhibitor thrombospondin 1 (TSP-1) were selectively decreased and correlated significantly with thrombocytopenia in response to gemcitabine therapy. Conclusions A thorough literature screen identified thrombocytopenia as a common feature of chemotherapeutic agents that lack synergy with anti-VEGF treatment. Our results on gemcitabine therapy indicate that myelosuppression (in particular, with respect to thrombocytes and monocytes) interferes with the mobilization of proangiogenic cell types targeted by bevacizumab and may further counteract antiangiogenic therapy by substantially reducing the angiogenesis inhibitor TSP-1. PMID:21532882

  5. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Liam M. Ashander

    2016-01-01

    Full Text Available Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1 mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1, in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α, and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (siRNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans.

  6. Analysis of urine composition in type Ⅱ diabetic mice after intervention therapy using holothurian polypeptides

    Science.gov (United States)

    Li, Yanyan; Xu, Jiajie; Su, Xiurong

    2017-07-01

    Hydrolysates and peptide fractions (PF) obtained from sea cucumber with commercial enzyme were studied on the hpyerglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR), and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of holothurian polypeptides treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.

  7. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5.

    Science.gov (United States)

    Huang, Jiqing; Kast, Juergen

    2015-08-07

    Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.

  8. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis.

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    Full Text Available BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+CD16(- and non-classical CD14(+CD16(+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+CD16(+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+CD16(+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC in vitro. CD14(+CD16(+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+CD16(+, but not CD14(+CD16(- monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data

  9. Imbalance of Circulating Monocyte Subsets and PD-1 Dysregulation in Q Fever Endocarditis: The Role of IL-10 in PD-1 Modulation

    Science.gov (United States)

    Ka, Mignane B.; Gondois-Rey, Françoise; Capo, Christian; Textoris, Julien; Million, Mathieu; Raoult, Didier; Olive, Daniel; Mege, Jean-Louis

    2014-01-01

    Q fever endocarditis, a severe complication of Q fever, is associated with a defective immune response, the mechanisms of which are poorly understood. We hypothesized that Q fever immune deficiency is related to altered distribution and activation of circulating monocyte subsets. Monocyte subsets were analyzed by flow cytometry in peripheral blood mononuclear cells from patients with Q fever endocarditis and controls. The proportion of classical monocytes (CD14+CD16− monocytes) was similar in patients and controls. In contrast, the patients with Q fever endocarditis exhibited a decrease in the non-classical and intermediate subsets of monocytes (CD16+ monocytes). The altered distribution of monocyte subsets in Q fever endocarditis was associated with changes in their activation profile. Indeed, the expression of HLA-DR, a canonical activation molecule, and PD-1, a co-inhibitory molecule, was increased in intermediate monocytes. This profile was not restricted to CD16+ monocytes because CD4+ T cells also overexpressed PD-1. The mechanism leading to the overexpression of PD-1 did not require the LPS from C. burnetii but involved interleukin-10, an immunosuppressive cytokine. Indeed, the incubation of control monocytes with interleukin-10 led to a higher expression of PD-1 and neutralizing interleukin-10 prevented C. burnetii-stimulated PD-1 expression. Taken together, these results show that the immune suppression of Q fever endocarditis involves a cross-talk between monocytes and CD4+ T cells expressing PD-1. The expression of PD-1 may be useful to assess chronic immune alterations in Q fever endocarditis. PMID:25211350

  10. Ionizing radiation activates vascular endothelial growth factor-A transcription in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyounji; Kim, Kwang Seok; Jeong, Jae Hoon; Lim, Young Bin [Radiation Cancer Biology Team, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-12-15

    Vascular endothelial growth factor (VEGF) is an essential paracrine factor for developmental and pathological angiogenesis. VEGF also exerts its effects in an autocrine manner in VEGF-producing cells. For instance, autocrine VEGF signaling occurs in tumor cells and contributes to key aspects of tumorigenesis, such as in the function of cancer stem cells and tumor initiation, which are independent of angiogenesis. In addition to tumors cells, non-transformed cells also express VEGF. For example, a VEGF dependent intracellular autocrine mechanism is crucial for the survival of hematopoietic stem cells and hematopoiesis. Stereotactic body radiation therapy (SBRT) is a novel treatment modality for early primary cancer and oligometastatic disease. SBRT delivers high-dose hypofractionated radiation, such as 20-60 Gy, to tumors in a single fraction or 2-5 fractions. As VEGF is a critical regulator of functional integrity and viability of vascular endothelial cells, we examined whether high-dose irradiation alters VEGF signaling by measuring the expression levels of VEGFA transcript. It is generally believed that endothelial cells do not produce VEGF in response to radiation. In present study, however, we provide the first demonstration of transcriptional regulation of VEGFA in human vascular endothelial cells by IR treatment. Irradiation with doses higher than 10 Gy in a single exposure triggers up-regulation of VEGFA transcription within 2 hours in HUVECs, whereas irradiation with 10 Gy does not alter VEGFA levels. Our data have shown that high-dose irradiation triggers immediate transactivation of VEGFA in human vascular endothelial cells.

  11. Palmitate and insulin synergistically induce IL-6 expression in human monocytes

    Directory of Open Access Journals (Sweden)

    Lumpkin Charles K

    2010-11-01

    Full Text Available Abstract Background Insulin resistance is associated with a proinflammatory state that promotes the development of complications such as type 2 diabetes mellitus (T2DM and atherosclerosis. The metabolic stimuli that initiate and propagate proinflammatory cytokine production and the cellular origin of proinflammatory cytokines in insulin resistance have not been fully elucidated. Circulating proinflammatory monocytes show signs of enhanced inflammation in obese, insulin resistant subjects and are thus a potential source of proinflammatory cytokine production. The specific, circulating metabolic factors that might stimulate monocyte inflammation in insulin resistant subjects are poorly characterized. We have examined whether saturated nonesterified fatty acids (NEFA and insulin, which increase in concentration with developing insulin resistance, can trigger the production of interleukin (IL-6 and tumor necrosis factor (TNF-α in human monocytes. Methods Messenger RNA and protein levels of the proinflammatory cytokines IL-6 and TNF-α were measured by quantitative real-time PCR (qRT-PCR and Luminex bioassays. Student's t-test was used with a significance level of p Results Esterification of palmitate with coenzyme A (CoA was necessary, while β-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and TNF-α in THP-1 monocytes. Monocytes incubated with insulin and palmitate together produced more IL-6 mRNA and protein, and more TNF-α protein, compared to monocytes incubated with palmitate alone. Incubation of monocytes with insulin alone did not affect the production of IL-6 or TNF-α. Both PI3K-Akt and MEK/ERK signalling pathways are important for cytokine induction by palmitate. MEK/ERK signalling is necessary for synergistic induction of IL-6 by palmitate and insulin. Conclusions High levels of saturated NEFA, such as palmitate, when combined with hyperinsulinemia, may activate human monocytes to produce

  12. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    Science.gov (United States)

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prevention of UV irradiation induced suppression of monocyte functions by retinoids and carotenoids in vitro

    International Nuclear Information System (INIS)

    Schoen, D.J.; Watson, R.R.

    1988-01-01

    The effects of stimulation of human peripheral blood monocytes in vitro with retinoids and carotenoids, and subsequent exposure to ultraviolet light of the B wavelength were measured. The compounds were applied to the monocytes in culture for 24 h, and the washed cells were then exposed to UVB light up to 220 J/m 2 . The compounds tested protected the monocyte from UVB induced damage to phagocytic activity. This protection may be due to the antioxidant or UVB energy-quenching properties of these compounds. Monocyte cytotoxicity against a melanoma cell line was stimulated by exposure to the retinoids or carotenoids, but a protective effect in vitro against UVB damage was not seen for this cell function. (author)

  14. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Laursen, Janne Marie; Zucker, Daniel

    2017-01-01

    Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly...... targeted by the tumor escape mechanisms to develop immunosuppressive phenotypes. Providing activated monocytes and DCs to the tumor tissue is therefore an attractive way to break the tumor-derived immune suppression and reinstate cancer immune surveillance. To activate monocytes and DCs with high...... as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system...

  15. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    Science.gov (United States)

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  16. Mycoplasma suis infection results endothelial cell damage and activation: new insight into the cell tropism and pathogenicity of hemotrophic mycoplasma

    Directory of Open Access Journals (Sweden)

    Sokoli Albina

    2013-02-01

    Full Text Available Abstract Hemotrophic mycoplasmas (HM are highly specialized red blood cell parasites that cause infectious anemia in a variety of mammals, including humans. To date, no in vitro cultivation systems for HM have been available, resulting in relatively little information about the pathogenesis of HM infection. In pigs, Mycoplasma suis-induced infectious anemia is associated with hemorrhagic diathesis, and coagulation dysfunction. However, intravasal coagulation and subsequent consumption coagulopathy can only partly explain the sequence of events leading to hemorrhagic diathesis manifesting as cyanosis, petechial bleeding, and ecchymosis, and to disseminated coagulation. The involvement of endothelial activation and damage in M. suis-associated pathogenesis was investigated using light and electron microscopy, immunohistochemistry, and cell sorting. M. suis interacted directly with endothelial cells in vitro and in vivo. Endothelial activation, widespread endothelial damage, and adherence of red blood cells to the endothelium were evident in M. suis-infected pigs. These alterations of the endothelium were accompanied by hemorrhage, intravascular coagulation, vascular occlusion, and massive morphological changes within the parenchyma. M. suis biofilm-like microcolonies formed on the surface of endothelial cells, and may represent a putative persistence mechanism of M. suis. In vitro analysis demonstrated that M. suis interacted with the endothelial cytoskeletal protein actin, and induced actin condensation and activation of endothelial cells, as determined by the up-regulation of ICAM, PECAM, E-selectin, and P-selectin. These findings demonstrate an additional cell tropism of HM for endothelial cells and suggest that M. suis interferes with the protective function of the endothelium, resulting in hemorrhagic diathesis.

  17. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  18. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients

    Directory of Open Access Journals (Sweden)

    Morrison Laurie J

    2010-01-01

    Full Text Available Abstract Background Traumatic brain injury (TBI initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury. Methods Using a prospective, randomized controlled trial we investigated the impact of prehospital resuscitation of severe TBI (GCS vs 0.9% normal saline (NS, on selected cellular and soluble inflammatory/coagulation markers. Serial blood samples were drawn from 65 patients (30 HSD, 35 NS at the time of hospital admission and at 12, 24, and 48-h post-resuscitation. Flow cytometry was used to analyze leukocyte cell-surface adhesion (CD62L, CD11b and degranulation (CD63, CD66b molecules. Circulating concentrations of soluble (sL- and sE-selectins (sL-, sE-selectins, vascular and intercellular adhesion molecules (sVCAM-1, sICAM-1, pro/antiinflammatory cytokines [tumor necrosis factor (TNF-α and interleukin (IL-10], tissue factor (sTF, thrombomodulin (sTM and D-dimers (D-D were assessed by enzyme immunoassay. Twenty-five healthy subjects were studied as a control group. Results TBI provoked marked alterations in a majority of the inflammatory/coagulation markers assessed in all patients. Relative to control, NS patients showed up to a 2-fold higher surface expression of CD62L, CD11b and CD66b on polymorphonuclear neutrophils (PMNs and monocytes that persisted for 48-h. HSD blunted the expression of these cell-surface activation/adhesion molecules at all time-points to

  19. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sylvie Séguier

    Full Text Available We investigated whether gingival fibroblasts (GFs can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05 inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  20. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    Science.gov (United States)

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity. Copyright © 2016. Published by Elsevier Inc.

  1. The effects of dexamethasone on the Na,K-ATPase activity and pump function of corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin; Yamada, Masakazu; Mochizuki, Hiroshi; Shiraishi, Atsushi; Joko, Takeshi; Nishida, Teruo

    2009-05-01

    The Na(+)- and K(+)-dependent ATPase (Na,K-ATPase) expressed in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the possible role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in corneal endothelial cells. Confluent monolayers of mouse corneal endothelial cells were exposed to dexamethasone. ATPase activity of the cells was evaluated by spectrophotometric measurement of phosphate released from ATP with the use of ammonium molybdate, with Na,K-ATPase activity being defined as the portion of total ATPase activity sensitive to ouabain. Pump function of the cells was measured with the use of an Ussing chamber, with the pump function attributable to Na,K-ATPase activity being defined as the portion of the total short-circuit current sensitive to ouabain. Western blot analysis was examined to measure the expression of the Na,K-ATPase alpha(1)-subunit. Dexamethasone (1 or 10 microM) increased the Na,K-ATPase activity and pump function of the cultured cells. These effects of dexamethasone were blocked by cycloheximide, a protein synthesis inhibitor. Western blot analysis also indicated that dexamethasone increased the expression of the Na,K-ATPase alpha(1)-subunit, whereas it decreased the expression of the phospho-Na,K-ATPase alpha(1)-subunit. Our results suggest that dexamethasone stimulates Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells is mediated by Na,K-ATPase synthesis and increase in an enzymatic activity by dephosphorylation of Na,K-ATPase alpha(1)-subunits.

  2. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    Science.gov (United States)

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The radioactive labeling of monocytes

    International Nuclear Information System (INIS)

    Ensing, G.J.

    1985-01-01

    With the aim of studying a possible relationship between circulating monocytes and Sternberg-Reed cells investigations were started on the specific labeling of monocytes. In this thesis the literature on the pertinent data has been reviewed and a series of experiments on the monocyte labeling procedure has been described. The principles of cell labeling with radioactive compounds were discussed. 1. Total separation of the particular cell population to be labeled and subsequent labeling with a non-specific radiopharmaceutical. 2. Specific cell labeling in a mixture of cell types based on a well defined affinity of the cell under study for the radiopharmaceutical used. Next the radionuclides that can be used for cell labeling purposes were discussed with special attention for 111 In and its chelates. The principles of radiodosimetry were also discussed shortly. This section was focussed on the radiation dose the labeled cells receive because of the intracellular localized radioactivity. The radiation burden is high in comparison to amounts of radiation known to affect cell viability. A newly developed method for labeling monocytes specifically by phagocytosis of 111 In-Fe-colloid without apparent loss of cells was described in detail. (Auth.)

  4. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  5. Localization of monocyte chemotactic and activating factor (MCAF/MCP-1) in psoriasis

    DEFF Research Database (Denmark)

    Deleuran, M; Buhl, L; Ellingsen, T

    1996-01-01

    in the epidermal pustules in pustular psoriasis. In normals positive staining was observed in all the layers of the epidermis and in a few perivascular cells and blood vessels in the dermis. Where present in normal and diseased skin, eccrine ducts of sweat glands and sebaceous glands stained positive for MCAF......The monocyte chemotactic protein-1 (MCAF) also termed MCP-1, a strong chemotactic factor towards monocytes, is produced by several cell types present in the skin. The in situ presence of MCAF/MCP-1 protein in the skin has, however, not yet been established. Using immunohistochemical techniques we...... have investigated the distribution of MCAF in skin from patients with different types of psoriasis and normal healthy volunteers. We report the novel finding that psoriasis has strong positive immunostaining for MCAF located to all the layers of the epidermis, except the stratum granulosum, in pustular...

  6. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    OpenAIRE

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding t...

  7. Effect of peritoneal dialysis fluid containing osmo-metabolic agents on human endothelial cells

    Directory of Open Access Journals (Sweden)

    Bonomini M

    2016-11-01

    Full Text Available Mario Bonomini,1,2 Sara Di Silvestre,3,4 Pamela Di Tomo,3,4 Natalia Di Pietro,2,4 Domitilla Mandatori,3,4 Lorenzo Di Liberato,1 Vittorio Sirolli,1,2 Francesco Chiarelli,2,4 Cesare Indiveri,5 Assunta Pandolfi,3,4 Arduino Arduini6 1Unit of Nephrology and Dialysis, 2Department of Medicine and Aging Sciences, 3Department of Medical, Oral and Biotechnological Sciences, 4Aging Research Center and Translational Medicine, CeSI-MeT, University “G. d’Annunzio”, Chieti-Pescara, 5Department DiBEST (Biologia, Ecologia, Scienze della Terra, Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende CS, Italy; 6CoreQuest, Manno, Switzerland Background: The use of glucose as the only osmotic agent in peritoneal dialysis (PD solutions (PDSs is believed to exert local (peritoneal and systemic detrimental actions, particularly in diabetic PD patients. To improve peritoneal biocompatibility, we have developed more biocompatible PDSs containing xylitol and carnitine along with significantly less amounts of glucose and have tested them in cultured Human Vein Endothelial Cells (HUVECs obtained from the umbilical cords of healthy (C and gestational diabetic (GD mothers. Methods: Primary C- and GD-HUVECs were treated for 72 hours with our PDSs (xylitol 0.7% and 1.5%, whereas carnitine and glucose were fixed at 0.02% and 0.5%, respectively and two glucose-based PDSs (glucose 1.36% or 2.27%. We examined their effects on endothelial cell proliferation (cell count, viability (3-(4,5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide assay, intracellular nitro-oxidative stress (peroxynitrite levels, Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 membrane exposure (flow cytometry, and HUVEC-monocyte interactions (U937 adhesion assay. Results: Compared to glucose-based PDSs, our in vitro studies demonstrated that the tested PDSs did not change the proliferative potential both in C- and GD-HUVECs. Moreover, our

  8. Platelet activating factor-induced ceramide micro-domains drive endothelial NOS activation and contribute to barrier dysfunction.

    Directory of Open Access Journals (Sweden)

    Sanda Predescu

    Full Text Available The spatial and functional relationship between platelet activating factor-receptor (PAF-R and nitric oxide synthase (eNOS in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles.

  9. Monocyte chemoattractant protein-1 and interleukin-8 levels in urine and serum of patents with hemolytic uremic syndrome.

    Science.gov (United States)

    van Setten, P A; van Hinsbergh, V W; van den Heuvel, L P; Preyers, F; Dijkman, H B; Assmann, K J; van der Velden, T J; Monnens, L A

    1998-06-01

    The epidemic form of the hemolytic uremic syndrome (HUS) in children is hallmarked by endothelial cell damage, most predominantly displayed by the glomerular capillaries. The influx of mononuclear (MO) and polymorphonuclear cells (PMNs) into the glomeruli may be an important event in the initiation, prolongation, and progression of glomerular endothelial cell damage in HUS patients. The molecular mechanisms for the recruitment of these leukocytes into the kidney are unclear, but monocyte chemoattractant protein-1 (MCP-1) and IL-8 are suggested to be prime candidates. In this study, we analyzed the presence of both chemokines in 24-h urinary (n = 15) and serum (n = 14) samples of HUS children by specific ELISAs. Furthermore, kidney biopsies of three different HUS children were examined for MO and PMN cell infiltration by histochemical techniques and electron microscopy. Whereas the chemokines MCP-1 and IL-8 were present in only very limited amounts in urine of 17 normal control subjects, serial samples of HUS patients demonstrated significantly elevated levels of both chemokines. HUS children with anuria showed higher initial and maximum chemokine levels than their counterparts without anuria. A strong positive correlation was observed between urinary MCP-1 and IL-8 levels. Whereas initial serum IL-8 levels were significantly increased in HUS children, serum MCP-1 levels were only slightly elevated compared with serum MCP-1 in control children. No correlation was found between urinary and serum chemokine concentrations. Histologic and EM studies of HUS biopsy specimens clearly showed the presence of MOs and to a lesser extent of PMNs in the glomeruli. The present data suggest an important local role for MOs and PMNs in the process of glomerular endothelial-cell damage. The chemokines MCP-1 and IL-8 may possibly be implicated in the pathogenesis of HUS through the recruitment and activation of MOs and PMNs, respectively.

  10. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules.

    Science.gov (United States)

    Costa, Vivian Vasconcelos; Ye, Weijian; Chen, Qingfeng; Teixeira, Mauro Martins; Preiser, Peter; Ooi, Eng Eong; Chen, Jianzhu

    2017-08-01

    Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo , identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control

  11. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis

    International Nuclear Information System (INIS)

    Pereira, Flavia E.; Coffin, J. Douglas; Beall, Howard D.

    2007-01-01

    Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and β-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 μM sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and β-catenin staining at cell-cell junctions that were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of β-catenin and activation of protein kinase Cα (PKCα) were observed. Inhibition of PKCα restored VE-cadherin and β-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of β-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKCα, which leads to increased PY of β-catenin downstream of PKCα activation. Phosphorylation of β-catenin plausibly severs the association of VE-cadherin and β-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis

  12. Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus.

    Science.gov (United States)

    Otterdal, Kari; Janardhanan, Jeshina; Astrup, Elisabeth; Ueland, Thor; Prakash, John A J; Lekva, Tove; Abraham, O C; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M

    2014-11-01

    Scrub typhus is endemic in the Asia-Pacific region. Mortality is high even with treatment, and further knowledge of the immune response during this infection is needed. This study was aimed at comparing plasma levels of monocyte/macrophage and endothelial related inflammatory markers in patients and controls in South India and to explore a possible correlation to disease severity and clinical outcome. Plasma levels of ALCAM, VCAM-1, sCD163, sCD14, YKL-40 and MIF were measured in scrub typhus patients (n = 129), healthy controls (n = 31) and in infectious disease controls (n = 31), both in the acute phase and after recovery, by enzyme immunoassays. Patients had markedly elevated levels of all mediators in the acute phase, differing from both healthy and infectious disease controls. During follow-up levels of ALCAM, VCAM-1, sCD14 and YKL-40 remained elevated compared to levels in healthy controls. High plasma ALCAM, VCAM-1, sCD163, sCD14, and MIF, and in particular YKL-40 were all associated with disease severity and ALCAM, sCD163, MIF and especially YKL-40, were associated with mortality. Our findings show that scrub typhus is characterized by elevated levels of monocyte/macrophage and endothelial related markers. These inflammatory markers, and in particular YKL-40, may contribute to disease severity and clinical outcome. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  13. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Niwa, Koichi [Laboratory of Biochemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  14. [Changes of monocyte and monocyte-platelet aggregates in different subgroups of thrombotic events in patients with acute myocardial infarction during PCI].

    Science.gov (United States)

    Wang, Sheng; Sun, Cuifang; Liao, Wang; Wu, Zhongwei; Wang, Yudai; Huang, Xiuxian; Lu, Sijia; Dong, Xiaoli; Shuai, Fujie; Li, Bin

    2017-07-01

    Objective To investigate the impact of thrombotic events on the alterations of monocyte and monocyte-platelet aggregates (MPAs) in patients with acute myocardial infarction (AMI) during percutaneous coronary intervention (PCI). Methods Blood was collected before PCI for flow cytometry. Monocyte subsets and MPAs were detected by four-color platform (CDl4-APC, CDl6-PE-Cy7, CD86-PE and CD41-Alexa Fluor R 488). According to the expression of the platelet surface marker CD41, the number of monocyte subsets and MPAs was analyzed using the fluorescent microspheres of absolute counting tube. The Wilcoxon rank sum test and receiver operating characteristic (ROC) curve analysis were performed. Results CD14 + CD16 ++ monocytes in intraprocedural thrombotic events (IPTE) group were significantly fewer than those in non-IPTE group, and the percentage in total mononuclear cells decreased. Compared with non-IPTE group, MPA binding ratio and monocyte subset MPA binding ratio were significantly higher in IPTE group. ROC analysis showed that MPA binding ratio and subgroup MPA binding ratio had a better predictive value for IPTE in patients with AMI. Conclusion The CD14 + CD16 ++ monocytes in IPTE group were significantly fewer than those in the non-IPTE group. MPA binding ratio and MPA binding ratio of monocyte subsets were significantly higher in the IPTE group than in the non-IPTE group, so they have a good predictive value for IPTE in patients with AMI.

  15. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    Science.gov (United States)

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  16. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM-1 expression via differential regulation of endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Ying I Wang

    Full Text Available Circulating triglyceride-rich lipoproteins (TGRL from hypertriglyceridemic subjects exacerbate endothelial inflammation and promote monocyte infiltration into the arterial wall. We have recently reported that TGRL isolated from human blood after a high-fat meal can elicit a pro- or anti-atherogenic state in human aortic endothelial cells (HAEC, defined as up- or down-regulation of VCAM-1 expression in response to tumor necrosis factor alpha (TNFα stimulation, respectively. A direct correlation was found between subjects categorized at higher risk for cardiovascular disease based upon serum triglycerides and postprandial production of TGRL particles that increased VCAM-1-dependent monocyte adhesion to inflamed endothelium. To establish how TGRL metabolism is linked to VCAM-1 regulation, we examined endoplasmic reticulum (ER stress and the unfolded protein response (UPR pathways. Regardless of its atherogenicity, the rate and extent of TGRL internalization and lipid droplet formation by HAEC were uniform. However, pro-atherogenic TGRL exacerbated ER membrane expansion and stress following TNFα stimulation, whereas anti-atherogenic TGRL ameliorated such effects. Inhibition of ER stress with a chemical chaperone 4-phenylbutyric acid decreased TNFα-induced VCAM-1 expression and abrogated TGRL's atherogenic effect. Activation of ER stress sensors PKR-like ER-regulated kinase (PERK and inositol requiring protein 1α (IRE1α, and downstream effectors including eukaryotic initiation factor-2α (eIF2α, spliced X-box-binding protein 1 (sXBP1 and C/EBP homologous protein (CHOP, directly correlated with the atherogenic activity of an individual's TGRL. Modulation of ER stress sensors also correlated with changes in expression of interferon regulatory factor 1 (IRF-1, a transcription factor of Vcam-1 responsible for regulation of its expression. Moreover, knockdown studies using siRNA defined a causal relationship between the PERK/eIF2α/CHOP pathway and

  17. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages.

    Science.gov (United States)

    Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua

    2012-05-01

    Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.

  18. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-01-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  19. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  20. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.